salesforce

Wave Analytics SAQL Reference

Y @salesforcedocs
Last updated: March 10, 2017

https://twitter.com/salesforcedocs

© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

SAQL OVERVIEW e 1
ENABLE SAQLLOGS INTHEBROWSER 2
SAQL BASIC ELEMENTS i 3
St EMENTS . . e 3
KeYWOIAS . o oo 3
Identifiers 4
Number LIterals 4
Sting Literalso e 4
Boolean Literals 5
Quoted StriNg ESCAPE SEQUENCES« o vttt e e e e e e e e e e e 5
Special Characters 5
COMMENES . o e 6
Nulls and NUlls in MEASUIES o o ittt et e e e e e e e e e e e 6
SAQL OPERATORS 8
Arithmetic Operators 8
Comparison OPEratorsottt e 8
SIHNG OPErators . . . o o e 10
Logical Operators 10
COSE & it it et e e e n
NUIL OPeraiors . . . oo e e e 14
SAQL STATEMENTS e 16
Oad o 16
e o 16
fOreaCh o 17
group and COGIOUP .« . . wv vttt ettt e e e e et e e e 18
UNION o e et e e e e e e e e 21
OFder o L 21
Mt . 22
OffSet L 23
SAQL FUNCTIONS e 24
Aggregate FUNCHONS . . . o e 24
Date FUNCHONS « .« . oo e 28
SING FUNCHIONS .« .« . oo e 37

Math FUNCHONS o e e e e 40

Contents

Windowing FUNCHONS o e e e e e e e e e e e 42
CoaleSCal) . . . 49
QUERY PERFORMANCE e 51
Projection s Key . . oo e 53
Grouping OFder . . . o ottt e e e 54
Network Traffic and Latency 54
Redundant Filters 54
Use the ELT Process 55

Multi-Value DIMENSIONS o ot e e e e e e e e e e e 56

SAQL OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in Wave Analytics datasets. Wave Analytics uses SAQL behind the scenes
in lenses, dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access Wave Analytics data via:
e Wave REST AP

Build your own app to access and analyze Wave Analytics data or integrate data with existing apps.
e Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

SEE ALSO:
Wave REST API Developer's Guide
Wave Analytics Dashboard JSON Reference

https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_json.meta/bi_dev_guide_json/

ENABLE SAQL LOGS IN THE BROWSER

If you're using Google Chrome to work with SAQL and Salesforce Wave Analytics, you can turn on SAQL logs.

Turning on SAQL logs in the browser prints queries in the Developer Tools Console. It doesn't change server-side logs.
1. In Google Chrome, open Developer Tools.

2. Select Console.

3. Select the explore (wave.apexp) frame.

4, Enter edge.log.enabled = true.

5

. Enter edge.log.query = true.

SAQL BASIC ELEMENTS

Statements

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception to this rule is the last line in a query, which you don't need to
assign explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example: Each of the lines in this SAQL query is a SAQL statement:

q load "0Fcc00000004DI1CAM/0Fd500000004F4sCAE";

g = group g by all;

q = foreach g generate count() as 'count', unique ('OL.Helpful') as 'unique OL.Helpful';
limit g 2000;

SAQL is compositional—you can chain statements together to operate on data sequentially. The order of SAQL statements is enforced
according to how the operations in the statements change the results of a query.

The statement order rules:

e Theorderof filter and order can be swapped because it doesn't change the results.
e offset mustbeafter filter and order

e offset mustbebefore 1imit

e There can be no morethan 1 offset statement aftera foreach statement.

0 Tip: SAQL is influenced by the Pig Latin programming language, but their implementations differ and they aren’t compatible.

SEE ALSO:
filter
foreach
limit
offset

order

Keywords

Keywords are case-sensitive and must be lowercase.

SAQL Basic Elements Identifiers

Identifiers

SAQL identifiers are case-sensitive. They can be enclosed in single quotation marks (') or no quotation marks.
Quoted identifiers can contain any character that a string can contain.

Unquoted identifiers can't be a reserved words and must start with a letter (A to Z or a to z) or an underscore. Subsequent characters
can be letters, numbers, or underscores. Unquoted identifiers can't contain spaces.

This example uses valid syntax:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;
opps = load "O0Fcyy000000002qCAA/O0Fcyy000000002WCAQ";

c = group accounts by 'Year', opps by 'Year';

d = foreach c¢ generate opps.Year as 'Year';

e = filter d by Year == "2002";

In the following example, the code in the third line throws an error:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;
opps = load "O0Fcyy000000002qCAA/OFcyy000000002WCAQ";

c = group accounts by "Year", opps by "Year";

d = foreach c generate opps.Year as 'Year';

e = filter d by Year == "2002";

@ Note: A set of characters in double quotes is treated as a string rather than as an identifier.

Number Literals

A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can't explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn't supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals

A string is a set of characters inside double quotes (").
Example: "This is a string."

This example uses valid syntax:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;
opps = load "0Fcyy000000002qCAA/O0Fcyy000000002WCAQ";

c = group accounts by 'Year', opps by 'Year';

d foreach c¢ generate opps.Year as 'Year';

e = filter d by Year == "2002";

@ Note: Identifiers are either unquoted or enclosed in single quotation marks.

SAQL Basic Elements Boolean Literals

Boolean Literals

A boolean literal represents true or false (yes or no) in your script.

Boolean literals t rue and false are supported in SAQL.

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

You can use the following string escape sequences:

Sequence Meaning

\n New line

\r Carriage return

\t Tab

\! One single-quote character
\" One double-quote character
AN One backslash character

Special Characters

Certain characters have special meanings in SAQL.

Character Name Description

; Semicolon Used to terminate statements.

' Single quote Used to quote identifiers.

" Double quote Used to quote strings.

() Parentheses Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you're defining more than one group or
order field.

[Brackets

Used to denote arrays. For example, this is an array of strings:
["thiS", HiSH, HaH, "string", narrayn]

Also used for referencing a particular member of an object. For example,
em['miles"'],whichisthesameas em.miles.

Period Used for referencing a particular member of an object. For example, em.mi les, which
isthesame as em['miles'].

SAQL Basic Elements Comments

Character Name Description

Two colons Used to explicitly specify the dataset that a measure or dimension belongs to, by placing

it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:

data = foreach data generate left::airline as airline

Two periods Used to separate a range of values. For example:

c = filter b by "the date" in
["2011-01-01".."2011-01-31"];

Comments

Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

You can put a comment on its own line:

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line:
a = load "myData"; --Load a data stream.
You can comment out a SAQL statement:

--The following line is commented out:
--a = load "myData";

Nulls and Nulls in Measures

In most contexts, SAQL allows the use of null anywhere a constant string or number would appear. SAQL also supports use of null
measures.

Using Nulls In SAGL

You can specify a null constant almost anywhere a constant string or number can appear in SAQL, with the following exceptions and
clarifications.

Typing

null isnot typed. It is inferred from context. For example, nul1 + 4 is a number. A SAQL syntax error will be generated when a type
cannot be infered.

Filters

When a filter expression evaluates to nul1, the row is filtered out.

e Lists
foo in [null, "bar"] ishandledlike foo == nullorfoo == "bar".
* Ranges

SAQL Basic Elements Nulls and Nulls in Measures

filter g by dim in [null.."myvalue"]ishandledas (dim>=null and dim<=7)

Unsupported

null is not supported in the following contexts:
e Offset

e Limit

e dateRelative

e dateRange

e Windowing range

e Trim (second argument)

Null Values in Measures

Measures in Wave are dataset columns that contain numerical values. Wave supports null values in measures.
@ Note: If null measure handling is not enabled in your org, it can be enabled by your admin.

Null measure handling lets customers distinguish between null and non-null—for example, the number 0—uvalues in their numerical
data. SAQL support for null measures facilitates this customer preference; for example, when using aggregation, comparison, and math
functions, and for order by orgroup by clauses.

When you create or update a dataset, for example through your dataflow or a CSV upload, any blank measure values in your data are
replaced with specific values. Wave uses the default values specified in your dataflow or CSV metadata file to replace blank values.

Replacing blank values with zeros can be problematic for a number of reasons. Take the example of data with customer satisfaction
scores, where some customers have not responded. Calculated values such as average and minimum are correct in the source data, but
when blank values are replaced with zeros when the dataset is created, the resulting calculations are incorrect.

Null measure handling lets you specify defaults using the special "null" value in your dataflows and CSV metadata files. When no default
value is specified, Wave replaces blanks with null values.

For more information on null measure handling and how to set it up, see the Data Integration guide.

https://help.salesforce.com/articleView?id=bi_integrate_data_integration.htm&language=en_US

SAQL OPERATORS

Use operators to perform mathematical calculations or comparisons.

Arithmetic Operators
Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Comparison Operators

Use comparison operators to compare values.

String Operators

To concatenate strings, use the plus sign (+).

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.
case

Usethe SAQL case operatorwithina foreach statement to create logic that chooses between conditions. The case operator
supports two syntax forms: searched case expression and simple case expression.

Null Operators
Use null operators to test whether a value is null.

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

Operator Description
+ Plus

- Minus

* Multiplication
/ Division

% Modulo

Comparison Operators

Use comparison operators to compare values.

Comparisons are defined for values of the same type only. For example, strings can be compared with strings and numbers compared
with numbers.

SAQL Operators
Operator Name
== Equals
1= Not equals
< Less than
<= Less or equal
> Greater than
>= Greater or equal
matches Matches
in In
not in Notin

Comparison Operators

Description

True if the operands are equal. String comparisons that use the equals operator are
case-sensitive.

True if the operands aren't equal.

True if the left operand is less than the right operand.

True if the left operand is less than or equal to the right operand.
True if the left operand is greater than the right operand.

True if the left operand is greater than or equal to the right operand.

True if the left operand contains the string on the right. Wildcards and regular
expressions aren't supported. This operator is not case-sensitive.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA:

my matches = filter a by origin matches "LA";

If the left operand is a dimension, t rue if the left operand has one or more of the
values in the array on the right. For example:

al = filter a by origin in ["ORD", "LAX", "LGA"];

If the left operand is a measure, true if the left operand is in the array on the right.
You can use the date () function tofilter by date ranges.
If the array is empty, everything is filtered and the results are empty.

Ranges that are out of order (for example, in ["20 years ago"
"2016-01-11"] orin ["Z" .. "A"]) evaluateto false.

True if the left operand isn't equal to any of the values in an array on the right. The
results include rows for which the origin key doesn't exist. For example:

al = filter a by origin not in ["ORD", "LAX", "LGA"];

@ Example: Given a row for a flight with the origin “SFO” and the destination “LAX" and weather of “rain” and “snow,” here are the

results for each type of "in" operator:

weather in ["rain", "wind"] = true

weather not in ["rain",

SEE ALSO:
filter

"wind"] = false

SAQL Operators String Operators
String Operators
To concatenate strings, use the plus sign (+).
Operator Description
+ Concatenate
Example: To combine the year, month, and day into a value that's called CreatedDate:
q = foreach g generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

Operator

&& (and)

[l (or)

' (not)

Name
Logical AND
Logical OR
Logical NOT

Description

See table.
See table.

See table.

The following tables show how nulls are handled in logical operations.

X
True
True
True
False
False
False
Null
Null

Null

True

Y

True
False
Null

True
False
Null

True
False

Null

10

x &&y
True
False
Null
False
False
False
Null
False

Null

False

x|y

True
True
True
True
False
Null

True
Null

Null

SAQL Operators

X Ix
False True
Null Null
case

Use the SAQL case operator withina foreach statement to create logic that chooses between conditions. The case operator
supports two syntax forms: searched case expression and simple case expression.

Syntax—Searched Case Expression

case
when search condition then result expr
[when search condition2 then result expr2 ..]
[else default expr |

end

case...end
The case and end keywords begin and close the expression.

when. . .then
The when and then keywords define a conditional statement. A case expression can contain one or more conditional statement.

® search condition—Anylogical expression thatcan beevaluatedto true or false.Thisexpression may be constructed
using any values, identifiers, logical operator, comparison operator, or scalar functions (including date and math functions)
supported by SAQL. Examples of valid search condition syntax:

- xInt < 5
- price > 1000 and price <= 2000
- units*round(price per unit) < abs(revenue)

* result expr—Anyexpression thatcan be evaluated by the SAQL engine. May contain values, identifiers, and scalar functions
(including date and math functions). The expression may evaluate to any data type. However, this data type must be consistent
among all conditional expressions. Thats, if result exprisof NUMERICtype then result exprZ ... result exprN
must be of NUMERIC type. Examples of valid result expr syntax:

- xInt
- toString('orderDate', "dd/MM/yyyy")

- "gbc"

else
(Optional)—Allows a default expression to be specified. The e1se statement must follow the conditional when/then statement.
There can be only one else statement.

* default expr—Any expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The data type must be consistent with the data type of result expr specified
in the preceding conditional statements.

n

case

SAQL Operators case

Usage—Searched Case Expression

Conditional statements are evaluated on a row by row basis in the order in which they are given.Ifa search condi tionevaluates
as true, the corresponding result expr isreturnedfor that row. Therefore, if more than one of the conditional statements returns
true, only the first one is evaluated. At least one when/then statement must be provided. An unlimited number of when/then
statements may be provided.

A default expr may be set with the optional else statement.|f none of the search condition expressions evaluate to
true, the default expr expressionisreturned. lfno else statementis specified, null isreturned as the default.

Syntax—Simple Case Expression

case primary expr
when test expr then result expr
[when test expr2 then result expr2 ..]
[else default expr]

end

case...end
The case and end keywords begin and close the expression.

e primary expr—Anyscalarexpression thatcan be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The expression may evaluate to any comparable data type (NUMERIC, STRING,
or DATE). Examples of valid primary expr syntax:

- xInt % 3
- date('year', 'month', 'day')

— "gbc"

@ Note: A scalarexpression takes single values as input and outputs single values. When used with case, the input values can
be any expression that is valid in the context of a foreach statement.

when. . .then
The when and then keywords define a conditional statement. A case expression can contain one or more conditional statements.

* test expr—Any scalar expression that can be evaluated by the SAQL engine. This expression may be constructed using
any values, identifiers, and scalar functions (including date and math functions), but must evaluate to the same data type as the
primary expr.Examplesofvalid test expr syntax:

- 5
- 1] abc"
- abs(profit)
e result expr—Any scalar expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The expression may evaluate to any data type. However, this data type must be

consistent among all conditional statements. Thatis, if result expr is of NUMERIC type, then
result expr2...result exprN mustbeof NUMERIC type. Examples of result expr syntax:

= xInt
- toString('orderDate', "dd/MM/yyyy")

- "gbc"

12

SAQL Operators

else
(Optional) The e1se keyword allows a default expression to be specified. The e1se statement must follow conditional when/then
statements. There can be only one else statement.

* derfault expr—Anyscalarexpression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The data type must be consistent with the datatype of result expr specified
in the preceding conditional statements.

Usage—Simple Case Expression

Conditional statements are evaluated on a row by row basis in the order that they are given. If primary expr == test_expr
for a given conditional statement, the corresponding result expr is returned for that row. At least one when/then statement
must be provided. An unlimited number of when/then statements may be provided.

A default expr may be set with the optional else statement.|f primary expr doesn'tequalanyofthe test expr
conditions, the default expr isreturned.Ifno else statementis specified, null is returned as the default.

O Tip: This simple case expression syntax is shorthand fora common instance of the searched case expression syntax. The first block
of code is simple case expression syntax and the second block of code is searched case expression syntax. Both blocks of code
have the same meaning.

case primary expr
when test expr then result expr
when test expr2 then result expr2
else default expr

case
when primary expr == test expr then result expr
when primary expr2 == test_expr2 then result expr2
else default expr

Using case Statements
Use case expressionsin foreach clauses. Don't use case expressionsin order by, group by,or filter by clauses.

@ Example: This example query uses the simple case expression syntax:

a load "data";

g = foreach g generate xInt, (case xInt % 3
when 0 then "3n"
when 1 then "3n+1"
else "3n+2"

end) as modThree;

@ Example: This example query uses the searched case expression syntax:

g = load "data";
q

foreach g generate price, (case
when price < 1000 then "categoryl"
when price >= 1000 and price < 2000 then "category2"
else "category3"

end) as pricelevel;

13

case

SAQL Operators Null Operators

Handling Null Values

Ingeneral, null valuescan'tbe compared.When search condition, primary expr,0Of test expr evaluatesto null,
the default expr specified by else (or null if no else clauseis provided) is returned. For instance, the following query
returns "Other" whenever Meal evaluates to null:

g = load "data";

g = foreach g generate Meal, (case Meal
when 0 then "Typel"
when 1 then "Type2"
else "Other"

end) as Category;

However, it is possible to specifically a condition ona null value by usingthe is null and is not null operations.

a load “data”;

g = foreach g generate Meal, (case
when Meal is null then "Is Null"
else "Is Not Null"

end) as Category;

Best Practices for Working with Dates

Before you use date values in case expressions, use the SAQL toDate () function to convert the date values from strings or Unix
epoch seconds. Doing do ensures the most consistent comparisons.

@ Example:

q = load "data/dates";
e} foreach g generate OrderDate, (case
when toDate (OrderDate epoch secs) < toDate("2/1/2015", "M/d/yyyy") and
toDate (OrderDate epoch secs) >= toDate("1/1/2015", "M/d/yyyy") then "Jan"
else "Other"
end) as Month;

SEE ALSO:

foreach

Null Operators

Use null operators to test whether a value is null.

Null operators can return true or false.

Operator Name Description
is null is null True when the value is null.
is not null is not null True when the value is not null.

14

SAQL Operators Null Operators

@ Nofe: is null and is not null can be used in projections, and in post-projection filters.

These are valid examples:

a = load "dataset";

b = foreach a generate Name as Name, Year as Year;
c = filter b by Year is not null;

g = load "dataset";

g = foreach g generate (case when Name is null then "john doe" else Name end) as Name;

This is not a valid example:

a = load "dataset";
= filter a by Year is not null;
a = foreach a generate Name as Name, Year as Year;

15

SAQL STATEMENTS

load

Loads a dataset. All SAQL queries start witha 1oad statement.

Syntax

result = load dataset;

If you're working in Dashboard JSON, dataset must be the dataset name from the Ul. Use of the dataset name (also called an alias)
means the app can substitute it with the correct version of the dataset.

If you're working in Wave REST API, dataset must be the containerld/versionld.

Usage
After being loaded, the data is in ungrouped form. The columns are the columns of the loaded dataset.

Example: The following example loads the dataset with ContainerlD “0Fbxx000000002qCAA" and VersionID
"0Fcxx000000002WCAQ" to a stream named “b” b = load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";

Example: The following example loads the dataset with the name “Accounts” to a stream named “b": b = load
"Accounts";

filter

Selects rows from a dataset based on a filter condition called a predicate.

Syntax

result = filter rows by predicate;

Usage

A predicate is a Boolean expression that uses comparison or logical operators. The predicate is evaluated for every row. If the predicate
is true, the rowisincluded in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When a filter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You canruna filter statement before or after group to filter out members of the groups.

@ Nofe: With results binding, an error may occur if the results from a previous step exceed the values supported by SAQL. For
example, if something like filter g by diml in {{results(Step 1)}}; produces afilter tree with a depth
greater than 10,000 values, SAQL will fail with an error.

16

SAQL Statements foreach

@ Example: The following example returns only rows where the origin is ORD, LAX, or LGA: a1l = filter a by origin
in ["ORD"’ "LAX"’ "LGA"] ;

@ Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:
y = filter x by dest == "LAX" || miles > 1500;

@ Example: When in operates onan empty array ina £i1lter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
filter a by Year in [];

= group a by ('Year', 'Name');
foreach ¢ generate 'Name' as 'group::AName', 'Year' as 'group::Year',

o0 »
[

sum (accounts: :Revenue) as 'sRev';

SEE ALSO:
Comparison Operators
Logical Operators

Statements

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax

q = foreach g generate expression as alias|, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

Using foreach with Ungrouped Data

When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

@ Example: a2 = foreach al generate carrier as carrier, miles as miles;

Using foreach with Grouped Data

When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum () function.

@ Exomple: z = foreach y generate day as day, unique (origin) as uorg, count() as n;

17

SAQL Statements group and cogroup

Using foreach with a case Expression

To create logicina foreach statement that chooses between conditional statements, use a case expression.

@ Example: This example query uses the simple case expression syntax:

d

load "data";
q o

foreach g generate xInt, (case xInt % 3
when 0 then "3n"
when 1 then "3n+1"
else "3n+2"

end) as modThree;

@ Example: This example query uses the searched case expression syntax:

a load "data";

g = foreach g generate price, (case
when price < 1000 then "categoryl"
when price >= 1000 and price < 2000 then "category2"
else "category3"

end) as pricelevel;

Use Unique Names

Using a name multiple times in a projection throws an error.

For example, the last line in this query is invalid and throws an error:

load "O0Fabb000000002gCAA/0Fabb000000002WCAQ" ;

= load "0Fcyy000000002gCAA/0Fcyy000000002WCAQ";

= foreach 1 generate 'value'/'divisor' as 'value' , category as category;

= foreach r generate 'value'/'divisor' as 'value' , category as category;

cg = cogroup 1 by category right, r by category;

foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)

Q
Q
Il

as sumrval;

SEE ALSO:
Statements
Aggregate Functions

case

group and cogroup

Groups matched records. The group and cogroup statements are interchangeable. However, cogroup is typically used to operate
on more than 1 input stream.

18

SAQL Statements group and cogroup

Syntax

result = group rows by field;

result = group rows by (fieldl, field2, ...);
result = group rows by expression[, rows by expression ...];
result = group rows by expression [left | right | full], rows by expression;

Simple Grouping
Adds one or more columns to a group. If data is grouped by a value that's nul1 in a row, that whole row is removed from the result.

Syntax:

result = group rows by field;

or

result = group rows by (fieldl, field2, ...);

@ Nofe: The order of the fields matters for limit queries, but not for top queries.

Group by 1 dimension:
a = group a by year;
Group by multiple dimensions:

a load "OFbxx000000002gCAA/0Fcxx000000002WCAQ";
a = group a by (year, month);
foreach a generate year as year, month as month;

a

Inner Cogrouping

Cogrouping means that two input streams, called left and right are grouped independently and arranged side by side. Only data that
exists in both groups appears in the results.

Syntax:
result = cogroup rows by expression[, rows by expression ...];

This example is a simple cogroup operation on 2 datasets:

a = load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
b = load "OFbyy000000002gCAA/0Fcyy000000002WCAQ";
a = cogroup a by carrier, b by carrier;

You can cogroup more than 2 datasets:
result = cogroup a by kevya, b by keyb, c by keyc;
This example performs a cogroup operation:

z = cogroup x by (day,origin), y by (day,airport);

19

SAQL Statements group and cogroup

You can't have the same stream on both sides of a cogroup operation. To perform a cogroup operation on 1 dataset, load the
dataset twice so you have 2 streams.

load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
load "OFbxx000000002gCAA/0Fcxx000000002WCAQ" ;
cogroup a by ClosedDate, b by CreatedDate;
= foreach b generate sum(a.Amount) as Amount;

Q O O w

You can also load 1 dataset and filter it into 2 different streams:

= load "O0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
= filter a by "region" in ["West"];
= filter a by "status" in ["closed"];
filter a by "year" in [2014];
= filter a by "year" in [2015];
= cogroup b by ("state"), c by ("state");
= foreach d generate "state" as "state", sum(b.Amount) as "Amount 2014", sum(c.Amount)
as "Amount 2015";

Q0 0 o0 o w
I

This code throws an error because it performs a cogroup operation on a single stream, a:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;
b = cogroup a by ClosedDate, a by CreatedDate;
c = foreach b generate sum(a.Amount) as Amount;

To use aggregate functions when cogrouping, specify which input side to use in the aggregate function. For example, if you have an a
side and a b side, and each contains a particular measure, use one of these syntaxes:

sum (inputSide['myMeasure'])
sum (inputSide: :myMeasure)
sum (inputSide.myMeasure)

This query is valid because it uses the third syntax form to specify that mi 1es comes from the a side.

= load "O0Fbxx000000002gCAA/0Fcxx000000002WCAQ";
= load "OFbyy000000002gCAA/0Fcyy000000002WCAQ";
cogroup a by x, b by y;

O Q0 O W
I

= foreach ¢ generate a.x as x, a.y as y, sum(a.miles) as miles;
This query isn't valid because miles doesn't specify which side it is coming from:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
= load "O0Fbyy000000002gqCAA/0Fcyy000000002WCAQ";
cogroup a by x, b by y;

QO Q O W
Il

= foreach c¢ generate a.x as x, a.y as y, sum(miles) as miles;

If a lens or dashboard has a cogroup query, specify the input stream for projections and for count () aggregations on cogroup
queries, as in this example:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
load "OFbyy000000002gCAA/0Fyy000000002WCAQ" ;
= cogroup a by 'OwnerName', b by 'OwnerName';

Q Q O o
Il

= foreach ¢ generate a['OwnerName'] as 'OwnerName', sum(a['AmountConverted']) /
sum(b['Amount']) as 'sum target completed', count(a) as count;

20

SAQL Statements union

Outer Cogrouping

Outer cogrouping combines groups as an outer join. For the half-matches, null rows are added. The grouping keys are taken from the
input that provides the value.

Syntax:
result = cogroup rows by expression [left | right | full], rows by expression;

Specify 1eft, right,or full toindicate whether to perform a left outer join, a right outer join, or a full join.
Example: z = cogroup x by (day,origin) left, y by (day,airport);

You can apply an outer cogrouping across more than 2 sets of data. This example does a left outer join from a to b, with a right join to
c

result = cogroup a by keya left, b by keyb right, c by keyc;

@ Note: Outer joins return null when there is no match, instead of defaulting to zero.

union

Combines multiple result sets into one result set.

Syntax

result = union resultSetA, resultSetB [, resultSetC ...];

order

Sorts in ascending or descending order on one or more fields.

Syntax

result = order rows by field [asc | desc];
result = order rows by (field [asc | desc], field [asc | desc]);

asc or desc specifies whether the results are ordered in ascending (a s c) or descending (de s c) order. The default order is ascending.

Usage
The order statementisn't applied to the whole set. The order statement operates on rows individually.

You can use the order statement with ungrouped data. You can also use the order statement to specify order within a group or
to sort grouped data by an aggregated value.

Example: g = order g by 'count' desc;

21

SAQL Statements limit

Example: To order a stream by multiple fields, use this syntax:

load "O0Fbxx000000002qCAA/0Fcxx000000002WCAQ" ;

= group a by (year, month);

foreach b generate year as year, month as month;
order c by (year desc, month desc);

O Q O W
I

Example: You can order a cogrouped stream before a foreach statement:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
= load "OFayy000000002gCAA/0Fbyy000000002WCAQ";
cogroup a by year, b by year;

= order c by a.airlineName;

= foreach c generate year as year;

Q Q Q oW
Il

Example: You can't reference a preprojection ID in a postprojection order operation. (Projection is another termfora foreach
operation.) This code throws an error:

g = load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";

g = group gq by 'FirstName';

q = foreach g generate sum('mea mmlOM') as 'sum mmlOM';
g = order g by 'FirstName' desc;

This code is valid:

= load "O0Fbxx000000002gqCAA/0Fcxx000000002WCAQ";
= group gq by 'FirstName';

foreach q generate 'FirstName' as 'User FirstName', sum('mea mmlOM') as 'sum mmlOM';

Q Q9 Q \Q
|

order q by 'User FirstName' desc;

SEE ALSO:

Statements

limit

Limits the number of results that are returned. If you don't set a limit, queries return a maximum of 10,000 rows.

Syntax

result = limit rows number;

Usage

Use this statement only on data that has been ordered with the order statement. The results of a 1imi t operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the 1imit statement with ungrouped data.

22

SAQL Statements

You can use the 1imit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum (revenue) toaggregate the data, order by sum (revenue) indescending order,and 1imit the

number of results to the first 10.

@ Note: The 1imit statementisnta top () or sample () function.

Example: This example limits the number of returned results to 10:

b = limit a 10;

The expression can't contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:
Statements

order

offset

Paginates values from query results.

Syntax

result = offset rows number;

Usage

Used to paginate values from query results. This statement requires that the data has been ordered with the order statement.

Example: This example loads a dataset, puts the rows in descending order, and returns rows 400 to 800:

O QO Q oo

SEE ALSO:

Statements

load "OFbxx000000002gCAA/0Fcxx000000002WCAQ" ;

foreach a generate 'carrier' as 'carrier', count() as 'count';
order b by 'count' desc;

limit c 400;

offset d 400;

23

offset

SAQL FUNCTIONS

Aggregate Functions

Use aggregate functions to perform computations on values.

Using an aggregate function on an empty set returns null. For example, if you use an aggregate function with a nonmatching column
of an outer cogrouping, you might have an empty set.

Aggregation functions treat each line as its own group if not preceded by group by.

This table lists the aggregate functions that are supported:

Aggregate Function

avg () oraverage ()

count ()

first ()

Description
Returns the average value of a numeric field.

For example, to calculate the average number of miles:

al group a by (origin, dest);
az foreach al generate origin as origin, dest as destination,
average (miles) as miles;

Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:
q = foreach g generate 'carrier' as 'carrier', count() as 'count';

The count () function operates on streams that were inputs to the group or cogroup Statements.
It doesn't operate on the newly grouped stream or on an ungrouped stream.

a = load "OFcyy000000002gCAA/0Fcyy000000002WCAQ";

al = group a by (Year);

q = foreach al generate count(a) as countYear, count() as count, Year
as year;

g = limit g 20;

You cant pass al tothe count () function because it's a newly grouped stream.
Returns the value for the first tuple. To work as expected, you must be aware of the sort order or know that

the values of that measure are the same for all tuples in the set.

For example, you can use these statements to compute the distance between each combination of origin
and destination:

al = group a by (origin, dest);
a2 = foreach al generate origin as origin, dest as destination,
first (miles) as miles;

24

SAQL Functions Aggregate Functions

Aggregate Function Description

last () Returns the value for the last tuple.

For example, to compute the distance between each combination of origin and destination:

al = group a by (origin, dest);
a2 = foreach al generate origin as origin, dest as destination,
last (miles) as miles;

max () Returns the maximum value of a field.

This function takes only a measure as an argument. It can't take a dimension.

median () Accepts a grouped expression of numeric type and returns the middle number (by sorted order, ignoring
null values). If there is no one middle number (in other words, the count of non-null values is even), then
median returns the average of the two numbers closest to the middle.

The expression can be any identifier, such as ‘xInt’ or “price’, but cannot be a complex expression, such as
price/100 or ceil(distance), or a literal, such as 2.5.

q = load "data/airline";

g = group g by dest;

q foreach g generate dest, median(miles) as medMiles;
limit g 5;

If median is not preceded by a group by clause, it treats each individual row as its own group:

load "data/airline";
foreach g generate dest, median(miles) as medMiles;

q

q
limit g 5;

min () Returns the minimum value of a field.

This function takes only a measure as an argument. It can't take a dimension.

sum () Returns the sum of a numeric field.

a = load "0Fbxx000000002gCAA/0Fcxx000000002WCAQ";

a = filter a by dest in ["ORD", "LAX", "ATL", "DFW", "PHX", "DEN",
"LGA"];

a = group a by carrier;

b = foreach a generate carrier as airline, sum(miles) as miles;

unique () Returns the count of unique values.

For example, to find how many origins and destinations a carrier flies from:

al = group a by carrier;
a2 = foreach al generate carrier as carrier, unique (origin) as origins,
unique (dest) as destinations;

@ Note: The best way to add summaries (for example, a summary row on a compare table) using
unique () isto use it as a windowing function.

25

SAQL Functions Aggregate Functions

Aggregate Function Description

stddev () Returns the sample standard deviation computed on the group.

Accepts a grouped expression of numeric type. If the number of non-null values in the group is equal to 1,
stddewv return null. Otherwise, s tddewv returns the sample standard deviation computed on the group,
ignoring null values.

The expression can be any numeric identifier, such as 'xInt' or 'price’, but cannot be a complex expression,
such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
g = group g by dest;

g = foreach g generate dest, stddev(miles) as stddevMiles;
limit g 5;
stddevp () Returns the population standard deviation computed on the group.

Accepts a grouped expression of numeric type and returns the population standard deviation computed
on the group, ignoring null values. The expression can be any numeric identifier, such as 'xInt' or 'price’,
but cannot be a complex expression, such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";

g = group g by dest;

g = foreach g generate dest, stddevp(miles) as stddevMiles;
limit g 5;

var () Returns the sample variance (also called the unbiased variance) computed on the group.

Accepts a grouped expression of numeric type. If the number of non-null values in the group is equal to 1,
var return null. Otherwise, var returns the sample variance computed on the group, ignoring null values.
The expression can be any numeric identifier, such as 'xInt' or 'price’, but cannot be a complex expression,
such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
g = group g by dest;

g = foreach g generate dest, var(miles) as varMiles;
limit g 5;
varp () Returns the population variance (also called the biased variance) computed on the group.

Accepts a grouped expression of numeric type and returns the population variance computed on the group,
ignoring null values. The expression can be any numeric identifier, such as 'xInt' or 'price’, but cannot be a
complex expression, such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
g = group g by dest;

q
limit g 5;

foreach g generate dest, varp(miles) as varMiles;

percentile disc() Computes a specific percentile for sorted values in an entire rowset or within distinct partitions of a rowset.
The full syntax is:

percentile_disc(p as numeric) within group (order by expr [asc | desc])

26

SAQL Functions

Aggregate Function

percentile cont ()

Description

Aggregate Functions

Thepercentile disc functionacceptsagrouped expression expr of numeric type and sorts itin
the specified order (asc or desc). If order is not specified, the default order is asc. It returns the value
behind which (100%p)% of values in the group would fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr
can be any identifier, such as 'xInt' or 'price', but cannot be a complex expression, such as price/100 or

ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile disc will

return the next value from expr in the sort order.

Forexample, if Meal contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13] then:

percentile disc(0.25) within group (order by Meal asc) = 4

percentile disc(0.25) within group (order by Meal desc) = 9
percentile disc(0) within group (order by Meal asc) = 0

percentile disc(l) within group (order by Meal asc) = 13

Example query:

q = load "data/airline";

g = group g by dest;

q = foreach g generate dest, percentile disc(0.25) within group (order
by miles desc) as perMiles;

limit g 5;

Calculates a percentile based on a continuous distribution of the column value. The full syntax is:

percentile_cont(p as numeric) within group (order by expr [asc | desc])

Thepercentile cont functionacceptsagrouped expression expr of numeric type and sorts it in
the specified order (asc or desc). If the order is not specified, the default order is asc. It returns the
value behind which (100*p)% of values in the group would fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price’, but
cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile cont returns
a value linear interpolated from the two closest values in expr.

For example, if Meal contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13] then:

percentile cont(0.25) within group (order by Meal asc) = 3.25
percentile cont(0.25) within group (order by Meal desc) = 9.75
percentile cont (0) within group (order by Meal asc) = 0

percentile cont(l) within group (order by Meal asc) = 13

Example query:

g = load "data/airline";

g = group g by dest;

q = foreach g generate dest, percentile cont(0.25) within group (order
by miles) as perMiles;

limit g 5;

27

SAQL Functions Date Functions

Aggregate Function Description
regr_slope (Y, X) Theimplelinear regression function regr slope acceptsagrouped dependent numeric expression
y and a grouped independent numeric expression x, and returns the slope of the regression line. The
regr slope function only considers pairs of (x, y) values where both values are not nul1l,and
returns nul1l if there exists fewer than 2 such pairs in the given group. Simple linear regression functions
work like aggregation functions on simple grouped values, but do not work with cogroups.

Example query:

g = load "data/sales";

g = group g by all;

a foreach g generate regr slope('profit', 'sales') as slope;
limit g 1;

regr_intercept(y, The simplelinear regression function regr intercept acceptsagrouped dependent numeric

expression y and a grouped independent numeric expression x, and returns the y-intercept for the
regression line. The regr intercept function only considers pairs of (x,) values where both
values are not null,andreturns null if there exists fewer than 2 such pairs in the given group. Simple
linear regression functions work like aggregation functions on simple grouped values, but do not work with
cogroups.

x)

Example query:

load "data/sales";

group gq by all;

= foreach g generate regr intercept ('profit', 'sales') as intercept;
imit g 1;

q
q
q
1

regr_r2(y, x) The simple linear regression function regr r2 accepts a grouped dependent numeric expression y

and a grouped independent numeric expression x, and returns the coefficient of determination (also called
R-squared or goodness of fit) for the regression. The regr_r2 function only considers pairs of (x, y)
values where both values are not nul1,andreturns null if there exists fewer than 2 such pairs in the
given group. Simple linear regression functions work like aggregation functions on simple grouped values,
but do not work with cogroups.

Example query:
q = load "data/sales";

g = group g by all;

q
limit g 1;

foreach g generate regr r2('profit', 'sales') as r2;

Date Functions

To specify dates in a SAQL query, use date functions and relative date keywords.

Note: Relative dates are relative to UTC, not local time. Data returned for relative dates reflect dates based on UTC time, which
may be offset from your local time.

28

SAQL Functions

Functions

This table lists SAQL date functions:

Date Function

date (year, month, day)

date diff (datepart, startdate,enddate)

Date Functions

Description

Returns a date. Specify 3 dimensions of a date in the following order: year, month,
day. For example:

date ('OrderDate Year', 'OrderDate Month',

'OrderDate Day')

Returns an integer representing the interval that has elapsed between two dates.

datepart indicates the interval part to calculate:

® year
® month
e quarter
e day

° week

e hour

°® minute
e second

startdate indicates the start date.
enddate indicates the end date.

The difference between two dates is calculated based on the difference in the
indicated date part. For example, the year difference between two dates is
calculated by subtracting the year part of startdate from the year part of
enddate.

date diff ("year", toDate("31-12-2015",
"dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
would give a result of 1.

Similarly, using the date part month as an example:

date diff ("month", toDate("31-12-2015",
"dd-MM-yyyy"), toDate("1-1-2016", "dd-MM-yyyy"))
would also give a result of 1.

If startdate is after enddate the result is a negative integer of the
difference.

Examples:

Query Result

date diff (“year", 1
'2004-02-29",
'2005-02-28")

29

SAQL Functions Date Functions

Date Function Description

date diff (“year", 0
'2012-1-1', '2012-12-31")

date diff (“month", 3
'2003-02-01",
'2003-05-01")

date diff (“month", 1
'2004-02-28",
'2004-03-31")

date diff (“quarter", 1
'2012-12-12",
'2013-01-05")

date diff (“week", 3
'2012-12-12",
'2013-01-05")

date diff (“day", 24
'2012-12-12",
'2013-01-05")

date diff (“hour", 576
'2012-12-12°",
'2013-01-05")

date diff (“minute", 34560
'2012-12-12",
'2013-01-05")

date diff (“second", 86400

'2016-09-15 19:42:36",
'2016-09-16 19:42:36")

Query example:

g = load \"em/dates\";

g = foreach g generate date diff ("year",

toDate (DateOfBirth, "yyyy-MM-dd"), now()) as age;
g = order g by age asc;

30

SAQL Functions

Date Function

Date Functions

Description
Invalid examples:

g = group g by date diff ("month", toDate (DateOfBirth,
n yyyy_MM_ ddll) ,
toDate (RegisteredDate)) ;

g = order g by date diff("year", toDate(DateOfBirth,
" yyyy_MM_ ddll) ,
toDate (RegisteredDate)) ;

q = filter g by date diff ("day", toDate(DateOfBirth,
"yyyy-MM-dd"), now());

dateRange (startArray y m d, Returns a fixed date range. The first parameter is an array that specifies the start

endArray y m d)

day in month (date)

date in the range. The second parameter is an array that specifies the end of the
range. For example:

dateRange([1970, 1, 1], [1970, 1, 31])

Returns an integer representing the day of the month for a specific date. See
day in week forusage.

day_in quarter (date) Returns an integer representing the day of the quarter for a specific date. See

day in week (date)

day in year (date)

day_in week forusage.

Returns an integer representing the day of the week for a specific date. 1 =
Sunday, 2 = Monday and so on.

date indicates the reference date.

Example:

g = foreach g generate day_in_week(toDate(OrderDate));

Returns an integer representing the day of the year for a specific date. See
day_in week forusage.

daysBetween (datel, date2) Returns the number of days between 2 dates as an integer.

The daysBetween () function can't take dimensions as arguments directly.
Pass toDate () and now () functions as arguments.

g = foreach g generate daysBetween (toDate (OrderDate,
“yyyy-MM-dd”),
now()) as daysToShip;

g = foreach g generate daysBetween (toDate (OrderDate,
ANY yyyy_MM_ dd//) ,
toDate (ShipDate, “yyyy-MM-dd”)) as daysToShip;

q = foreach g generate daysBetween (toDate (OrderDate
Year + “:”

+ OrderDate Month + “:” + OrderDate Day,
“yyyy:MM:dd”), toDate (ShipDate Year + “:”

31

SAQL Functions

Date Function

month days (date)

month last day (date)

now ()

quarter days (date)s

Date Functions

Description

+ ShipDate Month + “:” + ShipDate Day, “yyyy:MM:dd”
)) as daysToShip;

Returns the number of days in the month for a specific date.
date indicates the reference date.

Examples:

Query Result

month_days(toDate('2004-02-12', 29
"yyyy-MM-dd")

month_days(toDate('2012-04-07', 30
"yyyy-MM-dd")

month_days(toDate('1990-13-11', NULL
"yyyy-MM-dd")

Query example:

g = load \"em/dates\";

q foreach g generate month days(toDate(BillDate,
"yyyy-MM-dd")) as BillingMonth;

g = order g by BillingMonth asc;

Invalid examples:

g = group q by month days(toDate(BillDate,
"yyyy-MM-dd")) ;

g = order g by month days(toDate(BillDate,
"yyyy-MM-dd")) ;

g = filter g by month days(toDate(BillDate,
"yyyy-MM-dd")) ;

Returns the date of the last day of the month for a specific date. See
week last day forusage.

Returns current datetime in UTC. This functionis validina foreach statement
only.

g = foreach g generate now() as now;

This function is commonly used in daysBetween () and toString ()
functions.

Returns the number of days in the quarter for a specific date. See month_days
for usage.

32

SAQL Functions Date Functions

Date Function Description

quarter last day (date) Returns the date of the last day of the quarter for a specific date. See
week last day forusage.

toDate (string [, formatString]) Converts a stringto adate. Ifa formatString argumentisn't provided, the
function uses the format yyyy-MM-dd HH:mm:ss.

g = foreach g generate toDate (OrderDate);

q foreach g generate toDate (OrderDate Day + \"-\"
+ OrderDate Month + \"-\" + OrderDate Year,
\"dd-MM-yyyy\") ;

This function is often passed as an argument to daysBetween () or
toString ().

toDate (epoch_seconds) Converts Unix epoch seconds to a date. If epoch_seconds is 0,
toDate (epoch_seconds) retuns '1970-01-01 00:00:00".

This function is convenient for adding or subtracting time periods to or from a
date. When adjusting dates for time zone differences, adding or subtracting the
number of seconds in the time difference produces the correct local date. If the
time crosses the local meridian, a different date is produced.

Forexample, assuming Current Date is the current date expressed as the
number of seconds since '1970-01-01 00:00:00", then the function
toDate (Current Date - 8*3600) subtracts8hours.Refer to Working
with Time Zones for a practical example.

toString (date, formatString) Commnsadamtoasnmg

This function musttakea toDate () or now () function asits firstargument.
g = foreach g generate toString(now(), \"yyyy-MM-dd

HH:mm:ss\") as dsl;

week last day (date) Returns the date of the last day of the week for a specific date.
date indicates the reference date.

Examples:

Query Result

week_last_day(toDate('2016-12-08', 2016-12-10
"yyyy-MM-dd"))

week_last_day(toDate('2015-07-05', 2015-07-11
"yyyy-MM-dd"))

week_last_day(toDate('2012-11-33', Error
"yyyy-MM-dd"))

33

SAQL Functions Date Functions

Date Function Description
Query example:

g = load \"em/dates\";

g = foreach g generate week last day(toDate(BillDate,
"yyyy-MM-dd")) as BillingWeek;

g = order g by BillingWeek asc;

Invalid examples:

g = group g by week last day(toDate(BillDate,
"yyyy-MM-dd")) ;

g = order g by week last day(toDate(BillDate,
"yyyy-MM-dd")) ;

g = filter g by week last day(toDate (BillDate,
"yyyy-MM-dd")) ;

year days (date) Returns the number of days in the year for a specific date. See month days
for usage.
year last day (date) Returns the date of the last day of the year for a specific date. See

week last day forusage.

Note: While it's apparent that this function will always return 31st
December, it is included for uses such as finding the number of days to
the year end, and for use in a specific locale.

Specify Fixed Date Ranges

To specify a range for fixed dates, use the dateRange () function. Specify the dates in the order: year, month, day.

@ Example:

a = filter a by date('year', 'month', 'day') in [dateRange([1970, 1, 1], [1970, 1,
1111

Specify Relative Date Ranges

To specify a relative date range, use the in operator on an array with relative date keywords. Here are 4 examples:

a = filter a by date('year', 'month', 'day') in ["1 year ago".."current year"];

a = filter a by date('year', 'month', 'day') in ["2 quarters ago".."2 quarters ahead"];
a = filter a by date('year', 'month', 'day') in ["4 months ago".."l year ahead"];

a = filter a by date('year', 'month', 'day') in ["2 fiscal years ago".."current day"];

The relative date keywords are:

e current day
e nday(s)ago
e nday(s) ahead

34

SAQL Functions

current week

n week(s) ago

n week(s) ahead
current month

n month(s) ago

n month(s) ahead
current quarter

n quarter(s) ago

n quarter(s) ahead
current fiscal_quarter
n fiscal_quarter(s) ago
n fiscal_quarter(s) ahead
current year

n year(s) ago

n year(s) ahead
current fiscal_year

n fiscal_year(s) ago

n fiscal_year(s) ahead

Date Functions

This table shows the time windows for some of the relative date keywords. In these time window examples, the current day is 2014/12/16
and FiscalMonthOffeset 1 (the fiscal year starts on February 1).

Relative Date Keyword

current day

current quarter

1 year ago

1 month ahead

current fiscal_year

current fiscal_quarter

2 fiscal_quarters ahead

current day - 1 year

current fiscal_year + 5 days

Start Date

2014/12/16 00:00:00

2014/10/1 00:00:00
2013/1/1 00:00:00
2015/1/1 00:00:00
2014/2/1 00:00:00
2014/11/1 00:00:00

2015/5/1 00:00:00

2013/12/16 00:00:00

2014/2/6 00:00:00

End Date
2014/12/16 23:59:59
2014/12/31 23:59:59
2013/12/31 23:59:59
2015/1/31 23:59:59
2015/1/31 23:59:59
2015/1/31 23:59:59
2015/7/31 23:59:59
2013/12/16 23:59:59

2014/2/6 23:59:59

@ Note: Only standard fiscal periods are supported. See “About Fiscal Years" in Salesforce Help.

Add and Subtract Dates

You can add and subtract dates using the relative date keywords.

35

SAQL Functions Date Functions

@ Example: Here are examples of time windows for relative date keywords using addition and subtraction. In these time window
examples, the current day is 2014/12/16 and FiscalMonthOffeset 1 (the fiscal year starts on February 1).

In this query, the start date is 2013-12-16 00:00:00 and the end date is open ended:
a= filter a by date('year', 'month', 'day') in ["current day - 1 year"..] ;
In this query, the start date is 2014-12-16 00:00:00 and the end date is 2017-3-31 23:59:59:

a= filter a by date('year', 'month', 'day') in ["current day".."2 years ahead + 3
months"];

Here's how to determine the end date: the year is 2014, so 2 years ahead is 2016, which has a year end time of 2016-12-31 23:59:59.
When you add 3 months, the total end date is 2017-3-31 23:59:59.

In this query, the start date is 2014-2-6 00:00:00 and the end date is 2017-3-31 23:59:59:

a= filter a by date('year', 'month', 'day') in ["current fiscal year + 5 days".."2
years ahead + 3 months"];

Use Open-Ended Relative Date Ranges

To build queries like “List all opportunities closed after 12/23/2014" and “Get a list of marketing campaigns from before 04/2/2015," use
open-ended date ranges.

@ Example: This example shows an open-ended relative date range.

a = filter a by date('year',6 'month','day') in [.."current month"];

@ Example: This example shows an open-ended fixed date range. The date format of OrderbDate is yyyy-MM-dd.

g = filter g by OrderDate in [“2015-01-01"..];

Working with Time Zones

A practical use of the toDate () function is to calculate time zone changes for a Wave dashboard. This JSON code fragment uses a
computeExpression actionin a transformation, which in turn uses a saglExpression tocallthe tobate () function.
This technique enables a dashboard to show the most appropriate time and date, whether local or UTC.

"Extract Opportunity”: {

"action": "computeExpression",
"parameters": {
"source": "Digest Opportunity",
"mergeWithSource": true,
"computedFields": [
{
"name": "CreatedDateNew",
"type": "Date",
"format": "MM/dd/yyyy",
"saqlExpression": "toDate (CreatedDate sec epoch - 8*3600)"

36

SAQL Functions String Functions

The example takes an existing date CreatedDate sec epoch and subtracts 8 hours to create a new date CreateDateNew.
The table shows how the calculation changes the (formatted) CreatedDateNew dates. In each case, the time change has also

changed the date.
CreatedDate_sec_epoch CreatedDateNew
2015-11-03T06:49:25.000Z 11/2/2015
2014-08-19T06:42:33.000Z 8/18/2014
2014-09-28T03:12:25.000Z 9/27/2014

Refer to the computeExpression topic for further information.

String Functions

To perform string operations in a SAQL query, use string functions.

While SAQL operators support strings, and the coalesce() function returns the first non-null item in a list including strings, the
following table lists SAQL functions specifically for manipulating strings.

Functions

This table lists the SAQL string functions:

Function Description

ends_with(string, This function returns true if string endswith suffix,and false otherwise. String
comparison is case-sensitive. If any of the parameters are nul1, then the function returns null.

If suffix isanempty string, then the function returns null.

sufrix)

ends with ("FIT", "T") == true
ends with("FIT", "BIT") == false

index_of(string, This function returns the index of the specified occurrence of searchStr in stringbeginning

at the specified position. The function returns 0if searchStr is not found. This function is
case-sensitive. If any of the parameters are nu1 1, then the function returns null.

searchStr [position],

occurence]])
The default value of position is 1, which means that the function begins searching at the first
character of string. Anerror results if position isnegative or zero.

If present, occurrence is an integer indicating which occurrence within st ringto search
for. The value of occurrence must be positive, and defaults to 1 if omitted. So for example, if there
is more than one matching occurrence, and occurence is 2, the index of the second occurrence
is returned.

Constant values are supported for positionand occurrence, not arbitrary expressions.

If searchStr isanempty string, then the function returns null.

index of ("Hawaii", "a") == 2
index of ("Hawaii", "a", 2) ==

37

https://help.salesforce.com/articleView?id=bi_integrate_saql_transformation.htm&language=en_US#bi_integrate_saql_transformation

SAQL Functions

Function

len(string)

lower(string)

ltrim(string,chars)

replace(string,
searchStr, replaceStr)

rtrim(string,chars)

String Functions

Description

index of ("Hawaii", "a", 3) == 4
index of ("Hawaii", "a", 3, 2) == 0
index of ("Hawaii", "i", -1, 1) == error
index of ("Hawaii", "i", -3, 1) == error
index of ("", "i") == null

index of ("i", "") == null

This function returns the number of characters in the string.

len returns the length of string incharacters.If stringis null, then len(string)is
also null.

Leading and trailing whitespace characters are included in the length returned.

len("starfox") == 7
len (" rocket ") == 8
len("") ==
len("") == 0

This function returns string with all characters in lowercase. If stringis null, thenthe
resultis null.Referto the note for upper() concerning Unicode case mapping.

lower ("JAVA") == "java"

This function removes the left part of a string up to the specified characters, or removes leading
spaces.

1trimreturnsthe value of string withthe initial characters removed up to the first character
notin chars

chars may contain multiple characters. If chars is omitted, leading space characters are
removed. If stringor chars is null,thentheresultis null.

ltrim(" ¢ wval ", "™ ") == "c_val "
ltrim(string, " \t\r") == ltrim(string)
ltrim("aabcd"™, "ab") == "cd"

This functionreturns string withevery occurrence of searchStr replacedby replaceStr.
If any of the parameters are nu11,then the function returns null.lf searchStrisanempty
string, nul1l is returned. This function is case-sensitive.

replace ("Watson, come quickly.", "quickly", "slowly") == "Watson,
come slowly."

replace ("Watson, come quickly.", "o", "a") == "Watsan, came
quickly."

replace ("Watson, come gquickly.", "", "Mr.") == null

This function removes the right part of a string back to the specified characters, or removes trailing
spaces.

rtrimreturnsthe value of string withthefinal characters removed back to the first character
notin chars

38

SAQL Functions

Function

starts with(string,
prefix)

substr(stringposition|,
length))

trim(string,chars)

String Functions

Description

chars may contain multiple characters. If chars is omitted, trailing space characters are removed.
If stringor chars is null, thentheresultis null.

rtrim(" ¢ wval ", "™ ") =" ¢ wval"

rtrim(ltrim(string, " \t\r"), " \t\r") == trim(string,

" \t\r")

This function returns true if string starts with prefix, and false otherwise. String
comparison is case-sensitive. If any of the parameters are nu1 1, then the function returns nul1.
If prefix isanempty string, then the function returns null.

starts with ("FIT",
starts with("FIT",

IIFII)
llBITH)

true
== false

This function returns a substring starting at a specified position and, optionally, of the specified
length.

substrreturns length characters of string,beginningatcharacter position position.
If length is omitted, then Iength = len(string), so all characters are returned from

position totheend of the string. If any of the parameters are nul 1, then the function returns
null.

The first character in string is at position 1. If position is negative then the position is
relative to the end of the string. So a position of -1 denotes the last character.

If Tength is negative, then the function returns nul1.lf position > len (string)or
position <-len(string)or position =0,thenthe empty string is returned.

substr ("CRM", 1, 1) == "C"
substr ("CRM", 1, 2) == "CR"
substr ("CRM", -1, 1) == "M"
substr ("CRM", -2, 2) == "RM"
substr ("CRM", 4, 1) == ""

This function removes the left and right part of a string up to the specified characters, or removes
leading and trailing spaces.

trimreturns the value of string with the initial and final characters removed to the first
character notin chars.

chars may contain multiple characters. If chars isomitted, leading and trailing space characters
are removed. If string or chars is null, then theresultis null.

trim(ﬂicivali", '|7'|) —_— "Cival"
trim("_ ¢ wval ", " c") == "val"

trim (" c_ val ") == "c_ val"

trim (" c wval ") == ltrim(rtrim(" c val "))

A

trim("aaaaaa", "a")

39

SAQL Functions Math Functions

Function Description

upper(string) This function returns st ring with all characters in uppercase. If stringis null,thenthe

resultis null.

upper ("goll) == "GO"
upper ("groRe") == "GRORE"

@ Note: The behavior of the upper() and 1ower() functions—and the characters affected
by them—is determined by the default case mapping of the Unicode standard. The mapping
considers each Unicode characterinisolation without regard for context or language-specific
rules. The example above does not reflect the German language handling of the 8 character.
A natural-language conversion would produce GROSSE.

Math Functions

To perform numeric operations in a SAQL query, use math functions.
You can use SAQL math functions in foreach statementsandinthe filter by clause aftera foreach statement.

You can't use math functionsina group by clause orinan order by clause. You also can't use math functions inthe filter
by clause before a foreach statement, but you can use them after the foreach statement.

Functions

This table lists the SAQL math functions:

Function Description

abs (n) Returns the absolute number of n as a numeric value. n can be any real numeric value in the range
of -1e308 <= n <= 1e308.

This example is valid:
g = foreach g generate abs(pct change) as pct magnitude;
These examples are invalid:

g = group g by abs(pct change);
a order q by abs(pct change);

ceil (n) Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the
range of -1e308 <=n <= 1e308.

This example is valid:
q = foreach g generate ceil (miles) as distance;
These examples are invalid:

g = group gq by ceil (miles);
q

order g by ceil (miles);

40

SAQL Functions Math Functions

Function Description

floor (n) Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range
of -1e308 <=n <= 1e308.

This example is valid:
g = foreach g generate floor(miles) as distance;
These examples are invalid:

g = group g by floor (miles);
q

order g by floor(miles);

trunc(n[, m]) Returns the value of the numeric expression n truncated to mdecimal places. m can be negative, in
which case the function returns n truncated to -m places to the left of the decimal point. If m is
omitted, it returns n truncated to the integer place. n can be any real numeric value in the range of
-1e308 <=n <= 1e308. m can be an integer value between -15 and 15 inclusive.

This example is valid:

q = foreach g generate trunc(Price, 2) as Price;
These examples are invalid:

g = group g by trunc(Price, 2);
g = order g by trunc(Price, 2);

round (n[, m]) Returns the value of n rounded to m decimal places. mcan be negative, in which case the function
returns n rounded to -m places to the left of the decimal point. If m is omitted, it returns n rounded
to the nearest integer. For tie-breaking, it follows round half way from zero convention. n can be any
real numeric value in the range of -1e308 <=n <= 1e308. mcan be an integer value between -15 and
15, inclusive.

This example is valid:
g = foreach g generate round(Price, 2) as Price;
These examples are invalid:

g = group g by round(Price, 2);
g = order g by round(Price, 2);

exp (n) Returns the value of Euler's number e raised to the power of n, where e =2.71828183... The smallest
value for n that will not result in 0 is 3e-324. n can be any real numeric value in the range of -1e308
<=n<=700.

These examples are valid:

g = foreach g generate exp(value) as value;
g = filter g by exp(value) < 5;

These examples are invalid:

g = group d by exp(value);
q order g by exp(value);

4

SAQL Functions Windowing Functions

Function Description

log(m, n) Returns the natural logarithm (base m) of a number n. The values m and n can be any positive,

non-zero numeric value in therange 0 < m, n <=1e308and m = 1.

The smallest number input allowed for m is >0, m!=1. The smallest number for m or n that will not
produce 0islog(10, 0.3e-323).

These examples are valid:

foreach g generate log (10, Population) as Population;
filter g by log (10, Population) < 15;

g
q

These examples are invalid:

g = group g by log (10, Population);
q

order g by log (10, Population);

power (m, n) Returns m raised to the nth power. m, n can be any numeric value in the range of -1€308 <= m, n
<=1e308. Returns nullif m =0and n <0.

e If m =0, n must be a non-negative value.
e If m <0, nmust be an integer value.

e The result of power(m, n) must be within the range expressed by a float64 number.

These examples are valid:

g = foreach g generate power (length, 2) as area, length;
qg = filter g by power (length, 2) > 10;

These examples are invalid:
g = group g by power (length, 2);

g = order g by power (length, 2);

sqrt (n) Returns the square root of a number n. The value n can be any non-negative numeric value in the
range of 0 <= n <= 1e308.

These examples are valid:

q = foreach g generate sqgrt(value) as value;
g = filter g by sqgrt(value) < 10;

These examples are invalid:

g = group d by sqgrt(value);
g = order g by sgrt(value);

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

42

SAQL Functions Windowing Functions

SAQL now supports windowing, using a syntax inspired by SQL. Windowing functions allow you to calculate data for a single group
using aggregated data from adjacent groups. Windowing does not change the number of rows returned by the query. Windowing
aggregates across groups rather than within groups and accepts any valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction> (<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

When using ranking functions, use the following syntax:
<rankfunction> over ([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile disc,and percentile cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank (), dense_rank (),
cume_dist () and row number (). Refer to the Ranking Functions section for examples.

projection expression
The expression used to generate a projection from the values of specified columns.
row range

Row ranges are specified using the following syntax.

Range Meaning
[..0] From beginning to current row in the reset group.
[0.] From current row to the last row in the reset group.
[-2..0] From two rows prior to current row. Window covers 3 rows.
[0.2] From current row to 2 rows ahead of current row. Windows covers 3 rows.
[-1..-1] One row prior to current row. Window includes a single row.
[.-2] From beginning of reset group to 2 rows prior to current row.
[.] Aggregates the entire reset group.
reset groups

The column(s) which reset windowing aggregation when their value(s) change. A reset group of a11 indicates no reset boundaries
for the window aggregation.

order clause
Specify column(s) by which to sort. This orders the rows before the window function gets evaluated.

@ Nofte: The order clause is not allowed on expressions where the row range is [. . 1 and the window function is sum, avg,
mimormaxibr@@mpm,sum(sum(Sales)) over ([..] partition by Year order by Quarter)
is invalid.

43

SAQL Functions Windowing Functions

label
The output column name.

Notes

Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

a load "dataset";
b = foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

Multiple Resets and Multiple Orders

Multiple resets and multiple orders are valid. For example:

sum (sum(Sales)) over([-2 .. 0] partition by (OrderDate Year, OrderDate Quarter) order
by OrderDate Year)

sum (sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))
Cogroups
Windowing functions can be used with cogroup queries. For example:
sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], a[Quarter]) order by (a[Year]
asc, sum(a[Sales]) desc))

@ Note: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "datasetl";

b = load "dataset2";

c = group a by columnl, b by column2;

d = foreach ¢ generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

Refer to the Aggregate Functions topic for details on function usage.

Examples

Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum is not reset
by any column.
g = load "dataset";

g = group g by (OrderDate Year, OrderDate Quarter);
foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)

q =
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate Year,
OrderDate Quarter)) as r_ sum;

Year Quarter sum_amt r_sum

2013 1 1000 1000

44

SAQL Functions Windowing Functions

Year Quarter sum_amt r_sum
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 9000
2014 2 500 9500
2014 3 9000 18500
2014 4 3000 21500
2015 1 500 22000
2015 2 500 22500
2015 3 200 22700
2015 4 400 23100

Running Totals By Year

Running total resets on every year.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by OrderDate Year order by (OrderDate Year,
OrderDate_Quarter)) as r_sum;

Year Quarter sum_amt r_sum
2013 1 1000 1000
2013 2 2000 3000
2013 3 3000 6000
2013 4 2000 8000
2014 1 1000 1000
2014 2 500 1500
2014 3 9000 10500
2014 4 3000 13500
2015 1 500 500
2015 2 500 100
2015 3 200 1200
2015 4 400 1600

45

SAQL Functions Windowing Functions

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate Year order by
(OrderDate Year, OrderDate Quarter)) as m min;

Year Quarter sumSales m_min
2013 1 1000 1000
2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 2000
2014 1 1000 1000
2014 2 500 500
2014 3 9000 500
2014 4 3000 500
2015 1 4000 4000
2015 2 500 500
2015 3 200 200
2015 4 400 200
Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

g = load "dataset";
g = group gq by (OrderDate Year, OrderDate Quarter);
q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)

as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate Year)
as p tot;

Year Quarter sumSales p_tot

2013 1 1000 12.5%

2013 2 2000 25%

2013 3 3000 37.5%

2013 4 2000 25%

2014 1 1000 741%

46

SAQL Functions Windowing Functions

Year Quarter sumSales p_tot
2014 2 500 3.70%
2014 3 9000 66.67%
2014 4 3000 22.22%
2015 1 500 31.25%
2015 2 500 31.25%
2015 3 200 12.50%
2015 4 400 25%

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

g = load "dataset";

q = group q by (OrderDate Year, OrderDate Quarter);

q = foreach g generate OrderDate Year as Year, OrderDate Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate Year order
by (OrderDate Year, OrderDate Quarter)) as diff;

Year Quarter sumSales diff
2013 1 1000

2013 2 2000 1000
2013 3 3000 1000
2013 4 2000 -1000
2014 1 1000

2014 2 500 -500
2014 3 9000 8500
2014 4 3000 -6000
2015 1 500

2015 2 500 0
2015 3 200 -300
2015 4 400 200

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

47

SAQL Functio

ns

dense_rank()
Same as rank() but doesn't skip values on previous repetitions.

cume_dist()

Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

(Year, Quarter);

Examples

q = load "dataset";
q = group g by

q =

foreach g generate Year, Quarter,
by Year order by sum(Sales)) as rank;

sum(Sales) as sum_amt,

rank ()

over ([..

]

Windowing Functions

partition

The following table also shows result columns as if the dense rank (), cume dist () and row number () functions were
substituted for rank () in the previous code.

Year
2013
2013
2013
2013
2014
2014
2014
2014
2015
2015
2015

2015

This query shows the top 3 performing quarters in a year.

Quarter

1

2

sum_amt
1000
2000
2000
3000
500
1000
3000
9000
500
500
600

700

g = load "dataset";

q = group g by (Year, Quarter);

g = foreach g generate Year, Quarter,
by Year order by sum(Sales)) as rank;
g = filter g by rank <= 3;

Year Quarter

2013 1

2013 2

rank
1

2

sum(Sales) as sum amt,

sumSales
1000

2000

48

dense_rank cume_dist

1

2

rank ()

0.25

0.75

0.75

1

0.25

05

0.75

05

0.5

0.75

over ([..

rank

]

row_number
1

2

partition

SAQL Functions coalesce()

Year Quarter sumSales rank
2013 4 2000 2
2014 2 500 1
2014 1 1000 2
2014 4 3000 3
2015 1 500 1
2015 2 600 1
2015 4 600 3

This query shows the 95th percentile.

q = load "Oppty Products Scored";

g = group g by (ProductName) ;

q foreach g generate ProductName, sum(TotalPrice) as sum Price, percentile cont (0.95)
within group (order by 'TotalPrice') as 'sum 95Percentile’;

qg = limit g 5;

Percentile functions: 95th Percentile

sum of Profit 95th Percentile of Profit

Product Name

Books
Cables

Cases
Certifications
Courses

Refer to the Aggregate Functions topic for details on function usage.

coalesce ()

Use the coalesce () function to get the first non-null value from a list of parameters.
coalesce (valuel , value2 , value3 , ...)
For example, the following statements ensure that a non-null grouping value is used when doing a full outer join.

accounts = load "em/cogroup/accounts";

opps = load "em/cogroup/opportunities";

c = cogroup accounts by 'Year' full, opps by 'Year';

c = foreach ¢ generate coalesce(accounts::'Year',opps::'Year') as 'Group';

49

SAQL Functions coalesce|)

You canalso usethe coalesce () functiontoreplace nulls with a default value. For example, the following statements set the default
for division by zero to a non-null value.

g = load "dataset";
g = group g by 'Year';
q = foreach g generate 'Year', coalesce (sum(Amount)/sum(Quantity),0) as 'AvgPrice';

50

QUERY PERFORMANCE

To optimize performance, learn how to structure your query to take advantage of the different stages a SAQL query passed through.

What Happens Behind the Scenes

SAQL stands for Salesforce Analytics Query Language. Most actions you take in Wave Analytics results in one or more SAQL queries. Every
lens, dashboard, and explorer action generates and executes a SAQL statement to build the data needed for the visualization.

0 Tip: SAQL is influenced by the Apache Pig-Latin (pigql) syntax, but their implementations differ, and they are not compatible.

When Wave Analytics evaluates the steps, widgets, and layouts to render a dashboard, it does the following:

® |t auto-facets the compact steps. In other words, it links different widgets that relate to each other.
e ltresolves bindings and templates.
e FEvery stepis converted to a SAQL query.

The SAQL query is then sent to the query engine for execution. The resulting data is passed to the charting library, which renders it using
corresponding widget definitions.

How the components fit together

1. Auto-facet steps added using the builder
2. Resolve Mustache templates and custom bindings

’ : ¢ 3. Generate SAQL for each step
P 4. Dispatch queries to the Wave Engine
i “m == u Rendering ;
Engine &
—
EU?W &> | Dataset
ngine ;
% :
Runtime : i

5. Execute query

6. Build results
7. Return them as JSON

.
H

8. Render results using widget definition

Developers can write SAQL to access Wave Analytics data, either via the Wave REST API, or by creating/editing SAQL queries contained
in the dashboard JSON.

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. Each SAQL statement (a reserved keyword such as
filter, group, order, and so on) has an input stream, an operation, and an output stream. Statements can span multiple lines and must
end with a semicolon.

51

Query Performance

Each query line is assigned to a named stream. A named stream can be used as input to any subsequent statement in the same query.
The only exception to this rule is the last line in a query, which you don't need to assign explicitly.

A query typically goes through several steps, or layers, on its quest to return the requested data as JSON. The query engine code where
this journey starts is designed to execute extremely quickly, and the data is also very efficiently indexed, so query operations (such as
filter, group, and foreach) are highly optimized.

The logical layers a query passes through

Indexed Wave Data

Optimized filter/group/foreach

r

/ Tabular Data /

|
.

Post Processing
filter/group/foreach/cogroup/union

r

/ JSON Results /

After that, the data is essentially in tabular form, so any major query operations—filter, (co)group, foreach, or union—are less optimized
and require more processing; a more "brute force" approach.

A common use of SAQL is to create derived measures or dimensions. This is a fancy way of saying that you can create new columns
using calculations based on existing columns. These calculations may be very simple—perhaps just adding two measures or concatenating
two dimensions—or they can be very complex.

The following topics highlight common causes of problematic query design.

Projection is Key
See how changing the order of the functions in your query can give remarkable performance improvements.

Grouping Order
Consider why the order of fields affects how your query is processed.

52

Query Performance Projection is Key

Network Traffic and Latency
You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Redundant Filters
Is your query doing more work than it needs to? Check to see if you have redundant filters.

Use the ELT Process
Is your dataset set up correctly for what you're trying to do? You may be doing unnessesary work in your queries.

Multi-Value Dimensions
If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Projection is Key

See how changing the order of the functions in your query can give remarkable performance improvements.

Think Projection

With behind-the-scenes knowledge of how data is queried, it quickly becomes apparent that writing queries to take advantage of the
super-fast and efficiently indexed layer is key to maximize performance. This before-and-after concept essentially relates to projection.

O Tip: Whatis projection? When a query creates a new stream with a foreach statement—and it's the first foreach in the query—that
iS a projection.

Pre-projection queries, particularly those dealing with rows numbering in the hundreds of thousands or more, will execute much faster
than post-projection queries dealing with the same number of rows as tabular data. So, instead of:

= load "something";

= foreach g generate ‘coll’+’col2’ as ‘key’, col3;
filter g by ‘key’;

= filter g by ‘col3’;

= group g by ‘col3’;

Q Q9 Q Q Q
Il

.where the filtering and grouping occur after projection (foreach), change the order so the filtering and grouping occur before projection:

= load "something";

= filter g by ‘coll’;

filter g by ‘col2’;

= filter g by ‘col3’;

= group g by ‘col3’;

= foreach g generate ‘coll’+’col2’ as ‘key’, col3;

Q Q9 Q Q Q Q
Il

So a good practice is to ensure that the most demanding part of your query is tackled by the appropriate layer—the layer able to process
that filter or grouping most efficiently.

Agreat many "slow query" cases addressed by supportand development teams are ultimately resolved by rewriting the query to perform
grouping and filtering before projection.

@ Nofte: Ifyou need tofilter or group by an expression (e.g. key=col 1+col2), the best option for performance is to create the column
in the dataset so that it is calculated at ETL time and indexed. See Use the ELT Process.

53

Query Performance Grouping Order

Grouping Order

Consider why the order of fields affects how your query is processed.

Field Order When Grouping

In addition to optimization through pre-projection queries, another way to improve performance is to carefully consider the order of
query fields.

For example, when multiple grouping, consider the cardinality, or number of unique values, for each key field. If the first stage of grouping
deals with a very large stream of high cardinality, performance can suffer even with the use of an inverted index. For example, in the
following example, Id1 has high cardinality and so takes more processing. For small streams it may not be a big deal, but for very large
streams it can affect performance significantly.

group q by ('Idl','Id2'");

However, using the same streams, and assuming Id2 is relatively low cardinality, the following change in grouping order will significantly
improve performance.

group gq by ('Id2','Idl'");

Id1 is now a sub-group, so the grouping algorithm is effectively working with chunks of data of lower cardinality.

Network Traffic and Latency

You might not think there’s much you can do about network latency, but there are ways to reduce traffic.

Reduce Network Round Trips

Consider the number of network round trips your query might initiate. There are techniques to reduce network usage. This is especially
important for mobile, where network latency can be high.

An example is faceting in a dashboard. Say you are using SAQL queries to display grouped values in a list selector, but you want the
displayed values to look different (for example, you might want to show dates differently). You might choose to add an intermediate
step tofilter the stream based on the list selector values in order to display your prefered text. However, this adds an extra network round
trip, so it's not an optimal solution.

In this case, a better solution might be to ensure your data values—those used in the list selector—are those you actually want, and
have the data transformed appropriately at load time via the ELT process. See Use the ELT Process.

Redundant Filters

Is your query doing more work than it needs to? Check to see if you have redundant filters.

54

Query Performance Use the ELT Process

Optimizing Multiple Filters

Logically, it's easy to write multiple filters to achieve your goal, but often you end up with redundantfilters. It's even possible to generate
redundant filters when setting up binding and faceting.

g = load "something";

q = filter g by date('ProcDate Day') in ["current year".."current year"];

q = filter g by date('ProcDate Day') in ["5 years ago".."current year"];

g = group g by 'ProdDescrip';

g = foreach g generate 'ProdDescrip' as 'Prod Desc', sum('CC cost') as 'Cost';
g = limit g 2000;

Even though the filters in this example occur before projection—Dbefore the foreach statement—and so are highly optimized, the second
filter is redundant and so causes unnecessary work for the query engine. Why is it redundant? The results will be the same even without
the "5 years ago" filter.

Note: Wave does have a sophisticated algorithm for removing redundancy infilters, but it can't catch all cases so it's good practice
to avoid redundancy.

Use the ELT Process

Is your dataset set up correctly for what you're trying to do? You may be doing unnessesary work in your queries.

The Extract, Load, and Transform Process Can Set Your Queries Up For
Success

When importing your dataset via the ELT process, it's important to ensure your dataset is optimized for likely queries. The ELT process
allows the creation of derived fields using calculations based on the current dataset, or even other derived fields.

If you find yourself writing queries with a case statement in the foreach projection, then it's possible your dataset could be optimised.
For example, the following query changes the value JP to JAPAN in the output stream:

gl = foreach gl generate (case when 'GEO' == \"JP\" then \"Japan\" else 'GEO' end) as 'GEO;

You might find yourself doing this in multiple queries, which cumulatively is a performance hit. It makes better sense to have the dataset
reflect the required data accurately. Inyour ELT process, use the computeExpression transformation, and add your case statement
inthe saglExpression SAQL query. For example:

"action": "computeExpression",
"parameters": {
"source": "Opportunity Data",

"mergeWithSource": true,
"computedFields": [
{

"name": "GEO",

"type": "Text",

"label": "GEO"

"saglExpression":

"case
when ‘GEO’ == \”JP” then \"Japan\"
else ‘GEO’
end"}

55

Query Performance Multi-Value Dimensions

}

Now the GEO field in your dataset will contain Japan rather than JP. Your queries no longer need the CASE statement, and execute more
efficiently.

See the Data Integration Guide.

Multi-Value Dimensions

If you use picklists, and find your queries are slow, consider the impact of multi-value dimensions.

Multi-Value Dimensions in Projections or Grouping

Multi-valued dimensions (for example, those used in multi-select picklists) may cause poor performance because multi-value field
behavior is undefined for group by or foreach. Also, multi-value dimensions are not indexed, so queries that reference multi-valued
dimensions will therefore require scanning of dimensions, which could slow performance. This is especially true when using multi-level

grouping.
For these reasons, use of multi-value fields in anything other than filters is strongly discouraged.

@ Important: If you have bad performance due to multi-value fields used in foreach or group by, rewrite your query so multi-value
fields are referenced only in filters.

56

https://help.salesforce.com/articleView?id=bi_integrate_data_integration.htm&language=en_US

	SAQL Overview
	Enable SAQL Logs in the Browser
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Quoted String Escape Sequences
	Special Characters
	Comments
	Nulls and Nulls in Measures

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	case
	Null Operators

	SAQL Statements
	load
	filter
	foreach
	group and cogroup
	union
	order
	limit
	offset

	SAQL Functions
	Aggregate Functions
	Date Functions
	String Functions
	Math Functions
	Windowing Functions
	coalesce()

	Query Performance
	Projection is Key
	Grouping Order
	Network Traffic and Latency
	Redundant Filters
	Use the ELT Process
	Multi-Value Dimensions

