
Platform Events (Beta)
Salesforce, Winter ’17

 @salesforcedocs
Last updated: December 9, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Platform Events (Beta) . 1

Platform Events in Apex . 4

Platform Events in the API . 8

EventBusSubscriber . 11

EventBus Class . 14

EventBus Methods . 14

ObjectMapper Class . 16

ObjectMapper Methods . 16

Databinding Exception . 20

PLATFORM EVENTS (BETA)

EDITIONS

Platform Events is available
in both Lightning Experience
and Salesforce Classic. The
definition of platform events
is available in Salesforce
Classic only.

Available in: Performance,
Unlimited, Enterprise, and
Developer Editions

USER PERMISSIONS

To create and edit platform
event definitions:
• “Customize Application”

Use platform events to deliver secure and scalable custom notifications within Salesforce or from
external sources. Define fields to customize your platform event. Your custom platform event
determines the event data that the Force.com Platform can produce or consume.

Note: This release contains a beta version of Platform Events, which means it’s a high-quality
feature with known limitations. For information on enabling this feature in your org, contact
Salesforce. Platform Events isn’t generally available unless or until Salesforce announces its
general availability in documentation or in press releases or public statements. We can’t
guarantee general availability within any particular time frame or at all. Make your purchase
decisions only on the basis of generally available products and features. You can provide
feedback and suggestions for Platform Events in the Success Community.

By using platform events, publishers can send customized event data through Apex or an API.
Subscribers can receive custom notifications from Salesforce or an external system and respond
with actions using Apex or CometD clients. For example, a printer can make an API call to publish
an event when the ink is low. The custom printer event can contain custom fields for the printer
model, serial number, and ink level. The event is processed in Salesforce by an Apex trigger that
places an order for a new cartridge.

Platform events simplify the process of communicating changes and responding to them without
writing complex logic. Publishers and subscribers communicate with each other through events.
Multiple subscribers can listen to the same event and carry out different actions.

Define Your Platform Event

Define your platform event in the Platform Events page in the Salesforce user interface. From Setup, enter Platform Events in
the Quick Find box, then select Platform Events.

Platform events are sObjects, similar to custom objects but with some limitations. Event notifications are instances of platform events.
Unlike sObjects, you can’t update event notifications. You also can’t view them in the user interface. When you delete platform event
definitions, they’re permanently deleted.

Publish and Subscribe to Platform Events

After you define your platform event, you can publish event notifications and subscribe to events using Apex or an API.

In Apex, you publish event notifications by inserting event records with the EventBus.publish static method. To receive published
notifications, write an after insert trigger on your event object. In the trigger, you can inspect each event notification and perform
some business logic. You don’t need to create a channel, because Salesforce creates a channel for each defined platform event.

Using an API, you publish events by creating records of your event in the same way that you insert sObjects. You can use any Salesforce
API to create platform events, such as SOAP API, REST API, or Bulk API. Unlike Apex, there is no extra call to publish the event. Subscribe
to events with CometD clients or by writing Apex after insert triggers on your event object.

1

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A0000004gjg

Standard Fields

The following standard fields appear on the New Platform Event page and are included in all platform events. In addition to these
standard fields, your event can include custom fields that you define.

DescriptionField

Name used to refer to your platform event in a user interface page.Label

Plural name of the platform event.Plural Label

If it’s appropriate for your org’s default language, indicate whether
the label is preceded by “an” instead of “a.”

Starts with a vowel sound

Unique name used to refer to the platform event when using the
API. In managed packages, this name prevents naming conflicts

Object Name

with package installations. Use only alphanumeric characters and
underscores. The name must begin with a letter and have no
spaces. It cannot end with an underscore nor have two consecutive
underscores.

Optional description of the object. A meaningful description helps
you remember the differences between your custom events when
you are viewing them in a list.

Description

Indicates whether the platform event is visible to other users.Deployment Status

ReplayId System Field

Among the standard fields that the system populates for each custom platform event is a number field called ReplayId that identifies
an event. Each replay ID is guaranteed to be higher than the ID of the previous event, but not necessarily contiguous for consecutive
events. The ID is unique for the org and the channel, and is used to replay past events.

API Name Suffix for Platform Events

When you create a platform event, the system appends the __e suffix to create the API name of the event. For example, if you create
an event with the object name Low Ink, the API name is Low_Ink__e. The API name is used whenever you refer to the event
programmatically, for example, in Apex.

Event Subscribers

The Subscriptions related list shows all the triggers that are subscribed to platform events. The related list shows the last replay ID of the
platform event that each subscription has processed and whether errors occurred. Also, information about event subscribers is exposed
in the EventBusSubscriber object. You can query this object to obtain details about subscribers.

2

Platform Events (Beta)

Platform Event Considerations

Permanent Deletion of Event Definitions
When you delete an event definition, it is permanently deleted and can’t be restored. Ensure that you delete any associated triggers
first before you delete the event definition. Any published events whose definition has been deleted are also permanently deleted.

Renaming Event Objects
Before you rename an event, ensure that you delete any associated triggers. If the event name is modified after clients have subscribed
to notifications for this event, the subscribed clients must resubscribe to the updated topic. To resubscribe to the new event, re-add
your trigger for the renamed event object.

No Associated Tab
Platform events have no associated tab because you can’t view event records in the Salesforce user interface.

No Record Page Support in Lightning App Builder
When creating a record page in Lightning App Builder, platform events that you defined show up in the list of objects for the page.
However, you can't create a Lightning record page for platform events because event records aren't available in the user interface.

Limit for Published Events
You can publish up to 10,000 platform events per hour.

Custom Field Attributes
The Required and Default Value field attributes aren’t enforced for platform event custom fields. Also, other attributes aren’t enforced,
such as the precision of number fields and the maximum length of text fields.

Supported Field Types
Platform event custom fields support only these field types: Text, Text Area (Long), Number, Date, Date/Time, and Checkbox.

Replaying Past Events
You can replay platform events that were sent in the past 24 hours. You can replay platform events through the API but not Apex.
The process of replaying platform events is the same as for other Streaming API events. For more information, see the Replay Code
Example in the Streaming API Developer Guide and Streaming Replay Client Extensions for Java and JavaScript on GitHub.

SEE ALSO:

EventBusSubscriber

3

Platform Events (Beta)

https://developer.salesforce.com/docs/atlas.en-us.204.0.api_streaming.meta/api_streaming/code_sample_generic_vfp_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api_streaming.meta/api_streaming/code_sample_generic_vfp_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api_streaming.meta/api_streaming/
https://github.com/developerforce/StreamingReplayClientExtensions

PLATFORM EVENTS IN APEX

Publish platform events in Apex by calling the EventBus.publish method, and subscribe to notifications through Apex triggers.

Publish Platform Event Notifications

To publish event notifications, call the EventBus.publish method. For example, if you’ve defined a custom platform event called
Low Ink, reference this event type as Low_Ink__e. Next create instances of this event and pass them to the Apex method.

The following example creates two events of type Low_Ink__e, publishes them, and then checks if the publishing was successful or
any errors were encountered. The example requires the Low Ink platform event to be defined in your org.

List<Low_Ink__e> inkEvents = new List<Low_Ink__e>();
inkEvents.add(new Low_Ink__e(Printer_Model__c='XZO-5', Serial_Number__c='12345',

Ink_Percentage__c=0.2));
inkEvents.add(new Low_Ink__e(Printer_Model__c='MN-123', Serial_Number__c='10013',

Ink_Percentage__c=0.15));

// Call method to publish events
List<Database.SaveResult> results = EventBus.publish(inkEvents);

// Inspect publishing result for each event
for (Database.SaveResult sr : results) {

if (sr.isSuccess()) {
System.debug('Successfully published event.');

} else {
for(Database.Error err : sr.getErrors()) {

System.debug('Error returned: ' +
err.getStatusCode() +
err.getMessage());

}
}

}

When you publish events from Apex, they’re inserted synchronously. Because event publishing is equivalent to a DML insert operation,
DML limits apply.

Subscribe to Platform Event Notifications with Triggers

Use triggers to subscribe to events. Triggers provide an autosubscription mechanism—no need to explicitly create and listen to a channel
in Apex.

To subscribe to event notifications, write an after insert trigger on the desired event object type. In this context, the after
insert trigger event corresponds to the time that occurs after a platform event is published. After an event notification is published,
the after insert trigger for this event object is fired.

4

The following example shows a trigger for the Low Ink event. It iterates through each event and checks a field value. This trigger
inspects each received notification and gets the printer model from the notification. If the printer model matches a certain value, other
business logic can be executed. For example, the trigger can create a request to order a new cartridge for this printer model.

trigger LowInkTrigger on Low_Ink__e (after insert) {
// Trigger for catching Low_Ink events.
// Iterate through each notification.

// List to hold all cases to be created.
List<Case> cases = new List<Case>();
for (Low_Ink__e event : Trigger.New) {

System.debug('Printer model: ' + event.Printer_Model__c);
if (event.Printer_Model__c == 'MN-123') {

// Create Case to order new printer cartridge.
Case cs = new Case();
cs.Priority = 'Medium';
cs.Subject = 'Order new ink cartridge for SN ' + event.Serial_Number__c;
cases.add(cs);

}
}

// Insert all cases corresponding to events received.
insert cases;

}

Refire Event Triggers with Resent Events

The ability to refire event triggers gives you another chance to process event notifications. Refiring triggers is helpful when a transient
error occurs or when waiting for a condition to change. Refire triggers if the error or condition is external to the event records and is
likely to go away later. For example, consider that the trigger is trying to add a related record to a master record only if a field on the
master record equals a certain value. It is possible that in a subsequent try, this field value changes and the trigger is able to perform the
operation.

To refire the event trigger, throw EventBus.RetryableException. The system resends events after a small delay, which
increases on each subsequent retry. A resent event has the same field values as the original event, but the batch size of the events can
be different. For example, the initial trigger can receive events with replay ID 10 to 20. The resent batch can be larger, containing events
with replay ID 10 to 40.

This example is a skeletal trigger that gives you an idea of how to throw EventBus.RetryableException. This trigger uses an
if statement to check whether a certain condition is true. Alternatively, you can use a try-catch block and throw
EventBus.RetryableException in the catch block.

trigger ResendEventsTrigger on Low_Ink__e (after insert) {
if (condition == true) {

// Process platform events.
} else {

// Condition isn't met, so try again later.
throw new EventBus.RetryableException();

}
}

5

Platform Events in Apex

Copy Event Field Values with ObjectMapper

The Apex ObjectMapper class provides utility methods for copying field values from events to instances of a Salesforce object
(standard or custom object). Use transform methods to shorten the amount of code you have to write to copy field values. The
ObjectMapper class provides several methods named transform that take different parameters.

This example illustrates how to use an ObjectMapper.transform method to copy field values within a trigger. The event records,
which correspond to event notifications, are supplied in the Trigger.New trigger variable. The sObjects that receive the copied
values correspond to a custom object called MyCustomObject__c. The result of the copy is stored in an array of sObjects.

SObject[] results = Databinding.ObjectMapper.transform('MyCustomObject__c', Trigger.new);

To obtain an array of your custom object instead of the generic sObjects, cast the returned array to your object, as follows.

MyCustomObject__c[] results =
(MyCustomObject__c[])Databinding.ObjectMapper.transform('MyCustomObject__c', Trigger.new);

This example shows the amount of code you would have to write to copy event field values when not using ObjectMapper. The
ObjectMapper class methods save you a lot of time!

List<MyCustomObject__c> results = new List<MyCustomObject__c>();
// Copy field values from events without the ObjectMapper class.
for (Low_Ink__e e : Trigger.new) {

MyCustomObject__c c = new MyCustomObject__c();
c.Printer_Model__c = e.Printer_Model__c;
c.Serial_Number__c = e.Serial_Number__c;
c.Ink_Percentage__c = e.Ink_Percentage__c;
results.add(c);

}

If the names of the fields in the sObject don’t match the event field names, use the transform method that takes an additional Map
parameter. The passed-in map converts event field names to the sObject field names.

Map<String,String> map = new Map<String,String>();
map.put('FieldName1OnEvent__c', 'FieldName1OnCustomObject__c');
map.put('FieldName2OnEvent__c', 'FieldName2OnCustomObject__c');
SObject[] results = Databinding.ObjectMapper.transform('MyCustomObject__c', Trigger.new,
map);

Note: The transform methods automatically map between standard fields and custom fields with the same name. For
example, if you copy field values from an event record to an account, values in an AccountNumber__c custom field on the event
are mapped to an AccountNumber standard field, if it exists.

To learn about the available methods, see the ObjectMapper class.

Apex and SOQL Considerations for Platform Events

Trigger Support for after insert Triggers Only
Only after insert triggers are supported for platform events because event notifications can’t be updated. They’re only
inserted (published).

6

Platform Events in Apex

Infinite Trigger Loop and Limits
Be careful when publishing events from triggers because you could get into an infinite trigger loop and exceed daily event limits.
For example, if you publish an event from a trigger that’s associated with the same event object, the trigger is fired in an infinite
loop.

No SOQL Support
You can’t query event notifications using SOQL.

Apex DML Limits for Publishing Events
Each EventBus.publish method call is considered a DML statement, and DML limits apply.

SEE ALSO:

EventBus Class

7

Platform Events in Apex

PLATFORM EVENTS IN THE API

Publish event notifications through the API, and subscribe with a Streaming API client that uses CometD or through Apex triggers. Using
the API, you can publish notifications from external systems.

Publish Platform Event Notifications with Salesforce APIs

Publishing a platform event consists of creating the sObject record, the same way you create records for any other sObject. You can use
any Salesforce API that creates platform events, such as SOAP API, REST API, or Bulk API. Unlike Apex, there is no extra call to publish
events.

If you’ve defined a platform event named Low Ink, publish event notifications by inserting Low_Ink__e records. This example
creates one event of type Low_Ink__e in REST API.

REST endpoint:

/services/data/v37.0/sobjects/Low_Ink__e/

Request body:

{
"Printer_Model__c" : "XZO-5"

}

After the platform event record is created, the REST response looks as follows. Headers are deleted for brevity.

HTTP/1.1 201 Created

{
"id" : "e00xx000000000B",
"success" : true,
"errors" : []

}

For more information, see the Force.com REST API Developer Guide.

This example shows the SOAP message (using Partner API) of a request to create three platform events in one call. Each event has one
custom field named Printer_Model__c.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:sobject.partner.soap.sforce.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="urn:partner.soap.sforce.com">
<SOAP-ENV:Header>

<ns2:SessionHeader>
<ns2:sessionId>00DR00000001fWV!AQMAQOshATCQ4fBaYFOTrHVixfEO6l...</ns2:sessionId>

</ns2:SessionHeader>
<ns2:CallOptions>

<ns2:client>Workbench/34.0.12i</ns2:client>
<ns2:defaultNamespace xsi:nil="true"/>
<ns2:returnFieldDataTypes xsi:nil="true"/>

8

https://developer.salesforce.com/docs/atlas.en-us.202.0.api_rest.meta/api_rest/

</ns2:CallOptions>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<ns2:create>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>XZO-600</Printer_Model__c>

</ns2:sObjects>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>HP_Envy-100</Printer_Model__c>

</ns2:sObjects>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>Cannon-9000</Printer_Model__c>

</ns2:sObjects>
</ns2:create>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response of the Partner SOAP API request looks something like the following. Headers are deleted for brevity.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="urn:partner.soap.sforce.com">
<soapenv:Header>
...
</soapenv:Header>
<soapenv:Body>

<createResponse>
<result>

<id>e00xx000000000F</id>
<success>true</success>

</result>
<result>

<id>e00xx000000000G</id>
<success>true</success>

</result>
<result>

<id>e00xx000000000H</id>
<success>true</success>

</result>
</createResponse>

</soapenv:Body>
</soapenv:Envelope>

For more information about creating records with the SOAP API, see the create() call in the SOAP API Developer Guide.

9

Platform Events in the API

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/sforce_api_calls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/

Subscribe to Platform Event Notifications with CometD

The process of subscribing to platform event notifications through CometD is similar to subscribing to PushTopics or generic events.
The only difference is the channel name. The format of the platform event channel name is as follows.

/event/<EventName>__e

For example, if you’ve defined a platform event named Low Ink, provide this channel name when subscribing.

/event/Low_Ink__e

Also ensure that your API client uses version 37.0 of the CometD endpoint.

/cometd/37.0

To learn how to add a Java API client that uses CometD, check out the Java Client example in the Streaming API Developer Guide. Modify
the following constants in the example to provide suitable values for your org. The given channel name value is based on our example
event named Low Ink.

ValueConstant

/event/Low_Ink__e
CHANNEL

/cometd/37.0
STREAMING_ENDPOINT_URI

A valid username for your orgUSER_NAME

Your user’s passwordPASSWORD

Next, add custom logic to your client to perform some operations after a platform event notification is received. For example, the client
can create a request to order a new cartridge for this printer model.

Subscribe to Platform Event Notifications with Apex Triggers

Instead of using a CometD client, you can subscribe to events published through the API by using Apex triggers. Inserting the platform
event record through the API fires the associated Apex after insert trigger. For more information, see Subscribe to Platform
Event Notifications with Triggers.

API and SOQL Considerations for Platform Events

No SOQL Support
You can’t query event notifications using SOQL.

API Request Limits for Publishing Events
Because platform events are published by inserting the event sObjects, API request limits apply. For more information, see API
Request Limits in the Salesforce Limits Quick Reference Guide.

10

Platform Events in the API

https://developer.salesforce.com/docs/atlas.en-us.204.0.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.api_streaming.meta/api_streaming/
https://developer.salesforce.com/docs/atlas.en-us.204.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/

EVENTBUSSUBSCRIBER

Represents a trigger that is subscribed to a platform event.

Supported Calls

query()

Special Access Rules

EventBusSubscriber is read only and can only be queried.

Fields

DetailsField

Type
string

ExternalId

Properties
Filter, Group, Nillable, Sort

Description
The ID of the subscriber. For example, the trigger ID.

Type
string

Name

Properties
Filter, Group, Nillable, Sort

Description
The name of the subscribed item, such as the trigger name.

Type
int

Position

Properties
Filter, Group, Nillable, Sort

Description
The replay ID of the last event that the subscriber processed.

Type
picklist

Status

11

DetailsField

Properties
Filter, Group, Nillable, Restricted picklist, Sort

Description
Indicates the status of the subscriber. Can be one of the following values:

• Running—The subscriber is actively listening to events.

• Suspended—The subscriber is disconnected and can’t receive events due to lack of
permissions.

• Expired—The subscriber’s connection expired. In rare cases, subscriptions can expire
if they’re inactive for an extended period of time.

• Error—The subscription encountered an error and has been disconnected.

Type
int

Tip

Properties
Filter, Group, Nillable, Sort

Description
The replay ID of the last published event.

Type
string

Topic

Properties
Filter, Group, Nillable, Sort

Description
The name of the subscription channel that corresponds to a platform event. The topic name
is the event name appended with __e, such as MyEvent__e. The topic is the channel
that the subscriber is subscribed to.

Type
string

Type

Properties
Filter, Group, Nillable, Sort

Description
The subscriber type. Can be one of the following values:

• ApexTrigger

• Process—Reserved for future use.

12

EventBusSubscriber

Usage

Use EventBusSubscriber to query details about subscribers to a platform event. You can get all subscribers for a particular event by
filtering on the Topic field, as follows.

SELECT ExternalId, Name, Position, Status, Tip, Type
FROM EventBusSubscriber
WHERE Topic='Low_Ink__e'

13

EventBusSubscriber

EVENTBUS CLASS

Contains methods for publishing platform events.

Namespace

System

Usage

To learn how to use platform events in Apex, see Platform Events in Apex.

EventBus Methods

EventBus Methods

The following are methods for EventBus. All methods are static.

publish(event)

Publishes the given platform event. To receive published events, use triggers for the corresponding event object.

publish(events)

Publishes the given list of platform events. To receive published events, use triggers for the corresponding event object.

publish(event)
Publishes the given platform event. To receive published events, use triggers for the corresponding event object.

Signature
public static Database.SaveResult publish(SObject event)

Parameters
event

Type: SObject

An instance of a platform event. You must define your platform event object first in your org. For example, the type of the platform
event object can be MyEvent__e.

14

Return Value
Type: Database.SaveResult

The result of publishing the given event.

Usage

Note: This method inserts events synchronously. The insertion is part of an Apex transaction. Apex DML limits, such as number
of records processed in DML statements, apply to this method.

publish(events)
Publishes the given list of platform events. To receive published events, use triggers for the corresponding event object.

Signature
public static List<Database.SaveResult> publish(List<SObject> events)

Parameters
events

Type: List<sObject>

A list of platform event instances. You must define your platform event object first in your org. For example, the type of the platform
event object can be MyEvent__e.

Return Value
Type: List<Database.SaveResult>

A list of results, each corresponding to the result of publishing one event.

Usage

Note: This method inserts events synchronously. The insertion is part of an Apex transaction. Apex DML limits, such as number
of records processed in DML statements, apply to this method.

15

publish(events)EventBus Class

OBJECTMAPPER CLASS

Provides utility methods for copying field values from platform events to Salesforce objects.

Namespace

Databinding

ObjectMapper Methods

ObjectMapper Methods

The following are methods for ObjectMapper.

transform(targetType, sourceRecord)

Copies the field values from the specified platform event record to an instance of a Salesforce object.

transform(targetType, sourceRecords)

Copies the field values from the specified platform event records to instances of Salesforce objects.

transform(targetType, sourceRecord, fieldMapping)

Copies the field values from the specified platform event record to an instance of a Salesforce object. Use this method when field
names don’t match between the event and the Salesforce object.

transform(targetType, sourceRecords, fieldMapping)

Copies the field values from the specified platform event records to instances of a Salesforce object. Use this method when field
names don’t match between the event and the Salesforce object.

transform(targetType, sourceRecord)
Copies the field values from the specified platform event record to an instance of a Salesforce object.

Signature
public static SObject transform(String targetType, SObject sourceRecord)

Parameters
targetType

Type: String

The type of the returned sObject that contains the copied field values. This parameter can be a standard object or a custom object.
For example, MyCustomObject__c or Account.

16

sourceRecord
Type: SObject

A platform event record containing the fields to copy.

Return Value
Type: SObject

An instance of the specified standard or custom object containing the copied fields.

Example
In this example, the transform method returns an sObject containing the field values from the specified event record. The type of
the sObject created is MyCustomObject__c, which the result can be cast to.

SObject result = Databinding.ObjectMapper.transform('MyCustomObject__c', eventRecord);

transform(targetType, sourceRecords)
Copies the field values from the specified platform event records to instances of Salesforce objects.

Signature
public static List<SObject> transform(String targetType, List<SObject> sourceRecords)

Parameters
targetType

Type: String

The type of the returned sObject that contains the copied field values. This parameter can be a standard object or a custom object.
For example, MyCustomObject__c or Account.

sourceRecords
Type: List<SObject>

A list of platform event records containing the fields to copy.

Return Value
Type: List<SObject>

Instances of the specified standard or custom object containing the copied fields for each platform event.

Example
In this example, the transform method returns an array of sObjects containing the field values from the event records specified in
Trigger.new. The type of the sObjects created is MyCustomObject__c, which the result objects can be cast to.

SObject[] results = Databinding.ObjectMapper.transform('MyCustomObject__c', Trigger.new);

17

transform(targetType, sourceRecords)ObjectMapper Class

transform(targetType, sourceRecord, fieldMapping)
Copies the field values from the specified platform event record to an instance of a Salesforce object. Use this method when field names
don’t match between the event and the Salesforce object.

Signature
public static SObject transform(String targetType, SObject sourceRecord,
Map<String,String> fieldMapping)

Parameters
targetType

Type: String

The type of the returned sObject that contains the copied field values. This parameter can be a standard object or a custom object.
For example, MyCustomObject__c or Account.

sourceRecord
Type: SObject

A platform event record containing the fields to copy.

fieldMapping
Type: Map<String,String>

A map of event field names to your object’s field names. This map determines in which field to copy each event field value.

Return Value
Type: SObject

An instance of the specified standard or custom object containing the copied fields.

Example
In this example, a map is created that maps two event field names to corresponding field names on the sObject. This map is passed in
to the transform method as the last parameter.

Map<String,String> map = new Map<String,String>();
map.put('FieldName1OnEvent__c', 'FieldName1OnCustomObject__c');
map.put('FieldName2OnEvent__c', 'FieldName2OnCustomObject__c');
SObject result = Databinding.ObjectMapper.transform('MyCustomObject__c', eventRecord, map);

transform(targetType, sourceRecords, fieldMapping)
Copies the field values from the specified platform event records to instances of a Salesforce object. Use this method when field names
don’t match between the event and the Salesforce object.

Signature
public static List<SObject> transform(String targetType, List<SObject> sourceRecords,
Map<String,String> fieldMapping)

18

transform(targetType, sourceRecord, fieldMapping)ObjectMapper Class

Parameters
targetType

Type: String

The type of the returned sObject that contains the copied field values. This parameter can be a standard object or a custom object.
For example, MyCustomObject__c or Account.

sourceRecords
Type: List<SObject>

A list of platform event records containing the fields to copy.

fieldMapping
Type: Map<String,String>

A map of event field names to your object’s field names. This map determines in which field to copy each event field value.

Return Value
Type: List<SObject>

Instances of the specified standard or custom object containing the copied fields for each platform event.

Example
In this example, a map is created that maps two event field names to corresponding field names on the sObject. This map is passed in
to the transform method as the last parameter.

Map<String,String> map = new Map<String,String>();
map.put('FieldName1OnEvent__c', 'FieldName1OnCustomObject__c');
map.put('FieldName2OnEvent__c', 'FieldName2OnCustomObject__c');
SObject[] results = Databinding.ObjectMapper.transform('MyCustomObject__c', eventRecords,
map);

19

transform(targetType, sourceRecords, fieldMapping)ObjectMapper Class

DATABINDING EXCEPTION

The Databinding namespace contains an exception class.

DescriptionException

This exception is thrown when the transform method
encounters an error while copying field values.

Databinding.ObjectMappingException

Note: This exception isn’t thrown when the fields or field
types between the event and the custom object don’t
match. Instead, the values of the matching fields get copied
and the mismatched fields are ignored.

20

	Platform Events (Beta)
	Platform Events in Apex
	Platform Events in the API
	EventBusSubscriber
	EventBus Class
	EventBus Methods
	publish(event)
	publish(events)

	ObjectMapper Class
	ObjectMapper Methods
	transform(targetType, sourceRecord)
	transform(targetType, sourceRecords)
	transform(targetType, sourceRecord, fieldMapping)
	transform(targetType, sourceRecords, fieldMapping)

	Databinding Exception

