
Wave Analytics Dashboard
JSON Reference

Salesforce, Spring ’17

 @salesforcedocs
Last updated: April 3, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Wave Analytics Dashboard JSON Overview . 1

View or Modify a Dashboard JSON File . 2

JSON Example of a Wave Designer Dashboard . 3

JSON Example of a Classic Designer Dashboard . 17

Dashboard JSON Properties . 20

dataSourceLinks (for Wave Designer Dashboards Only) . 21
gridLayouts (for Wave Designer Dashboards Only) . 23
widgetStyle Properties (for Wave Designer Dashboards Only) . 32
layouts (for Classic Designer Dashboards Only) . 34
steps . 49
widgets . 75

WAVE ANALYTICS DASHBOARD JSON OVERVIEW

The easiest way to build dashboards in Wave Analytics is to use the designer. However, if needed, you can further customize dashboards
by editing their JSON files. The JSON defines the components of the dashboard and how they interact.

Modify a dashboard’s JSON file to perform advanced customization tasks that can’t be accomplished in the designer’s user interface,
like:

• Manually set up bindings to override the default faceting behavior and specify the relationships between the steps that aren’t bound
by default.

• Set query limits.

• Specify columns for a values table.

• Specify a SAQL query.

• Populate a filter selector with a specified list of static values instead of from a query.

• Set up layouts for mobile devices for a dashboard.

The last three tasks only pertain to dashboards created with the classic designer. With the Wave dashboard designer, you can use the
user interface to accomplish these tasks—no JSON editing required.

Note: This document specifies when information applies to only one of the dashboard designers.

1

VIEW OR MODIFY A DASHBOARD JSON FILE

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To modify the JSON file that
defines a dashboard:
• “Create and Edit Wave

Analytics Dashboards”

Use the Expert Editor Mode to modify the JSON for a dashboard or lens.

Expert Editor Mode displays the JSON of a lens or dashboard and lets you quickly see the effect of
your edits in the running asset.

1. To access Expert Editor Mode, open the lens or dashboard you want to edit, and press CTRL+E
for PCs or CMD+E for Macs.

2. Modify the JSON in the editor. You can use standard keyboard shortcuts for editing functions
and search.

3. To go back to the explorer and see how edits to the JSON appear in the lens or dashboard, click
Done.

4. To retain your edits, save the lens or dashboard. Changes made in the JSON editor are not saved
until you explicitly save the lens or dashboard.

In Expert Editor Mode, the following shortcuts let you perform basic actions from your keyboard.

DescriptionExpert Editor Mode Keyboard Shortcut

Disregard changes and load the original JSONCRTL+3 (Windows); CMD+3 (Mac)

CutCRTL+X (Windows); CMD+X (Mac)

CopyCRTL+C (Windows); CMD+C (Mac)

PasteCRTL+V (Windows); CMD+V (Mac)

UndoCRTL+Z (Windows); CMD+Z (Mac)

RedoSHIFT+CRTL+Z (Windows); SHIFT+CMD+Z
(Mac)

Search (RegExp, case-sensitive, or whole word
searches available)

CRTL+F (Windows); CMD+F (Mac)

View dashboard with changes to JSONCRTL+E (Windows); CMD+E (Mac)

2

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

JSON EXAMPLE OF A WAVE DESIGNER DASHBOARD

The JSON for each Wave designer dashboard contains multiple levels of properties. Review the structure of the JSON to help you
understand where to configure properties.

Note: The structure of the JSON varies based on wher you use the Wave designer or classic designer to build the dashboard.

Example:

{
"label": "Opportunity Overview",
"description": "Sample Wave designer dashboard with multiple layouts.",
"state": {

"gridLayouts": [
{

"name": "Default",
"numColumns": 12,
"pages": [

{
"widgets": [

{
"colspan": 3,
"column": 3,
"name": "container_1",
"row": 1,
"rowspan": 6,
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#9687BB",
"borderEdges": [

"top"
],
"borderRadius": 0,
"borderWidth": 8

}
},
{

"colspan": 12,
"column": 0,
"name": "text_2",
"row": 0,
"rowspan": 1,
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#77B0AD",
"borderEdges": [],
"borderRadius": 0,
"borderWidth": 8

}
},
{

3

"colspan": 3,
"column": 0,
"name": "container_4",
"row": 1,
"rowspan": 6,
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#77B0AD",
"borderEdges": [

"top"
],
"borderRadius": 0,
"borderWidth": 8

}
},
{

"colspan": 3,
"column": 0,
"name": "text_1",
"row": 1,
"rowspan": 1,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 3,
"name": "text_3",
"row": 1,
"rowspan": 1,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 0,
"name": "number_1",
"row": 2,
"rowspan": 2,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 3,
"name": "number_2",
"row": 2,
"rowspan": 2,
"widgetStyle": {

"borderEdges": []
}

4

JSON Example of a Wave Designer Dashboard

},
{

"colspan": 3,
"column": 0,
"name": "chart_1",
"row": 4,
"rowspan": 3,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 3,
"name": "chart_2",
"row": 4,
"rowspan": 3,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 6,
"column": 6,
"name": "chart_5",
"row": 1,
"rowspan": 6,
"widgetStyle": {

"borderEdges": []
}

}
]

}
],
"selectors": [],
"style": {

"alignmentX": "left",
"alignmentY": "top",
"backgroundColor": "#F2F6FA",
"cellSpacingX": 8,
"cellSpacingY": 8,
"documentId": "",
"fit": "original"

},
"version": 1

},
{

"name": "Tablet",
"numColumns": 8,
"selectors": [

"minWidth(600)",
"maxWidth(900)",
"orientation(portrait)"

],

5

JSON Example of a Wave Designer Dashboard

"pages": [
{

"widgets": [
{

"colspan": 7,
"column": 0,
"name": "text_2",
"row": 0,
"rowspan": 1,
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#77B0AD",
"borderEdges": [],
"borderRadius": 0,
"borderWidth": 8

}
},
{

"colspan": 3,
"column": 0,
"name": "text_1",
"row": 1,
"rowspan": 1,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 0,
"name": "number_1",
"row": 2,
"rowspan": 2,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 0,
"name": "chart_1",
"row": 4,
"rowspan": 3,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 4,
"column": 0,
"name": "container_4",
"row": 1,
"rowspan": 6,
"widgetStyle": {

6

JSON Example of a Wave Designer Dashboard

"backgroundColor": "#FFFFFF",
"borderColor": "#77B0AD",
"borderEdges": [

"top"
],
"borderRadius": 0,
"borderWidth": 8

}
},
{

"colspan": 3,
"column": 4,
"name": "text_3",
"row": 1,
"rowspan": 1,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 4,
"name": "number_2",
"row": 2,
"rowspan": 2,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 3,
"column": 4,
"name": "chart_2",
"row": 4,
"rowspan": 3,
"widgetStyle": {

"borderEdges": []
}

},
{

"colspan": 4,
"column": 4,
"name": "container_1",
"row": 1,
"rowspan": 6,
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#9687BB",
"borderEdges": [

"top"
],
"borderRadius": 0,
"borderWidth": 8

}

7

JSON Example of a Wave Designer Dashboard

},
{

"colspan": 8,
"column": 0,
"name": "chart_5",
"row": 7,
"rowspan": 6,
"widgetStyle": {

"borderEdges": []
}

}
]

}
],
"version": 1,
"style": {

"backgroundColor": "#C5D3E0",
"cellSpacingX": 4,
"cellSpacingY": 4,
"documentId": "",
"fit": "original",
"alignmentX": "left",
"alignmentY": "top"

},
"maxWidth": 500

}
],
"layouts": [],
"steps": {

"LeadSource_6": {
"datasets": [

{
"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
],
"isFacet": true,
"isGlobal": false,
"query": {

"measures": [
[

"sum",
"Amount"

]
],
"groups": [

"LeadSource"
]

},
"type": "aggregate",
"useGlobal": true,

8

JSON Example of a Wave Designer Dashboard

"visualizationParameters": {
"visualizationType": "hbar",
"options": {}

}
},
"LeadSource_7": {

"datasets": [
{

"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
],
"isFacet": true,
"isGlobal": false,
"query": {

"measures": [
[

"sum",
"Amount"

]
],
"groups": [

"LeadSource"
]

},
"type": "aggregate",
"useGlobal": true,
"visualizationParameters": {

"visualizationType": "hbar",
"options": {}

}
},
"CreatedDate_Year_CreatedDate_Month_9": {

"datasets": [
{

"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
],
"isFacet": true,
"isGlobal": false,
"query": {

"measures": [
[

"sum",
"Amount",
"A",
{

9

JSON Example of a Wave Designer Dashboard

"display": "Sum of Amount"
}

],
[

"sum",
"Amount",
"B",
{

"display": "Running Total",
"format": "currencydollars"

}
]

],
"columns": [

{
"query": {

"measures": [
[

"sum",
"Amount"

]
],
"groups": [

[
"CreatedDate_Year",
"CreatedDate_Month"

]
]

}
},
{

"query": {
"measures": [

[
"sum",
"Amount"

]
],
"groups": [

[
"CreatedDate_Year",
"CreatedDate_Month"

]
],

"formula": "avg(A) over ([-1..0] partition by all order
by ('CreatedDate_Year~~~CreatedDate_Month'))"

},
"format": "currencydollars",
"header": "Running Total"

}
],
"groups": [

[
"CreatedDate_Year",

10

JSON Example of a Wave Designer Dashboard

"CreatedDate_Month"
]

]
},
"selectMode": "single",
"type": "aggregate",
"useGlobal": true,
"visualizationParameters": {

"visualizationType": "hbar",
"options": {}

}
},
"Account_Industry_4": {

"datasets": [
{

"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
],
"isFacet": true,
"isGlobal": false,
"query": {

"measures": [
[

"sum",
"Amount"

]
],
"groups": [

"Account.Industry"
]

},
"type": "aggregate",
"useGlobal": true,
"visualizationParameters": {

"visualizationType": "pie",
"options": {}

}
},
"Amount_3": {

"datasets": [
{

"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",

"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
],
"isFacet": true,
"isGlobal": false,

11

JSON Example of a Wave Designer Dashboard

"query": {
"measures": [

[
"sum",
"Amount"

]
]

},
"type": "aggregate",
"useGlobal": true,
"visualizationParameters": {

"visualizationType": "hbar",
"options": {}

}
}

},
"widgetStyle": {

"backgroundColor": "#FFFFFF",
"borderColor": "#77B0AD",
"borderEdges": [

"top"
],
"borderRadius": 0,
"borderWidth": 8

},
"widgets": {

"container_1": {
"parameters": {

"alignmentX": "left",
"alignmentY": "top",
"documentId": "",
"fit": "original"

},
"type": "container"

},
"number_2": {

"parameters": {
"compact": true,
"exploreLink": true,
"measureField": "sum_Amount",
"numberColor": "#335779",
"numberSize": 32,
"step": "LeadSource_6",
"textAlignment": "center",
"titleColor": "#335779",
"titleSize": 16

},
"type": "number"

},
"number_1": {

"parameters": {
"compact": true,
"exploreLink": true,
"measureField": "sum_Amount",

12

JSON Example of a Wave Designer Dashboard

"numberColor": "#335779",
"numberSize": 32,
"step": "Amount_3",
"textAlignment": "center",
"titleColor": "#335779",
"titleSize": 16

},
"type": "number"

},
"text_1": {

"parameters": {
"fontSize": 20,
"text": "Industry",
"textAlignment": "center",
"textColor": "#000000"

},
"type": "text"

},
"container_4": {

"parameters": {
"alignmentX": "left",
"alignmentY": "top",
"documentId": "",
"fit": "original"

},
"type": "container"

},
"text_3": {

"parameters": {
"fontSize": 20,
"text": "Lead Source",
"textAlignment": "center",
"textColor": "#000000"

},
"type": "text"

},
"text_2": {

"parameters": {
"fontSize": 20,
"text": "Opportunity Overview Dashboard",
"textAlignment": "center",
"textColor": "#000000"

},
"type": "text"

},
"chart_5": {

"parameters": {
"autoFitMode": "fit",
"showValues": true,
"barSize": 25,
"legend": {

"showHeader": true,
"show": true,
"position": "bottom-center",

13

JSON Example of a Wave Designer Dashboard

"inside": false
},
"axisMode": "multi",
"visualizationType": "stackhbar",
"exploreLink": true,
"title": {

"label": "",
"align": "center",
"subtitleLabel": ""

},
"trellis": {

"enable": false,
"type": "x",
"chartsPerLine": 4

},
"measureAxis2": {

"showTitle": true,
"showAxis": true,
"title": ""

},
"measureAxis1": {

"showTitle": true,
"showAxis": true,
"title": ""

},
"normalize": false,
"step": "CreatedDate_Year_CreatedDate_Month_9",
"theme": "wave",
"autoFit": false,
"dimensionAxis": {

"showTitle": true,
"showAxis": true,
"title": ""

}
},
"type": "chart"

},
"chart_2": {

"parameters": {
"legend": {

"showHeader": true,
"show": true,
"position": "right-top",
"inside": false

},
"showMeasureTitle": false,
"showTotal": true,
"visualizationType": "pie",
"step": "LeadSource_7",
"theme": "wave",
"exploreLink": true,
"title": {

"label": "",
"align": "center",

14

JSON Example of a Wave Designer Dashboard

"subtitleLabel": ""
},
"trellis": {

"enable": false,
"type": "x",
"chartsPerLine": 4

},
"inner": 50

},
"type": "chart"

},
"chart_1": {

"parameters": {
"autoFitMode": "fit",
"showValues": true,
"barSize": 25,
"legend": {

"showHeader": true,
"show": true,
"position": "right-top",
"inside": false

},
"axisMode": "multi",
"visualizationType": "hbar",
"exploreLink": true,
"title": {

"label": "",
"align": "center",
"subtitleLabel": ""

},
"trellis": {

"enable": false,
"type": "x",
"chartsPerLine": 4

},
"measureAxis2": {

"showTitle": true,
"showAxis": true,
"title": ""

},
"measureAxis1": {

"showTitle": false,
"showAxis": true,
"title": ""

},
"step": "Account_Industry_4",
"theme": "wave",
"autoFit": false,
"dimensionAxis": {

"showTitle": true,
"showAxis": true,
"title": "Industries"

}
},

15

JSON Example of a Wave Designer Dashboard

"type": "chart"
}

}
},
"datasets": [

{
"id": "0Fbx000000000LzCAI",
"label": "Opportunities",
"name": "opportunity1",
"url": "/services/data/v38.0/wave/datasets/0Fbx000000000LzCAI"

}
]

}

The JSON file defines the following dashboard created in the Wave designer.

This dashboard displays the following widgets:

• Two faceted number widgets: number_1 (based on step Amount_3) and number_2 (based on step LeadSource_6).

• Three faceted chart widgets: one bar chart chart_5 (based on step Account_Industry_4), one pie chart chart_2
(based on step LeadSource_7), and one stacked bar chart chart_5 (based on step
CreatedDate_Year_CreatedDate_Month_9). The steps reference the same 0Fbx000000000LzCAI dataset.

• Two container widgets (container_1 and container_4) that each group a number widget and a chart.

• Two text widgets (text_1 and text_3) that provide the labels for the containers.

16

JSON Example of a Wave Designer Dashboard

JSON EXAMPLE OF A CLASSIC DESIGNER DASHBOARD

The JSON for each classic designer dashboard contains multiple levels of properties. Review the structure of the JSON to help you
understand where to configure properties.

Note: The structure of the JSON varies based on wher you use the Wave designer or classic designer to build the dashboard.

Example:

{
"description": "Shows opportunities by industry.",
"label" : "Opportunities",
"folder" : {

"id" : "00l36000000SpXiAAK"
},
"state": {
"steps": {
"AccountIndustryPieChart": {
"type": "aggregate",
"isGlobal": false,
"isFacet": true,
"useGlobal": true,
"selectMode": "single",
"start": null,
"visualizationParameters": {
"visualizationType": "pie"

},
"query": {
"query":

"{\"groups\":[\"AccountId.Industry\"],\"measures\":[[\"count\",\"*\"]]}",
"version": -1

},
"datasets": [
{
"name": "Opps"

}
]

},
"AccountIndustryBarChart": {
"type": "aggregate",
"isGlobal": false,
"isFacet": true,
"useGlobal": true,
"selectMode": "single",
"start": null,
"visualizationParameters": {
"options": {
"sqrt": true

},
"visualizationType": "hbar"

},

17

"query": {
"query":

"{\"measures\":[[\"sum\",\"Amount\"]],\"groups\":[\"AccountId.Industry\"],\"order\":[[-1,{\"ascending\":false}]]}",

"version": -1
},
"datasets": [
{
"name": "Opps"

}
]

}
},
"widgets": {
"chart_1": {
"type": "chart",
"position": {
"zIndex": 3,
"x": 10,
"y": 80,
"w": 500,
"h": 300

},
"parameters": {
"step": "AccountIndustryPieChart",
"legend": true,
"visualizationType": "pie"

}
},
"text_1": {
"type": "text",
"position": {
"zIndex": 4,
"x": 0,
"y": 10

},
"parameters": {
"text": "Account Industries",
"textAlignment": "left"

}
},
"text_4": {
"type": "text",
"position": {
"zIndex": 11,
"x": 500,
"y": 10

},
"parameters": {
"text": "Amount by Industries"

}
},
"chart_4": {
"type": "chart",

18

JSON Example of a Classic Designer Dashboard

"position": {
"zIndex": 12,
"x": 530,
"y": 70,
"w": 500,
"h": 300

},
"parameters": {
"step": "AccountIndustryBarChart",
"sqrt": true,
"visualizationType": "vbar"

}
}

}
}

}

The dashboard JSON file defines a simple dashboard created in the classic designer. This dashboard displays two faceted widgets:
one pie chart chart_1 (based on step AccountIndustryPieChart) and one bar chart chart_4 (based on step
AccountIndustryBarChart). Both steps reference the same Opps dataset.

19

JSON Example of a Classic Designer Dashboard

DASHBOARD JSON PROPERTIES

The dashboard JSON consists of properties that define layouts, widgets, and steps. key defines all layouts for the Wave designer dashboard.
It contains a separate node for each layout. Each layout has properties that provide information about the devices that can use the layout
as well as the placement of each widget in the layout. It also contains dashboard properties, like cell spacing in the grid and the dashboard’s
background color or image.

Some properties are exposed and editable in the dashboard designer user interface. Others are only editable via JSON.

In each dashboard JSON, you’ll find the following high-level properties.

DetailsProperty Name

Type
String

label

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Name of the dashboard.

Type
String

description

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Description of the dashboard.

Type
Array

state

Exposed in the Dashboard Designer’s User Interface
No

Description

Specifies properties for all layouts, widgets, and steps defined in the dashboard. The state properties vary
based on the designer used to save the dashboard. For example, if the dashboard is saved in Wave
dashboard designer, the state also contains a gridLayouts section. When you save a dashboard
using the dashboard designer, the state of the dashboard is persisted in the JSON.

Type
Array

datasets

Exposed in the Dashboard Designer’s User Interface
No

20

DetailsProperty Name

Description

Specifies all datasets used by steps in the dashboard.

The following sections describe the different properties nested under state.

dataSourceLinks (for Wave Designer Dashboards Only)

The dataSourceLinks section defines all data sources configured for the dashboard.

gridLayouts (for Wave Designer Dashboards Only)

The gridLayouts section defines all layouts built for the dashboard.

widgetStyle Properties (for Wave Designer Dashboards Only)

The widgetStyle key contains the default widget properties that can be applied to each widget. This section only applies to
dashboards that are created using the Wave dashboard designer.

layouts (for Classic Designer Dashboards Only)

Add a layouts section to the JSON to customize the appearance of a classic designer dashboard on mobile devices.

steps

The steps section defines all steps created in and clipped to the dashboard. The properties vary based on whether the dashboard
is built using the Wave dashboard designer or classic designer.

widgets

The widgets section defines the widgets that appear in the dashboard. Each widget has a name.

dataSourceLinks (for Wave Designer Dashboards Only)

The dataSourceLinks section defines all data sources configured for the dashboard.

For more information about connected data sources, see Configure Cross-Dataset Faceting with Connected Data Sources.

Example:

"dataSourceLinks": [
{

"fields": [
{

"dataSourceName": "ServiceOpportunity3",
"dataSourceType": "saql",
"fieldName": "AccountId"

},
{

"dataSourceName": "account",
"dataSourceType": "saql",
"fieldName": "Id"

}
],
"label": "ServiceOpportunities Dataset to Account Dataset: Account ID",
"name": "Link_970"

21

dataSourceLinks (for Wave Designer Dashboards Only)Dashboard JSON Properties

https://help.salesforce.com/articleView?id=bi_dashboard_data_source_connections.htm&language=en_US

},
{

"fields": [
{

"dataSourceName": "ServiceOpportunity3",
"dataSourceType": "saql",
"fieldName": "StageName"

},
{

"dataSourceName": "Static_Opp_Stage_1",
"dataSourceType": "static",
"fieldName": "value"

}
],
"label": "Static Opp Stage to ServiceOpportunities Dataset",
"name": "Link_953"

}
]

dataSourceLinks Properties

The dataSourceLinks key defines all data source connections for the Wave designer dashboard. It contains a separate node
for each connection. Each connection has properties about each data source.

dataSourceLinks Properties
The dataSourceLinks key defines all data source connections for the Wave designer dashboard. It contains a separate node for
each connection. Each connection has properties about each data source.

DetailsProperty Name

Type
Array

fields

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

List of data sources included in the connection. Each data source contains the following properties.

dataSourceName
API name of the dataset or ID of the static step.

dataSourceType
The type of data source: "saql" for a dataset or "static" for a static step.

fieldName
Name of the field used to match records between the data sources.

Type
String

label

22

dataSourceLinks PropertiesDashboard JSON Properties

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes.

Description
Display label for the data source connection.

Type
String

name

Exposed in the Dashboard Designer’s User Interface
No.

Description
API name of the data source connection.

gridLayouts (for Wave Designer Dashboards Only)

The gridLayouts section defines all layouts built for the dashboard.

For more information about layouts for Wave designer dashboards, see Generate Unique Dashboard Layouts for Different Devices. For
information about layouts for classic designer dashboards, see layouts (for Classic Designer Dashboards Only).

Example:

"gridLayouts": [
{
"name": "Default",
"numColumns": 14,
"pages": [
{
"widgets": [
{
"colspan": 9,
"column": 3,
"name": "dateselector_1",
"row": 0,
"rowspan": 15,
"widgetStyle": {}

},
{
"row": 12,
"column": 0,
"rowspan": 9,
"colspan": 3,
"name": "image_1",
"widgetStyle": {}

},
{
"colspan": 12,
"column": 1,
"name": "table_1",

23

gridLayouts (for Wave Designer Dashboards Only)Dashboard JSON Properties

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dashboard_layout_select_flex.htm&language=en_US

"row": 29,
"rowspan": 18,
"widgetStyle": {
"borderEdges": ["all"],
"backgroundColor": "#2EC2BA",
"borderColor": "#9271E8",
"borderWidth": 4,
"borderRadius": 4

}
}

]
}

],
"rowHeight": "fine",
"selectors": [
"minWidth(400)",
"orientation(portrait)",
"platform(iOS)"

],
"style": {
"alignmentX": "center",
"alignmentY": "center",
"backgroundColor": "#2EC2BA",
"cellSpacingX": 4,
"cellSpacingY": 0,
"fit": "stretch",
"gutterColor": "#AFA3CE",
"image": {
"name": "X1png",
"namespace": ""

}
},
"version": 1,
"maxWidth": 800

}
]

gridLayouts Properties

The gridLayouts key defines all layouts for the Wave designer dashboard. It contains a separate node for each layout. Each
layout has properties that provide information about the devices that can use the layout as well as the placement of each widget
in the layout. It also contains dashboard properties, like cell spacing in the grid and the dashboard’s background color or image.

gridLayouts Properties
The gridLayouts key defines all layouts for the Wave designer dashboard. It contains a separate node for each layout. Each layout
has properties that provide information about the devices that can use the layout as well as the placement of each widget in the layout.
It also contains dashboard properties, like cell spacing in the grid and the dashboard’s background color or image.

24

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

name

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

Name of the layout.

Maximum width (in pixels) that the dashboard can use. If needed, Wave rearranges the existing dashboard
widgets based on this setting in the layout.

maxWidth

Type
Integer

numColumns

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

The number of columns in the designer grid for this layout.

Type
Array

pages

Exposed in the Dashboard Designer’s User Interface
No

Description

Contains properties that determine the placement of each widget in the dashboard layout. Currently,
Wave designer supports only one page for each layout.

Type
String

rowHeight

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

The height of each row in the designer grid for this layout. Valid values are fine and normal (default).

Type
Array

selectors

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

Device requirements that help Wave choose the optimal layout for the device accessing the dashboard.

Type
Array

style

25

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes.

Description

Properties about the designer grid, including columns, rows, cell spacing, and background.

pages Properties

The pages key contains properties that determine the placement of each widget in the Wave designer dashboard layout. Currently,
Wave designer supports only one page for each layout.

selectors Properties

The selectors key contains layout properties that specify the layout name, designer grid settings, background settings, and
requirements for devices that can use this layout.

style Properties

The style key contains the dashboard properties, like cell spacing in the grid, as well as the dashboard’s background color or
image.

pages Properties
The pages key contains properties that determine the placement of each widget in the Wave designer dashboard layout. Currently,
Wave designer supports only one page for each layout.

DetailsProperty Name

Type
Array

widgets

Exposed in the Dashboard Designer’s User Interface
No

Description

Contains properties that determine the height and width of each widget, and where it’s placed on the
dashboard layout.

widgets Properties

The widgets key contains properties that determine the height and width of each widget, and where it’s placed on the dashboard
layout. Because the Wave dashboard designer uses a grid, you specify the properties in terms of rows and columns. For example,
you specify the number of columns to determine the width of a widget.

widgets Properties

The widgets key contains properties that determine the height and width of each widget, and where it’s placed on the dashboard
layout. Because the Wave dashboard designer uses a grid, you specify the properties in terms of rows and columns. For example, you
specify the number of columns to determine the width of a widget.

26

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

name

Exposed in the Dashboard Designer’s User Interface
No

Description

Internal name of the widget. This name is used to reference the widget in the dashboard JSON.

Type
Integer

column

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description

The column number where the widget starts. Column and row specify the top left corner of the
widget.

Note: If this widget is included in a container, these properties are relative to the container widget.

Type
Integer

row

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description

The row number where the widget starts. Column and row specify the top left corner of the widget.

Type
Integer

colspan

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description
The number of columns that a widget spans—the width of the widget. If the dashboard doesn’t have
enough columns to accommodate the specified width, then columns are added to the dashboard.

Type
Integer

rowspan

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description
The number of rows that a widget spans—the height of the widget. If the dashboard doesn’t have
enough rows to accomodate the specified height, then rows are added.

27

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
Array

widgetStyle

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
No

Description

Contains properties that set the border type, border color, and background color.

widgetStyle Properties

The widgetStyle key contains properties that set the border type, border color, and background color of the widget. You can
specify these attributes at two levels. To set the default for all dashboard widgets, use the widgetStyle field under
gridLayouts. To set a specific widget, use the widgetStyle field under widgets. This setting overrides the default
settings for all widgets.

widgetStyle Properties

The widgetStyle key contains properties that set the border type, border color, and background color of the widget. You can specify
these attributes at two levels. To set the default for all dashboard widgets, use the widgetStyle field under gridLayouts. To
set a specific widget, use the widgetStyle field under widgets. This setting overrides the default settings for all widgets.

DetailsProperty Name

Type
String

backgroundColor

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Background color of the widget. The default is #FFFFFF.

Type
String

borderColor

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Color of the widget’s border. The default is #FFFFFF.

28

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
List

borderEdges

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

A list of values that specify which edges of the widget have a border. Valid values are left, right,
top, bottom, and all. Default is no border.

Type
Integer

borderRadius

Available for This Widget
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The roundness of the border corners.

Valid values are: 0 (not rounded, default), 4, 8, and 16. The higher the value, the more rounded the
corner.

Type
Integer

borderWidth

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Width of the widget’s border. Valid values are 1, 2 (default), 4, and 8.

selectors Properties
The selectors key contains layout properties that specify the layout name, designer grid settings, background settings, and
requirements for devices that can use this layout.

DetailsProperty Name

Type
Integer

minWidth(<width>)

Exposed in the Dashboard Designer’s User Interface
Yes

29

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Description

Minimum width (in pixels) of the devices supported by this layout.

Type
Integer

maxWidth(<width>)

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Maximum width (in pixels) of the devices supported by this layout.

Type
String

orientation(<orientation>

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Orientation of the devices supported by this layout. Valid values are: portrait or landscape. If
this property is not specified, then the layout supports both orientations.

Type
String

platform(<platform>)

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Platform of the devices supported by this layout. Valid values are: iOS or Android. If this property is
not specified, the layout supports both platforms.

style Properties
The style key contains the dashboard properties, like cell spacing in the grid, as well as the dashboard’s background color or image.

DetailsProperty Name

Type
String

alignmentX

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The horizontal alignment of the background image applied to the dashboard.

Valid values are: left (default), center, and right.

30

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

alignmentY

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The vertical alignment of the background image applied to the dashboard.

Valid values are: top (default), center, and bottom.

Type
String

backgroundColor

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Background color of the dashboard, specified in hex color code. The default is #FFFFFF.

Type
Integer

cellSpacingX

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Horizontal spacing (in pixels) between cells in the dashboard grid.

Valid values are 0, 4, 8 (default), and 16.

Type
Integer

cellSpacingY

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Vertical spacing (in pixels) between cells in the dashboard grid.

Valid values are 0, 4, 8 (default), and 16.

Type
String

documentId

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The 15-character document ID of the image to apply as the dashboard’s background. To ensure security,
upload the image file to Salesforce as a document, and select the Externally Available Image option.
The image doesn’t show up if this option is not selected or the referenced document is not an image.

31

gridLayouts PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

fit

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates how to scale the image.

Valid values are: original (default), stretch, tile, fitwidth, and fitheight.

Type
Array

image

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Identifies the image using the following properties.

name
Name of the image.

namespace
Optional. Namespace of the image. Default is null.

Example

"image": {
"name": "My_Corporate_Logo",
"namespace": ""

}

widgetStyle Properties (for Wave Designer Dashboards Only)

The widgetStyle key contains the default widget properties that can be applied to each widget. This section only applies to
dashboards that are created using the Wave dashboard designer.

Note: You can specify these attributes at two levels. To set the default for all dashboard widgets, use the widgetStyle field
under gridLayouts. To set a specific widget, use the widgetStyle field under widgets. Settings at the widget level
override the default settings for all widgets.

DetailsProperty Name

Type
String

backgroundColor

Available for This Widget
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

32

widgetStyle Properties (for Wave Designer Dashboards Only)Dashboard JSON Properties

DetailsProperty Name

Description

Color of the widget’s background, specified in hex color code. The default is #FFFFFF.

Type
String

borderColor

Available for This Widget
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Color of the widget’s border, specified in hex color code. The default is #FFFFFF. If no border is specified,
the widget has no border.

Type
List

borderEdges

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

A list of values that specify which edges of the widget have a border. Valid values are left, right,
top, bottom, and all. Default is no border.

Type
Integer

borderRadius

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Roundness of the border corners.

Valid values are: 0(not rounded, default), 4, 8, and 16. The higher the value, the more rounded the
corner.

Type
Integer

borderWidth

Available for These Widgets
All widgets

Exposed in the Dashboard Designer’s User Interface
Yes

33

widgetStyle Properties (for Wave Designer Dashboards Only)Dashboard JSON Properties

DetailsProperty Name

Description
Thickness of the border.

Valid values are: 1, 2 (default), 4, and 8. The higher the value, the thicker the border.

layouts (for Classic Designer Dashboards Only)

Add a layouts section to the JSON to customize the appearance of a classic designer dashboard on mobile devices.

Note: For more information about layouts for Wave designer dashboards, see Generate Unique Dashboard Layouts for Different
Devices.

There are two types of classic designer dashboard layouts for mobile devices:

Absolute (default)
If no layouts section is defined in your dashboard’s JSON, then the dashboard’s layout is absolute.

The absolute layout is optimized for display in a Web browser on a desktop or laptop computer.

Mobile
If a layouts section is present in your dashboard’s JSON, then the dashboard’s layout is mobile.

The mobile layout lets you optimize the position, order, and size of the widgets in your dashboard for display on mobile devices.
This layout is made up of rows, columns, cells, and pages. Each cell in the grid can contain zero or more widgets. The number of
rows, columns, and cells in your mobile layout depend on the number of widgets and the number of pages.

A dashboard with an absolute layout looks great in a Web browser:

The same dashboard with an absolute layout might not render well on a smart phone:

34

layouts (for Classic Designer Dashboards Only)Dashboard JSON Properties

https://help.salesforce.com/apex/HTViewHelpDoc?id=%20bi_dashboard_layout_select_flex.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=%20bi_dashboard_layout_select_flex.htm&language=en_US

By using a mobile layout with two pages, the dashboard renders perfectly on a smart phone:

Use a Mobile Layout for Your Dashboard

Use a mobile layout to customize your dashboard’s appearance on mobile devices.

Understanding Column, Row, and Cell Sizing in Mobile Layouts

Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

35

layouts (for Classic Designer Dashboards Only)Dashboard JSON Properties

Layouts Specification

The layouts section is used to customize how dashboards display on mobile devices.

layouts Properties

The layouts key specifies the position, order, and size of each widget in the mobile layout. This layout is made up of rows,
columns, cells, and pages. Each cell in the grid can contain zero or more widgets. The number of rows, columns, and cells in your
mobile layout depend on the number of widgets and the number of pages

Use a Mobile Layout for Your Dashboard
Use a mobile layout to customize your dashboard’s appearance on mobile devices.

In a dashboard’s JSON file, the layouts section is a child of the state section and a sibling of the widgets and steps sections.

1. From the open dashboard, press CTRL+E for PC or CMD+E for Mac. This opens expert editor mode. For more information, see View
or Modify a Dashboard JSON File.

2. Add a layouts section to your dashboard’s JSON.

For example, this layouts section defines a mobile layout with two pages, two rows of widgets on each page. The first page has
1 widget on each row. The second page has two widgets on the first row, and one widget on the second row.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2",
"chart_1"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1"

]
}

],
"version": 1

}

3. Optionally, customize the layout of your dashboard by setting attributes for each widget and row.

For example, the layouts from step two can be updated to include widget and row attributes. The first row on the first page has
a row height of 300 pixels. The chart widget on the second page has a width of 2 columns.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row:{height=300}",
"chart_1"

]

36

Use a Mobile Layout for Your DashboardDashboard JSON Properties

},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"

]
}

],
"version": 1

}

4. Optionally, set device-specific and orientation-specific layouts for your dashboard. For available device and orientation options, see
Layouts Options in the Layouts Specification guide.

For example, the layouts from step three can be updated to use only one page when viewed on an iPad in landscape mode:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row:{height=300}",
"chart_1"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"

]
}

],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"dimfilter_1 | dimfilter_3 | buttongroup_2",
"chart_1 {colspan=3}"

]
}

],
"version": 1

}

5. Click Switch to Runtime, and then save your updated dashboard.

37

Use a Mobile Layout for Your DashboardDashboard JSON Properties

6. Test your dashboard’s new mobile layout by viewing the dashboard on a mobile device.

SEE ALSO:

layouts Properties

Layouts Specification

Understanding Column, Row, and Cell Sizing in Mobile Layouts
Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

How Column Number and Size Are Set
The number of columns in your mobile layout is equivalent to the number of widgets in your rows. If there are three widgets in each
row, then the dashboard has three columns. If your mobile layout has two rows with four widgets in row one and five widgets in row
two, then the dashboard has five columns. If the colspan attribute specifies a number of columns greater than the number of widgets
in any row, then the dashboard adds columns to accommodate the colspan attribute.

For example, a dashboard with this layouts section has three columns on the first page and two columns on the second page:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2",
"chart_1 {colspan=3}"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1"

]
}

],
"version": 1

}

Remember these tips when determining how many columns are in your mobile layout:

• All columns have the same width. If your dashboard has four columns, then each column is half the width of a dashboard with two
columns.

• Each page of a dashboard independently determines how many columns appear. For example, a dashboard can have three columns
on page one, and four columns and page two.

• Every dashboard has at least one column.

• There is no limit to the number of columns that a dashboard can have. If you add too many columns, then column width could
become impracticably small. Remember to test your layout for usability!

38

Understanding Column, Row, and Cell Sizing in Mobile
Layouts

Dashboard JSON Properties

How Row Number and Height Are Set
For each row, here’s how height is calculated:

• If a row height is set using the height attribute, then the row’s height is equal to the specified value.

• If one or more widgets in the row has a preferred height, then the row’s height is equal to that of whichever preferred height is
tallest.

• If there is no height attribute and none of the row’s widgets have a preferred height, then the row’s height dynamically grows
to occupy the available space. If multiple rows grow dynamically, then their heights are equal to one another. For example, if there
are 200 pixels of available space, and two rows with dynamically set heights, then each row has a height of 100 pixels.

How Widgets Are Sized
Some widgets have absolute sizes, and some scale dynamically.

Height Scaling
Behavior

Width Scaling
Behavior

Has a Fixed Height?Has a Fixed Width?Widget

Don’t scaleDon’t scaleYesYesLink

Scale to fit textScale to fit textIf one line long, yes.

If more than one line
long, no.

NoText

Don’t scaleScaleYesNoPillbox

ScaleScaleNoNoBox

ScaleScaleNoNoChart

Don’t scaleScaleYesNoList selector

Don’t scaleScaleYesNoRange selector

Don’t scaleScaleYesNoNumber

Layouts Specification
The layouts section is used to customize how dashboards display on mobile devices.

In a dashboard’s JSON file, the layouts section is a child of the state section and a sibling of the widgets and steps sections.
Here is an example of a typical layouts section:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"widget_name_1",
"widget_name_2"

]
},

39

Layouts SpecificationDashboard JSON Properties

{
"rows": [
"widget_name_3 | widget_name_4",
"widget_name_2 {attribute=2}"

]
}

],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"widget_name_1 | widget_name_3 | widget_name_4 | row: {attribute=300}",
"widget_name_2 {widget_name=3}"

]
}

],
"version": 1

}

In the prior example, widget_name refers to a specific widget named in the widgets section of the JSON file. Attribute
refers to one of the attributes listed in the layouts Properties. The pipe character (|) is the delimiter for cells. A cell can contain multiple
widgets separated by a comma (,). Rows are delimited by a comma (,) outside the quoted string (each quoted string is a single row).

Simple Layouts Section
Here’s a simple layouts section that has four widgets on four rows in a single column on a single page:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_1",
"dimfilter_1",
"dimfilter_2",
"chart_1"

]
}

]
"version": 1

}

Complex Layouts Section
A more complex layouts section can be used to set device-specific and orientation-specific display rules. The following layouts
section lays out the dashboard’s widgets on two pages. The first page’s first row has a height of 300 pixels. The second page has two
rows and two columns. One of the cells in the first row contains two widgets. One of the box widgets has three attributes set. The chart

40

Layouts SpecificationDashboard JSON Properties

widget spans two columns. If the dashboard is viewed on an iPad in landscape mode, then only one page with two rows is shown. The
first row has three widgets and the second row has one widget that spans three columns.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row: {height=300}",
"chart_1"

]
},
{
"rows": [
"dimfilter_1, box_1 {colspan=2, rowspan=2, zIndex=-1, vpad=5, hpad=5} |

dimfilter_2”,"chart_1 {colspan=2}"
]

}
],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"dimfilter_1, box_1 {colspan=2, rowspan=3, zIndex=-1, vpad=5, hpad=5} | dimfilter_2

|
buttongroup_2",

"chart_1 {colspan=3}"
]

}
],
"version": 1

}

Layouts Options
The previous example shows a layout specifically for an iPad in landscape mode (“device:ipad, orientation:landscape”).
Layout device and orientation choices are as follows:

• “device”:“default”: For layouts not targeted to any specific device or orientation.

• “device”:“ipad”, “orientation”:“portrait”: For Apple iPad in portrait mode.

• “device”:“ipad, “orientation”:“landscape”: For Apple iPad in landscape mode.

• “device”:“ipad”: For Apple iPad in either portrait or landscape mode.

• “device”:“iphone”: For Apple iPhone; portrait mode is implied.

• “device”:“external”: For displaying on an external device, for example if device is connected via HDMI cable to a projector
or display. To use external layout, select Presentation Mode in Settings.

• “device”:“applewatch”: For Apple Watch. Supports only a single, scrolling page.

• “orientation”:“portrait”: For either iPhone or iPad in portrait mode.

41

Layouts SpecificationDashboard JSON Properties

• “orientation”:“landscape”: For iPad in landscape mode.

Note: If the app is viewed on Apple Watch and “device”:”applewatch” layout is not present, the app first tries to
reformat the first page of the “device”:”iphone” layout. If “device”:”iphone” is not present, it then attempts to
use the first page of the “device”:“default” layout.

Note: If the app is viewed on an external device and “device”:”external” layout is not present, the app first tries to use
the first page of the “device”:”ipad” “orientation”:”landscape”. If “device”:”ipad”
“orientation”:”landscape” is not present, it then attempts to use the first page of the “device”:“default”
layout.

Layout Autoformatting
If layouts is not specified, Wave uses autoformatting to present the dashboard, which takes a best guess about the appropriate
layout to use. Note the following about layout autoformatting:

• With AppleWatch, autoformat uses the first page of the default layout and converts it to a single column.

• With an external device, autoformat supports only a single, unscrollable page and attempts to fit all the dashboard contents on the
external display.

• Autoformat supports a limited number of columns on each device, as shown in the table.

Maximum columns supported by autoformattingDevice

OneApple Watch

TwoApple iPhone

FourApple iPad

Autoformatting is enabled by default. To disable autoformatting, for example for a carefully designed dashboard that cannot use a mobile
layout, add an empty pages array under the layouts array, which looks like this:

"layouts": [
{
"pages": [
{
}

]
}

SEE ALSO:

Use a Mobile Layout for Your Dashboard

layouts Properties

layouts Properties
The layouts key specifies the position, order, and size of each widget in the mobile layout. This layout is made up of rows, columns,
cells, and pages. Each cell in the grid can contain zero or more widgets. The number of rows, columns, and cells in your mobile layout
depend on the number of widgets and the number of pages

42

layouts PropertiesDashboard JSON Properties

Widget Attributes
These attributes can be set on widgets. Each widget can have zero or more attributes.

DetailsProperty Name

Type
Integer

colspan

Available for These Widgets

• All widgets

Description
The number of columns that a widget spans—the width of the widget. If the dashboard doesn’t have
enough columns to accommodate the specified width, then columns are added to the dashboard.

Example
In this example, the widget named “chart_1” spans 3 columns:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 | dimfilter_2 | dimfilter_3",
"chart_1 {colspan=3}"

]
}

]
"version": 1

}

Type
Integer

rowspan

Available for These Widgets

• All widgets

Description
The number of rows that a widget spans—the height of the widget. If the dashboard doesn’t have
enough rows to accomodate the specified height, then rows are added.

Example
In this example, the widget named “dimfilter1_1” spans 2 rows:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 {rowspan=2} | dimfilter_2",
"chart_1"

]

43

layouts PropertiesDashboard JSON Properties

DetailsProperty Name

}
]
"version": 1

}

Type
Integer

zIndex

Available for These Widgets

• All widgets

Description
The position of a widget relative to other widgets in the dashboard. zIndex specifies whether a widget
is in front of or behind another widget. A smaller zIndex means that a widget appears further behind
other widgets with larger zIndex values.

The default value of zIndex is 0.

Example
In this example, the widget named “box_1” appears behind the widget named “number_1”:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"box_1 {zIndex=1}, number_1 {zIndex=2} | chart_1"

]
}

]
"version": 1

}

Type
Integer

vpad

Available for These Widgets

• All widgets

Description
The padding added to the top and bottom sides of the widget’s cell in pixels. If vpad equals 10, then
10 pixels are added to the top of the cell and 10 pixels are added to the bottom.

The default value of vpad is 0.

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": [
{
"device": "default",

44

layouts PropertiesDashboard JSON Properties

DetailsProperty Name

"pages": [
{
"rows": [
"dimfilter_1 {vpad=5}"

]
}

]
"version": 1

}

Type
Integer

hpad

Available for These Widgets

• All widgets

Description
The padding added to the left and right sides of the widget’s cell in pixels. If hpad equals 10, then 10
pixels are added to the left side of the cell and 10 pixels are added to the right side. A negative value can
be assigned to

The default value of hpad is 0.

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 {hpad=5}"

]
}

]
"version": 1

}

Type
Integer

vAxisWidth

Available for These Widgets

• chart

Description
The size of a chart widget’s x-axis in pixels. Use vAxisWidth to align multiple chart widgets.

45

layouts PropertiesDashboard JSON Properties

DetailsProperty Name

Example
In this example, the widget named “chart_1” has an x-axis that is 250 pixels wide:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {vAxisWidth=250}"

]
}

]
"version": 1

}

Type
Integer

hAxisHeight

Available for These Widgets

• chart

Description
The size of a chart widget’s y-axis in pixels. Use hAxisHeight to align multiple chart widgets.

Example
In this example, the widget named “chart_1” has a y-axis that is 250 pixels tall:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {hAxisHeight=250}"

]
}

]
"version": 1

}

Row Attributes
These attributes can be set on rows.

46

layouts PropertiesDashboard JSON Properties

DetailsProperty Name

Description
If height is set to a number, then height is the height of a row in pixels.

If height is set to preferred, then the row’s height is equal to the largest height

height

Example
In this example, the first row’s height is 300 pixels. The second row’s height is equal to the height of its
tallest widget:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {colspan=3} | row:{height=300}",
"dimfilter_1 | buttongroup_1 | number_1 |

row:{height=preferred}"
]

}
]
"version": 1

}

Override Widget Attributes
These attributes can be passed to a widget to override the default behavior of the widget. Note that all color properties take a string,
such as "#022B54".

AttributesWidget Type

Any widget • compact

• placeholder

ChartWidget • legend

• miniBars

• fit

• normalize

• multiMetrics

• splitAxis

• backgroundColor

• measureAxis (true/false)

• categoryLabels (true/false)

• textColor

• limitBarThickness (true/false)

47

layouts PropertiesDashboard JSON Properties

AttributesWidget Type

BoxWidget • backgroundColor

• borderColor

• imageUrl

• stretch

LinkWidget • destinationType

• destination

• visualizationType

• includeState

ListSelectorWidget • instant

• expanded

TextWidget • title or text

• textColor

• textAlignment

• fontSize

PillBoxWidget • backgroundColor

• textColor

• borderColor

• selectedColor

The following example shows passing attributes to change the background color, text color, and visibility of the axes and labels on
chart_1.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {backgroundColor=\"#022B54\", measureAxis=false, categoryLabels=false,

textColor=\"#FFFFFF\"}"
]

}
],
"version": 1

48

layouts PropertiesDashboard JSON Properties

}
]

SEE ALSO:

Use a Mobile Layout for Your Dashboard

Layouts Specification

steps

The steps section defines all steps created in and clipped to the dashboard. The properties vary based on whether the dashboard is
built using the Wave dashboard designer or classic designer.

steps Properties for Wave Designer Dashboards

The steps key defines all steps available in a Wave designer dashboard. It contains a separate node for each step. Each step node
has properties that define the query or list of static values. It also contains properties that control the behavior of the step, like whether
to facet the step. The properties and JSON syntax vary based on the step type and whether the step is in compact form or SAQL
form.

steps Properties for Classic Designer Dashboards

The steps key defines all steps available in a classic designer dashboard. It contains a separate node for each step. Each step node
has properties that define the query or list of static values. It also contains properties that control the behavior of the step, like whether
to facet the step.

steps Properties for Wave Designer Dashboards
The steps key defines all steps available in a Wave designer dashboard. It contains a separate node for each step. Each step node has
properties that define the query or list of static values. It also contains properties that control the behavior of the step, like whether to
facet the step. The properties and JSON syntax vary based on the step type and whether the step is in compact form or SAQL form.

steps Properties for Compact Form and SAQL Form

The properties and JSON syntax in the query node of the step vary based on whether the step is in compact form or SAQL form.

aggregateflex Step Type Properties

Use the aggregateflex step type to query a Wave dataset. It’s the most common step type used to power widgets.

grain Step Type Properties

Use the grain step type for a values table. Values tables have no groupings, just a list of dataset fields to display as columns in
the table.

saql Step Type Properties

Use the saql step type for special cases when querying a Wave dataset. With this step type, you can write a custom SAQL query
to create derived fields in a values table. You can specify dimensions without groupings. Also, you can bind the dataset name or
entire query. For example, you can bind this step type to a static step that provides different SAQL queries or datasets based on a
selection.

49

stepsDashboard JSON Properties

soql Step Type Properties

Use to directly query Salesforce objects—both standard and custom—to get Salesforce data that’s not available in datasets. You
can also query external objects created with an OData adapter for Salesforce Connect. To view the results in the dashboard, the user
viewing the dashboard must have access to the object and fields queried by the soql step.

staticflex Step Type Properties

Use the staticflex step type to manually define your own set of data. For example, you can use this step to populate a list of
static values in a toggle or list widget. It can also be used to provide values to a binding. For example, it can provide possible filters,
groups, measures, sort order, and limits.

visualizationParameters Properties

The visualizationParameters key contains chart properties defined for the step. When you associate the step with a
widget, the widget properties override these settings.

filters Properties

Use the filters property to add a filter to a step query. Although you can create filters for query steps in the user interface, you
have to manually define filters for static steps in the dashboard JSON.

steps Properties for Compact Form and SAQL Form
The properties and JSON syntax in the query node of the step vary based on whether the step is in compact form or SAQL form.

Example: Compact-Form Step for a Wave Designer Dashboard

"steps": {
"Product_StageName_1": {

"type": "aggregateflex",
"visualizationParameters": {

"visualizationType": "hbar",
"options": {}

},
"query": {

"measures": [
[

"sum",
"Amount"

],
[

"sum",
"quantity"

]
],
"groups": [

"Product",
"StageName"

],
"order": [

[-1, { "ascending": false }]
],
"aggregateFilters": [[

[
"sum",
"Amount"

],

50

steps Properties for Wave Designer DashboardsDashboard JSON Properties

[
[

14550720,
58807698

]
],
">=<="

]]
},
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"datasets": [{

"name": "Flexy_Sales",
"url": "/services/data/v38.0/wave/datasets/0FbB00000000q5gKAA",
"id": "0FbB00000000q5gKAA"

}]
}

}

Example: SAQL-Form Step for a Wave Designer Dashboard

When the step is in SAQL form, notice how each group and measure are defined in the groups and measures properties,
respectively, and also in the pigql property. Other parts of the query—like filters, limits, and order—only need to be defined
once in the pigql property. You specify the compact form elements of "groups" and "measures" so that the associated
chart widget can render the correct projections.

In the sample step below, notice that the 'sum_Amount' and 'sum_quantity' projections in the pigql property are
referenced in "measures" as [["count", "*", "sum_Amount"], ["count", "*", "sum_quantity"
]]. Measure projections in the pigql property always include the aggregation, underscore (_), and the name of the measure
('sum_Amount') so that they can be referenced in the compact form, as shown here. "measures": [["count",
"*", "sum_Amount"], ["count", "*", "sum_quantity"]].

"steps": {
"Product_StageName_2": {

"type": "aggregateflex",
"visualizationParameters": {

"options": {}
},
"query": {

"pigql": "q = load \"Flexy_Sales\";\n
q = group q by ('Product', 'StageName');\n
q = foreach q generate 'Product' as 'Product',

'StageName' as 'StageName',
sum('Amount') as 'sum_Amount',
sum('quantity') as 'sum_quantity';\n

q = filter q by 'sum_Amount' >= 14550720 && 'sum_Amount' <=
58807698;\n

q = order q by 'sum_Amount' desc;\nq = limit q 10000;",
"measures": [

[
"count",
"*",
"sum_Amount"

51

steps Properties for Wave Designer DashboardsDashboard JSON Properties

],
[

"count",
"*",
"sum_quantity"

]
],
"groups": [

"Product",
"StageName"

]
},
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"datasets": [{

"name": "Flexy_Sales",
"url": "/services/data/v38.0/wave/datasets/0FbB00000000q5gKAA",
"id": "0FbB00000000q5gKAA"

}]
}

}

aggregateflex Step Type Properties
Use the aggregateflex step type to query a Wave dataset. It’s the most common step type used to power widgets.

DescriptionField Name

An array of datasets used by this step. Specify the alias of each dataset. If the pigql attribute references
a dataset that’s not specified here, the dashboard doesn’t render.

datasets

Enables this step to facet and be faceted by other steps. Faceting is when a selection in a widget filters
other steps in the dashboard.

isFacet

To enable SAQL-form queries to receive facets from another step, also set the autoFilter option
to true in the dashboard JSON. A SAQL-form step without the autoFilter option still emits
facets. By default, steps from the same dataset are faceted to each other. To facet steps from different
datasets, connect the data sources.

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Indicates whether the filter that’s specified in the query is used as a global filter (true) or not (false).
Default is false. You can only apply this property on steps that are connected to a global filter
widget—all other steps ignore this property.

A global filter widget filters other steps in the dashboard that have useGlobal set to true and
reference the same dataset.

isGlobal

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Step label, which is primarily used for display in the designer user interface.label

52

steps Properties for Wave Designer DashboardsDashboard JSON Properties

DescriptionField Name

The query used to retrieve results from a dataset. It must contain at least one grouping and can be in
SAQL or compact form. Use a query in SAQL form to customize the query in a way that can’t be done
using the compact form.

query

For compact form, the query can contain the following properties.

filters
The filters to apply to the data. For more information, see filters Properties on page 65.

groups
The dimension to group by.

limit
The maximum number of results that the step can return. When you create an aggregateflex
step, by default, Wave sets limit to 2,000. To return more results, set the limit attribute
accordingly. The higher you increase the limit, the longer the query might take. When a limit isn’t
set, Wave returns up to 10,000 results.

Note: The returned results aren’t automatically ordered—use this statement only with
ordered data.

measures
The measures returned by the query.

order

Sort order (ascending or descending) of the first specified measure. To order the results in ascending
order, set ascending to true. To order the results in descending order, set ascending to
false. If you don’t want to impose a specific order, specify empty brackets this way: "order":
[].

Compact-form Query Example

"query": {
"filters": [
[
"Account.Industry",
[
"Agriculture",
"Apparel",
"Banking",
"Biotechnology",
"Consulting",
"Education",
"Electronics",
"Energy",
"Engineering",
"Finance",
"Healthcare",
"Insurance",
"Manufacturing",
"Media",
"Retail",
"Technology",
"Telecommunications",

53

steps Properties for Wave Designer DashboardsDashboard JSON Properties

DescriptionField Name

"Transportation",
"Utilities"

],
"in"

]
],
"groups": ["Account.Industry"],
"measures": [
[
"avg",
"Amount"

]
],
"order": [
[
-1,
{ "ascending": false }

]
]

}

For SAQL form, the query can contain the following properties

pigql
Specify the SAQL query to retrieve data from a dataset. When you specify a SAQL query, you must
specify the filters, limits, and ordering inside the pigql attribute—Wave ignores the following
attributes if they are set under the query attribute: filters, limit, and order.

measures
Defines the fields included as measures. When using a SAQL-form query, you must include each
measure in this parameter and in the pigql parameter. You can change the UI label of a measure
by setting the display option.

"count", "*", null, {
"display": "% of total flights"

}

groups
Defines the dimension fields to group by. When using a SAQL-form query, you must specify the
group-by dimension in this parameter and in the group property in the pigql parameter.

SAQL-form Query Example

"query": {
"pigql": "q = load \"ServiceOpportunity3\";\n

q = filter q by 'Account.Industry' in
[\"Agriculture\", \"Apparel\", \"Banking\",

\"Biotechnology\",
\"Consulting\", \"Education\", \"Electronics\",

\"Energy\",
\"Engineering\", \"Finance\", \"Healthcare\",

\"Insurance\",
\"Manufacturing\", \"Media\", \"Retail\",

\"Technology\",

54

steps Properties for Wave Designer DashboardsDashboard JSON Properties

DescriptionField Name

\"Telecommunications\", \"Transportation\",
\"Utilities\"];\n

q = group q by 'Account.Industry';\n
q = foreach q generate 'Account.Industry' as

'Account.Industry',
count() as 'count';\n

q = order q by 'count' desc;\n
q = limit q 1000;",

"measures": [
[
"count",
"*",
"count"

]
],
"groups": ["Account.Industry"],
"measuresMap": {}

}

For more information about SAQL queries, see the Wave Analytics SAQL Reference

Determines the selection interaction. The options for charts are: none, single, and
singlerequired. The options for list, range, and toggle selectors are: single,
singlerequired, multi, and multirequired.

selectMode

Note: selectMode doesn’t apply to number, values table, compare table, date, and global
filter widgets.

The initial selections that are applied to the step when the dashboard first opens.start

Step type. Set to aggregateflex. This step type applies to Wave designer dashboards only.type

Note: If you bind a step property for an aggregateflex step, you must use the bindings
syntax for Wave designer. For more information about bindings, see the Wave Analytics Bindings
Developer Guide.

Indicates whether to apply global filters to this step (true) or not (false). If the step is in SAQL form,
you must also set autoFilter to true to apply the global filters. By default, the global filter widget
filters compact-form steps only.

useGlobal

Visualization details about the step. For more information, see visualizationParameters Properties.visualizationParameters

Example: aggregateflex Step for a Wave Designer Dashboard

"Account_Industry_1": {
"label": "Account Industry",
"type": "aggregateflex",
"visualizationParameters": {
"visualizationType": "hbar",
"options": {}

55

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_saql.pdf
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf

},
"query": {
"filters": [
[
"Account.Industry",
[
"Agriculture",
"Apparel",
"Banking",
"Biotechnology",
"Consulting",
"Education",
"Electronics",
"Energy",
"Engineering",
"Finance",
"Healthcare",
"Insurance",
"Manufacturing",
"Media",
"Retail",
"Technology",
"Telecommunications",
"Transportation",
"Utilities"

],
"in"

]
],
"groups": ["Account.Industry"],
"measures": [
[
"avg",
"Amount"

]
],
"order": [
[
-1,
{ "ascending": false }

]
]

},
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"selectMode": "single"
"datasets": [
{
"name": "ServiceOpportunity3",
"url": "/services/data/v39.0/wave/datasets/0FbR0000000012uKAA",
"id": "0FbR0000000012uKAA"

}

56

steps Properties for Wave Designer DashboardsDashboard JSON Properties

]
}

grain Step Type Properties
Use the grain step type for a values table. Values tables have no groupings, just a list of dataset fields to display as columns in the
table.

DescriptionField Name

An array of datasets used by this step. Specify the alias of each dataset. If the pigql attribute references
a dataset that’s not specified here, the dashboard doesn’t render.

datasets

Note: A grain step can only have one dataset.

Enables this step to facet and be faceted by other steps. Faceting is when a selection in a widget filters
other steps in the dashboard.

isFacet

To enable SAQL-form queries to receive facets from another step, also set the autoFilter option
to true in the dashboard JSON. A SAQL-form step without the autoFilter option still emits
facets. By default, steps from the same dataset are faceted to each other. To facet steps from different
datasets, connect the data sources.

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Indicates whether the filter that’s specified in the query is used as a global filter (true) or not (false).
Default is false. You can only apply this property on steps that are connected to a global filter
widget—all other steps ignore this property.

A global filter widget filters other steps in the dashboard that have useGlobal set to true and
reference the same dataset.

isGlobal

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Step label, which is primarily used for display in the designer user interface.label

The query used to retrieve results from a dataset. The query can be in compact form only and can
contain the following properties:

query

filters
The filter conditions to apply to the data.

values
List of dataset fields to show as table columns.

limit
The maximum number of results that the step can return. When you create a grain step, by
default, Wave sets limit to 100. To return more results, set the limit attribute accordingly.
The higher you increase the limit, the longer the query might take. When a limit isn’t set, Wave
returns up to 10,000 results.

"steps": {
"lens_1": {

57

steps Properties for Wave Designer DashboardsDashboard JSON Properties

DescriptionField Name

"type": "grain",
"visualizationParameters": {

"visualizationType": "valuestable",
"options": {}

},
"query": {

"values": [
"Case.IsEscalated",
"AccountId",
"StageName",
"ForecastCategory",
"IsClosed",
"Amount"

],
"limit": 500

},
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"label": "",
"datasets": [

{
"name": "ServiceOpportunity16",
"url":

"/services/data/v39.0/wave/datasets/0FbB00000000kOSKAY",
"id": "0FbB00000000kOSKAY"

}
]

}
},

For more information SAQL queries, see the Wave Analytics SAQL Reference.

Step type. Set to grain.type

Indicates whether to apply global filters to this step (true) or not (false). If the step is in SAQL form,
you must also set autoFilter to true to apply the global filters. By default, the global filter widget
filters compact-form steps only.

useGlobal

Visualization details about the step. For more information, see visualizationParameters Properties.visualizationParameters

Example: grain Step for a Wave Designer Dashboard

"lens_1": {
"type": "grain",
"visualizationParameters": {
"visualizationType": "valuestable",
"options": {
"totals": true

}

58

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_saql.pdf

},
"query": {
"filters": [
[
"Amount",
[[
1000000,
7780844

]],
">=<="
]

],
"values": [
"AccountId",
"ForecastCategory",
"CloseDate",
"Amount",
"Account.Name",
"StageName"

]
},
"isFacet": true,
"useGlobal": true,
"isGlobal": false,
"label": "",
"datasets": [
{
"name": "ServiceOpportunity3",
"url": "/services/data/v39.0/wave/datasets/0FbR0000000012uKAA",
"id": "0FbR0000000012uKAA"

}
]

}

saql Step Type Properties
Use the saql step type for special cases when querying a Wave dataset. With this step type, you can write a custom SAQL query to
create derived fields in a values table. You can specify dimensions without groupings. Also, you can bind the dataset name or entire
query. For example, you can bind this step type to a static step that provides different SAQL queries or datasets based on a selection.

DescriptionField Name

Step type. Set to saql. This step type applies to Wave designer dashboards only.type

Step label, which is primarily used for display in the designer user interface.label

The SAQL query used to retrieve results. When you create a saql-type step, by default, no limit
is set in the query. When a limit isn’t set, a step can return up to 10,000 results. To return more results,

query

set the limit attribute accordingly. The higher you increase the limit, the longer the query might
take. For more information about SAQL queries, see Wave Analytics SAQL Reference.

You can bind a saql step type to dynamically set the dataset used in the query or change the entire
query based on a selection in another step. For example, you can create a toggle based on a static step

59

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://developer.salesforce.com/docs/atlas.en-us.204.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_intro.htm

DescriptionField Name

that allows the dashboard viewer to select a query. Each toggle option contains a valid SAQL query.
Each query can be based on different datasets. (See the example below.)

Enables this step to facet and be faceted by other steps. Faceting is when a selection in a widget filters
other steps in the dashboard.

isFacet

Indicates whether to apply global filters to this step (true) or not (false). If the step is in SAQL form,
you must also set autoFilter to true to apply the global filters. By default, the global filter widget
filters compact-form steps only.

useGlobal

Determines the selection interaction. The options for charts are: none, single, and
singlerequired. The options for list, range, and toggle selectors are: single,
singlerequired, multi, and multirequired.

selectMode

Note: selectMode doesn’t apply to number, values table, compare table, date, and global
filter widgets.

The initial selections that are applied to the step when the dashboard first opens.start

Note: A widget with a saql-type step can return up to 10,000 results, by default. If Wave
doesn’t find the initial value in those results, it ignores this setting.

Example: saql Step for a Wave Designer Dashboard

"Oppty2ProdSAQL": {
"type": "saql",
"label": "Oppty2ProdSAQL",
"query": "q = load \"Goppty\";\nq = group q by id;\nq = foreach q generate id as

'id', first('Account') as 'Account',s sum(Oppty_Amount) as 'sum_Oppty_Amount';",
"isFacet": true,
"useGlobal": true,
"selectMode": "single"

}

To show the Account dimension, which isn’t a grouping, the example uses the first() function. The function retrieves the
first account for each grouping, where the grouping is based on the opportunity ID. Because there’s a unique id for each record,
there’s only one record in each grouping. As a result, the function always retrieves the right account for each opportunity. If there
were duplicate records for an ID, the query might assign the wrong account to all subsequent opportunities after the first record
in the group.

Example: saql Step with a Bound Query for a Wave Designer Dashboard

"query": "{{cell(static_1.selection, 0, \"query\").asString()"

The static_1 step looks like this:

values: [
{query: "q = load \"opp\"; ..."}
{query: "q = load \"account\"; ..."}
]

60

steps Properties for Wave Designer DashboardsDashboard JSON Properties

Tip: Every dataset referenced in a binding of a saql step must be referenced by another step in the dashboard. If not,
Wave removes the dataset from the datasets attribute in the dashboard JSON. As a result, widgets based on the saql
step display an error because it can’t find the dataset.

soql Step Type Properties
Use to directly query Salesforce objects—both standard and custom—to get Salesforce data that’s not available in datasets. You can
also query external objects created with an OData adapter for Salesforce Connect. To view the results in the dashboard, the user viewing
the dashboard must have access to the object and fields queried by the soql step.

For more information about using Salesforce Connect to access external data, see the Salesforce Connect online help.

DescriptionField Name

Step type. Set to soql. This step type applies to Wave designer dashboards only.type

Step label, which is primarily used for display in the designer user interface.label

The SOQL query used to retrieve results from a Salesforce object. Because Salesforce—not
Wave—executes the query, the maximum number of returned results depends on the SOQL query
limit. For more information about SOQL queries, see Force.com SOQL and SOSL Reference.

query

Note: Every field listed in your SOQL query must be listed in one of the metadata properties:
strings, numbers, or groups.

Flags the specified fields as non-grouping dimensions. For example, you can flag a field as a dimension
for a values table in which no groupings are allowed.

strings

Flags the specified fields as measures.numbers

Flags the specified fields as groupings. For example, you can flag a field as a grouping for a pivot table
or chart.

groups

Note: The isFacet and useGlobal step properties don’t apply to this step type. You can use a binding to filter other steps
based on a selection in a soql step.

Example: soql Step for a Wave Designer Dashboard

"soql": {
"type": "soql",
"query": "SELECT Name from ACCOUNT",
"strings": ["Name"],
"numbers": [],
"groups": [],
"selectMode": "single"

}

61

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://help.salesforce.com/articleView?id=platform_connect_about.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_sosl_intro.htm

staticflex Step Type Properties
Use the staticflex step type to manually define your own set of data. For example, you can use this step to populate a list of static
values in a toggle or list widget. It can also be used to provide values to a binding. For example, it can provide possible filters, groups,
measures, sort order, and limits.

DescriptionField Name

Step type. Set to staticflex. This step type applies to Wave designer dashboards only.type

Step label, which is primarily used for display in the designer user interface.label

Values for the static step. You can have multiple fields for each static value, where each field provides
different information about the value, like a label, measurement, or range. When the static step is

values

associated with a widget, the widget uses the first specified field as the display label. You can use other
fields to specify values or ranges that you can use to facet or bind steps. For more information about
binding a static step to another step, see the Wave Analytics Bindings Developer Guide. For more
information about faceting a static step with another data source, see Configure Cross-Dataset Faceting
with Connected Data Sources.

If you use the static step wizard to create the step, the step contains the following default fields:
display and value, as shown here. You can change these arbitrary field names and add more
fields.

"step_static_date_with_start": {
"type": "staticflex",
"values": [

{
"display": "-6 years",
"value": [[["year",-6],["year",0]]]

},
{

"display": "-5 years",
"value": [[["year",-5],["year",0]]]

},
{

"display": "-4 years",
"value": [[["year",-4],["year",0]]]

}
],
"isFacet": false,
"useGlobal": false,
"isGlobal": false,
"selectMode": "single",
"label": "Static Step - Time Periods",
"start": [[[["year",-5],["year",0]]]]

}

Note that the values in each field must have the same datatype, like numbers, strings, or arrays. For
instance, if one row has "value": "123", another row can’t have "value": [123].

Enables this step to facet other steps—it can’t be faceted. Faceting is when a selection in a widget
filters other steps in the dashboard. To enable faceting, set this property to true and connect this
step with another data source.

isFacet

62

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf
https://help.salesforce.com/articleView?id=bi_dashboard_data_source_connections.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_dashboard_data_source_connections.htm&language=en_US

DescriptionField Name

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Not applicable. You can only apply this property on steps that are connected to a global filter widget—all
other steps ignore this property.

isGlobal

Indicates whether to apply global filters to this step (true) or not (false).useGlobal

Determines the selection interaction. The options for charts are: none, single, and
singlerequired. The options for list, range, and toggle selectors are: single,
singlerequired, multi, and multirequired.

selectMode

Note: selectMode doesn’t apply to number, values table, compare table, date, and global
filter widgets.

The initial selections that are applied to the step when the dashboard first opens.start

Example: staticflex Step for a Wave Designer Dashboard

"static_1": {
"type": "staticflex",
"values": [

{
"display": "Open",
"value": "false",
"won": "false"

},
{

"display": "Won",
"value": "true",
"won": "true"

},
{

"display": "Lost",
"value": "true",
"won": "false"

}
],
"isFacet": false,
"isGlobal": false,
"selectMode": "single",
"start": {

"display": [
"Open",
"Won"

]
},
"useGlobal": false

}

63

steps Properties for Wave Designer DashboardsDashboard JSON Properties

visualizationParameters Properties
The visualizationParameters key contains chart properties defined for the step. When you associate the step with a widget,
the widget properties override these settings.

DescriptionField Name

Specifies chart properties for steps clipped to the designer. Wave overrides these options when they
are defined in the widget parameters. For more information about chart properties, see Visualizing
Data With Charts.

options

Specifies the chart type. You can override the chart type at the widget level.visualizationType

Valid values for visualizationType are:

• calheatmap— calendar heat map

• choropleth — choropleth (map)

• combo — lines and bars to show multiple metrics

• comparisontable — comparison table in the classic designer only

• flatgauge — flat gauge in the Wave dashboard designer only

• funnel — funnel

• hbar — horizontal bar

• hdot* — horizontal dot plot

• heatmap— heat map

• matrix— matrix

• parallelcoords* — parallel coordinates

• pie — donut

• pivottable* — pivot table

• polargauge — polar gauge in the Wave dashboard designer only

• pyramid — pyramid in the Wave dashboard designer only

• rating — rating in the Wave dashboard designer only

• scatter — scatter plot

• stackhbar — stacked horizontal bar

• stackpyramid — stacked pyramid in the Wave dashboard designer only

• stackvbar — stacked vertical bar

• stackwaterfall — stacked waterfall

• time — timeline

• valuestable — raw data table in the classic designer only

• vbar — vertical bar

• vdot* — vertical dot plot

• waterfall — waterfall

Note: The Wave dashboard designer doesn’t support chart types with an asterisk (*). If you
specify an unsupported type, the designer replaces it with hbar in the dashboard.

64

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://help.salesforce.com/articleView?id=bi_visualize.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_visualize.htm&language=en_US

filters Properties
Use the filters property to add a filter to a step query. Although you can create filters for query steps in the user interface, you have
to manually define filters for static steps in the dashboard JSON.

The syntax for a filter in the step definition varies based on whether the step is in compact or SAQL form. This section describes the filter
syntax for compact-form steps, including a description and example of every operator. For information about the filters for SAQL-form
steps, see the Wave Analytics SAQL Reference.

Filter Syntax
Filters defined in compact-form steps have the following syntax.

"filters": [[
"field",
[value],
"operator"

]]

For example, the following filter shows only records with a “Customer” account type.

"filters": [[
"Account_Type",
["Customer"],
"in"

]]

To compare against multiple values, include the values in an array, like this.

"filters": [[
"field",
[[value1, value2, value3]],
"operator"

]]

To specify an absolute date value for a date filter, specify the value in epoch format, where the value is the number of milliseconds since
January 1, 1970 midnight UTC (1970-01-01 00:00:00). The following example shows dataset rows with a close date on or before January
1, 2016.

"filters": [[
"Close Date",
[[

1451606400000,
null

]],
">="

]]

Operators
You can use different operators in a filter. The supported operators depend on the field type. If you don’t specify the operator, Wave
applies the == operator.

65

steps Properties for Wave Designer DashboardsDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_saql.pdf

Compact-Form ExampleDescriptionOperator

["Dimension",["Value1","Value2"],"in"]Value of dataset field equals one of the
specified values. Applies to dimensions only.

in

["Dimension",["Value1","Value2"],"not
in"]

Value of dataset field is not in the specified
list of values. Applies to dimensions only.

not in

["Dimension",["Val"],"matches"]Value of dataset field contains the specified
value. This operator is not case-sensitive.
Applies to dimensions only.

matches

["Amount",[[]],"isnull"]Value of dataset field is null. Applies to
measures only.

is null

["Amount",[[]],"isnotnull"]Value of dataset field is not null. Applies to
measures only.

is not null

["Measure",[[1]],"=="]Value of dataset field equals the specified
value. Applies to measures only.

==

["Measure",[[1]],"!="]Value of dataset field does not equal the
specified value. Applies to measures only.

!=

["Measure",[[10]],"<"]Value of dataset field is less than the
specified value. Applies to measures only.

<

["Measure",[[1]],">"]Value of dataset field is greater than the
specified value. Applies to measures only.

>

Value of dataset field is less than or equal to
the specified value. Applies to measures and
absolute dates only.

<= • ["Measure",[[10]],"<="]

• ["Date",[[1229040000000]],"<="]

Value of dataset field is greater than or equal
to the specified value. Applies to measures
and absolute dates only.

>= • ["Measure",[[1]],">="]

• ["Date",[[-374457600000]],">="]

Value of dataset field is between the
specified values, inclusive. For relative dates,

>=<= (between) • ["Measure",[[1,10]],">=<="]

• ["Date",[[-374457600000,1229040000000]],">=<="]you can specify the following time periods:
• ["Date",[[["month",-1],["month",1]]],">=<="]"year", "quarter", "month", "week", and "day".

Applies to measures and dates only. • ["Close Date",
[[null,1451606400000]],"<="]]

Note: You can also use:

>=<
Greater than or equal to one
value, but less than another.

><=
Greater than one value, but less
than or equal to another.

><
Between two values, exclusive.

66

steps Properties for Wave Designer DashboardsDashboard JSON Properties

steps Properties for Classic Designer Dashboards
The steps key defines all steps available in a classic designer dashboard. It contains a separate node for each step. Each step node
has properties that define the query or list of static values. It also contains properties that control the behavior of the step, like whether
to facet the step.

DescriptionField Name

An array of datasets used by this step. Specify the alias of each dataset. If the pigql attribute references
a dataset that’s not specified here, the dashboard doesn’t render.

datasets

Note: Faceted steps are filtered based on only the first dataset specified in this array.

Visualization details about the step. For more information, see visualizationParameters Properties.visualizationParameters

Enables this step to facet and be faceted by other steps. Faceting is when a selection in a widget filters
other steps in the dashboard. To enable SAQL-form queries to receive facets from another step, also

isFacet

set the autoFilter option to true. A SAQL-form step without the autoFilter option still
emits facets. By default, steps from the same dataset are faceted to each other. To facet steps from
different datasets, connect the data sources.

Steps with a cogrouping that query multiple datasets only facet steps based on the first dataset specified
in the datasets field.

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

Indicates whether the filter that’s specified in the query is used as a global filter (true) or not (false).
Default is false. You can only apply this property on steps that are connected to a scope widget—all
other steps ignore this property.

A scope widget filters other steps in the dashboard that have useGlobal set to true and reference
the same dataset. By default, it filters compact-form steps only. To filter a SAQL step, set autoFilter
to true in the SAQL step.

isGlobal

To avoid unexpected behavior, do not set both isFacet and isGlobal to true.

The query that the step uses. It can be in SAQL or compact form.query

Determines the selection interaction. The options for charts are: none, single, and
singlerequired. The options for list and toggle selectors are: single, singlerequired,
multi, and multirequired.

selectMode

Note: selectMode isn’t used by the number, values table, compare table, range, date, and
global filter widgets.

The initial selections that are applied to the step when the dashboard first opens.start

The type can be set to:type

• grain—Use to build a values table.

• multi—Use to build a compare table in a classic designer dashboard.

• static—Use to build a static step.

• aggregate—Use for all other steps.

67

steps Properties for Classic Designer DashboardsDashboard JSON Properties

DescriptionField Name

Indicates whether the step uses the dashboard’s scope widget (true) or not (false).useGlobal

The dimension used to facet other steps. Wave facets other steps based on the value selected for this
dimension in the user interface. Specify the dimensions attribute only if isFacet is set to true.

dimensions

Example:

"step_filter_dim": {
"type": "static",
"dimensions": ["Product"],
"datasets":[{"name":"opportunity"}],
"selectMode": "single",
"values": [

{"value": ["EKG Machine"]},
{"value": ["Mammography Machine"]},
{"value": ["Ultrasound Machine"]}

],
"isFacet": true

},

Values used to filter the results of a static step. For example, you can use these values to populate a
date selector.

"step_date_static_with_start": {
"type": "static",

values

"values": [
{

"display": "-6 years",
"value": [[["year",-6],["year",0]]]

},
{

"display": "-5 years",
"value": [[["year",-5],["year",0]]]

},
{

"display": "-4 years",
"value": [[["year",-4],["year",0]]]

}
],
"selectMode": "singlerequired",
"start": [[[["year",-5],["year",0]]]]

}

When you define a static step, you can create any fields and values under values. To bind the static
values to another step, the binding can reference any of the fields to retrieve the values. For more
information about binding a static step, see the Wave Analytics Bindings Developer Guide.

68

steps Properties for Classic Designer DashboardsDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf

Example: aggregate Step with Bindings for a Classic Designer Dashboard

If you convert a classic designer dashboard to Wave designer, aggregate steps are not converted to aggregateflex.
They continue to use the bindings syntax from the classic designer, which is different from the Wave designer syntax. The Wave
designer supports both syntaxes.

"steps": {
"step_Account_Name_1": {

"isFacet": false,
"query": {

"pigql": "q = load \"opp\";\n
q = filter q by 'Account-Name' in {{

selection(step_Account_Owner_Name_2) }};\n
q = group q by {{ single_quote(value(selection(step_StageName_3)))

}};\n
q = foreach q generate

{{ single_quote(value(selection(step_StageName_3))) }}
as {{ value(selection(step_StageName_3)) }},

sum('Amount') as 'sum_Amount',
count() as 'count'",

"groups": "{{ selection(step_StageName_3) }}",
"measures": [

["sum", "Amount"]
]

},
"visualizationParameters": {

"visualizationType": "hbar"
},
"selectMode": "none",
"useGlobal": true,
"datasets": [{

"name": "opp"
}],
"type": "aggregate",
"isGlobal": false

}
}

Example: SAQL Query Step for a Compare Table for a Classic Designer Dashboard

This example shows a compare table step for a classic designer dashboard for a mobile client. The pigql definition under
globalQuery contains a single, unified SAQL query for creating this simple, two-column compare table.

69

steps Properties for Classic Designer DashboardsDashboard JSON Properties

"compare_2": {
"isFacet": true,
"isGlobal": false,
"selectMode": "single",
"type": "multi",
"useGlobal": true,
"start": null,
"datasets": [

{
"name": "Honeywell_Recent_Deals1"

}
],
"visualizationParameters": {

"visualizationType": "comparisontable"
},
"columns": [

{
"header": "Sum of LeadScore",
"query": {

"measures": [
[

"max",
"LeadScore"

]
],
"groups": [

"Industry"
]

},
"showBars": true

},
{

"header": "Avg of LeadScore",
"query": {

"measures": [
[

"avg",
"LeadScore"

]

70

steps Properties for Classic Designer DashboardsDashboard JSON Properties

],
"groups": [

"Industry"
]

},
"showBars": false

}
],
"globalQuery": {

"pigql": "q = load \"Honeywell_Recent_Deals1\"; q = group q by 'Industry'; q
= filter q by 'Industry' in [\"Consumer\",\"Fin Svcs\",\"Mfg\",\"High
Tech\",\"Healthcare\",\"Prof Svcs\"]; q = foreach q generate 'Industry' as 'Industry',
avg('LeadScore') as 'avg_LeadScore', sum('LeadScore') as 'sum_LeadScore'; q = limit
q 2000;"

}
},

Note: The compare table has the following limitations.

• Only these functions can be included: +, -, *, /, ().

• On mobile devices, do not use SAQL at the column level. You can use a global SAQL query or use the compact form in
each column.

• On mobile devices, the Compare Table is read-only.

For more information about SAQL, see the SAQL Reference.

query Properties

The query key contains the query parameters for compact form and SAQL form steps. Steps created in the explorer or dashboard
designer are created in compact form. Steps created in the SAQL editor are created in SAQL form.

query Properties
The query key contains the query parameters for compact form and SAQL form steps. Steps created in the explorer or dashboard
designer are created in compact form. Steps created in the SAQL editor are created in SAQL form.

Non-static steps retrieve data based on a query. The query key under the step node defines the query parameters, like measures, filters,
groupings, limits, and sort order. The structure of the query and the properties vary based on whether the step is created in compact
form and SAQL form. For more information about steps, see Create Steps in the Wave Dashboard Designer.

Note: You can dynamically set query properties based on the selection or results of another step. For example, you can change
a grouping based on a selection in a toggle widget. For more information, see the Wave Analytics Bindings Developer Guide.

The properties of the query section of a dashboard JSON file are:

DescriptionField Name

Enables filters from compact-form query steps and scope/global filter widgets to be applied
to the faceted SAQL query step. To apply filters from compact-form query steps to the SAQL

autoFilter

query step, set autoFilter and isFacet to true. To apply filters from Scope
widgets to the SAQL query step, set autoFilter and useGlobal to true. If
autoFilter is set to false or not specified, filters from compact-form query steps
and Scope widgets are not applied to the SAQL query step.

71

steps Properties for Classic Designer DashboardsDashboard JSON Properties

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_dashboard_steps_create.htm&language=en_US
https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf

DescriptionField Name

The dimensions to use are specified this way:

"dimensions": ["Department"]

dimensions

The filter conditions to apply to the data. Here’s an example of a simple filter condition to
include only rows that have the destination "SFO", "LAX", "ORD", or "DFW":

"filters": [["dest", ["SFO", "LAX", "ORD", "DFW"]]]

filters

Note: Applies to steps with compact form queries only. To specify a filter for a step
based on a SAQL query, include a filter statement in the SAQL query.

Formula is used with the multi step type in a step for a compare table. A multi type
step includes multiple subqueries. You can use the basic mathematical operators *, /, -,

formula

+, (, and) to create a formula to reference other subqueries in the step. To reference other
subqueries, use the automatically assigned names: “A” is the first query, “B” is the second
query, and so on.

"step_comptable": {
"type": "multi",
"datasets":[{"name":"opp"}],
"isFacet": true,
"useGlobal": true,
"query": {
"columns": [
{
"header": "Opptys Won",
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Won"]],

["Close Date", [[["year", -1], ["year", 0]]]]],
"measures": [["count", "*"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Won ($)",
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Won"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"sort": {

72

steps Properties for Classic Designer DashboardsDashboard JSON Properties

DescriptionField Name

"asc": false,
"inner": false

},
"header": "Opptys Won ($)",
"showBars": true,
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Won"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"showBars": true,
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Win-Loss (%)",
"query": {
"groups": ["Owner-Name"],

"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"pigql": null,
"formula": "B/(B+D)*100",
"order": []

}

73

steps Properties for Classic Designer DashboardsDashboard JSON Properties

DescriptionField Name

}
]

}
}

},

The dimension to group by. For example, "groups": ["carrier"]. Specify groups
for both compact form and SAQL form queries. To group by a dimension when using a

groups

SAQL form query, you must specify the group-by dimension in this parameter and in the
SAQL query in the pigql parameter.

The number of results to return. For example, "limit": 10. The results that the limit
statement returns aren’t automatically ordered, so use this statement only with data that
has been ordered.

limit

Note: Applies to steps with compact form queries only. To specify a limit for a step
based on a SAQL query, include a limit statement in the SAQL query.

The measures to use are specified this way:

"count", "*", null, {
"display": "% of total flights"

}

measures

Specify for both compact form and SAQL form queries. Specify for SAQL queries so that the
associated chart widget can render the correct projections. You can change the UI label of
a measure by setting the display option.

To add a measure when using a SAQL form query, specify the measure in this parameter
and in the SAQL query in the pigql parameter.

Sorts the first specified measure in ascending or descending order. To order the results in
ascending order, set ascending to true. To order the results in descending order, set

order

ascending to false. If you don’t want to impose a specific order, specify empty
brackets this way: "order": [].

Example:

"step1": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"groups": ["dest"],
"filters": [
["carrier", "{{ selection(step1) }}"],
["dest", "{{ filter(step1, 'dest') }}"],
["origin", "{{ filter(step1, 'origin') }}"]

],
"measures": [["sum", "miles"], ["count", "*"]],
"order": [[-1, {"ascending": false}]]

}

74

steps Properties for Classic Designer DashboardsDashboard JSON Properties

DescriptionField Name

Note: Applies to steps with compact form queries only. To specify order for a step
based on a SAQL query, include an order statement in the SAQL query.

The query in SAQL form. Use a query in SAQL form when you need to customize the query
in a way that can’t be done using the compact form.

pigql

When you specify a SAQL query, you must specify the filters, limits, and ordering inside the
pigql attribute—Wave ignores the following attributes if they are set under the query
attribute: filters, limit, and order. You must include each measure in the SAQL
query and also specify it in the measures attribute. To specify a grouping, include a group
by statement in the SAQL query and specify the same dimension in the groups attribute.

Note: You can enable faceting on a step created from a SAQL query. However, if
the SAQL query is based on multiple datasets, only the first dataset specified in the
datasets field is faceted.

Values are used with the grain steps for a values table widget or in static steps.
Values in a grain step list the columns to include in the values table. For example:

"step_grain": {
"type": "grain",

values

"datasets":[{"name":"opp"}],
"query": {
"values": ["Amount", "Owner-Name", "Name", "Account-Name",

"StageName", "ForecastCategory", "Current Age", "Time to
Win"],

}
}

You manually define the values in a static step. You can include values in both
compact form and SAQL form queries.

widgets

The widgets section defines the widgets that appear in the dashboard. Each widget has a name.

Example: Widgets in a Wave Designer Dashboard

"widgets": {
"text_1": {
"parameters": {
"fontSize": 20,
"text": "Grouping",
"textAlignment": "center",
"textColor": "#091A3E"
},
"type": "text"
},
"pillbox_1": {
"parameters": {

75

widgetsDashboard JSON Properties

"compact": false,
"exploreLink": false,
"step": "StaticSAQLMinRanges"
},
"type": "pillbox"
},
"chart_1": {
"parameters": {
"autoFitMode": "fit",
"showValues": true,
"legend": {
"showHeader": true,
"show": true,
"position": "right-top",
"inside": false
},
"axisMode": "multi",
"visualizationType": "hbar",
"exploreLink": true,
"title": {
"label": "",
"align": "center",
"subtitleLabel": ""
},
"trellis": {
"enable": false,
"type": "x",
"chartsPerLine": 4
},
"measureAxis2": {
"showTitle": true,
"showAxis": true,
"title": ""
},
"measureAxis1": {
"showTitle": true,
"showAxis": true,
"title": ""
},
"theme": "wave",
"step": "Account_BillingCount_1",
"dimensionAxis": {
"showTitle": true,
"showAxis": true,
"title": ""
}
},
"type": "chart"
}
}

76

widgetsDashboard JSON Properties

Example: Widgets in a Classic Designer Dashboard

"widgets": {
"chart_1": {
"type": "chart",
"position": {
"zIndex": 3,
"x": 10,
"y": 80,
"w": 500,
"h": 300
},
"parameters": {
"step": "Match_Status_3",
"legend": true,
"visualizationType": "pie"
}
},
"text_1": {
"type": "text",
"position": {
"zIndex": 4,
"x": 0,
"y": 10
},
"parameters": {
"text": "We took a look at your current accounts and \ncontacts and found the

following matches below",
"textAlignment": "left"
}
},
"number_3": {
"type": "number",
"position": {
"zIndex": 5,
"x": 510,
"y": 90,
"w": 550
},
"parameters": {
"step": "all_4",
"measureField": "count",
"title": "Accounts and Contacts from your org were analyzed",
"fontSize": 42,
"textAlignment": "left"
}
},
"chart_2": {
"type": "chart",
"position": {
"zIndex": 7,
"x": 10,
"y": 440,
"w": 500,
"h": 490

77

widgetsDashboard JSON Properties

},
"parameters": {
"step": "SIC_Desc_Match_Status_5",
"visualizationType": "hbar"
}
},
"text_3": {
"type": "text",
"position": {
"zIndex": 8,
"x": 10,
"y": 390
},
"parameters": {
"text": "What does this look like by SIC ?"
}
},
"chart_3": {
"type": "chart",
"position": {
"zIndex": 10,
"x": 520,
"y": 240,
"w": 500,
"h": 300
},
"parameters": {
"step": "Match_Status_6",
"visualizationType": "hbar"
}
},
"text_4": {
"type": "text",
"position": {
"zIndex": 11,
"x": 500,
"y": 200
},
"parameters": {
"text": "What's the value of these to you?"
}
},
"chart_4": {
"type": "chart",
"position": {
"zIndex": 12,
"x": 530,
"y": 440,
"w": 500,
"h": 300
},
"parameters": {
"step": "SIC_Desc_7",
"sqrt": true,

78

widgetsDashboard JSON Properties

"visualizationType": "vbar"
}
},
"text_5": {
"type": "text",
"position": {
"zIndex": 13,
"x": 520,
"y": 390
},
"parameters": {
"text": "Where do you make your money today?"
}
},
"text_6": {
"type": "text",
"position": {
"zIndex": 16,
"x": 1050,
"y": 20
},
"parameters": {
"text": "The future of data..."
}
}
}

widget Properties

The widgets key defines all widgets that are available in the dashboard. It contains a separate node for each widget. Each widget
appears in all layouts to which it’s added. The properties available for each widget depend on the widget type. For example, a chart
widget has the legend property, but a text widget doesn’t.

widget Properties
The widgets key defines all widgets that are available in the dashboard. It contains a separate node for each widget. Each widget
appears in all layouts to which it’s added. The properties available for each widget depend on the widget type. For example, a chart
widget has the legend property, but a text widget doesn’t.

DescriptionField Name

Widget parameters vary depending on the type of widget and, if applicable, type of chart. The step element
defines the step attached to a widget. For detailed information about different widget parameters, see
parameters Properties.

parameters

(For classic designer dashboards only.) Specifies the position of the widget in the dashboard. Position can
consist of the following properties:

x and y
Specifies the top left corner of the widget. The values of these fields must be integers.

position

79

widget PropertiesDashboard JSON Properties

DescriptionField Name

w and h
Specifies the width and height, respectively. You can enter “auto,” percentages (“36%”), and integers
(“20”) as a string value.

zIndex
Determines the position of a widget relative to other widgets in the dashboard. zIndex specifies whether
a widget is in front of or behind another widget. A smaller zIndex means that a widget appears further
behind other widgets with larger zIndex values. The value must be an integer.

Example:

"position": {
"x": 40,
"y": 40,
"w": "300",
"h": "auto"}

Measurements are in pixels.

Note: The Wave dashboard designer ignores these settings and uses the position attribute
specified under the gridLayouts section of the dashboard JSON.

The widget type specifies one of the other supported widget types. The value of this field must be a string.type

• box—available in the classic designer only

• chart

• comparetable

• container—available in the Wave dashboard designer only

• dateselector

• globalfilters

• image—available in the Wave dashboard designer only

• link

• listselector

• number

• pillbox

• rangeselector

• table—available in the Wave dashboard designer only

• text

• url—available in the classic designer only

• valuestable

Note: The Wave dashboard designer doesn’t support box and url widgets. The designer removes
these widget types when you open the dashboard. Also, the classic designer doesn’t support the
container widget—use a box widget instead.

80

widget PropertiesDashboard JSON Properties

parameters Properties

The parameters key contains a list of properties that control the appearance of the widget. Each widget type, including each
chart type, contains a unique set of properties.

parameters Properties
The parameters key contains a list of properties that control the appearance of the widget. Each widget type, including each chart
type, contains a unique set of properties.

Note: You can dynamically set properties for number and chart widgets in Wave designer dashboards based on the selection or
results of another step. For example, you can change the map type in a chart based on a selection in a toggle widget. For more
information, see the Wave Analytics Bindings Developer Guide.

Chart widgets have many properties that vary based on the chart type. For a list of properties for each chart in a classic designer dashboard,
see the following table. Wave designer doesn’t support some of the chart properties listed below. For chart-specific properties for Wave
designer dashboards, see Visualizing Data with Charts—this section doesn’t cover chart properties for Wave designer dashboards.

Valid PropertiesVisualization Type

legend, legendHideHeader, legendWidth,
maxColumnWidth, minColumnWidth, miniBars,
multiMetrics, splitAxis, sqrt, and trellis

Bar

maxColumnWidth and minColumnWidthCompare Table

legend, legendHideHeader, and legendWidthDonut

fit, legend, legendHideHeader, legendWidth,
and sqrt

Dot Plot

legend, legendHideHeader, and legendWidthHeat Map

legend, legendHideHeader, and legendWidthMatrix

fit, legend, legendHideHeader, legendWidth,
and sqrt

Parallel Coordinates

maxColumnWidth, minColumnWidth, and totalsPivot Table

fit, legend, legendHideHeader, legendWidth,
and sqrt

Scatter Plot

legend, legendHideHeader, legendWidth,
maxColumnWidth, minColumnWidth, miniBars,
normalize, and sqrt

Stacked Bar/Column

fit, legend, legendHideHeader, legendWidth,
and sqrt

Timeline

hideHeaderColumn, maxColumnWidth, and
minColumnWidth

Values Table

The widget properties set by the parameters property are:

81

widget PropertiesDashboard JSON Properties

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_bindings.pdf
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_visualize.htm&language=en_US

DetailsProperty Name

Type
String

alignmentX

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates the horizontal alignment of the image in the widget.

Valid values are: left (default), center, and right.

Type
String

alignmentY

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates the vertical alignment of the image in the widget.

Valid values are: top (default), center, and bottom.

Type
Boolean

calendarTypeSwitchingAllowed

Available for This Widget

• dateselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Indicates whether the dashboard viewer can
switch between the fiscal and calendar year in the date widget.

Default is false.

Type
Boolean

compact

Available for These Widgets

• listselector

• number

• pillbox

Exposed in the Dashboard Designer’s User Interface
Yes

82

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description
Indicates whether displayed numbers are abbreviated (true) or not (false).

For example, if true, the number 48,081 appears as 48k. Although the number
appears to be rounded, it is not. The value 48,081 is preserved in charts and when
performing calculations. If false, then 48,081 appears as 48,081.

Default is false.

Type
Boolean

computeTotal

Available for These Widgets

• chart (only when visualizationType is stackwaterfall and
waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include the total measure column (true) or not (false).

Default is true.

Type
List

containedWidgets

Available for This Widget

• container

Exposed in the Dashboard Designer’s User Interface
Yes

Description
A list of all widgets inside the container widget.

Example
This example shows 2 widgets (meafilter_1 and chart_1) included in the
container widget (container_1).

"container_1": {
"type": "container",
"position":{

"x": 0,
"y": 0

},
"parameters":{

"containedWidgets": [
"meafilter_1",
"chart_1"

]
}

}

83

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
Boolean

customBulkActions

Available for This Widget

• table

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Specifies the following details about custom
bulk action.

label
Display label for the button in the table widget’s action menu. The dashboard
viewer clicks the button to execute the action.

visualforce
The name and namespace prefix of the Visualforce page that defines the bulk
action. Namespace prefix is optional.

Example

"customBulkActions":
[

{
"label": "Generate Opportunities",
"visualforce":

{
"name": "VF_Create_Opportunities",

"namespace": "Prefix"
}

}
]

Type
Boolean

defaultAbsoluteMode

Available for This Widget

• dateselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Indicates whether the date widget displays
absolute dates, by default. If not, then it shows relative dates.

Default is true.

Type
Boolean

defaultFiscalMode

84

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Available for This Widget

• dateselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Indicates whether the date widget displays
dates using the fiscal year, by default. If not, then it uses the calendar year.

Default is false.

Type
String

destination

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The ID of the dashboard, lens, or step.

Default is null.

Type
String

destinationType

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The destination type of a link. Possible values are:

• dashboard — a saved dashboard

• explore — an unsaved, active exploration session of the lens

• lens — a saved lens

Default is lens.

Type
String

displayTemplate

Available for This Widget

• listselector

• pillbox

Exposed in the Dashboard Designer’s User Interface
Yes

85

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description

(For Wave designer dashboards only.) Specifies the string of grouping and measure
fields to display in the widget. Fields must be enclosed in square brackets. By default,
all groupings are included.

Example
This example displays the value for the Account.Type dimension,
Account.BillingCountry dimension, and Amount measure.

"displayTemplate": "[Account.Type] -
[Account.BillingCountry] ([avg_Amount])"

Type
String

documentId

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The 15-character document Id of the image file that you want to apply as the
background. To ensure security, the image file must be uploaded to Salesforce as a
document and the Externally Available Image option must be selected. If this
option is not selected or the referenced document is not an image, the image doesn’t
show up in the widget. Default is null.

Example
This example image widget (image_1) displays an image with ID
015R0000000DClP.

"image_1": {
"type": "image",
"parameters": {

"documentId": "015R0000000DClP",
"fit": "stretch",
"alignmentX": "center",
"alignmentY": "center"

}
}

Type
Boolean

dualAxis

Available for These Widgets

• chart (only when visualizationType is combo)

Exposed in the Dashboard Designer’s User Interface
Yes

86

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description
Indicates whether to include an axis for each of the two measures (true) or not
(false).

Default is true.

Type
Boolean

expanded

Available for These Widgets

• dateselector

• listselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
(For classic designer dashboards only.) Indicates whether items in widget are displayed
(true) or hidden (false).

If hidden (false), dashboard viewers can click the widget to view and change items.

Default is true.

Note: Mobile devices display items in a list, regardless of this setting.

Type
Boolean

exploreLink

Available for These Widgets

• chart

• comparetable

• listselector

• number

• pillbox

• valuestable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether the widget shows the explore icon that dashboard viewers can
click to explore the widget as a lens (true) or not (false). This option only applies
to widgets based on steps in compact form. You can’t explore widgets that are built
on SAQL form steps.

Default is true.

Note: Mobile devices display the icon, regardless of this setting.

87

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
Boolean

fit (for chart widgets)

Available for This Widget

• chart (only when visualizationType is scatter)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether the axis of a chart is in the center of the data (true) or at (0, 0)
(false).

Default is false.

Type
String

fit (for image widgets)

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates how to scale the image. Valid values are: original (default), stretch,
tile, fitwidth, and fitheight.

Type
Integer

fontSize

Available for These Widgets

• link

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The font size of a number or of text.

Defaults are:

• number: 36

• text: 26

Type
Boolean

hideHeaderColumn

Available for These Widgets

• chart

88

widget PropertiesDashboard JSON Properties

DetailsProperty Name

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the first column in a raw data table—which is simply a count of
rows—is hidden (true) or not (false).

Default is false.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Array

image

Available for This Widget

• container

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Identifies the image using the following
properties.

name
Name of the image.

namespace
Optional. Namespace of the image. Default is null.

Example

"image": {
"name": "My_Corporate_Logo",
"namespace": ""

}

Type
String

imageUrl

Available for This Widget

• box

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For classic designer dashboards only.) The document Id of the image file that you
want to apply as the background. To ensure security, the image file must be uploaded
to Salesforce as a document and the Externally Available Image option must be

89

widget PropertiesDashboard JSON Properties

DetailsProperty Name

selected. If this option is not selected or the referenced document is not an image,
the image doesn’t show up in the widget. Default is null.

Type
Boolean

includeState

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Apply selections in chart, list, toggle, range, and date widgets in the source dashboard
as selections in the linked asset. For example, you select North America in a list widget
based on the Region dataset field. Wave applies that same selection to each step in
the linked dashboard that has faceting enabled and has a grouping based on the
Region field.

Default is false.

Type
Boolean

instant

Available for These Widgets

• dateselector

• listselector

• rangeselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether other faceted widgets immediately update (true) or not (false)
when a dashboard viewer makes a selection in this widget.

When false, dashboard viewers must click Update for their changes to cascade
to faceted widgets. When true, the Update button is hidden.

Defaults are:

• dateselector: false

• listselector: true

• rangeselector: false

Note: For list, range, or date widgets that are expanded in the Wave dashboard
designer, this widget property is always enabled—meaning that selections
in this widget instantly update other widgets. While these widgets are
expanded, you can’t change this setting.

90

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
Boolean

legend

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar,
stackvbar, pie, scatter, time, hdot, vdot, matrix,
calheatmap, heatmap, parallelcoords, stackwaterfall,
funnel, or choropleth)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to display a legend (true), or not (false).

Default is false for all chart types, except pivottable.

Note: Mobile devices can only display legends for pie widgets.

Type
Boolean

legendHideHeader

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar,
stackvbar, pie, scatter, time, hdot, vdot, matrix,
calheatmap, heatmap, stackwaterfall, combo, combo, or
parallelcoords)

91

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the legend has a title (true) or not (false). The title is always
the name of the dimension that the legend describes.

Default is false for all chart types except pivottable.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

legendWidth

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar,
stackvbar, pie, scatter, time, hdot, vdot, matrix,
calheatmap, heatmap, stackwaterfall, combo, or
parallelcoords)

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The width of the legend area in pixels.

Default is 145 for all chart types except pivottable.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

maxColumnWidth

Available for These Widgets

• chart (only when visualizationType is comparisontable,
pivottable, stackhbar, stackvbar, hbar, stackwaterfall,
or vbar)

• comparisontable

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description

(For classic designer dashboards only.) The maximum display size (in pixels) of a
dimension field on a web browser of a desktop or laptop.

Default is 200, minimum value is 20, and maximum value is 200.

Note: This setting doesn’t apply when viewing the widget on mobile devices.
This setting doesn’t apply to compare table columns that show bars in a classic
designer dashboard if you specify a value less than 100.

92

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

measureField

Available for These Widgets

• listselector

• number

• pillbox

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The mathematical function performed on data.

Specify the measureField in this format: <formula>_<field>.

<formula> must match one of the formulas specified in the measures step
property. Possible values for <formula> are:

• avg — calculate the mathematical average (mean)

• max — the maximum value

• min — the minimum value

• sum — add all the values

• unique — count the number of unique values. For example, use to count the
number of unique dimensions.

The <field> paired with the <formula> must match the field name that is
specified in measures.

For example, if the measures step property is:

"measures”: [
[
"sum",
"Profit"

],
[
"avg",
"Discount"

],
[
"count",
"ModelNumber"

]
]

Then measureField must be sum_Profit, avg_Discount, or
unique_ModelNumber. The measureField can’t be avg_Profit because
avg and Profit aren’t paired together in the measures step property.

Note: Unlike for measures, a count on a dimension in the user interface
calculates the number of unique dimension values. As a result,

93

widget PropertiesDashboard JSON Properties

DetailsProperty Name

measureField in the underlying JSON shows the unique formula, like
unique_<dimension_field_name>.

Default is null.

Type
Integer

minColumnWidth

Available for This Widget

• chart (only when visualizationType is comparisontable,
pivottable, stackhbar, stackvbar, hbar, stackwaterfall,
or vbar)

• comparisontable

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
(For classic designer dashboards only.) The minimum display size of a dimension field
in pixels.

Default is 30.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

miniBars

Available for This Widget

• chart (only when visualizationType is stackhbar, stackvbar,
hbar, or vbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
(For classic designer dashboards only.) The display size in pixels of bars in bar charts.

Default is 0 (available only for bar charts and column charts).

Type
Boolean

modeSwitchingAllowed

Available for This Widget

• dateselector

Exposed in the Dashboard Designer’s User Interface
Yes

94

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description

(For Wave designer dashboards only.) Indicates whether the dashboard viewer can
switch between absolute and relative dates in the date widget.

Default is true.

Type
Boolean

multiMetrics

Available for This Widget

• chart (only when visualizationType is hbar or vbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether two or more measures are displayed as adjacent bars under each
grouping (true) or as individual, adjacent graphs (false).

Default is false (available only for bar charts and column charts).

Type
String

negativeColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the measure columns that have decreased in value in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Type
Boolean

normalize

95

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Available for This Widget

• chart (only when visualizationType is stackhbar or
stackvbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear
scale (false).

Default is false (available only for stackhbar and stackvbar).

Type
String

numberColor

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description
(For Wave designer dashboards only.) The font color of the number.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Default is #000.

Type
Integer

numberSize

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) The font size of the number. Default is 26.

96

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
Boolean

pivoted

Available for This Widget

• table

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) Indicates whether the table is pivoted. A pivot
table requires the underlying step to have at least one grouping. Wave pivots the
table on the last defined grouping. Default is false.

Type
String

positiveColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the measure columns that have increased in value or remained the same
in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Type
Boolean

showValues

Available for This Widget

• chart (only when visualizationType is stackwaterfall or
waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

97

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description
Indicates whether to display the values of each measure column (true) or not
(false).

Default is true.

Type
Boolean

splitAxis

Available for This Widget

• chart

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether each dimension in a chart is measured on its own axis (true) or
a shared axis (false).

Only applicable when multiMetrics is true.

Default is false (available only for bar charts and column charts).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Boolean

sqrt

Available for This Widget

• chart (only when visualizationType is parallelcoords, hdot,
vdot, time, scatter, stackhbar, stackvbar, hbar,
stackwaterfall, or vbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear
scale (false).

Default is false (available only for bar charts, column charts, line charts, and time
series).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

startColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

98

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description
The color of the first measure column in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Type
String

step

Available for These Widgets

• chart

• comparetable

• dateselector

• globalfilters

• listselector

• number

• pillbox

• rangeselector

• valuestable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The name of the step that supplies data for the widget.

Default is null.

Type
Boolean

stretch

Available for This Widget

• box

Exposed in the Dashboard Designer’s User Interface
Yes

99

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Description
Indicates whether an image’s width and height are set to the same values of the
widget’s width and height (true) or not (false).

Default is false.

Type
Boolean

stretchImage

Available for This Widget

• container

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether an image’s width and height are set to the same values of the
widget’s width and height (true) or not (false).

Default is false.

Type
String

text

Available for This Widget

• link

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The message rendered in a text widget. For example, if text is assigned the value
“Hello, World!”, then “Hello, World!” appears in the text widget.

Default is null.

Type
String

textAlignment

Available for This Widget

• link

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The alignment of text. Possible values include left, center, and right. If no
value is specified, text alignment defaults to center.

Defaults are:

100

widget PropertiesDashboard JSON Properties

DetailsProperty Name

• number: right

• text: center

Type
String

textColor

Available for These Widgets

• link

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The font color of text.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Default is #000.

Type
String

title

Available for These Widgets

• dateselector

• listselector

• number

• pillbox

• rangeselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The title of a widget.

Default is null.

101

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Type
String

titleColor

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description
(For Wave designer dashboards only.) The font color of the title.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Default is #000.

Type
Integer

titleSize

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description

(For Wave designer dashboards only.) The font size of the title. Default is 26.

Type
String

totalColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the total measure column in the chart.

Specify the color in this format: rgb(a, b, c, d).

102

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Using a number between zero and 255, a indicates how much red is in the color, b
how much green, and c how much blue. A value of 0 indicates the absence of a
color, and a value of 255 indicates the full expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value
of 0 is invisible and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black.
rgb(255, 0, 0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using
hexadecimal notation, transparency can’t be set. All hexadecimal colors default to
opaque. #000000 indicates black in hexadecimal. #ff0000 indicates red.

Type
Boolean

totals

Available for These Widgets

• chart (only when visualizationType is pivottable)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include a row that displays the sum of all the values in each
measure column (true) or not (false).

Default for chart is false (available only for pivottable).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Boolean

trellis

Available for This Widget

• chart

Exposed in the Dashboard Designer’s User Interface
Yes

Description
When a step has two or more groupings and one measure, indicates whether the
last grouping displays on its own axis (true) or on the same axis as other groupings
(false).

Default for chart is false (available only for bar charts and column charts).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

videoSize

103

widget PropertiesDashboard JSON Properties

DetailsProperty Name

Available for This Widget

• url

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The dimensions of a YouTube video. Possible values are:

• (4/3) 240 x 180

• (4/3) 420 x 315

• (4/3) 480 x 360

• (4/3) 640 x 480

• (4/3) 960 x 720

• (16/9) 320 x 180

• (16/9) 560 x 315

• (16/9) 640 x 360

• (16/9) 853 x 480

• (16/9) 1280 x 720

Default is (4/3) 240 x 180.

Note: Mobile devices don’t display url widgets.

Type
String

visualizationType

Available for These Widgets

• chart

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The type of chart used to show data. Possible values are:

• calheatmap— calendar heat map

• choropleth — choropleth (map)

• combo — lines and bars to show multiple metrics

• comparisontable — comparison table in the classic designer only

• flatgauge — flat gauge in the Wave dashboard designer only

• funnel — funnel

• hbar — horizontal bar

• hdot* — horizontal dot plot

• heatmap— heat map

104

widget PropertiesDashboard JSON Properties

DetailsProperty Name

• matrix— matrix

• parallelcoords* — parallel coordinates

• pie — donut

• pivottable* — pivot table

• polargauge — polar gauge in the Wave dashboard designer only

• pyramid — pyramid in the Wave dashboard designer only

• rating — rating in the Wave dashboard designer only

• scatter — scatter plot

• stackhbar — stacked horizontal bar

• stackpyramid — stacked pyramid in the Wave dashboard designer only

• stackvbar — stacked vertical bar

• stackwaterfall — stacked waterfall

• time — timeline

• valuestable — raw data table in the classic designer only

• vbar — vertical bar

• vdot* — vertical dot plot

• waterfall — waterfall

Note: The Wave dashboard designer doesn’t support chart types with an asterisk
(*). If you specify an unsupported type, the designer replaces it with hbar in the
dashboard.

Type
ConnectUri

url

Available for This Widget

• url

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The URL of a YouTube video.

Default is null.

Note: Mobile devices don’t display url widgets.

105

widget PropertiesDashboard JSON Properties

	Wave Analytics Dashboard JSON Overview
	View or Modify a Dashboard JSON File
	JSON Example of a Wave Designer Dashboard
	JSON Example of a Classic Designer Dashboard
	Dashboard JSON Properties
	dataSourceLinks (for Wave Designer Dashboards Only)
	dataSourceLinks Properties

	gridLayouts (for Wave Designer Dashboards Only)
	gridLayouts Properties
	pages Properties
	widgets Properties
	widgetStyle Properties

	selectors Properties
	style Properties

	widgetStyle Properties (for Wave Designer Dashboards Only)
	layouts (for Classic Designer Dashboards Only)
	Use a Mobile Layout for Your Dashboard
	Understanding Column, Row, and Cell Sizing in Mobile Layouts
	Layouts Specification
	layouts Properties

	steps
	steps Properties for Wave Designer Dashboards
	steps Properties for Compact Form and SAQL Form
	aggregateflex Step Type Properties
	grain Step Type Properties
	saql Step Type Properties
	soql Step Type Properties
	staticflex Step Type Properties
	visualizationParameters Properties
	filters Properties

	steps Properties for Classic Designer Dashboards
	query Properties

	widgets
	widget Properties
	parameters Properties

