
Wave Analytics Data Integration
Salesforce, Spring ’17

 @salesforcedocs
Last updated: April 26, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

DATA INTEGRATION . 1
Datasets . 2
Dataflow JSON . 5
Dataset Builder . 6
Wave Connector for Excel Data . 6
Upload External Data from the User Interface . 6
External Data API . 7

CREATE DATASETS WITH A DATAFLOW . 8
Design the Dataflow . 8
Configure the Dataflow . 9
Start and Stop a Dataflow . 12
Monitor a Dataflow Job . 14
Reschedule and Unschedule a Dataflow . 15

DATAFLOW TRANSFORMATION REFERENCE . 17
Transformations for Wave Dataflows . 17
Overriding Metadata Generated by a Transformation . 75

CREATE A DATASET WITH THE DATASET BUILDER . 79

CREATE A DATASET WITH EXTERNAL DATA . 85
Create a Dataset with External Data . 85
Monitor an External Data Upload . 89

EDIT A DATASET . 92

DELETE A DATASET . 95

ROW-LEVEL SECURITY FOR DATASETS . 96
Considerations when Defining a Predicate for a Dataset . 97
Row-Level Security Example based on Record Ownership . 97
Row-Level Security Example based on Opportunity Teams . 102
Row-Level Security Example based on Role Hierarchy and Record Ownership 110
Row-Level Security Example Based on Territory Management . 120

SECURITY PREDICATE REFERENCE . 127
Predicate Expression Syntax for Datasets . 127
Sample Predicate Expressions for Datasets . 132

DATA INTEGRATION

You can integrate Salesforce data and external data into Wave Analytics to enable users to explore and visualize the data with explorer
and designer. External data is data that resides outside of Salesforce, such as data from outside applications and spreadsheets.

When you load data into Wave Analytics, you load it into datasets. A dataset is a collection of related data that is stored in a denormalized,
yet highly compressed form.

You can use the following methods to create datasets in Wave Analytics.

Wave ConnectorExternal Data APIUpload User
Interface

Dataset BuilderDataflow JSON

Microsoft ExcelExternal dataExternal dataSalesforce objectsSalesforce objects;
existing datasets

Data source

NoNoNoNoYesCan join external
and Salesforce
data?

YesNo (programmatic
access)

YesYesNo (JSON)Graphical user
interface?

NoNoNoNoYesCan create
multiple datasets
at once?

NoYesNoNoYesSupports
incremental
extraction?

ManualManualManualAutomaticAutomaticData refresh
method

NoNoNoNoYesCan filter records?

NoNoNoNoYes (delta and
dimension columns)

Can generate new
columns when
creating datasets?

NoYesYesNoYesCan override
metadata?

IN THIS SECTION:

Datasets

A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form. For each platform license, your
organization can have a maximum of 250 million rows of data stored for all registered datasets combined.

1

Dataflow JSON

You can use the dataflow to create one or more datasets based on data from Salesforce objects or existing datasets. A dataflow is a
set of instructions that specifies what data to extract from Salesforce objects or datasets, how to transform the datasets, and which
datasets to make available for querying. With a dataflow, you can manipulate the extracted data and override the metadata before
you load it into a dataset. The dataflow runs on a daily schedule to continually refresh the data.

Dataset Builder

Use the dataset builder to create a single dataset based on data from one or more related Salesforce objects. With the dataset builder
you simply point and click to identify and select related Salesforce objects.

Wave Connector for Excel Data

The Salesforce Wave Connector makes it easy to import data from Microsoft Excel 2013 to Wave Analytics.

Upload External Data from the User Interface

You can use the upload user interface to create a single dataset based on external data. You can upload an external data file in a
.csv, .gz, or .zip format. To refresh the data, you can overwrite the data in the dataset by uploading a new external data file.

External Data API

You can use the External Data API to create a single dataset based on external data in the .csv format. You can also use the API to
edit the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records,
update records, or delete records.

Datasets

A dataset is a collection of related data that is stored in a denormalized, yet highly compressed form. For each platform license, your
organization can have a maximum of 250 million rows of data stored for all registered datasets combined.

Wave Analytics applies one of the following types to each dataset field:

Date
A date can be represented as a day, month, year, and, optionally, time. You can group, filter, and perform math on dates.

Dimension
A dimension is a qualitative value, like region, product name, and model number. Dimensions are handy for grouping and filtering
your data. Unlike measures, you can’t perform math on dimensions. To increase query performance, Wave Analytics indexes all
dimension fields in datasets.

Measure
A measure is a quantitative value, like revenue and exchange rate. You can do math on measures, such as calculating the total revenue
and minimum exchange rate.

For each dataset that you create, you can apply row-level security to restrict access to records in the dataset.

Attention: Before you create a dataset, verify that the source data contains at least one value in each column. Columns with all
null values won't be created in datasets and can't be referenced in dataflows, lenses, or dashboards. Consider providing a default
value for null values, like "n/a" or "empty."

IN THIS SECTION:

Numeric-Value Handling in Datasets

Wave Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99” with a scale
of “2” as “320099”. The user interface converts the stored value back to decimal notation to display the number as “3200.99.”

2

DatasetsData Integration

Date Handling in Datasets

When Wave Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and
year, based on the calendar year. For example, if you extract dates from a CreateDate field, Wave Analytics generates date fields
such as CreateDate_Day and CreateDate_Week. If your fiscal year differs from the calendar year, you can enable Wave
Analytics to generate fiscal date fields as well.

Numeric-Value Handling in Datasets
Wave Analytics internally stores numeric values in datasets as long values. For example, it stores the number “3,200.99” with a scale of
“2” as “320099”. The user interface converts the stored value back to decimal notation to display the number as “3200.99.”

The maximum numeric value that can be stored in a dataset is 36,028,797,018,963,967 and the minimum numeric value is
-36,028,797,018,963,968.

Warning: If a numeric value is not within this range, you might receive unexpected results. For example, if you try to load the
value 3.7E-16 with a scale of 16 into a dataset, Wave Analytics tries to store the value as 37000000000000000. However, because
this value exceeds the maximum, Wave Analytics fails to load the entire record. In addition, if you perform a query that aggregates
measures—like sum or group by—and the resulting value exceeds the maximum, the value overflows and Wave Analytics returns
an incorrect result.

Date Handling in Datasets
When Wave Analytics loads dates into a dataset, it breaks up each date into multiple fields, such as day, week, month, quarter, and year,
based on the calendar year. For example, if you extract dates from a CreateDate field, Wave Analytics generates date fields such as
CreateDate_Day and CreateDate_Week. If your fiscal year differs from the calendar year, you can enable Wave Analytics to
generate fiscal date fields as well.

Wave Analytics generates the following date fields.

DescriptionField TypeField Name

Number of seconds. If the date contains no
seconds, value is '0.'

Text<date field name>_Second

Number of minutes. If the date contains no
minutes, value is '0.'

Text<date field name>_Minute

Number of hours. If the date contains no
hours, value is '0.'

Text<date field name>_Hour

Day of the month.Text<date field name>_Day

Week number in calendar year.Text<date field name>_Week

Month number in calendar year.Text<date field name>_Month

Quarter number in calendar year.Text<date field name>_Quarter

Calendar year.Text<date field name>_Year

Week number in fiscal year.Text<date field name>_Week_Fiscal

Month number in fiscal year.Text<date field name>_Month_Fiscal

Quarter number in fiscal year.Text<date field name>_Quarter_Fiscal

3

Numeric-Value Handling in DatasetsData Integration

DescriptionField TypeField Name

Fiscal year.Text<date field name>_Year_Fiscal

Number of seconds that have elapsed since
January 1, 1970 (midnight UTC).

Numeric<date field name>_sec_epoch

Number of days that have elapsed since
January 1, 1970 (midnight UTC).

Numeric<date field name>_day_epoch

You can set metadata attributes to control how dates are loaded into datasets and to enable Wave Analytics to generate fiscal date
fields. You set the metadata attributes in the sfdcDigest transformation parameters for Salesforce data or in the metadata file for external
data.

Important: Before loading dates from an external data file, ensure that you review the date format requirements here. Also,
ensure that the column names in the external data file do not conflict with the generated date field names. For example, if you
load a CSV with column Create_Date, Wave Analytics generates the Create_Date_Year field in the dataset. If the CSV
also had a field named Create_Date_Year, Wave Analytics would throw an error because the names conflict.

Fiscal Periods in Wave Analytics
If the calendar and fiscal year differ, you can enable Wave Analytics to generate the fiscal date fields in the dataset in addition to calendar
date fields. To enable Wave Analytics to generate fiscal date fields, set the fiscalMonthOffset attribute to a value other than '0'.
You set this attribute for each date column for which you want to generate fiscal date fields. If you set the offset to '0' or you do not
specify a value, Wave Analytics does not generate any fiscal date fields.

Additionally, to configure the fiscal periods, set the following metadata attributes for each date column:

fiscalMonthOffset
In addition to enabling the generation of fiscal date fields, this attribute also determines the first month of the fiscal year. You specify
the difference between the first month of the fiscal year and first month of the calendar year (January) in fiscalMonthOffset.
For example, if your fiscal year begins in April, set fiscalMonthOffset to '3'.

isYearEndFiscalYear
Because the fiscal year can start in one calendar year and end in another, you must specify which year to use for the fiscal year. The
isYearEndFiscalYear attribute indicates whether the fiscal year is the year in which the fiscal year ends or begins.

To see how this works, let’s look at a couple of examples. If isYearEndFiscalYear = true (or you do not specify this attribute),
then the fiscal year is the year in which the fiscal year ends. As shown in the following diagram, any dates between 4/1/2015 and
3/31/2016 are part of the fiscal year 2016 because the fiscal year ends in 2016.

If isYearEndFiscalYear = false, then the fiscal year is the year in which the fiscal year begins. As shown in the following
diagram, any dates between 4/1/2015 and 3/31/2016 are part of the fiscal year 2015 because the fiscal year begins in 2015.

4

Date Handling in DatasetsData Integration

https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

Week Numbering in Wave Analytics
For each date loaded into a dataset, Wave Analytics generates the corresponding week number for the calendar year and, if applicable,
fiscal year. Similar to the SOQL function WEEK_IN_YEAR, week 1 in Wave Analytics is January 1 - January 7. (This is different from the
UTC week() calculation.)

If needed, you can configure the week to start on a particular day of the week by setting the firstDayOfWeek attribute. For example,
if January 1 is a Saturday and you configure the week to start on a Monday, then week 1 is January 1 - 2. Week 2 starts on Monday,
January 3. Week 3 starts January 10, the following Monday. Notice that week 1 can be a short week to ensure that the subsequent weeks
start on the specified day of the week.

Dataflow JSON

You can use the dataflow to create one or more datasets based on data from Salesforce objects or existing datasets. A dataflow is a set
of instructions that specifies what data to extract from Salesforce objects or datasets, how to transform the datasets, and which datasets
to make available for querying. With a dataflow, you can manipulate the extracted data and override the metadata before you load it
into a dataset. The dataflow runs on a daily schedule to continually refresh the data.

Wave Analytics provides a default dataflow that contains some sample transformation logic. This dataflow is just a sample that you must
configure before running it.

To configure the dataflow, you add transformations to the dataflow definition file. A dataflow definition file is a JSON file that contains
transformations that represent the dataflow logic. You can add transformations to determine what data to extract, how to transform
datasets, and which datasets to register to make available for queries.

After you configure the dataflow, you upload the new dataflow definition file to Wave Analytics.

By default, the dataflow doesn’t run automatically. To start running the dataflow on the schedule, you must manually start the dataflow
first. After the first job runs, the dataflow job runs on the daily schedule. The dataflow runs on a daily schedule to capture the latest
changes to Salesforce data and changes in the dataflow logic.

You can also stop, reschedule, and monitor dataflow jobs.

SEE ALSO:

Create Datasets with a Dataflow

5

Dataflow JSONData Integration

Dataset Builder

Use the dataset builder to create a single dataset based on data from one or more related Salesforce objects. With the dataset builder
you simply point and click to identify and select related Salesforce objects.

After you select the data to include in the dataset, the dataset builder generates and appends the associated JSON to the dataflow
definition file. The dataset is created the next time the dataflow runs. The data in the dataset refreshes each time the dataflow runs.

SEE ALSO:

Create a Dataset with the Dataset Builder

Wave Connector for Excel Data

The Salesforce Wave Connector makes it easy to import data from Microsoft Excel 2013 to Wave Analytics.

The Wave Connector is available as an app for Excel 2013 on the desktop and Excel Online in Office 365. The Connector is available as
an app from the Microsoft Apps for Office store or your organization’s private app catalog. After you install the Connector just point and
click to import data from Excel to Salesforce.

SEE ALSO:

Install the Wave Connector Excel App

Upload External Data from the User Interface

You can use the upload user interface to create a single dataset based on external data. You can upload an external data file in a .csv,
.gz, or .zip format. To refresh the data, you can overwrite the data in the dataset by uploading a new external data file.

When Wave Analytics loads any data into a dataset, it also adds metadata about each column of data. For example, metadata can include
the field type, precision, scale, and default value.

For external data, Wave Analytics infers metadata about each column of data in the external data file unless you specify different metadata
attributes in a metadata file. A metadata file is a JSON file that describes the structure of an external data file. For example, you can use
a metadata file to explicitly set the field type and default value for a specific column of external data. If no metadata file is provided when
you upload external data, Wave Analytics treats every column as a dimension and sets the field type to 'Text.' This impacts the type of
queries that can be placed on the dataset because you can’t perform mathematical calculations on dataset columns with a Text field
type. You can only perform mathematical calculations on dataset columns with a Numeric field type.

After you create a dataset based on an external data file, you can edit the dataset to apply a new metadata file. This enables you to
change the metadata attributes of each column.

Note: Wave temporarily stores the uploaded CSV and metadata files for processing only. After a dataset is created, Wave purges
the files.

SEE ALSO:

Create a Dataset with External Data

6

Dataset BuilderData Integration

External Data API

You can use the External Data API to create a single dataset based on external data in the .csv format. You can also use the API to edit
the dataset by uploading a new .csv file. When you edit the dataset, you can choose to overwrite all records, append records, update
records, or delete records.

For more information about the External Data API, see the Wave Analytics External Data API Developer Guide.

7

External Data APIData Integration

https://resources.docs.salesforce.com/206/latest/en-us/sfdc/pdf/bi_dev_guide_ext_data.pdf

CREATE DATASETS WITH A DATAFLOW

You can use a dataflow to create one or more datasets based on data from Salesforce objects or existing datasets.

IN THIS SECTION:

1. Design the Dataflow

Before you start creating the dataflow definition file in the .json format, think about the dataflow design. Consider what data to make
available for queries, where to extract the data from, and whether you need to transform the extracted data to get the data you
want.

2. Configure the Dataflow

Configure the dataflow based on your dataflow design. You can configure the dataflow to extract data, transform datasets based
on your business requirements, and register datasets that you want to make available for queries. To configure the dataflow, add
transformations to the dataflow definition file.

3. Start and Stop a Dataflow

You can manually start a dataflow job to load the data into datasets immediately. You can also stop the job while it’s running. You
can run a maximum of 24 dataflow jobs during a rolling 24-hour period.

4. Monitor a Dataflow Job

Use the monitor in the data manager to monitor dataflow jobs to ensure that they complete successfully or to troubleshoot them
if they fail.

5. Reschedule and Unschedule a Dataflow

After you run a dataflow job for the first time, it runs on a daily schedule, by default. You can change the time of the daily schedule
or schedule it to run on an hourly interval. You might change the schedule to ensure that the data is available by a particular time
or to run the job during non-business hours. You can also unschedule a dataflow.

Design the Dataflow

Before you start creating the dataflow definition file in the .json format, think about the dataflow design. Consider what data to make
available for queries, where to extract the data from, and whether you need to transform the extracted data to get the data you want.

To illustrate some key design decisions, let’s consider an example. In this example, the goal is to create a dataset called “Won Opportunities.”
The dataset will contain opportunity details, including the account name for each opportunity.

To create this dataset, you design the following dataflow:

8

The dataflow extracts opportunity data from the Opportunity object and extracts the account name from the Account object. For each
extracted object, the dataflow creates a new dataset.

The dataflow then transforms the datasets created from the extracted data. First, the dataflow joins the opportunity and account data
into a new dataset. Next, the dataflow filters the records based on the opportunity stage so that the dataset contains only won opportunities.
Each time the dataflow transforms a dataset, it creates a new dataset.

Finally, because you want users to be able to query won opportunities only, you configure the dataflow to register the final dataset only.
However, if you wanted, you could register any dataset created by the dataflow and register as many datasets as you like.

Carefully choose which datasets to register because:

• The total number of rows in all registered datasets cannot exceed 250 million per platform license.

• Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict
access to records.

Configure the Dataflow

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To edit the dataflow
definition file:
• “Edit Wave Analytics

Dataflows”

Configure the dataflow based on your dataflow design. You can configure the dataflow to extract
data, transform datasets based on your business requirements, and register datasets that you want
to make available for queries. To configure the dataflow, add transformations to the dataflow
definition file.

A dataflow definition file is a JSON file that contains transformations that represent the dataflow
logic. The dataflow definition file must be saved with UTF-8 encoding.

Before you can configure a dataflow to process external data, you must upload the external data
to Wave Analytics.

1.
In Wave Analytics, click the gear icon () and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs view selected by default.

2. Select Dataflow View.

3. To download the dataflow definition file, click Download in the actions list (1).

9

Configure the DataflowCreate Datasets with a Dataflow

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

4. Make a backup copy of the dataflow definition file before you modify it.

Wave Analytics doesn’t retain previous versions of the file. If you make a mistake, you can upload the previous version to roll back
your changes.

5. Add each transformation as a node in the dataflow definition file.

For example, based on the design in the previous step, you can add the following transformation nodes:

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Extract_AccountDetails": {

"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [

{ "name": "Id" },
{ "name": "Name" }

]
}

},
"Transform_Augment_OpportunitiesWithAccountDetails": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunities",
"left_key": ["AccountId"],
"relationship": "OpptyAcct",
"right": "Extract_AccountDetails",
"right_key": ["Id"],
"right_select": [

10

Configure the DataflowCreate Datasets with a Dataflow

"Name"
]

}
},
"Transform_Filter_Opportunities": {

"action": "filter",
"parameters": {

"filter": "StageName:EQ:Closed Won",
"source": "Transform_Augment_OpportunitiesWithAccountDetails"

}
},
"Register_Dataset_WonOpportunities": {

"action": "sfdcRegister",
"parameters": {

"alias": "WonOpportunities",
"name": "WonOpportunities",
"source": "Transform_Filter_Opportunities"

}
}

}

Note: The JSON keys and values are case-sensitive. Each bolded key in the example JSON is the node name for a transformation.
Each node contains an action value, which identifies the transformation type. The order in which you add the transformations
to the dataflow definition file doesn’t matter. Wave Analytics determines the order in which to process the transformations
by traversing the dataflow to determine the dependencies among them.

Important: Node names must be unique in a dataflow definition file, and can’t contain space or tab characters. Consider that
node names are not treated as case sensitive, so names such as “Extract_Opportunities” and “extract_opportunities” are not
unique in the same definition file.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save the dataflow definition file with UTF-8 encoding, and then close the file.

8. In the Dataflow view of the Monitor tab, click Upload from the action list (1) to upload the updated dataflow definition file.

Note: Uploading the dataflow definition file does not affect any running dataflow jobs and does not automatically start the
dataflow job.

You can now start the dataflow on demand or wait for it to run on the schedule. Users cannot query the registered datasets until the
dataflow runs.

If you have enabled replication, you can create multiple dataflows, in addition to the default dataflow, and configure them in the same
way. Look out for the Create button in the Monitor tab of the data manager after you enable replication. See
#bi_integrate_replication__bi_integrate_replication.

11

Configure the DataflowCreate Datasets with a Dataflow

https://help.salesforce.com/articleView?id=bi_integrate_replication.htm&language=en_US#bi_integrate_replication

Note: Your org can have up to 10 dataflows. This includes the default dataflow, and Wave app dataflows such as Sales Wave and
Service Wave. Keep in mind that each dataflow run counts towards your limit of 24 dataflow runs per day.

Start and Stop a Dataflow

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To start a dataflow job:
• “Edit Wave Analytics

Dataflows”

You can manually start a dataflow job to load the data into datasets immediately. You can also stop
the job while it’s running. You can run a maximum of 24 dataflow jobs during a rolling 24-hour
period.

Note: By default, the dataflow doesn’t run automatically. To start running the dataflow on
the schedule, you must manually start the dataflow first. After the first job runs, the dataflow
job runs on the daily schedule.

1.
In Wave Analytics, click the gear icon () and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs view selected by default.

2. Select Dataflow View.

12

Start and Stop a DataflowCreate Datasets with a Dataflow

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

3. Click Start in the actions list (1) to start the dataflow job.
The dataflow job is added to the job queue. The Start button is grayed out while the dataflow job runs.

4. After the job completes, Wave Analytics sends an email notification to the user who created the dataflow.

The email notification indicates whether the job completed successfully. It also shows job details like start time, end time, duration,
and number of processed rows. If the job failed, the notification shows the reason for the failure.

Note: If the dataflow creator is not an active user, the notification is sent to the user who last modified the dataflow schedule
or definition file.

5. To stop a dataflow job that is currently running, click next to the job status.
If you click Start to restart a stopped dataflow, the job starts over—the dataflow job does not resume from the point at which it
was stopped.

You can monitor the dataflow job in the data monitor to determine when dataflow completes. After the dataflow completes successfully,
refresh the Home page to view the registered datasets.

13

Start and Stop a DataflowCreate Datasets with a Dataflow

Monitor a Dataflow Job

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To access the data monitor:
• “Edit Wave Analytics

Dataflows”, “Upload
External Data to Wave
Analytics”, or “Manage
Wave Analytics”

To download an error log:
• “Edit Wave Analytics

Dataflows” and “View All
Data”

Use the monitor in the data manager to monitor dataflow jobs to ensure that they complete
successfully or to troubleshoot them if they fail.

The Dataflow view of the monitor shows the status, start time, and duration of the last 10 dataflow
jobs and retains the last 7 days of history. To help you troubleshoot a failed job, you can view error
messages about the job, view the run-time details about every transformation that is processed,
and download error logs where available.

1.
In Wave Analytics, click the gear icon () and then click Data Manager.

14

Monitor a Dataflow JobCreate Datasets with a Dataflow

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

The data manager opens on the Monitor tab, with the Jobs view selected by default.

2. Select Dataflow View (1).

3.
Click to see the latest status of a job.

Each job can have one of the following statuses:

DescriptionStatus

The job is running.Running

The job failed.Failed

The job completed successfully.Successful

The job completed successfully, but some rows failed.Warning

4. If the dataflow job fails, expand the job node (2) and review the run-time details for every transformation that was processed.

5. If an error log is available for a node, click the download log button (3) to download a CSV file containing the failed rows.

Note: Error logs display the data from rows that have failed to load. To maintain data security and prevent unauthorized
access to this data, only users with the "View All Data" permission can download error logs.

6. If there’s a problem with the dataflow logic, edit the dataflow definition file, upload it, and then run the dataflow again.

Reschedule and Unschedule a Dataflow

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To schedule or unschedule
a dataflow job:
• “Edit Wave Analytics

Dataflows”

After you run a dataflow job for the first time, it runs on a daily schedule, by default. You can change
the time of the daily schedule or schedule it to run on an hourly interval. You might change the
schedule to ensure that the data is available by a particular time or to run the job during non-business
hours. You can also unschedule a dataflow.

1.
In Wave Analytics, click the gear icon () and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs view selected by default.

2. Select Dataflow View.

15

Reschedule and Unschedule a DataflowCreate Datasets with a Dataflow

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

3. Click Schedule in the actions list (1) to reschedule the dataflow job.
The default daily schedule and start time appears.

4. To continue running it once per day, select the time that you’d like to start the dataflow job.

5. To run it on an hourly basis, select Hour(s) and then specify the interval details. Minute offset is the number of minutes past the
hour to run the dataflow.

Hourly scheduled dataflows run relative to a fixed base time (00:00 UTC). For example, if you schedule a dataflow to run every 6
hours with a 15-minute offset, the dataflow is scheduled to run at 00:15 UTC, 06:15 UTC, 12:15 UTC, and 18:15 UTC, each day. The
first dataflow run occurs at the next scheduled time. So, if you change the schedule at 04:00 UTC, the dataflow runs at the next
scheduled time (06:15 UTC), and then every 6 hours thereafter. To keep things simple, the scheduler specifies the time of the first
dataflow run (in your time zone), after you save the schedule.

6. Click Save.
The Dataflow Schedule pop-up box specifies the next time, in your local time zone, that the dataflow runs.

7. Click Done.

8. To stop a dataflow from running on a schedule, select Unschedule in the action list (1).

16

Reschedule and Unschedule a DataflowCreate Datasets with a Dataflow

DATAFLOW TRANSFORMATION REFERENCE

Transformations for Wave Dataflows

A transformation refers to the manipulation of data. You can add transformations to a dataflow to extract data from Salesforce objects
or datasets, transform datasets that contain Salesforce or external data, and register datasets.

For example, you can use transformations to join data from two related datasets and then register the resulting dataset to make it
available for queries.

IN THIS SECTION:

append Transformation

The append transformation combines records from multiple datasets into a single dataset.

augment Transformation

The augment transformation augments an input dataset by combining columns from another related dataset. The resulting,
augmented dataset enables queries across both related input datasets. For example, you can augment the Account dataset with
the User dataset to enable a query to return account records and the full names of the account owners.

computeExpression Transformation

The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren’t extracted
from the input data source. Instead, Wave generates the values using a SAQL expression, which can be based on one or more fields
from the input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate text
fields, or perform mathematical calculations on numeric fields.

computeRelative Transformation

You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

delta Transformation

The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta
transformation generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for
business analysts to include them in queries.

dim2mea Transformation

The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to
the dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don’t break if they use
the dimension.

edgemart Transformation

The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, or a combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent
transformations in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset
with a new dataset.

filter Transformation

The filter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain
in the dataset.

17

flatten Transformation

The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

sfdcDigest Transformation

The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren’t relevant for analysis.

sfdcRegister Transformation

The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered
datasets.

update Transformation

The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we’ll
call the lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

append Transformation
The append transformation combines records from multiple datasets into a single dataset.

Consider the following rules when using this transformation.

• This transformation does not remove duplicate records.

• All input datasets must have the same structure—the corresponding columns must be in the same order and have the same name
and field type.

Example: Let’s look at an example. Each month, you create a dataset that contains the month’s sales targets. Now, you want a
holistic view of sales targets for all months. To do that, you create the following dataflow definition file to merge the existing
datasets into a single dataset.

{

"Extract_SalesTargets_2014Jan": {

"action": "edgemart",

"parameters": { "alias": "SalesTargets_2014Jan" }

},

"Extract_SalesTargets_2014Feb": {

"action": "edgemart",

"parameters": { "alias": "SalesTargets_2014Feb" }

},

"Extract_SalesTargets_2014Mar": {

"action": "edgemart",

"parameters": { "alias": "SalesTargets_2014Mar" }

},

"Append_SalesTargets_2014Quarter1": {

"action": "append",

"parameters": {

"sources": [

"Extract_SalesTargets_2014Jan",

18

append TransformationDataflow Transformation Reference

"Extract_SalesTargets_2014Feb",

"Extract_SalesTargets_2014Mar"

]

}

},

"Register_AllSalesTargets": {

"action": "sfdcRegister",

"parameters": {

"alias": "AllSalesTargets",

"name": "AllSalesTargets",

"source": "Append_SalesTargets_2014Quarter1"

}

}

}

After you create the single dataset, you can use date filters to analyze the sales targets by month, quarter, or year.

IN THIS SECTION:

append Parameters

When you define an append transformation, you set the action attribute to append and specify the parameters.

append Parameters
When you define an append transformation, you set the action attribute to append and specify the parameters.

The following table describes the input parameters.

ValueRequired?Parameter

Nodes in the dataflow definition file that
identify the datasets that you want to
merge.

Yessources

SEE ALSO:

append Transformation

augment Transformation
The augment transformation augments an input dataset by combining columns from another related dataset. The resulting, augmented
dataset enables queries across both related input datasets. For example, you can augment the Account dataset with the User dataset
to enable a query to return account records and the full names of the account owners.

When you create the transformation, you identify each input dataset as the left or right dataset and specify the relationship between
them. Wave Analytics combines all the columns of the left dataset with only the specified columns from the right dataset. (Keep in mind
that each dataset can’t have more than 5,000 columns.) Wave Analytics adds the relationship to column names from the right dataset,
which is useful when the left and right datasets have columns with the same names.

19

augment TransformationDataflow Transformation Reference

For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. To
match related records, the augment transformation uses a match condition. You specify the match condition based on a key from each
dataset. For example:

"left_key": ["Id"],"right_key": ["Prod_ID"]

A key can be a single-column key or a composite key. For a match condition based on a composite key, the keys for both datasets must
have the same number of columns, specified in the same order.

Tip: To augment more than two datasets, augment two datasets at a time. For example, to augment three datasets, augment
the first two datasets, and then augment the resulting dataset with the third dataset.

Example: Let’s look at an example of the augment transformation. In this example, you want to extract data from the Opportunity
and Accounts objects, and then match the data based on the account ID field.

You create the following dataflow definition file.

{
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Extract_AccountDetails": {

"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [

{ "name": "Id" },
{ "name": "Name" }

]
}

},
"Augment_OpportunitiesWithAccountDetails": {

20

augment TransformationDataflow Transformation Reference

"action": "augment",
"parameters": {

"operation": "LookupSingleValue",
"left": "Extract_Opportunity",
"left_key": [

"AccountId"
],
"relationship": "OpptyAcct",
"right": "Extract_AccountDetails",
"right_key": [

"Id"
],
"right_select": ["Name"]

}
},
"Register_OpportunityDetails": {

"action": "sfdcRegister",
"parameters": {

"alias": "Opportunity_Account",
"name": "Opportunity_Account",
"source": "Augment_OpportunitiesWithAccountDetails" }

}
}

After you run the dataflow, Wave Analytics creates and registers the Opportunity_Account dataset. It also adds the relationship
as a prefix to all columns from the right dataset.

IN THIS SECTION:

Special Cases for Matching Records with the augment Transformation

For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset.
However, it’s critical that you understand how the augment transformation handles special cases when matching records.

augment Parameters

When you define an augment transformation, you set the action attribute to augment and specify the parameters.

21

augment TransformationDataflow Transformation Reference

Special Cases for Matching Records with the augment Transformation
For each record in the left dataset, the augment transformation performs a lookup to find a matching record in the right dataset. However,
it’s critical that you understand how the augment transformation handles special cases when matching records.

Let’s look at some examples that illustrate some special cases.

Handling Null Keys
When a record in the left dataset contains a null key, Wave Analytics doesn’t perform a lookup to match the record. Instead, Wave
Analytics appends the right columns and inserts null for dimensions (including dates) and '0' for measures.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Wave Analytics doesn’t match the last record because the product ID is null. Instead, Wave Analytics inserts a null for the
Price.Pricebook dimension and '0' for the Price.UnitPrice measure. Here’s the resulting dataset after the augment.

Handling Empty Keys
Wave Analytics matches empty-value left keys and empty-value right keys.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Wave Analytics matches the last record in the Product dataset with the third record in the Price dataset because they both have empty
values (""). Here’s the resulting dataset after the augment.

22

augment TransformationDataflow Transformation Reference

Handling Non-Unique Keys
Although it’s recommended, the left key doesn’t have to be unique. If multiple records have the same left key, Wave Analytics creates
the same values for the appended columns.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Wave Analytics matches the records in the Product dataset with records in the Price dataset. Here’s the resulting dataset after the
augment.

Handling No Match
If left key doesn't have a match in the right dataset, Wave Analytics appends the right columns and inserts null for dimensions (including
dates) and '0' for measures.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price,", and match
the records based on the Id and ProdId fields.

Because no keys match, Wave Analytics doesn’t match any records in the Product dataset with records in the Price dataset. Here’s the
resulting dataset after the augment.

23

augment TransformationDataflow Transformation Reference

Handling Multiple Matches
If the left dataset has a one-to-many relationship with the right dataset, Wave Analytics might find multiple matches for a left record.
What Wave Analytics does with multiple matches depends on the specified augment operation. You can specify one of the following
operations to handle the multiple-match case:

LookupSingleValue
The augment transformation returns results from a single row. Wave Analytics randomly selects one row from the list of matched
rows.

Note: Each time you run the dataflow, Wave Analytics can return different results depending on the returned row.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupSingleValue, and match the records based on the Id and ProdId fields.

Although there are multiple rows for Prod3 in the Price dataset, Wave Analytics randomly chooses one matching row and returns
values based on that row. Here’s the resulting dataset after the augment if Wave Analytics chooses the first Prod3 row.

LookupMultiValue
Wave Analytics returns results from all matched rows.

Let’s look at an example. You apply the augment transformation on the following datasets, set the relationship to "Price," set the
operation to LookupMultiValue, and match the records based on the Id and ProdId fields.

Because the lookup returns multiple rows for Prod3, the dimension Price.Pricebook field in the resulting dataset becomes
a multi-value field, showing all dimension values. The measure field Price.UnitPrice contains 1500, which is the sum of 800
and 700. Here’s the resulting dataset after the augment.

24

augment TransformationDataflow Transformation Reference

augment Parameters
When you define an augment transformation, you set the action attribute to augment and specify the parameters.

The following table describes the input parameters.

ValueRequired?Parameter

Indicates what the transformation does if it
matches multiple rows in the right dataset
with a row in the left. Valid values:

Nooperation

• LookupSingleValue. Returns
values from one of the matched rows.
If you don’t specify the operation
parameter, the transformation uses this
operation.

• LookupMultiValue. Returns
values from all matched rows.

For more information about each operation,
see Special Cases for Matching Records with
the augment Transformation.

Node in the dataflow definition file that
identifies the left dataset. This is one of two
input sources for this transformation.

Yesleft

Key column in the left dataset used to
augment the datasets. If you use a

Yesleft_key

composite key, the left and right keys must
have the same number of columns in the
same order. For a composite key, use the
following syntax:

["Key Column1", "Key
Column2", …, "Key ColumnN"]

Note: The left or right key can’t be
a multi-value field.

Node in the dataflow definition file that
identifies the right dataset. This is one of
two input sources for this transformation.

Yesright

25

augment TransformationDataflow Transformation Reference

ValueRequired?Parameter

Relationship between the left and right
datasets. The dataflow adds the relationship

Yesrelationship

to the beginning of the right column names
in the output dataset to make the column
names unique and descriptive.

An array of column names from the right
dataset that you want to include in the

Yesright_select

output dataset. The dataflow adds the
relationship as a prefix to the column name
to determine the name of the right column
in the output dataset.

Key column in the right dataset used to
augment the datasets. If you use a

Yesright_key

composite key, the left and right keys must
have the same number of columns in the
same order.

SEE ALSO:

augment Transformation

computeExpression Transformation
The computeExpression transformation enables you to add derived fields to a dataset. The values for derived fields aren’t extracted from
the input data source. Instead, Wave generates the values using a SAQL expression, which can be based on one or more fields from the
input data or other derived fields. For example, you can use an expression to assign a value to a field, concatenate text fields, or perform
mathematical calculations on numeric fields.

Note: The computeExpression and computeRelative transformations are similar, but they have a key difference. The
computeExpression transformation performs calculations based on other fields within the same row. The computeRelative
transformation performs calculations based on the previous and next values of the same field in other rows.

Consider the following guidelines when creating a computeExpression transformation:

• You can include only the following SAQL operators and functions in the expression:

– Arithmetic operators

– Case operator

– String operator

– Date functions

• The values of the derived field must match its specified type. For example, set the type of the derived field to Text if the values
are strings.

26

computeExpression TransformationDataflow Transformation Reference

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_arithmetic.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_case.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_operators_string.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_saql.meta/bi_dev_guide_saql/bi_saql_functions_date.htm

• Wave calculates the values of derived fields in the order in which they are listed in the JSON. Thus, if you create a derived field based
on other derived fields in the same computeExpression transformation, the input derived fields must be listed first. For example,
Derived_A must be listed before Derived_B in the following computeExpression transformation JSON snippet:

"CreateDerivedFields": {
"action": "computeExpression",
"parameters": {

"source": "sourceNode",
"mergeWithSource": false,
"computedFields": [

{
"name": "Derived_A",
"type": "Text",
"label": "Derived Field A",
"saqlExpression": "\"hello \""},

{
"name": "Derived_B",
"type": "Text",
"label": "Derived Field B Dependent on Field A",
"saqlExpression": "Derived_A + \"world\""}

]
}

}

• You can choose whether the resulting dataset includes only the derived fields, or includes the input and derived fields.

Example: Let’s look at an example. You want to create a dataset based on Salesforce opportunity data. You create a dataflow
that extracts the Id and Amount fields from the Opportunity object. In addition, you also want to add the following derived fields
to the dataset: ModifiedId, SalesTax, FinalPrice, and ValueCategory. For the derived fields, you will:

• Append “SFDC” to each opportunity Id to get a new modified Id.

• Calculate the sales tax based on an 8% tax rate.

• Calculate the final price by adding the amount and sales tax.

• Categorize opportunities into low-, medium-, and high-value buckets based on the calculated final price.

You create the following dataflow definition.

{
"salesData": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{"name": "Amount"},
{"name": "Id"}]}},

"Derived_Fields": {
"action": "computeExpression",
"parameters": {

"source": "salesData",
"mergeWithSource": true,
"computedFields": [

{
"name": "ModifiedId",
"type": "Text",
"saqlExpression": "\"SFDC\" + Id"},

27

computeExpression TransformationDataflow Transformation Reference

{
"name": "SalesTax",
"type": "Numeric",
"precision": 18,
"defaultValue": "0",
"scale": 5,
"saqlExpression": "Amount * 0.08"},

{
"name": "FinalPrice",
"type": "Numeric",
"precision": 18,
"defaultValue": "0",
"scale": 5,
"saqlExpression": "Amount + SalesTax"},

{
"name": "ValueCategory",
"type": "Text",
"saqlExpression": "case when FinalPrice < 1000 then \"Low\" when

FinalPrice >= 1000 and FinalPrice < 2000 then \"Medium\" else \"High\" end"}
]

}
},
"Register_CategorizedSales": {

"action": "sfdcRegister",
"parameters": {

"alias": "Categorized_Sales",
"name": "Categorized_Sales",
"source": "Derived_Fields" }

}
}

IN THIS SECTION:

computeExpression Parameters

When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify
the parameters for the input source and the expression used to generate the values.

computeExpression Parameters
When you define a computeExpression transformation, you set the action attribute to computeExpression. You also specify the
parameters for the input source and the expression used to generate the values.

You can specify parameters in the following sections of the computeExpression node: parameters and computedFields.

Parameters
The following table describes the parameters in the parameters section.

28

computeExpression TransformationDataflow Transformation Reference

ValueRequired?Parameter

Node in the dataflow definition file that
identifies the input source for this
transformation.

Yessource

Indicates whether the input fields are
included with the derived fields in the

NomergeWithSource

resulting dataset. When true, the resulting
dataset contains all input fields from the
source and the newly generated derived
fields. When false, the resulting dataset
contains the derived fields only. Default is
true.

Attributes and expression used to generate
derived fields in the dataset. See
computedFields.

YescomputedFields

computedFields
The following table describes the attributes in the computedFields section. It also describes optional attributes that you can provide
to override the field metadata to make the data appear differently in a dataset. For example, Wave can replace null values in a field with
a default value.

ValueRequired?Parameter

API name of the generated field.Yesname

Note: The API names must be
unique. Otherwise, the dataflow fails
to run.

Wave Analytics field type associated with
the field. Valid types are Text, Numeric, or
Date.

Yestype

Example:

"type": "Text"

The display name of the generated field that
appears in the Wave user interface. Can be

Nolabel

up to 255 characters. Defaults to input field
name if not specified.

SAQL expression used to calculate the value
for the derived field. The expression can be

YessaqlExpression

based on input fields or other derived fields
in the transformation.

29

computeExpression TransformationDataflow Transformation Reference

ValueRequired?Parameter

Example:

"saqlExpression":"toDate(birth_day,
\"yyyy-M-d\")"

Format of the derived date field. For
information about formats, see the External
Data Format Reference.

Yes (for Date fields only)format

The maximum number of digits in a numeric
value, or the length of a text value. For

Yes (for Numeric fields only)precision

numeric values: Includes all numbers to the
left and to the right of the decimal point
(but excludes the decimal point character).
Value must be between 1 and 18, inclusive.
For text values: Value defaults to 255
characters, and must be between 1 and
32,000 characters, inclusive.

Example:

"precision": 10

The number of digits to the right of the
decimal point in a numeric value. Must be

Yes (for Numeric fields only)scale

less than the precision value. Value must be
between 0 and 17 characters, inclusive.

Example:

"scale": 2

For text and numeric fields that can be null.
Default value that replaces a null value for
the specified field.

NodefaultValue

SEE ALSO:

computeExpression Transformation

computeRelative Transformation
You can use the computeRelative transformation to analyze trends in your data by adding derived fields to a dataset based on values
in other rows. For example, to analyze sales pipeline trends, create derived fields that calculate the number of days an opportunity
remains in each stage. You can also calculate the changes to the opportunity amount throughout the stages of the opportunity.

Note: The computeExpression and computeRelative transformations are similar, but the computeExpression transformation
performs calculations based on fields within the same row. The computeRelative transformation performs calculations based on
the same field in other rows—particularly the current, first, previous, or next rows.

30

computeRelative TransformationDataflow Transformation Reference

https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format/bi_ext_data_schema_reference.htm

When you define a computeRelative transformation, you specify a source transformation as the input, partition the records, and sort the
records within each partition. For example, you can use sfdcDigest to extract opportunity history records, and then use computeRelative
to calculate changes in each opportunity over time. You can partition opportunity records by opportunity ID, and then chronologically
sort records within each partition to correctly identify the previous and next values.

Example: Let’s look at an example. To perform trending analysis on the sales pipeline, create a dataflow that contains the following
transformations.

sfdcDigest transformation
Extracts the following data from the OpportunityHistory object.

computeRelative transformation
Performs the following tasks:

• Partitions the extracted records by opportunity ID.

• Within each partition, sorts the extracted records by CreatedDate in ascending order. Sorting by CreatedDate ensures that
the changes that occur for each opportunity are listed in chronological order.

• Adds the following derived fields to the final dataset.

OpportunityCreatedDate
Determines the date that the opportunity was first created. You can use this date with the actual close date to determine
the number of days required to close the sale. The goal is to shorten the sales cycle to recognize revenue.

ValidToDate
Determines the date to which the state of the opportunity is valid. You can use this field to determine the time period
for which the opportunity details are valid in each record.

AmountPrev
Determines the previous amount of the opportunity. You can use this field to determine if the values of opportunities
are increasing or decreasing, which can affect whether you hit your sales targets.

CloseDatePrev
Determines the previous expected close date for the opportunity. You can use this field to analyze how the expected
close date changes over the sales cycle of the opportunity. If the expected close date keeps getting pushed out, identify
the issues that are causing the longer sales cycle.

sfdcRegister transformation
Registers the final dataset that contains the extracted fields from the sfdcDigest transformation and the derived fields from
computeRelative transformation.

31

computeRelative TransformationDataflow Transformation Reference

You create the following dataflow definition.

{
"extractOppHistory": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityHistory",
"fields": [

{"name": "OpportunityId"},
{"name": "CreatedDate"},
{"name": "StageName"},
{"name": "Amount"},
{"name": "CloseDate"}

]
}

},
"computeTrending": {

"action": "computeRelative",
"parameters": {

"partitionBy": ["OpportunityId"],
"orderBy": [

{
"name":"CreatedDate",
"direction":"asc"

}
],
"computedFields": [

{
"name": "OpportunityCreatedDate",
"expression": {

"sourceField": "CreatedDate",
"offset": "first()",
"default": "current()"

}
},
{

"name": "ValidToDate",
"expression": {

"sourceField": "CreatedDate",
"offset": "next()",
"default": "3000-01-01T00:00:00.000Z"

}
},
{

"name": "AmountPrev",
"expression": {

"sourceField": "Amount",
"offset": "previous()",
"default": "0"

}
},
{

"name": "CloseDatePrev",
"expression": {

"sourceField": "CloseDate",

32

computeRelative TransformationDataflow Transformation Reference

"offset": "previous()",
"default": "01/01/1970"

}
}

],
"source": "extractOppHistory"

}
},
"Register_OppportunityHistory_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "SalesPipelineTrending",
"name": "Sales Pipeline Trending",
"source": "computeTrending"

}
}

}

The dataflow runs and creates the following dataset.

Notice that Wave partitions the records by opportunity ID and then sorts the records in ascending order based on the CreatedDate
field within each partition. Wave can now use the previous and next rows within each partition to determine changes in field
values in the dataset.

IN THIS SECTION:

computeRelative Parameters

When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

computeRelative Parameters
When you define a computeRelative transformation, you set the action attribute to computeRelative. You also specify the
parameters for the input source, partition-by field, sort field, and derived field definitions.

You can specify parameters in the following sections of the computeRelative node.

Parameters
The following table describes the parameters in the parameters section.

33

computeRelative TransformationDataflow Transformation Reference

ValueRequired?Parameter

Node in the dataflow definition file that identifies the input source for this
transformation.

Yessource

API name of the field used to partition the records in the dataset. Specify one
partition-by field only.

YespartitionBy

Field used to sort the records within each partition and the sort order: ascending
(asc) or descending (desc). Specify one sort field only.

YesorderBy

Example:

"orderBy": [
{

"name":"CreatedDate",
"direction":"asc"

}
]

A list of definitions for derived fields.YescomputedFields

Example:

"computedFields": [
{

"name": "OpportunityCreatedDate",
"expression": {

"sourceField": "CreatedDate",
"offset": "first()",
"default": "current()"

}
},
{

"name": "AmountPrev",
"expression": {

"sourceField": "Amount",
"offset": "previous()",
"default": "0"

}
}

]

See computedFields.

computedFields
The following table describes the attributes in the computedFields section.

ValueRequired?Parameter

API name of the derived field to add to the dataset. The name must be unique
in the dataset.

Yesname

34

computeRelative TransformationDataflow Transformation Reference

ValueRequired?Parameter

Note: If the name is not unique, the dataflow fails to run.

Expression attributes used to calculate the value for the derived field. The
expression can be based on input fields or other derived fields in the
transformation.

Yesexpression

Example:

"expression": {
"sourceField": "CloseDate",
"offset": "previous()",
"default": "01/01/1970"

See expression.

expression
The following table describes the attributes in the expression section.

ValueRequired?Parameter

API name of the input field from the source node that’s used in the expression.YessourceField

The function used in the expression. You can use the following functions:

current()
Gets the value from the current record.

Yesoffset

Example:

"offset": "current()"

first()
Gets the value from the first record in the partition, like the first CreateDate
for an opportunity.

Example:

"offset": "first()"

next()

Gets the value from the next record.

Example:

"offset": "next()"

previous()
Gets the value from the previous record.

Example:

"offset": "previous()"

35

computeRelative TransformationDataflow Transformation Reference

ValueRequired?Parameter

Note: Derived fields are computed in the order that they’re defined. The
calculation of a derived field can be based on the value from another
derived field as long as it has already been defined. For example, next()
can’t access the value of a derived field in the next row.

Tip: To get the correct results when using the previous() and
next() functions, the computeRelative transformation requires you
to sort the records.

The default value if one can’t be calculated. For example, you can specify a default
value when no previous or next value exists. You can insert a constant value or
current() as a default value.

Yes (for numeric fields
only)

default

Examples:

"default": "3000-01-01T00:00:00.000Z"

"default": "current()"

delta Transformation
The delta transformation calculates changes in the value of a measure column in a dataset over a period of time. The delta transformation
generates an output column in the dataset to store the delta for each record. Create deltas to make it easier for business analysts to
include them in queries.

The delta transformation calculates each delta value by comparing the value in each record with the value in the previous record. Because
records might not be sorted, the delta transformation orders the records before computing the delta values. To do this, the transformation
sorts the data by the specified dimension, and then by the specified epoch date column.

Note: When Wave Analytics processes dates, it creates the following epoch date columns for each date processed:

DescriptionEpoch Time Column

For example, if the date column is CloseDate, the generated
epoch second column is CloseDate_sec_epoch. This column

<date_column_name>_sec_epoch

provides the number of seconds that have elapsed since January
1, 1970 (midnight UTC/GMT).

For example, if the date column is CloseDate, the generated
epoch day column is CloseDate_day_epoch. This column

<date_column_name>_day_epoch

provides the number of days that have elapsed since January
1, 1970 (midnight UTC/GMT).

Example: Let’s look at an example. You want to create an OppHistoryDelta dataset that contains opportunity history from the
OpportunityHistory object and also calculates the deltas for opportunity amounts.

The OpportunityHistory object contains the following data.

36

delta TransformationDataflow Transformation Reference

AmountStageNameCloseDateOpportunityId

100New1/1/20141

100New1/1/20142

200ClosedWon2/1/20142

100ClosedWon3/1/20141

You create the following dataflow definition.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityHistory",
"fields": [

{ "name": "OpportunityId" },
{ "name": "CloseDate" },
{ "name": "StageName" },
{ "name": "Amount" }

]
}

},
"Calculate_Delta": {

"action": "delta",
"parameters": {

"dimension": "OpportunityId",
"epoch": "CloseDate_day_epoch",
"inputMeasure": "Amount",
"outputMeasure": "DeltaAmount",
"source": "Extract_Opportunities"

}
},
"Register_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppHistoryDelta",
"name": "OppHistoryDelta",
"source": "Calculate_Delta"

}
}

}

To calculate the delta values for each opportunity amount, the delta transformation sorts the records by the dimension
(OpportunityId) first, and then by time (CloseDate_day_epoch) as shown here.

AmountStageNameCloseDateOpportunityID

100New1/1/20141

100ClosedWon3/1/20141

37

delta TransformationDataflow Transformation Reference

AmountStageNameCloseDateOpportunityID

100New1/1/20142

200ClosedWon2/1/20142

After the records are sorted, for each dimension (OpportunityId), the transformation compares the previous value to the next value
to determine the delta for each record. The transformation creates the following dataset.

DeltaAmountAmountStageNameCloseDateOpportunityId

0100New1/1/20141

0100ClosedWon3/1/20141

0100New1/1/20142

100200ClosedWon2/1/20142

For the first record of each dimension, the transformation inserts ‘0’ for the delta value.

Note: If an opportunity contains multiple changes on the same day, you must sort the records on a shorter time interval.
In this case, sort on CloseDate_sec_epoch column. Otherwise, records might not be sorted correctly, which means delta
values will be incorrect.

IN THIS SECTION:

delta Parameters

When you define a delta transformation, you set the action attribute to delta and specify the parameters.

delta Parameters
When you define a delta transformation, you set the action attribute to delta and specify the parameters.

The following table describes the input parameters:

ValueRequired?Parameter

Dimension column in the dataset used to
sort records when calculating the delta
values.

Yesdimension

Epoch date column in the dataset used to
sort records within each dimension when
calculating delta values.

Yesepoch

Measure column on which you want to
calculate the delta.

YesinputMeasure

Name of the output column that contains
the delta value.

YesoutputMeasure

38

delta TransformationDataflow Transformation Reference

ValueRequired?Parameter

Node in the dataflow definition file that
contains the dataset to which you want to
add the delta column.

Yessource

SEE ALSO:

delta Transformation

dim2mea Transformation
The dim2mea transformation creates a new measure based on a dimension. The transformation adds the new measure column to the
dataset. The transformation also preserves the dimension to ensure that existing lenses and dashboards don’t break if they use the
dimension.

If the transformation cannot create a measure from a dimension, the transformation populates the measure with the specified default
value. If no default value is provided, the transformation inserts ‘0.’

Example: Let’s look at an example. Your Opportunity object contains a custom text field called StageVal__c, which contains the
opportunity amount at a particular stage. Because this is a text field, Wave Analytics loads this data as a dimension. However, you’d
like to create a measure from this dimension to enable users to perform calculations on stage amount.

You create the following dataflow definition.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "StageVal__c" }

]
}

},
"Create_Measure_From_Dimension": {

"action": "dim2mea",
"parameters": {

"dimension": "StageVal__c",
"measure": "StageValue",
"measureDefault": "0",
"measureType": "long",
"source": "Extract_Opportunities"

}
},
"Register_The_Dataset": {

"action": "sfdcRegister",
"parameters": {

39

dim2mea TransformationDataflow Transformation Reference

"alias": "OpportunitiesWithConvertedMeasure",
"name": "OpportunitiesWithConvertedMeasure",
"source": "Create_Measure_From_Dimension"

}
}

}

IN THIS SECTION:

dim2mea Parameters

When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

dim2mea Parameters
When you define a dim2mea transformation, you set the action attribute to dim2mea and specify the parameters.

The following table describes the input parameters:

ValueRequired?Parameter

Dimension column in the dataset from
which you want to create the measure.

Yesdimension

Name of the output measure. This column
name must be unique within the dataset.

Yesmeasure

Do not use the same name as the dimension
because the transformation preserves the
dimension in the dataset.

Default value for the measure if the
transformation is unable to create a measure
from a dimension.

YesmeasureDefault

Type of measure. Valid value: “long”YesmeasureType

Node in the dataflow definition file that
contains the dataset to which you want to
add the measure.

Yessource

SEE ALSO:

dim2mea Transformation

edgemart Transformation
The edgemart transformation gives the dataflow access to an existing, registered dataset, which can contain Salesforce data, external
data, or a combination of the two. Use this transformation to reference a dataset so that its data can be used in subsequent transformations
in the dataflow. You can use this transformation and the augment transformation together to join an existing dataset with a new dataset.

40

edgemart TransformationDataflow Transformation Reference

Example: Let’s look at an example. You would like to compare the final sales amount against the opportunity amount to determine
if heavy discounts were offered to close deals. You previously created and registered the FinalSales dataset. The FinalSales dataset
contains the final sale amount of each opportunity that was closed and won.

Table 1: FinalSales Dataset

SaleAmountStageNameUpdateDateOppID

100,000ClosedWon1/1/20141

150,000ClosedWon11/1/20132

200,000ClosedWon2/1/20143

You would now like to create a dataset that contains opportunity information from the Opportunity object. Then, you would like
to join the data from the existing FinalSales dataset with the Opportunity dataset.

You create the following dataflow definition.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" }

]
}

},
"Extract_Final_Sales_Data": {

"action": "edgemart",
"parameters": { "alias": "FinalSales" }

},
"Combine_Opportunities_FinalSales": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunities",
"left_key": ["Id"],
"relationship": "Opportunity",
"right": "Extract_Final_Sales_Data",
"right_key": ["OppID"],
"right_select": ["SaleAmount"]

}
},
"Register_Opportunity_FinalSales_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OpportunityVersusFinalSales",
"name": "OpporunityVersusFinalSales",
"source": "Combine_Opportunities_FinalSales"

}
}

}

41

edgemart TransformationDataflow Transformation Reference

IN THIS SECTION:

edgemart Parameters

When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

edgemart Parameters
When you define an edgemart transformation, you set the action attribute to edgemart and specify the parameters.

The following table describes the input parameter:

ValueRequired?Parameter

API name of the dataset from which you
want to extract data. To determine the API

Yesalias

name of a dataset, edit the dataset and view
the system name.

SEE ALSO:

edgemart Transformation

filter Transformation
The filter transformation removes records from an existing dataset. You define a filter condition that specifies which records to retain in
the dataset.

Example: Let’s look at an example. You would like to create a dataset that contains only opportunities that were Closed Won.
First, you extract all opportunities from the Opportunity object. Next, you filter the records so that you only include opportunities
with a Closed Won stage name.

You create the following dataflow definition.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Filter_Opportunities": {

"action": "filter",
"parameters": {

"filter": "StageName:EQ:Closed Won",

42

filter TransformationDataflow Transformation Reference

"source": "Extract_Opportunities"
}

},
"Register_My_Won_Oppportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "MyWonOpportunities",
"name": "MyWonOpportunities",
"source": "Filter_Opportunities"

}
}

}

IN THIS SECTION:

filter Parameters

When you define a filter transformation, you set the action attribute to filter and specify the parameters.

filter Expression Syntax

You create a filter expression in the filter transformation based on one or more dimensions in a dataset.

filter Parameters
When you define a filter transformation, you set the action attribute to filter and specify the parameters.

The following table describes the input parameters:

ValueRequired?Parameter

Filter expression that specifies which records
to include in the new dataset. See filter
Expression Syntax.

Yesfilter

Node in the dataflow definition file that
contains the dataset that you want to filter.

Yessource

SEE ALSO:

filter Transformation

filter Expression Syntax
You create a filter expression in the filter transformation based on one or more dimensions in a dataset.

Note: String comparisons in a filter expression are case-sensitive.

You can use the following types of filter expressions:

DescriptionFilter Expression Syntax

True if the dimension and value are equal.dim:EQ:value

43

filter TransformationDataflow Transformation Reference

DescriptionFilter Expression Syntax

Example: "filter": "StageName:EQ:Closed Won"

True if the left dimension falls within the specified range between
val0 and val1.

dim:R:val0:val1

Example: "filter": "EmployeeId:R:100:1000"

True if the dimension is greater than or equal to the value based
on binary sort order. For example, this is true when the dimension
is 'City' and the value is 'Anderson' because ' 'City' > 'Anderson').

dim:R:val

Example: "filter": "LastName:R:Li"

True if the dimension is less than or equal to the value based on
binary sort order.

dim:R::val

Example: "filter": "LastName:R::Levy"

True if the dimension and value are not equal.dim:N:val

Example: "filter": "RoleName:N:Manager"

True if the dimension equals values val1 or val2. This filter
expression uses the logical OR operator (|). You can compare the

dim:EQ:val1|val2

dimension value against more than two values. For example, to
compare against three values, use the following syntax:
dim1:EQ:val1|val2|val3.

Example: "filter": "Lead
Status:EQ:Open|Contacted"

True if dimension dim1 equals value val1 and dimension dim2
equals value val2. This filter expression uses the logical AND

dim1:EQ:val1,dim2:EQ:val2

operator (,). You can compare more than two dimensions. For
example, to compare three dimensions, use the following syntax:
dim1:EQ:val1,dim2:EQ:val2,dim3:EQ:val3.

Example: "filter": "Lead
Status:EQ:Qualified,Rating:EQ:Hot"

SEE ALSO:

filter Transformation

flatten Transformation
The flatten transformation flattens hierarchical data. For example, you can flatten the Salesforce role hierarchy to implement row-level
security on a dataset based on the role hierarchy.

44

flatten TransformationDataflow Transformation Reference

When you configure the flatten transformation to flatten a hierarchy, you specify the field that contains every node in the hierarchy and
the field that contains their corresponding parent based on the hierarchy. The flatten transformation generates one record for each
hierarchy node, which we refer to as the “self ID.” Each record contains two generated columns that store the hierarchy for each self ID
node. One column contains a comma-separated list of all ancestors for each node in the hierarchy. The other column contains the
hierarchy path.

See the Roles and RolePath columns in the following flattened dataset to see how ancestors are stored.

RolePathRolesParent Role IDRole NameRole ID (Self ID)

\10\20\3010, 20, 3010Salesperson 11

\10\20\3010, 20, 3010Salesperson 22

\11\20\3011, 20, 3011Salesperson 33

\20\3020, 3020Regional Manager 110

\20\3020, 3020Regional Manager 211

\303030Vice President 120

\303030Vice President 221

Not applicableNot applicableNot applicableCEO30

You can also configure the flatten transformation to include the self ID node in the generated hierarchy columns. The following dataset
shows the self ID in bold.

RolePathRolesParent Role IDRole NameRole ID (Self ID)

\1\10\20\301, 10, 20, 3010Salesperson 11

\2\10\20\302,10, 20, 3010Salesperson 22

\3\11\20\303,11, 20, 3011Salesperson 33

\10\20\3010,20, 3020Regional Manager 110

\11\20\3011,20, 3020Regional Manager 211

\20\3020,3030Vice President 120

\21\3021,3030Vice President 221

3030Not applicableCEO30

Example: Let’s look at an example. You want to create a dataset that contains all opportunities. For each opportunity, you want
to include user and role information about the opportunity owner. Also, to implement row-level security based on the role hierarchy,
each opportunity record must also contain a list of all ancestors above each opportunity owner based on the role hierarchy. To
generate the list of ancestors, use the flatten transformation to flatten the role hierarchy.

45

flatten TransformationDataflow Transformation Reference

You create the following dataflow definition file:

{
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Extract_User": {

"action": "sfdcDigest",
"parameters": {

"object": "User",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Department" },
{ "name": "UserRoleId" }

]
}

},
"Extract_UserRole": {

"action": "sfdcDigest",
"parameters": {

"object": "UserRole",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "ParentRoleId" }

]
}

},
"Flatten_UserRole": {

"action": "flatten",
"parameters": {

"source": "Extract_UserRole",
"self_field": "Id",
"parent_field": "ParentRoleId",
"multi_field": "Roles",
"path_field": "RolePath",
"include_self_field":false

}
},
"Augment_User_FlattenUserRole": {

"action": "augment",
"parameters": {

46

flatten TransformationDataflow Transformation Reference

"left": "Extract_User",
"left_key": ["UserRoleId"],
"relationship": "Role",
"right": "Flatten_UserRole",
"right_key": ["Id"],
"right_select": [

"Id",
"Name",
"Roles",
"RolePath"

]
}

},
"Augment_Opportunity_UserWithRoles": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunity",
"left_key": ["OwnerId"],
"right": "Augment_User_FlattenUserRole",
"relationship": "Owner",
"right_select": [

"Name",
"Department",
"Role.Id",
"Role.Name",
"Role.Roles",
"Role.RolePath"

],
"right_key": ["Id"]

}
},
"Register_OpportunityWithRoles_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment_Opportunity_UserWithRoles",
"rowLevelSecurityFilter": "'Owner.Role.Roles' == \"$User.UserRoleId\" || 'OwnerId'

== \"$User.Id\""
}

}
}

To flatten the Salesforce role hierarchy, the flatten transformation uses the following input fields from the UserRole object.

Id
Id identifies each node in the Salesforce role hierarchy.

ParentRoleId
ParentRoleId identifies the parent as defined in the role hierarchy.

After traversing through each parent-child relationship in the UserRole object, the flatten transformation generates one record for
each role ID. Each record contains all ancestor roles for each role in the hierarchy. The flatten transformation generates two output
columns—Roles and RolePath—to store all ancestor roles for each role.

47

flatten TransformationDataflow Transformation Reference

IN THIS SECTION:

flatten Parameters

When you define a flatten transformation, you set the action attribute to flatten and specify the parameters.

flatten Parameters
When you define a flatten transformation, you set the action attribute to flatten and specify the parameters.

The following table describes the input parameters:

ValueRequired?Parameter

Indicates whether to include the self ID node in the generated
multi_field and path_field columns. Valid values are false
(default) and true.

Noinclude_self_id

Name of the input field that identifies each node in the hierarchy.Yesself_field

Name of the input field that identifies the direct parent of each
node in the hierarchy. For example, the Regional Manager 1 role
is the parent of the Salesperson 1 role in a role hierarchy.

Yesparent_field

Name of the multi-value output field that contains a list of all
ancestors in the hierarchy, in order from the lowest to the highest

Yesmulti_field

level. The flatten transformation creates this field and generates
the list of ancestors for each node in the hierarchy. For example,
for Salesperson 1 role, the hierarchy of ancestors is: Sales
Manager 1, Regional Manager 1, Vice
President 1, CEO.

A string representation of the multi-field field, separated by
backslashes. This output field contains the hierarchical path of all

Yespath_field

ancestors in the hierarchy, in order from the lowest to the highest
level. The flatten transformation creates this field and generates
the ancestry path for each node in the hierarchy. For example, for
a salesperson role in a role hierarchy, the value is: Sales
Manager 1\Regional Manager 1\Vice President
1\CEO.

Node in the dataflow definition file that contains the hierarchical
data that you want to flatten. This node is the input source for this

Yessource

transformation and it must contain the input fields mapped to
self_field and parent_field.

48

flatten TransformationDataflow Transformation Reference

Note: By default, the multi_field and path_field fields are created as system fields, which aren’t visible in the user interface. To
make the fields appear in the user interface, set the IsSystemField metadata attribute to false for each field in the flatten
transformation. For more information about metadata attributes, see Overriding Metadata Generated by a Transformation.

SEE ALSO:

flatten Transformation

sfdcDigest Transformation
The sfdcDigest transformation generates a dataset based on data that it extracts from a Salesforce object. You specify the Salesforce
object and fields from which to extract data. You might choose to exclude particular fields that contain sensitive information or that
aren’t relevant for analysis.

When you upload the dataflow definition file, Wave Analytics validates access to Salesforce objects and fields based on the user profile
of the user who uploads the file. If the user profile does not have read access to a field or object, the upload fails.

At run time, Wave Analytics runs the dataflow as the Integration User. Wave Analytics validates access to Salesforce objects and fields
based on the user profile of the Integration User. For example, if the dataflow tries to extract data from a custom field on which the
Integration User does not have read access, the dataflow job fails.

Note: The Integration User is a preconfigured user that is created when Wave Analytics is enabled in your organization. If you or
the Integration User need permission on a Salesforce object or field, ask the administrator to grant access.

For more information about preconfigured users in Wave Analytics, see the Wave Analytics Security Implementation Guide.

Example: Let’s look at an example. You would like to create a dataset that contains all opportunities from the Opportunity object.

You create the following dataflow definition.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" },
{ "name": "OpportunitySupportTeamMembers__c" }

]
}

},
"Register_Opportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract_Opportunities"

}

49

sfdcDigest TransformationDataflow Transformation Reference

}
}

Considerations When Using the sfdcDigest Transformation
• Consider dataset storage limits when extracting data. For example, a dataset can contain a maximum of 5,000 fields, so be selective

when choosing fields. See Wave Analytics Limits.

• The sfdcDigest transformation runs a SOQL query to extract data from a Salesforce object, and so is subject to SOQL limits. If the
query exceeds any of these limits, it may return no results or cause the dataflow job to fail. For example, The length of the SOQL
query cannot exceed 20,000 characters. To reduce the SOQL query length, consider breaking up the extract into two or more
sfdcDigest transformations and then use the augment transformation to combine the results. For example, you might create one
sfdcDigest transformation to extract half of the fields and create another sfdcDigest transformation to extract the remaining fields.
See SOQL and SOSL Limits.

IN THIS SECTION:

Filtering Records Extracted from a Salesforce Object

Add a filter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

Overriding Salesforce Field Metadata

You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Wave Analytics can add a default value to records that have missing values for a field.

Unsupported Salesforce Objects and Fields in Wave

The sfdcDigest transformation can’t extract data from all Salesforce objects and fields. Consider these limitations before configuring
the extraction of Salesforce objects.

sfdcDigest Parameters

When you define an sfdcDigest transformation, you set the action attribute to sfdcDigest and specify the parameters for the
object and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce
object.

Filtering Records Extracted from a Salesforce Object
Add a filter to the sfdcDigest transformation to extract a subset of all records from a Salesforce object. You can filter records to reduce
the number of extracted and processed records, exclude records that contain irrelevant or sensitive data, and increase dataflow
performance.

A filter consists of one or more filter conditions, where each filter condition compares a field value to a value. For example, Amount
>= 1000000. You can also apply SOQL functions on the field value in a filter condition, like CALENDAR_YEAR(CreatedDate)
= 2011. You can add multiple filter conditions using logical operators AND, OR, and NOT. You can also use a backslash (\) to escape
double quotes included in strings.

The sfdcDigest transformation extracts all records for which the filter is true. If you configured the sfdcDigest transformation for incremental
extraction, the filter applies to data extracted during the incremental run only—Wave Analytics doesn't apply the filter to records that
were previously loaded into the dataset. If you add an invalid filter, the dataflow fails at run time.

For each instance of sfdcDigest, you can use one of the following types of filters:

• Structured filter

50

sfdcDigest TransformationDataflow Transformation Reference

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_limits.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_soslsoql.htm

• Advanced filter

Tip: Are you trying to decide whether to use a filter in the sfdcDigest transformation or use a filter transformation? Use a filter
transformation to filter records at any point in the dataflow. For example, you can add it after the dataflow joins two datasets.
However, to reduce the number of rows processed in the dataflow and optimize dataflow performance, add the filter closest to
the point at which records are extracted—when possible, add the filter in the sfdcDigest transformation.

IN THIS SECTION:

Structured Filter in sfdcDigest Transformation

You define a structured filter using JSON syntax.

Advanced Filter in sfdcDigest Transformation

You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter
only if you are familiar with SOQL.

SEE ALSO:

sfdcDigest Transformation

Structured Filter in sfdcDigest Transformation
You define a structured filter using JSON syntax.

A structured filter uses the following JSON syntax for each filter condition.

{
"field": "<field name>",
"operator": "<operator>",
"value": "<value>"|"["<value 1>", "<value 2>"]",
"isQuoted": true|false}

The value can be a number, date, string, list of strings, or date literal. Wave Analytics automatically quotes strings unless you set isQuoted
to true, which indicates that the string is already quoted.

You can use one of the following operators in a filter condition.

CommentOperator

Filter condition is true if the value in the field equals the specified
value. String comparisons using the equals operator are
case-insensitive.

=

Example:

"filterConditions": [
{
"field": "OwnerId",
"operator": "=",
"value": "a07B00000012HYu"
}

]

51

sfdcDigest TransformationDataflow Transformation Reference

https://developer.salesforce.com/docs/atlas.en-us.206.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

CommentOperator

Filter condition is true if the value in the field does not equal the
specified value.

!=

Example (using backslashes to escape double quotes in a string
value):

"filterConditions": [
{
"field": "Nickname__c",
"operator": "!=",
"value": "\"Sammy\""
}

]

Filter condition is true if the value in the field is greater than the
specified value.

>

Example:

"filterConditions": [
{
"field": "Amount",
"operator": ">",
"value": "100000"
}

]

Filter condition is true if the value in the field is less than the
specified value.

<

Example (using a date literal):

"filterConditions": [
{
"field": "CloseDate",
"operator": "<",
"value": "THIS_MONTH",
"isQuoted": false
}

]

Filter condition is true if the value in the field is greater than or
equal to the specified value.

>=

Example:

"filterConditions": [
{
"field": "Amount",
"operator": ">=",
"value": "100000"

52

sfdcDigest TransformationDataflow Transformation Reference

CommentOperator

}
]

Filter condition is true if the value in the field is less than or equal
to the specified value.

<=

Example (using a SOQL function):

"filterConditions": [
{
"field": "CALENDAR_YEAR (CreatedDate)",
"operator": "<=",
"value": "2015",
"isQuoted": true
}

]

Filter condition is true if the value in the field matches the specified
value. The LIKE operator is similar to the LIKE operator in SQL; it

LIKE

provides a mechanism for matching partial text strings and supports
wildcards.

• The % and _ wildcards are supported for the LIKE operator.

• The % wildcard matches zero or more characters.

• The _ wildcard matches exactly one character.

• The LIKE operator is supported for string fields only.

• The LIKE operator performs a case-insensitive match.

• The LIKE operator supports escaping of special characters %
or _. Use a backslash (\) to escape special characters.

Example:

"filterConditions": [
{
"field": "FirstName",
"operator": "LIKE",
"value": "Chris%"
}

]

Filter condition is true if the value in the field equals any one of the
values in the specified list. You can specify a quoted or non-quoted
list of values. If the list is quoted, set isQuoted to true.

IN

Example:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",

53

sfdcDigest TransformationDataflow Transformation Reference

CommentOperator

"value": ["Closed Won", "Closed Lost"]
}

]

Filter condition is true if the value in the field does not equal any
of the values in the specified list.

NOT IN

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "NOT IN",
"value": ["California", "New York"]
}

]

For picklist or multi-select picklist fields only. Filter condition is true
if the value in the picklist field includes the specified value.

INCLUDES

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "INCLUDES",
"value": ["California"]
}

]

For picklist or multi-select picklist fields only. Filter condition is true
if the value in the picklist field excludes the specified value.

EXCLUDES

Example:

"filterConditions": [
{
"field": "BillingState",
"operator": "EXCLUDES",
"value": ["California", "New York"]
}

]

Let’s look at a few examples of structured filters.

Example: Let’s look at an example with a basic structured filter. To perform pipeline analysis on opportunities in fiscal quarter 2
of fiscal year 2015, you create this dataflow definition file to create the relevant dataset.

{
"Extract_Filtered_Opportunities": {

54

sfdcDigest TransformationDataflow Transformation Reference

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" },
{ "name": "SystemModstamp" }

],
"filterConditions": [

{
"field": "FiscalYear",
"operator": "=",
"value": "2015"

},
{

"field": "FiscalQuarter",
"operator": "=",
"value": "2"

}
]

}
},
"Register_Opportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "Opportunities_2015Q2",
"name": "Opportunities_2015Q2",
"source": "Extract_Filtered_Opportunities"

}
}

}

Note: If you do not specify a logical operator for multiple filter conditions—as is the case in this example—Wave Analytics
applies AND between the conditions.

Example: Let's look at an example of a structured filter with a logical operator. To help forecast expected revenue, you create
this dataflow to view all opportunities that have either closed or have greater than 90% probability of closing.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },

55

sfdcDigest TransformationDataflow Transformation Reference

{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "Probability" },
{ "name": "FiscalYear" },
{ "name": "FiscalQuarter" }

],
"filterConditions": [

{
"operator": "OR",
"conditions": [

{
"field": "StageName",
"operator": "=",
"value": "Closed Won"

},
{

"field": "Probability",
"operator": ">=",
"value": "90"

}
]

}
]

}
},
"Register_Opportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OpportunitiesExpectedToWin",
"name": "OpportunitiesExpectedToWin",
"source": "Extract_Opportunities"

}
}

}

Example: Finally, let's look at an example of a structured filter with nested logical operators. You create this dataflow to view all
opportunities that closed in the current fiscal quarter and are owned by either one of your two direct reports.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "OwnerId" },
{ "name": "FiscalYear" },

56

sfdcDigest TransformationDataflow Transformation Reference

{ "name": "FiscalQuarter" }
],
"filterConditions": [

{
"operator": "AND",
"conditions": [

{
"field": "CloseDate",
"operator": "=",
"value": "THIS_FISCAL_QUARTER",
"isQuoted": false

},
{

"operator": "OR",
"conditions": [

{
"field": "OwnerId",
"operator": "=",
"value": "00540000000HfUz"

},
{

"field": "OwnerId",
"operator": "=",
"value": "00540000000HfV4"

}
]

}
]

}
]

}
},
"Register_Opportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "DirectReport_Opportunities",
"name": "DirectReport_Opportunities",
"source": "Extract_Opportunities"

}
}

}

Advanced Filter in sfdcDigest Transformation
You define an advanced filter using a Salesforce Object Query Language (SOQL) WHERE clause expression. Use an advanced filter only
if you are familiar with SOQL.

Example: Let’s look at an example of an advanced filter. You want to extract only opportunity records that are owned by a specific
user and that have either high value or a high probability of closing. You create this dataflow.

{
"Extract_Filtered_Opportunities": {

"action": "sfdcDigest",

57

sfdcDigest TransformationDataflow Transformation Reference

"parameters": {
"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AccountId" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "Probability" },
{ "name": "OwnerId" }

],
"complexFilterConditions": "OwnerId = '00540000000HfUz' AND (Amount > 100000

OR Probability > 75)"
}

},
"Register_Opportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "FilteredOpportunities",
"name": "FilteredOpportunities",
"source": "Extract_Filtered_Opportunities"

}
}

}

Overriding Salesforce Field Metadata
You can override the field metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data appear
differently in a dataset. For example, Wave Analytics can add a default value to records that have missing values for a field.

You can add the following field parameters to the sfdcDigest transformation to override the field metadata:

• defaultValue

• type

• fiscalMonthOffset

• isYearEndFiscalYear

• firstDayOfWeek

• isMultiValue

• multiValueSeparator

• precision

• scale

For a description of each of these field parameters, see Field Parameters. For information about using metadata attributes to configure
dates, see Date Handling in Datasets.

Example: Let’s look at an example. You would like to override metadata extracted from the Opportunity object.

You add the bold text in the following dataflow definition to override field metadata from the Opportunity object.

{
"Extract_Opportunities": {

58

sfdcDigest TransformationDataflow Transformation Reference

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{

"name": "Amount",
"defaultValue":0
"precision":18
"scale":2

},
{ "name": "StageName" },
{

"name": "CloseDate",
"fiscalMonthOffset":9,
"firstDayOfWeek":2,
"isYearEndFiscalYear":true

},
{ "name":"AccountId" },
{ "name":"OwnerId" },
{

"name": "OpportunitySupportTeamMembers__c",
"type":"Text",
"isMultiValue":true,
"multiValueSeparator":","
"precision":255

}
]

}
},
"Register_Opportunities_Dataset":{

"action":"sfdcRegister",
"parameters":{

"alias":"Opportunities",
"name":"Opportunities",
"source":"Extract_Opportunities"

}
}

}

SEE ALSO:

sfdcDigest Transformation

Unsupported Salesforce Objects and Fields in Wave
The sfdcDigest transformation can’t extract data from all Salesforce objects and fields. Consider these limitations before configuring the
extraction of Salesforce objects.

For information about all Salesforce objects and fields, see the Object Reference for Salesforce and Force.com.

59

sfdcDigest TransformationDataflow Transformation Reference

https://developer.salesforce.com/docs/atlas.en-us.206.0.object_reference.meta/object_reference/

Unsupported Objects
The sfdcDigest transformation can’t extract data from these Salesforce objects.

• ActivityMetric

• ApexEmailNotification

• AuthProvider

• BrandTemplate

• ChatterConversation

• ChatterConversationMember

• ChatterMessage

• ConnectedApplication

• ContentFolderLink

• ContentWorkspace

• ContentWorkspaceDoc

• ContentWorkspaceMember

• ContentWorkspacePermission

• CopyExport

• CorsWhitelistEntry

• DataAssessmentFieldMetric

• DataAssessmentMetric

• DataAssessmentValueMetric

• DataHubSetupData

• DataHubSetupDefinition

• DirectMessage

• DirectMessageFeed

• DirectMessageMember

• EmailCapture

• EmailDomainKey

• EmailServicesAddress

• EmailServicesFunction

• EmailTemplate

• EnvironmentHub

• EnvironmentHubInvitation

• EnvironmentHubMemberRel

• EventType

• EventTypeParameter

• FeedPollChoice

• FeedPollVote

• KnowledgeArticleVersion

• LeadChangeEvent

• LoginGeo

60

sfdcDigest TransformationDataflow Transformation Reference

• LoginHistory

• ModelFactor

• NetworkActivityAudit

• NetworkModeration

• OrganizationProperty

• OrgWideEmailAddress

• PackageLicense

• PartnerNetworkSyncLog

• ReputationLevel

• ReputationLevelLocalization

• ReputationPointsRule

• SalesforceIqUser

• SampledEntity

• SandOmInfo

• SandOmInfoDetail

• SandOmObserver

• ScoreIntelligence

• SearchPromotionRule

• SecurityCustomBaseline

• SelfServiceUser

• SsoUserMapping

• TenantSecret

• TwoFactorInfo

• TwoFactorTempCode

• UserPackageLicense

• UserProvAccount

• UserProvAccountStaging

• UserProvisioningConfig

• UserProvisioningLog

• UserProvisioningRequest

• UserProvisioningRequestOwnerSharingRule

• UserProvisioningRequestShare

• UserProvMockTarget

• UserRecordAccess

• VerificationHistory

• VoiceUserLine

• VoiceUserLineOwnerSharingRule

• VoiceUserLineShare

• VoiceVendorLine

• VoiceVendorLineOwnerSharingRule

61

sfdcDigest TransformationDataflow Transformation Reference

• VoiceVendorLineShare

• WebLink

• WebLinkLocalization

Note: The sfdcDigest transformation doesn’t support extracts from BigObjects.

The sfdcDigest transformation cannot extract data from external objects created in Salesforce. External objects are similar to custom
objects, except that they map to data located outside Salesforce.

If you include an unsupported or inaccessible object in the sfdcDigest transformation, the dataflow fails at run time with an error message.

Unsupported Fields
The sfdcDigest transformation can’t extract data from these fields.

Unsupported FieldsObject

CleanStatusAccount

ItemIdActionPlanItem

AuthSession • LoginGeoId

• LoginHistoryId

KnowledgeArticleIdCaseArticle

Contact • CanAllowPortalSelfReg

• CleanStatus

ParentIdContentDocument

TitleCustomPerson__p

ParentIdDocumentAttachmentMap

ActivityIdEmailMessage

EmailServicesAddressIdEmailRoutingAddress

EnvironmentHubIdEnvironmentHubMember

EventIdExternalEventMapping

ConnectedApplicationIdInstalledMobileApp

CleanStatusLead

MasterLanguageKnowledgeArticle

Network • CaseCommentEmailTemplateId

• ChangePasswordEmailTemplateId

• ForgotPasswordEmailTemplateId

• WelcomeEmailTemplateId

62

sfdcDigest TransformationDataflow Transformation Reference

Unsupported FieldsObject

Organization • SelfServiceEmailUserOnCaseCreationTemplateId

• SelfServiceNewCommentTemplateId

• SelfServiceNewPassTemplateId

• SelfServiceNewUserTemplateId

• WebToCaseAssignedEmailTemplateId

• WebToCaseCreatedEmailTemplateId

• WebToCaseEmailTemplateId

• WebToLeadEmailTemplateId

PermissionSet • PermissionsEditEvent

• PermissionsEditTask

PermissionSetLicense • MaximumPermissionsEditEvent

• MaximumPermissionsEditTask

Profile • PermissionsEditEvent

• PermissionsEditTask

SsoProviderIdThirdPartyAccountLink

User • LastPasswordChangeDate

• UserPreferencesEnableVoicePilot

RewardIdWorkBadge

RewardFundIdWorkBadgeDefinition

If you include a field with an unsupported field in the sfdcDigest transformation, the dataflow ignores the field.

In addition, Salesforce recommends that you do not extract data from the MayEdit field of the Account object. Extracting data from this
field significantly decreases performance and can cause the dataflow to fail.

Unsupported Field Types
The sfdcDigest transformation can’t extract data from fields with these field types.

• base64

• composite (like address and location)

• data category group reference

• encrypted string

63

sfdcDigest TransformationDataflow Transformation Reference

If you include a field with an unsupported field type in the sfdcDigest transformation, the dataflow ignores the field.

SEE ALSO:

sfdcDigest Transformation

sfdcDigest Parameters
When you define an sfdcDigest transformation, you set the action attribute to sfdcDigest and specify the parameters for the object
and fields that you want to extract. Optionally, you can also specify parameters to filter the records extracted from the Salesforce object.

You can specify parameters in the following sections of the sfdcDigest node: parameters, fields, and filterConditions.

Parameters
The following table describes the parameters in the parameters section.

ValueRequired?Parameter

API name of the Salesforce object from
which you want to extract data. This object

Yesobject

is the input source for this transformation.
The sfdcDigest transformation doesn’t
support extraction from all Salesforce
objects.

Performs an incremental extraction, which
extracts only changes to the Salesforce

Noincremental

object since the last dataflow run. Valid
values: true or false.

Note: Incremental extraction is
available if you have enabled
replication.

Performs a one-time full extraction to
synchronize the data in the dataset with

NofullRefreshToken

data in the Salesforce object. Specify any
value for this parameter.

After the full extraction, the dataflow
performs an incremental extraction each
time thereafter even though the
fullRefreshToken parameter is
included in the dataflow definition. To run
a full extraction again, change the value of
the fullRefreshToken parameter to
a different value.

Note: Incremental extraction is
available if you have enabled
replication.

64

sfdcDigest TransformationDataflow Transformation Reference

ValueRequired?Parameter

An array of names of all fields from which
you want to extract data from the specified

Yesfields

Salesforce object. The sfdcDigest
transformation doesn’t support extraction
from all field types.

See Field Attributes.

A filter that restricts the records extracted
from the specified Salesforce object. The

NofilterConditions

sfdcDigest transformation extracts all
records from the Salesforce object for which
the filter is true. You can specify a structured
or advanced filter.

See Filter Conditions Parameters.

For advanced filters only. A SOQL WHERE
clause used to filter records extracted from
the specified Salesforce object.

NocomplexFilterConditions

Field Attributes
The following table describes the attributes in the fields section. It also describes optional attributes that you can provide to override
the field metadata. You can override the metadata that the sfdcDigest transformation extracts from a Salesforce object to make the data
appear differently in a dataset. For example, Wave Analytics can add a default value to records that have missing values for a field. If you
don’t override the values, Wave Analytics gets the values from Salesforce.

ValueRequired?Attribute

API name of the field in the Salesforce object
that you want to include in the dataset. You
can specify multiple fields.

Yesname

For text and numeric fields that can be null.
Default value that replaces a null value for
the specified field.

NodefaultValue

Wave Analytics field type associated with
the specified field. Valid types are Text,

Notype

Numeric, or Date. Any value, including
numeric values, can be Text. For example,
by default, fiscal quarter from Salesforce
objects is Number. However, you can
change it to Text. Specify a type to override
the type determined by Wave Analytics.

65

sfdcDigest TransformationDataflow Transformation Reference

ValueRequired?Attribute

Example:

"type": "Text"

For date fields only. The difference, in
months, between the first month of the

NofiscalMonthOffset

fiscal year and the first month of the
calendar year (January). For example, if the
fiscal year starts in January, the offset is 0. If
the fiscal year starts in October, the offset is
9.

Example:

"fiscalMonthOffset": 9

Note: This attribute also controls
whether Wave Analytics generates
fiscal date fields. To generate fiscal
date fields, set
fiscalMonthOffset to a
value other than 0.

For more information, see Date Handling in
Datasets.

For date fields only. Indicates whether the
fiscal year is the year in which the fiscal year

NoisYearEndFiscalYear

ends or begins. Because the fiscal year can
start in one calendar year and end in
another, you must specify which year to use
for the fiscal year.

• If true, then the fiscal year is the year in
which the fiscal year ends. The default
is true.

• If false, then the fiscal year is the year in
which the fiscal year begins.

Example:

"isYearEndFiscalYear": true

This field is relevant only when
fiscalMonthOffset is greater than
0.

For more information, see Date Handling in
Datasets.

For date fields only. The first day of the week
for the calendar year and, if applicable, fiscal

NofirstDayOfWeek

66

sfdcDigest TransformationDataflow Transformation Reference

ValueRequired?Attribute

year. Use 0 to set the first day to be Sunday,
1 to set the first day to be Monday, and so
on. Use -1 to set the first day to be on
January 1. The default is -1.

Example:

"firstDayOfWeek": 0

For more information, see Date Handling in
Datasets.

For text fields only. Indicates whether the
specified field has multiple values.

NoisMultiValue

Example:

"isMultiValue": false

For text fields only. Character used to
separate multiple values in the specified

NomultiValueSeparator

field when isMultiValue equals true. This
value defaults to a semicolon (;) if you do
not specify a value and isMultiValue equals
true. Set to null when isMultiValue equals
false.

Example:

"multiValueSeparator": ";"

The maximum number of digits in a numeric
value, or the length of a text value. For

Noprecision

numeric values: Includes all numbers to the
left and to the right of the decimal point
(but excludes the decimal point character).
Value must be between 1 and 18, inclusive.
For text values: Value defaults to 255
characters, and must be between 1 and
32,000 characters, inclusive.

Example:

"precision": 10

The number of digits to the right of the
decimal point in a numeric value. Must be

Noscale

less than the precision value. Value must be
between 0 and 17 characters, inclusive.

67

sfdcDigest TransformationDataflow Transformation Reference

ValueRequired?Attribute

Example:

"scale": 2

Filter Conditions Parameters
The following table describes the structured filter parameters in the filterConditions section. These parameters do not apply
to advanced filters.

ValueRequired?Parameter

The field in the Salesforce object on which
you want to apply a filter condition. Each

Nofield

filter condition in a structured filter uses the
following syntax:

{
"field": "<field name>",
"operator": "<operator>",
"value": "<value>",
"isQuoted": true|false}

The purpose depends on the context.Nooperator

• operator can be used as a
comparison operator–like =, <, and
IN–that compares the field value against
a constant value.

• operator can also be used as a
logical operator (AND, OR, or NOT) that
links multiple filter conditions together.

In the example below, the bold
operator is the logical operator. The
other instances of operator are
comparison operators.

"filterConditions": [
{

"operator": "OR",
"conditions": [

{
"field":

"StageName",
"operator": "=",

"value": "Closed
Won"

},
{

68

sfdcDigest TransformationDataflow Transformation Reference

ValueRequired?Parameter

"field":
"Probability",

"operator":
">=",

"value": "90"
}

]
}

]

The value used in a filter condition.Novalue

Indicates whether you quoted the string
value in a filter condition.

NoisQuoted

Example with quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": "('Closed Won',

'Closed Lost')",
"isQuoted": true
}

]

Example with non-quoted values:

"filterConditions": [
{
"field": "StageName",
"operator": "IN",
"value": ["Closed Won",

"Closed Lost"],
"isQuoted": false
}

]

If you don’t include isQuoted for a filter on
a string value, Wave Analytics assumes that
the string value is not quoted and adds the
quotes for you.

Use to specify a logical operator to link
multiple filter conditions together.

Noconditions

SEE ALSO:

sfdcDigest Transformation

Filtering Records Extracted from a Salesforce Object

69

sfdcDigest TransformationDataflow Transformation Reference

sfdcRegister Transformation
The sfdcRegister transformation registers a dataset to make it available for queries. Users cannot view or run queries against unregistered
datasets.

You don’t need to register all datasets. For example, you don’t need to register an intermediate dataset that is used to build another
dataset and does not need to be queried. In addition, you don’t need to register datasets that are created when you upload external
data because Wave Analytics automatically registers these datasets for you.

Carefully choose which datasets to register because:

• The total number of rows in all registered datasets cannot exceed 250 million per platform license.

• Users that have access to registered datasets can query their data. Although, you can apply row-level security on a dataset to restrict
access to records.

Example: Let’s look at an example. You create a dataflow that extracts opportunities from the Opportunity object. To register
the dataset, name it "Opportunities," and apply row-level security on it, you add the sfdcRegister transformation as shown in the
following dataflow definition file.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Register_Oppportunities_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract_Opportunities",
"rowLevelSecurityFilter": "'OwnerId' == \"$User.Id\""

}
}

}

IN THIS SECTION:

sfdcRegister Parameters

When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

sfdcRegister Parameters
When you define an sfdcRegister transformation, you set the action attribute to sfdcRegister and specify the parameters.

70

sfdcRegister TransformationDataflow Transformation Reference

The following table describes the input parameters:

ValueRequired?Parameter

API name of the registered dataset. This
name can contain only underscores and

Yesalias

alphanumeric characters, and must be
unique among other dataset aliases in your
organization. It must begin with a letter, not
include spaces, not end with an underscore,
and not contain two consecutive
underscores. It also cannot exceed 80
characters.

Display name of the registered dataset. The
name cannot exceed 80 characters.

Yesname

Note: To change the name after
you create the dataset, you must edit
the dataset.

Node in the dataflow definition file that
identifies the dataset that you want to

Yessource

register. This is the input source for this
transformation.

The predicate used to apply row-level
security on the dataset when the dataset is
first created.

NorowLevelSecurityFilter

Example: "rowLevelSecurityFilter":
"'OwnerId' == "$User.Id""

Note: To change the predicate after
you create the dataset, you must edit
the dataset.

When entering the predicate in the
Register transformation of the
dataflow JSON, you must escape the
double quotes around string values.

After the dataset is created, Wave Analytics
ignores it's security predicate setting in the
dataflow. To change the security predicate
for an existing dataset, edit the dataset in
the user interface.

SEE ALSO:

sfdcRegister Transformation

71

sfdcRegister TransformationDataflow Transformation Reference

update Transformation
The update transformation updates the specified field values in an existing dataset based on data from another dataset, which we’ll call
the lookup dataset. The transformation looks up the new values from corresponding fields in the lookup dataset. The transformation
stores the results in a new dataset.

When you create the transformation, you specify the keys that are used to match records between the two datasets. To dictate which
field in the lookup dataset updates the field in the source dataset, you also map the corresponding fields from both datasets.

Example: Let’s look at an example. You have an existing Accounts dataset that contains account information—Id, Name, and
AnnualRevenue. Unfortunately, some of the account names in the dataset are now incorrect because of a series of mergers and
acquisitions. To quickly update the account names in the dataset, you perform the following tasks.

1. Create a .csv file that contains the new account names and associated account IDs for accounts that have name changes.

2. Upload the .csv file to create a dataset called UpdatedAccountNames.

3. Create a dataflow definition file to update account names in the Accounts dataset by looking up the new account names in
the UpdatedAccountNames dataset.

You create the following dataflow definition file.

{
"Extract_AccountDetails": {

"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AnnualRevenue" }

]
}

},
"Extract_UpdatedAccountNames": {

"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames" }

},
"Update_AccountRecords": {

"action": "update",
"parameters": {

"left": "Extract_AccountDetails",
"right": "Extract_UpdatedAccountNames",
"left_key": ["Id"],
"right_key": ["AccountID"],
"update_columns": { "Name": "NewAccountName" }

}

72

update TransformationDataflow Transformation Reference

},
"Register_UpdatedAccountRecords": {

"action": "sfdcRegister",
"parameters": {

"alias": "Accounts",
"name": "Accounts",
"source": "Update_AccountRecords"

}
}

}

Example: Let’s look at another example, where a composite key is used to match records between both datasets. In this case,
you match records using the account ID and account name fields.

You create the following dataflow definition file.

{
"Extract_AccountDetails": {

"action": "sfdcDigest",
"parameters": {

"object": "Account",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "AnnualRevenue" }

]
}

},
"Extract_UpdatedAccountNames": {

"action": "edgemart",
"parameters": { "alias": "UpdatedAccountNames" }

},
"Update_AccountRecords": {

"action": "update",
"parameters": {

"left": "Extract_AccountDetails",
"right": "Extract_UpdatedAccountNames",
"left_key": ["Id","Name"],
"right_key": ["AccountId","NewAccountName"],
"update_columns": {

"Name": "NewAccountName",
"CreatedDate":"NewCreatedDate",
"AnnualRevenue":"NewAnnualRevenue"

}
},
"Register_UpdatedAccountRecords": {

"action": "sfdcRegister",
"parameters": {

"alias": "Accounts",
"name": "Accounts",
"source": "Update_AccountRecords"

}
}

}

73

update TransformationDataflow Transformation Reference

IN THIS SECTION:

update Parameters

When you define an update transformation, you set the action attribute to update and specify the parameters.

update Parameters
When you define an update transformation, you set the action attribute to update and specify the parameters.

The following table describes the input parameters.

ValueRequired?Parameter

Node in the dataflow definition file that
identifies the dataset that contains the
records that you want to update.

Yesleft

Node in the dataflow definition file that
identifies the lookup dataset that contains
the new values.

Yesright

Key column in the left dataset used to match
records in the other dataset. If you use a

Yesleft_key

composite key, the left and right keys must
have the same number of columns in the
same order. For an example, see update
Transformation on page 72.

Key column in the right dataset used to
match records in the other dataset. If you

Yesright_key

use a composite key, the left and right keys
must have the same number of columns in
the same order.

An array of corresponding columns between
the left and right datasets. Use the following

Noupdate_columns

syntax: "update_columns": {
"LeftColumn1":
"RightColumn1",
"LeftColumn2":
"RightColumn2",...
"LeftColumnN":
"RightColumnN" }. The value from
right column replaces the value from the
corresponding left column. The field types
of the left and right column must match.

Note: If you specify a column name
that does not exist, the dataflow fails.

If you do not specify this parameter, the
transformation updates the left dataset

74

update TransformationDataflow Transformation Reference

ValueRequired?Parameter

by matching all columns in the right dataset
with those in the left. In this case, the right
column names must match exactly with the
left column names. Otherwise, an error
might occur.

SEE ALSO:

update Transformation

Overriding Metadata Generated by a Transformation

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

Optionally, you can override the metadata that is generated by a transformation. You can override
object and field attributes. For example, you can change a field name that is extracted from a
Salesforce object so that it appears differently in the dataset. To override the metadata, add the
overrides to the Schema section of the transformation in the dataflow definition file.

In the Schema section, you can override the metadata attributes for one object only.

The Schema section in this sample sfdcDigest transformation contains metadata overrides:

"Extract_Opportunities": {
"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Name" },
{ "name": "Amount" }

]
},
"schema": {

"objects": [
{

"label":"Sales Opportunities",
"fields": [

{
"name": "Amount",
"label": "Opportunity Amount"

}
]

}
]

}
}

75

Overriding Metadata Generated by a TransformationDataflow Transformation Reference

Object Attributes
You can override the following object attributes.

DescriptionTypeObject Attribute

The display name for the object. Can be up to 40 characters.Stringlabel

Example:

"label": "Sales Data"

The description of the object. Must be less than 1,000 characters.Stringdescription

Add a description to annotate an object in the dataflow definition file. This
description is not visible to users in the Wave Analytics user interface.

Example:

"description": "The SalesData object tracks basic
sales data."

The array of fields for this object.Arrayfields

Field Attributes
You can override attributes of each specified dataset field.

DescriptionTypeField Attribute

Name of the field in the dataset. Identifies the field that you want to override.

Examples:

Stringname

"name": "Amount"

"name": "Role.Name"

The display name for the field. Can be up to 255 characters.Stringlabel

Example:

"label": "Opportunity Amount"

The description of the field. Must be less than 1,000 characters.Stringdescription

Add a description to annotate a field in the dataflow definition file. This description is not visible
to users in the Wave Analytics user interface.

Example:

"description": "The Amount field contains the opportunity
amount."

Indicates whether this field is a system field to be excluded from query results.BooleanisSystemField

Example:

76

Overriding Metadata Generated by a TransformationDataflow Transformation Reference

DescriptionTypeField Attribute

"isSystemField": false

The display format of the numeric value.

Examples:

Stringformat

"format": "$#,##0.00" (Numeric)

For more information about valid formats, see Numeric Formats.

Numeric Formats
An example of a typical numeric value is $1,000,000.99, which is represented as $#,##0.00. You are required to specify the precision and
scale of the number. The format is specified by using the following symbols:

MeaningSymbol

One digit0

Zero or 1 digit#

This symbol is the default decimal separator. Use the decimalSeparator field to set
the decimal separator to a different symbol.

.

Minus sign-

Grouping separator,

Currency sign$

Note: The format for numeric values isn’t used in data ingestion. It is used only to specify how numeric values are formatted when
displayed in the UI. Also, you can’t override date formats.

Example: Let’s consider an example where you want to override the following object and field attributes that the sfdcDigest
transformation extracts from the Opportunity object.

Attribute ChangesObject/Field

Opportunity object • Change the object label to "Sales Opportunities"

• Add an object description

Id field • Change the field label to "Opportunity Id"

• Hide the field from queries

Amount field • Change the field label to "Opportunity Amount"

• Change the format to $#,##0.00

CloseDate field • Change the field label to "Closing Date"

77

Overriding Metadata Generated by a TransformationDataflow Transformation Reference

To override the attributes, you add the Schema section with the override values to sfdcDigest in the dataflow definition file.

{
"Extract_Opportunities": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "CloseDate" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
},
"schema": {

"objects": [
{

"label":"Sales Opportunities",
"description": "These are all sales opportunities.",
"fields": [

{
"name": "Id",
"label": "Opportunity Id",
"isSystemField": true

},
{

"name": "Amount",
"label": "Opportunity Amount",
"format": "$#,##0.00"

},
{

"name": "CloseDate",
"label": "Closing Date"

}
]

}
]

}
},
"Register_Dataset_Opportunities": {
"action": "sfdcRegister",
"parameters": {

"source": "Extract_Opportunities",
"alias": "Opportunities",
"name": "Opportunities"
}

}
}

78

Overriding Metadata Generated by a TransformationDataflow Transformation Reference

CREATE A DATASET WITH THE DATASET BUILDER

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for an additional
cost in: Enterprise,
Performance, and
Unlimited Editions

USER PERMISSIONS

To access the dataset
builder:
• “Edit Wave Analytics

Dataflows”

You can use the dataset builder to create a single dataset based on data from one or more Salesforce
objects. The dataset builder generates and appends the associated JSON to the dataflow definition
file. The dataset is created the next time the dataflow runs. The data in the dataset refreshes each
time the dataflow runs. You can also edit the dataflow definition file to add transformations that
manipulate the dataset.

1. On the home page or on an app page, click Create > Dataset.

2. Click Salesforce.
The dataset builder opens on the Dataset Builder tab.

3. Select the root object.

The root object is the lowest level child object that you can add to the canvas. After you select the root object, you can add only
parent objects of the root object—you can’t add it’s children objects. To change the root object, refresh the page and start over.

4. Hover over the root object, and then click .
The Select Fields dialog box appears. By default, the Fields tab appears and shows all available object fields from which you can
extract data.

79

Note: You can view this dialog box for any object included in the canvas.

5. In the Fields tab, select the fields from which you want to extract data.

To locate fields more quickly, you can search for them or sort them by name or type.

Important: You must select at least one field for each object that you add to the canvas. If you add an object and don’t add
any of it’s fields, the dataflow fails at run time.

6. In the Relationships tab, click Join to add the related objects to the canvas.
When you add a related object, the related object appears in the canvas.

80

Create a Dataset with the Dataset Builder

7. To remove a related object, click Delete.

Warning: When you delete a related object, you also delete all objects that descend from the related object in the diagram.
For example, if you delete Account shown below, you delete the branch that contains Account and User.

8. For each related object, select the fields from which you want to extract data.

9. To move the entire diagram, select a white space in the canvas and drag it.

You might need to move the diagram to view a different section of the diagram.

10. To view all objects included in the canvas, click .
The Selected Objects dialog box shows a tree structure of all objects included in the canvas. The root object appears at the top of
the tree.

If you select one of the objects, the dataset builder focuses on the object by placing the object in the center of the canvas.

11. To view the associated JSON, click .

When you create the dataset, the dataset builder appends the JSON to the dataflow definition file.

81

Create a Dataset with the Dataset Builder

12. Click Create Dataset.

13. Enter the name of the dataset, and select the app that will contain the dataset if it’s not already selected.

Note: If you enter a dataset name that is already used, when you create the dataset, the dataset builder appends a number
to the dataset name. For example, if you entered MyOpportunities, the dataset builder creates MyOpportunities1. The dataset
name cannot exceed 80 characters.

14. Click Create.
The dataset builder appends the underlying JSON to the dataflow definition file. The dataset is created the next time the dataflow
runs. You can manually run the dataflow to immediately create the dataset.

82

Create a Dataset with the Dataset Builder

INSTALL THE WAVE CONNECTOR EXCEL APP

USER PERMISSIONS

To import data from Excel
2013 to Wave Analytics :
• Upload External Data to

Wave Analytics

The Wave Connector app gives users a fast, easy way to import data from Excel 2013 into Salesforce
Wave Analytics..

83

If you use Excel 2013 on the desktop or Office 365, the Office Online version of Excel, the Wave Connector gives you a great way to get
your data into Salesforce Wave Analytics. After installing the Connector, you just select data from Excel, click Submit, and the Connector
does the work for you, importing the data to Wave Analytics and creating a dataset.

Here’s how to install the Connector:

1. Open Excel, either on your desktop or in Office Online.

2. Open the Insert tab.

3. Click Apps for Office.

4. Search for the Wave Connector, and click to install it.

5. Enter your Salesforce credentials to open the Connector.

Once you’ve installed the Connector, follow the instructions in the Connector window to create datasets based on Excel data. Opening
the Connector automatically logs you in to Salesforce Wave Analytics. Click the Connector Help icon for complete information about
using the app.

84

Install the Wave Connector Excel App

CREATE A DATASET WITH EXTERNAL DATA

Create a Dataset with External Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload external data:
• “Upload External Data to

Wave Analytics”

You can either upload external data through the user interface or through the External Data API to
create a dataset. When you upload an external data file (in .csv, .gz, or .zip format), you can also
provide a metadata file. A metadata file contains metadata attributes that describe the structure of
the data in the external data file. If you upload a .csv from the user interface, Wave Analytics
automatically generates the metadata file, which you can preview and change. If you do not provide
a metadata file, Wave Analytics imports all external data file columns as dimensions.

Tip: Wave temporarily stores the uploaded CSV and metadata files for processing only. After
the datasets are created, Wave purges the files. If you want to use the files again later, keep
a copy.

Before uploading external data files, review the format requirements and examples of the .csv and
metadata files in the External Data Format Reference.

Note: You can also use the the External Data API to upload external data files. Use the API
to take advantage of additional features, like performing incremental extracts and performing
append, delete, and upsert operations. For more information about the External Data API,
see the External Data API Developer’s Guide.

1. On the home or app page, click Create > Dataset.

2. Type the name of your dataset in the Dataset Name field.

The name cannot exceed 80 characters.

3. If you want to create the dataset in a different app, change the app in the App drop-down list.

4. Click CSV.

5. Add the .csv file.
After you add the .csv file, Wave Analytics automatically generates and adds the corresponding metadata file.

85

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format
https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_ext_data.meta/bi_dev_guide_ext_data/

Note: Instead of using the generated metadata file, if you want, you can upload a different metadata file that you created
from scratch. If you upload your own metadata file, the Preview Data button is disabled.

6. Perform the following tasks to change the metadata attributes in the generated metadata file.

a. Click Preview Data to view and change the required metadata attributes.

b. Click a column name to change it. The column name is the display name in the dataset. The column name cannot exceed 40
characters.

86

Create a Dataset with External DataCreate a Dataset with External Data

c. Click the column header to change other attributes for the column.

You can change the attributes for measure and date columns only.

d. To apply the changes to all other columns of the same data type, click Apply to All <data type> Columns.

e. Click Submit to save the metadata changes to the metadata file.

Note: If there are errors, the Submit button is grayed out.

f. Click OK to close the confirmation message.

g. To change optional metadata attributes, click to download the metadata file, edit the file, and then upload it.

7. Click Create Dataset.
Your data files are scheduled for upload. It might take some time to process the data upload job; you can monitor its status in the
data monitor. If upload is successful, the new dataset is available from the home or app page.

8. Click Continue to dismiss the confirmation message.

87

Create a Dataset with External DataCreate a Dataset with External Data

IN THIS SECTION:

Rules for Automatic Generation of a Metadata File

When you upload a CSV file from the user interface, Wave Analytics automatically generates the metadata file as long as the CSV file
meets certain requirements.

Rules for Automatic Generation of a Metadata File
When you upload a CSV file from the user interface, Wave Analytics automatically generates the metadata file as long as the CSV file
meets certain requirements.

To enable Wave Analytics to generate the metadata file, a CSV file must meet the following requirements.

• The file type must be .csv, not .gz or .zip.

• The file must contain one row for the column header and at least one record.

• The CSV file must meet all Wave Analytics requirements as mentioned in the External Data Format Reference.

Wave Analytics generates the metadata attributes for each CSV column based on the first 100 rows in the CSV file. Wave Analytics uses
the following rules to convert the CSV column names to field labels.

• Replaces special characters and spaces with underscores. For example, "Stage Name" becomes "Stage_Name."

• Replaces consecutive underscores with one underscore, except when column name ends with "__c." For example, "stage*&name"
becomes "stage_name."

• Prefixes the field label with "X" when the first character of the column name is numeric. For example, "30Day" becomes "X30Day."

• Replaces the field name with "Column" + column number when all characters in the column name are not alphanumeric. For
example, the fourth column name "*&^*(&*(%" becomes "Column4."

• Deletes underscores at the beginning and end of the field label to ensure that it doesn't start or end with an underscore.

• Increments the derived field label if the label is the same as an existing label. For example, if "X2" already exists, uses "X21," "X22,"
"X23."

Tip: You can download the generated metadata file to change the metadata settings, and then upload it to apply the changes.
You can download the metadata file when you create or edit a dataset.

SEE ALSO:

Create a Dataset with External Data

88

Rules for Automatic Generation of a Metadata FileCreate a Dataset with External Data

https://developer.salesforce.com/docs/atlas.en-us.206.0.bi_dev_guide_ext_data_format.meta/bi_dev_guide_ext_data_format

Monitor an External Data Upload

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To access the data monitor:
• “Edit Wave Analytics

Dataflows,” “Upload
External Data to Wave
Analytics,” or “Manage
Wave Analytics”

When you upload an external data file, Wave Analytics kicks off a job that uploads the data into the
specified dataset. You can use the data monitor to monitor and troubleshoot the upload job.

The Jobs view (1) of the data monitor shows the status, start time, and duration of each dataflow
job and external data upload job. It shows jobs for the last 7 days and keeps the logs for 30 days.

1.
In Wave Analytics, click the gear icon () and then click Data Manager.
The data manager opens on the Monitor tab, with the Jobs view selected by default. The Jobs view displays dataflow and upload
jobs. It displays each upload job name as <dataset_name upload flow>. You can hover a job to view the entire name.

Note: To view external data upload jobs in the Jobs view, Show in the File Uploads field (2) must be selected. It’s selected
by default.

89

Monitor an External Data UploadCreate a Dataset with External Data

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

2.
To see the latest status of a job, click the Refresh Jobs button ().

Each job can have one of the following statuses.

DescriptionStatus

The job is in queue to start.Queued

The job is running.Running

The job failed.Failed

The job completed successfully.Successful

The job completed successfully, but some rows failed.Warning

3. To view the run-time details for a job, expand the job node (3).
The run-time details display under the job. In the run-time details section, scroll to the right to view information about the rows that
were processed.

4. To troubleshoot a job that has failed rows, view the error message. Also, click the download button (1) in the run-time details section
to download the error log.

Note: Only the user who uploaded the external data file can see the download button.

The error log contains a list of failed rows.

90

Monitor an External Data UploadCreate a Dataset with External Data

5. To troubleshoot a failed job, view the error message and the run-time details.

91

Monitor an External Data UploadCreate a Dataset with External Data

EDIT A DATASET

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

“Use Wave Analytics” AND Editor access to
the dataset’s app

To view a dataset edit page:

“Use Wave Analytics” AND Editor access to
the dataset’s app

To update a dataset name, app, and
extended metadata:

“Use Wave Analytics” AND Editor access to
the dataset’s app

To delete a dataset:

“Upload External Data to Wave Analytics”
AND Editor access to the dataset’s app

To upload and preview data:

“Edit Wave Analytics Dataflows”To edit a dataset security predicate:

You can edit a dataset to change the dataset name, app, security predicate, or extended metadata (XMD) file associated with the dataset.
For datasets created from an external data file, you can also upload a new external data file or metadata file to update the data or
metadata.

If you add an external data file, Wave Analytics generates and adds the corresponding metadata file. To make further changes to the
metadata, you can click Preview Data or download and edit the generated metadata file. You can also upload your own metadata file
to overwrite the generated file.

1. On the home or app page, click the Datasets tab.

2. Hover over the dataset that you want to edit, and then click Edit.

3. Configure the following options if applicable.

DescriptionOption

Enter a new name if you’d like to change the name of the dataset.
The name cannot exceed 80 characters.

Dataset Name

Select a new app if you’d like to move the dataset to a different
app.

App

Specify an extended metadata file if you’d like to customize the
formatting of dashboards associated with the dataset.

Add Extended Metadata File (JSON)

Refer to Extended Metadata (XMD) Reference for information about
extended metadata files.

Specify an external data file if you’d like to replace the existing
data in the dataset with data from the external data file.

Add External Data File (CSV)

Maximum file size is 500 MB. You can upload a .CSV, .GZ, or .ZIP
file.

92

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

DescriptionOption

Refer to External Data Format Reference for information about
external data files and metadata files.

Specify a metadata file if you’d like to redefine the structure of
the external data file. If you upload a new metadata file, you must
also upload the corresponding external data file.

Add Metadata File (JSON)

Refer to External Data Format Reference for information about
metadata files.

Add a security predicate if you’d like to apply row-level security
on the dataset.

Security Predicate

For information about predicates, see Row-Level Security for
Datasets.

4. If you uploaded a new .csv file, click Preview Data to view and change the required metadata attributes.

You can change the optional metadata later.

Note: The Preview Data button is disabled if you uploaded your own metadata file.

After you click Preview Data, the preview page appears.

5. For each column:

a. Click a column name to change it. The column name is the display name in the dataset. The column name cannot exceed 40
characters.

93

Edit a Dataset

b. Click the column header to change other required attributes for the column.

You can change the attributes for measure and date columns only.

c. To apply the changes to all other columns of the same data type, click Apply to All <data type> Columns.

6. Click Submit to save the metadata changes in the preview page to the metadata file.

Note: The Submit button is grayed out if there are errors.

7. Click OK to close the confirmation message.

8. To change optional metadata attributes—which are not visible in the preview page—click to download the metadata file, edit
the file, and then upload it.

9. Click Update Dataset.

10. Click Continue to dismiss the confirmation message.

94

Edit a Dataset

DELETE A DATASET

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To delete a dataset:
• “Use Wave Analytics”

AND Editor access to the
dataset’s app

Delete unnecessary datasets from your My Private App or in shared apps on which you have at least
Editor access. Removing datasets reduces clutter and helps you avoid reaching your org's limit for
rows across registered datasets.

When you delete a dataset, Wave Analytics permanently deletes the dataset and doesn’t delete
the corresponding lenses or dashboards that reference the dataset. Lenses and dashboards that
reference a deleted dataset will no longer be available. As a result, Salesforce.com recommends
that you remove the associated lenses and dashboards before you delete a dataset.

If a dataflow transformation —like edgemart or sfdcRegister— references the dataset, you must
remove the reference before you can delete the dataset. For example, to delete the “Opportunities”
dataset, you must remove the sfdcRegister transformation from the dataflow snippet shown below.

{
...

"Register_Dataset": {
"action": "sfdcRegister",
"parameters": {

"alias": "Opportunities",
"name": "Opportunities",
"source": "Extract_Opportunities"

}
},

...}

Warning: You can’t recover a deleted dataset.

1. On the home or app page, click the Datasets tab.

2. Hover over the dataset that you want to delete, and then click Edit.

3. Click Delete Dataset.
If applicable, Wave Analytics shows a list of all lenses and dashboards that reference the dataset and that you have access to view.
After you delete the dataset, any lens or dashboard that reference the dataset will become unusable.

4. Click Delete Permanently and confirm.

95

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

ROW-LEVEL SECURITY FOR DATASETS

If a Wave Analytics user has access to a dataset, they have access to all records in the dataset, by default. However, you can implement
row-level security on a dataset to restrict access to records. Some records might contain sensitive data that shouldn’t be accessible by
everyone.

To implement row-level security, define a predicate for each dataset on which you want to restrict access to records. A predicate is a
filter condition that defines row-level access to records in a dataset.

When a user submits a query against a dataset that has a predicate, Wave Analytics checks the predicate to determine which records
the user has access to. If the user doesn’t have access to a record, Wave Analytics does not return that record.

The predicate is flexible and can model different types of security policies. For example, you can create predicates based on:

• Record ownership. Enables each user to view only records that they own.

• Management visibility. Enables each user to view records owned or shared by their subordinates based on a role hierarchy.

• Team or account collaboration. Enables all members of a team, like an opportunity team, to view records shared with the team.

• Combination of different security requirements. For example, you might need to define a predicate based on the Salesforce role
hierarchy, teams, and record ownership.

The type of security policy you implement depends on how you want to restrict access to records in the dataset.

Warning: If row-level security isn’t applied to a dataset, any user that has access to the dataset can view all records in the dataset.

IN THIS SECTION:

Considerations when Defining a Predicate for a Dataset

Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate
is dependent on the information in the dataset and where to define the predicate expression.

Row-Level Security Example based on Record Ownership

Let’s look at an example where you create a dataset based on a CSV file and then implement row-level security based on record
ownership. In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record
in the dataset, you will create a security policy where each user can view only sales targets for accounts that they own. This process
requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team.
To restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their
opportunity. This process requires multiple steps that are described in the sections that follow.

Row-Level Security Example based on Role Hierarchy and Record Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict
access on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or
that are owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described
in the sections that follow.

96

Row-Level Security Example Based on Territory Management

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample
JSON for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view
only data appropriate for the territory to which they belong.

SEE ALSO:

sfdcRegister Transformation

sfdcRegister Parameters

Considerations when Defining a Predicate for a Dataset

Applying a predicate to a dataset is more than just defining the predicate expression. You also need to consider how the predicate is
dependent on the information in the dataset and where to define the predicate expression.

You can create a predicate expression based on information in the dataset. For example, to enable each user to view only dataset records
that they own, you can create a predicate based on a dataset column that contains the owner for each record. If needed, you can load
additional data into a dataset required by the predicate.

The location where you define the predicate varies.

• To apply a predicate on a dataset created from a dataflow, add the predicate in the rowLevelSecurityFilter field of the Register
transformation. The next time the dataflow runs, Wave Analytics will apply the predicate.

• To apply a predicate on a dataset created from an external data file, define the predicate in the rowLevelSecurityFilter field in the
metadata file associated with the external data file. Wave Analytics applies the predicate when you upload the metadata file and
external data file. If you already created the dataset from a external data file, you can edit the dataset to apply or change the predicate.

Row-Level Security Example based on Record Ownership

Let’s look at an example where you create a dataset based on a CSV file and then implement row-level security based on record ownership.
In this example, you will create a dataset that contains sales targets for account owners. To restrict access on each record in the dataset,
you will create a security policy where each user can view only sales targets for accounts that they own. This process requires multiple
steps that are described in the sections that follow.

Note: Although this example is about applying a predicate to a dataset created from a CSV file, this procedure can also be applied
to a dataset that is created from Salesforce data.

IN THIS SECTION:

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all
sales targets.

2. Determine Row-Level Security for Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

3. Add the Predicate to the Metadata File

For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit
the dataset.

97

Considerations when Defining a Predicate for a DatasetRow-Level Security for Datasets

4. Create the Dataset

Now that you updated the metadata file with the predicate, you can create the dataset.

5. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see their own sales targets.

Determine Which Data to Include in the Dataset
First, determine what data you want to include in the dataset. For this example, you will create a Targets dataset that contains all sales
targets.

You will obtain sales targets from the CSV file shown below.

TargetDateTargetRegionAccountOwner

1/1/201110000MidwestTony Santos

1/1/201150000NortheastLucy Timmer

12/1/20130NortheastLucy Timmer

1/1/201115000MidwestBill Rolley

1/1/201135000SouthwestKeith Laz

1/1/201140000SoutheastLucy Timmer

If you were to create the dataset without implementing row-level security, any user that had access to the dataset would be able to see
the sales targets for all account owners. For example, as shown below, Keith would be able to view the sales targets for all account
owners.

You need to apply row-level security to restrict access to records in this dataset.

98

Determine Which Data to Include in the DatasetRow-Level Security for Datasets

Determine Row-Level Security for Dataset
Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

You decide to implement the following predicate on the dataset.

'AccountOwner' == "$User.Name"

Note: All predicate examples in this document escape the double quotes because it’s required when you enter the predicate in
the Register transformation or metadata file.This predicate implements row-level security based on record ownership. Based on
the predicate, Wave Analytics returns a sales target record when the user who submits the query on the dataset is the account
owner.

Let’s take a deeper look into the predicate expression:

• AccountOwner refers to the dataset column that stores the full name of the account owner for each sales target.

• $User.Name refers to the Name column of the User object that stores the full name of each user. Wave Analytics performs a lookup
to get the full name of the user who submits each query.

Note: The lookup returns a match when the names in AccountOwner and $User.Name match exactly—they must have the same
case.

Add the Predicate to the Metadata File
For a dataset created from a CSV file, you can specify the predicate in the metadata file associated with the CSV file or when you edit the
dataset.

You must escape the double quotes around string values when entering a predicate in the metadata file.

In this example, you add the predicate to the metadata file shown below.

{
"fileFormat": {
"charsetName": "UTF-8",
"fieldsDelimitedBy": ",",
"fieldsEnclosedBy": "\"",
"numberOfLinesToIgnore": 1 },
"objects": [

{
"name": "Targets",
"fullyQualifiedName": "Targets",
"label": "Targets",
"rowLevelSecurityFilter": "'AccountOwner' == \"$User.Name\"",
"fields": [

{
"name": "AccountOwner",
"fullyQualifiedName": "Targets.AccountOwner",
"label": "Account Owner",
"type": "Text"

},
{

"name": "Region",
"fullyQualifiedName": "Targets.Region",
"label": "Region",
"type": "Text"

},

99

Determine Row-Level Security for DatasetRow-Level Security for Datasets

{
"name": "Target",
"fullyQualifiedName": "Targets.Target",
"label": "Target",
"type": "Numeric",
"precision": 16,
"scale": 0,
"defaultValue": "0",
"format": null

},
{

"name": "TargetDate",
"fullyQualifiedName": "Targets.TargetDate",
"label": "TargetDate",
"description": "",
"type": "Date",
"format": "dd/MM/yy HH:mm:ss",
"isSystemField": false,
"fiscalMonthOffset": 0

}
]
}

]
}

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To upload a CSV and
metadata file:
• “Upload External Data to

Wave Analytics”

Now that you updated the metadata file with the predicate, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, perform the steps
in a non-production environment. Ensure that these changes do not impact other datasets
that you already created.

To create the dataset, perform the following steps.

1. In Wave Analytics, go to the home page.

2. Click Create > Dataset

3. Click CSV.

The following screen appears.

100

Create the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

4. Select the CSV file and metadata (schema) file.

5. In the Dataset Name field, enter “SalesTarget” as the name of the dataset.

6. Optionally, choose a different app where you want to store the dataset.

7. Click Create Dataset.

Wave Analytics confirms that the upload is successful and then creates a job to create the dataset. You can view the SalesTarget
dataset after the job completes successfully.

8. To verify that the job completes successfully, perform the following steps:

a.
Click the gear icon () and then select Data Monitor to open the data monitor.

By default, the Jobs View of the data monitor appears. It shows the statuses of dataflow and external data upload jobs.

b.
Click the Refresh Jobs button () to view the latest statuses of the jobs.

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

You must verify that the predicate is applied properly and that each user can see their own sales
targets.

1. Log in to Wave Analytics as Keith.

2. Open the SalesTargets dataset.
As shown in the following lens, notice that Keith can see only his sales target.

101

Test Row-Level Security for the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security Example based on Opportunity Teams

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on an
opportunity team. In this example, you will create a dataset that contains only opportunities associated with an opportunity team. To
restrict access on each record in the dataset, you will create a security policy where only opportunity members can view their opportunity.
This process requires multiple steps that are described in the sections that follow.

IN THIS SECTION:

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create an OppTeamMember dataset that
contains only opportunities associated with an opportunity team.

2. Design the Dataflow to Load the Data

Now it’s time to figure out how the dataflow will extract the Salesforce data and load it into a dataset. You start by creating this
high-level design for the dataflow.

3. Determine Row-Level Security for the Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

4. Modify the Dataflow Based on Row-Level Security

It’s now time to add the predicate in the dataflow definition file.

5. Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

6. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

102

Row-Level Security Example based on Opportunity TeamsRow-Level Security for Datasets

Determine Which Data to Include in the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

First, determine what data you want to include in the dataset. For this example, you will create an
OppTeamMember dataset that contains only opportunities associated with an opportunity team.

You will obtain opportunities from the Opportunity object and the opportunity teams from the
OpportunityTeamMember object. Both are Salesforce objects.

In this example, your Salesforce organization has the following opportunity team and users.

Your organization also contains the following opportunities, most of which are owned by Keith.

Acc - 1000 Widgets is the only opportunity shared by an opportunity team. Bill is the Sales Manager for this opportunity. Tony is the
opportunity owner.

103

Determine Which Data to Include in the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Design the Dataflow to Load the Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to figure out how the dataflow will extract the Salesforce data and load it into a dataset.
You start by creating this high-level design for the dataflow.

The dataflow will extract data from the Opportunity and OpportunityTeamMember objects, join
the data, and then load it into the OppTeamMember dataset.

Now let’s implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract_OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityTeamMember",
"fields": [

{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

]
}

},
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Augment_OpportunityTeamMember_Opportunity": {

"action": "augment",
"parameters": {

"left": "Extract_OpportunityTeamMember",
"left_key": [

"OpportunityId"
],
"relationship": "TeamMember",

104

Design the Dataflow to Load the DataRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

"right": "Extract_Opportunity",
"right_key": [

"Id"
],
"right_select": [

"Name","Amount"
]

}
},
"Register_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "Augment_OpportunityTeamMember_Opportunity",
"rowLevelSecurityFilter": ""

}
}

}

If you were to run this dataflow, Wave Analytics would generate a dataset with no row-level security. As a result, any user that has access
to the dataset would be able to see the opportunity shared by the opportunity team.

For example, as shown below, Lucy would be able to view the opportunity that belongs to an opportunity team of which she is not a
member.

You need to apply row-level security to restrict access to records in this dataset.

105

Design the Dataflow to Load the DataRow-Level Security for Datasets

Determine Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to think about row-level security. How will you restrict access to each record in this
dataset?

You decide to implement the following predicate on the dataset.

'UserId' == "$User.Id"

This predicate compares the UserId column in the dataset against the ID of the user running a query against the dataset. The UserId
column in the dataset contains the user ID of the team member associated with each opportunity. To determine the ID of the user
running the query, Wave Analytics looks up the ID of the user making the query in the User object.

For each match, Wave Analytics returns the record to the user.

Modify the Dataflow Based on Row-Level Security

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

It’s now time to add the predicate in the dataflow definition file.

You add the predicate to the Register transformation that registers the OppTeamMember dataset
as shown below.

{
"Extract_OpportunityTeamMember": {

"action": "sfdcDigest",
"parameters": {

"object": "OpportunityTeamMember",
"fields": [

{ "name": "Name" },
{ "name": "OpportunityId" },
{ "name": "UserId" }

]
}

},
"Extract_Opportunity": {

"action": "sfdcDigest",

106

Determine Row-Level Security for the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

"parameters": {
"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Augment_OpportunityTeamMember_Opportunity": {

"action": "augment",
"parameters": {

"left": "Extract_OpportunityTeamMember",
"left_key": [

"OpportunityId"
],
"relationship": "TeamMember",
"right": "Extract_Opportunity",
"right_key": [

"Id"
],
"right_select": [

"Name","Amount"
]

}
},
"Register_Dataset": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppTeamMember",
"name": "OppTeamMember",
"source": "105_Augment_OpportunityTeamMember_Opportunity",
"rowLevelSecurityFilter": "'UserId' == \"$User.Id\""

}
}

}

107

Modify the Dataflow Based on Row-Level SecurityRow-Level Security for Datasets

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,
and monitor a dataflow:
• “Edit Wave Analytics

Dataflows”

Now that you have the final dataflow definition file, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do not impact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes
because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.
In Wave Analytics, click the gear icon () and then select Data Monitor to open the data
monitor.
The Jobs view of the data monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing
dataflow definition file.

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11.
Click the Refresh Jobs button () to view the latest status of the dataflow job.
You can view the OppTeamMember dataset after the dataflow job completes successfully.

Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

108

Create the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

You must verify that the predicate is applied properly and that each user can see the appropriate
opportunities.

1. Log in to Wave Analytics as Lucy.

2. Open the OppTeamMember opportunity.
Notice that Lucy can’t view the opportunity associated with the opportunity team anymore
because she is not a member of the team.

3. Log out and now log in as Bill.
Bill can view the opportunity that is shared by the opportunity team of which he is a member.

109

Test Row-Level Security for the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security Example based on Role Hierarchy and Record
Ownership

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on the
Salesforce role hierarchy and record ownership. In this example, you will create a dataset that contains all opportunities. To restrict access
on each record in the dataset, you will create a security policy where each user can view only opportunities that they own or that are
owned by their subordinates based on the Salesforce role hierarchy. This process requires multiple steps that are described in the sections
that follow.

IN THIS SECTION:

1. Determine Which Data to Include in the Dataset

First, determine what data you want to include in the dataset. For this example, you will create the OppRoles dataset that contains
all opportunities as well as user details about each opportunity owner, such as their full name, division, and title.

2. Design the Dataflow to Load the Data

Now it’s time to figure out how the dataflow will extract the data and load it into a dataset. You start by creating this high-level
design for the dataflow.

3. Determine Row-Level Security for the Dataset

Now it’s time to think about row-level security. How will you restrict access to each record in this dataset?

4. Modify the Dataflow Based on Row-Level Security

Now it’s time to modify the dataflow definition file to account for the predicate.

5. Create the Dataset

Now that you have the final dataflow definition file, you can create the dataset.

6. Test Row-Level Security for the Dataset

You must verify that the predicate is applied properly and that each user can see the appropriate opportunities.

SEE ALSO:

flatten Parameters

Determine Which Data to Include in the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

First, determine what data you want to include in the dataset. For this example, you will create the
OppRoles dataset that contains all opportunities as well as user details about each opportunity
owner, such as their full name, division, and title.

You will obtain opportunities from the Opportunity object and user details from the User object.
Both are objects in Salesforce.

In this example, your Salesforce organization has the following role hierarchy and users.

110

Row-Level Security Example based on Role Hierarchy and
Record Ownership

Row-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Also, your organization contains the following opportunities, most of which are owned by Keith.

Design the Dataflow to Load the Data

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to figure out how the dataflow will extract the data and load it into a dataset. You
start by creating this high-level design for the dataflow.

The dataflow will extract data from the Opportunity and User objects, join the data, and then load
it into the OppRoles dataset.

Now let’s implement that design in JSON, which is the format of the dataflow definition file. A dataflow definition file contains
transformations that extract, transform, and load data into a dataset.

Based on the design, you create the JSON shown below.

{
"Extract_Opportunity": {

"action": "sfdcDigest",

111

Design the Dataflow to Load the DataRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

"parameters": {
"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }
]

}
},
"Extract_User": {

"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [

{ "name": "Id" },
{ "name": "Username" },
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" },
{ "name": "CompanyName" },
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" },
{ "name": "Alias" },
{ "name": "CommunityNickname" },
{ "name": "UserType" },
{ "name": "UserRoleId" }
]

}
},
"Augment_Opportunity_User": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunity",
"left_key": [

"OwnerId"
],
"right": "Extract_User",
"relationship": "Owner",
"right_select": [

"Name"
],
"right_key": [

"Id"
]

}
},
"Register": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppRoles",

112

Design the Dataflow to Load the DataRow-Level Security for Datasets

"name": "OppRoles",
"source": "Augment_Opportunity_User",
"rowLevelSecurityFilter": ""

}
}

}

If you were to run this dataflow, Wave Analytics would generate a dataset with no row-level security. As a result, any user that has access
to the dataset would be able to view all opportunities. For example, as shown below, Bill would be able to view all opportunities, including
those owned by his manager Keith.

You need to apply row-level security to restrict access to records in this dataset.

Determine Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to think about row-level security. How will you restrict access to each record in this
dataset?

You decide to implement the following predicate on the dataset.

'ParentRoleIDs' == "$User.UserRoleId" || 'OwnerId' == "$User.Id"

113

Determine Row-Level Security for the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Note: The current dataflow doesn’t contain logic to create a dataset column named “ParentRoleIDs.” ParentRoleIDs is a placeholder
for the name of a column that will contain this information. In the next step, you will modify the dataflow to add this column to
the dataset. This column name will change based on how you configure the dataflow.

Based on the predicate, Wave Analytics returns an opportunity record if:

• The user who submits the query is a parent of the opportunity owner based on the Salesforce role hierarchy. Wave Analytics determines
this based on their role IDs and the role hierarchy.

• Or, the user who submits the query on the dataset is the opportunity owner.

Let’s examine both parts of this predicate.

DescriptionPredicate Part

'ParentRoleIDs' == "$User.UserRoleId" • ParentRoleIDs refers to a dataset column that contains a
comma-separated list of role IDs of all users above the
opportunity owner based on the role hierarchy. You will create
this dataset column in the next section.

• $User.UserRoleId refers to the UserRoleId column of the User
object. Wave Analytics looks up the user role ID of the user
who submits the query from the User object.

'OwnerId' == "$User.Id" • OwnerId refers to the dataset column that contains the user
ID of the owner of each opportunity.

• $User.Id refers to the Id column of the User object. Wave
Analytics looks up the user ID of the user who submits the
query from the User object.

Modify the Dataflow Based on Row-Level Security

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

Now it’s time to modify the dataflow definition file to account for the predicate.

In this scenario, you have to make changes to the dataflow based on the predicate.

• Add a column in the dataset that stores a comma-separated list of the role IDs of all parents for
each opportunity owner. When you defined the predicate in the previous step, you temporarily
referred to this column as “ParentRoleIDs.” To add the column, you redesign the dataflow as
shown in the following diagram:

114

Modify the Dataflow Based on Row-Level SecurityRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

The new dataflow design contains the following changes:

– Extracts the role IDs from the UserRole object.

– Uses the Flatten transformation to generate a column that stores a comma-separated list of the role IDs of all parents of each
user. When you determined the predicate in the previous step, you temporarily referred to this column as “ParentRoleIDs.”

– Link the new column to the OppRoles dataset.

• Add the predicate to the Register transformation that registers the OppRoles dataset.

You modify the dataflow as shown below.

{
"Extract_Opportunity": {

"action": "sfdcDigest",
"parameters": {

"object": "Opportunity",
"fields": [

{ "name": "Id" },
{ "name": "Name" },
{ "name": "Amount" },
{ "name": "StageName" },
{ "name": "AccountId" },
{ "name": "OwnerId" }

]
}

},
"Extract_User": {

"action": "sfdcDigest",
"parameters": {

"object": "User",
"fields": [

{ "name": "Id" },
{ "name": "Username" },
{ "name": "LastName" },
{ "name": "FirstName" },
{ "name": "Name" },
{ "name": "CompanyName" },
{ "name": "Division" },
{ "name": "Department" },
{ "name": "Title" },
{ "name": "Alias" },
{ "name": "CommunityNickname" },

115

Modify the Dataflow Based on Row-Level SecurityRow-Level Security for Datasets

{ "name": "UserType" },
{ "name": "UserRoleId" }

]
}

},
"Extract_UserRole": {

"action": "sfdcDigest",
"parameters": {

"object": "UserRole",
"fields": [

{ "name": "Id" },
{ "name": "ParentRoleId" },
{ "name": "RollupDescription" },
{ "name": "OpportunityAccessForAccountOwner" },
{ "name": "CaseAccessForAccountOwner" },
{ "name": "ContactAccessForAccountOwner" },
{ "name": "ForecastUserId" },
{ "name": "MayForecastManagerShare" },
{ "name": "LastModifiedDate" },
{ "name": "LastModifiedById" },
{ "name": "SystemModstamp" },
{ "name": "DeveloperName" },
{ "name": "PortalAccountId" },
{ "name": "PortalType" },
{ "name": "PortalAccountOwnerId" }

]
}

},
"Flatten_UserRole": {

"action": "flatten",
"parameters": {

"multi_field": "Roles",
"parent_field": "ParentRoleId",
"path_field": "RolePath",
"self_field": "Id",
"source": "Extract_UserRole"

}
},
"Augment_User_FlattenUserRole": {

"action": "augment",
"parameters": {

"left": "Extract_User",
"left_key": [

"UserRoleId"
],
"relationship": "Role",
"right": "Flatten_UserRole",
"right_key": [

"Id"
],
"right_select": [

"Roles",
"RolePath"

]

116

Modify the Dataflow Based on Row-Level SecurityRow-Level Security for Datasets

}
},
"Augment_Opportunity_UserWithRoles": {

"action": "augment",
"parameters": {

"left": "Extract_Opportunity",
"left_key": [

"OwnerId"
],
"right": "Augment_User_FlattenUserRole",
"relationship": "Owner",
"right_select": [

"Name",
"Role.Roles",
"Role.RolePath"

],
"right_key": [

"Id"
]

}
},
"Register": {

"action": "sfdcRegister",
"parameters": {

"alias": "OppRoles",
"name": "OppRoles",
"source": "Augment_Opportunity_UserWithRoles",

"rowLevelSecurityFilter": "'Owner.Role.Roles' == \"$User.UserRoleId\" || 'OwnerId'
== \"$User.Id\""

}
}

}

Note: In this example, the dataset has columns Owner.Role.Roles and OwnerId. A user can view the values of these columns for
each record to which they have access.

117

Modify the Dataflow Based on Row-Level SecurityRow-Level Security for Datasets

Create the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To download, upload, run,
and monitor a dataflow:
• “Edit Wave Analytics

Dataflows”

Now that you have the final dataflow definition file, you can create the dataset.

Warning: If you wish to perform the steps in this sample implementation, verify that you
have all required Salesforce objects and fields, and perform the steps in a non-production
environment. Ensure that these changes do not impact other datasets that you already created.
Also, always make a backup of the existing dataflow definition file before you make changes
because you cannot retrieve old versions of the file.

To create the dataset, perform the following steps.

1.
In Wave Analytics, click the gear icon () and then select Data Monitor to open the data
monitor.
The Jobs View of the data monitor appears by default.

2. Select Dataflow View.

3. Click the actions list (1) for the dataflow and then select Download to download the existing
dataflow definition file.

4. Open the dataflow definition file in a JSON or text editor.

5. Add the JSON determined in the previous step.

6. Before you save the dataflow definition file, use a JSON validation tool to verify that the JSON is valid.

An error occurs if you try to upload the dataflow definition file with invalid JSON. You can find JSON validation tool on the internet.

7. Save and close the dataflow definition file.

8. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Upload.

9. Select the updated dataflow definition file and click Upload.

10. In the Dataflow View of the data monitor, click the actions list for the dataflow and then select Run to run the dataflow job.

11.
Click the Refresh Jobs button () to view the latest status of the dataflow job.
You can view the OppRoles dataset after the dataflow job completes successfully.

Note: If you are adding a predicate to a dataset that was previously created, each user must log out and log back in for the
predicate to take effect.

118

Create the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Test Row-Level Security for the Dataset

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

• “”

• “”

You must verify that the predicate is applied properly and that each user can see the appropriate
opportunities.

1. Log in to Wave Analytics as Bill.

2. Open the OppRoles opportunity.
Notice that Bill can’t see his manager Keith’s opportunities anymore. Now, he can see only his
opportunity and his subordinate Tony’s opportunity.

3. Log out and now log in as Keith.

As expected, Keith can still see all opportunities.

119

Test Row-Level Security for the DatasetRow-Level Security for Datasets

https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US
https://help.salesforce.com/articleView?id=bi_tutorials.htm&language=en_US

Row-Level Security Example Based on Territory Management

Let’s look at an example where you create a dataset based on Salesforce data and then implement row-level security based on your
defined territories. In this example, you determine what model you use for territory management, so you can later review sample JSON
for that dataset. To restrict access on each record in the dataset, you will create a security predicate where each user can view only data
appropriate for the territory to which they belong.

Territory management is an account sharing system that grants access to accounts based on the characteristics of the accounts. It enables
your company to structure your Salesforce data and users the same way you structure your sales territories.

If your organization has a private sharing model, you might have granted users access to accounts based on criteria such as postal code,
industry, revenue, or a custom field that is relevant to your business. Perhaps you also need to generate forecasts for these diverse
categories of accounts. Territory management solves these business needs and provides a powerful solution for structuring your users,
accounts, and their associated contacts, opportunities, and cases.

IN THIS SECTION:

1. Determine How You Use Territory Management

When working with security related to territory management, it helps to know how your organization implements territory
management. Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some
organization-specific precedence, or the organization use’s Salesforce's territory hierarchy feature.

120

Row-Level Security Example Based on Territory ManagementRow-Level Security for Datasets

2. Create the DataSet

Now we look at sample JSON code that describes territory management in a dataset.

3. Create the Security Predicate

Now we can apply a security predicate to filter the dataset.

Determine How You Use Territory Management
When working with security related to territory management, it helps to know how your organization implements territory management.
Usually, one of 2 methods are used. Either accounts are assigned to regions manually, following some organization-specific precedence,
or the organization use’s Salesforce's territory hierarchy feature.

The manual process

For this example, any account with a Billing State or Province that is North Pole is manually assigned to the Canada region.

Territory Management hierarchies

121

Determine How You Use Territory ManagementRow-Level Security for Datasets

For this example, we have a user called North America VP who needs access to all accounts in the Canada, Mexico, and US territories.
We also have a user called Rep1 Canada who should only have access to the accounts in the Canada territory, not Mexico or US, and
nowhere above in the hierarchy.

Create the DataSet
Now we look at sample JSON code that describes territory management in a dataset.

In this example, territory management data is stored on the following objects and fields.

122

Create the DataSetRow-Level Security for Datasets

Here is an example JSON file for this dataset.

{
"Extract_AccountShare": {
"action": "sfdcDigest",
"parameters": {
"object": "AccountShare",
"fields": [
{ "name": "Id"},
{ "name": "RowCause"},
{ "name": "UserOrGroupId"},
{ "name": "AccountId"}

]
}

},
"Extract_Group": {
"action": "sfdcDigest",
"parameters": {
"object": "Group",
"fields": [
{ "name": "Name"},
{ "name": "Type"},
{ "name": "Id"},
{ "name": "RelatedId"}

]
}

},
"Extract_Territory": {
"action": "sfdcDigest",
"parameters": {
"object": "Territory",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "ParentTerritoryId"}

]
}

},
"Extract_User_Territory": {
"action": "sfdcDigest",
"parameters": {
"object": "UserTerritory",
"fields": [

123

Create the DataSetRow-Level Security for Datasets

{ "name": "TerritoryId"},
{ "name": "UserId"}

]
}

},
"Extract_User": {
"action": "sfdcDigest",
"parameters": {
"object": "User",
"fields": [
{ "name": "Id"},
{ "name": "Name"}

]
}

},
"Extract_Account": {
"action": "sfdcDigest",
"parameters": {
"object": "Account",
"fields": [
{ "name": "Id"},
{ "name": "Name"},
{ "name": "BillingCountry"}

]
}

},
"Augment_TerritoryUsers": {
"action": "augment",
"parameters": {
"left": "Extract_Territory",
"left_key": [
"Id"

],
"relationship": "TerritoryId",
"right": "Extract_User_Territory",
"right_key": [
"TerritoryId"

],
"right_select": [
"UserId"

],
"operation": "LookupMultiValue"

}
},
"Augment_AccountShare_To_Territory_Groups": {
"action": "augment",
"parameters": {
"left": "Augment_AccountShare_To_Account",
"left_key": [
"UserOrGroupId"

],
"relationship": "UserOrGroupId",
"right": "Extract_Group",
"right_key": [

124

Create the DataSetRow-Level Security for Datasets

"Id"
],
"right_select": [
"Name",
"RelatedId"

]
}

},
"Augment_AccountShare_To_Territory": {
"action": "augment",
"parameters": {
"left": "Augment_AccountShare_To_Territory_Groups",
"left_key": [
"UserOrGroupId.RelatedId"

],
"relationship": "Territory",
"right": "Augment_TerritoryUsers",
"right_key": [
"Id"

],
"right_select": [
"TerritoryId.UserId"

],
"operation": "LookupMultiValue"

}
},
"Augment_AccountShare_To_Account": {
"action": "augment",
"parameters": {
"left": "Extract_AccountShare",
"left_key": [
"AccountId"

],
"relationship": "AccountId",
"right": "Extract_Account",
"right_key": [
"Id"

],
"right_select": [
"Name"

]
}

},
"Register_Territory_GroupUsers": {
"action": "sfdcRegister",
"parameters": {
"alias": "Register_Territory_GroupUsers",
"name": "Register_Territory_GroupUsers",
"source": "Augment_AccountShare_To_Territory"

}
}

}

When run, this JSON file results in a list of accounts. In this example, a list of 5:

125

Create the DataSetRow-Level Security for Datasets

Create the Security Predicate
Now we can apply a security predicate to filter the dataset.

Using this example, the following security predicate on the dataset enforces the territory management security rules.

'Territory.TerritoryId.UserId' == "$User.Id" || 'UserOrGroupId' == "$User.Id"

Note: Update the dataset, and then log out of and back in to the org so you see the changes.

Now you see only 2 accounts - Global Media because it is in the Canada territory, and Santa’s Workshop because of the manual rule.

126

Create the Security PredicateRow-Level Security for Datasets

SECURITY PREDICATE REFERENCE

Predicate Expression Syntax for Datasets

You must use valid syntax when defining the predicate expression.

The predicate expression must have the following syntax:

<dataset column> <operator> <value>

For example, you can define the following predicate expression for a dataset:

'UserId' == "$User.Id"

You can create more complex predicate expressions such as:

(‘Expected_Revenue’ > 4000 || ‘Stage Name’ == "Closed Won") && ‘isDeleted’ != "False"

Consider the following requirements for the predicate expression:

• The expression is case-sensitive.

• The expression cannot exceed 1,000 characters.

• There must be at least one space between the dataset column and the operator, between the operator and the value, and before
and after logical operators. This expression is not valid: ‘Revenue’>100. It must have spaces like this: ‘Revenue’ > 100.

If you try to apply a predicate to a dataset and the predicate is not valid, an error appears when any user tries to query the dataset.

IN THIS SECTION:

Dataset Columns in a Predicate Expression

You include at least one dataset column as part of the predicate expression.

Values in a Predicate Expression

The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in
Salesforce.

Escape Sequences

You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

Character Set Support

Wave Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Wave Analytics replaces

non-UTF-8 characters with the UTF-8 symbol (). If Wave Analytics has to replace a non-UTF-8 character in a predicate expression,
users may experience unexpected query results.

Special Characters

Certain characters have a special meaning in Wave Analytics.

Operators

You can use comparison operators and logical operators in predicate expressions.

127

Dataset Columns in a Predicate Expression
You include at least one dataset column as part of the predicate expression.

Consider the following requirements for dataset columns in a predicate expression:

• Column names are case-sensitive.

• Column names must be enclosed in single quotes ('). For example, 'Region' == "South"

Note: A set of characters in double quotes is treated as a string rather than a column name.

• Single quotes in column names must be escaped. For example, 'Team\'s Name' == "West Region Accounts"

Values in a Predicate Expression
The value in the predicate expression can be a string literal or number literal. It can also be a field value from the User object in Salesforce.

Consider the following requirements for each value type.

Predicate Expression ExamplesRequirementsValue Type

Enclose in double quotes and escape the
double quotes.

string literal • 'Owner' == "Amber"

• 'Stage Name' == "Closed
Won"

Can be a float or long datatype. Do not
enclose in quotes.

number literal • 'Expected_Revenue' >=
2000.00

• 'NetLoss' < -10000

When referencing a field from the User
object, use the $User.[field] syntax. Use the
API name for the field.

You can specify standard or custom fields
of type string, number, or multi-value
picklist.

field value • 'Owner.Role' ==
"$User.UserRoleId"

• 'GroupID' ==
"$User.UserGroupId__c"

Note: Supported User object field
value types are string, number, and

When you define a predicate for a dataset,
you must have read access on all User object

multi-value picklist. Other types (for
example, boolean) are not
supported.

fields used to create the predicate
expression.

However, when a user queries a dataset that
has a predicate based on the User object,
Wave Analytics uses the access permissions
of the Insights Security User to evaluate the
predicate expression based on the User
object.

128

Dataset Columns in a Predicate ExpressionSecurity Predicate Reference

Predicate Expression ExamplesRequirementsValue Type

Note: By default, the Security User
does not have access permission on
custom fields of the User object.

To grant the Security User read
access on a field, set field-level
security on the field in the user
profile of the Security User.

Escape Sequences
You can use the backslash character (\) to escape characters in column names and string values in a predicate expression.

You can use the \’ escape sequence to escape a single quote in a column name. For example:

‘Team\’s Name’ == "West Region Accounts"

You can use the following escape sequences for special characters in string values.

MeaningSequence

One backspace character\b

New line\n

Carriage return\r

Tab\t

CTRL+Z (ASCII 26)\Z

One double-quote character\”

One backslash character\\

One ASCII null character\0

Character Set Support
Wave Analytics supports UTF-8 characters in dataset column names and values in a predicate expression. Wave Analytics replaces

non-UTF-8 characters with the UTF-8 symbol (). If Wave Analytics has to replace a non-UTF-8 character in a predicate expression,
users may experience unexpected query results.

Special Characters
Certain characters have a special meaning in Wave Analytics.

129

Escape SequencesSecurity Predicate Reference

DescriptionNameCharacter

Encloses a dataset column name in a
predicate expression.

Single quote‘

Example predicate expression:

'Expected_Revenue' >=
2000.00

Encloses a string value or field value in a
predicate expression.

Double quote“

Example predicate expression:
'OpportunityOwner' ==
"Michael Vesti"

Enforces the order in which to evaluate a
predicate expression.

Parentheses()

Example predicate expression:

('Expected_Revenue' > 4000
|| 'Stage Name' == "Closed
Won") && 'isDeleted' !=
"False"

Identifies the Salesforce object in a predicate
expression.

Dollar sign$

Note: You can only use the User
object in a predicate expression.

Example predicate expression:

'Owner.Role' ==
"$User.UserRoleId"

Separates the object name and field name
in a predicate expression.

Period.

Example predicate expression:

'Owner' == "$User.UserId"

Operators
You can use comparison operators and logical operators in predicate expressions.

IN THIS SECTION:

Comparison Operators

Comparison operators return true or false.

130

OperatorsSecurity Predicate Reference

Logical Operators

Logical operators return true or false.

Comparison Operators
Comparison operators return true or false.

Wave Analytics supports the following comparison operators.

DescriptionNameOperator

True if the operands are equal. String comparisons that use the equals operator are case-sensitive.Equals==

Example predicate expressions:

'Stage Name' == "Closed Won"

True if the operands are not equal. String comparisons that use the not equals operator are
case-sensitive.

Not equals!=

Example predicate expression:

'isDeleted' != "False"

True if the left operand is less than the right operand.Less than<

Example predicate expression:

'Revenue' < 100

True if the left operand is less than or equal to the right operand.Less or equal<=

True if the left operand is greater than the right operand.Greater than>

True if the left operand is greater than or equal to the right operand.Greater or equal>=

True if the left operand exists in the list of strings substituted for a multi-value picklist (field value).Multi-value list filterin

Example predicate expression:

'Demog' in ["$User.Demographic__c"]

In this example, Demographic__c is of type multiPicklistField. During evaluation,
the multi-value picklist field is substituted by a list of strings, with 1 string per user-selected item.

Note: Comma-separated lists are not supported within the square-bracket construct.

You can use the <, <=, >, and >= operators with measure columns only.

Logical Operators
Logical operators return true or false.

Wave Analytics supports the following logical operators.

131

OperatorsSecurity Predicate Reference

DescriptionNameOperator

True if both operands are true.Logical AND&&

Example predicate expression:

'Stage Name' == "Closed Won" &&
'isDeleted' != "False"

True if either operand is true.Logical OR||

Example predicate expression:

'Expected_Revenue' > 4000 || 'Stage Name'
== "Closed Won"

Sample Predicate Expressions for Datasets

Review the samples to see how to structure a predicate expression.

The samples are based on the following Opportunity dataset.

IsDeletedStage_NameOwnerRoleIDOwnerExpected_RevOpportunity

TrueProspecting20Bill2000.00OppA

FalseClosed Won22Joe3000.00OppB

FalseClosed Won36可爱的花1000.00OppC

TrueProspecting18O’Fallon5000.00OppD

TrueClosed Won22JoeOppE

Let’s take a look at some examples to understand how to construct a predicate expression.

DetailsPredicate Expression

Checks column values in the User object.'OwnerRoleID' == "$User.UserRoleId"

'Expected_Rev' > 1000 && 'Expected_Rev' <=
3000

'Owner' = "Joe" || 'Owner' = "Bill"

Parentheses specify the order of operations.('Expected_Rev' > 4000 || 'Stage Name' ==
"Closed Won") && 'isDeleted' != "False"

'Stage Name' == "Closed Won" &&
'Expected_Rev' > 70000

String contains Unicode characters.'Owner' == "可爱的花"

Single quote in a string requires the escape character.'Owner' == "O\’Fallon"

132

Sample Predicate Expressions for DatasetsSecurity Predicate Reference

DetailsPredicate Expression

Checks for an empty string.'Stage Name' == ""

133

Sample Predicate Expressions for DatasetsSecurity Predicate Reference

	Data Integration
	Datasets
	Numeric-Value Handling in Datasets
	Date Handling in Datasets

	Dataflow JSON
	Dataset Builder
	Wave Connector for Excel Data
	Upload External Data from the User Interface
	External Data API

	Create Datasets with a Dataflow
	Design the Dataflow
	Configure the Dataflow
	Start and Stop a Dataflow
	Monitor a Dataflow Job
	Reschedule and Unschedule a Dataflow

	Dataflow Transformation Reference
	Transformations for Wave Dataflows
	append Transformation
	append Parameters

	augment Transformation
	Special Cases for Matching Records with the augment Transformation
	augment Parameters

	computeExpression Transformation
	computeExpression Parameters

	computeRelative Transformation
	computeRelative Parameters

	delta Transformation
	delta Parameters

	dim2mea Transformation
	dim2mea Parameters

	edgemart Transformation
	edgemart Parameters

	filter Transformation
	filter Parameters
	filter Expression Syntax

	flatten Transformation
	flatten Parameters

	sfdcDigest Transformation
	Filtering Records Extracted from a Salesforce Object
	Structured Filter in sfdcDigest Transformation
	Advanced Filter in sfdcDigest Transformation

	Overriding Salesforce Field Metadata
	Unsupported Salesforce Objects and Fields in Wave
	sfdcDigest Parameters

	sfdcRegister Transformation
	sfdcRegister Parameters

	update Transformation
	update Parameters

	Overriding Metadata Generated by a Transformation

	Create a Dataset with the Dataset Builder
	Create a Dataset with External Data
	Create a Dataset with External Data
	Rules for Automatic Generation of a Metadata File

	Monitor an External Data Upload

	Edit a Dataset
	Delete a Dataset
	Row-Level Security for Datasets
	Considerations when Defining a Predicate for a Dataset
	Row-Level Security Example based on Record Ownership
	Determine Which Data to Include in the Dataset
	Determine Row-Level Security for Dataset
	Add the Predicate to the Metadata File
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Opportunity Teams
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example based on Role Hierarchy and Record Ownership
	Determine Which Data to Include in the Dataset
	Design the Dataflow to Load the Data
	Determine Row-Level Security for the Dataset
	Modify the Dataflow Based on Row-Level Security
	Create the Dataset
	Test Row-Level Security for the Dataset

	Row-Level Security Example Based on Territory Management
	Determine How You Use Territory Management
	Create the DataSet
	Create the Security Predicate

	Security Predicate Reference
	Predicate Expression Syntax for Datasets
	Dataset Columns in a Predicate Expression
	Values in a Predicate Expression
	Escape Sequences
	Character Set Support
	Special Characters
	Operators
	Comparison Operators
	Logical Operators

	Sample Predicate Expressions for Datasets

