
Wave Analytics SAQL Reference
Salesforce, Summer ’16

 @salesforcedocs
Last updated: July 12, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

SAQL OVERVIEW . 1

ENABLE SAQL LOGS IN THE BROWSER . 2

SAQL BASIC ELEMENTS . 3
Statements . 3
Keywords . 3
Identifiers . 4
Number Literals . 4
String Literals . 4
Boolean Literals . 5
Quoted String Escape Sequences . 5
Special Characters . 5
Comments . 6
Nulls . 6

SAQL OPERATORS . 8
Arithmetic Operators . 8
Comparison Operators . 8
String Operators . 9
Logical Operators . 9
case . 10
Null Operators . 14

SAQL STATEMENTS . 16
load . 16
filter . 16
foreach . 17
group and cogroup . 18
union . 21
order . 21
limit . 22
offset . 23

SAQL FUNCTIONS . 24
Aggregate Functions . 24
Date Functions . 27
String Functions . 32
Math Functions . 34

Windowing Functions . 37
coalesce() . 43

Contents

SAQL OVERVIEW

Use SAQL (Salesforce Analytics Query Language) to access data in Wave Analytics datasets. Wave Analytics uses SAQL behind the scenes
in lenses, dashboards, and explorer to gather data for visualizations.

Developers can write SAQL to directly access Wave Analytics data via:

• Wave REST API

Build your own app to access and analyze Wave Analytics data or integrate data with existing apps.

• Dashboard JSON

Create advanced dashboards. A dashboard is a curated set of charts, metrics, and tables.

SEE ALSO:

Wave REST API Developer's Guide

Wave Analytics Dashboard JSON Reference

1

https://developer.salesforce.com/docs/atlas.en-us.202.0.bi_dev_guide_rest.meta/bi_dev_guide_rest/
https://developer.salesforce.com/docs/atlas.en-us.202.0.bi_dev_guide_json.meta/bi_dev_guide_json/

ENABLE SAQL LOGS IN THE BROWSER

If you’re using Google Chrome to work with SAQL and Salesforce Wave Analytics, you can turn on SAQL logs.

Turning on SAQL logs in the browser prints queries in the Developer Tools Console. It doesn’t change server-side logs.

1. In Google Chrome, open Developer Tools.

2. Select Console.

3. Select the explore (wave.apexp) frame.

4. Enter edge.log.enabled = true.

5. Enter edge.log.query = true.

2

SAQL BASIC ELEMENTS

Statements

A SAQL query loads an input dataset, operates on it, and outputs a results dataset. A query is made up of statements. Each SAQL statement
has an input stream, an operation, and an output stream.

A statement is made up of keywords (such as filter, group, and order), identifiers, literals, and special characters. Statements
can span multiple lines and must end with a semicolon.

Assign each query line to an identifier called a stream. The only exception to this rule is the last line in a query, which you don’t need to
assign explicitly.

The output stream is on the left side of the = operator and the input stream is on the right side of the = operator.

Example: Each of the lines in this SAQL query is a SAQL statement:

q = load "0Fcc00000004DI1CAM/0Fd500000004F4sCAE";
q = group q by all;
q = foreach q generate count() as 'count', unique('OL.Helpful') as 'unique_OL.Helpful';
limit q 2000;

SAQL is compositional—you can chain statements together to operate on data sequentially. The order of SAQL statements is enforced
according to how the operations in the statements change the results of a query.

The statement order rules:

• The order of filter and order can be swapped because it doesn't change the results.

• offset must be after filter and order

• offset must be before limit

• There can be no more than 1 offset statement after a foreach statement.

Tip: SAQL is influenced by the Pig Latin programming language, but their implementations differ and they aren’t compatible.

SEE ALSO:

filter

foreach

limit

offset

order

Keywords

Keywords are case-sensitive and must be lowercase.

3

Identifiers

SAQL identifiers are case-sensitive. They can be enclosed in single quotation marks (') or no quotation marks.

Quoted identifiers can contain any character that a string can contain.

Unquoted identifiers can’t be a reserved words and must start with a letter (A to Z or a to z) or an underscore. Subsequent characters
can be letters, numbers, or underscores. Unquoted identifiers can’t contain spaces.

This example uses valid syntax:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
opps = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
c = group accounts by 'Year', opps by 'Year';
d = foreach c generate opps.Year as 'Year';
e = filter d by Year == "2002";

In the following example, the code in bold throws an error:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
opps = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
c = group accounts by "Year", opps by "Year";
d = foreach c generate opps.Year as 'Year';
e = filter d by Year == "2002";

Note: A set of characters in double quotes is treated as a string rather than as an identifier.

Number Literals

A number literal represents a number in your script.

Some examples of number literals are 16 and 3.14159. You can’t explicitly assign a type (for example, integer or floating point) to a
number literal. Scientific E notation isn’t supported.

The responses to queries are in JSON. Therefore, the returned numeric field is a “number” class.

String Literals

A string is a set of characters inside double quotes (").

Example: "This is a string."

This example uses valid syntax:

accounts = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
opps = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
c = group accounts by 'Year', opps by 'Year';
d = foreach c generate opps.Year as 'Year';
e = filter d by Year == "2002";

Note: Identifiers are either unquoted or enclosed in single quotation marks.

4

IdentifiersSAQL Basic Elements

Boolean Literals

A boolean literal represents true or false (yes or no) in your script.

Boolean literals true and false are supported in SAQL.

Quoted String Escape Sequences

Strings can be escaped with the backslash character.

You can use the following string escape sequences:

MeaningSequence

New line\n

Carriage return\r

Tab\t

One single-quote character\'

One double-quote character\"

One backslash character\\

Special Characters

Certain characters have special meanings in SAQL.

DescriptionNameCharacter

Used to terminate statements.Semicolon;

Used to quote identifiers.Single quote'

Used to quote strings.Double quote"

Used for function calls, to enforce precedence, for order clauses, and to group
expressions. Parentheses are mandatory when you’re defining more than one group or
order field.

Parentheses()

Used to denote arrays. For example, this is an array of strings:Brackets[]

["this", "is", "a", "string", "array"]

Also used for referencing a particular member of an object. For example,
em['miles'], which is the same as em.miles.

Used for referencing a particular member of an object. For example, em.miles, which
is the same as em['miles'].

Period.

5

Boolean LiteralsSAQL Basic Elements

DescriptionNameCharacter

Used to explicitly specify the dataset that a measure or dimension belongs to, by placing
it between a dataset name and a column name. Using two colons is the same as using
a period (.) between names. For example:

Two colons::

data = foreach data generate left::airline as airline

Used to separate a range of values. For example:Two periods..

c = filter b by "the_date" in
["2011-01-01".."2011-01-31"];

Comments

Two sequential hyphens (--) indicate the beginning of a single-line comment in SAQL.

You can put a comment on its own line:

--Load a data stream.
a = load "myData";

You can put a comment at the end of a line:

a = load "myData"; --Load a data stream.

You can comment out a SAQL statement:

--The following line is commented out:
--a = load "myData";

Nulls

In most contexts, SAQL allows the use of null anywhere a constant string or number would appear.

You can specify a null constant almost anywhere a constant string or number can appear in SAQL, with the following exceptions and
clarifications.

Typing

null is not typed. It is inferred from context. For example, null + 4 is a number. A SAQL syntax error will be generated when a type
cannot be infered.

Filters

When a filter expression evaluates to null, the row is filtered out.

• Lists

foo in [null, "bar"] is handled like foo == null or foo == "bar".

• Ranges

filter q by dim in [null.."myvalue"] is handled as (dim>=null and dim<=7)

Unsupported

6

CommentsSAQL Basic Elements

null is not supported in the following contexts:

• Offset

• Limit

• dateRelative

• dateRange

• Windowing range

• Trim (second argument)

7

NullsSAQL Basic Elements

SAQL OPERATORS

Arithmetic Operators

Use arithmetic operators to perform addition, subtraction, multiplication, division, and modulo operations.

DescriptionOperator

Plus+

Minus-

Multiplication*

Division/

Modulo%

Comparison Operators

Use comparison operators to compare values.

Comparisons are defined for values of the same type only. For example, strings can be compared with strings and numbers compared
with numbers.

DescriptionNameOperator

True if the operands are equal. String comparisons that use the equals operator are
case-sensitive.

Equals==

True if the operands aren’t equal.Not equals!=

True if the left operand is less than the right operand.Less than<

True if the left operand is less than or equal to the right operand.Less or equal<=

True if the left operand is greater than the right operand.Greater than>

True if the left operand is greater than or equal to the right operand.Greater or equal>=

True if the left operand contains the string on the right. Wildcards and regular
expressions aren’t supported. This operator is not case-sensitive.

For example, the following query matches airport codes such as LAX, LAS, ALA, and
BLA:

my_matches = filter a by origin matches "LA";

Matchesmatches

8

DescriptionNameOperator

If the left operand is a dimension, true if the left operand has one or more of the
values in the array on the right. For example:

a1 = filter a by origin in ["ORD", "LAX", "LGA"];

Inin

If the left operand is a measure, true if the left operand is in the array on the right.
You can use the date() function to filter by date ranges.

If the array is empty, everything is filtered and the results are empty.

Ranges that are out of order (for example, in ["20 years ago" ..
"2016-01-11"] or in ["Z" .. "A"]), evaluate to false.

True if the left operand isn’t equal to any of the values in an array on the right. The
results include rows for which the origin key doesn’t exist. For example:

a1 = filter a by origin not in ["ORD", "LAX", "LGA"];

Not innot in

Example: Given a row for a flight with the origin “SFO” and the destination “LAX” and weather of “rain” and “snow,” here are the
results for each type of "in" operator:

weather in ["rain", "wind"] = true

weather not in ["rain", "wind"] = false

SEE ALSO:

filter

String Operators

To concatenate strings, use the plus sign (+).

DescriptionOperator

Concatenate+

Example: To combine the year, month, and day into a value that’s called CreatedDate:

q = foreach q generate Id as Id, Year + "-" + Month + "-" + Day as CreatedDate;

Logical Operators

Use logical operators to perform AND, OR, and NOT operations.

Logical operators can return true, false, or null.

9

String OperatorsSAQL Operators

DescriptionNameOperator

See table.Logical AND&& (and)

See table.Logical OR|| (or)

See table.Logical NOT! (not)

The following tables show how nulls are handled in logical operations.

x || yx && yyx

TrueTrueTrueTrue

TrueFalseFalseTrue

TrueNullNullTrue

TrueFalseTrueFalse

FalseFalseFalseFalse

NullFalseNullFalse

TrueNullTrueNull

NullFalseFalseNull

NullNullNullNull

!xx

FalseTrue

TrueFalse

NullNull

case

Use the SAQL case operator within a foreach statement to create logic that chooses between conditions. The case operator
supports two syntax forms: searched case expression and simple case expression.

Syntax—Searched Case Expression
case

when search_condition then result_expr
[when search_condition2 then result_expr2 …]
[else default_expr]

end

10

caseSAQL Operators

case...end
The case and end keywords begin and close the expression.

when...then
The when and then keywords define a conditional statement. A case expression can contain one or more conditional statement.

• search_condition—Any logical expression that can be evaluated to true or false. This expression may be constructed
using any values, identifiers, logical operator, comparison operator, or scalar functions (including date and math functions)
supported by SAQL. Examples of valid search_condition syntax:

– xInt < 5

– price > 1000 and price <= 2000

– units*round(price_per_unit) < abs(revenue)

• result_expr—Any expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar functions
(including date and math functions). The expression may evaluate to any data type. However, this data type must be consistent
among all conditional expressions. That is, if result_expr is of NUMERIC type, then result_expr2 … result_exprN
must be of NUMERIC type. Examples of valid result_expr syntax:

– xInt

– toString('orderDate', "dd/MM/yyyy")

– "abc"

else
(Optional)—Allows a default expression to be specified. The else statement must follow the conditional when/then statement.
There can be only one else statement.

• default_expr—Any expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The data type must be consistent with the data type of result_expr specified
in the preceding conditional statements.

Usage—Searched Case Expression
Conditional statements are evaluated on a row by row basis in the order in which they are given. If a search_condition evaluates
as true, the corresponding result_expr is returned for that row. Therefore, if more than one of the conditional statements returns
true, only the first one is evaluated. At least one when/then statement must be provided. An unlimited number of when/then
statements may be provided.

A default_expr may be set with the optional else statement. If none of the search_condition expressions evaluate to
true, the default_expr expression is returned. If no else statement is specified, null is returned as the default.

Syntax—Simple Case Expression
case primary_expr

when test_expr then result_expr
[when test_expr2 then result_expr2 …]
[else default_expr]

end

case...end
The case and end keywords begin and close the expression.

11

caseSAQL Operators

• primary_expr—Any scalar expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The expression may evaluate to any comparable data type (NUMERIC, STRING,
or DATE). Examples of valid primary_expr syntax:

– xInt % 3

– date('year', 'month', 'day')

– "abc"

Note: A scalar expression takes single values as input and outputs single values. When used with case, the input values can
be any expression that is valid in the context of a foreach statement.

when...then
The when and then keywords define a conditional statement. A case expression can contain one or more conditional statements.

• test_expr—Any scalar expression that can be evaluated by the SAQL engine. This expression may be constructed using
any values, identifiers, and scalar functions (including date and math functions), but must evaluate to the same data type as the
primary_expr. Examples of valid test_expr syntax:

– 5

– "abc"

– abs(profit)

• result_expr—Any scalar expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The expression may evaluate to any data type. However, this data type must be
consistent among all conditional statements. That is, if result_expr is of NUMERIC type, then
result_expr2...result_exprN must be of NUMERIC type. Examples of result_expr syntax:

– xInt

– toString('orderDate', "dd/MM/yyyy")

– "abc"

else
(Optional) The else keyword allows a default expression to be specified. The else statement must follow conditional when/then
statements. There can be only one else statement.

• default_expr—Any scalar expression that can be evaluated by the SAQL engine. May contain values, identifiers, and scalar
functions (including date and math functions). The data type must be consistent with the data type of result_expr specified
in the preceding conditional statements.

Usage—Simple Case Expression
Conditional statements are evaluated on a row by row basis in the order that they are given. If primary_expr == test_expr
for a given conditional statement, the corresponding result_expr is returned for that row. At least one when/then statement
must be provided. An unlimited number of when/then statements may be provided.

A default_expr may be set with the optional else statement. If primary_expr doesn’t equal any of the test_expr
conditions, the default_expr is returned. If no else statement is specified, null is returned as the default.

12

caseSAQL Operators

Tip: This simple case expression syntax is shorthand for a common instance of the searched case expression syntax. The first block
of code is simple case expression syntax and the second block of code is searched case expression syntax. Both blocks of code
have the same meaning.

case primary_expr
when test_expr then result_expr
when test_expr2 then result_expr2

else default_expr

case
when primary_expr == test_expr then result_expr
when primary_expr2 == test_expr2 then result_expr2

else default_expr

Using case Statements
Use case expressions in foreach clauses. Don’t use case expressions in order by, group by, or filter by clauses.

Example: This example query uses the simple case expression syntax:

q = load "data";
q = foreach q generate xInt, (case xInt % 3

when 0 then "3n"
when 1 then "3n+1"
else "3n+2"

end) as modThree;

Example: This example query uses the searched case expression syntax:

q = load "data";
q = foreach q generate price, (case

when price < 1000 then "category1"
when price >= 1000 and price < 2000 then "category2"
else "category3"

end) as priceLevel;

Handling Null Values
In general, null values can’t be compared. When search_condition, primary_expr, or test_expr evaluates to null,
the default_expr specified by else (or null if no else clause is provided) is returned. For instance, the following query
returns "Other" whenever Mea1 evaluates to null:

q = load "data";
q = foreach q generate Mea1, (case Mea1

when 0 then "Type1"
when 1 then "Type2"
else "Other"

end) as Category;

13

caseSAQL Operators

However, it is possible to specifically a condition on a null value by using the is null and is not null operations.

q = load “data”;
q = foreach q generate Mea1, (case

when Mea1 is null then "Is Null"
else "Is Not Null"

end) as Category;

Best Practices for Working with Dates
Before you use date values in case expressions, use the SAQL toDate() function to convert the date values from strings or Unix
epoch seconds. Doing do ensures the most consistent comparisons.

Example:

q = load "data/dates";
q = foreach q generate OrderDate, (case

when toDate(OrderDate_epoch_secs) < toDate("2/1/2015", "M/d/yyyy") and
toDate(OrderDate_epoch_secs) >= toDate("1/1/2015", "M/d/yyyy") then "Jan"

else "Other"
end) as Month;

SEE ALSO:

foreach

Null Operators

Use null operators to test whether a value is null.

Null operators can return true or false.

DescriptionNameOperator

True when the value is null.is nullis null

True when the value is not null.is not nullis not null

Note: is null and is not null can be used in projections, and in post-projection filters.

These are valid examples:

a = load "dataset";
b = foreach a generate Name as Name, Year as Year;
c = filter b by Year is not null;

q = load "dataset";
q = foreach q generate (case when Name is null then "john doe" else Name end) as Name;

14

Null OperatorsSAQL Operators

This is not a valid example:

a = load "dataset";
a = filter a by Year is not null;
a = foreach a generate Name as Name, Year as Year;

15

Null OperatorsSAQL Operators

SAQL STATEMENTS

load

Loads a dataset. All SAQL queries start with a load statement.

Syntax
result = load dataset;

If you’re working in Dashboard JSON, dataset can be either the containerId/versionId or the dataset name from the UI. It’s a good
idea to use the dataset name (also called an alias) because the app substitutes it with the correct version of the dataset.

If you’re working in Wave REST API, dataset must be the containerId/versionId.

Usage
After being loaded, the data is in ungrouped form. The columns are the columns of the loaded dataset.

Example: The following example loads the dataset with ContainerID “0Fbxx000000002qCAA” and VersionID
“0Fcxx000000002WCAQ” to a stream named “b”: b = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

Example: The following example loads the dataset with the name “Accounts” to a stream named “b”: b = load
"Accounts";

filter

Selects rows from a dataset based on a filter condition called a predicate.

Syntax
result = filter rows by predicate;

Usage
A predicate is a Boolean expression that uses comparison operators. The predicate is evaluated for every row. If the predicate is true,
the row is included in the result. Comparisons on dimensions are lexicographic, and comparisons on measures are numerical.

When a filter is applied to grouped data, the filter is applied to the rows in the group. If all member rows are filtered out, groups are
eliminated. You can run a filter statement before or after group to filter out members of the groups.

Example: The following example returns only rows where the origin is ORD, LAX, or LGA: a1 = filter a by origin
in ["ORD", "LAX", "LGA"];

16

Example: The following example returns only rows where the destination is LAX or the number of miles is greater than 1,500:
y = filter x by dest == "LAX" || miles > 1500;

Example: When in operates on an empty array in a filter operation, everything is filtered and the results are empty. The
second statement filters everything and returns empty results:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = filter a by Year in [];
c = group a by ('Year', 'Name');
d = foreach c generate 'Name' as 'group::AName', 'Year' as 'group::Year',
sum(accounts::Revenue) as 'sRev';

SEE ALSO:

Comparison Operators

Statements

foreach

Applies a set of expressions to every row in a dataset. This action is often referred to as projection.

Syntax
q = foreach q generate expression as alias[, expression as alias ...];

The output column names are specified with the as keyword. The output data is ungrouped.

Using foreach with Ungrouped Data
When used with ungrouped data, the foreach statement maps the input rows to output rows. The number of rows remains the
same.

Example: a2 = foreach a1 generate carrier as carrier, miles as miles;

Using foreach with Grouped Data
When used with grouped data, the foreach statement behaves differently than it does with ungrouped data.

Fields can be directly accessed only when the value is the same for all group members. For example, the fields that were used as the
grouping keys have the same value for all group members. Otherwise, use aggregate functions to access the members of a group. The
type of the column determines which aggregate functions you can use. For example, if the column type is numeric, you can use the
sum() function.

Example: z = foreach y generate day as day, unique(origin) as uorg, count() as n;

Using foreach with a case Expression
To create logic in a foreach statement that chooses between conditional statements, use a case expression.

17

foreachSAQL Statements

Example: This example query uses the simple case expression syntax:

q = load "data";
q = foreach q generate xInt, (case xInt % 3

when 0 then "3n"
when 1 then "3n+1"
else "3n+2"

end) as modThree;

Example: This example query uses the searched case expression syntax:

q = load "data";
q = foreach q generate price, (case

when price < 1000 then "category1"
when price >= 1000 and price < 2000 then "category2"
else "category3"

end) as priceLevel;

Use Unique Names
Using a name multiple times in a projection throws an error.

For example, the last line in this query is invalid and throws an error:

l = load "0Fabb000000002qCAA/0Fabb000000002WCAQ";
r = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
l = foreach l generate 'value'/'divisor' as 'value' , category as category;
r = foreach r generate 'value'/'divisor' as 'value' , category as category;
cg = cogroup l by category right, r by category;
cg = foreach cg generate r.category as 'category', sum(r.value) as sumrval, sum(l.value)
as sumrval;

SEE ALSO:

Statements

Aggregate Functions

case

group and cogroup

Groups matched records. The group and cogroup statements are interchangeable. However, cogroup is typically used to operate
on more than 1 input stream.

Syntax
result = group rows by field;
result = group rows by (field1, field2, ...);
result = group rows by expression[, rows by expression ...];
result = group rows by expression [left | right | full], rows by expression;

18

group and cogroupSAQL Statements

Simple Grouping
Adds one or more columns to a group. If data is grouped by a value that’s null in a row, that whole row is removed from the result.

Syntax:

result = group rows by field;

or

result = group rows by (field1, field2, ...);

Note: The order of the fields matters for limit queries, but not for top queries.

Group by 1 dimension:

a = group a by year;

Group by multiple dimensions:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = group a by (year, month);
a = foreach a generate year as year, month as month;

Inner Cogrouping
Cogrouping means that two input streams, called left and right are grouped independently and arranged side by side. Only data that
exists in both groups appears in the results.

Syntax:

result = cogroup rows by expression[, rows by expression ...];

This example is a simple cogroup operation on 2 datasets:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fbyy000000002qCAA/0Fcyy000000002WCAQ";
a = cogroup a by carrier, b by carrier;

You can cogroup more than 2 datasets:

result = cogroup a by keya, b by keyb, c by keyc;

This example performs a cogroup operation:

z = cogroup x by (day,origin), y by (day,airport);

You can’t have the same stream on both sides of a cogroup operation. To perform a cogroup operation on 1 dataset, load the
dataset twice so you have 2 streams.

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = cogroup a by ClosedDate, b by CreatedDate;
c = foreach b generate sum(a.Amount) as Amount;

You can also load 1 dataset and filter it into 2 different streams:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = filter a by "region" in ["West"];

19

group and cogroupSAQL Statements

a = filter a by "status" in ["closed"];
b = filter a by "year" in [2014];
c = filter a by "year" in [2015];
d = cogroup b by ("state"), c by ("state");
d = foreach d generate "state" as "state", sum(b.Amount) as "Amount_2014", sum(c.Amount)
as "Amount_2015";

This code throws an error because it performs a cogroup operation on a single stream, a:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = cogroup a by ClosedDate, a by CreatedDate;
c = foreach b generate sum(a.Amount) as Amount;

To use aggregate functions when cogrouping, specify which input side to use in the aggregate function. For example, if you have an a
side and a b side, and each contains a particular measure, use one of these syntaxes:

sum(inputSide['myMeasure'])
sum(inputSide::myMeasure)
sum(inputSide.myMeasure)

This query is valid because it uses the third syntax form to specify that miles comes from the a side.

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fbyy000000002qCAA/0Fcyy000000002WCAQ";
c = cogroup a by x, b by y;
d = foreach c generate a.x as x, a.y as y, sum(a.miles) as miles;

This query isn’t valid because miles doesn't specify which side it is coming from:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fbyy000000002qCAA/0Fcyy000000002WCAQ";
c = cogroup a by x, b by y;
d = foreach c generate a.x as x, a.y as y, sum(miles) as miles;

If a lens or dashboard has a cogroup query, specify the input stream for projections and for count() aggregations on cogroup
queries, as in this example:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fbyy000000002qCAA/0Fyy000000002WCAQ";
c = cogroup a by 'OwnerName', b by 'OwnerName';
c = foreach c generate a['OwnerName'] as 'OwnerName', sum(a['AmountConverted']) /

sum(b['Amount']) as 'sum_target_completed', count(a) as count;

Outer Cogrouping
Outer cogrouping combines groups as an outer join. For the half-matches, null rows are added. The grouping keys are taken from the
input that provides the value.

Syntax:

result = cogroup rows by expression [left | right | full], rows by expression;

Specify left, right, or full to indicate whether to perform a left outer join, a right outer join, or a full join.

Example: z = cogroup x by (day,origin) left, y by (day,airport);

20

group and cogroupSAQL Statements

You can apply an outer cogrouping across more than 2 sets of data. This example does a left outer join from a to b, with a right join to
c:

result = cogroup a by keya left, b by keyb right, c by keyc;

Note: Outer joins return null when there is no match, instead of defaulting to zero.

union

Combines multiple result sets into one result set.

Syntax
result = union resultSetA, resultSetB [, resultSetC ...];

order

Sorts in ascending or descending order on one or more fields.

Syntax
result = order rows by field [asc | desc];
result = order rows by (field [asc | desc], field [asc | desc]);

asc or desc specifies whether the results are ordered in ascending (asc) or descending (desc) order. The default order is ascending.

Usage
The order statement isn’t applied to the whole set. The order statement operates on rows individually.

You can use the order statement with ungrouped data. You can also use the order statement to specify order within a group or
to sort grouped data by an aggregated value.

Example: q = order q by 'count' desc;

Example: To order a stream by multiple fields, use this syntax:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = group a by (year, month);
c = foreach b generate year as year, month as month;
d = order c by (year desc, month desc);

Example: You can order a cogrouped stream before a foreach statement:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = load "0Fayy000000002qCAA/0Fbyy000000002WCAQ";
c = cogroup a by year, b by year;
c = order c by a.airlineName;
c = foreach c generate year as year;

21

unionSAQL Statements

Example: You can’t reference a preprojection ID in a postprojection order operation. (Projection is another term for a foreach
operation.) This code throws an error:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'FirstName' desc;

This code is valid:

q = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";

q = group q by 'FirstName';

q = foreach q generate 'FirstName' as 'User_FirstName', sum('mea_mm10M') as 'sum_mm10M';

q = order q by 'User_FirstName' desc;

SEE ALSO:

Statements

limit

Limits the number of results that are returned. If you don’t set a limit, queries return a maximum of 10,000 rows.

Syntax
result = limit rows number;

Usage
Use this statement only on data that has been ordered with the order statement. The results of a limit operation aren’t automatically
ordered, and their order can change each time that statement is called.

You can use the limit statement with ungrouped data.

You can use the limit statement to limit grouped data by an aggregated value. For example, to find the top 10 regions by revenue:
group by region, call sum(revenue) to aggregate the data, order by sum(revenue) in descending order, and limit the
number of results to the first 10.

Note: The limit statement isn’t a top() or sample() function.

Example: This example limits the number of returned results to 10:

b = limit a 10;

22

limitSAQL Statements

The expression can’t contain any columns from the input. For example, this query is not valid:

b = limit OrderDate 10;

SEE ALSO:

Statements

order

offset

Paginates values from query results.

Syntax
result = offset rows number;

Usage
Used to paginate values from query results. This statement requires that the data has been ordered with the order statement.

Example: This example loads a dataset, puts the rows in descending order, and returns rows 400 to 800:

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
b = foreach a generate 'carrier' as 'carrier', count() as 'count';
c = order b by 'count' desc;
d = limit c 400;
e = offset d 400;

SEE ALSO:

Statements

23

offsetSAQL Statements

SAQL FUNCTIONS

Aggregate Functions

Use aggregate functions to perform computations on values.

Using an aggregate function on an empty set returns null. For example, if you use an aggregate function with a nonmatching column
of an outer cogrouping, you might have an empty set.

Aggregation functions treat each line as its own group if not preceded by group by.

This table lists the aggregate functions that are supported:

DescriptionAggregate Function

Returns the average value of a numeric field.

For example, to calculate the average number of miles:

a1 = group a by (origin, dest);
a2 = foreach a1 generate origin as origin, dest as destination,
average(miles) as miles;

avg() or
average()

Returns the number of rows that match the query criteria.

For example, to calculate the number of carriers:

q = foreach q generate 'carrier' as 'carrier', count() as 'count';

count()

The count() function operates on streams that were inputs to the group or cogroup statements. It
doesn’t operate on the newly grouped stream or on an ungrouped stream.

a = load "0Fcyy000000002qCAA/0Fcyy000000002WCAQ";
a1 = group a by (Year);
q = foreach a1 generate count(a) as countYear, count() as count, Year
as year;
q = limit q 20;

You can’t pass a1 to the count() function because it’s a newly grouped stream.

Returns the value for the first tuple. To work as expected, you must be aware of the sort order or know that
the values of that measure are the same for all tuples in the set.

For example, you can use these statements to compute the distance between each combination of origin
and destination:

a1 = group a by (origin, dest);
a2 = foreach a1 generate origin as origin, dest as destination,
first(miles) as miles;

first()

24

DescriptionAggregate Function

Returns the value for the last tuple.

For example, to compute the distance between each combination of origin and destination:

a1 = group a by (origin, dest);
a2 = foreach a1 generate origin as origin, dest as destination,
last(miles) as miles;

last()

Returns the maximum value of a field.

This function takes only a measure as an argument. It can’t take a dimension.

max()

Accepts a grouped expression of numeric type and returns the middle number (by sorted order, ignoring
null values). If there is no one middle number (in other words, the count of non-null values is even), then
median returns the average of the two numbers closest to the middle.

The expression can be any identifier, such as ‘xInt’ or ‘price’, but cannot be a complex expression, such as
price/100 or ceil(distance), or a literal, such as 2.5.

q = load "data/airline";
q = group q by dest;

median()

q = foreach q generate dest, median(miles) as medMiles;
limit q 5;

If median is not preceded by a group by clause, it treats each individual row as its own group:

q = load "data/airline";
q = foreach q generate dest, median(miles) as medMiles;
limit q 5;

Returns the minimum value of a field.

This function takes only a measure as an argument. It can’t take a dimension.

min()

Returns the sum of a numeric field.

a = load "0Fbxx000000002qCAA/0Fcxx000000002WCAQ";
a = filter a by dest in ["ORD", "LAX", "ATL", "DFW", "PHX", "DEN", "LGA"];

sum()

a = group a by carrier;
b = foreach a generate carrier as airline, sum(miles) as miles;

Returns the count of unique values.

For example, to find how many origins and destinations a carrier flies from:

a1 = group a by carrier;
a2 = foreach a1 generate carrier as carrier, unique(origin) as origins,
unique(dest) as destinations;

unique()

Returns the sample standard deviation computed on the group.

Accepts a grouped expression of numeric type. If the number of non-null values in the group is equal to 1,
stddev return null. Otherwise, stddev returns the sample standard deviation computed on the group,
ignoring null values.

stddev()

25

Aggregate FunctionsSAQL Functions

DescriptionAggregate Function

The expression can be any numeric identifier, such as 'xInt' or 'price', but cannot be a complex expression,
such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
q = group q by dest;
q = foreach q generate dest, stddev(miles) as stddevMiles;
limit q 5;

Returns the population standard deviation computed on the group.

Accepts a grouped expression of numeric type and returns the population standard deviation computed on
the group, ignoring null values. The expression can be any numeric identifier, such as 'xInt' or 'price', but
cannot be a complex expression, such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
q = group q by dest;

stddevp()

q = foreach q generate dest, stddevp(miles) as stddevMiles;
limit q 5;

Returns the sample variance (also called the unbiased variance) computed on the group.

Accepts a grouped expression of numeric type. If the number of non-null values in the group is equal to 1,
var return null. Otherwise, var returns the sample variance computed on the group, ignoring null values.

var()

The expression can be any numeric identifier, such as 'xInt' or 'price', but cannot be a complex expression,
such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
q = group q by dest;
q = foreach q generate dest, var(miles) as varMiles;
limit q 5;

Returns the population variance (also called the biased variance) computed on the group.

Accepts a grouped expression of numeric type and returns the population variance computed on the group,
ignoring null values. The expression can be any numeric identifier, such as 'xInt' or 'price', but cannot be a
complex expression, such as price/100 or ceil(price), or a literal, such as 2.5.

q = load "data/airline";
q = group q by dest;

varp()

q = foreach q generate dest, varp(miles) as varMiles;
limit q 5;

Computes a specific percentile for sorted values in an entire rowset or within distinct partitions of a rowset.
The full syntax is:

percentile_disc(p as numeric) within group (order by expr [asc | desc])

percentile_disc()

The percentile_disc function accepts a grouped expression expr of numeric type and sorts it in
the specified order (asc or desc). If order is not specified, the default order is asc. It returns the value
behind which (100*p)% of values in the group would fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1, and is accurate to 8 decimal places of precision. expr
can be any identifier, such as 'xInt' or 'price', but cannot be a complex expression, such as price/100 or
ceil(distance), or a literal, such as 2.5.

26

Aggregate FunctionsSAQL Functions

DescriptionAggregate Function

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_disc will
return the next value from expr in the sort order.

For example, if Mea1 contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13] then:

percentile_disc(0.25) within group (order by Mea1 asc) = 4
percentile_disc(0.25) within group (order by Mea1 desc) = 9
percentile_disc(0) within group (order by Mea1 asc) = 0
percentile_disc(1) within group (order by Mea1 asc) = 13

Example query:

q = load "data/airline";
q = group q by dest;
q = foreach q generate dest, percentile_disc(0.25) within group (order
by miles desc) as perMiles;
limit q 5;

Calculates a percentile based on a continuous distribution of the column value. The full syntax is:

percentile_cont(p as numeric) within group (order by expr [asc | desc])

percentile_cont()

The percentile_cont function accepts a grouped expression expr of numeric type and sorts it in
the specified order (asc or desc). If the order is not specified, the default order is asc. It returns the value
behind which (100*p)% of values in the group would fall in the sorted order, ignoring null values.

p can be any real numeric value between 0 and 1. expr can be any identifier, such as 'xInt' or 'price', but
cannot be a complex expression, such as price/100 or ceil(distance), or a literal, such as 2.5.

If expr contains no value that falls exactly at the 100*p-th percentile mark, percentile_cont returns
a value linear interpolated from the two closest values in expr.

For example, if Mea1 contains the values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13] then:

percentile_cont(0.25) within group (order by Mea1 asc) = 3.25
percentile_cont(0.25) within group (order by Mea1 desc) = 9.75
percentile_cont(0) within group (order by Mea1 asc) = 0
percentile_cont(1) within group (order by Mea1 asc) = 13

Example query:

q = load "data/airline";
q = group q by dest;
q = foreach q generate dest, percentile_cont(0.25) within group (order
by miles) as perMiles;
limit q 5;

Date Functions

To specify dates in a SAQL query, use date functions and relative date keywords.

27

Date FunctionsSAQL Functions

Note: Relative dates are relative to UTC, not local time. Data returned for relative dates reflect dates based on UTC time, which
may be offset from your local time.

Functions
This table lists SAQL date functions:

DescriptionDate Function

Returns a date. Specify 3 dimensions of a date in the following order: year, month,
day. For example:

date('OrderDate_Year', 'OrderDate_Month',
'OrderDate_Day')

date(year, month, day)

Returns a fixed date range. The first parameter is an array that specifies the start
date in the range. The second parameter is an array that specifies the end of the
range. For example:

dateRange([1970, 1, 1], [1970, 1, 31])

dateRange(startArray_y_m_d,
endArray_y_m_d)

Returns the number of days between 2 dates as an integer.

The daysBetween() function can’t take dimensions as arguments directly.
Pass toDate() and now() functions as arguments.

q = foreach q generate daysBetween(toDate(OrderDate,
“yyyy-MM-dd”),
now()) as daysToShip;

q = foreach q generate daysBetween(toDate(OrderDate,
“yyyy-MM-dd”),
toDate(ShipDate, “yyyy-MM-dd”)) as daysToShip;

q = foreach q generate daysBetween(toDate(OrderDate_
Year + “:”

daysBetween(date1, date2)

+ OrderDate_Month + “:” + OrderDate_Day,
“yyyy:MM:dd”), toDate(ShipDate_Year + “:”

+ ShipDate_Month + “:” + ShipDate_Day, “yyyy:MM:dd”
)) as daysToShip;

Returns current datetime in UTC. This function is valid in a foreach statement
only.

q = foreach q generate now() as now;

now()

This function is commonly used in daysBetween() and toString()
functions.

28

Date FunctionsSAQL Functions

DescriptionDate Function

Converts a string to a date. If a formatString argument isn’t provided, the
function uses the format yyyy-MM-dd HH:mm:ss.

q = foreach q generate toDate(OrderDate);

q = foreach q generate toDate(OrderDate_Day + \"-\"
+ OrderDate_Month + \"-\" + OrderDate_Year,
\"dd-MM-yyyy\");

toDate(string [,formatString])

This function is often passed as an argument to daysBetween() or
toString().

Converts Unix epoch seconds to a date. If epoch_seconds is 0,
toDate(epoch_seconds) returns '1970-01-01 00:00:00'.

This function is convenient for adding or subtracting time periods to or from a
date. When adjusting dates for time zone differences, adding or subtracting the

toDate(epoch_seconds)

number of seconds in the time difference produces the correct local date. If the
time crosses the local meridian, a different date is produced.

For example, assuming Current_Date is the current date expressed as the
number of seconds since '1970-01-01 00:00:00', then the function
toDate(Current_Date - 8*3600) subtracts 8 hours. Refer to Working
with Time Zones for a practical example.

Converts a date to a string.

This function must take a toDate() or now() function as its first argument.

q = foreach q generate toString(now(), \"yyyy-MM-dd
HH:mm:ss\") as ds1;

toString(date, formatString)

Specify Fixed Date Ranges
To specify a range for fixed dates, use the dateRange() function. Specify the dates in the order: year, month, day.

Example:

a = filter a by date('year', 'month', 'day') in [dateRange([1970, 1, 1], [1970, 1,
11])];

Specify Relative Date Ranges
To specify a relative date range, use the in operator on an array with relative date keywords. Here are 4 examples:

a = filter a by date('year', 'month', 'day') in ["1 year ago".."current year"];
a = filter a by date('year', 'month', 'day') in ["2 quarters ago".."2 quarters ahead"];
a = filter a by date('year', 'month', 'day') in ["4 months ago".."1 year ahead"];
a = filter a by date('year', 'month', 'day') in ["2 fiscal_years ago".."current day"];

The relative date keywords are:

29

Date FunctionsSAQL Functions

• current day

• n day(s) ago

• n day(s) ahead

• current week

• n week(s) ago

• n week(s) ahead

• current month

• n month(s) ago

• n month(s) ahead

• current quarter

• n quarter(s) ago

• n quarter(s) ahead

• current fiscal_quarter

• n fiscal_quarter(s) ago

• n fiscal_quarter(s) ahead

• current year

• n year(s) ago

• n year(s) ahead

• current fiscal_year

• n fiscal_year(s) ago

• n fiscal_year(s) ahead

This table shows the time windows for some of the relative date keywords. In these time window examples, the current day is 2014/12/16
and FiscalMonthOffeset 1 (the fiscal year starts on February 1).

End DateStart DateRelative Date Keyword

2014/12/16 23:59:592014/12/16 00:00:00current day

2014/12/31 23:59:592014/10/1 00:00:00current quarter

2013/12/31 23:59:592013/1/1 00:00:001 year ago

2015/1/31 23:59:592015/1/1 00:00:001 month ahead

2015/1/31 23:59:592014/2/1 00:00:00current fiscal_year

2015/1/31 23:59:592014/11/1 00:00:00current fiscal_quarter

2015/7/31 23:59:592015/5/1 00:00:002 fiscal_quarters ahead

2013/12/16 23:59:592013/12/16 00:00:00current day - 1 year

2014/2/6 23:59:592014/2/6 00:00:00current fiscal_year + 5 days

Note: Only standard fiscal periods are supported. See “About Fiscal Years” in Salesforce Help.

30

Date FunctionsSAQL Functions

Add and Subtract Dates
You can add and subtract dates using the relative date keywords.

Example: Here are examples of time windows for relative date keywords using addition and subtraction. In these time window
examples, the current day is 2014/12/16 and FiscalMonthOffeset 1 (the fiscal year starts on February 1).

In this query, the start date is 2013-12-16 00:00:00 and the end date is open ended:

a= filter a by date('year', 'month', 'day') in ["current day - 1 year"..] ;

In this query, the start date is 2014-12-16 00:00:00 and the end date is 2017-3-31 23:59:59:

a= filter a by date('year', 'month', 'day') in ["current day".."2 years ahead + 3
months"];

Here’s how to determine the end date: the year is 2014, so 2 years ahead is 2016, which has a year end time of 2016-12-31 23:59:59.
When you add 3 months, the total end date is 2017-3-31 23:59:59.

In this query, the start date is 2014-2-6 00:00:00 and the end date is 2017-3-31 23:59:59:

a= filter a by date('year', 'month', 'day') in ["current fiscal_year + 5 days".."2
years ahead + 3 months"];

Use Open-Ended Relative Date Ranges
To build queries like “List all opportunities closed after 12/23/2014” and “Get a list of marketing campaigns from before 04/2/2015,” use
open-ended date ranges.

Example: This example shows an open-ended relative date range.

a = filter a by date('year','month','day') in [.."current month"];

Example: This example shows an open-ended fixed date range. The date format of OrderDate is yyyy-MM-dd.

q = filter q by OrderDate in [“2015-01-01”..];

Working with Time Zones
A practical use of the toDate() function is to calculate time zone changes for a Wave dashboard. This JSON code fragment uses a
computeExpression action in a transformation, which in turn uses a saqlExpression to call the toDate() function.
This technique enables a dashboard to show the most appropriate time and date, whether local or UTC.

"Extract_Opportunity": {
"action": "computeExpression",
"parameters": {
"source": "Digest_Opportunity",
"mergeWithSource": true,
"computedFields": [
{
"name": "CreatedDateNew",
"type": "Date",
"format": "MM/dd/yyyy",
"saqlExpression": "toDate(CreatedDate_sec_epoch - 8*3600)"

31

Date FunctionsSAQL Functions

}
]

}
},

The example takes an existing date CreatedDate_sec_epoch and subtracts 8 hours to create a new date CreateDateNew.
The table shows how the calculation changes the (formatted) CreatedDateNew dates. In each case, the time change has also
changed the date.

CreatedDateNewCreatedDate_sec_epoch

11/2/20152015-11-03T06:49:25.00OZ

8/18/20142014-08-19T06:42:33.00OZ

9/27/20142014-09-28T03:12:25.00OZ

Refer to the computeExpression topic for further information.

String Functions

To perform string operations in a SAQL query, use string functions.

While SAQL operators support strings, and the coalesce() function returns the first non-null item in a list including strings, the
following table lists SAQL functions specifically for manipulating strings.

Functions
This table lists the SAQL string functions:

DescriptionFunction

This function returns a substring starting at a specified position and, optionally, of the specified
length.

substr returns length characters of string, beginning at character position position.
If length is omitted, then length = len(string), so all characters are returned from

substr(string,position[,
length])

position to the end of the string. If any of the parameters are null, then the function returns
null.

The first character in string is at position 1. If position is negative then the position is
relative to the end of the string. So a position of -1 denotes the last character.

If length is negative, then the function returns null. If position > len (string) or
position < -len(string) or position = 0, then the empty string is returned.

substr("CRM", 1, 1) == "C"
substr("CRM", 1, 2) == "CR"
substr("CRM", -1, 1) == "M"
substr("CRM", -2, 2) == "RM"
substr("CRM", 4, 1) == ""

32

String FunctionsSAQL Functions

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_integrate_saql_transformation.htm#bi_integrate_saql_transformation&language=en_US

DescriptionFunction

This function returns the number of characters in the string.

len returns the length of string in characters. If string is null, then len(string) is
also null.

len(string)

Leading and trailing whitespace characters are included in the length returned.

len("starfox") == 7
len(" rocket ") == 8
len("�") == 1
len("") == 0

This function removes the left part of a string up to the specified characters, or removes leading
spaces.

ltrim returns the value of string with the initial characters removed up to the first character
not in chars.

ltrim(string,chars)

chars may contain multiple characters. If chars is omitted, leading space characters are
removed. If string or chars is null, then the result is null.

ltrim("__c__val__", "_") == "c__val__"
ltrim(string, " \t\r") == ltrim(string)
ltrim("aabcd", "ab") == "cd"

This function removes the right part of a string back to the specified characters, or removes trailing
spaces.

rtrim returns the value of string with the final characters removed back to the first character
not in chars.

rtrim(string,chars)

chars may contain multiple characters. If chars is omitted, trailing space characters are removed.
If string or chars is null, then the result is null.

rtrim("__c__val__", "_") == "__c__val"
rtrim(ltrim(string, " \t\r"), " \t\r") == trim(string, " \t\r")

This function removes the left and right part of a string up to the specified characters, or removes
leading and trailing spaces.

trim returns the value of string with the initial and final characters removed to the first
character not in chars.

trim(string,chars)

chars may contain multiple characters. If chars is omitted, leading and trailing space characters
are removed. If string or chars is null, then the result is null.

trim("__c__val__", "_") == "c__val"
trim("__c__val__", "_c") == "val"
trim(" c__val ") == "c__val"
trim(" c__val ") == ltrim(rtrim(" c__val "))
trim("aaaaaa", "a") == ""

33

String FunctionsSAQL Functions

DescriptionFunction

This function returns string with all characters in uppercase. If string is null, then the
result is null.

upper("go") == "GO"
upper ("große") == "GROßE"

upper(string)

Note: The behavior of the upper() and lower() functions—and the characters affected
by them—is determined by the default case mapping of the Unicode standard. The mapping
considers each Unicode character in isolation without regard for context or language-specific
rules. The example above does not reflect the German language handling of the ß character.
A natural-language conversion would produce GROSSE.

This function returns string with all characters in lowercase. If string is null, then the
result is null. Refer to the note for upper() concerning Unicode case mapping.

lower("JAVA") == "java"

lower(string)

Math Functions

To perform numeric operations in a SAQL query, use math functions.

You can use SAQL math functions in foreach statements and in the filter by clause after a foreach statement.

You can't use math functions in a group by clause or in an order by clause. You also can't use math functions in the filter
by clause before a foreach statement, but you can use them after the foreach statement.

Functions
This table lists the SAQL math functions:

DescriptionFunction

Returns the absolute number of n as a numeric value. n can be any real numeric value in the range
of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate abs(pct_change) as pct_magnitude;

abs(n)

These examples are invalid:

q = group q by abs(pct_change);
q = order q by abs(pct_change);

Returns the nearest integer of equal or greater value to n. n can be any real numeric value in the
range of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate ceil(miles) as distance;

ceil(n)

34

Math FunctionsSAQL Functions

DescriptionFunction

These examples are invalid:

q = group q by ceil(miles);
q = order q by ceil(miles);

Returns the nearest integer of equal or lesser value to n. n can be any real numeric value in the range
of -1e308 <= n <= 1e308.

This example is valid:

q = foreach q generate floor(miles) as distance;

floor(n)

These examples are invalid:

q = group q by floor(miles);
q = order q by floor(miles);

Returns the value of the numeric expression n truncated to m decimal places. m can be negative, in
which case the function returns n truncated to -m places to the left of the decimal point. If m is

trunc(n[, m])

omitted, it returns n truncated to the integer place. n can be any real numeric value in the range of
-1e308 <= n <= 1e308. m can be an integer value between -15 and 15 inclusive.

This example is valid:

q = foreach q generate trunc(Price, 2) as Price;

These examples are invalid:

q = group q by trunc(Price, 2);
q = order q by trunc(Price, 2);

Returns the value of n rounded to m decimal places. m can be negative, in which case the function
returns n rounded to -m places to the left of the decimal point. If m is omitted, it returns n rounded

round(n[, m])

to the nearest integer. For tie-breaking, it follows round half way from zero convention. n can be any
real numeric value in the range of -1e308 <= n <= 1e308. m can be an integer value between -15 and
15, inclusive.

This example is valid:

q = foreach q generate round(Price, 2) as Price;

These examples are invalid:

q = group q by round(Price, 2);
q = order q by round(Price, 2);

Returns the value of Euler's number e raised to the power of n, where e = 2.71828183… The smallest
value for n that will not result in 0 is 3e-324. n can be any real numeric value in the range of -1e308
<= n <= 700.

exp(n)

These examples are valid:

q = foreach q generate exp(value) as value;
q = filter q by exp(value) < 5;

35

Math FunctionsSAQL Functions

DescriptionFunction

These examples are invalid:

q = group q by exp(value);
q = order q by exp(value);

Returns the natural logarithm (base m) of a number n. The values m and n can be any positive,
non-zero numeric value in the range 0 < m, n <= 1e308 and m ≠ 1.

log(m, n)

The smallest number input allowed for m is >0, m!=1. The smallest number for m or n that will not
produce 0 is log(10, 0.3e-323).

These examples are valid:

q = foreach q generate log(10, Population) as Population;
q = filter q by log(10, Population) < 15;

These examples are invalid:

q = group q by log(10, Population);
q = order q by log(10, Population);

Returns m raised to the nth power. m, n can be any numeric value in the range of -1e308 <= m, n
<= 1e308. Returns null if m = 0 and n < 0.

power(m, n)

• If m = 0, n must be a non-negative value.

• If m < 0, n must be an integer value.

• The result of power(m, n) must be within the range expressed by a float64 number.

These examples are valid:

q = foreach q generate power(length, 2) as area, length;
q = filter q by power(length, 2) > 10;

These examples are invalid:

q = group q by power(length, 2);
q = order q by power(length, 2);

Returns the square root of a number n. The value n can be any non-negative numeric value in the
range of 0 <= n <= 1e308.

sqrt(n)

These examples are valid:

q = foreach q generate sqrt(value) as value;
q = filter q by sqrt(value) < 10;

These examples are invalid:

q = group q by sqrt(value);
q = order q by sqrt(value);

36

Math FunctionsSAQL Functions

Windowing Functions

Use SAQL windowing functionality to calculate common business cases such as percent of grand total, moving average, year and quarter
growth, and ranking.

SAQL now supports windowing, using a syntax inspired by SQL. Windowing functions allow you to calculate data for a single group
using aggregated data from adjacent groups. Windowing does not change the number of rows returned by the query. Windowing
aggregates across groups rather than within groups and accepts any valid numerical projection on which to aggregate.

Windowing with an aggregate function uses the following syntax:

<windowfunction>(<projection expression>) over (<row range> partition by <reset groups>
order by <order clause>) as <label>

When using ranking functions, use the following syntax:

<rankfunction> over([..] partition by <reset groups> order by <order clause>) as <label>

Where:

windowfunction
An aggregate function that supports windowing. Currently supported functions are avg, sum, min, max, count, median,
percentile_disc, and percentile_cont.

rankfunction
Returns a rank value for each row in a partition. The following ranking functions are supported: rank(), dense_rank(),
cume_dist() and row_number(). Refer to the Ranking Functions section for examples.

projection expression

The expression used to generate a projection from the values of specified columns.

row range

Row ranges are specified using the following syntax.

MeaningRange

From beginning to current row in the reset group.[.. 0]

From current row to the last row in the reset group.[0 ..]

From two rows prior to current row. Window covers 3 rows.[-2 .. 0]

From current row to 2 rows ahead of current row. Windows covers 3 rows.[0 .. 2]

One row prior to current row. Window includes a single row.[-1 .. -1]

From beginning of reset group to 2 rows prior to current row.[.. -2]

Aggregates the entire reset group.[..]

reset groups
The column(s) which reset windowing aggregation when their value(s) change. A reset group of all indicates no reset boundaries
for the window aggregation.

order clause
Specify column(s) by which to sort. This orders the rows before the window function gets evaluated.

37

Windowing FunctionsSAQL Functions

Note: The order clause is not allowed on expressions where the row range is [..] and the window function is sum, avg,
min, or max. For example, sum(sum(Sales)) over([..] partition by Year order by Quarter)
is invalid.

label
The output column name.

Notes
Grouped Queries

Windowing functionality is enabled only for grouped queries. The following is not valid:

a = load "dataset";
b = foreach a generate sum(sum(sales)) over([.. 0] partition by all order by all);

Multiple Resets and Multiple Orders

Multiple resets and multiple orders are valid. For example:

sum(sum(Sales)) over([-2 .. 0] partition by (OrderDate_Year, OrderDate_Quarter) order
by OrderDate_Year)

sum(sum(Sales)) over([-2 .. 0] partition by (Year, Quarter) order by (Year asc, sum(Sales)
desc))

Cogroups

Windowing functions can be used with cogroup queries. For example:

sum(sum(a[Sales])) over([-2 .. 0] partition by (a[Year], a[Quarter]) order by (a[Year]
asc, sum(a[Sales]) desc))

Note: Each Windowing function can be used with only 1 cogroup stream. The following is not valid:

a = load "dataset1";
b = load "dataset2";
c = group a by column1, b by column2;
d = foreach c generate sum(sum(a[sales])) over([.. 0] partition by b[column2] order
by all)

Refer to the Aggregate Functions topic for details on function usage.

Examples
Running Total (No Reset)

The following query calculates the running total of sum of sales every quarter, with "partition by all" denoting that the sum is not reset
by any column.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by all order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

38

Windowing FunctionsSAQL Functions

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

9000100012014

950050022014

18500900032014

21500300042014

2200050012015

2250050022015

2270020032015

2310040042015

Running Totals By Year

Running total resets on every year.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sum_amt, sum(sum(Sales)) over([.. 0] partition by OrderDate_Year order by (OrderDate_Year,
OrderDate_Quarter)) as r_sum;

r_sumsum_amtQuarterYear

1000100012013

3000200022013

6000300032013

8000200042013

1000100012014

150050022014

10500900032014

13500300042014

50050012015

10050022015

120020032015

39

Windowing FunctionsSAQL Functions

r_sumsum_amtQuarterYear

160040042015

Min Sales Trailing 3 Quarters (Moving Min)

Finds the moving minimum values in the window of last two rows to current row.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, min(sum(Sales)) over([-2 .. 0] partition by OrderDate_Year order by
(OrderDate_Year, OrderDate_Quarter)) as m_min;

m_minsumSalesQuarterYear

1000100012013

1000200022013

1000300032013

2000200042013

1000100012014

50050022014

500900032014

500300042014

4000400012015

50050022015

20020032015

20040042015

Percentage Total

This query calculates the percentage of the quarter’s sales for the year. Row range [..] calculates the subtotals of each year, which is used
in the formula to calculate the percentage.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, (sum(Sales) * 100) / sum(sum(Sales)) over([..] partition by OrderDate_Year)
as p_tot;

p_totsumSalesQuarterYear

12.5%100012013

25%200022013

40

Windowing FunctionsSAQL Functions

p_totsumSalesQuarterYear

37.5%300032013

25%200042013

7.41%100012014

3.70%50022014

66.67%900032014

22.22%300042014

31.25%50012015

31.25%50022015

12.50%20032015

25%40042015

Differences Along Year

This query calculates the growth of sales compared with the previous quarter, with [-1 .. -1] referring to the quarter before the quarter
on the row. The blank spaces in the result table represent null values.

q = load "dataset";
q = group q by (OrderDate_Year, OrderDate_Quarter);
q = foreach q generate OrderDate_Year as Year, OrderDate_Quarter as Quarter, sum(Sales)
as sumSales, sum(Sales) - sum(sum(Sales)) over([-1 .. -1] partition by OrderDate_Year order
by (OrderDate_Year, OrderDate_Quarter)) as diff;

diffsumSalesQuarterYear

100012013

1000200022013

1000300032013

-1000200042013

100012014

-50050022014

8500900032014

-6000300042014

50012015

050022015

-30020032015

20040042015

41

Windowing FunctionsSAQL Functions

Ranking Functions

rank()
Assigns rank based on order. Repeats rank when the value is the same, and skips as many on the next non-match.

dense_rank()
Same as rank() but doesn’t skip values on previous repetitions.

cume_dist()
Calculates the cumulative distribution (relative position) of the data in the reset group.

row_number()
Assigns a number incremented by 1 for every row in the reset group.

Examples

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;

The following table also shows result columns as if the dense_rank(), cume_dist() and row_number() functions were
substituted for rank() in the previous code.

row_numbercume_distdense_rankranksum_amtQuarterYear

10.2511100012013

20.7522200022013

30.7522200042013

4134300032013

10.251150022014

20.522100012014

30.7533300042014

4144900032014

10.51150012015

20.51150022015

30.752360042015

413470032015

This query shows the top 3 performing quarters in a year.

q = load "dataset";
q = group q by (Year, Quarter);
q = foreach q generate Year, Quarter, sum(Sales) as sum_amt, rank() over([..] partition
by Year order by sum(Sales)) as rank;
q = filter q by rank <= 3;

42

Windowing FunctionsSAQL Functions

ranksumSalesQuarterYear

1100012013

2200022013

2200042013

150022014

2100012014

3300042014

150012015

160022015

360042015

This query shows the 95th percentile.

q = load "Oppty_Products_Scored";
q = group q by (ProductName);
q = foreach q generate ProductName, sum(TotalPrice) as sum_Price, percentile_cont(0.95)
within group (order by 'TotalPrice') as 'sum_95Percentile';
q = limit q 5;

Refer to the Aggregate Functions topic for details on function usage.

coalesce()

Use the coalesce() function to get the first non-null value from a list of parameters.

coalesce(value1 , value2 , value3 , ...)

43

coalesce()SAQL Functions

For example, the following statements ensure that a non-null grouping value is used when doing a full outer join.

accounts = load "em/cogroup/accounts";
opps = load "em/cogroup/opportunities";
c = cogroup accounts by 'Year' full, opps by 'Year';
c = foreach c generate coalesce(accounts::'Year',opps::'Year') as 'Group';

You can also use the coalesce() function to replace nulls with a default value. For example, the following statements set the default
for division by zero to a non-null value.

q = load "dataset";
q = group q by 'Year';
q = foreach q generate 'Year', coalesce(sum(Amount)/sum(Quantity),0) as 'AvgPrice';

44

coalesce()SAQL Functions

	SAQL Overview
	Enable SAQL Logs in the Browser
	SAQL Basic Elements
	Statements
	Keywords
	Identifiers
	Number Literals
	String Literals
	Boolean Literals
	Quoted String Escape Sequences
	Special Characters
	Comments
	Nulls

	SAQL Operators
	Arithmetic Operators
	Comparison Operators
	String Operators
	Logical Operators
	case
	Null Operators

	SAQL Statements
	load
	filter
	foreach
	group and cogroup
	union
	order
	limit
	offset

	SAQL Functions
	Aggregate Functions
	Date Functions
	String Functions
	Math Functions
	Windowing Functions
	coalesce()

