
Wave Analytics Dashboard
JSON Guide

Salesforce, Summer ’16

 @salesforcedocs
Last updated: July 12, 2016

https://twitter.com/salesforcedocs

© Copyright 2000–2016 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

WAVE ANALYTICS DASHBOARD JSON OVERVIEW . 1

VIEW OR MODIFY A DASHBOARD JSON FILE . 2

DASHBOARD JSON FILE EXAMPLE . 3

GRIDLAYOUTSTYLE . 4

WIDGETSTYLE . 6

STEPS . 8
Static Steps . 10

WIDGETS . 13
Widget Parameters Property Reference . 14

QUERY . 37
Query Example . 41
Compare Table Example (Mobile) . 44

BINDINGS . 47
Selection Binding in a Static Step . 49
Bind a Static Filter and Group Selector to a Query . 53
Binding a Date Picker and Static Dates . 56
Binding Operations . 60

GRID LAYOUTS . 64
Grid Layouts Specification . 64
Grid Layouts Attribute Reference . 65

LAYOUTS . 71
Use a Mobile Layout for Your Dashboard . 73
Understanding Column, Row, and Cell Sizing in Mobile Layouts . 75
Layouts Specification . 76
Layouts Attribute Reference . 80

CHART TYPES FOR WIDGETS . 85
Combo Chart Type Example . 85
Choropleth (Map) Chart Type Example . 86

Funnel Chart Type Example . 88
Stacked Waterfall Chart Type Example . 90
Waterfall Chart Type Example . 92

Contents

WAVE ANALYTICS DASHBOARD JSON OVERVIEW

Create advanced dashboards in Wave Analytics by modifying the JSON that defines a dashboard. The easiest way to design dashboards
is to use the designer. However, you can further customize dashboards by editing their JSON files.

Modify a dashboard’s JSON file for tasks such as:

• Specify a SAQL query.

• Populate a selector with a specified list of values instead of from a query.

• Use manual bindings to override the default faceting and manually specify the relationships between the steps.

• Set query limits.

• Specify columns for a values table.

• Set up layouts for mobile devices.

Note: Wave provides two dashboard designers. Except for the gridLayouts content, this guide discusses how to perform tasks in
the original designer. The gridLayouts section discusses how to customize the JSON when using the new flex dashboard
designer, which is beta as of Spring ’16.

1

VIEW OR MODIFY A DASHBOARD JSON FILE

EDITIONS

Available in Salesforce
Classic and Lightning
Experience.

Available for an extra cost in
Enterprise, Performance,
and Unlimited Editions. Also
available in Developer
Edition.

USER PERMISSIONS

To modify the JSON file that
defines a dashboard:
• “Create and Edit Wave

Analytics Dashboards”

To create advanced dashboards, you typically modify the JSON file that defines a dashboard.

Expert Editor Mode provides the JSON of a lens or dashboard and lets you quickly see the effect of
your edits in the running asset.

Note: Expert Editor Mode replaces the tool at
https://your_Salesforce_instance/insights/web/lens.apexp. For
lenses and dashboards opened, created, or saved in the Spring ‘16 release, use the JSON
editor instead of the lens.apexp page. A lens or dashboard from a previous release can
be edited in either place, but after saving in the Spring ‘16 release, it no longer appears on
the lens.apexp page.

1. To access Expert Editor Mode, open the lens or dashboard you want to edit, and press CTRL+E
for PCs or CMD+E for Macs.

2. If the Reload JSON button is available, click it to load the current running lens or dashboard.
Reload JSON loads the code of the currently running lens or dashboard. This button is available
whenever the JSON in the editor doesn’t match the running JSON, which can happen when
you first open the editor.

3. Modify the JSON in the editor. You can use standard keyboard shortcuts for editing functions
and search.

4. To go back to the explorer and see how edits to the JSON appear in the lens or dashboard, click
Switch to Runtime.

Important: Switch to Runtime overwrites the JSON of the running lens or dashboard with the JSON in the editor.

5. To retain your edits, save the lens or dashboard. Changes made in the JSON editor are not saved until you explicitly save the lens or
dashboard.

In Expert Editor Mode, the following shortcuts let you perform basic actions from your keyboard.

DescriptionExpert Editor Mode Keyboard Shortcut

Load JSON from runtimeCRTL+3 (Windows); CMD+3 (Mac)

CutCRTL+X (Windows); CMD+X (Mac)

CopyCRTL+C (Windows); CMD+C (Mac)

PasteCRTL+V (Windows); CMD+V (Mac)

UndoCRTL+Z (Windows); CMD+Z (Mac)

RedoSHIFT+CRTL+Z (Windows); SHIFT+CMD+Z (Mac)

Search (RegExp, case-sensitive, or whole word searches available)CRTL+F (Windows); CMD+F (Mac)

Switch to runtimeCRTL+E (Windows); CMD+E (Mac)

2

https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_tutorials.htm#bi_tutorials&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=bi_tutorials.htm#bi_tutorials&language=en_US

DASHBOARD JSON FILE EXAMPLE

A dashboard JSON file defines the components that a dashboard contains and describes how they’re connected.

This sample JSON file defines a simple dashboard that uses a chart widget to display the count of rows in a dataset, grouped by a field
(account owner). It includes one lens, called "AccountOwner_Owner_Name_6," and one widget, called "chart_7." The datasets
section lists the dataset that the dashboard uses. The layouts section specifies a mobile layout with one page, one row, and one
column.

{
"label":"Simple Dashboard",
"state":{

"steps":{
"AccountOwner_Owner_Name_6":{

"isFacet":true,
"isGlobal":false,
"query":{

"measures":[["count","*"]],
"groups":["AccountOwner.Owner.Name"]},

"selectMode":"single",
"type":"aggregate",
"useGlobal":true,
"start":null,
"datasets":[{"name":"Opportunities"}],
"visualizationParameters":{"visualizationType":"hbar"}}},

"widgets":{
"chart_7":{

"type":"chart",
"position":{"zIndex":6,"x":0,"y":20,"w":"410","h":"300"},
"parameters":{

"step":"AccountOwner_Owner_Name_6",
"visualizationType":"hbar"}}},

"datasets":[{
"id":"0FbR000000000O3KAI",
"name":"Opportunities"}]}

}

3

GRIDLAYOUTSTYLE

The gridLayoutStyle section contains the dashboard properties, like cell spacing in the grid, as well as the dashboard’s background
color or image. This section only applies to dashboards that are created using the flex dashboard designer.

Here is a sample dashboard JSON with a widgetStyle section.

"gridLayoutStyle": {
"backgroundColor": "#44A2F5",
"cellSpacingX": 4,
"cellSpacingY": 4,
"documentId": "015R0000000DClP",
"fit": "stretch",
"alignmentX": "right",
"alignmentY": "bottom"

}

The properties of the widgetStyle section of a dashboard JSON file are described in the table.

DetailsProperty Name

Type
String

alignmentX

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The horizontal alignment of the background image applied to the dashboard.

Valid values are: left (default), center, and right.

Type
String

alignmentY

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The vertical alignment of the background image applied to the dashboard.

Valid values are: top (default), center, and bottom.

Type
String

backgroundColor

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Background color of the dashboard, specified in hex color code. The default is #FFFFFF.

4

DetailsProperty Name

Type
Integer

cellSpacingX

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Horizontal spacing (in pixels) between cells in the dashboard grid.

Valid values are 0, 4, 8 (default), and 16.

Type
Integer

cellSpacingY

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Vertical spacing (in pixels) between cells in the dashboard grid.

Valid values are 0, 4, 8 (default), and 16.

Type
String

documentId

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The 15-character document ID of the image to apply as the dashboard’s background. To ensure security,
upload the image file to Salesforce as a document, and select the Externally Available Image option.
The image doesn’t show up if this option is not selected or the referenced document is not an image.

Type
String

fit

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates how to scale the image.

Valid values are: original (default), stretch, tile, fitwidth, and fitheight.

5

gridLayoutStyle

WIDGETSTYLE

The widgetStyle section contains the default widget properties that can be applied to each widget. This section only applies to
dashboards that are created using the flex dashboard designer.

Here is a sample dashboard JSON with a widgetStyle section.

"widgetStyle": {
"backgroundColor": "#AFA3CE",
"borderEdges": ["all"],
"borderColor": "#2EC2BA",
"borderWidth": 4,
"borderRadius": 16

},

The properties of the widgetStyle section of a dashboard JSON file are described in the table.

DetailsProperty Name

Type
String

backgroundColor

Available for This Widget

• In original designer: box

• In flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Color of the widget’s background, specified in hex color code. The default is #FFFFFF.

Type
String

borderColor

Available for This Widget

• In original designer: box

• In flex dashboard designer: all widgets

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Color of the widget’s border, specified in hex color code. The default is #FFFFFF. If no border is specified,
the widget has no border.

Type
List

borderEdges

6

DetailsProperty Name

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

A list of values that specify which edges of the widget have a border. Valid values are left, right,
top, bottom, and all. Default is no border.

Type
Integer

borderRadius

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Roundness of the border corners.

Valid values are: 0(not rounded, default), 4, 8, and 16. The higher the value, the more rounded the
corner.

Type
Integer

borderWidth

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Thickness of the border.

Valid values are: 1, 2 (default), 4, and 8. The higher the value, the thicker the border.

7

widgetStyle

STEPS

The steps section contains the queries that you’ve clipped from the explorer.

Each step has a name that’s used to link it to a widget that’s defined elsewhere in the JSON file.

The properties of the steps section of a dashboard JSON file are described in the table.

DescriptionField Name

An array of datasets used by this step. Specify the alias of each dataset. Currently, only the first dataset
is used.

datasets

Note: Faceted steps are filtered based on only the first dataset specified in this array.

Visualization details about the step. Example:

"visualizationParameters": {
"options": {

visualizationParameters

"legend": false,
"legendHideHeader": false,
"legendWidth": 145,
"maxColumnWidth": 200,
"minColumnWidth": 30,
"miniBars": 0,
"multiMetrics": false,
"splitAxis": false,
"sqrt": false,
"trellis": false

},
"visualizationType":"hbar"

}

The following fields are under visualizationParameters:

• options–Specifies chart properties for the step. You can override these options at the widget
level in the widget parameters. For more information about these options, see Widget Parameters
Property Reference.

• visualizationType–Specifies the chart type. You can override the chart type at the widget
level.

Valid values for visualizationType are:

– calheatmap*—calendar heat map

– comparisontable—compare table

– hbar—horizontal bar

– hdot*—horizontal dot plot

– heatmap*—heat map

– matrix*—matrix

– parallelcoords*—parallel coordinates

8

DescriptionField Name

– pie—donut

– pivottable*—pivot table

– scatter—scatter plot

– stackhbar—stacked horizontal bar

– stackvbar—stacked vertical bar

– time—timeline

– valuestable—raw data table

– vbar—vertical bar

– vdot*—vertical dot plot

Note: The flex dashboard designer doesn’t support charts with an asterisk (*). If you specify
an unsupported type, the designer replaces it with a horizontal bar (hbar) in the dashboard.

Enables bi-directional faceting between this step and other steps built from the same dataset, which
is specified in datasets field for this step. Set to true or false.

isFacet

Note: If a SAQL query is based on multiple datasets, only the first dataset specified in the
datasets field is faceted. Also, isFacet works only for compact-form queries, by default.
To enable them for a SAQL query, also set the autoFilter option to true.

Indicates whether the filter that’s specified in the query is used as a global filter (true) or not (false).
Default is false. You can only apply this property on steps that are connected to a scope widget—all
other steps ignore this property.

A global filter filters other steps in the dashboard that have useGlobal set to true and reference
the same dataset. By default, it filters compact-form steps only. To filter a SAQL step, set autoFilter
to true in the SAQL step.

isGlobal

The query that the step uses. It can be in SAQL or compact form.query

Determines the selection interaction. The options for charts are: none, single, and
singlerequired. The options for list and toggle selectors are: single, singlerequired,
multi, and multirequired.

selectMode

Note: selectMode isn’t used by the number, values table, compare table, range, date, and
global filter widgets.

The default start value or values for a step. This value is used when a dashboard is initialized or refreshed.start

The type can be set to:type

• aggregate. See an example.

• grain. See an example.

• multi. See an example.

• static. See an example.

Indicates whether the step uses the dashboard’s global filter (true) or not (false).useGlobal

9

Steps

DescriptionField Name

The dimension used to facet other steps. Wave facets other steps based on the value selected for this
dimension in the user interface. Specify the dimensions attribute only if isFacet is set to true.

dimensions

Example:

"step_filter_dim": {
"type": "static",
"dimensions": ["Product"],
"datasets":[{"name":"opportunity"}],
"selectMode": "single",
"values": [

{"value": ["EKG Machine"]},
{"value": ["Mammography Machine"]},
{"value": ["Ultrasound Machine"]}

],
"isFacet": true

},

Values used to filter the results of a static step. For example, you can use these values to populate a
date selector.

"step_date_static_with_start": {
"type": "static",

values

"values": [
{

"display": "-6 years",
"value": [[["year",-6],["year",0]]]

},
{

"display": "-5 years",
"value": [[["year",-5],["year",0]]]

},
{

"display": "-4 years",
"value": [[["year",-4],["year",0]]]

}
],
"selectMode": "singlerequired",
"start": [[[["year",-5],["year",0]]]]

}

Static Steps

You can also populate a selector from a specified list of static values, instead of from a query.

Static Steps

You can also populate a selector from a specified list of static values, instead of from a query.

10

Static StepsSteps

A static step is shown in this example. This static step is used for filtering, but static steps can also be created for groups, measures, sort
order, and limits.

"steps": {
"step_static_1": {
"type": "static",
"dimensions": ["Stages"],
"datasets":[{"name":"opp"}],
"values": [
{
"display": "1",
"value": "1",
"measure": 100000

}, {
"display": "2",
"value": "2",
"measure": 200000

}, {
"display": "3",
"value": "3",
"measure": 300000

}, {
"display": "4",
"value": "4",
"measure": 400000

}, {
"display": "5",
"value": "5",
"measure": 500000

}

11

Static StepsSteps

],
"selectMode": "single"

},

For more information, see Selection Binding in a Static Step.

12

Static StepsSteps

WIDGETS

The widgets section defines the widgets that appear in the dashboard. Each widget has a name.

The properties of the widgets section of a dashboard JSON file are:

DescriptionField Name

Widget parameters vary depending on the type of widget. The step element defines the step attached to
a widget. For detailed information about different parameters, see Widget Parameters Property Reference.

parameters

Specifies the position of the widget in a dashboard created with the original dashboard designer. Position
can consist of the following properties:

x and y
Specifies the top left corner of the widget. The values of these fields must be integers.

position

w and h
Specifies the width and height, respectively. You can enter “auto,” percentages (“36%”), and integers
(“20”) as a string value.

zIndex
Determines the position of a widget relative to other widgets in the dashboard. zIndex specifies whether
a widget is in front of or behind another widget. A smaller zIndex means that a widget appears further
behind other widgets with larger zIndex values. The value must be an integer.

Example:

"position": {
"x": 40,
"y": 40,
"w": "300",
"h": "auto"}

Measurements are in pixels.

Note: The flex dashboard designer ignores these settings and uses the position attribute specified
under the gridLayouts section of the dashboard JSON.

The widget type specifies one of the other supported widget types. The value of this field must be a string.type

• box—available in the original dashboard designer only

• chart

• comparetable

• container—available in the flex dashboard designer only

• dateselector

• globalfilters

• image—available in the flex dashboard designer only

• link

• listselector

13

DescriptionField Name

• number

• pillbox

• rangeselector

• text

• url—available in the original dashboard designer only

• valuestable

Note: The flex dashboard designer doesn’t support box and url widgets. If you open a dashboard in
flex designer, the designer removes these widget types from the dashboard. Also, the original dashboard
designer doesn’t support the container widget—use a box widget instead.

Widget Parameters Property Reference

The parameters property of the widgets section defines the attributes of a widget in a dashboard. Each widget has its own
parameters property.

SEE ALSO:

Widget Parameters Property Reference

Widget Parameters Property Reference

The parameters property of the widgets section defines the attributes of a widget in a dashboard. Each widget has its own
parameters property.

The parameters available for each widget depend on the widget’s type property. For example, a chart widget can have the legend
parameter, but a text widget can’t.

Chart widgets have many parameters that vary based on the chart type. The following table lists the properties for each chart type.

Valid PropertiesVisualization Type

legend, legendHideHeader, legendWidth,
maxColumnWidth, minColumnWidth, miniBars,
multiMetrics, splitAxis, sqrt, and trellis

Bar

maxColumnWidth, minColumnWidth, and totalsComparison Table

legend, legendHideHeader, and legendWidthDonut

fit, legend, legendHideHeader, legendWidth,
and sqrt

Dot Plot

legend, legendHideHeader, and legendWidthHeat Map

legend, legendHideHeader, and legendWidthMatrix

fit, legend, legendHideHeader, legendWidth,
and sqrt

Parallel Coordinates

14

Widget Parameters Property ReferenceWidgets

Valid PropertiesVisualization Type

maxColumnWidth, minColumnWidth, and totalsPivot Table

fit, legend, legendHideHeader, legendWidth,
and sqrt

Scatter Plot

legend, legendHideHeader, legendWidth,
maxColumnWidth, minColumnWidth, miniBars,
normalize, and sqrt

Stacked Bar

legend, legendHideHeader, legendWidth, and
sqrt

Timeline

hideHeaderColumn, maxColumnWidth,
minColumnWidth, and totals

Values Table

Some parameters are exposed and editable in the dashboard designer’s user interface as widget properties. Others are only editable via
JSON.

This example excerpt from a dashboard JSON file describes a dashboard with a single chart widget. The chart widget has four
parameters set: miniBars, visualizationType, sqrt, and step.

"widgets": {
"chart_1": {
"parameters": {
"miniBars": 14,
"visualizationType": "vbar",
"sqrt": true,
"step": "Customer_Name_1"

},
"type": "chart",
"position": {
"w": "1000",
"h": "500",
"zIndex": 0,
"x": 20,
"y": 20

}
}

}

The widget properties set by the parameters property are:

DetailsProperty Name

Type
String

alignmentX

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

15

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Description
Indicates the horizontal alignment of the image in the widget.

Valid values are: left (default), center, and right.

Type
String

alignmentY

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates the vertical alignment of the image in the widget.

Valid values are: top (default), center, and bottom.

Type
Boolean

compact

Available for These Widgets

• listselector

• number

• pillbox

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether displayed numbers are abbreviated (true) or not (false).

For example, if true, the number 48,081 appears as 48k. Although the number appears to be rounded,
it is not. The value 48,081 is preserved in charts and when performing calculations. If false, then 48,081
appears as 48,081.

Default is false.

Type
Boolean

computeTotal

Available for These Widgets

• chart (only when visualizationType is stackwaterfall and waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include the total measure column (true) or not (false).

Default is true.

16

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
List

containedWidgets

Available for This Widget

• container

Exposed in the Dashboard Designer’s User Interface
Yes

Description
A list of all widgets inside the container widget.

Example
This example shows 2 widgets (meafilter_1 and chart_1) included in the container widget
(container_1).

"container_1": {
"type": "container",
"position":{

"x": 0,
"y": 0

},
"parameters":{

"containedWidgets": [
"meafilter_1",
"chart_1"

]
}

}

Type
String

destination

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The ID of the dashboard or lens.

Default is null.

Type
String

destinationType

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

17

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Description
The destination type of a link. Possible values are:

• dashboard — a saved dashboard

• explore — an unsaved, active exploration session of the lens

• lens — a saved lens

Default is lens.

Type
String

documentId

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The 15-character document Id of the image file that you want to apply as the background. To ensure
security, the image file must be uploaded to Salesforce as a document and the Externally Available
Image option must be selected. The image doesn’t show up in the widget if this option is not selected
or the referenced document is not an image. Default is null.

Example
This example image widget (image_1) displays an image with ID 015R0000000DClP.

"image_1": {
"type": "image",
"parameters": {

"documentId": "015R0000000DClP",
"fit": "stretch",
"alignmentX": "center",
"alignmentY": "center"

}
}

Type
Boolean

dualAxis

Available for These Widgets

• chart (only when visualizationType is combo)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include an axis for each of the two measures (true) or not (false).

Default is true.

18

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
Boolean

expanded

Available for These Widgets

• dateselector

• listselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether items in widget are displayed (true) or hidden (false).

If hidden (false), dashboard viewers can click the widget to view and change items.

Default is true.

Note: Mobile devices display items in a list, regardless of this setting.

Type
Boolean

exploreLink

Available for These Widgets

• chart

• comparetable

• listselector

• number

• pillbox

• valuestable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether the widget shows the explore icon that dashboard viewers can click to explore the
widget as a lens (true) or not (false). This option only affects widgets based on steps in compact
form, not SAQL form. Regardless of this setting, you can’t explore widgets that are built on SAQL form
steps.

Defaults is true.

Note: Mobile devices display the icon, regardless of this setting.

Type
Boolean

fit (for chart widgets)

Available for This Widget

• chart (only when visualizationType is scatter,

Exposed in the Dashboard Designer’s User Interface
Yes

19

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Description
Indicates whether the axis of a chart is in the center of the data (true) or at (0, 0) (false).

Default is false.

Type
String

fit (for image
widgets)

Available for This Widget

• image

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates how to scale the image. Valid values are: original (default), stretch, tile, fitwidth,
and fitheight.

Type
Integer

fontSize

Available for These Widgets

• link

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The font size of a number or of text.

Defaults are:

• number: 36

• text: 26

Type
Boolean

hideHeaderColumn

Available for These Widgets

• chart

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the first column in a raw data table—which is simply a count of rows—is hidden
(true) or not (false).

Default is false.

20

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

imageUrl

Available for This Widget

• box

• container

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The document Id of the image file that you want to apply as the background. To ensure security, the
image file must be uploaded to Salesforce as a document and the Externally Available Image option
must be selected. The image doesn’t show up in the widget if this option is not selected or the referenced
document is not an image. Default is null.

Example
This example has a container widget (container_1) with a background image. The image has
document Id 01599000000D8HP.

"container_1": {
"type": "container",
"position": {

"x": 0,
"y": 0

},
"parameters": {

"containedWidgets": [],
"imageUrl": "01599000000D8HP"

}
}

Type
Boolean

includeState

Available for This Widget

• link

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether selections applied by a dashboard viewer are preserved in the destination after
the viewer clicks the link (true) or not (false). If a selection is incompatible with the destination
or is null, then it isn’t preserved.

Default is false.

21

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
Boolean

instant

Available for These Widgets

• dateselector

• listselector

• rangeselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether other faceted widgets immediately update (true) or not (false) when a dashboard
viewer makes a selection in this widget.

When false, dashboard viewers must click Update for their changes to cascade to faceted widgets.
When true, the Update button is hidden.

Defaults are:

• dateselector: false

• listselector: true

• rangeselector: false

Note: For list, range, or date widgets that are expanded in the flex dashboard designer, this
widget property is always enabled—meaning that selections in this widget instantly update other
widgets. While these widgets are expanded, you can’t change this setting.

Type
Boolean

legend

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar, stackvbar,
pie, scatter, time, hdot, vdot, matrix, calheatmap, heatmap,
parallelcoords, stackwaterfall, funnel, or choropleth)

Exposed in the Dashboard Designer’s User Interface
Yes

22

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Description
Indicates whether to display a legend (true), or not (false).

Default is false for all chart types. except pivottable.

Note: Mobile devices can only display legends for pie widgets.

Type
Boolean

legendHideHeader

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar, stackvbar,
pie, scatter, time, hdot, vdot, matrix, calheatmap, heatmap,
stackwaterfall, combo, combo, lor parallelcoords)

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the legend has a title (true) or not (false). The title is always the name of the
dimension that the legend describes.

Default is false for all chart types except pivottable.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

legendWidth

Available for This Widget

• chart (only when visualizationType is hbar, vbar, stackhbar, stackvbar,
pie, scatter, time, hdot, vdot, matrix, calheatmap, heatmap,
stackwaterfall, combo, or parallelcoords)

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The width of the legend area in pixels.

Default is 145 for all chart types except pivottable.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

maxColumnWidth

Available for These Widgets

• chart (only when visualizationType is comparisontable, pivottable,
stackhbar, stackvbar, hbar, stackwaterfall, or vbar)

• comparisontable

23

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description

The maximum display size (in pixels) of a dimension field on a web browser of a desktop or laptop.

Default is 200, minimum value is 20, and maximum value is 200.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

measureField

Available for These Widgets

• listselector

• number

• pillbox

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The mathematical function performed on data.

Specify the measureField in this format: <formula>_<field>.

<formula> must match one of the formulas specified in the measures step property. Possible
values for <formula> are:

• avg — calculate the mathematical average (mean)

• max — the maximum value

• min — the minimum value

• sum — add all the values

• unique — count the number of unique values. For example, use to count the number of unique
dimensions.

The <field> paired with the <formula> must match the field name that is specified in measures.

For example, if the measures step property is:

"measures”: [
[
"sum",
"Profit"

],
[
"avg",
"Discount"

],
[

24

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

"count",
"ModelNumber"

]
]

Then measureField must be sum_Profit, avg_Discount, or unique_ModelNumber.
The measureField can’t be avg_Profit because avg and Profit aren’t paired together in
the measures step property.

Note: Unlike for measures, a count on a dimension in the user interface calculates the number
of unique dimension values. As a result, measureField in the underlying JSON shows the
unique formula, like unique_<dimension_field_name>.

Default is null.

Type
Integer

minColumnWidth

Available for This Widget

• chart (only when visualizationType is comparisontable, pivottable,
stackhbar, stackvbar, hbar, stackwaterfall, or vbar)

• comparisontable

• valuestable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The minimum display size of a dimension field in pixels.

Default is 30.

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Integer

miniBars

Available for This Widget

• chart (only when visualizationType is stackhbar, stackvbar, hbar, or vbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The display size in pixels of bars in bar charts.

Default is 0 (available only for bar charts and column charts).

Type
Boolean

multiMetrics

25

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Available for This Widget

• chart (only when visualizationType is hbar or vbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether two or more measures are displayed as adjacent bars under each grouping (true)
or as individual, adjacent graphs (false).

Default is false (available only for bar charts and column charts).

Type
String

negativeColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the measure columns that have decreased in value in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Type
Boolean

normalize

Available for This Widget

• chart (only when visualizationType is stackhbar or stackvbar)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear scale (false).

Default is false (available only for stackhbar and stackvbar).

26

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
String

numberColor

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The font color of the number in the flex dashboard designer only.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Default is #000.

Type
Integer

numberSize

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The font size of the number in the flex dashboard designer only. Default is 26.

Type
String

positiveColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the measure columns that have increased in value or remained the same in the chart.

Specify the color in this format: rgb(a, b, c, d).

27

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Type
Boolean

showValues

Available for This Widget

• chart (only when visualizationType is stackwaterfall or waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to display the totals for each measure column (true) or not (false).

Default is true.

Type
Boolean

splitAxis

Available for This Widget

• chart

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether each dimension in a chart is measured on its own axis (true) or a shared axis (false).

Only applicable when multiMetrics is true.

Default is false (available only for bar charts and column charts).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Boolean

sqrt

Available for This Widget

• chart (only when visualizationType is parallelcoords, hdot, vdot, time,
scatter, stackhbar, stackvbar, hbar, stackwaterfall,or vbar)

28

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear scale (false).

Default is false (available only for bar charts, column charts, line charts, and time series).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

startColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the first measure column in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Type
String

step

Available for These Widgets

• chart

• comparetable

• dateselector

• globalfilters

• listselector

• number

• pillbox

• rangeselector

• valuestable

29

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The name of the lens that supplies data for the widget.

Default is null.

Type
Boolean

stretch

Available for This Widget

• box

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether an image’s width and height are set to the same values of the widget’s width and
height (true) or not (false).

Default is false.

Type
Boolean

stretchImage

Available for This Widget

• container

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether an image’s width and height are set to the same values of the widget’s width and
height (true) or not (false).

Default is false.

Type
String

text

Available for This Widget

• link

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The message rendered in a text widget. For example, if text is assigned the value “Hello,
World!”, then “Hello, World!” appears in the text widget.

Default is null.

30

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
String

textAlignment

Available for This Widget

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The alignment of text. Possible values include left, center, and right. If no value is specified, text
alignment defaults to center.

Defaults are:

• number: right

• text: center

Type
String

textColor

Available for These Widgets

• link

• number

• text

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The font color of text.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Default is #000.

Type
String

title

31

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Available for These Widgets

• dateselector

• listselector

• number

• pillbox

• rangeselector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The title of a widget.

Default is null.

Type
String

titleColor

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The font color of the title in the flex dashboard designer only.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Default is #000.

Type
Integer

titleSize

Available for This Widget

• number

Exposed in the Dashboard Designer’s User Interface
Yes

32

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Description

The font size of the title in the flex dashboard designer only. Default is 26.

Type
String

totalColor

Available for These Widgets

• chart (only when visualizationType is waterfall)

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the total measure column in the chart.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

Type
Boolean

totals

Available for These Widgets

• chart (only when visualizationType is pivottable)

• comparetable

• valuestable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include a row that displays the sum of all the values in each measure column (true)
or not (false).

Default for chart is false (available only for pivottable).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
Boolean

trellis

33

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Available for This Widget

• chart

Exposed in the Dashboard Designer’s User Interface
Yes

Description
When a lens has two or more groupings and one measure, indicates whether the last grouping displays
on its own axis (true) or on the same axis as other groupings (false).

Default for chart is false (available only for bar charts and column charts).

Note: This setting doesn’t apply when viewing the widget on mobile devices.

Type
String

videoSize

Available for This Widget

• url

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The dimensions of a YouTube video. Possible values are:

• (4/3) 240 x 180

• (4/3) 420 x 315

• (4/3) 480 x 360

• (4/3) 640 x 480

• (4/3) 960 x 720

• (16/9) 320 x 180

• (16/9) 560 x 315

• (16/9) 640 x 360

• (16/9) 853 x 480

• (16/9) 1280 x 720

Default is (4/3) 240 x 180.

Note: Mobile devices don’t display url widgets.

Type
ConnectWaveChartTypeEnum

visualizationType

Available for These Widgets

• chart

• link

34

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The type of chart used to show data. Possible values are:

• calheatmap* — calendar heat map

• choropleth — choropleth (map)

• combo — lines and bars to show multiple metrics

• comparisontable — comparison table

• funnel — funnel

• hbar — horizontal bar

• hdot* — horizontal dot plot

• heatmap* — heat map

• matrix* — matrix

• parallelcoords* — parallel coordinates

• pie — donut

• pivottable* — pivot table

• scatter — scatter plot

• stackhbar — stacked horizontal bar

• stackvbar — stacked vertical bar

• stackwaterfall — stacked waterfall

• time — timeline

• valuestable — raw data table in original dashboard designer (values table in flex dashboard
designer)

• vbar — vertical bar

• vdot* — vertical dot plot

• waterfall — waterfall

Note: The flex dashboard designer doesn’t support chart types with an asterisk (*). If you specify an
unsupported type, the designer replaces it with hbar in the dashboard.

Type
ConnectUri

url

Available for This Widget

• url

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The URL of a YouTube video.

Default is null.

35

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Note: Mobile devices don’t display url widgets.

SEE ALSO:

Widgets

36

Widget Parameters Property ReferenceWidgets

QUERY

The query section defines the query parameters for compact form and SAQL form steps.

The properties of the query section of a dashboard JSON file are:

DescriptionField Name

Automatically generated. Don’t modify.aggregateFilters

Enables filters from compact-form query lenses and Scope widgets to be applied to the
faceted SAQL query lens. To apply filters from compact-form query lenses to the SAQL query

autoFilter

lens, set autoFilter and isFacet to true. To apply filters from Scope widgets to
the SAQL query lens, set autoFilter and useGlobal to true. If autoFilter
is set to false or not specified, filters from compact-form query lenses and Scope widgets
are not applied to the SAQL query lens.

The dimensions to use are specified this way:

"dimensions": ["Department"]

dimensions

Automatically generated. Don’t modify.facet_filters

The filter conditions to apply to the data. Here’s an example of a simple filter condition to
include only rows that have the destination "SFO", "LAX", "ORD", or "DFW":

"filters": [["dest", ["SFO", "LAX", "ORD", "DFW"]]]

filters

Note: Applies to steps with compact form queries only. To specify a filter for a step
based on a SAQL query, include a filter statement in the SAQL query.

Formula is used with the multi step type in a step for a compare table. A multi type
step includes multiple subqueries. You can use the basic mathematical operators *, /, -,

formula

+, (, and) to create a formula to reference other subqueries in the step. To reference other
subqueries, use the automatically assigned names: “A” is the first query, “B” is the second
query, and so on.

"step_comptable": {
"type": "multi",
"datasets":[{"name":"opp"}],
"isFacet": true,
"useGlobal": true,
"query": {
"columns": [
{
"header": "Opptys Won",
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Won"]],

37

DescriptionField Name

["Close Date", [[["year", -1], ["year", 0]]]]],
"measures": [["count", "*"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Won ($)",
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Won"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"sort": {
"asc": false,
"inner": false

},
"header": "Opptys Won ($)",
"showBars": true,
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Won"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"query": {
"pigql": null,

"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"showBars": true,
"query": {

38

Query

DescriptionField Name

"pigql": null,
"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Win-Loss (%)",
"query": {
"groups": ["Owner-Name"],

"filters": [["StageName", ["5 - Closed-Lost"]]],

"measures": [["sum", "Amount"]],
"values": [],
"pigql": null,
"formula": "B/(B+D)*100",
"order": []

}
}

]
}

}
},

The dimension to group by. For example, "groups": ["carrier"]. Specify groups
for both compact form and SAQL form queries. To group by a dimension when using a

groups

SAQL form query, you must specify the group-by dimension in this parameter and in the
SAQL query in the pigql parameter.

The number of results to return. For example, "limit": 10. The results that the limit
statement returns aren’t automatically ordered, so use this statement only with data that
has been ordered.

limit

Note: Applies to steps with compact form queries only. To specify a limit for a step
based on a SAQL query, include a limit statement in the SAQL query.

The measures to use are specified this way:

"count", "*", null, {
"display": "% of total flights"

}

measures

Specify for both compact form and SAQL form queries. Specify for SAQL queries so that the
associated chart widget can render the correct projections. You can change the UI label of
a measure by setting the display option.

To add a measure when using a SAQL form query, specify the measure in this parameter
and in the SAQL query in the pigql parameter.

39

Query

DescriptionField Name

Sorts the first specified measure in ascending or descending order. To order the results in
ascending order, set ascending to true. To order the results in descending order, set

order

ascending to false. If you don’t want to impose a specific order, specify empty
brackets this way: "order": [].

Example:

"step1": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"groups": ["dest"],
"filters": [
["carrier", "{{ selection(step1) }}"],
["dest", "{{ filter(step1, 'dest') }}"],
["origin", "{{ filter(step1, 'origin') }}"]

],
"measures": [["sum", "miles"], ["count", "*"]],
"order": [[-1, {"ascending": false}]]

}

Note: Applies to steps with compact form queries only. To specify order for a step
based on a SAQL query, include an order statement in the SAQL query.

The query in SAQL form. Use a query in SAQL form when you need to customize the query
in a way that can’t be done using the compact form.

pigql

When you specify a SAQL query, you must specify the filters, limits, and ordering inside the
pigql attribute—Wave ignores the following attributes if they are set under the query
attribute: filters, limit, and order. You must include each measure in the SAQL
query and also specify it in the measures attribute. To specify a grouping, include a group
by statement in the SAQL query and specify the same dimension in the groups attribute.

Note: You can enable faceting on a lens created from a SAQL query. However, if
the SAQL query is based on multiple datasets, only the first dataset specified in the
datasets field is faceted.

Values are used with the grain step type in a step for a values table widget. Values list
the columns to include in a grain or values table. For example:

"step_grain": {
"type": "grain",

values

"datasets":[{"name":"opp"}],
"query": {
"values": ["Amount", "Owner-Name", "Name", "Account-Name",

"StageName", "ForecastCategory", "Current Age", "Time to
Win"],

}
}

Specify values for both compact form and SAQL form queries.

40

Query

Within the query section of a step, you can manually insert bindings. To do so, use templates—expressions that are embedded in
double braces ({{ }}) and that get replaced with the current state of the step that they’re attached to. Here’s an example:

"filters": [["carrier", "{{ selection(step1) }}"], ["dest", "{{ filter(step1, 'dest') }}"],
["origin", "{{ filter(step1, 'origin') }}"]]

Query Example

This example shows a dashboard that contains two queries.

Compare Table Example (Mobile)

This example shows a snippet with a single, unified SAQL query for creating a Compare Table on a mobile client.

Query Example

This example shows a dashboard that contains two queries.

The first bar chart is connected to a step ("step3") that contains a query that uses SAQL. The second bar chart is connected to a step
("step2") that contains a compact form query. Both the compact and the SAQL steps have selection filters that are bound to "step1".
Clicking one chart filters the others.

In "step3", the full SAQL query is placed within the "piqgl": reference. The SAQL query is used instead of the compact query
references. However, you still must specify the compact form elements of "groups" and "measures" so that the associated chart
widget can render the correct projections. (For a "grain" type query, "values" is always specified.) In this example, the
'sum_miles' and 'count' projections in the SAQL query are then referenced in measures as [["sum", "miles"],
["count", "*"]]. Measure projections in the SAQL always include the aggregation underscore (_) and the name of the measure
('sum_miles') so that they can be referenced in the compact form "measures": [["sum", "miles"].

For more information about SAQL, see the SAQL Reference.

41

Query ExampleQuery

{
"steps": {
"step1": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"groups": ["carrier"],
"filters": [["dest", ["SFO", "LAX", "ORD", "DFW"]]],
"measures": [["count", "*"]],
"order": [[-1, {"ascending": false}]],
"limit": 3

}
},
"step2": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"groups": ["dest"],
"filters": [["carrier", "{{ selection(step1) }}"], ["dest", "{{ filter(step1,

'dest') }}"], ["origin", "{{ filter(step1, 'origin') }}"]],
"measures": [["sum", "miles"], ["count", "*"]],
"order": [[-1, {"ascending": false}]]

42

Query ExampleQuery

}
},
"step3": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"pigql": "q = load \"airline\";\nq = filter q by 'carrier' in {{ selection(step1)

}};\nq = filter q by 'dest' in {{ filter(step1, 'dest') }};\nq = filter q by 'origin' in
{{ filter(step1, 'origin') }};\nq = group q by 'dest';\nq = foreach q generate 'dest' as
'dest', sum('miles') as 'sum_miles', count() as 'count';\nq = order q by 'count' desc;",

"groups": ["dest"],
"measures": [["sum", "miles"], ["count", "*"]]

}
}

},
"widgets": {
"barchart1": {
"type": "listselector",
"position": {
"x": 10,
"y": 10,
"w": "270",
"h": "180"

},
"parameters": {
"step": "step1"

}
},
"text2": {
"type": "text",
"position": {
"x": 310,
"y": 10

},
"parameters": {
"text": "chart with compact form step:",
"textColor": "#f00"

}
},
"barchart2": {
"type": "chart",
"position": {
"x": 310,
"y": 30,
"w": "400",
"h": "280"

},
"parameters": {
"step": "step2",
"visualizationType": "hbar"

}
},
"text3": {

43

Query ExampleQuery

"type": "text",
"position": {
"x": 310,
"y": 280

},
"parameters": {
"text": "chart with pigql step:",
"textColor": "#f00"

}
},
"barchart3": {
"type": "chart",
"position": {
"x": 310,
"y": 300,
"w": "400",
"h": "280"

},
"parameters": {
"step": "step3",
"visualizationType": "hbar"

}
}

}
}

Compare Table Example (Mobile)

This example shows a snippet with a single, unified SAQL query for creating a Compare Table on a mobile client.

This example uses a pigql definition under globalQuery field to illustrate a unified SAQL query for creating a simple, two-column Compare
Table.

"compare_2": {
"isFacet": true,
"isGlobal": false,
"selectMode": "single",

44

Compare Table Example (Mobile)Query

"type": "multi",
"useGlobal": true,
"start": null,
"datasets": [

{
"name": "Honeywell_Recent_Deals1"

}
],
"visualizationParameters": {

"visualizationType": "comparisontable"
},
"columns": [

{
"header": "Sum of LeadScore",
"query": {

"measures": [
[

"max",
"LeadScore"

]
],
"groups": [

"Industry"
]

},
"showBars": true

},
{

"header": "Avg of LeadScore",
"query": {

"measures": [
[

"avg",
"LeadScore"

]
],
"groups": [

"Industry"
]

},
"showBars": false

}
],
"globalQuery": {

"pigql": "q = load \"Honeywell_Recent_Deals1\"; q = group q by 'Industry'; q =
filter q by 'Industry' in [\"Consumer\",\"Fin Svcs\",\"Mfg\",\"High
Tech\",\"Healthcare\",\"Prof Svcs\"]; q = foreach q generate 'Industry' as 'Industry',
avg('LeadScore') as 'avg_LeadScore', sum('LeadScore') as 'sum_LeadScore'; q = limit q
2000;"

}
},

The Compare Table has the following limitations:

• Only these functions can be included: +, -, *, /, ().

45

Compare Table Example (Mobile)Query

• On mobile devices, do not use SAQL at the column level. A global SAQL definition is supported, or use the compact form in each
column.

• On mobile devices, the Compare Table is read-only.

For more information about SAQL, see the SAQL Reference.

46

Compare Table Example (Mobile)Query

BINDINGS

After you define steps, you bind them to the widgets.

The kinds of bindings are:

• Selection binding

• Results binding

Selection Binding

When a user makes a selection on a widget in a dashboard, that selection value can be used to update other steps and widgets to make
the dashboard interactive. This action is referred to as faceting.

When you build a dashboard with the dashboard builder UI, by default, everything is faceted. The “isFaceted” option for each step takes
care of bidirectional selection bindings between steps of the same dataset. However, you can modify a dashboard JSON file directly to
manually specify the relationships between the various steps to achieve the following.

• Selection bindings between steps of different datasets

• Unidirectional selection binding

• Selection binding for a static step

Note: You can't configure selection binding on a multi-metric widget. If you do, an error occurs. You also can't configure binding
to a measure in a static step for a range widget.

Results Binding

Results binding is used to filter a step by using the values that result from another step. This type of binding is typically used across
multiple datasets. An example of when results binding is useful is when you want to filter opportunities by top-selling products.

"step_all_salesreps": {
"type": "aggregate",
"datasets": [{"name":"opp"}],
"query": {

"groups": ["Owner-Name"],
"filters": [

["StageName", ["5 - Closed-Won"]],
["Products", "{{results(step_top5_products) }}"]

],
"measures": [["sum", "Amount"]]

}
}

In the following example, the resulting sum of miles from the first step ("all_miles") is used in the second step to calculate the
average.

"steps": {
"all_miles": {
"type": "aggregate",

47

"datasets":[{"name":"airline"}],
"query": {
"measures": [["sum", "miles"], ["count", "*"]]

}
},
"step_percent": {
"type": "aggregate",
"datasets":[{"name":"airline"}],
"query": {
"pigql": "q = load \"airline\";\nq = group q by 'carrier';\nq =

foreach q generate 'carrier' as 'carrier', sum('miles')/{{
value(results(all_miles, 'sum_miles')) }} * 100 as 'sum_miles',
count()/{{ value(results(all_miles, 'count')) }} * 100 as 'count';\nq =
order q by 'sum_miles' desc;",

"groups": ["carrier"],
"order": [
[
["sum", "miles"], {
"ascending": false

}
]

],
"measures": [
[
"sum", "miles", null, {
"display": "% of total miles"

}
], [
"count", "*", null, {
"display": "% of total flights"

}
]

]
}

}

Note: You can't configure binding to a measure in a static step for a range widget.

Selection Binding in a Static Step

Almost all parts of a step can include a selection binding to the results of a prior query.

Bind a Static Filter and Group Selector to a Query

Static filters or group selectors can be bound to a query that’s written in SAQL.

Binding a Date Picker and Static Dates

You can use selection bindings to filter lenses for dates from a date picker lens or a static absolute or relative date step.

Binding Operations

You can use several more operations with results and selection bindings to extract the correct results.

48

Bindings

Selection Binding in a Static Step

Almost all parts of a step can include a selection binding to the results of a prior query.

In an aggregate query, the fields that can be included in a selection binding are:

• Group

• Measure

• Filters

• Sort

• Limit

Use Static Steps for Binding Any Part of a Query
This example shows a dashboard with static steps and selection bindings in multiple parts of a query.

In the following example:

• The static step step_filter_dim populates the "List of Products" list selector. It includes options that have multiple
values.

• The static step step_group populates the group toggle selector. "Product" is the default value when the dashboard is
initialized, because the start value is "Product". The display values change the display name in the user interface.

• The static step step_measure populates the measure toggle selector.

• The static step step_order populates the order toggle selector.

• The static step step_limit populates the limit toggle selector.

• The aggregate step query step_quarterly_bookings is grouped by close-date year and quarter.

49

Selection Binding in a Static StepBindings

• The aggregate step query step_top_10 has groupings that depend on the selection option from the static step_group.
The start value is the "Product" grouping (based on step_group).

{
"steps": {
"step_filter_dim": {
"type": "static",
"dimensions": ["Product"],
"datasets":[{"name":"opp"}],
"selectMode": "single",
"values": [
{
"value": ["EKG Machine"]

}, {
"value": ["Energist FRx"]

}, {
"value": ["GE Mammography Machine", "GE HiSpeed DXi", "GE Stress System"]

}, {
"value": ["HP MRI Machine", "HP Cardiac 64D"]

}, {
"value": ["Hyfrecator"]

}, {
"value": ["Siemens Dental System", "Siemens CR950"]

}, {
"value": ["VolMED Ultrasound"]

}
],
"isFacet": true

},
"step_group": {
"type": "static",
"values": [
{
"display": "Owner",
"value": ["Owner-Name"]

}, {
"display": "Product/Stage",
"value": ["Product", "StageName"]

}, {
"display": "Product",
"value": ["Product"]

}, {
"display": "Stage",
"value": ["StageName"]

}
],
"start": [["Product"]],
"selectMode": "single"

},
"step_measure": {
"type": "static",
"values": [
{
"display": "$",
"value": [["sum", "Amount"]]

50

Selection Binding in a Static StepBindings

}, {
"display": "#",
"value": [["count", "*"]]

}
],
"start": [[["sum", "Amount"]]],
"selectMode": "singlerequired"

},
"step_order": {
"type": "static",
"values": [
{
"display": "desc",
"value": false

}, {
"display": "asc",
"value": true

}
],
"selectMode": "singlerequired"

},
"step_limit": {
"type": "static",
"values": [
{
"display": "top 5",
"value": 5

}, {
"display": "top 10",
"value": 10

}, {
"display": "top 100",
"value": 100

}
],
"start": [100],
"selectMode": "singlerequired"

},
"step_quarterly_bookings": {
"type": "aggregate",
"datasets":[{"name":"opp"}],
"query": {
"groups": [["CloseDate_Year", "CloseDate_Quarter"]],
"measures": [["sum", "Amount"]]

},
"isFacet": true,
"useGlobal": true

},
"step_top_10": {
"type": "aggregate",
"datasets":[{"name":"opp"}],
"query": {
"groups": "{{ selection(step_group) }}",
"measures": "{{ selection(step_measure) }}",

51

Selection Binding in a Static StepBindings

"order": [
[
-1, {
"ascending": "{{ value(selection(step_order)) }}"

}
]

],
"limit": "{{ value(selection(step_limit)) }}"

},
"isFacet": true

}
},
"widgets": {
"sel_list_filter_dim": {
"type": "listselector",
"position": {
"x": 860,
"y": 90,
"w": "290",
"h": "288"

},
"parameters": {
"step": "step_filter_dim",
"title": "List of Products",
"expanded": true,
"instant": true

}
},
"sel_list_filter_compound_dim": {
"type": "listselector",
"position": {
"x": 860,
"y": 390,
"w": "290",
"h": "288"

},
"parameters": {
"step": "step_quarterly_bookings",
"title": "List of Quarters",
"expanded": true,
"instant": true

}
},
"sel_group": {
"type": "pillbox",
"position": {
"x": 10,
"y": 10

},
"parameters": {
"title": "group",
"step": "step_group"

}
},

52

Selection Binding in a Static StepBindings

"sel_measure": {
"type": "pillbox",
"position": {
"x": 380,
"y": 10

},
"parameters": {
"title": "mea",
"step": "step_measure"

}
},
"sel_order": {
"type": "pillbox",
"position": {
"x": 480,
"y": 10

},
"parameters": {
"title": "order",
"step": "step_order",
"start": true

}
},
"sel_limit": {
"type": "pillbox",
"position": {
"x": 620,
"y": 10

},
"parameters": {
"title": "limit",
"step": "step_limit"

}
},
"widget1": {
"type": "chart",
"position": {
"x": 10,
"y": 110,
"w": "830",
"h": "330"

},
"parameters": {
"visualizationType": "hbar",
"step": "step_top_10"

}
}

}
}

Bind a Static Filter and Group Selector to a Query

Static filters or group selectors can be bound to a query that’s written in SAQL.

53

Bind a Static Filter and Group Selector to a QueryBindings

Templates are expressions, embedded in double braces ({{ }}), that get replaced with the current state of the step that they’re attached
to.

For example, this dashboard contains a static filter widget that contains a list of accounts. The dashboard also contains a group selector
widget that lets users indicate whether to group by account or product. When a user makes a selection, the chart is updated accordingly.
The part of the query that controls the filtering is:

q = filter q by 'Account-Name' in {{ selection(step_Account_Owner_Name_2) }};

The step that’s named step_Account_Owner_Name_2 is configured as a selection binding so that it picks up the current selection
state. Because it’s within the double braces, the value of that selection is substituted and used in the query.

The part of the query that controls the grouping is:

q = group q by {{ single_quote(value(selection(step_StageName_3))) }};
q = foreach q generate {{ single_quote(value(selection(step_StageName_3))) }} as {{
value(selection(step_StageName_3)) }}, sum('Amount') as 'sum_Amount', count() as 'count'";

If a user selects Product in the group selector widget, the actual query that’s passed to the query engine contains:

q = group q by 'Product';
q = foreach q generate 'Product' as "Product", sum('Amount') as 'sum_Amount', count() as
'count';

Note: To view the query that’s used to update the chart, open your browser’s JavaScript console and type
edge.log.query=true. On the dashboard, select a different group. The new query appears in the console unless the query
is cached.

"steps": {
"step_Account_Name_1": {
"isFacet": false,
"query": {
"pigql": "q = load \"opp\";\nq = filter q by 'Account-Name' in {{

selection(step_Account_Owner_Name_2) }};\nq = group q by {{
single_quote(value(selection(step_StageName_3))) }};\nq = foreach q generate {{

54

Bind a Static Filter and Group Selector to a QueryBindings

single_quote(value(selection(step_StageName_3))) }} as {{ value(selection(step_StageName_3))
}}, sum('Amount') as 'sum_Amount', count() as 'count'",

"groups": "{{ selection(step_StageName_3) }}",
"measures": [["sum", "Amount"]]

},
"visualizationParameters": {
"visualizationType": "hbar"

},
"selectMode": "none",
"useGlobal": true,
"datasets":[{"name":"opp"}],
"type": "aggregate",
"isGlobal": false

},
"step_Account_Owner_Name_2": {
"dimensions": ["Account-Name"],
"isFacet": false,
"values": [
{
"value": ["Lakeside Med", "Hospital at Gulfport", "Hospital at Carbondale"],
"display": "Arbuckle Laboratories, Arbuckle Laboratories - Austria, Arbuckle

Laboratories - France"
}, {
"value": ["Health University Med"],
"display": "Health University Med"

}, {
"value": ["Canson"],
"display": "Canson"

}, {
"value": ["ComputeWise"],
"display": "ComputeWise"

}, {
"value": ["Dixon Chemical", "Dixon Chemical - Spain"],
"display": "Dixon Chemical, Dixon Chemical - Spain"

}, {
"value": ["EarthNet"],
"display": "EarthNet"

}, {
"value": ["Ecotech - Germany", "Ecotech - HQ"],
"display": "Ecotech - Germany, Ecotech - HQ"

}
],
"selectMode": "multi",
"useGlobal": true,
"datasets":[{"name":"opp"}],
"type": "static",
"isGlobal": false

},
"step_StageName_3": {
"isFacet": false,
"values": [
{
"value": ["Account-Name"],
"display": "Account"

55

Bind a Static Filter and Group Selector to a QueryBindings

}, {
"value": ["Product"],
"display": "Product"

}
],
"useGlobal": true,
"datasets":[{"name":"opp"}],
"type": "static",
"selectMode": "singlerequired",
"isGlobal": false

}
}

Binding a Date Picker and Static Dates

You can use selection bindings to filter lenses for dates from a date picker lens or a static absolute or relative date step.

These examples demonstrate how to bind a date picker lens to filter another query and a static relative date step to another query.

Binding a Date Picker to a Compact and SAQL Query
In this example, a date picker lens filters a time chart lens using a selection() binding. The lens for the date picker is:

"step_for_datePicker": {
"type": "aggregate",
"datasets":[{"name":"opp"}],
"query": {
"groups": [
[
"CloseDate_Year",
"CloseDate_Month"
]
],
"measures": [
[
"count",
"*"
]
],
"limit": 50
},
"start": [
[
[
"year",
-3
],
[
"year",
1
]
]

56

Binding a Date Picker and Static DatesBindings

]
},

To filter another lens by the selection in the date picker, add the following code into a compact or SAQL step.

{{selection(step_for_datePicker)}}

The compact form looks like the following.

"step_compact_filtered_by_date_saql": {
"type": "aggregate",
"datasets":[{"name":"OpportunityWithAccount"}],
"query": {
"groups": [
[
"CloseDate_Year",
"CloseDate_Month"
]
],
"measures": [
[
"count",
"*"
]
],
"filters": [
[
"CloseDate",
"{{ selection(step_for_datePicker) }}"
]
],
"limit": 50
}
}

The SAQL looks like the following.

"step_date_saql_binding": {
"type": "aggregate",
"query": {
"pigql": "q = load \"OpportunityWithAccount\";\nq = filter q by date('CloseDate_Year',

'CloseDate_Month', 'CloseDate_Day') in {{selection(step_for_datePicker)}};\nq = group q
by ('CloseDate_Year', 'CloseDate_Month');\nq = foreach q generate 'CloseDate_Year' + \"~~~\"
+ 'CloseDate_Month' as 'CloseDate_Year~~~CloseDate_Month', count() as 'count';\nq = limit
q 2000;",

"groups": [
[
"CloseDate_Year",
"CloseDate_Month"
]
],
"measures": [
[
"count",
"*"
]

57

Binding a Date Picker and Static DatesBindings

]
},
"isFacet": false,
"useGlobal": true
}
}

Note: The date dimension that the selection is filtering (in this example, "CloseDate") must be the same dimension name
that’s used in "groups" in the date picker lens.

Binding a Static Date List Selector to Filter Other Compact or SAQL Lenses
In this example, a selection from a list or toggle lens of predefined date ranges filters another lens in a dashboard. The following sample
shows a selection() binding from a static toggle button lens ("step_date_static_with_start") to a bar chart lens in compact
form ("compact_step_faceted_by_static") or SAQL ("saql_step_faceted_by_static"). Each value is a relative
date range, for example, five years ago ("year", -5) until this year ("year", 0).

"step_date_static_with_start": {
"type": "static",
"values": [
{
"display": "-6 years",
"value": [
[
[
"year",
-6
],
[
"year",
0
]
]
]
},
{
"display": "-5 years",
"value": [
[
[
"year",
-5
],
[
"year",
0
]
]
]
},
{
"display": "-4 years",
"value": [

58

Binding a Date Picker and Static DatesBindings

[
[
"year",
-4
],
[
"year",
0
]
]
]
}
],
"selectMode": "singlerequired",
"start": [
[
[
[
"year",
-5
],
[
"year",
0
]
]
]
]
}

You can then use the previous sample to filter another compact or SAQL step on selection by using the selection() binding.

{{selection(step_date_static_with_start)}}

The compact form looks like the following.

"compact_step_faceted_by_static": {
"type": "aggregate",
"datasets":[{"name":"opp"}],
"query": {
"groups": [
"Product"
],
"filters": [
[
"CreatedDate",
"{{selection(step_date_static_with_start)}}"
]
],
"measures": [
[
"sum",
"Amount"
]
],

59

Binding a Date Picker and Static DatesBindings

"limit": 2000
},
"isFacet": false
}

The SAQL selection binding is:

"saql_step_faceted_by_static": {
"type": "aggregate",
"query": {
"pigql": "q = load \"opp\";\nq = filter q by date('CreatedDate_Year',

'CreatedDate_Month', 'CreatedDate_Day') in {{selection(step_date_static_with_start)}};\nq
= group q by 'Product';\nq = foreach q generate 'Product' as 'Product', sum('Amount') as
'sum_Amount', count() as 'count';\nq = limit q 2000;",

"groups": [
"Product"
],
"measures": [
[
"sum",
"Amount"
]
]
},
"isFacet": false,
"useGlobal": true
},

Binding Operations

You can use several more operations with results and selection bindings to extract the correct results.

value()
The value() operation is used to get a selector array value and convert it to a single value. If the selector array value is empty, the
operation returns all values. Because the value() operation can return multiple values when the selector array value is empty, use in,
not ==, like in this example:

q = filter q by 'Owner Name' in {{ value(selection(step_StageName_3))}}

single_quote()
The single_quote() operation is typically used in selection bindings in a SAQL step to correctly format the "group" and "foreach
generate" lines in the query. The single_quote() operation takes an array of values and converts double quotes into single
quotes and square brackets into parentheses. For example: "Owner-Name" converts to 'Owner-Name', and ["Owner-Name",
"Owner-Region"] converts to ('Owner-Name', 'Owner-Region').

Consider the following static selector, with the array values ["Account-Name"] and ["Product"]:

{
"step_StageName_3": {

"isFacet": false,

60

Binding OperationsBindings

"values": [
{

"value": [
"Account-Name"

],
"display": "Account"

},
{

"value": [
"Product"

],
"display": "Product"

}
],
"useGlobal": true,
"datasets":[{"name":"opp"}],
"type": "static",
"selectMode": "singlerequired",
"isGlobal": false

}
}

The following example binds the array values to a SAQL query that requires the "group by" and "foreach generate" values
to use single quotes. Therefore single_quote() converts ["Account-Name"] to 'Account-Name'.

{
"step_Account_Name_1": {

"isFacet": false,
"query": {

"pigql": "q = load \"opp\";\nq = group q by
{{ single_quote(value(selection(step_StageName_3))) }};\nq =
foreach q generate {{ single_quote(value(selection(step_StageName_3)))
}} as {{ single_quote(value(selection(step_StageName_3)) }},
sum('Amount') as 'sum_Amount', count() as 'count'",

"groups": "{{ selection(step_StageName_3) }}",
"measures": [

[
"sum",
"Amount"

]
]

},
"visualizationParameters": {

"visualizationType": "hbar"
},
"selectMode": "none",
"useGlobal": true,
"datasets":[{"name":"opp"}],
"type": "aggregate",
"isGlobal": false

}
}

61

Binding OperationsBindings

The resulting query is:

q = load "opp";\nq = group q by 'Account-Name';\nq =
foreach q generate 'Account-Name' as 'Account-Name', sum('Amount') as
'sum_Amount', count() as 'count'

no_quote()
The no_quote()operation is typically used in selection bindings in a SAQL step to correctly format the "order" line in a query.
The no_quote() operation takes an array of values and converts double quotes and square brackets into no quotes. For example,
["desc"] converts to desc.

Consider the ["desc"] and ["asc"] array values that are specified in the following static step:

{
"step_order": {

"type": "static",
"values": [

{
"display": "desc",
"value": [

"desc"
]

},
{

"display": "asc",
"value": [

"asc"
]

}
],
"selectMode": "singlerequired"

}
}

The following example binds the array values into a SAQL step:

q = order q by 'Amount' {{ no_quote(value(selection(step_order))) }}

The desc or asc value is inserted without any quotes:

q = order q by 'Amount' desc

field()
The field() operation creates a field for each object in an array.

Three field values are assigned to the "$" and "#" options in this static step (step_measure): "compact", "alias", and
"proj":

{
"step_measure": {

"type": "static",
"values": [

{

62

Binding OperationsBindings

"display": "$",
"value": [

{
"compact": [["sum", "Amount"]],
"alias": "sum_Amount",
"proj": "sum('Amount')"

}
],
"display": "#",
"value": [

{
"compact": [["count", "*"]],
"alias": "count",
"proj": "count()"

}
]

}
],
"selectMode": "singlerequired"

}
}

After being assigned, each field value can be referenced in other step selection bindings by using the field() operation.

For example, when a dashboard user clicks # in the toggle selector that uses step_measure, the SAQL query in this aggregate step
(step_top_10) references the "proj" field to insert a count() function, the "alias" field to insert "count" as a string,
and the "compact" field to insert [["count", "*"]].

{
"step_top_10": {
"type": "aggregate",
"datasets":[{"name":"opp"}],
"query": {
"pigql":
"q = load 'edgemarts/Opportunity/OpportunityEM';
q = group q by 'Account_Name';
q = foreach q generate
'Account_Name' as 'Account_Name',
{{ no_quote(value(field(selection(step_measure),'proj'))) }}
as {{ single_quote(value(field(selection(step_measure), 'alias'))) }};

q = order q by {{ single_quote(value(field(selection(step_measure), 'alias'))) }}
{{ no_quote(value(field(selection(step_order), 'pigql'))) }};

q = limit q {{ value(selection(step_limit)) }};",
"groups": ["Account_Name"],
"measures": "{{ value(field(selection(step_measure), 'compact')) }}",
"order":
[[-1, { "ascending": "{{ value(field(selection(step_order), 'compact')) }}" }]]

},
"isFacet": true
}

}

63

Binding OperationsBindings

GRID LAYOUTS

Wave inserts a gridLayouts section in your dashboard’s JSON definition when you create a dashboard or save an existing dashboard
with the flex dashboard designer. The gridLayouts section affects the layout of web browsers only on desktop and laptop computers,
not mobile devices.

As you update the dashboard with the flex dashboard designer, the designer automatically updates the gridLayouts section of
the dashboard JSON. You can also edit the JSON directly to set properties that aren’t available in the user interface. To access the JSON
editor, see View or Modify a Dashboard JSON File.

Note: The gridLayouts section doesn’t apply to mobile devices or to dashboards that are saved with the original designer.
To configure how dashboards built with the original designer display on desktops, see Widgets. To configure the layout on mobile
devices, see Use a Mobile Layout for Your Dashboard.

Grid Layouts Specification

The gridLayouts section allows you to customize how dashboards built with the flex dashboard designer display on desktops.

Grid Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, and more.

Grid Layouts Specification

The gridLayouts section allows you to customize how dashboards built with the flex dashboard designer display on desktops.

In a dashboard’s JSON file, the gridLayouts section is a child of the state section and a sibling of the widgets and steps
sections. Here is an example of a typical gridLayouts section. The widget_name refers to a specific widget named in the
gridLayouts section of the JSON file. It contains attributes that are defined in the Grid Layouts Attribute Reference.

"gridLayouts": [
{

"name": "desktop",
"pages": [

{
"widgets": [

{
"colspan": 7,
"column": 0,
"name": "widget_name",
"row": 0,
"rowspan": 4

}
]

}
],
"selectors": [],
"version": 1,
"widgetStyle":

{
"borderEdges": ["all"],

64

"borderColor": "#44A2F5",
"backgroundColor": "#E2DCF2",
"borderWidth": 2

}
}

}
]

Grid Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, and more.

Widget Attributes
The widget attributes determine the height and width of each widget, and where it’s placed on the dashboard. Because the flex dashboard
designer uses a grid, you specify the attributes in terms of rows and columns. For example, you specify the number of columns to
determine the width of a widget. You set the attributes for each widget under the widgets field under gridLayouts. The following
JSON snippet shows an example of gridLayouts with widget attributes for the meafilter_1 widget.

"gridLayouts": [
{

"name": "desktop",
"selectors": [],
"version": 1,
"widgetStyle": {},
"pages": [

{
"widgets": [

{
"name": "meafilter_1",

"row": 1,
"column": 2,
"colspan": 4,
"rowspan": 3,
"widgetStyle":

{
"borderEdges": []

}
}

]
}

]
}

]

These widget properties place the widget as shown in the following graphic. Notice that each column and row start at 0, not 1.

65

Grid Layouts Attribute ReferenceGrid Layouts

A widget can have zero or more attributes.

DetailsProperty Name

Type
String

name

Available for These Widgets

• All widgets

Description

Internal name of the widget. This name is used to reference the widget in the dashboard JSON.

Type
Integer

column

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description

The column number where the widget starts. Column and row specify the top left corner of the
widget.

Note: If this widget is included in a container, these attributes are relative to the container widget.

Type
Integer

row

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description

The row number where the widget starts. Column and row specify the top left corner of the widget.

66

Grid Layouts Attribute ReferenceGrid Layouts

DetailsProperty Name

Type
Integer

colspan

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description
The number of columns that a widget spans—the width of the widget. If the dashboard doesn’t have
enough columns to accommodate the specified width, then columns are added to the dashboard.

Type
Integer

rowspan

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
Yes. Value is determined based on the widget's placement.

Description
The number of rows that a widget spans—the height of the widget. If the dashboard doesn’t have
enough rows to accomodate the specified height, then rows are added.

Type
List

widgetStyle

Available for These Widgets

• All widgets

Exposed in the Dashboard Designer’s User Interface
No

Description

Specifies the border type, border color, and background color. See widgetStyle attributes.

Widget Style Attributes
The widget style attributes determine the border type, border color, and background color. You can specify these attributes at two levels.
To set the default for all dashboard widgets, use the widgetStyle field under gridLayouts. To set a specific widget, use the
widgetStyle field under widgets. This setting overrides the default settings.

The following JSON snippet shows gridLayouts with widgetStyle attributes for the meafilter_1 widget.

"gridLayouts": [
{

"name": "desktop",
"selectors": [],
"version": 1,

67

Grid Layouts Attribute ReferenceGrid Layouts

"widgetStyle": {},
"pages": [

{
"widgets": [

{
"name": "meafilter_1",
"row": 1,
"column": 2,
"colspan": 4,
"rowspan": 3,
"widgetStyle":

{
"borderEdges": ["all"],
"borderColor": "#44A2F5",
"backgroundColor": "#E2DCF2",
"borderWidth": 2

}
}

]
}

]
}

]

The widgetStyle attributes specified in the previous JSON snippet format the widget’s border and background color as shown here.

DetailsProperty Name

Type
String

backgroundColor

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Background color of the widget. The default is #FFFFFF.

68

Grid Layouts Attribute ReferenceGrid Layouts

DetailsProperty Name

Type
String

borderColor

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Color of the widget’s border. The default is #FFFFFF.

Type
List

borderEdges

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

A list of values that specify which edges of the widget have a border. Valid values are left, right,
top, bottom, and all. Default is no border.

Type
Integer

borderRadius

Available for This Widget

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The roundness of the border corners.

Valid values are: 0 (not rounded, default), 4, 8, and 16. The higher the value, the more rounded the
corner.

Type
Integer

borderWidth

Available for These Widgets

• All widgets in flex dashboard designer

Exposed in the Dashboard Designer’s User Interface
Yes

Description

Width of the widget’s border. Valid values are 1, 2 (default), 4, and 8.

69

Grid Layouts Attribute ReferenceGrid Layouts

DetailsProperty Name

Reserved for future use.bottomPadding

Reserved for future use.leftPadding

Reserved for future use.rightPadding

Reserved for future use.topPadding

70

Grid Layouts Attribute ReferenceGrid Layouts

LAYOUTS

Add a layouts section to your dashboard’s JSON definition to customize its appearance on mobile devices.

There are two types of dashboard layouts for mobile devices:

Absolute (default)
If no layouts section is defined in your dashboard’s JSON, then the dashboard’s layout is absolute.

The absolute layout is optimized for display in a Web browser on a desktop or laptop computer.

Mobile
If a layouts section is present in your dashboard’s JSON, then the dashboard’s layout is mobile. This is true regardless if you use
the original designer or flex dashboard designer to configure the dashboard.

The mobile layout lets you optimize the position, order, and size of the widgets in your dashboard for display on mobile devices.
This layout is made up of rows, columns, cells, and pages. Each cell in the grid can contain zero or more widgets. The number of
rows, columns, and cells in your mobile layout depend on the number of widgets and the number of pages.

A dashboard with an absolute layout looks great in a Web browser:

The same dashboard with an absolute layout might not render well on a smart phone:

71

By using a mobile layout with two pages, the dashboard renders perfectly on a smart phone:

Use a Mobile Layout for Your Dashboard

Use a mobile layout to customize your dashboard’s appearance on mobile devices.

Understanding Column, Row, and Cell Sizing in Mobile Layouts

Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

72

Layouts

Layouts Specification

The layouts section is used to customize how dashboards display on mobile devices.

Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, padding, and more.

Use a Mobile Layout for Your Dashboard

Use a mobile layout to customize your dashboard’s appearance on mobile devices.

In a dashboard’s JSON file, the layouts section is a child of the state section and a sibling of the widgets and steps sections.

1. From the open dashboard, press CTRL+E for PC or CMD+E for Mac. This opens expert editor mode. For more information, see View
or Modify a Dashboard JSON File.

2. Add a layouts section to your dashboard’s JSON.

For example, this layouts section defines a mobile layout with two pages, two rows of widgets on each page. The first page has
1 widget on each row. The second page has two widgets on the first row, and one widget on the second row.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2",
"chart_1"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1"

]
}

],
"version": 1

}

3. Optionally, customize the layout of your dashboard by setting attributes for each widget and row.

For example, the layouts from step two can be updated to include widget and row attributes. The first row on the first page has
a row height of 300 pixels. The chart widget on the second page has a width of 2 columns.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row:{height=300}",
"chart_1"

]
},
{

73

Use a Mobile Layout for Your DashboardLayouts

"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"

]
}

],
"version": 1

}

4. Optionally, set device-specific and orientation-specific layouts for your dashboard. For available device and orientation options, see
Layouts Options in the Layouts Specification guide.

For example, the layouts from step three can be updated to use only one page when viewed on an iPad in landscape mode:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row:{height=300}",
"chart_1"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"

]
}

],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"dimfilter_1 | dimfilter_3 | buttongroup_2",
"chart_1 {colspan=3}"

]
}

],
"version": 1

}

5. Click Switch to Runtime, and then save your updated dashboard.

74

Use a Mobile Layout for Your DashboardLayouts

6. Test your dashboard’s new mobile layout by viewing the dashboard on a mobile device.

SEE ALSO:

Layouts Specification

Layouts Attribute Reference

Layouts Specification

Understanding Column, Row, and Cell Sizing in Mobile Layouts

Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

How Column Number and Size Are Set
The number of columns in your mobile layout is equivalent to the number of widgets in your rows. If there are three widgets in each
row, then the dashboard has three columns. If your mobile layout has two rows with four widgets in row one and five widgets in row
two, then the dashboard has five columns. If the colspan attribute specifies a number of columns greater than the number of widgets
in any row, then the dashboard adds columns to accommodate the colspan attribute.

For example, a dashboard with this layouts section has three columns on the first page and two columns on the second page:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2",
"chart_1 {colspan=3}"

]
},
{
"rows": [
"dimfilter_1 | dimfilter_3",
"chart_1"

]
}

],
"version": 1

}

Remember these tips when determining how many columns are in your mobile layout:

• All columns have the same width. If your dashboard has four columns, then each column is half the width of a dashboard with two
columns.

• Each page of a dashboard independently determines how many columns appear. For example, a dashboard can have three columns
on page one, and four columns and page two.

• Every dashboard has at least one column.

• There is no limit to the number of columns that a dashboard can have. If you add too many columns, then column width could
become impracticably small. Remember to test your layout for usability!

75

Understanding Column, Row, and Cell Sizing in Mobile
Layouts

Layouts

How Row Number and Height Are Set
For each row, here’s how height is calculated:

• If a row height is set using the height attribute, then the row’s height is equal to the specified value.

• If one or more widgets in the row has a preferred height, then the row’s height is equal to that of whichever preferred height is
tallest.

• If there is no height attribute and none of the row’s widgets have a preferred height, then the row’s height dynamically grows
to occupy the available space. If multiple rows grow dynamically, then their heights are equal to one another. For example, if there
are 200 pixels of available space, and two rows with dynamically set heights, then each row has a height of 100 pixels.

How Widgets Are Sized
Some widgets have absolute sizes, and some scale dynamically.

Height Scaling
Behavior

Width Scaling
Behavior

Has a Fixed Height?Has a Fixed Width?Widget

Don’t scaleDon’t scaleYesYesLink

Scale to fit textScale to fit textIf one line long, yes.

If more than one line
long, no.

NoText

Don’t scaleScaleYesNoPillbox

ScaleScaleNoNoBox

ScaleScaleNoNoChart

Don’t scaleScaleYesNoList selector

Don’t scaleScaleYesNoRange selector

Don’t scaleScaleYesNoNumber

Layouts Specification

The layouts section is used to customize how dashboards display on mobile devices.

In a dashboard’s JSON file, the layouts section is a child of the state section and a sibling of the widgets and steps sections.
Here is an example of a typical layouts section:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"widget_name_1",
"widget_name_2"

]

76

Layouts SpecificationLayouts

},
{
"rows": [
"widget_name_3 | widget_name_4",
"widget_name_2 {attribute=2}"

]
}

],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"widget_name_1 | widget_name_3 | widget_name_4 | row: {attribute=300}",
"widget_name_2 {widget_name=3}"

]
}

],
"version": 1

}

In the prior example, widget_name refers to a specific widget named in the widgets section of the JSON file. Attribute
refers to one of the attributes listed in the Layouts Attribute Reference. The pipe character (|) is the delimiter for cells. A cell can contain
multiple widgets separated by a comma (,). Rows are delimited by a comma (,) outside the quoted string (each quoted string is a
single row).

Simple Layouts Section
Here’s a simple layouts section that has four widgets on four rows in a single column on a single page:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_1",
"dimfilter_1",
"dimfilter_2",
"chart_1"

]
}

]
"version": 1

}

Complex Layouts Section
A more complex layouts section can be used to set device-specific and orientation-specific display rules. The following layouts
section lays out the dashboard’s widgets on two pages. The first page’s first row has a height of 300 pixels. The second page has two

77

Layouts SpecificationLayouts

rows and two columns. One of the cells in the first row contains two widgets. One of the box widgets has three attributes set. The chart
widget spans two columns. If the dashboard is viewed on an iPad in landscape mode, then only one page with two rows is shown. The
first row has three widgets and the second row has one widget that spans three columns.

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"buttongroup_2 | row: {height=300}",
"chart_1"

]
},
{
"rows": [
"dimfilter_1, box_1 {colspan=2, rowspan=2, zIndex=-1, vpad=5, hpad=5} |

dimfilter_2”,"chart_1 {colspan=2}"
]

}
],
"version": 1

},
{
"device": "ipad",
"orientation": "landscape",
"pages": [
{
"rows": [
"dimfilter_1, box_1 {colspan=2, rowspan=3, zIndex=-1, vpad=5, hpad=5} | dimfilter_2

|
buttongroup_2",

"chart_1 {colspan=3}"
]

}
],
"version": 1

}

Layouts Options
The previous example shows a layout specifically for an iPad in landscape mode (“device:ipad, orientation:landscape”).
Layout device and orientation choices are as follows:

• “device”:“default”: For layouts not targeted to any specific device or orientation.

• “device”:“ipad”, “orientation”:“portrait”: For Apple iPad in portrait mode.

• “device”:“ipad, “orientation”:“landscape”: For Apple iPad in landscape mode.

• “device”:“ipad”: For Apple iPad in either portrait or landscape mode.

• “device”:“iphone”: For Apple iPhone; portrait mode is implied.

• “device”:“external”: For displaying on an external device, for example if device is connected via HDMI cable to a projector
or display. To use external layout, select Presentation Mode in Settings.

• “device”:“applewatch”: For Apple Watch. Supports only a single, scrolling page.

78

Layouts SpecificationLayouts

• “orientation”:“portrait”: For either iPhone or iPad in portrait mode.

• “orientation”:“landscape”: For iPad in landscape mode.

Note: If the app is viewed on Apple Watch and “device”:”applewatch” layout is not present, the app first tries to
reformat the first page of the “device”:”iphone” layout. If “device”:”iphone” is not present, it then attempts to
use the first page of the “device”:“default” layout.

Note: If the app is viewed on an external device and “device”:”external” layout is not present, the app first tries to use
the first page of the “device”:”ipad” “orientation”:”landscape”. If “device”:”ipad”
“orientation”:”landscape” is not present, it then attempts to use the first page of the “device”:“default”
layout.

Layout Autoformatting
If layouts is not specified, Wave uses autoformatting to present the dashboard, which takes a best guess about the appropriate
layout to use. Note the following about layout autoformatting:

• With AppleWatch, autoformat uses the first page of the default layout and converts it to a single column.

• With an external device, autoformat supports only a single, unscrollable page and attempts to fit all the dashboard contents on the
external display.

• Autoformat supports a limited number of columns on each device, as shown in the table.

Maximum columns supported by autoformattingDevice

OneApple Watch

TwoApple iPhone

FourApple iPad

Autoformatting is enabled by default. To disable autoformatting, for example for a carefully designed dashboard that cannot use a mobile
layout, add an empty pages array under the layouts array, which looks like this:

"layouts": [
{
"pages": [
{
}

]
}

SEE ALSO:

Use a Mobile Layout for Your Dashboard

Use a Mobile Layout for Your Dashboard

Layouts Attribute Reference

79

Layouts SpecificationLayouts

Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, padding, and more.

Widget Attributes
These attributes can be set on widgets. Each widget can have zero or more attributes.

DetailsProperty Name

Type
Integer

colspan

Available for These Widgets

• All widgets

Description
The number of columns that a widget spans—the width of the widget. If the dashboard doesn’t have
enough columns to accommodate the specified width, then columns are added to the dashboard.

Example
In this example, the widget named “chart_1” spans 3 columns:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 | dimfilter_2 | dimfilter_3",
"chart_1 {colspan=3}"

]
}

]
"version": 1

}

Type
Integer

rowspan

Available for These Widgets

• All widgets

Description
The number of rows that a widget spans—the height of the widget. If the dashboard doesn’t have
enough rows to accomodate the specified height, then rows are added.

Example
In this example, the widget named “dimfilter1_1” spans 2 rows:

"layouts": [
{
"device": "default",

80

Layouts Attribute ReferenceLayouts

DetailsProperty Name

"pages": [
{
"rows": [
"dimfilter_1 {rowspan=2} | dimfilter_2",
"chart_1"

]
}

]
"version": 1

}

Type
Integer

zIndex

Available for These Widgets

• All widgets

Description
The position of a widget relative to other widgets in the dashboard. zIndex specifies whether a widget
is in front of or behind another widget. A smaller zIndex means that a widget appears further behind
other widgets with larger zIndex values.

The default value of zIndex is 0.

Example
In this example, the widget named “box_1” appears behind the widget named “number_1”:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"box_1 {zIndex=1}, number_1 {zIndex=2} | chart_1"

]
}

]
"version": 1

}

Type
Integer

vpad

Available for These Widgets

• All widgets

Description
The padding added to the top and bottom sides of the widget’s cell in pixels. If vpad equals 10, then
10 pixels are added to the top of the cell and 10 pixels are added to the bottom.

The default value of vpad is 0.

81

Layouts Attribute ReferenceLayouts

DetailsProperty Name

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 {vpad=5}"

]
}

]
"version": 1

}

Type
Integer

hpad

Available for These Widgets

• All widgets

Description
The padding added to the left and right sides of the widget’s cell in pixels. If hpad equals 10, then 10
pixels are added to the left side of the cell and 10 pixels are added to the right side. A negative value can
be assigned to

The default value of hpad is 0.

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"dimfilter_1 {hpad=5}"

]
}

]
"version": 1

}

Type
Integer

vAxisWidth

Available for These Widgets

• chart

82

Layouts Attribute ReferenceLayouts

DetailsProperty Name

Description
The size of a chart widget’s x-axis in pixels. Use vAxisWidth to align multiple chart widgets.

Example
In this example, the widget named “chart_1” has an x-axis that is 250 pixels wide:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {vAxisWidth=250}"

]
}

]
"version": 1

}

Type
Integer

hAxisHeight

Available for These Widgets

• chart

Description
The size of a chart widget’s y-axis in pixels. Use hAxisHeight to align multiple chart widgets.

Example
In this example, the widget named “chart_1” has a y-axis that is 250 pixels tall:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {hAxisHeight=250}"

]
}

]
"version": 1

}

Row Attributes
These attributes can be set on rows.

83

Layouts Attribute ReferenceLayouts

DetailsProperty Name

Description
If height is set to a number, then height is the height of a row in pixels.

If height is set to preferred, then the row’s height is equal to the largest height

height

Example
In this example, the first row’s height is 300 pixels. The second row’s height is equal to the height of its
tallest widget:

"layouts": [
{
"device": "default",
"pages": [
{
"rows": [
"chart_1 {colspan=3} | row:{height=300}",
"dimfilter_1 | buttongroup_1 | number_1 |

row:{height=preferred}"
]

}
]
"version": 1

}

SEE ALSO:

Use a Mobile Layout for Your Dashboard

Layouts Specification

84

Layouts Attribute ReferenceLayouts

CHART TYPES FOR WIDGETS

You can display a widget as a chart to visualize your data. Wave provides different types of charts to represent and highlight data in
different ways. This section describes some of them.

Combo Chart Type Example

Sample JSON for combo chart.

Choropleth (Map) Chart Type Example

Sample JSON and chart widget for choropleth chart.

Funnel Chart Type Example

Sample JSON and chart widget for funnel chart.

Stacked Waterfall Chart Type Example

Sample JSON and chart widget for stackwaterfall chart.

Waterfall Chart Type Example

Sample JSON and chart widget for waterfall chart.

Combo Chart Type Example

Sample JSON for combo chart.

Available through both Wave UI and dashboard JSON.

85

Common User Cases
For visualizations with both lines and bars to show multiple metrics. Can show two sets of numbers at the same time, such as total sales
and profit, revenue and profit margin, net and gross margins, and rainfall totals and temperature.

Sample JSON
"chart_19":
{
"type": "chart",
"position": {
"zIndex": 18,
"x": 0,
"y": 10,
"w": "990",
"h": "430"
},
"parameters": {
"step": "FiscalYear_FiscalQuarter_6",
"visualizationType": "combo",
“dualAxis”: true
}
},

Choropleth (Map) Chart Type Example

Sample JSON and chart widget for choropleth chart.

86

Choropleth (Map) Chart Type ExampleChart Types for Widgets

Available through both Wave UI and dashboard JSON.

Common Use Cases
To display a thematic map in which areas are shaded in proportion to the measurement of the statistical variable being displayed on
the map, such as population density or total sales. Initial implementation supports world map broken down by country and United
States map broken down by state.

Sample JSON
"chart_1": {

"type": "chart",
"position": {

"zIndex": 0,
"x": 40,
"y": 40,
"w": 500,
"h": 300

},
"parameters": {

"step": "AccountName_1",
"lowColor": "rgb(93, 108, 114)",
"highColor": "rgb(98, 139, 156)",
"map": "Central America",
"visualizationType": "choropleth"

}
}

87

Choropleth (Map) Chart Type ExampleChart Types for Widgets

Chart Widget Properties

Funnel Chart Type Example

Sample JSON and chart widget for funnel chart.

88

Funnel Chart Type ExampleChart Types for Widgets

Available through both Wave UI and dashboard JSON.

Common Use Cases
To show stages in the sales process and amounts associated with each stage. Can show how well sales are going for a particular period
and identify potential bottlenecks in the deal closing process.

Sample JSON
"chart_1": {
"type": "chart",
"position": {
"zIndex": 0,
"x": 40,
"y": 40,
"w": 500,
"h": 300
},
"parameters": {
"step": "AccountName_1",
"showValues": false,
"showPercentage": false,
"showTotal": false,
"stemSegments": 3,
"legend": true,
"visualizationType": "funnel"
}

89

Funnel Chart Type ExampleChart Types for Widgets

Chart Widget Properties

Stacked Waterfall Chart Type Example

Sample JSON and chart widget for stackwaterfall chart.

90

Stacked Waterfall Chart Type ExampleChart Types for Widgets

Available through both Wave UI and dashboard JSON.

Common Use Cases
Use to show the cumulative effect of sequentially introduced positive or negative values with breakdowns of value totals. Also known
as "flying bricks" or "Mario" charts.

Sample JSON
"ng2":
{
"type": "chart",
"position": {
"x": 450,
"y": 0,
"w": "440",
"h": "320"
},
"parameters": {
"step": "step_two_dims",
"visualizationType": "stackwaterfall",
“computeTotal”: false,

“showValues”: false,
“legend”: true

}
}

91

Stacked Waterfall Chart Type ExampleChart Types for Widgets

Chart Widget Properties

Waterfall Chart Type Example

Sample JSON and chart widget for waterfall chart.

Available through both Wave UI and dashboard JSON.

Common Use Cases
Use to show the cumulative effect of sequentially introduced positive or negative values. Also known as "flying bricks" or "Mario" charts.

Sample JSON
"ng1":
{
"type": "chart",
"position": {
"x": 0,
"y": 0,
"w": "380",
"h": "320"

92

Waterfall Chart Type ExampleChart Types for Widgets

},
"parameters": {
"step": "step_one_dim",
"totalColor": "rgb(163, 24, 147)",
"visualizationType": "waterfall"
}
}

Chart Widget Properties

93

Waterfall Chart Type ExampleChart Types for Widgets

	Wave Analytics Dashboard JSON Overview
	View or Modify a Dashboard JSON File
	Dashboard JSON File Example
	gridLayoutStyle
	widgetStyle
	Steps
	Static Steps

	Widgets
	Widget Parameters Property Reference

	Query
	Query Example
	Compare Table Example (Mobile)

	Bindings
	Selection Binding in a Static Step
	Bind a Static Filter and Group Selector to a Query
	Binding a Date Picker and Static Dates
	Binding Operations

	Grid Layouts
	Grid Layouts Specification
	Grid Layouts Attribute Reference

	Layouts
	Use a Mobile Layout for Your Dashboard
	Understanding Column, Row, and Cell Sizing in Mobile Layouts
	Layouts Specification
	Layouts Attribute Reference

	Chart Types for Widgets
	Combo Chart Type Example
	Choropleth (Map) Chart Type Example
	Funnel Chart Type Example
	Stacked Waterfall Chart Type Example
	Waterfall Chart Type Example

