salesforce

Open CTl Developer Guide

Y @salesforcedocs
Last updated: December 9, 2016

https://twitter.com/salesforcedocs

© Copyright 2000-2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Get Started with Open CTl o i e 1
Why Your ULIMOREIS 2
Open CTI Method Parityo e e e e 3
Other Voice SOIUHONS oo o e 5
Customize Functionality e 6
Open CTI Support Policy 6

Backward Compatibility 7

APl SUPPOI & oo e 7
Chapter 2: Call Center Definition Files i 8
Call Center Definition File Formato 9
Required Elements and Aftributes 10
Optional Elements and Aftributes 12
Specify Values for <item> Elements 13
Sample Call Center Definition File 13
Chapter 3: Workingwith Open CTl ot e i 16
Connect 10 Open CTl . . oo e 17
DemO AdOper . . oo 18
Asynchronous Calls e 18
SAMPle HTMLPAGE . . . o oot e e e 18
Work with Force.com Canvas 24
Best Practices e 24
Chapter 4: Methods for Lightning Experience, 26
disableClickToDial() for Lightning Experience i 27
enableClickToDial() for Lightning Experience i 28
getAppViewlnfol) for Lightning Experience 29
getCallCenterSettingsl) for Lightning Experience i i 31
getSoftphonelayout() for Lightning Experience 33
isSoftphonePanelVisible() for Lightning Experience i 36
onClickToDial() for Lightning Experience i 37
onNavigationChangel) for Lightning Experience 38
refreshView() for Lightning Experience 40
runApex() for Lightning Experience Y|
savelogl) for Lightning Experience e 44
screenPopl) for Lightning EXperience e 46
searchAndScreenPopl) for Lightning Experience 48

setSoftphoneltemicon() for Lightning Experience 52

Contents

setSoftphoneltemLabell) for Lightning Experience 54
setSoftphonePanelHeight() for Lightning Experience 56
setSoftphonePanellcon() for Lightning Experience o 57
setSoftphonePanellabel() for Lightning Experience o i 59
setSoftphonePanelVisibility() for Lightning Experience 61
setSoftphonePanelWidth() for Lightning Experience 62
Common Error Messages for Lightning Experience Methods 63
Chapter 5: Methods for Salesforce Classic 66
Methods for Salesforce Application Interaction 66
getPagelnfol) for Salesforce Classic 67
isinConsolel) for Salesforce Classic e 68
isVisible() for Salesforce Classic 70
nofifylnitializationComplete() for Salesforce Classic VAl
onfFocus() for Salesforce Classic A
onObjectUpdatel) for Salesforce Classic 73
refreshObject() for Salesforce Classic 74
refreshPagel) for Salesforce Classic 75
refreshRelatedList() for Salesforce Classic 76
reloadFramel) for Salesforce Classic 78
runApex() for Salesforce Classic 78
savelogl) for Salesforce Classic 80
screenPop|) for Salesforce Classic 81
searchAndGetScreenPopUrl() for Salesforce Classic 83
searchAndScreenPop() for Salesforce Classic 84
setVisible() for Salesforce Classic 86
Methods for Computer-Telephony Integration (CTI) oo i 88
disableClickToDial() for Salesforce Classic i 88
enableClickToDiall) for Salesforce Classic i 89
getCallCenterSettingsl) for Salesforce Classic i 90
getDirectoryNumbersl) for Salesforce Classic 9N
getSoftphonelayout() for Salesforce Classic i 93
onClickToDial() for Salesforce Classic i e 96
setSoftphoneHeightl() for Salesforce Classic 97
setSoftphoneWidth() for Salesforce Classic 98
Chapter 6: Other ReSOUICESo i ittt e e 101
Open CTI Typographical Conventionso vttt e e e e e 101

CHAPTER1 Get Started with Open CTI

Build and integrate third-party computer-telephony integration (CTl) systems with Salesforce Call

_ , EDITIONS
Center using a browser-based JavaScript API.
To display CTl functionality in Salesforce, Open CTl uses browsers as clients. With Open CTl, you can Available in: Salesforce
make calls from a softphone directly in Salesforce without installing CTl adapters on your machines. Classic and Lightning
Afteryou develop an Open CTl implementation, you can integrate it with Salesforce using Salesforce Experience
Call Center.

Available in: Professional,
Enterprise, Performance,

Unlimited, and Developer
Editions

Here's how Open CTI connects to your telephony system.

On-Premise or
U Agent Deskt salesforce
Cloud Telephony ser/Agent Desktop .

Browser Open CTI
Adapter

Salesforce

Telephony

System .= Classsic App
CTI System
I API Web-based
...... ‘ — Softphone Salesforce.com
F Open CTI
uli JavaScript

API Salesforce

Lightning App

Voice Path PC Softphone
->

On-Premise Phone

Note: The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience. You can't swap the two Open CTI APIs in custom JavaScript code because they behave and
function differently. Make sure that you think about where you want to implement your CTl system before you begin developing.

With Open CTl, you can:

e Build CTl systems that integrate with Salesforce without the use of CTl adapters.

e (reate customizable softphones (call-control tools) that function as fully integrated parts of Salesforce and the Salesforce console.

Provide users with CTl systems that are browser and platform agnostic, for example, CTI for Microsoft” Internet Explorer®, Mozilla®
Firefox”, Apple” Safari®, or Google Chrome™ on Mac, Linux, or Windows machines.

To implement Open CTl, it helps if you have a basic familiarity with: CTl, JavaScript, Visualforce, web services, software development, the
Salesforce console, and the Salesforce Call Center.

Keep in mind that Open CTlis only available for use with JavaScript pages. The examples in this guide are in JavaScript. You can use
Open CTlin JavaScript to embed API calls and processes.

Get Started with Open CTI Why Your Ul Matters—Open CTl for Salesforce Classic vs.
Lightning Experience

Why Your Ul Matters—Open CTI for Salesforce Classic vs. Lightning Experience

The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce Classic and
Lightning Experience.

Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

The methods provided in the two APIs aren't always the same. Some Salesforce Classic methods aren’t available in Lightning
Experience and some have been renamed.

Open CTl and Other Voice Solutions

Open CTlintegrates third-party CTl systems with Salesforce. But do you wonder what came before? Or what the difference is between
Salesforce Voice?

Customize Open CTI Functionality

Your organization may have complex business processes that are unsupported by Open CTI functionality. Not to worry. When this
is the case, the Force.com platform offers advanced administrators and developers several ways to implement custom functionality.

Open CTI Support Policy
The current release of Open CTl is the only version that receives enhancements.

SEE ALSO:
Salesforce Help: Salesforce Call Center
Salesforce Help: Salesforce Console

Salesforce Help: Supported Browsers

Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning
Experience

The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce Classic and
Lightning Experience.

@ Important: You can't swap the two Open CTI APIs in custom JavaScript code because they behave and function differently. Make
sure that you think about where you want to implement your CTl system before you begin developing.

What's the difference between the two Open CTI APIs?

® You connect to the API differently.

In Salesforce Classic
/support/api/38.0/interaction.]js

In Lightning Experience
/support/api/38.0/1lightning/opencti min.Jjs
e Theinput syntax for methods is different.

In Salesforce Classic
Input example:

sampleMethod (varl, var2..)

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_overview.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=getstart_browser_overview.htm&language=en_US

Get Started with Open CTI Method Parity Between Open CTI for Salesforce Classic and
Lightning Experience

In Lightning Experience
Input example:

sampleMethod ({
argl : valuel,
arg2 : value2,

b

e The two APIs provide similar methods, but a few methods behave differently. The input and output for methods can be different.

Which Open CTI APl do | use?

Remember that the APIs can't be swapped. If your users plan to switch between user interfaces, make sure that they understand that
the CTl system might behave or function differently depending on what user interface they're working in.

Use Open CTI for Salesforce Classic if...

® You want to make calls using a softphone in a Salesforce Classic app

® You want to make calls using a softphone in a Salesforce console
Use Open CTI for Lightning Experience if...

* You want to make calls using a softphone in a Lightning Experience app

Are there any setup considerations?

To make calls in Lightning Experience, complete the following.

e (reate a Lightning app and add the Open CTl Softphone option.
e Inthe call center definition file, the regqSalesforceCompatibilityMode item must be setto Lightning or
Classic _and Lightning.

Open CTl for Lightning Experience works only in Lightning apps—it doesn’t work in Salesforce Classic apps. Even though you can view
Salesforce Classic apps in Lightning Experience, those apps are still Classic apps under-the-covers. To check if your app is a Lightning
app, use the App Manager in Setup.

If you want your Open CTlimplementation to work in Lightning Experience and in a Salesforce console, develop a unique implementation
that uses both Open CTl for Salesforce Classic and Lightning Experience. The console might look and feel like Lightning, but it's only
available in Salesforce Classic.

SEE ALSO:
Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

Method Parity Between Open CTl for Salesforce Classic and Lightning
Experience

The methods provided in the two APIs aren't always the same. Some Salesforce Classic methods aren't available in Lightning Experience
and some have been renamed.

Get Started with Open CTI

Salesforce Classic Method

disableClickToDial ()

enableClickToDial ()

getCallCenterSettings ()

getDirectoryNumbers ()

getPagelInfo()

getSoftphonelayout ()

isInConsole ()

isVisible ()

notifyInitializationComplete ()

onClickToDial ()

onFocus ()

refreshPage ()

refreshRelatedList ()

reloadFrame ()

runApex ()

savelLog ()

screenPop ()

Available in
Lightning
Experience?

W

+

Method Parity Between Open CTI for Salesforce Classic and
Lightning Experience

Notes About Lightning Experience Support

Uses the same method name in Open CTl for Lightning.
Uses the same method name in Open CTl for Lightning.

Uses the same method name in Open CTl for Lightning.
Not yet supported.

The same functionality is provided in the Open CTl for
Lightning method getAppViewInfo.

Uses the same method name in Open CTl for Lightning.

Not available because the console isn't supported in Lightning

Experience.

The same functionality is provided in the Open CTI for
Lightning isSoftphonePanelVisible

Not yet supported.

Uses the same method name in Open CTl for Lightning.

The same functionality is provided in the Open CTl for
Lightning method onNavigationChange.

The same functionality is provided in the Open CTI for
Lightning method refreshvView

The same functionality is provided in the Open CTl for
Lightning method refreshview.

The same functionality is provided in the Open CTI for
Lightning method refreshview.

Uses the same method name in Open CTl for Lightning.

Uses the same method name in Open CTl for Lightning.

Uses the same method name in Open CTl for Lightning.

Get Started with Open CTI Open CTl and Other Voice Solutions

Salesforce Classic Method Available in Notes About Lightning Experience Support
Lightning
Experience?
searchAndGetScreenPopUrl () 3%

Torecreate this functionality, use searchAndScreenPop
in Open CTl for Lightning

searchAndscreenPop () v Uses the same method name in Open CTl for Lightning.
setSoftphoneHeight () v The same functionality is provided in the Open CTl for
Lightning method setSoftphonePanelHeight.
setSoftphoneWidth () v The same functionality is provided in the Open CTl for
Lightning method setSoftphonePanelWidth.
setVisible () v The same functionality is provided in the Open CTl for
Lightning method setSoftphonePanelVisibility.
SEE ALSO:

Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning Experience

Open CTI and Other Voice Solutions

Open CTlintegrates third-party CTl systems with Salesforce. But do you wonder what came before? Or what the difference is between
Salesforce Voice?

What came before Open CTI?
Desktop CTl, also known as the CTI Toolkit, is the predecessor to Open CTI. Desktop CTlI required adapters to be installed on each
call center user's machine. With Open CTl, those user-side adapters are a thing of the past.

@ Important: Desktop CTlis retiring and you must migrate to Open CTl. If you're using an adapter built on Desktop CTl, it stops
working with the Spring "17 release. Work with your partners to create an Open CTl implementation.

What about Salesforce Voice?
If you're confused between Salesforce Voice and Open CTl, don't be. Salesforce Voice provides a way to provision numbers and make
calls directly from Salesforce. However, if you already have a telephony system in place, Open CTl is the way to go since it integrates
to that existing system.

SEE ALSO:
CTl Toolkit Retirement FAQ

Salesforce Help: Make and Receive Calls with Voice

https://help.salesforce.com/apex/HTViewSolution?id=000233625
https://help.salesforce.com/apex/HTViewHelpDoc?id=voice_intro.htm&language=en_US

Get Started with Open CTI

Customize Open CTI Functionality

Customize Open CTI Functionality

Your organization may have complex business processes that are unsupported by Open CTI functionality. Not to worry. When this is the
case, the Force.com platform offers advanced administrators and developers several ways to implement custom functionality.

Feature

SOAP API

Visualforce

Salesforce Console Integration
Toolkit

Apex

Description

Use standard SOAP API calls if you want to add functionality to a composite application that processes
only one type of record at a time and does not require any transactional control (such as setting a
Savepoint or rolling back changes).

For more information, see the SOAP API Developer's Guide.

Visualforce consists of a tag-based markup language that gives developers a more powerful way of
building applications and customizing the Salesforce user interface. With Visualforce you can:

e Build wizards and other multistep processes.
e (reate your own custom flow control through an application.
e Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

The Salesforce Console Integration Toolkit lets you implement custom functionality for the Salesforce
console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce
pages or third-party content as tabs in the Salesforce console. The Salesforce Console Integration
Toolkitis an API that uses browsers as clients to display pages in the console.

For more information, see the Salesforce Console Integration Toolkit Developer Guide.

Use Apex if you want to:

e (reate Web services.

e (Create email services.

e Perform complex validation over multiple objects.

e (reate complex business processes that are not supported by workflow.

e (reate custom transactional logic (logic that occurs over the entire transaction, not just with a
single record or object).

e Attach custom logic to another operation, such as saving a record, so that it occurs whenever
the operation is executed, regardless of whether it originates in the user interface, a Visualforce
page, or from SOAP API.

For more information, see the Apex Developer Guide.

Open CTI Support Policy

The current release of Open CTlis the only version that receives enhancements.

Previous versions might or might not receive fixes. When a new version is released, the previous version remains available.

https://developer.salesforce.com/docs/atlas.en-us.204.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.204.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.204.0.api_console.meta/api_console/
https://developer.salesforce.com/docs/atlas.en-us.204.0.apexcode.meta/apexcode/

Get Started with Open CTI Backward Compatibility

Backward Compatibility
Salesforce strives to make backward compatibility easy when using Open CTI.

API Support
Salesforce is committed to supporting each Open CTl version for a minimum of three years from the date of its first release.

Backward Compatibility

Salesforce strives to make backward compatibility easy when using Open CTI.
Each new Salesforce release consists of two components:

e Anew release of platform software that resides on Salesforce systems

e Anew version of the API

Open CTl matches the APl version for any given release. For example, if the current version of SOAP APl is 38.0, then there’s also a version
38.0 of Open CTI.

We maintain support for each Open CTl version across releases of the platform. Open CTlis backward compatible in that an application
created to work with a given Open CTl version will continue to work with that same Open CTl version in future platform releases.

Salesforce doesn't guarantee that an application written against one Open CTl version will work with future Open CTl versions: Changes
in method signatures and data representations are often required as we continue to enhance Open CTI. However, we strive to keep
Open (Tl consistent from version to version with minimal changes required to port applications to newer Open CTI versions.

For example, an application written using Open CTl version 37.0, which shipped with the Summer '16 release, will continue to work with
Open CTl version 37.0 on the Winter "17 release and on future releases. However, that same application might not work with Open CTl
version 38.0 without modifications to the application.

API Support

Salesforce is committed to supporting each Open CTl version for a minimum of three years from the date of its first release.
To improve the quality and performance of Open CTl, versions that are more than three years old might not be supported.

When a Open CTl version is scheduled to be unsupported, a no-longer-available notice will be given at least one year before support
for the version ends. Salesforce will directly notify customers using Open CTl versions that will no longer be available.

CHAPTER 2 Call Center Definition Files

A call center definition file specifies a set of fields and values that are used to define a call center in Salesforce for a particular softphone.
Salesforce uses call center definition files to support the integration of Salesforce CRM Call Center with multiple CTI system vendors.

A call center in Salesforce CRM Call Center must have a call center definition file that works specifically with a softphone. If you build a
custom softphone with Open CTI, you must write a call center definition file to support it. The first instance of a call center for a particular
softphone must be defined by importing the adapter's call center definition file into Salesforce. Subsequent call centers can be created
by cloning the original call center that was created with the import.

If your organization modifies a softphone or builds a new one, you must customize the softphone’s call center definition file so that it
includes any additional call center information that is required. For example, if you are building a softphone for a system that supports
a backup server, your call center definition file should include fields for the backup server's IP address and port number. Softphones for
systems that don't have a backup server, don't need those fields in their associated call center definition files.

Use a text or XML editor to define a call center definition file.

@ Important: The way you implement Open CTl depends on your org's user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience. The regSalesforceCompatibilityMode item in your call center definition file
identifies the user interface you plan to use—Salesforce Classic, Lightning Experience, or both. If no value is specified, the default
is Classic. Thisitem is optional, but to make calls in Lightning Experience you must specify Lightning or
Classic_and Lightning.

Call Center Definition File Format

A call center definition file consists of three XML elements: callCenter, section,and item.
Required Call Center Elements and Attributes

The call center definition file must include the required <item> elements in the <section> element.
Optional Call Center Elements and Attributes

The call center definition file can include optional <item> elements in the <section> element.

Specify Values for <item> Elements

With the exception of the reqInternalName <item>, whose value must always be specified in a call center definition file,
you can specify <item> values either in the call center definition file or in Salesforce once the definition file has been imported.

Sample Call Center Definition File

Each call center definition file looks different. This example shows you what a call center definition file looks like for an org using
Salesforce Classic and Lightning Experience.

SEE ALSO:
Salesforce Help: Set Up a Call Center
Salesforce Help: Creating a Call Center

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_overview.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_createcc.htm&language=en_US

Call Center Definition Files Call Center Definition File Format

Call Center Definition File Format

A call center definition file consists of three XML elements: callCenter, section,and item.
The following list provides details about the properties and attributes of each element:

callCenter
This element represents a definition for a single call center phone system. Atleast one <callCenter> element mustbeincluded
in every call center definition file. A <callCenter> element consists of one or more <section> elements.

section
This element represents a grouping of related data fields, such as server information or dialing prefixes. When a call center is edited
in Salesforce, fields are organized by the section to which they are assigned. A <section> element belongs to a single
<callCenter> element, and consists of one or more <item> elements.

Attributes:

Name Type Required? Description

sortOrder Positive Integer Required The order in which the section should appear when the call center
is edited in Salesforce. For example, a section with
sortOrder="1" comes just before a section with
sortOrder="2".

The values for sortOrder must be non-negative integers, and
no numbers can be skipped within a single call center definition.
For example, if there are three section elements in a call center
definition file, one <section> element must have
sortOrder="0",one <section> element must have
sortOrder="1",and one <section> element must have
sortOrder="2".

name String Required The internal name of the section as defined in the Salesforce
database. You can use this value to refer to the section when writing
custom adapter or SoftPhone code.

Names must be composed of only alphanumeric characters with
no white space or other punctuation. They are limited to 40
characters each.

Names beginning with req are reserved for required Salesforce
sections only (see Required Call Center Elements and Attributes).
Other reserved words that cannot be used for the name attribute
include label, sortOrder, internalNameLabel, and
displayNameLabel.

label String Optional The name of the section when viewed in Salesforce. Labels can be
composed of any string of UTF-8 characters. They are limited to
1000 characters each.

https://help.salesforce.com/articleView?id=cti_admin_defin.htmccreq.htm&language=en_US

Call Center Definition Files Required Call Center Elements and Attributes

item
This element represents a single field in a call center definition, such as the IP address of a primary server or the dialing prefix for
international calls. When call centers are edited in Salesforce, each <item> elementis listed under the section to which it belongs.
You can have multiple <item> elementsina <section> element.

Attributes:

Name Type Required? Description

sortOrder Positive Integer Required The order in which the item should appear when the call center is
edited in Salesforce. Forexample, anitem with sortOrder="1"
comes just before an item with sortOrder="2".
The values for sortOrder must be non-negative integers, and
no numbers can be skipped within a single call center definition.
For example, if there are three item elements in a call center
definition file, one <item> element must have
sortOrder="0",0ne <item> element must have
sortOrder="1",and one <item> element must have
sortOrder="2".

name String Required The internal name of the item as defined in the Salesforce database.
You can use this value to refer to the item when writing custom
adapter or SoftPhone code.
Names must be composed of only alphanumeric characters with
no white space or other punctuation. They are limited to 40
characters each.
Names beginning with req are reserved for required Salesforce
sections only (see Required Call Center Elements and Attributes).
Other reserved words that cannot be used for the name attribute
include label, sortOrder, internalNameLabel, and
displayNameLabel.

label String Optional The name of the item when viewed in Salesforce. Labels can be
composed of any string of UTF-8 characters. They are limited to
1,000 characters each.

SEE ALSO:

Salesforce Help: Call Center Definition Files

Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning Experience

Required Call Center Elements and Attributes

The call center definition file must include the required <item> elements in the <section> element.

@ Important: The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience. The regSalesforceCompatibilityMode item inyour call center definition file
identifies the user interface you plan to use—Salesforce Classic, Lightning Experience, or both. If no value is specified, the default

10

https://help.salesforce.com/articleView?id=cti_admin_defin.htmccreq.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_cctemplateoverview.htm&language=en_US

Call Center Definition Files

is Classic. Thisitem is optional, but to make calls in Lightning Experience you must specify Lightning or

Required Call Center Elements and Attributes

Classic _and Lightning.

<item> Name

regAdapterUrl

regCanvasApiName

reqgqCanvasNamespace

regDisplayName

regInternalName

regSoftphoneHeight

Description

Represents the location of where the CTl adapter or softphone is
hosted. For example:

http://localhost:11000
Relative URLs are allowed for Visualforce pages. For example:
/apex/softphone

If you add Force.com Canvas applications to Open CTI, those apps
cantrump regAdapterUrl when specified.

@ Notfe: Toimplementin a Lightning Experience org, use
https inyour URL

Represents the APl name associated with any Force.com Canvas
applications added to your call center. Required if you add canvas
apps to Open CTI.

Represents the namespace associated with any Force.com Canvas
applications added to your call center. Required if you add canvas
apps to Open CTI.

Represents the name of the call center as displayed in Salesforce.
[t must have a sortOrder value of 1. A value for
regDisplayName hasa maximum length of 1,000 UTF-8
characters.

Represents the unique identifier for the call center in the database.
[t must have a sortOrder value of 0, and its value must be
specified in the call center definition. A value for
regInternalName must be composed of no more than 40
alphanumeric characters with no white space or other punctuation.
It must start with an alphabetic character and must be unique from
the regInternalName ofall other call centers defined in your
organization.

Represents the height of the softphone in pixels as displayed in
Salesforce.

@ Nofte: If you're using Open CTl for Lightning Experience,
enter a number from 240 through 700. Value is in pixels

(px).

n

Supportedin Supportedin

Salesforce
Classic

+

Lightning
Experience

+

®
Not supported

&5
Not supported

+

Call Center Definition Files Optional Call Center Elements and Attributes

<item> Name Description Supportedin Supportedin
Salesforce Lightning
Classic Experience

regSoftphoneWidth Represents the width of the softphone in pixels as displayed in W W
Salesforce.

@ Note: If you're using Open CTl for Lightning Experience,
enter a number from 200 through 1240. Value is in pixels

(px).

reqUseApi Represents that the call center is using Open CTl (t rue) or not W W
(false).

If needed, you can add more <item> elements to this section.

SEE ALSO:
Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning Experience

Optional Call Center Elements and Attributes

The call center definition file can include optional <item> elements in the <section> element.

In addition to the required elements, you can add optional elements to configure a softphone.

@ Important: The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience. The regSalesforceCompatibilityMode item inyour call center definition file
identifies the user interface you plan to use—Salesforce Classic, Lightning Experience, or both. If no value is specified, the default
is Classic. Thisitem is optional, but to make calls in Lightning Experience you must specify Lightning or
Classic_and Lightning.

<item> Name Description Supported in Supported in
Salesforce Lightning
Classic Experience
regSalesforceCompatibilityMode Determines where the softphone is visible. If no o« o«

value is specified, the defaultis Classic.

@ Note:

e Todisplay the softphone in Lightning
Experience, specify Lightning.

e Todisplay the softphone in Salesforce

Classic, specify Classic.

e Todisplay the softphone in both user
interfaces, specify
Classic _and Lightning.

12

Call Center Definition Files Specify Values for <item> Elements

<item> Name Description Supported in Supported in
Salesforce Lightning
Classic Experience
regStandbyUrl Represents the location that hosts the secondary W %

softphone. The standby softphone is used after
the timeout period for the primary softphone has
elapsed and the
notifyInitializationComplete ()
for Salesforce Classic method hasn't been called
within the required timeout period. When you
specify a standby URL, you must also specify the
reqgTimeout field

reqTimeout Represents the time in milliseconds after which « %
the standby URL is used to host the softphone.
Before the timeout period has elapsed, the
softphone displays a loading icon indicating that
the softphone is initializing. When you specify a
required timeout, you must also specify the
regStandbyUrl field

SEE ALSO:
Why Your Ul Matters—Open CTI for Salesforce Classic vs. Lightning Experience

Specify Values for <item> Elements

With the exception of the regInternalName <item>, whose value must always be specified in a call center definition file, you
can specify <item> values either in the call center definition file or in Salesforce once the definition file has been imported.

To specify a value foran <item> elementin a call center definition file, place the value between the opening and closing tags of the
<item>. Forexample:

<item sortOrder="0" name="regInternalName" label="Call Center Internal
Label">MyCallCenter</item>

sets the value of the regInternalName <item> to MyCallCenter. Notethatany <item> value other than the value for
regInternalName can be edited in Salesforce after the call center definition is imported.

Sample Call Center Definition File

Each call center definition file looks different. This example shows you what a call center definition file looks like for an org using Salesforce
Classic and Lightning Experience.

@ Important: The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience. The regSalesforceCompatibilityMode itemin your call center definition file
identifies the user interface you plan to use—Salesforce Classic, Lightning Experience, or both. If no value is specified, the default
is Classic. Thisitem is optional, but to make calls in Lightning Experience you must specify Lightning or
Classic_and Lightning.

13

Call Center Definition Files Sample Call Center Definition File

Sample XML for an Org Using Salesforce Classic

<l=-
All sections and items whose name value begins with "reqg" are
required in a valid call center definition file. The sortOrder
and label attributes can be changed for all required sections
and items except reqgGeneralInfo, reglnternalName, and
regDisplayName, in which only the label attribute can be altered.

Note that the value for the regInternalName item is limited to
40 alphanumeric characters and must start with an alphabetic
character. regInternalName must be unique for all call centers
that you define.
-—>
<callCenter>
<section sortOrder="0" name="reqgGeneralInfo" label="General Information">
<item sortOrder="0" name="reglnternalName" label="InternalName">DemoAdapter</item>
<item sortOrder="1" name="regDisplayName" label="Display Name">Demo Call Center
Adapter</item>
<item sortOrder="2" name="regAdapterUrl" label="CTI Adapter
URL">https://domain:port/softphone</item>
<item sortOrder="3" name="reqUseApi" label="Use CTI API">true</item>
<item sortOrder="4" name="reqSoftphoneHeight" label="Softphone Height">300</item>
<item sortOrder="5" name="reqgSoftphoneWidth" label="Softphone Width">500</item>

<item sortOrder="6" name="regSalesforceCompatabilityMode" label=" Salesforce
Compatibility Mode">Classic</item>
</section>

<section sortOrder="1" name="regDialingOptions" label="Dialing Options">

<item sortOrder="0" name="reqOutsidePrefix" label="Outside Prefix">9</item>

<item sortOrder="1" name="reqLongDistPrefix" label="Long Distance Prefix">1</item>
<item sortOrder="2" name="reqglnternationalPrefix" label="International Prefix">01</item>

</section>
</callCenter>

Sample XML for an Org Using Lightning Experience

<callCenter>
<section sortOrder="0" name="regGeneralInfo" label="General Information">
<item sortOrder="0" name="reglInternalName" label="InternalName">OpenCTI</item>
<item sortOrder="1" name="regDisplayName" label="Display Name">OpenCTI</item>
<item sortOrder="2" name="regAdapterUrl" label="CTI Adapter
URL">https://domain:port/softphone</item>
<item sortOrder="3" name="reqUseApi" label="Use CTI API">true</item>
<item sortOrder="4" name="reqgSoftphoneHeight" label="Softphone Height">300</item>
<item sortOrder="5" name="reqgSoftphoneWidth" label="Softphone Width">500</item>
<item sortOrder="6" name="regSalesforceCompatibilityMode" label="Salesforce Compatibility
Mode">Lightning</item>
</section>
<section sortOrder="1" name="regDialingOptions" label="Dialing Options">
<item sortOrder="0" name="reqOutsidePrefix" label="Outside Prefix">9</item>
<item sortOrder="1" name="reqLongDistPrefix" label="Long Distance Prefix">1</item>
<item sortOrder="2" name="reqgInternationalPrefix" label="International Prefix">01</item>

14

Call Center Definition Files Sample Call Center Definition File

</section>
</callCenter>

SEE ALSO:
Why Your Ul Matters—Open CTI for Salesforce Classic vs. Lightning Experience

15

CHAPTER 3 Working with Open CTI

You can use Open CTl to increase agent efficiency, configure your softphone, and complete many more tasks.

With Open CTl, you can:

Set the height or width of a softphone

Enable or disable click-to-dial

Return a call center definition file's settings

Determine if a user is in the Salesforce console

Show or hide a softphone in the Salesforce console

Return information about a page

Execute an Apex method from an Apex class that's exposed in Salesforce
Save or update an object in Salesforce

Search keywords in Salesforce and screen pop any matching records as defined in a softphone layout

Before developing an Open CTl implementation, learn how to connect to Open CTl and review the best practices.

Connect to Open CTI

The first portion of any JavaScript code that uses the Open CTI must make the toolkit available to the JavaScript code. The syntax for
this is different depending on whether you are embedding JavaScript in a Visualforce page or a page developed using any web
technologies and served from a third-party domain.

Open CTl Demo Adapter

We've put together a demo adapter package that lets you test drive Open CTl for Lightning Experience. The package provides a
demo softphone that highlights and demonstrates the main features of Open CTl for Lightning Experience without even connecting
to a phone system.

Asynchronous Calls with Open CTI

Open CTl lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue instead of waiting for a
callback from the server.

Sample HTML Page Using Open CTI

Each implementation of Open CTl can look different. This example shows you how to add CTl functionality to the Salesforce user
interface using an HTML page.

Work with Force.com Canvas

Tointegrate Open CTlwith external applications that require authentication methods, such as signed requests or OAuth 2.0 protocols,
Salesforce recommends that you use Force.com Canvas.

Best Practices

When working with Open CTl, keep the following best practices in mind.

16

Working with Open CTI Connect to Open CTI

Connect to Open CTI

The first portion of any JavaScript code that uses the Open CTI must make the toolkit available to the JavaScript code. The syntax for this
is different depending on whether you are embedding JavaScript in a Visualforce page or a page developed using any web technologies
and served from a third-party domain.

O Tip: The version of Open CTlis in the URL.

For Visualforce Pages

For Visualforce pages or any source other than a custom onclick JavaScript button, specify a <script> tag that points to the
Open (Tl JavaScript library file.

In orgs using Salesforce Classic:

<apex:page>
<script src="/support/api/38.0/interaction.js" type="text/javascript"></script>

</apex:page>
In orgs using Lightning Experience:

<apex:page>
<script src="/support/api/38.0/lightning/opencti min.js"
type="text/javascript"></script>

</apex:page>

For Visualforce, we recommend using a relative path to include interaction.js or opencti min.js.

For a Third-Party Domain

For third-party domains, specify an absolute URLto interaction.js or opencti min.Jjs to use the toolkit. If you can't
determine the org's instance, you can access the toolkit library at the default instance. Contact Salesforce for the default instance’s URL.

In orgs using Salesforce Classic:

<script src="https://c.<yourInstance>.visual.force.com/support/api/38.0/interaction.js"
type="text/javascript"></script>

In orgs using Lightning Experience:

<script
src="https://c.<yourInstance>.visual.force.com/support/api/38.0/lightning/opencti min.js"
type="text/javascript"></script>

SEE ALSO:
Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning Experience

17

Working with Open CTI Open CTl Demo Adapter

Open CTl Demo Adapter

We've put together a demo adapter package that lets you test drive Open CTl for Lightning Experience. The package provides a demo
softphone that highlights and demonstrates the main features of Open CTl for Lightning Experience without even connecting to a phone
system.

To learn more about the demo adapter, go to Lightning Open CTI.

Asynchronous Calls with Open CTI

Open (Tl lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue instead of waiting for a callback
from the server.

Toissue an asynchronous call, you must include an extra parameter with the API call, referred to as a callback function. Once the result
is ready, the server invokes the callback method with the result.

Asynchronous syntax:

In Salesforce Classic:
method ('argl', 'arg2', ..., callback method) ;
In Lightning Experience:
method ({callback : function})
Example:
In Salesforce Classic:

//Set softphone height
sforce.interaction.cti.setSoftphoneHeight (300, callback);

In Lightning Experience:

//Disable clickToDial
sforce.opencti.disableClickToDial ({callback: callback});

Note: The call result depends on the execution context. For example, calling setSoftphoneWidth () inthe standard
Salesforce application has no effect, but calling setSoftphoneWidth () inthe Salesforce console resizes the width
of the softphone.

Sample HTML Page Using Open CTI

Each implementation of Open CTl can look different. This example shows you how to add CTlI functionality to the Salesforce userinterface
using an HTML page.

This example assumes that you've already imported a call center definition file into your Salesforce organization.
1. Create an HTML page.
2. Cutand paste the following sample code into your HTML page.

This code demonstrates various functions of Open CTI.

18

https://developer.salesforce.com/page/Lightning_Open_CTI

Working with Open CTI Sample HTML Page Using Open CTI

@ Nofe: Keep in mind that to make calls in Lightning Experience, you must first create a Lightning app and add the Open CTI
Softphone option.

Sample Code for Salesforce Classic

<html>

<head>
<!-- Imports Open CTI JavaScript library. Point to a valid Salesforce domain.

<script src="https://domain:port/support/api/38.0/interaction.js"></script>
<script type="text/javascript">
// Callback of API method: isInConsole
var isInConsoleCallback = function (response) {
// Returns true if method is executed in Salesforce console, false

otherwise.
if (response.result) {
alert ('Softphone is in Salesforce console.');
}
else {
alert ('Softphone is not in Salesforce console.');

}i
// Invokes API method: isInConsole
function isInConsole () {
sforce.interaction.isInConsole (isInConsoleCallback) ;
}
// Callback of API method: getCallCenterSettings
var getCallCenterSettingsCallback = function (response) {
// Result returns call center settings as a JSON string.
if (response.result) {
alert (response.result);
}
else {
alert ('Error retrieving call center settings ' +

response.error) ;

}i
// Invokes API method: getCallCenterSettings
function getCallCenterSettings () {

sforce.interaction.cti.getCallCenterSettings (getCallCenterSettingsCallback) ;
}
// Callback of API method: setSoftphoneHeight
var setSoftphoneHeightCallback = function (response) {
// Returns true if SoftPhone height was set successfully, false
otherwise.
if (response.result) {
alert ('Setting softphone height to 300px was successful.');

}
else {
alert ('Setting softphone height failed.');

}i
// Invokes setSoftphoneHeight API method.

19

Working with Open CTI Sample HTML Page Using Open CTI

function setSoftphoneHeight () {
sforce.interaction.cti.setSoftphoneHeight (300,
setSoftphoneHeightCallback) ;
}
// Callback of API method: getPageInfo
var getPageInfoCallback = function (response) {
if (response.result) {
alert (response.result);
}
else {
alert ('Error occured while trying to get page info: ' +
response.error) ;

}
// Invokes API method getPagelnfo
function getPageInfo() {
sforce.interaction.getPageInfo (getPageInfoCallback) ;
}
</script>
</head>
<body>
<button onclick="isInConsole();">isInConsole</button>

<button onclick="getCallCenterSettings();">getCallCenterSettings</button>

<button onclick="setSoftphoneHeight ();">setSoftphoneHeight (300)</button>

<button onclick="getPageInfo () ;">getPageInfo</button>

</body>

</html>

Sample Code for Lightning Experience

<apex:page >
<!-- Begin Default Content -->
<hl>Congratulations!</hl1>
This is your sample page.

<!-- End Default Content -->
<html>
<head>
<!-- Imports Open CTI JavaScript library. Point to a valid Salesforce domain.
-=>

<script src="https://domain:port/support/api/38.0/opencti min.js"></script>
<script type="text/javascript">
// Callback of API method: setSoftphonePanelHeight
var setSoftphonePanelHeightCallback = function (response) {
// Returns true if setSoftphonePanelHeight method is executed successfully,
false otherwise
if (response.result) {
alert ('setSoftphonePanelHeight is successfully executed.');
}
else {
alert ('setSoftphonePanelHeight failed.);

b

// Invokes API method: setSoftphonePanelHeight
function setSoftphonePanelHeight () {

20

Working with Open CTI Sample HTML Page Using Open CTI

sforce.opencti.setSoftphonePanelHeight ({
heightPX: 500,
callback: setSoftphonePanelHeightCallback
P

}
// Callback of API method: setSoftphonePanelWidth

var setSoftphonePanelWidthCallback = function (response) {
// Returns true if setSoftphonePanelWidth method is executed successfully,
false otherwise
if (response.result) {
alert ('setSoftphonePanelWidth is successfully executed.');
}

else {
alert ('setSoftphonePanelWidth failed.');

}i
// Invokes API method: setSoftphonePanelWidth
function setSoftphonePanelWidth () {
sforce.opencti.setSoftphonePanelWidth ({
widthPX: 500,
callback: setSoftphonePanelHeightCallback
1)

}
// Callback of API method: setSoftphoneltemIcon

var setSoftphoneltemIconCallback = function (response) {
// Returns true if setSoftphoneltemIcon method is executed successfully,

false otherwise
if (response.result) {
alert ('setSoftphoneltemIcon is successfully executed.');
}

else {
alert ('setSoftphoneltemIcon failed.');

}i
// Invokes API method: setSoftphoneltemIcon
function setSoftphoneIltemIcon () {
sforce.opencti.setSoftphoneltemIcon ({
key: 'call"',
callback: setSoftphoneItemIconCallback
1)

}
// Callback of API method: setSoftphoneltemLabel

var setSoftphoneltemLabelCallback = function (response) {
// Returns true if setSoftphoneltemLabel method is executed successfully,
false otherwise
if (response.result) {
alert ('setSoftphoneltemLabel is successfully executed.');
}

else {
alert ('setSoftphoneltemLabel failed.');

}i
// Invokes API method: setSoftphoneltemLabel

function setSoftphoneltemLabel () {

21

Working with Open CTI Sample HTML Page Using Open CTI

sforce.opencti.setSoftphoneltemLabel ({
Label: 'MySoftphone',
callback: setSoftphoneltemLabelCallback
1)
}
</script>
</head>
<body>
<button
onclick="setSoftphonePanelHeight () ; ">setSoftphonePanelHeight ({heightPX:500})</button>

<button
onclick="setSoftphonePanelWidth () ;">setSoftphonePanelWidth ({widthPX:500})</button>

<button
onclick="setSoftphoneltemIcon () ;">setSoftphoneltemIcon ({key:'call'})</button>

<button
onclick="setSoftphoneItemLabel () ; ">setSoftphoneIltemLabel ({label: 'MySoftphone'})</button>
</body>
</html>

</apex:page>

Afteryou create the HTML page, add the URL to the call center definition file. Your softphone is rendered on the left in Salesforce Classic,
or in the footer in the Salesforce console or in Lightning Experience:

Output of Sample HTML Page in Salesforce Classic

. Home Chatter Profile Groups Files Leads Accounts Contacts Opportunities Reports + ~
o = Cases
isinConsole f’ .
£ Home
getCallCenterSettings Tell me more! | Help for this Page & n
setSoftphoneHeight(300) View: |y Open Cases v|[got | Edit| Create New View
getPagelnfo
Ni i v
Recent Cases ew Recently Viewed
Case Number Subject Date/Time Opened Priority
00001000 Sample Case: Our Widgets have not been delivered. 1/25/2016 3:21 PM High
00001003 _ 1/25/2016 3:36 PM Medium
00001009 _ 4/8/2016 9:59 AM Medium
00001008 4/8/2016 9:57 AM Medium

22

Working with Open CTI

Output of Sample HTML Page in the Salesforce Console

Sample HTML Page Using Open CTI

SEE ALSO:

salesforce Q Search Salesforce
Cases v+
My Open Cases w Edit| Delete | Create New View
New Case Close Change Owner Change Status 3%
| ACTION CASE NUMBER * CONTACT NAME SUBJECT STATUS PRIORITY DATE/TIME OPEN...
] 00001000 Amos, Jon Sample Case: Qur.. Escalated High 1/25/2016 3:2...
=) 00001001 Stamos, Edward Sample Case 2: Th.. New High 1/25/2016 32
| 00001002 Stamos, Edward Sample Case 3: C... OnHold Low 1/25/2016 3:21 P...
=) 00001003 _ New Medium 1/25/2016 3:36 P.__
J 00001004 _ New Medium 4/5/2016 10:11P...
4
u 00001005 _ Ne
isinConsole
J 00001006 _ Ne
getCallCenterSettings
u 00001007 Ne -
- setSoftphoneHeight{300)
] 00001008 _ Ne [getPagelnfo
] 00001009 Ne

1-100f10 ¥ Oselected ¥ “ 4

Output of Sample HTML Page in the Lightning Experience

CASE OWNER ALL..

TUser
TUser |n
TUser

TUser

TUser

testapp Accounts Assets Calendar Campaigns Cases Chatter Contacts Contracts
CASES N
ew
All Open Cases ¥
Y
8 items + Sorted by Case Number « Filtered by Closed + Last updated 08/04/2016 at 12:36 ®||C|s ¢ Y
CASE NUMBER * CONTACT NAME SUBJECT STATUS PRIORITY
1 00001000 Jon Amos Sample Case: Our Widgets... Escalated High
2 00001001 Edward Stamos Sample Case 2: The widget... New High
& Phone — 10s Sample Case 3: Cannot tra... On Hold Low
Congratulations! This is your sample page
i i :500}) New Medium
setSoftphonePanelWidth({widthPX:500})
setSoftphoneltemicon({key:"call’}) New Medium
1 3]
New Medium
New Medium
New Medium

&, Phone

Why Your Ul Matters—Open CTI for Salesforce Classic vs. Lightning Experience

23

Working with Open CTI Work with Force.com Canvas

Work with Force.com Canvas

To integrate Open CTI with external applications that require authentication methods, such as signed requests or OAuth 2.0 protocols,
Salesforce recommends that you use Force.com Canvas.

@ Important: Open CTl for Lightning Experience doesn't support Force.com Canvas.

Force.com Canvas and Open CTl are similar—they're a set of tools and JavaScript APIs that developers can use to add third-party systems
to Salesforce. However, one of the benefits of Force.com Canvas, is the ability to choose authentication methods.

@ Note: Fora canvas app to appear in a Salesforce console, you must add it to the console as a custom console component. For
more information, see the Canvas Developer Guide.
When developing a canvas app, and you want to include functionality from Open CTl, do the following:

1. Include the Open CTI APlin index.jsp.

2. Call sfdc.canvas.client.signedrequest () to store the signed request needed by the console integration toolkit
API. For example, if the Force.com Canvas method of authentication is a signed request, do the following:

Sfdc.canvas.client.signedrequest ('<%$=signedRequest%$>")

If the Force.com Canvas method of authentication is OAuth, do the following in the callback function used to get the context, as
shown in the Canvas Developer Guide:

Sfdc.canvas.client.signedrequest (msg)

Consider the following when working with Open CTl and canvas apps:

e The Open CTI API script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest () hasexecuted. We recommend that you load the scripts dynamically.

e To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the following:

// Get signedRequest

var signedRequest = Sfdc.canvas.client.signedrequest();

var parsedRequest = JSON.parse (signedRequest) ;

// get the entity Id that is associated with this canvas sidebar component.
var entityId = parsedRequest.context.environment.parameters.entityId;

e Toretrieve the entityId for OAuth, do the following:
var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg . payload, see the Canvas Developer Guide.

SEE ALSO:
Salesforce Canvas Developer Guide: Getting Context in Your Canvas App

Salesforce Help: Add Console Components to Apps

Best Practices

When working with Open CTl, keep the following best practices in mind.

24

https://developer.salesforce.com/docs/atlas.en-us.204.0.platform_connect.meta/platform_connect/canvas_app_getting_context_code_example.htm
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm&language=en_US

Working with Open CTI Best Practices

e Since many of the methods in Open CTl are asynchronous and return their results using a callback method, Salesforce recommends
that you refer to the documentation for each method to understand the information for each response.

e Errors generated by Open CTl are typically emitted in a way that doesn't halt JavaScript processing. We recommend that you use
browser built-in developer tools to monitor the JavaScript console and to help you debug your code.

e Ifyou plan on customizing, extending, or integrating the sidebars of the Salesforce console using Visualforce, review the online help
for information about console components.

SEE ALSO:

Salesforce Help: Console Components

25

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_components_overview.htm&language=en_US

CHAPTER 4 Methods for Lightning Experience

If your org is using Lightning Experience, use methods that work with Lightning Experience.

@ Important: The way you implement Open CTl depends on your org’s user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience.You can't swap the two Open CTI APIs in custom JavaScript code because they behave and
function differently. Make sure that you think about where you want to implement your CTl system before you begin developing.

disableClickToDial() for Lightning Experience
enableClickToDial() for Lightning Experience
getAppViewlInfo() for Lightning Experience
getCallCenterSettings() for Lightning Experience
getSoftphonelayout() for Lightning Experience
isSoftphonePanelVisible() for Lightning Experience
onClickToDial() for Lightning Experience
onNavigationChange() for Lightning Experience
refreshView() for Lightning Experience

runApex() for Lightning Experience

savelog() for Lightning Experience

screenPop() for Lightning Experience
searchAndScreenPop() for Lightning Experience
setSoftphoneltemlcon() for Lightning Experience
setSoftphoneltemLabel() for Lightning Experience
setSoftphonePanelHeight() for Lightning Experience
setSoftphonePanellcon() for Lightning Experience
setSoftphonePanellabel() for Lightning Experience
setSoftphonePanelVisibility() for Lightning Experience
setSoftphonePanelWidth() for Lightning Experience

Common Error Messages for Lightning Experience Methods
SEE ALSO:

Why Your Ul Matters—QOpen CTl for Salesforce Classic vs. Lightning Experience
Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

26

Methods for Lightning Experience disableClickToDiall) for Lightning Experience

disableClickToDial () for Lightning Experience

Usage

Disables click-to-dial. This method is available in API version 38.0 or later.

Syntax

sforce.opencti.disableClickToDial ({
callback: function //Optional
})

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function disableClickToDial () {
sforce.opencti.disableClickToDial ({callback: callback});
}
</script>
</head>
<body>
<pbutton onclick="disableClickToDial ();">disableClickToDial ()</button>
</body>
</html>

27

Methods for Lightning Experience enableClickToDial() for Lightning Experience

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvalue object This API method doesn't return this object. The returnvalue is always null.
errors array If the API call was successful, this variable is nul1l. If the API call failed, this variable

returns an array of error messages.

enableClickToDial () for Lightning Experience

Usage

Enables click-to-dial. This method is available in API version 38.0 or later.

Syntax

sforce.opencti.enableClickToDial ({
callback: function //Optional
)

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log('API method call executed successfully! returnvValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);
}
b

28

Methods for Lightning Experience getAppViewlinfo() for Lightning Experience

function enableClickToDial () {
sforce.opencti.enableClickToDial ({callback: callback});
}
</script>
</head>
<body>
<button onclick="enableClickToDial ();">enableClickToDial ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvalue object This API method doesn't return this object. The returnvalue is always null.
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

getAppViewInfo () for Lightning Experience

Usage

Returns information about the current application view. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.getAppViewInfo ({
callback: function
}):

Arguments
Name Type Description
callback function JavaScript method executed when the APl method call is completed.

29

Methods for Lightning Experience getAppViewlinfo() for Lightning Experience

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

i

function getAppViewInfo() {
sforce.opencti.getAppViewInfo ({callback: callback});
}
</script>
</head>
<body>
<button onclick="getAppViewInfo ();">getAppViewInfo ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnValue object Returns the URL of the current application view and includes any applicable record

ID, record name, and object type. For example:

{

"url":
"https://yourInstance.salesforce.com/one/one.app#/sCbject/500
D0000003tcchIAA / view ? t = 1459806689555 ",

"recordId": "001x0000003DGQR",
"recordName": "Acme",
"objectType": "Account"

}

Invoking this API method on a person account object returns the following additional
information.

® accountId or contactId—The associated account or contact ID.

e personAccount—Whichis true if person accounts are enabled in your
org, false otherwise.

30

Methods for Lightning Experience getCallCenterSettingsl) for Lightning Experience

Name Type Description
For example:

{

"url":
"http://yourInstance.salesforce.com/001x0000003DGQR",

"recordId": "001x0000003DGQR",

"recordName": "Acme Person Account",

"objectType": "Account",

"contactId": "003D000000QOMgg",

"personAccount": true

}

@ Nofe: Since the URL structure of the returnvalue mightchangein the
future, we recommend that you don't build any logic based on it.

error array If the API call was successful, this variable is nul1. If the API call failed, this variable
returns an array of error messages.

getCallCenterSettings () for Lightning Experience

Usage

Returns the call center settings associated with the current user. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.getCallCenterSettings ({
callback: function
})

Arguments
Name Type Description
callback function JavaScript method executed when the APl method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {

31

Methods for Lightning Experience getCallCenterSettingsl) for Lightning Experience

console.log('API method call executed successfully! returnValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

}s

function getCallCenterSettings () {
sforce.opencti.getCallCenterSettings ({callback: callback});
}
</script>
</head>
<body>
<button onclick="getCallCenterSettings();">getCallCenterSettings ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns t rue if the APl method call was invoked successfully, false otherwise.

returnvValue object If the API call is successful, the call center settings are returned.
{
"/displayNameLabel": "Display Name Label",
"/internalNameLabel": "Internal Name Label",
"/regDialingOptions/regInternationalPrefix": "01"
"/regDialingOptions/regLongDistPrefix": "1",
"/regDialingOptions/reqOutsidePrefix": "9",
"/reqGeneralInfo/regAdapterUrl"™: "http://localhost:8080",
"/regGeneralInfo/regDescription": "Test Call Center",
"/regGeneralInfo/regDisplayName": "Test Call Center",
"/regGeneralInfo/regInternalName": "TestCallCenter",

"/regGenerallInfo/reqgSalesforceCompatibilityMode":
"Lightning",
"/regGeneralInfo/reqSoftphoneHeight": "500",
"/reqgGeneralInfo/regSoftphonewWidth": "400",
"/regGenerallInfo/reqgStandbyUrl":
"http://localhost:8080/",
"/regGeneralInfo/reqUseApi": "true"

}

If the API call fails, null is returned.

error array If the API call was successful, this variable is nul1l. If the API call failed, this variable
returns an array of error messages.

32

Methods for Lightning Experience getSoftphonelayout() for Lightning Experience

getSoftphoneLayout () for Lightning Experience

Usage
Returns the softphone layout of the current user. This method is available in APl version 38.0 or later.

@ Note: The Open CTl for Lightning Experience methods screenPop () and searchAndScreenPop () don't support
screenPopSettings.

Syntax

sforce.opencti.getSoftphonelayout ({
callback: function
}) i

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
alert (response.returnvValue) ;
} else {
console.error (response.errors) ;
alert (
'Something went wrong. Please check error information in developer console.'

);
b

function getSoftphonelLayout () {
sforce.opencti.getSoftphonelayout ({
callback: callback
1)
}
</script>
</head>
<body>

33

Methods for Lightning Experience getSoftphonelayout() for Lightning Experience

<button onclick="getSoftphoneLayout ();">Get Softphone Layout</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean If the API call is successful, the value true is returned and the softphone layout
definition is returned in returnvalue, false otherwise.

returnvValue object If the API call is successful, the softphone layout definition is returned. If the API call
fails, null is returned.

The returned object contains three elements that represent each of the call-types:
® "Internal"

® "Inbound"

® "Qutbound"

Each call-type contains three sub-sections:

e "callRelatedFields"—Anarrayof call-related fields selected to display.
Possible values are "ANI", "DNIS", "SEGMENT", and "QUEUE".

e "objects"—Thesetof Salesforce objects selected to display, along with the
Field Label and Field Name (APIname)selectedtodisplay fromeach
object.

e "screenPopSettings"—This object contains a
"screenPopsOpenWithin field with a value of either
"ExistingWindow" or "NewWindow".

Additionally, it contains the settings for each of the screen pop match types:

"NoMatch", "SingleMatch", "MultipleMatches".Each match

type containsa corresponding "screenPopType" fieldand may also contain

a "screenPopData" field.

— If "screenPopType" hasavalue of "PopToEntity",then
"screenPopData" contains the name of the target object.

— If "screenPopType" hasavalue of "PopToVisualforce",then
"screenPopData" contains the name of the target Visualforce page.

- If "screenPopType" hasa value of "PopToSearch", then there
won'tbea "screenPopData" field.

The following is an example of a returnvalue:

{

"Internal" : {
"callRelatedFields" : [
"ANI",

"DNIS",

34

Methods for Lightning Experience

Name

getSoftphonelayout() for Lightning Experience

Type Description

]
"objects" : {

"User" : [{
"displayName" : "Name",
"apiName" : "Name"

}
]
bo
"screenPopSettings" : {}
}I
"Inbound" : {
"callRelatedFields" : [

"ANI",

"DNIS",

"SEGMENT",

"QUEUE"

I

"objects" : {

"Account" : [{
"displayName" : "Account Name",
"apiName" : "Name"

}

]

}I

"screenPopSettings" : {

"NoMatch" : {
"screenPopType" : "PopToEntity",
"screenPopData" : "Contact"

b

"SingleMatch" : {
"screenPopType" : "PopToVisualforce",
"screenPopData" : "Visualforce Page Name"
by
"MultipleMatches" : {
"screenPopType" : "PopToSearch"
}
}
s
"Outbound" : {
"callRelatedFields" : [
"DNIS"
1,
"objects" : {
"Account" : [{
"displayName" : "Account Name",
"apiName" : "Name"
}
]
bo
"screenPopSettings" : {}

35

Methods for Lightning Experience isSoftphonePanelVisible() for Lightning Experience

Name Type Description

}
}

errors array If the API call was successful, this variable is nul1. If the API call failed, this variable
returns an array of error messages.

isSoftphonePanelVisible () for Lightning Experience

Usage

Use this method to return the visibility status of the softphone panel. Returns true if the softphone panel is visible and false ifit's
minimized. This method is available in API version 38.0 or later.

Syntax

sforce.opencti.isSoftphonePanelVisible ({
callback: function
1)

Arguments
Name Type Description
callback function JavaScript method executed when the APl method call is completed.

Sample Code-HTML and JavaScript with a callback

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function isSoftphonePanelVisible () {
sforce.opencti.isSoftphonePanelVisible ({callback: callback});

}

36

Methods for Lightning Experience onClickToDial() for Lightning Experience

</script>
</head>
<body>
<button onclick="isSoftphonePanelVisible ();">isSoftphonePanelVisible ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.

returnValue object Contains the boolean property visible which indicates the visibility status of
the softphone panel. It's true if the softphone is visible and false ifit's
minimized.

errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

onClickToDial () for Lightning Experience

Usage

Registers a function to call when a user clicks an enabled phone number. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.onClickToDial ({
listener: function

b

Arguments
Name Type Description
listener function JavaScript method called when the user clicks an enabled phone number.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"

37

Methods for Lightning Experience onNavigationChange|() for Lightning Experience

src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var listener = function (payload) {
console.log('Clicked phone number: ' + payload.returnValue.number) ;

b

// Register the listener.
window.addEventListener ('load', function() {
sforce.opencti.onClickToDial ({listener: listener});
});
</script>
</head>
</html>

Payload

The payload object passed to each call to the listener method contains the following fields.

Name Type Description

number number Provides the phone number clicked by the user.

recordId string Provides the ID of the record associated with the clicked phone number.
recordName string Provides the name of the record for the clicked phone number.
objectType string Provides the type of record associated with the clicked phone number.
accountId or contactId string If the clicked phone number belongs to a person account, the associated

account or contact ID is provided.

personAccount boolean Ifthe clicked phone number belongs to a person account, this property is true.

If person accounts aren’t enabled in your org, this field isn't included in the
payload object.

onNavigationChange () for Lightning Experience

Usage

Registers a function to call when the URL of the page has changed, or the user navigates away from the current location. This method
is available in APl version 38.0 or later.

Syntax

sforce.opencti.onNavigationChange ({
listener: function
})

38

Methods for Lightning Experience onNavigationChange|() for Lightning Experience

Arguments
Name Type Description
listener function JavaScript method called upon a navigation change.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var listener = function (payload) {
console.log('Navigation change occurred. Payload: ', payload);

b

// Register the listener.
window.addEventListener ('load', function() {
sforce.opencti.onNavigationChange ({listener: listener});
}) i
</script>
</head>
</html>

Payload

The payload object passed to each call to the listener method contains the following fields.

Name Type Description
url string Provides the URL of the page the user navigated to.
recordId string If the user navigated to a Salesforce record, such as an account or case, the

loaded record ID is returned. Otherwise, the field is empty.

recordName string If the user navigated to a Salesforce record, the loaded record name. Otherwise,
the field is empty.

objectType string If the user navigated to a Salesforce record, the loaded object type, such as an
account or case. Otherwise, the field is empty.

accountId or contactId string If the page the user navigated to is the record home of a person account, the
associated account or contact ID is returned.

personAccount boolean If the page the user navigated to is the record home of a person account, this
fieldis true

If person accounts are enabled in your org but the page the user navigated to
is not the record home of a person account, this field is false.

If person accounts aren't enabled in your org, this field isn't included in the
payload object.

39

Methods for Lightning Experience refreshView() for Lightning Experience

refreshview () for Lightning Experience

Usage

Returns true if view refresh is invoked, false otherwise. When this method is called within the Salesforce console, it refreshes the
current active view. If any related lists are included in this tab, they're refreshed too. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.refreshView ({
callback: function
)i

Arguments
Name Type Description
callback function Optional. JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript without a callback

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/38.0/lightning/opencti min.Jjs"></script>
<script type="text/javascript">
var param = {};
function refreshView() {
sforce.opencti.refreshView (param) ;
}
</script>
</head>
<body>
<button onclick="refreshView();">refreshView</button>
</body>
</html>

Sample Code-HTML and JavaScript with a callback

<html>
<head>

<script type="text/javascript"
src="http://domain:port/support/api/38.0/1lightning/opencti min.Jjs"></script>

<script type="text/javascript">
var param = {};

var callback = function (response) {
if (response.success) {

40

Methods for Lightning Experience runApex() for Lightning Experience

console.log('API method call executed successfully! returnValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

param.callback = callback;

function refreshView () {
sforce.opencti.refreshView (param) ;
}

</script>
</head>
<body>

<button onclick="refreshView();">refreshView</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object This APl method doesn't return this object. The returnvalue isalways null.
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

rundpex () for Lightning Experience

Usage

Executes an Apex method from an Apex class that's exposed in Salesforce. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.runlApex ({
apexClass:string,
methodName: string,
methodParams:string,
callback: function //Optional
})

4

Methods for Lightning Experience runApex() for Lightning Experience

Arguments
Name Type Description
args object A JavaScript object containing the following:

® apexClass (string)—Specifies the Apex class of the method to execute.
* methodName (string)—Specifies the method to execute.

* methodParams (string)—Specifies the method parameters to pass. The string
must include field value pairs and be formatted as a valid query string.

For example:
name=acme&phone=(212) 555-5555

If the Apex method doesn't take any parameters, you can specify
methodParams as none Or an empty object, {}.

® callback (function)—JavaScript method called upon completion of the
method.

Sample Code-HTML and JavaScript
1. InSetup, create an Apex class and Apex method.

global class AccountRetrieval{

webService static String getAccount (String name) {
List<Account> accounts = new List<Account> () ;

for (Account account : Database.query('Select Id, Name, phone from Account where Name
like \'' + name + '3\''")){

accounts.add (account) ;

String JSONString = JSON.serialize (accounts);
return JSONString;

2. In Setup, click Generate from WSDL to expose the method and class so that a third-party softphone can call it.

3. Add your code to the softphone:

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/38.0/lightning/opencti min.Jjs"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {

console.log ('API method call executed successfully! returnValue:',
response.returnValue) ;

} else {

console.error ('Something went wrong! Errors:', response.errors);

42

Methods for Lightning Experience runApex() for Lightning Experience

}i
function runApex () {
var param = {apexClass: 'AccountRetrieval', methodName: 'getAccount',
methodParams: 'name=acme'};
param.callback = callback;
//Invokes API method
sforce.opencti.runApex (param) ;
}
</script>
</head>
<body>
<button onclick="runApex ();">runApex</button>
</body>
</html>

4. Outputis returned. In this example, one account named Acme was found:

{

"success": true,
"returnValue": {
"runApex":

"[{\"attributes\": {\"type\":\"Account\",\"url\":\"/services/data/v38.0/sobjects/Account
/001xx000003DGawAAG\"}, \"Id\":\"001xx000003DGawAAG\", \"Name\" :\"Acme\", \"Phone\":\" (212)

555-5555\"}]"
I
"errors": null
}
Response
Name Type Description
success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object A JavaScript object containing the result from executing the method from the
specified Apex class. No specific format is returned. The format is determined by the
value from the method that executed. For example:
{"runApex":" [{\"attributes\": {\"type\":\"Account\",
\"url\":\"/services/data/v38.0/sobjects/Account/
001xx000003DGawAAG\"},\"Id\":\"001xx000003DGawAAG\",
\"Name\":\"Acme\", \"Phone\":\" (212)555-5555\"}]"}
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable
returns an array of error messages.
SEE ALSO:

Salesforce Help: Apex Code Overview

43

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_about.htm&language=en_US

Methods for Lightning Experience

saveLog () for Lightning Experience

savelog() for Lightning Experience

Usage

Saves or updates an object in Salesforce. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.savelog ({

value: {

entityApiName:string, //Optional
Id:string, //Optional
param:value //Optional

b

callback: function //Optional

1)
@ No

te

To update using this method, include Id.

To create using this method, include entityApiName.

If you have person accounts enabled in your org, to create an account or a person account using this method, include the
recordType ID of the account or person account. In the value argument, include recordType: recordTypeId.

For example:

sforce.opencti.savelog ({value: {entityApiName:"Account"”", recordType:"012R00000004U0V",

LastName: 'PersonAccountLast'}, callback:callback});

Arguments
Name Type Description
value object Specifies the fields to save or update on the object.
If the object’s ID is specified, a record is updated. For example:
{Id:"00QRO0O00000yYN5iMAE", LastName:"New lastname" }
If the object’s ID isn't specified, a new record is created. For example:
{entityApiName:"Contact", LastName:"LastName"
},callback:callback}
@ Note: To create a record, ensure all the required fields are specified.
callback function JavaScript method executed when the API method call is completed.

44

Methods for Lightning Experience savelog() for Lightning Experience

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

}
function savelog () {
//Update an existing object with the ID specified
sforce.opencti.savelLog ({value: {Id:"00QRO000000yN5iMAE", LastName:"New lastname"
}, callback:callback});
//Create a contact
sforce.opencti.savelog({value:{entityApiName:"Contact", LastName:"LastName"
},callback:callback});
//Update a lead
sforce.opencti.savelog ({value: {Id:"00QRO000000yN5iMAE", LastName:"New lastname"
},callback:callback});
}
</script>
</head>
<body>
<button onclick="savelLog () ;">savelLog</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object ID of object if creating or updating the object was successful; nul1 if creating or

updating the object wasn't successful.

errors array If the API call was successful, this variable is nul1l. If the API call failed, this variable
returns an array of error messages.

45

Methods for Lightning Experience screenPop) for Lightning Experience

screenPop () for Lightning Experience

Usage
Pops to a new location as specified by the input type and parameters. This method is available in APl version 38.0 or later.

@ Note: Open (Tl for Lightning Experience doesn't support the softphone layout field Screen pops open within when
the value is New browser window or tab.InLightning Experience, the default valueis Existing browser

window

Syntax

sforce.opencti.screenPop ({
type: sforce.opencti.SCREENPOP TYPE.*, //Review the arguments section.
params: object //Depends on the SCREENPOP TYPE. Review the arguments section.

Arguments
Name Type Description
type string The enumerated type to screen pop to. Use one of the following values:
¢ sforce.opencti.SCREENPOP TYPE.SOBJECT
® sforce.opencti.SCREENPOP TYPE.URL
® sforce.opencti.SCREENPOP TYPE.OBJECTHOME
® sforce.opencti.SCREENPOP TYPE.LIST
® sforce.opencti.SCREENPOP TYPE.SEARCH
® sforce.opencti.SCREENPOP TYPE.NEW RECORD MODAL
params object An object holding arguments depending on the type.

e For SOBJECT
params : { recordId: string }

Where recordId, isthe ID of the standard or custom object in Salesforce.
e For URL:
params : { url: string }

The URL must be a relative parameter. For more information about the URL,
seethe force:navigateToURL url parameterin the Lightning
Components Developer Guide.

e For OBJECTHOME:

params : { scope: string }

46

Methods for Lightning Experience screenPop) for Lightning Experience

Name Type Description

Pops to the home of an object or entity such as a case or account. For more
information about the scope, see the force:navigateToSObject
recordID parameter in the Lightning Components Developer Guide. Here's a
sample input:

{ scope: “Account”}

e for LIST:
{ listViewId: string, scope: string }
For more information about the 1istViewId and scope parameter, see
force:navigateToList inthe Lightning Components Developer Guide.
e For SEARCH:
params : {searchString: string}
Pops to the Top Results section of the search page. The string must be at least
3 characters in length.
e For NEW RECORD MODAL:
params : {entityName: string}
Required. The APl name of the custom or standard object, such as Account, Case,
Contact, or Lead.
@ Note: For custom objects, the name for a new record model follows this
format:
objectName c

This name takes the default namespace. Notice that the separator includes
2 underscores.

If your org has namespace enabled, you must prefix it for custom objects.
Use this format:

namespace _objectName c

To pop to a new person account model, use the input Account.

callback function Optional. JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript with a callback

<html>
<head>

<script type="text/javascript"
src="http://domain:port/support/api/38.0/lightning/opencti min.js"></script>

<script type="text/javascript">

var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',

response.returnValue) ;

47

Methods for Lightning Experience searchAndScreenPopl) for Lightning Experience

} else {
console.error ('Something went wrong! Errors:', response.errors);
}
}i
function screenPop() {
sforce.opencti.screenPop ({type: sforce.opencti.SCREENPOP TYPE.OBJECTHOME,
params: {scope:”Account”}, callback: callback });
}
</script>
</head>
<body>
<button onclick="screenPop () ;">screenPop</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object This API method doesn't return this object. The returnvalue is always null.
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

SEE ALSO:
Lightning Components Developer Guide: force:navigateToURL
Lightning Components Developer Guide: force:navigateToSObject

Lightning Components Developer Guide: force:navigateToList

searchAndScreenPop () for Lightning Experience

Usage

Searches objects specified in the softphone layout for a given string. Returns search results and screen pops any matching records. This
method respects screen pop settings defined in the softphone layout. This method is available in APl version 38.0 or later.
The searchAndScreenPop () method for Lightning Experience works differently from the Salesforce Classic method.

e Open (Tl for Lightning Experience doesn't support the softphone layout field Screen pops open within whenthe value
is New browser window or tab.In Lightning Experience, the defaultvalueis Existing browser window.

e Open CTl for Lightning Experience provides a new argument called deferred.

48

https://developer.salesforce.com/docs/atlas.en-us.204.0.lightning.meta/lightning/ref_force_navigateToURL.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.lightning.meta/lightning/ref_force_navigateToSObject.htm
https://developer.salesforce.com/docs/atlas.en-us.204.0.lightning.meta/lightning/ref_force_navigateToList.htm

Methods for Lightning Experience searchAndScreenPopl) for Lightning Experience

O Tip: The searchAndGetScreenPopUrl () method is not available in the Open CTI API for Lightning Experience. To
accomplish the same functionality in Lightning, use the deferred parameter available in this method. Pass the value in
SCREEN POP DATA from the return objectinto the screenPop () method.

If you're noticing inconsistent behavior with the default settings of your softphone layout, edit your softphone layout to force the cache
to refresh. From Setup, edit your softphone layout and save the changes. Then edit the layout again and reset the layout to the default
settings.

Syntax

sforce.opencti.searchAndScreenPop ({
searchParams:string //Optional
queryParams:string, //Optional
callType:sforce.opencti.CALL TYPE.*, //Required. See arguments for more information.

deferred:boolean //Optional)
callback: function //Optional

Arguments

Name Type Description

searchParams string String to search.

queryParams string Specifies the query parameters to pass to the URL. Query parameters are only passed
to the URL if the screen pop option is set to Pop to Visualforce.

callType string Specifies the type of call, such asinbound, outbound, internal, or null. Per the settings
in the softphone layout, the call type determines which objects to search for any
matches.

Specify the call type with one of the following values:

¢ sforce.opencti.CALL TYPE.INBOUND

® sforce.opencti.CALL TYPE.OUTBOUND

¢ sforce.opencti.CALL TYPE.INTERNAL

deferred boolean Specifies whether the screen pop is performed immediately following the search or
if it's performed later. If the screenpop is performed later, a JSON object is returned.

This object must be passed unmodifiedto sforce.opencti.screenPop to

perform the operation.

e False—Default value. Indicates an immediate screen pop after the search is
performed.

e True—A JSON {object}is returned in the SCREEN POP_DATA key. Return
this object unmodified to sforce.opencti.screenPop forascreen
pop.

callback function JavaScript method executed when the API method call is completed.

49

Methods for Lightning Experience searchAndScreenPopl) for Lightning Experience

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);
}
}i
function searchAndScreenPop () {
//Invokes API method
sforce.opencti.searchAndScreenPop ({ searchParams : 'Acme', queryParams
'Keyl=valuel&Key2=value2', callType : sforce.opencti.CALL TYPE.INBOUND, deferred: false,
callback : callback });
}
</script>
</head>
<body>
<button onclick="searchAndScreenPop ();">searchAndScreenPop</button>
</body>
</html>

Response

Name Type Description

success boolean Returns t rue if the APl method call was invoked successfully, false otherwise.

returnvalue object Returns a list of objects that match the search results. The search is performed on
the objects specified in the softphone layout. For each object found, the object ID,
object tab name, field names, and field values are returned as JSON objects.

The following is an example of searching for “Acme,” and finding one Account and
three Opportunity objects:

{

"006x0000001ZcyG": {
"Name":"Acme - 600 Widgets",
"object":"Opportunity",
"displayName":"Opportunity"

}y

"001x0000003DGQR" : {
"Name" : "Acme",
"Type":"Analyst",
"object":"Account",
"displayName":"Company"

}y

50

Methods for Lightning Experience

Name

searchAndScreenPopl) for Lightning Experience

Type Description

"006x0000001ZcyH": {
"Name":"Acme - 200 Widgets",
"object":"Opportunity",
"displayName":"Opportunity"

s

"006x0000001ZcyF": {
"Name":"Acme - 1,200 Widgets",
"object":"Opportunity",
"displayName" :"Opportunity"

}

Invoking this APl method witha de ferred parameter returns the following sample
output without any screen navigation.

{
"006x0000001ZcyG": {
"Name":"Acme - 600 Widgets",
"object":"Opportunity",
"displayName":"Opportunity"
by
SCREEN_POP_DATA : {} //an object. Do not modify it.
Pass it to screenPop() API to navigate.

}

Invoking this APl method on a person account returns additional information.
® accountId or contactId—The associated account or contact ID.

® personAccount—true ifpersonaccountsareenabledinyourorg, false
otherwise.

For example:

{
"006x0000001ZcyG": {
"RecordName" :"Acme Person Account",
"RecordType" :"Account",
"PersonContactId":"003D000000Q0OMgg",
"IsPersonAccount":true

"url":"http://yourInstance.salesforce.com/001x0000003DGQR",

"RecordId":"001x0000003DGQR",
"RecordName" :"Acme Person Account",
"RecordType" :"Account",
"PersonContactId":"003D000000QOMgg",
"IsPersonAccount":true

51

Methods for Lightning Experience setSoftphoneltemicon() for Lightning Experience

Name Type Description

errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

setSoftphoneItemIcon () for Lightning Experience

Usage

Sets the icon for the softphone item in the utility bar. Returns t rue if the function is successfully executed, and false when there
is a failure. This method is available in API version 38.0 or later.

The softphone icon in the utility bar.

EEE @ pen CTI Accounts Assets Calendar Campaigns Cases Chatter Contacts Contracts Dashboards Files Forecasts More w
CASES .
My Cases ¥
-] >
3 items - Sorted by Case Number - Last updated 08/01/2016 at 15:32 @ ¢ * LA
CASE NUMBER T CONTACT NAME SUBJECT STATUS
1 00001000 Jon Amos Sample Case: Our Widgets have n... Escalated
2 00001001 Edward Stamos Sample Case 2: The widgets we re._. New
. Phone — Stamos Sample Case 3: Cannot track our o. On Hold
Open CTI ‘ Softphone
Username
Password
»
(Optone

Syntax

sforce.opencti.setSoftphoneltemIcon ({
key: key,
callback: function //Optional
}):

52

Methods for Lightning Experience setSoftphoneltemicon() for Lightning Experience

Arguments
Name Type Description
key string The key corresponding to the icon in the Lightning Design System you want to use
for the softphone icon in the utility bar.
callback function JavaScript method executed when the APl method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphoneItemIcon() {
sforce.opencti.setSoftphoneltemIcon ({key:"call", callback: callback});
}
</script>
</head>
<body>
<button onclick="setSoftphoneItemIcon ();">setSoftphoneltemIcon ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvalue object This API method doesn't return this object. The returnvalue is always null.

53

Methods for Lightning Experience setSoftphoneltemLabel() for Lightning Experience

Name Type Description
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable
returns an array of error messages.
SEE ALSO:

Salesforce Lightning Design System: Utility Icons

setSoftphoneItemLabel () for Lightning Experience

Usage

Sets the label for the softphone component item in the utility bar. Returns true if the function is successfully executed, and false
when there is a failure. This method is available in APl version 38.0 or later.

The softphone label in the utility bar.

see = . ~ y
222 Upenl I Accounts Assets Calendar Campaigns Cases Chatter Contacts Contracts Dashboards Files Forecasts More w

Syntax

CASES
My Cases ¥ e
3 items - Sorted by Case Number - Last updated 08/01/2016 at 15:32 @ ¢ s e Y
CASE NUMBER t CONTACT NAME SUBJECT STATUS
1 00001000 Jon Amos Sample Case: Our Widgets have n... Escalated
2 00001001 Edward Stamos Sample Case 2: The widgets we re... New
. Phone — Stamos Sample Case 3: Cannot track our o, OnHold

Open CTI ‘

Username

Password

Softphone

sforce.opencti.setSoftphoneltemLabel ({
label: string,

callback: function //Optional

)i

https://www.lightningdesignsystem.com/icons/#utility

Methods for Lightning Experience setSoftphoneltemLabel() for Lightning Experience

Arguments
Name Type Description
label string The string you want to use for the softphone label in the utility bar.
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphoneIltemLabel () {
sforce.opencti.setSoftphoneltemLabel ({label: "MySoftphone", callback: callback});

}
</script>
</head>
<body>
<button onclick="setSoftphoneIltemLabel ();">setSoftphoneltemLabel ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object This APl method doesn't return this object. The returnvalue isalways null.
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

55

Methods for Lightning Experience setSoftphonePanelHeight() for Lightning Experience

setSoftphonePanelHeight () for Lightning Experience

Usage

Sets the softphone panel height in the utility bar. The height must be specified in pixels. This method is available in APl version 38.0 or
later.

Syntax

sforce.opencti.setSoftphonePanelHeight ({
heightPX:height,
callback: function //Optional

1)

Arguments
Name Type Description
heightPX number The softphone panel height in pixels. The height must be a number from 240 through
700.
callback function JavaScript method executed when the APl method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphonePanelHeight () {
sforce.opencti.setSoftphonePanelHeight ({heightPX: 400, callback: callback});
}
</script>
</head>
<body>
<button onclick="setSoftphonePanelHeight ();">setSoftphonePanelHeight ()</button>
</body>
</html>

56

Methods for Lightning Experience setSoftphonePanellcon() for Lightning Experience

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvalue object This API method doesn't return this object. The returnvalue is always null.
errors array If the API call was successful, this variable is nul1l. If the API call failed, this variable

returns an array of error messages.

setSoftphonePanellIcon () for Lightning Experience

Usage

Sets the icon for the softphone panel. Returns true if the function is successfully executed, and false when there is a failure. This
method is available in APl version 38.0 or later.

The softphone panel icon.

EES @ pen CTI Accounts Assets Calendar Campaigns Cases Chatter Contacts Contracts Dashboards Files Forecasts More w
CASES
My Cases v few

3 items - Sorted by Case Number - Last updated 08/01/2016 at 15:32 LIRSS AR
CASE NUMBER T CONTACT NAME SUBJECT STATUS

1 00001000 Jon Amos Sample Case: Our Widgets have n... Escalated

2 00001001 Edward Stamos Sample Case 2: The widgets we re... New

©Phone — Stamos Sample Case 3: Cannot track our o. On Hold

Open CTL ‘ Softphone

Username

Password

%, Phone

57

Methods for Lightning Experience setSoftphonePanellcon() for Lightning Experience

Syntax

sforce.opencti.setSoftphonePanelIcon ({
key: key,
callback: function //Optional

}) i

Arguments
Name Type Description
key string The key corresponding to the icon in the Lightning Design System you want to use
for the softphone panel icon.
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvValue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphonePanellIcon() {
sforce.opencti.setSoftphonePanelIcon ({key:"call", callback: callback});

}
</script>
</head>
<body>
<button onclick="setSoftphonePanelIcon () ;">setSoftphonePanelIcon ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns t rue if the APl method call was invoked successfully, false otherwise.

58

Methods for Lightning Experience

Name Type

returnvValue object

errors array
SEE ALSO:

Description

setSoftphonePanelLabel() for Lightning Experience

This APl method doesn't return this object. The returnvalue isalways null.

If the API call was successful, this variable is nul1. If the API call failed, this variable
returns an array of error messages.

Salesforce Lightning Design System: Utility Icons

setSoftphonePanellabel () for Lightning Experience

Usage

Sets the label for the softphone panel. Returns t rue if the function is successfully executed, and false when there is a failure. This
method is available in API version 38.0 or later.

The softphone panel label.

222 Open CTI
s Lpent Account

s Assets Calendar Campaigns Cases Chatter Contacts

Contracts Dashboards Files Forecasts More w

CASES

My Cases ¥
3 items - Sorted by Case Number -

CASE NUMBER T

Last updated 08/01/2016 at 15:32

CONTACT NAME

Edward Stamos

1 00001000 Jon Amos
2 00001001
S i

Stamos

Open CTI ‘

Username

Password

. Phone

Softphone

SUBJECT

Sample Case: Our Widgets have n...

Sample Case 2: The widgets we re...

Sample Case 3: Cannot track our o.

New

Lo R R
STATUS
Escalated

New

On Held

Y

Syntax

sforce.opencti.setSoftphon
label: string,

ePanelLabel ({

https://www.lightningdesignsystem.com/icons/#utility

Methods for Lightning Experience setSoftphonePanelLabel() for Lightning Experience

callback: function //Optional
}) i

Arguments
Name Type Description
label string The string you want to use for the softphone panel label.
callback function JavaScript method executed when the APl method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphonePanellabel () {
sforce.opencti.setSoftphonePanellabel ({label: "Mysoftphone",callback: callback});

}
</script>
</head>
<body>
<button onclick="setSoftphonePanellabel ();">setSoftphonePanellLabel () </button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
success boolean Returns t rue if the APl method call was invoked successfully, false otherwise.
returnvValue object This API method doesn't return this object. The returnValue is always null.

60

Methods for Lightning Experience setSoftphonePanelVisibility() for Lightning Experience

Name Type Description
If the API call was successful, this variable is nul1l. If the API call failed, this variable
returns an array of error messages.

errors array

setSoftphonePanelVisibility () for Lightning Experience

Usage
Sets the visibility status of the softphone panel. When the visible parameter is passed as t rue, the softphone panel is displayed.
When it's set to false, the panelis minimized. This method is available in APl version 38.0 or later.

Syntax

sforce.opencti.setSoftphonePanelVisibility ({

visible: true,
callback: function //Optional

)i

Arguments
Name Type Description
visible boolean To dock (display) the softphone panel, set the value to true. To minimize (hide)
the softphone panel, set the value to false.
callback function JavaScript method executed when the API method call is completed.

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {

console.log ('API method call executed successfully! returnvValue:',

response.returnValue) ;

} else {

console.error ('Something went wrong! Errors:', response.errors);

b

function setSoftphonePanelVisibility () {

sforce.opencti.setSoftphonePanelVisibility ({visible: true, callback: callback});

61

Methods for Lightning Experience setSoftphonePanelWidth() for Lightning Experience

}
</script>
</head>
<body>
<button onclick="setSoftphonePanelVisibility () ;">setSoftphonePanelVisibility ()</button>

</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns t rue if the APl method call was invoked successfully, false otherwise.
returnvalue object This APl method doesn't return this object. The returnvalue isalways null.
errors array If the API call was successful, this variable is nul1l. If the API call failed, this variable

returns an array of error messages.

setSoftphonePanelWidth () for Lightning Experience

Usage

Sets the softphone panel width in the utility bar. The width must be specified in pixels. This method is available in API version 38.0 or
later.

Syntax

sforce.opencti.setSoftphonePanelWidth ({
widthPX:width,
callback: function //Optional

})

Arguments
Name Type Description
widthPX number The softphone panel width in pixels. The height must be a number from 200 through
1240.
callback function JavaScript method executed when the API method call is completed.

62

Methods for Lightning Experience Common Error Messages for Lightning Experience Methods

Sample Code-HTML and JavaScript

<html>
<head>
<script type="text/javascript"
src="https://domain:port/support/api/38.0/1lightning/opencti min.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.success) {
console.log ('API method call executed successfully! returnvalue:',
response.returnValue) ;
} else {
console.error ('Something went wrong! Errors:', response.errors);

i

function setSoftphonePanelWidth () {
sforce.opencti.setSoftphonePanelWidth ({widthPX: 400, callback: callback});
}
</script>
</head>
<body>
<button onclick="setSoftphonePanelWidth ();">setSoftphonePanelWidth ()</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

success boolean Returns true if the APl method call was invoked successfully, false otherwise.
returnvValue object This APl method doesn't return this object. The returnvalue isalways null.
errors array If the API call was successful, this variable is nul1. If the API call failed, this variable

returns an array of error messages.

Common Error Messages for Lightning Experience Methods

An error object is returned as an array for all Lightning Experience methods.
The following fields are contained as part of the error object.

code: string

A constant string denoting an error code.

description: string

A description of the error code.

63

Methods for Lightning Experience Common Error Messages for Lightning Experience Methods

details: object
Typically undefined. This constant can contain details about the error object for the saveLog method.

Sample error object:

[{
code: codel
description: descriptionl
details: detailsl

oA

code: code?

description: description2
details: details?2

1
Sample error object for the INVALID_PARAM error code:

[{

code: "INVALID_PARAM",

description: "An invalid value was passed to the parameter parameterName. A numeric
value was expected, but undefined was found instead."

11
Sample error object for the GENERIC_PARAM error code:

[{
code: "GENERIC ERROR",
description: "An error occurred while calling the API method."

11
Sample error object for the SERVER_ERROR code:

[{
code: "SERVER ERROR",
description: "A problem was encountered on the server."

}]
Sample error object for the SOFTPHONE_CONTAINER_ERROR code:

[{

code: "SOFTPHONE CONTAINER ERROR",

description: "Unable to execute sendPostMessage because the softphone container hasn’t
initialized yet."

H

Forthe runApex method, if there is a server error, the description field provides "Could not load Apex class:

apexClassName."

Forthe saveLog method, the details field provides information based on the type of error. For example:

[{
code: "GENERIC ERROR",
description:"An error occurred while calling the savelog() API method. Review the Details
field in the error section.",
details: [{
message:"An error occurred while trying to update the record. Please try again.",

64

Methods for Lightning Experience Common Error Messages for Lightning Experience Methods

pageErrors:[],
fieldErrors:{
Name: [{
statusCode:"REQUIRED FIELD MISSING",
message:"Required fields are missing: [Name]",
fieldLabel:"Account Name",
columnApiName: "Name"
}]
bo
potentialDuplicates: []
}]

65

CHAPTER 5 Methods for Salesforce Classic

If your org is using Salesforce Classic, use methods that work with Salesforce Classic.

@ Important: The way you implement Open CTl depends on your org's user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience.You can't swap the two Open CTI APIs in custom JavaScript code because they behave and
function differently. Make sure that you think about where you want to implement your CTl system before you begin developing.

Methods for Salesforce Application Interaction
Open CTl lets your CTl system interact with the Salesforce application, including elements on a Case Feed page.

Methods for Computer-Telephony Integration (CTI)
Open CTl lets you integrate your CTI system with Salesforce.

SEE ALSO:

Why Your Ul Matters—Open CTl for Salesforce Classic vs. Lightning Experience
Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

Methods for Salesforce Application Interaction

Open CTl lets your CTl system interact with the Salesforce application, including elements on a Case Feed page.

@ Important: The way you implement Open CTl depends on your org's user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience.You can't swap the two Open CTI APIs in custom JavaScript code because they behave and
function differently. Make sure that you think about where you want to implement your CTl system before you begin developing.

getPagelnfo() for Salesforce Classic

isinConsole() for Salesforce Classic

isVisible() for Salesforce Classic
notifyInitializationComplete() for Salesforce Classic
onFocus() for Salesforce Classic

onObjectUpdate() for Salesforce Classic
refreshObject() for Salesforce Classic

refreshPage() for Salesforce Classic
refreshRelatedList() for Salesforce Classic
reloadFrame() for Salesforce Classic

runApex() for Salesforce Classic

66

Methods for Salesforce Classic getPagelnfo() for Salesforce Classic

savelLog() for Salesforce Classic

screenPop() for Salesforce Classic
searchAndGetScreenPopUrl() for Salesforce Classic
searchAndScreenPop() for Salesforce Classic

setVisible() for Salesforce Classic
SEE ALSO:

Why Your Ul Matters—QOpen CTl for Salesforce Classic vs. Lightning Experience
Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

getPageInfo () for Salesforce Classic

Usage

Returns information about the current page.

Syntax

sforce.interaction.getPageInfo(callback:function);

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result) ;
} else {
alert (response.error);
}
}i
function getPagelInfo() {
//Invokes API method
sforce.interaction.getPagelInfo (callback);
}
</script>

67

Methods for Salesforce Classic isinConsole() for Salesforce Classic

</head>
<body>
<button onclick="getPageInfo ();">getPageInfo</button>
</body>
</html>
Response
Name Type Description
result string Returns the URL of the current page as a JSON string, and includes any applicable
object ID, object name, object type, and for API version 33.0 or later, the object tab
name. For example:
{"url":"http://nal.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName" :"Acme",
"object":"Account", "displayName" :"Company"}
For APl version 31.0 and later, invoking this APl method on a PersonAccount object
returns the following additional information.
e accountld or contactld, the associated account or contact ID
e personAccount, which is true if the object is a PersonAccountand false
otherwise
For example:
{"url":"http://nal.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName":"Acme Person
Account",
"object":"Account", "contactId":"003D000000QOMgg",
"personAccount":true}
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

isInConsole () for Salesforce Classic

Usage
Indicates if the softphone is in the Salesforce console.

@ Note: If this method is used in a Salesforce console where multi-monitor components is turned on, any popped out softphone
components are indicated as in the console.

Syntax

sforce.interaction.isInConsole (callback:function)

68

Methods for Salesforce Classic isinConsole() for Salesforce Classic

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {

alert ('User is in console.');
}
else {
alert ('User is not in console.');

}i
</script>
</head>
<body>

<button onclick="sforce.interaction.isInConsole (callback);">isInConsole</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result boolean true if the softphone was in the Salesforce console, false if the softphone
wasn't in the Salesforce console.

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

SEE ALSO:
Salesforce Help: Salesforce Console

Salesforce Help: Turn On Multi-Monitor Components for a Salesforce Console

69

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_multi_monitor_component.htm&language=en_US

Methods for Salesforce Classic isVisible() for Salesforce Classic

isVisible () for Salesforce Classic

Usage

Returns true if the softphone is visible or false if the softphone is hidden.

Syntax

sforce.interaction.isVisible (callback:function)

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert ('Softphone is visible');
} else {
alert ('Softphone is not visible');

b
function isVisible () {
sforce.interaction.isVisible (callback) ;

}
</script>
</head>
<body>
<button onclick="isVisible();">isVisible</button>
</body>
</html>

Response

Name Type Description
result boolean true if the softphone is visible, false if the softphone isn't visible.

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

70

Methods for Salesforce Classic nofifylnitializationComplete() for Salesforce Classic

notifyInitializationComplete () for Salesforce Classic

Usage

Notifies Salesforce that the softphone initialization is complete and that Salesforce should not switch to a standby URL. While the
softphone initializes, a loading icon displays in the SoftPhone area. To use a standby URL, you must specify it in the call center’s definition
file. For more information, see Optional Call Center Elements and Attributes on page 12.

Syntax

sforce.interaction.cti.notifyInitializationComplete ()

Arguments

None.

Sample Code

<html>
<head>
<script src="http://domain:port/support/api/29.0/interaction.js"></script>
<script type="text/javascript">
// Invokes API method
sforce.interaction.cti.notifyInitializationComplete() ;
</script>
</head>
<body>
The interaction framework has been notified that the CTI initialization is complete.
</body>
</html>

Response

None.

onFocus () for Salesforce Classic

Usage

Registers a function to call when the browser focus changes. In the Salesforce console, the browser focus changes when a user navigates
between primary tabs or the navigation tab.

Syntax

sforce.interaction.onFocus(listener:function);

71

Methods for Salesforce Classic onFocusi) for Salesforce Classic

Arguments
Name Type Description
listener function JavaScript method called when the browser focus changes.

Sample Code-JavaScript

<head>
<script type="text/javascript"
src="http//domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);

function onFocus () {
//Invokes API method
sforce.interaction.onFocus (callback) ;
}
</script>
</head>
<body>
<button onclick="onFocus () ;">onFocus</button>
</body>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result string Returns the URL of the page in focus as a JSON string and includes any applicable
object ID, object name, object type, and for API version 33.0 or later, the object tab
name. For example:

{"url":"http://salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName" :"Acme",
"object":"Account","displayName":"Company"}

If the page isn't focused on an object, the object ID, object name, and object will be
empty.

For APl version 31.0 and later, invoking this APl method on a PersonAccount object
returns the following additional information.

e accountld or contactld, the associated account or contact ID

e personAccount, which is true if the object is a PersonAccountand false
otherwise

72

Methods for Salesforce Classic onObjectUpdate() for Salesforce Classic

Name Type Description
For example:

{"url":"http://nal.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName":"Acme Person
Account",

"object":"Account", "contactId":"003D000000QOMgg",
"personAccount":true}

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

SEE ALSO:
Salesforce Help: Salesforce Console

Salesforce Help: Turn On Multi-Monitor Components for a Salesforce Console

onObjectUpdate () for Salesforce Classic

Usage

Registers a function to call when case fields, the feed, or related list data have changed on records that are displayed with a feed-based
layout.

@ Note: Use this method with Visualforce pages you want to use as custom publishers in Case Feed.

Syntax

sforce.interaction.entityFeed.onObjectUpdate (callback:function)

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<apex:page standardController="Case">
<apex:includeScript value="/support/api/26.0/interaction.js"/>
<script type="text/javascript">

var callback = function (response) {
alert ('Case was updated. Fields = ' + response.fieldsUpdated +
' Related lists = ' + response.relatedlListsUpdated + ' Feed = ' +

response. feedUpdated) ;

73

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_multi_monitor_component.htm&language=en_US

Methods for Salesforce Classic

//Invokes API method

refreshObiject() for Salesforce Classic

sforce.interaction.entityFeed.onObjectUpdate (callback) ;

</script>
</apex:page>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the

following fields.

Name Type
fieldsUpdated boolean
relatedListsUpdated boolean

feedUpdated boolean

Description
true if one or more case fields were updated.
true if one or more case related lists were updated.

true if the case feed was updated.

refreshObject () for Salesforce Classic

Usage

Notifies a page that uses a feed-based layout, that fields, the feed, or related list data has changed, and forces an update of these on the

page.

@ Nofte: Use this method with Visualforce pages you want to use as custom publishers in Case Feed.

Syntax

sforce.interaction.entityFeed.refreshObject (

objectId:string,

refreshFields:boolean,

refreshRelatedLists:boolean,

refreshFeed:boolean, callback: function)

Arguments

Name Type
objectId string
refreshFields boolean

refreshRelatedLists boolean
refreshFeed boolean

callback function

Description

The record ID of the case object.

Indicates that one or more fields on the case have changed.
Indicates that one or more case-related lists have changed.
Indicates that the case feed has changed.

JavaScript method executed when the APl method call is completed.

74

Methods for Salesforce Classic refreshPagel() for Salesforce Classic

Sample Code-JavaScript

<apex:page standardController="Case'">

<apex:includeScript value="/support/api/26.0/interaction.js"/>

<a href="javascript:void(0);"
onclick="sforce.interaction.entityFeed.refreshObject ('{!case.id}', true, true, true,
function (response) {alert('Case was updated: ' + response.result);});">Refresh Case
</apex:page>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result boolean true if the Case Feed page was successfully updated, false if it was not.

refreshPage () for Salesforce Classic

Usage

Returns true if page refresh isinvoked, false otherwise. When this method is called within the Salesforce console, it refreshes the
current active tab. This method is only available in API version 28.0 or later.

Syntax

sforce.interaction.refreshPage (callback:function);

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/28.0/interaction.js"></script>
<script type="text/javascript">

var callback = function (response) {
if (response.result) {
alert ('Page refresh has been invoked.');
} else {
alert ('Page refresh has not been invoked.');

75

Methods for Salesforce Classic refreshRelatedList() for Salesforce Classic

}i
function refreshPage () {
sforce.interaction.refreshPage (callback);

}
</script>
</head>
<body>
<button onclick="refreshPage ();">refreshPage</button>
</body>
</html>

Response

Name Type Description

result boolean Returns true if page refresh has been invoked, false otherwise.

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

refreshRelatedList () for Salesforce Classic

Usage

Returns true if the related list with the given 1istName isrefreshed, false otherwise. When this method is called within the
Salesforce console, only the related list with the given list name in the currently focused view will be refreshed. This method is only
available in APl version 28.0 or later.

Syntax

sforce.interaction.refreshRelatedList (listName:string, callback:function)

Arguments
Name Type Description
listName string The name of the related list to refresh. For example, Contact for Contacts related list
or Activity for Open Activities related list.
Note that to refresh a custom related list created from a custom lookup field,
1istName must specify the ID of the custom lookup field.
callback function JavaScript method executed when the APl method call is completed.

76

Methods for Salesforce Classic refreshRelatedList() for Salesforce Classic

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/28.0/interaction.js"></script>
<script type="text/javascript">
function checkRefreshResult (result) {
if (result.result) {
alert ('The related list is refreshed!');
} else {
alert ('Cannot refresh the related list with the given listName! Make
sure the listName is correct and the related list is on the page.');

}

}
function refreshActivityRelatedList () {
sforce.interaction.refreshRelatedList ('Activity', checkRefreshResult);

function refreshHistoryRelatedList () {
sforce.interaction.refreshRelatedList ('History', checkRefreshResult);

function saveAndRefresh () {
sforce.interaction.savelLog('Task',
'Subject=ImportantTask&WhatId=[1l5-character ID of an account to which you want to attach
the task]', function(result) {
if (result.result) {
refreshActivityRelatedList () ;
} else {
alert ('Could not save the object! Check the developer console for error
messages.');
}
});
}
</script>
</head>

<body>
<button onclick="refreshHistoryRelatedList ();">Refresh History Related List</button>

<button onclick="saveAndRefresh();">Save and Refresh</button>

</body>

</html>

Response

Name Type Description

result boolean Returns true ifthe related list with the given name s refreshed, false otherwise.
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

77

Methods for Salesforce Classic reloadFrame() for Salesforce Classic

Notes

e This method cannot refresh related lists created from <apex:relatedList>.
e This method cannot refresh a related list from an overridden Visualforce page in the Salesforce console.

e If called from within the Salesforce console, this method will only search for the related list to refresh in the currently focused view.

reloadFrame () for Salesforce Classic

Usage

Reloads the frame that contains the page making the call. This method is available only if the record is displayed with a feed-based
layout. This method is available in APl version 34.0 or later.

Syntax

sforce.interaction.entityFeed.reloadFrame ()

Arguments

None.

Sample Code-JavaScript

<apex:page standardController="Case">
<apex:includeScript value="/support/api/34.0/interaction.js"/>
<a href"javascript:void(0); onclick="sforce.interaction.entityFeed.reloadFrame () ;">
Reload

</apex:page>

Response

None.

rundpex () for Salesforce Classic

Usage

Executes an Apex method from an Apex class that's exposed in Salesforce.

Syntax

sforce.interaction.runApex (apexClass:string, methodName:string, methodParams:string,
(optional) callback:function)

78

Methods for Salesforce Classic runApex() for Salesforce Classic

Arguments

Name Type Description

apexClass string Specifies the Apex class of the method to execute.

methodName string Specifies the method to execute.

methodParams string Specifies the method parameters to pass. The string must include field value pairs
and be formatted as a valid query string. For example:name=acme sphone= (212)
555-5555.

callback function JavaScript method executed when the APl method call is completed.

Sample Code-JavaScript
1. Anadministrator creates an Apex class and Apex method:

global class AccountRetrieval{

webService static String getAccount (String name) {

List<Account> accounts = new List<Account>();
for (Account account : Database.query('Select Id, Name, phone from Account where Name
like \'' + name + '3\'")){

accounts.add (account) ;

String JSONString = JSON.serialize (accounts);
return JSONString;

2. Inthe location where you've created the Apex class and method in Salesforce, click Generate WSDL to expose the method and
class so that a third-party softphone can call it.

3. Add your code to the softphone:

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result) ;
} else {
alert (response.error);

}i
function runApex () {
//Invokes API method
sforce.interaction.runApex ('AccountRetrieval', 'getAccount', 'name=acme',
callback) ;

}
</script>

79

Methods for Salesforce Classic

</head>
<body>

savelog() for Salesforce Classic

<button onclick="runApex ();">runApex</button>

</body>
</html>

4. Outputis returned. In this example, one account named, Acme, was found:

[{"attributes": {"type":"Account",
"url":"/services/data/v25.0/sobjects/Account/001x0000003DGQRAA4L"},
"Id":"001x0000003DGQRAA4" , "Name" : "Acme", "Phone":" (212) 555-5555"}]

Response
Name Type
result string
error string
SEE ALSO:

Salesforce Help: Apex Code Overview

Description
Returns the result from executing the method from the specified Apex class.

No specific format is returned. The format is determined by the value from the method
that was executed.

If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

saveLog () for Salesforce Classic

Usage

Saves or updates an object in Salesforce.

Syntax

sforce.interaction.savelog(object:string, saveParams:string, (optional)callback:function)

Arguments
Name Type
object string
saveParams string

Description
The name of the object to save or update.

Specifies the fields to save or update on the object.

If the object’s ID is specified, a record is updated. For example:
I1d=001D000000J6gIX&Name=Acme&Phone=4154561515.[ftheobject’s

80

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_about.htm&language=en_US

Methods for Salesforce Classic screenPopl) for Salesforce Classic

Name Type Description

ID isn't specified, a new record is created. For example:
Name=Acme&Phone=4154561515.

callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);
} else {
alert (response.error) ;

}

function saveLog () {
//Invokes API method
sforce.interaction.savelLog ('Account', 'Name=NewAccountName&Phone=4155551212",

callback) ;
}
</script>
</head>
<button onclick="savelLog () ;">saveLog</button>

</html>
Response

Name Type Description

result boolean true ifsaving or updating the object was successful, false if saving or updating

the object wasn't successful.
id string The Id of the newly created object.
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

screenPop () for Salesforce Classic

Usage

Pops to a target URL, which must be relative.

81

Methods for Salesforce Classic screenPopl) for Salesforce Classic

Syntax

sforce.interaction.screenPop (url:string, force:boolean, (optional) callback:function)

Arguments
Name Type Description
url string A relative URL, which specifies the location of the screen pop.
force boolean Setvalue to true to force a screen pop, £alse otherwise. This argumentis only
available in APl version 28.0 and later.
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>

<script type="text/javascript"
src="http://domain:port/support/api/28.0/interaction.js"></script>

<script type="text/javascript">

var callback = function (response) {
if (response.result) {
alert ('Screen pop was set successfully.');

}

else {
alert ('Screen pop failed.' + result.error);

b
function screenPop () {
//Invokes API method

sforce.interaction.screenPop ('/001x0000003DGQR"', true, callback);
}

</script>

</head>

<body>
<!-- Note that '001x0000003DGQR' is an example of an object Id to screen pop. -—>
<button onclick="screenPop ();">screen pop to entity Id</button>

</body>

</html>

Response

Name Type Description

result boolean true ifthe screen pop was successful, false ifthe screen pop wasn't successful.

error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

82

Methods for Salesforce Classic searchAndGetScreenPopUrl() for Salesforce Classic

searchAndGetScreenPopUrl () for Salesforce Classic

Usage

Searches objects specified in the softphone layout for a given string. Returns search results and the relative URL to be screen popped.
Note that this method does not perform an actual screen pop. This method respects screen pop settings defined in the softphone layout.
This method is only available in APl version 28.0 or later.

O Tip: This method is not available in the Open CTI APl for Lightning Experience. To accomplish the same functionality in Lightning,
use the deferred parameter available in the searchAndScreenPop () for Lightning Experience method.

Syntax

sforce.interaction.searchAndGetScreenPopUrl (searchParams:string, queryParams:string,
callType:string, callback:function)

Arguments

Name Type Description

searchParams string String to search.

queryParams string Specifies the query parameters to pass to the URL.

callType string Specifies the type of call, such as inbound, outbound, internal, or null. Per the settings
in the softphone layout, the call type determines which objects to search for any
matches.
If callType isnull, searches are inbound by default. If cal1Type isinternal or
outbound, no screen pops occur.

callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/33.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);
} else {
alert (response.error) ;

}i
function searchAndGetScreenPopUrl () {
//Invokes API method
sforce.interaction.searchAndGetScreenPopUrl ('Acme',

83

Methods for Salesforce Classic searchAndScreenPopl() for Salesforce Classic

'Keyl=valuel&Key2=value2', 'inbound', callback);

}
</script>
</head>
<body>
<button onclick="searchAndGetScreenPopUrl () ;">searchAndGetScreenPopUrl</button>
</body>
</html>

Response

Name Type Description

result string Returns a list of objects that match the search results and the URL to the screen pop
(screenPopUrl). The search is performed on the objects specified in the
softphone layout. For each object found, the object ID, field names, field values, and
for APl version 33.0 or later, object tab name are returned as a JSON string.

The following is an example of searching for “Acme,” and finding one account and
three opportunity objects:

{"006x0000001ZcyG": {"Name" :"Acme - 600

Widgets", "object" :"Opportunity", "displayName" : "Opportunity"},
"001x0000003DGOR" : {"Name" : "Acme"', "Type" : "Analyst", "dbject" : "Account",
"displayName":"Company"},
"006x0000001ZcyH": {"Name" :"Acme - 200

Widgets", "object" :"Opportunity", "displayName" : "Opportunity"},
"006x0000001ZcyF": {"Name" :"Acme - 1,200

Widgets", "object" :"Opportunity", "displayName" : "Opportunity"},
screenPopUrl:"/search/SearchResults?searchType=2&str=Acme"}

For APl version 31.0 and later, invoking this APl method on a PersonAccount object
returns additional information:

{""001D000000INSCE" : { "Name" : ""PersonAccount", "contactId" : "003D000000QCEU",

"Tyee":"Aralyst", "doject" : "Accont"!, "displayhare" : "Aocont”!, "persanAccont ' stre},
"screenPopUrl":"/001D000000JIn5C5"}

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

SEE ALSO:
Salesforce Help: Designing a Custom SoftPhone Layout

searchAndScreenPop () for Salesforce Classic

Usage

Searches objects specified in the softphone layout for a given string. Returns search results and screen pops any matching records. This
method respects screen pop settings defined in the softphone layout.

84

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_phonelayoutscreate.htm&language=en_US

Methods for Salesforce Classic searchAndScreenPopl() for Salesforce Classic

Syntax

sforce.interaction.searchAndScreenPop (searchParams:string, queryParams:string,
callType:string, (optional) callback:function);

Arguments

Name Type Description

searchParams string String to search.

queryParams string Specifies the query parameters to pass to the URL.

callType string Specifies the type of call, such as inbound, outbound, internal, or null. Per the settings
in the softphone layout, the call type determines which objects to search for any
matches.
If callType isnull, searches are inbound by default. If cal1Type isinternal or
outbound, no screen pops occur.

callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/33.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);
} else {
alert (response.error);

}i
function searchAndScreenPop () {
//Invokes API method
sforce.interaction.searchAndScreenPop ('Acme', 'Keyl=valuelé&Key2=value2',
'inbound', callback);
}
</script>
</head>
<body>
<pbutton onclick="searchAndScreenPop ();">searchAndScreenPop</button>
</body>
</html>

85

Methods for Salesforce Classic

Response

Name

result

error

SEE ALSO:

Type

string

string

setVisible() for Salesforce Classic

Description

Returns a list of objects that match the search results. The search is performed on
the objects specified in the softphone layout. For each object found, the object ID,
field names, field values, and for APl version 33.0 or later, object tab names are
returned as a JSON string.

The following is an example of searching for “Acme,” and finding one account and
three opportunity objects:

{

"006x0000001ZcyG" {"Name" "Acme - 600 Widgets",
"object" "Opportunity", "displayName"
"Opportunity"},

"001x0000003DGOR" {"Name" "Acme", "Type"
"Analyst", "object" "Account", "displayName"
"Company"},

"006x0000001ZcyH" {"Name" "Acme - 200 Widgets",

"object" "Opportunity", "displayName"
"Opportunity"},
"006x0000001ZcyF" : {"Name" : "Acme - 1,200 Widgets",
"object" : "Opportunity", "displayName" : "Opportunity"}

}

For APl version 31.0 and later, invoking this APl method on a PersonAccount object
returns additional information:

{"001DO0000OITWAW8" : { "Name" : "Acme", "contactId" :"003D000000QNWDRB",

"Type":"Analyst", "object":"Account", "personAccount":true}}

If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

Salesforce Help: Designing a Custom SoftPhone Layout

setVisible () for Salesforce Classic

Usage

Shows or hides the softphone in the Salesforce console.

@ Note: If this method is used in a Salesforce console where multi-monitor components is turned on, an error will be returned.

Syntax

sforce.interaction.setVisible (value:boolean, (optional) callback:function)

86

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_phonelayoutscreate.htm&language=en_US

Methods for Salesforce Classic setVisible() for Salesforce Classic

Arguments
Name Type Description
value boolean Setvalue to true to show the softphone or set value to false to hide the
softphone.
callback function JavaScript method executed when the APl method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);
} else {
alert (response.error) ;

b
function setVisible (value) {
sforce.interaction.setVisible (value, callback);

}

</script>
</head>
<body>
<button onclick="setVisible (false);">hide softphone</button>
</body>
</html>
Response
Name Type Description
result boolean true if showing or hiding the softphone succeeded, false if showing or hiding
the softphone didn't succeed.
error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.
SEE ALSO:

Salesforce Help: Salesforce Console

Salesforce Help: Turn On Multi-Monitor Components for a Salesforce Console

87

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_multi_monitor_component.htm&language=en_US

Methods for Salesforce Classic Methods for Computer-Telephony Integration (CTI)

Methods for Computer-Telephony Integration (CTI)

Open CTl lets you integrate your CTI system with Salesforce.

@ Important: The way you implement Open CTl depends on your org's user interface. There are separate Open CTI APIs for Salesforce
Classic and Lightning Experience.You can't swap the two Open CTI APIs in custom JavaScript code because they behave and
function differently. Make sure that you think about where you want to implement your CTl system before you begin developing.

disableClickToDial() for Salesforce Classic
enableClickToDial() for Salesforce Classic
getCallCenterSettings() for Salesforce Classic
getDirectoryNumbers() for Salesforce Classic
getSoftphonelayout() for Salesforce Classic
onClickToDial() for Salesforce Classic
setSoftphoneHeight() for Salesforce Classic
setSoftphoneWidth() for Salesforce Classic

SEE ALSO:

Why Your Ul Matters—Open CTI for Salesforce Classic vs. Lightning Experience
Method Parity Between Open CTl for Salesforce Classic and Lightning Experience

disableClickToDial () for Salesforce Classic

Usage

Disables click-to-dial.

Syntax

sforce.interaction.cti.disableClickToDial ((optional) callback:function)
Arguments

Name Type Description

callback function JavaScript method executed when the APl method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"

88

Methods for Salesforce Classic enableClickToDial() for Salesforce Classic

src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert ('Click to dial was disabled.');
} else {
alert ('Click to dial was not disabled.');

}i
function disableClickToDial () {
//Invokes API method
sforce.interaction.cti.disableClickToDial (callback) ;
}
</script>
</head>
<body>
<button onclick="disableClickToDial () ;">disable click to dial</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
result boolean true if click-to-dial was disabled, false if click-to-dial wasn't disabled.
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

enableClickToDial () for Salesforce Classic

Usage

Enables click-to-dial.

Syntax

sforce.interaction.cti.enableClickToDial ((optional) callback:function)
Arguments

Name Type Description

callback function JavaScript method executed when the API method call is completed.

89

Methods for Salesforce Classic getCallCenterSettingsi) for Salesforce Classic

Sample Code-JavaScript

<html>
<head>

<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>

<script type="text/javascript">

var callback = function (response) {
if (response.result) {
alert ('Click to dial was enabled.');

} else {
alert ('Click to dial was not enabled.');
}
}i
function enableClickToDial () {

//Invokes API method
sforce.interaction.cti.enableClickToDial (callback);
}
</script>
</head>
<body>
<button onclick="enableClickToDial ();">enable click to dial</button>
</body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description
result boolean true if click-to-dial was enabled, false if click-to-dial wasn't enabled.
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

getCallCenterSettings () for Salesforce Classic

Usage

Returns the call center settings in the call center definition file as a JSON string. For more information, see Call Center Definition Files.

Syntax

sforce.interaction.cti.getCallCenterSettings (callback:function)

90

Methods for Salesforce Classic getDirectoryNumbers|) for Salesforce Classic

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
alert (response.result);

//Calls getCallCenterSettings
sforce.interaction.cti.getCallCenterSettings (callback) ;
</script>

</head>

<body></body>

</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result string If the API call was successful, the call center settings definition is returned as a JSON
string. If the API call failed, null is returned.

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

getDirectoryNumbers () for Salesforce Classic

Usage

Returns the list of phone numbers from the call center’s directory. This method is only available in APl version 31.0 or later.

Syntax

sforce.interaction.cti.getDirectoryNumbers (isGlobal:boolean, callCenterName:String,
(optional) callback:function, (optional) resultSetPage:Integer, (optional)
resultSetPageSize:Integer)

91

Methods for Salesforce Classic getDirectoryNumbers|) for Salesforce Classic

Arguments

Name Type Description

isGlobal boolean Set the value to true to return a directory number from the global call center
name, or set the value to false to return a directory number that is specific to a
call center.

callCenterName string Specifies the call center name on which to return directory numbers. If i sGlobal
issetto false, and this field is not specified, all directory numbers are returned.

callback function JavaScript method executed when the APl method call is completed.

resultSetPage integer Represents the page number of the list of results to return. This number starts at 0.

resultSetPageSize integer Sets the maximum number of phone numbers to retrieve, which is defaulted to 5000

and has a maximum number of 10000. If hasNext returns true inthe
callback, use thisargument with resultSetPage to get the next page of
results. For example, if resultSetPageSize isset to 5000, and
resultSetPage isset to 0, the first 5000 phone numbers are returned. If
resultSetPage issetto 1, the next 5000 phone numbers are returned.

Sample Code-JavaScript

<html>
<head>
<script src="https://domain:port/support/api/31.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {
if (response.result) {
alert (response.result);
} else {
alert (response.error);

var isGlobal = false; //Do not return directories from the global call center
var callCenterName = ‘My Call Center’; //Call center name of directory numbers to
return
function getDirectoryNumbers () {
sforce.interaction.cti.getDirectoryNumbers (isGlobal, callCenterName,
callback);
}
</script>
</head>
<body>
<button onclick="getDirectoryNumbers ();">Get Directory Numbers</button>
</body>
</html>

92

Methods for Salesforce Classic getSoftphonelLayout() for Salesforce Classic

Response
Name Type Description
result string Returns a JSON string that represents the list of phone numbers from the specified
call center name. Each phone number element contains a call center name, phone,
and description. For example:
{ directoryNumbers:
[
{callCenterName: 'Demo Call Center', name:'Sales
Cloud', phone:'415-555-1212"', description:'Sales Cloud
additional number'},
{callCenterName: 'Demo Call Center 2', name:'Service
Cloud', phone:'415-555-3434"', description:'Service
Cloud additional number'},
I
hasNext: false
}
error string If the API call was successful, this variable is undefined. If the API call failed, this

variable returns an error message.

getSoftphoneLayout () for Salesforce Classic

Usage

Returns the softphone layout as a JSON string. This method is only available in APl version 27.0 or later.

Syntax

sforce.interaction.cti.getSoftphonelayout (callback:function);

Arguments
Name Type Description
callback function JavaScript method executed when the API method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/27.0/interaction.js"></script>
<script type="text/javascript">
var callback = function (response) {

93

Methods for Salesforce Classic getSoftphonelLayout() for Salesforce Classic

alert (response.result);
}

// Calls getSoftphonelLayout

sforce.interaction.cti.getSoftphonelayout (callback) ;
</script>
</head>
<body></body>
</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result string If the API call was successful, the softphone layout definition is returned as a JSON
string. If the API call failed, null is returned.

The returned JSON string contains three elements that represent each of the call
types:

® "Internal"

® "Inbound"

® "QOutbound"
Each call-type contains three subsections:

® "callRelatedFields"—Anarray of call-related fields selected to display.
Possible values are "ANI", "DNIS", "SEGMENT",and "QUEUE".

* "objects"—Thesetof Salesforce objects selected to display, along with the
Field Label and Field Name (APIname)selectedtodisplay fromeach
object.

e "screenPopSettings"—This object contains a
"screenPopsOpenWithin" field with a value of either
"ExistingWindow" or "NewWindow". Additionally, it contains the
settings for each of the screen pop match types: "NoMatch™,
"SingleMatch", "MultipleMatches". Each match type contains a
corresponding "screenPopType" field and may also contain a
"screenPopData" field. If "screenPopType" has a value of
"PopToEntity", then "screenPopData" contains the name of the
target object. If "screenPopType" has a value of
"PopToVisualforce",then "screenPopData" contains the name
of the target Visualforcepage. If "screenPopType" has a value of
"PopToSearch", thentherewon'tbea "screenPopbData" field.

The following is an example of a JSON response:

"Internal" : {
"callRelatedFields" : [
"ANI",
"DNIS",

94

Methods for Salesforce Classic

Name

getSoftphonelLayout() for Salesforce Classic

Type Description

]
"objects" : {

"User" : [{
"displayName" : "Name",
"apiName" : "Name"

}
]
bo
"screenPopSettings" : {}
}I
"Inbound" : {
"callRelatedFields" : [

"ANI",

"DNIS",

"SEGMENT",

"QUEUE"

I

"objects" : {

"Account" : [{
"displayName" : "Account Name",
"apiName" : "Name"

}

]

}I

"screenPopSettings" : {

"NoMatch" : {
"screenPopType" : "PopToEntity",
"screenPopData" : "Contact"

b

"SingleMatch" : {
"screenPopType" : "PopToVisualforce",
"screenPopData" : "Visualforce Page Name"
by
"MultipleMatches" : {
"screenPopType" : "PopToSearch"
}
}
s
"Outbound" : {
"callRelatedFields" : [
"DNIS"
1,
"objects" : {
"Account" : [{
"displayName" : "Account Name",
"apiName" : "Name"
}
]
bo
"screenPopSettings" : {}

95

Methods for Salesforce Classic onClickToDial() for Salesforce Classic

Name Type Description
}
}
error string or If the API call was successful, this variable is undefined. If the API call failed, this
undefined variable returns an error message.
SEE ALSO:

Salesforce Help: Designing a Custom SoftPhone Layout

onClickToDial () for Salesforce Classic

Usage

Registers a function to call when a user clicks an enabled phone number.

Syntax

sforce.interaction.cti.onClickToDial (listener:function)

Arguments
Name Type Description
listener function JavaScript method called when the user clicks a phone number.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">
var listener = function (response) {
if (response.result) {
alert ('User clicked on a phone number.' + response.result);
}
}i
//Invokes API method
sforce.interaction.cti.onClickToDial (listener);
</script>
</head>
</html>

96

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_admin_phonelayoutscreate.htm&language=en_US

Methods for Salesforce Classic setSoftphoneHeight() for Salesforce Classic

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result string Returns the phone number, object ID, the name of the object, and for APl version
33.0 or later, the object tab name from where the click was initiated as a JSON string.
For example:

{"nurmber" : "4155551212", "dojectId" : "001x0000003DIG]", "dojectNamre" : "Account",
"displayName" :"Company"}

For APl version 33.0 or later, invoking this APl method on a PersonAccount object
returns the following additional information.

e accountld or contactld, the associated account or contact ID

e personAccount, which is true if the object is a PersonAccountand false
otherwise

For example:

{"number":"4155551212", "object
Id":"001D000000JWVVP", "objectName" : "Howard

Jones", "object":"Account",

"personAccount":true, "contactId":" 003D000000QOBPX"}

error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

setSoftphoneHeight () for Salesforce Classic

Usage
Sets the softphone height in pixels.

@ Note: If this method is used in a Salesforce console where multi-monitor components is turned on, an error will be returned
because resizing multi-monitor component is not allowed.

Syntax

sforce.interaction.cti.setSoftphoneHeight (height:number, (optional) callback:function)

Arguments
Name Type Description
height number Softphone height in pixels. The height should be a number that's equal or greater

than 0.

97

Methods for Salesforce Classic setSoftphoneWidth() for Salesforce Classic

Name Type Description

callback function JavaScript method executed when the APl method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">

var callback = function (response) {
if (response.result) {
alert ('Height was set successfully.');
}
else {
alert ('Height was not set successfully.');

}i
</script>
</head>
<body>
<button onclick="sforce.interaction.cti.setSoftphoneHeight (200, callback);">
set softphone height to 200px

</button>
</body>
</html>
Response
Name Type Description
result boolean true if the height was set successfully, false if setting the height wasn't
successful.
error string If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.
SEE ALSO:

Salesforce Help: Salesforce Console

Salesforce Help: Turn On Multi-Monitor Components for a Salesforce Console

setSoftphoneWidth () for Salesforce Classic

Usage

Sets the softphone width in pixels for the Salesforce console.

98

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_multi_monitor_component.htm&language=en_US

Methods for Salesforce Classic setSoftphoneWidth() for Salesforce Classic

@ Note: If this method is used in a Salesforce console where multi-monitor components is turned on, an error will be returned
because resizing multi-monitor component is not allowed.

Syntax

sforce.interaction.cti.setSoftphoneWidth (width:number, (optional) callback:function)

Arguments
Name Type Description
width number Softphone width in pixels. The width should be a number that's equal or greater
than 0.
callback function JavaScript method executed when the APl method call is completed.

Sample Code-JavaScript

<html>
<head>
<script type="text/javascript"
src="http://domain:port/support/api/25.0/interaction.js"></script>
<script type="text/javascript">

var callback = function (response) {
if (response.result) {
alert ('Width was set successfully.');
}
else {
alert ('Width was not set successfully.');
}
}i
</script>
</head>

<body>
<button onclick="sforce.interaction.cti.setSoftphoneWidth (100, callback) ;">
set softphone width to 100px
</button>

</body>

</html>

Response

This method is asynchronous. The response is returned in an object passed to a callback method. The response object contains the
following fields.

Name Type Description

result boolean true ifthe width was set successfully, false if setting the width wasn't successful.

99

Methods for Salesforce Classic

Name Type
error string
SEE ALSO:

Salesforce Help: Salesforce Console

setSoftphoneWidth() for Salesforce Classic

Description

If the API call was successful, this variable is undefined. If the API call failed, this
variable returns an error message.

Salesforce Help: Turn On Multi-Monitor Components for a Salesforce Console

100

https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_multi_monitor_component.htm&language=en_US

CHAPTER 6 Other Resources

In addition to this guide, there are other resources available for you as you learn how to use Open CTI.

Open CTl Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

SEE ALSO:

Salesforce Help: Salesforce Call Center

Salesforce Help: Salesforce Console

Salesforce Help: Glossary

Salesforce Developers: Getting Started with Salesforce App Cloud

Salesforce University: Training

Open CTI Typographical Conventions

Typographical conventions are used in our code examples. Learn what Courier font, italics, and brackets mean.

Convention

Courier font

Italics

Bold Courier font

<>

Description

In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values need to be supplied: datatype variable name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }

In code samples and syntax descriptions, bold courier font emphasizes a portion of the code
or syntax.

In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{'!account.Contacts}" var="contact">

<apex:column value="{!contact.Name}"/>

101

https://help.salesforce.com/apex/HTViewHelpDoc?id=cti_overview.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=console2_about.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=glossary.htm&language=en_US
https://developer.salesforce.com/gettingstarted
http://www.salesforce.com/training

Other Resources Open CTI Typographical Conventions

Convention Description

<apex:column value="{!contact.MailingCity}"/>
<apex:column value="{!contact.Phone}"/>
</apex:pageBlockTable>

{1 In descriptions of syntax, braces ({ }) are typed exactly as shown.

<apex:page>
Hello {!S$User.FirstName}!
</apex:page>

[] In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data_type variable name [= value];

In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data_ type> set name
[= new Set<data_type>();] |
[= new Set<data_ type{value [, value2. . .] };] |

’

102

INDEX

A

Apex 6

APl support 7
Asynchronous calls 18
Authentication 24

interaction.js 17

introduction 1

isinConsole() for Salesforce Classic 68
isSoftphoneVisible() for Lightning Experience 36

isVisible()for Salesforce Classic 70

B

Backward compatibility 7
Best practices 24

C

Call center definition files
optional elements and attributes 12
required elements and attributes 10
Sample 13
specifying values for <item> elements 13
XML format 9

Connecting to Open CTI 17

custom functionality 6

D

definition files 8

Demo adapter 18

Desktop Toolkit 5

disableClickToDial() for Lightning Experience 27
disableClickToDial() for Salesforce Classic 88

E

enableClickToDial() for Lightning Experience 28
enableClickToDial() for Salesforce Classic 89
error messages

for Lightning Experience 63

F

Force.com Canvas 24

G

get started 1

getAppViewlInfo() for Lightning Experience 29
getCallCenterSettings() for Lightning Experience 31
getCallCenterSettings() for Salesforce Classic 90
getDirectoryNumbers() for Salesforce Classic 91
getPagelnfo() for Salesforce Classic 67
getSoftphonelayout() for Lightning Experience 33
getSoftphonelayout() for Salesforce Classic 93

103

M

Methods

Lightning Experience vs Salesforce Classic

method comparison 3

application interaction 66

computer-telephony integration (CTI) 88
disableClickToDial() for Lightning Experience 27
disableClickToDial() for Salesforce Classic 88
enableClickToDial() for Lightning Experience 28
enableClickToDial() for Salesforce Classic 89

error messages for Lightning Experience 63

for Lightning Experience 26

for Salesforce Classic 66

getAppViewlInfo() for Lightning Experience 29
getCallCenterSettings() for Lightning Experience 31
getCallCenterSettings() for Salesforce Classic 90
getDirectoryNumbers() for Salesforce Classic 91
getPagelnfo() for Salesforce Classic 67
getSoftphonelayout() for Lightning Experience 33
getSoftphonelayout() for Salesforce Classic 93
isinConsole() for Salesforce Classic 68
isSoftphoneVisible() for Lightning Experience 36
isVisible()for Salesforce Classic 70
notifyInitializationComplete() for Salesforce Classic 71
onClickToDial() for Lightning Experience 37
onClickToDial() for Salesforce Classic 96

onFocus() for Salesforce Classic 71
onNavigationChange() for Lightning Experience 38
onObjectUpdate for Salesforce Classic 73
refreshObject() for Salesforce Classic 74
refreshPage() for Salesforce Classic 75
refreshRelatedList() for Salesforce Classic 76
refreshView() for Lightning Experience 40
reloadFrame() for Salesforce Classic 78

runApex() for Lightning Experience 41

runApex() for Salesforce Classic 78

Index

Methods (continued)

N

Salesforce interaction 66

saveLog() for Lightning Experience 44

savelog() for Salesforce Classic 80

screenPop() for Lightning Experience 46

screenPop() for Salesforce Classic 81
searchAndGetScreenPopUrl() for Salesforce Classic 83
searchAndScreenPop() for Lightning Experience 48
searchAndScreenPop()for Salesforce Classic 84
setSoftphoneHeight() for Salesforce Classic 97
setSoftphoneltemlicon() for Lightning Experience 52
setSoftphoneltemLabel() for Lightning Experience 54
setSoftphonePanelHeight() for Lightning Experience 56
setSoftphonePanellcon() for Lightning Experience 57
setSoftphonePanellabel() for Lightning Experience 59
setSoftphonePanelWidth() for Lightning Experience 62
setSoftphoneVisibility() for Lightning Experience 61
setSoftphoneWidth() for Salesforce Classic 98
setVisible() for Salesforce Classic 86

notifyInitializationComplete() for Salesforce Classic 71

O

OAuth 24

onClickToDial() for Lightning Experience 37
onClickToDial() for Salesforce Classic 96

onFocus() for Salesforce Classic 71
onNavigationChange() for Lightning Experience 38
onObjectUpdatefor Salesforce Classic 73

Open CTI

Demo adapter 18
Using 16

Other resources 101

R

refreshObject() for Salesforce Classic 74
refreshPage() for Salesforce Classic 75
refreshRelatedList() for Salesforce Classic 76
refreshView() for Lightning Experience 40
reloadFrame() for Salesforce Classic 78

Resources for developers 101
runApex() for Lightning Experience 41
runApex() for Salesforce Classic 78

S

Salesforce Classic vs Lightning Experience

method comparison 3
Salesforce Console Integration Toolkit 6
Salesforce Voice 5
Sample HTML page 18
savelog() for Lightning Experience 44
saveLog() for Salesforce Classic 80
screenPop() for Lightning Experience 46
screenPop() for Salesforce Classic 81
searchAndGetScreenPopUrl() for Salesforce Classic 83
searchAndScreenPop() for Lightning Experience 48
searchAndScreenPop()for Salesforce Classic 84
setSoftphoneHeight() for Salesforce Classic 97
setSoftphoneltemlcon() for Lightning Experience 52
setSoftphoneltemLabel() for Lightning Experience 54
setSoftphonePanelHeight() for Lightning Experience 56
setSoftphonePanellcon() for Lightning Experience 57
setSoftphonePanellLabel() for Lightning Experience 59
setSoftphonePanelWidth() for Lightning Experience 62
setSoftphoneVisibility() for Lightning Experience 61
setSoftphoneWidth() for Salesforce Classic 98
setVisible() for Salesforce Classic 86
SOAP APl 6
Softphone 18
Support policy 6
supported browsers 1

T

Typographical conventions 101

V

Visualforce 6

W

Working with Open CTI 16

104

	Get Started with Open CTI
	Why Your UI Matters
	Open CTI Method Parity
	Other Voice Solutions
	Customize Functionality
	Open CTI Support Policy
	Backward Compatibility
	API Support

	Call Center Definition Files
	Call Center Definition File Format
	Required Elements and Attributes
	Optional Elements and Attributes
	Specify Values for <item> Elements
	Sample Call Center Definition File

	Working with Open CTI
	Connect to Open CTI
	Demo Adapter
	Asynchronous Calls
	Sample HTML Page
	Work with Force.com Canvas
	Best Practices

	Methods for Lightning Experience
	disableClickToDial() for Lightning Experience
	enableClickToDial() for Lightning Experience
	getAppViewInfo() for Lightning Experience
	getCallCenterSettings() for Lightning Experience
	getSoftphoneLayout() for Lightning Experience
	isSoftphonePanelVisible() for Lightning Experience
	onClickToDial() for Lightning Experience
	onNavigationChange() for Lightning Experience
	refreshView() for Lightning Experience
	runApex() for Lightning Experience
	saveLog() for Lightning Experience
	screenPop() for Lightning Experience
	searchAndScreenPop() for Lightning Experience
	setSoftphoneItemIcon() for Lightning Experience
	setSoftphoneItemLabel() for Lightning Experience
	setSoftphonePanelHeight() for Lightning Experience
	setSoftphonePanelIcon() for Lightning Experience
	setSoftphonePanelLabel() for Lightning Experience
	setSoftphonePanelVisibility() for Lightning Experience
	setSoftphonePanelWidth() for Lightning Experience
	Common Error Messages for Lightning Experience Methods

	Methods for Salesforce Classic
	Methods for Salesforce Application Interaction
	getPageInfo() for Salesforce Classic
	isInConsole() for Salesforce Classic
	isVisible() for Salesforce Classic
	notifyInitializationComplete() for Salesforce Classic
	onFocus() for Salesforce Classic
	onObjectUpdate() for Salesforce Classic
	refreshObject() for Salesforce Classic
	refreshPage() for Salesforce Classic
	refreshRelatedList() for Salesforce Classic
	reloadFrame() for Salesforce Classic
	runApex() for Salesforce Classic
	saveLog() for Salesforce Classic
	screenPop() for Salesforce Classic
	searchAndGetScreenPopUrl() for Salesforce Classic
	searchAndScreenPop() for Salesforce Classic
	setVisible() for Salesforce Classic

	Methods for Computer-Telephony Integration (CTI)
	disableClickToDial() for Salesforce Classic
	enableClickToDial() for Salesforce Classic
	getCallCenterSettings() for Salesforce Classic
	getDirectoryNumbers() for Salesforce Classic
	getSoftphoneLayout() for Salesforce Classic
	onClickToDial() for Salesforce Classic
	setSoftphoneHeight() for Salesforce Classic
	setSoftphoneWidth() for Salesforce Classic

	Other Resources
	Open CTI Typographical Conventions

	Index

