salesforce

Salesforce Console Integration
Toolkit Developer's Guide

Version 35.0, Winter ‘16

2

Y @salesforcedocs
Last updated: December 17, 2015

https://twitter.com/salesforcedocs

© Copyright 2000-2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Introducing the Salesforce Console Integration Toolkit 1
When to Use the Salesforce Console Integration Toolkit 2
Salesforce Console Integration Toolkit Support Policy 2

Backward Compatibility 3

End-of-Life 3
Other RESOUICES o e e e e 3
Salesforce Console Integration Toolkit Typographical Conventions 4
Sample Visualforce Page Using the Salesforce Console Integration Toolkit 5
Chapter 2: Working with the Salesforce Console Integration Toolkit 7
Connecting to the Toolkito 7
Asynchronous Calls with the Salesforce Console Integration Toolkit 8
Working with FOrce.com CanVaSttt 8
Best Practiceso e 9
Chapter 3: Methods for Primary Tabs and Subtabs 10
CloseTabl) . .o 13
focusPrimaryTabByldl)o 14
focusPrimaryTabByNamel) 16
focusSidebarComponentl) 17
focusSubtabByld() 18
focusSubtabByNameAndPrimaryTabld() 20
focusSubtabByNameAndPrimaryTabNamel) o 21
generateConsoleUrll) 22
getEnclosingPrimaryTabld() 23
getEnclosingPrimaryTabObijectld() 24
getEnclosingTabld() 25
getFocusedPrimaryTabld() 26
getFocusedPrimaryTabObjectld() 27
getFocusedSubtabldl) 29
getFocusedSubtabObijectid() 30
getPagelnfol) 31
getPrimaryTablds() 32
getSubtablds() 33
gefTablinkl) . . . oo 34
ISINCONSOlEl) oo 35
onEnclosingTabRefreshl) 36
onFocusedSubtabl) 37

ONTADSAVEL) . o .ttt 38

Contents

openConsoleUrll) 39
openPrimaryTabl) 4]
openSuUbtabl) 43
openSubtabByPrimaryTabNamel) 45
refreshPrimaryTabByld() 47
refreshPrimaryTabByNamel) e 48
refreshSubtabByld() e 49
refreshSubtabByNameAndPrimaryTabld() 50
refreshSubtabByNameAndPrimaryTabNamel) 52
reopenlastClosedTabl) 53
resetSessionTimeOutl)o 54
sefTabUnsavedChangesl)o 55
SEtTADICON]) . . o o 57
SetTAbLINK .« . . oo 58
SetTabSIYlEl) . . .o 59
sefTabTextStylel)o 60
sefTabTitlel) 62
Chapter 4: Methods for Navigation Tabs o i ... 64
focusNavigationTabl) 64
getNavigationTabs() 65
getSelectedNavigationTabl) 66
refreshNavigationTabl) 67
setSelectedNavigationTabl) 68
Chapter 5: Methods for Computer-Telephony Integration (CTI) 70
fireOnCallBeginl)o VA
fireOnCallEndl) 72
fireOnCalllogSaved() oo 73
gefCallAttachedDatal)o 74
getCallObjectlds()o e 75
onCallBegin() -ot 76
onCallENdl)o 77
onCalllogSavedl) e 78
onSendCTIMESSAGEl . . . o oot e 79
SeNdCTIMESSAGEN . . oottt 80
setCallAttachedDatall e 81
sefCallObjectldsl) 82
Chapter 6: Methods for Application-Level Custom Console Components.......... 84
addToBrowserTileQUEUE() o oot 85
blinkCustomConsoleComponentButtonTextl) 86
isCustomConsoleComponentPoppedOutl) 87

isCustomConsoleComponentWindowHidden() 88

Contents

isCustomConsoleComponentHidden() 89
isinCustomConsoleComponent() 9N
onCustomConsoleComponentButtonClicked() 92
onFocusedPrimaryTabl)o 93
removeFromBrowserTitleQueuel) 94
scrollCustomConsoleComponentButtonText] i 95
setCustomConsoleComponentButtoniconUrl() o oo 96
setCustomConsoleComponentButtonStyle() 97
setCustomConsoleComponentButtonText() oottt 98
setCustomConsoleComponentHeightl) 99
setCustomConsoleComponentVisiblel) 100
setCustomConsoleComponentWidth() 101
setCustomConsoleComponentPopoutablel)l 102
setCustomConsoleComponentWindowVisible() 103
sefSidebarVisiblel) 104
Chapter 7: Methods for Push Nofifications 106
addPushNotificationlistenerl) 106
removePushNotificationlistener() 108
Chapter 8: Methods for Console Events it 109
addEventlistener() 10
fireEVeNt) .« o o N2
removeEventlistener() n3
Chapter 9: Methods for Live Agent o i N6
acceptChatl) 18
cancelFileTransferByAgent)o e n9
declineChatl)o 120
endChatl)o 121
getAgentinputl) . . . o oo 122
getAgentStatel) 123
getChatlogll oo 124
gefChatRequestsl) e 126
getDetailsByChatKeyl) e 127
getDetailsByPrimaryTabld() e 131
getEngagedChatsl) e 135
getMaxCapacityl]o 136
initRleTransfer]) 137
ONAGENISENA() 138
onAgentStateChangedl) 140
onChatCanceled) e 140
onChatCriticalWaitStatel)o 141

onChatDeclined() 142

Contents

onChatEndedl)o 143
onChatRequested() o 144
onChatStarted)o 145
onChatTransferredOut() e 146
onCurrentCapacityChanged() e 146
onCustomEventl) e 147
onfileTransferCompleted() e 149
onNewMessagello 150
onTypingUpdatel) e 151
sendCustomEventl) 152
SeNdMESSAgEl) 153
setAgentinpuUl) « . ..o 154
setAgentStatel) 156
Methods for Live Agent Chat Visitors 157

chasitor.addCustomEventlistener() 157

chasitor.getCustomEvents() 158

chasitor.sendCustomEvent() e 159
Chapter 10: Methods for Omni-Channel, 161
acceptAgentWorko 162
closeAgentWorko 163
declineAgentWork 164
getAgentNOrKS . . o oo 165
getAgentWorkload 167
getServicePresenceStatusChannels 168
getServicePresenceStatusld 169
OGN 170
lOgOUt 171
setServicePresenceStatus 172
Methods for Omni-Channel Console Evenfs 174
GlOSSaNY .ttt 176

CHAPTER 1 Introducing the Salesforce Console
Integration Toolkit

The Salesforce console is designed for users in fast-paced environments who need to find, update, and create records in Salesforce
quickly. The Salesforce Console Integration Toolkit provides you with programmatic access to the Salesforce console so that you can
extend it to meet your business needs. With the Salesforce Console Integration Toolkit, you can open and close tabs in the console to
streamline a business process. For example, the toolkit lets you integrate third-party systems with the console, opening up an external
application in the same window, in a tab.

To use this guide, it helps if you have a basic familiarity with:

e JavaScript

e Visualforce

e \Web services

e Software development

e The Salesforce console

This guide explains how to use the Salesforce Console Integration Toolkit in JavaScript to embed API calls and processes. The toolkit is
available for use with third-party domains, such as www . yourdomain . com; however, the examples in this guide are in Visualforce.
The functionality it describes is available to your organization if you have:

e Enterprise, Unlimited, Performance, or Developer Edition with the Service Cloud

e The Salesforce console

The Salesforce Console Integration Toolkit is a browser-based JavaScript API. It uses browsers as clients to display pages as tabs in the
console. The Salesforce Console Integration Toolkit:

e Matches the APl version for any given release. For example, if the current version of SOAP APlis 20.0, then there's also a version 20.0
of the Salesforce Console Integration Toolkit.

e Supports any browser that the Salesforce console supports. For more information, see “Salesforce Console” in the Salesforce online
help.

@ Note: To enable the toolkit for third-party domains, add the domains to the whitelist of the Salesforce console. See “Whitelist
Domains for a Salesforce Console” in the Salesforce online help.

IN THIS SECTION:

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party
content as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display
pages in the console.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements. Previous versions
may or may not receive fixes. When a new version is released, the previous version remains available.

Other Resources

In addition to this guide, there are other resources available for you as you learn how to use the Salesforce Console Integration Toolkit.

Salesforce Console Integration Toolkit Typographical Conventions
The Salesforce Console Integration Toolkit guide uses a few typographical conventions.

Introducing the Salesforce Console Integration Toolkit When to Use the Salesforce Console Integration Toolkit

Sample Visualforce Page Using the Salesforce Console Integration Toolkit
This example shows how to change the Salesforce console user interface using the Salesforce Console Integration Toolkit.

When to Use the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit helps advanced administrators and developers implement custom functionality for the
Salesforce console. For example, you can use the Salesforce Console Integration Toolkit to display Visualforce pages or third-party content
as tabs in the Salesforce console. The Salesforce Console Integration Toolkit is an APl that uses browsers as clients to display pages in

the console.

The following table lists additional features that developers can use to implement custom functionality for Salesforce organizations.

Feature

SOAP API

Visualforce

Apex

Description

Use standard SOAP API calls if you want to add functionality to a composite application that processes
only one type of record at a time and does not require any transactional control (such as setting a
Savepoint or rolling back changes).

For more information, see the SOAP API Developer's Guide.

Visualforce consists of a tag-based markup language that gives developers a more powerful way of
building applications and customizing the Salesforce user interface. With Visualforce you can:

e Build wizards and other multistep processes.
e (Create your own custom flow control through an application.
e Define navigation patterns and data-specific rules for optimal, efficient application interaction.

For more information, see the Visualforce Developer's Guide.

Use Apex if you want to:

e (reate Web services.

e (reate email services.

e Perform complex validation over multiple objects.

e (reate complex business processes that are not supported by workflow.

e (reate custom transactional logic (logic that occurs over the entire transaction, not just with a
single record or object).

e Attach custom logic to another operation, such as saving a record, so that it occurs whenever
the operation is executed, regardless of whether it originates in the user interface, a Visualforce
page, or from SOAP API.

For more information, see the Force.com Apex Code Developer's Guide.

Salesforce Console Integration Toolkit Support Policy

The current release of the Salesforce Console Integration Toolkit is the only version that receives enhancements. Previous versions may
or may not receive fixes. When a new version is released, the previous version remains available.

https://developer.salesforce.com/docs/atlas.en-us.198.0.api.meta/api/
https://developer.salesforce.com/docs/atlas.en-us.198.0.pages.meta/pages/
https://developer.salesforce.com/docs/atlas.en-us.198.0.apexcode.meta/apexcode/

Introducing the Salesforce Console Integration Toolkit Backward Compatibility

IN THIS SECTION:
Backward Compatibility
Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.
End-of-Life
Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the

date of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more
than three years old may not be supported.

Backward Compatibility

Salesforce strives to make backward compatibility easy when using the Salesforce Console Integration Toolkit.

Each new Salesforce release consists of two components:

e Anew release of platform software that resides on Salesforce systems

e Anew version of the API

For example, the Summer 10 release included APl version 19.0 and the Winter "11 release included API version 20.0.

The version of the Salesforce Console Integration Toolkit matches the APl version for any given release. So if the current version of the
APlis 20.0, there's also a version 20.0 of the Salesforce Console Integration Toolkit.

We maintain support for each Salesforce Console Integration Toolkit version across releases of the platform. The Salesforce Console
Integration Toolkit is backward compatible in that an application created to work with a given Salesforce Console Integration Toolkit
version will continue to work with that same Salesforce Console Integration Toolkit version in future platform releases.

Salesforce doesn't guarantee that an application written against one Salesforce Console Integration Toolkit version will work with future
Salesforce Console Integration Toolkit versions: Changes in method signatures and data representations are often required as we continue
to enhance the Salesforce Console Integration Toolkit. However, we strive to keep the Salesforce Console Integration Toolkit consistent
from version to version with minimal changes required to port applications to newer Salesforce Console Integration Toolkit versions.

Forexample, an application written using Salesforce Console Integration Toolkit version 20.0, which shipped with the Winter 11 release,
will continue to work with Salesforce Console Integration Toolkit version 20.0 on the Summer ‘11 release and on future releases. However,
that same application may not work with Salesforce Console Integration Toolkit version 21.0 without modifications to the application.

End-of-Life

Salesforce is committed to supporting each Salesforce Console Integration Toolkit version for a minimum of three years from the date
of its first release. To improve the quality and performance of the Salesforce Console Integration Toolkit, versions that are more than
three years old may not be supported.

When a Salesforce Console Integration Toolkit version is scheduled to be unsupported, an advance end-of-life notice will be given at
least one year before support for the version ends. Salesforce will directly notify customers using Salesforce Console Integration Toolkit
versions scheduled for end of life.

Other Resources

In addition to this guide, there are other resources available for you as you learn how to use the Salesforce Console Integration Toolkit.
e Online help: See Salesforce Console
e Developer website: https://developer.salesforce.com/gettingstarted

e Firebug extension to Firefox: Firebug for Firefox

https://developer.salesforce.com/gettingstarted
https://addons.mozilla.org/en-US/firefox/addon/firebug/

Introducing the Salesforce Console Integration Toolkit Salesforce Console Integration Toolkit Typographical
Conventions

e Eclipse plug-in: Force.com IDE

@ Note: Salesforce Education Services offers a suite of training courses to enable developers to design, create, integrate, and extend
applications built on the Force.com platform. Be sure to visit http://www.salesforce.com/training to learn more.

Salesforce Console Integration Toolkit Typographical Conventions

The Salesforce Console Integration Toolkit guide uses a few typographical conventions.

Convention Description

Courier font In descriptions of syntax, monospace font indicates items that you should type as shown,
except for brackets. For example:

Public class HelloWorld

Italics In descriptions of syntax, italics represent variables. You supply the actual value. In the following
example, three values need to be supplied: datatype variable name [= value];

If the syntax is bold and italic, the text represents a code element that needs a value supplied
by you, such as a class name or variable value:

public static class YourClassHere { ... }
Bold Courier font In code samples and syntax descriptions, bold courier font emphasizes a portion of the code
or syntax.
<> In descriptions of syntax, less-than and greater-than symbols (< >) are typed exactly as shown.

<apex:pageBlockTable value="{!account.Contacts}" var="contact">

<apex:column value="{!contact.Name}"/>

<apex:column value="{!contact.MailingCity}"/>

<apex:column value="{!contact.Phone}"/>
</apex:pageBlockTable>

{} In descriptions of syntax, braces ({ }) are typed exactly as shown.

<apex:page>
Hello {!$User.FirstName}!
</apex:page>

[] In descriptions of syntax, anything included in brackets is optional. In the following example,
specifying value is optional:

data type variable name [= value];

https://developer.salesforce.com/page/Tools
http://www.salesforce.com/training

Introducing the Salesforce Console Integration Toolkit Sample Visualforce Page Using the Salesforce Console
Integration Toolkit

Convention Description

| In descriptions of syntax, the pipe sign means “or”. You can do one of the following (not all).
In the following example, you can create a new unpopulated set in one of two ways, or you
can populate the set:

Set<data_ type> set name
[= new Set<data_type>();] |
[= new Set<data_type{value [, value2. . .] };] |

’

Sample Visualforce Page Using the Salesforce Console Integration
Toolkit

This example shows how to change the Salesforce console user interface using the Salesforce Console Integration Toolkit.
1. Create a Visualforce page. See the Visualforce Developer's Guide.
2. Cutand paste the following sample code into your Visualforce page.

This code demonstrates various functions of the Salesforce Console Integration Toolkit:

<apex:page standardController="Case">

<apex:includeScript value="/support/console/20.0/integration.js"/>
<script type="text/javascript">
function openPrimaryTab () {
sforce.console.openPrimaryTab (undefined,
'http://www.salesforce.com', true, 'salesforce');

//The callback function that openSubtab will call once it's got the ID for its
primary tab
var callOpenSubtab=function callOpenSubtab (result) {
sforce.console.openSubtab (result.id,
'http://www.yahoo.com', true, 'yahoo');

b

function openSubtab () {
sforce.console.getEnclosingPrimaryTabId (callOpenSubtab) ;

//Sets the title of the current tab to "SFDC"
function setTitle () {
sforce.console.setTabTitle ('SFDC') ;

//The callback function that closeTab will call once it's got the ID for its
tab
var callCloseTab= function callCloseTab (result) {
sforce.console.closeTab (result.id);

http://www.salesforce.com/us/developer/docs/pages/index_Left.htm

Introducing the Salesforce Console Integration Toolkit Sample Visualforce Page Using the Salesforce Console

Integration Toolkit

function closeTab () {

sforce.console.getEnclosingTabId(callCloseTab) ;
}

</script>

Open A Primary Tab
<p/>Open A Subtab
<p/>Set Title to SFDC
<p/>Close This Tab

</apex:page>
@ Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

After you create the above Visualforce page and add it as a custom link on cases, this page displays after you navigate to a case and click
the link:

Output of Sample Visualforce Page

& slesforce <.
(- Cases ¥ | Account: Global M...

Account: Global Media

Account Name Account Owner
Global Media [View Hierarchy] John Smith [Change]

Description
GEM is the worldwide leader in technelogy news and information on
the Web and the producer of the longest-running and farthest-reaching

Annual Revenue

Account: Global M... Case: 00001000 External Page
Open A Primary Tab

Open A Subtab
Set Title to SFDC

Close This Tab

CHAPTER 2 Working with the Salesforce Console
Integration Toolkit

Use the Salesforce Console Integration Toolkit to do the following in the Salesforce console.
e Open a new primary tab or subtab that displays a specified URL

e Set the title of a primary tab or a subtab

e Return the ID of a primary tab or subtab

e (lose a specified primary tab or subtab

IN THIS SECTION:

Connecting to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a
third-party domain.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to
continue instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter
with the API call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with
the result.

Working with Force.com Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Force.com Canvas.

Best Practices

Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

Connecting to the Toolkit

The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a Visualforce page, or a third-party
domain.

e For Visualforce pages or any source other than a custom onc1ick JavaScript button, specify a <script> tagthat pointsto the
toolkit file:

<apex:page>
<script src="/support/console/35.0/integration.js"
type="text/javascript"></script>

</apex:page>

For Visualforce, a relative path is sufficient to include integration.qs,andis recommended.

Working with the Salesforce Console Integration Toolkit Asynchronous Calls with the Salesforce Console Integration
Toolkit

e Fora third-party domain:

<script src="https://c.nal.visual.force.com/support/console/35.0/integration.js"
type="text/javascript"></script>

For third-party domains, it is necessary to specify an absolute URLto integration.js to use the toolkit. The default instance
at which you can access the toolkit library is:
c.nal.visual.force.com/support/console/35.0/integration.js.Werecommend thatyou use the default
instance when the organization’s instance cannot be determined.

The version of the Salesforce Console Integration Toolkit is in the URL.

Asynchronous Calls with the Salesforce Console Integration Toolkit

The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue
instead of waiting for a callback from the server. To issue an asynchronous call, you must include an additional parameter with the API
call, which is referred to as a callback function. Once the result is ready, the server invokes the callback method with the result.

Asynchronous syntax:
method ('argl', 'arg2', ..., callback method) ;
For example:

//Open a new primary tab with the Salesforce home page in it
sforce.console.openPrimaryTab (null, 'http://www.salesforce.com',
false, 'Salesforce', callback);

Working with Force.com Canvas

To integrate the Salesforce Console with external applications that require authentication methods, such as signed requests or OAuth
2.0 protocols, Salesforce recommends you use Force.com Canvas.

Force.com Canvas and the Salesforce Console Integration Toolkit are similar—they're a set of tools and JavaScript APIs that developers
can use to add third-party systems to Salesforce. However, one of the benefits of Force.com Canvas, is the ability to choose authentication
methods. For more information, see the Force.com Canvas Developer’s Guide.

@ Nofte: Fora canvas app to appear in a console, you must add it to the console as a custom console component. See Add Console
Components to Apps.

When developing a canvas app, and you want to include functionality from the Salesforce Console Integration Toolkit, do the following:
1. Include the console integration toolkit APl in index. 7 sp.

2. Ifyourconsole has a whitelist for domains, add the domain of your canvas app to the whitelist. See “Whitelist Domains for a Salesforce
Console” in the Salesforce Help.

3. Call sfdc.canvas.client.signedrequest () to storethe signed request needed by the console integration toolkit
API. For example, if the Force.com Canvas method of authentication is a signed request, do the following:

Sfdc.canvas.client.signedrequest ('<%$=signedRequest%>")

http://www.salesforce.com/us/developer/docs/platform_connect/canvas_framework.pdf
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm

Working with the Salesforce Console Integration Toolkit Best Practices

If the Force.com Canvas method of authentication is OAuth, do the following in the callback function used to get the context as
shown in “Getting Context in Your Canvas App” in the Force.com Canvas Developer’s Guide:

Sfdc.canvas.client.signedrequest (msqg)

Consider the following when working with the Salesforce Console Integration Toolkit and canvas apps:

e The console integration toolkit APl script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest () hasexecuted. We recommend that you load the scripts dynamically.

e To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the following:

// Get signedRequest

var signedRequest = Sfdc.canvas.client.signedrequest();

var parsedRequest = JSON.parse (signedRequest) ;

// get the entity Id that is associated with this canvas sidebar component.
var entityId = parsedRequest.context.environment.parameters.entityId;

e Toretrieve the entityId for OAuth, do the following:
var entityId = msg.payload.environment.parameters.entityId;

To see an example on how toretrieve msg . payload, see “Getting Context in Your Canvas App” in the Force.com Canvas Developer’s
Guide.

Best Practices

Salesforce recommends that you adhere to a few best practices as you use the Salesforce Console Integration Toolkit.

e Many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return their results using a callback method.
We recommend that you refer to the documentation for each method to understand the information for each response.

e Errors generated by the Salesforce Console Integration Toolkit are typically emitted in a way that doesn't halt JavaScript processing.
Therefore, we recommend that you use a tool such as Firebug for Firefox to monitor the JavaScript console and to help you debug
your code.

e Todisplay Visualforce pages properly in the Salesforce Console, we recommend you:
- Accept the default setting showHeader="true" andset sidebar="false" onthe apex:page tag.

- Set Behavior on custom buttons and links that include methods from the toolkit to display in an existing window without
a sidebar or header. For more information, see Define Custom Buttons and Links” in the Salesforce online help.

e When using Firefox, we recommend that you don't call closeTab () on a tab with an active alert box because the browser may
not load properly.

e Duplicate tabs might open when users initiate methods with invalid URLs. We recommend that you check URLs for validity before
you include them in methods.

e Toprevent External Page from displaying as a tab name, we recommend that you specify the tabLabel argument on
methods such as openPrimaryTab () and openSubtab ().

e Forinformation on how you can customize, extend, or integrate the sidebars of the Salesforce console using Visualforce, see “Console
Components” in the Salesforce online help.

e Toenable the toolkit for third-party domains, add the domains to the whitelist of the Salesforce console. See “Whitelist Domains for
a Salesforce Console” in the Salesforce online help.

e When working with the Salesforce Console Integration Toolkit, we recommend that you keep in mind that it doesn’t support nested
iframes.

https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=ss

CHAPTER 3 Methods for Primary Tabs and Subtabs

A Salesforce console displays Salesforce pages as primary tabs or subtabs. A primary tab displays the main item to work on, such as an
account. A subtab displays related items, such as an account’s contacts or opportunities.

IN THIS SECTION:

closeTab()

Closes a specified primary tab or subtab. Note that closing the first tab in a primary tab closes the primary tab itself. This method is
only available in APl version 20.0 or later.

focusPrimaryTabByld()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or
later.

focusPrimaryTabByName()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in APl version 22.0
or later.

focusSidebarComponent()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style.
For more information, see “Sidebar Styles for Console Components” in the Salesforce Help. This method is only available in APl version
34.0 or later.

focusSubtabByld()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

focusSubtabByNameAndPrimaryTabld()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in
APl version 22.0 or later.

focusSubtabByNameAndPrimaryTabName()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available
in APl version 22.0 or later.

generateConsoleUrl()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external
URLs to the console’s whitelist so that they can display correctly. For more information, see “Whitelist Domains for a Salesforce
Console” in the online help. This method is only available in APl version 28.0 or later.

getEnclosingPrimaryTabld()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

getEnclosingPrimaryTabObjectld()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works
within a primary tab or subtab. This method is only available in API version 24.0 or later.

getEnclosingTabld()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work
if the call is made within a component enclosed within a subtab. This method is only available in APl version 20.0 or later.

10

Methods for Primary Tabs and Subtabs

getFocusedPrimaryTabld()
Returns the ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

getFocusedPrimaryTabObjectld()
Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

getFocusedSubtabld()
Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in
APl version 25.0 or later.

getFocusedSubtabObjectld()
Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only
available in APl version 24.0 or later.

getPagelnfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the
enclosing primary tab or subtab. Note that to get the page information from a custom console component,a tabId must be
passed as the first parameter to this method.This method is only available in APl version 26.0 or later.

getPrimaryTablds()
Returns all of the IDs of open primary tabs. This method is only available in API version 26.0 or later.

getSubtablds()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of
the subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten
by a Visualforce page. This method is only available in APl version 26.0 or later.

getTabLink()
Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or
later.

isinConsole()
Determines if the page is in the Salesforce console. This method is only available in APl version 22.0 or later.

onEnclosingTabRefresh()
Registers a function to call when the enclosing tab refreshes. This method is only available in APl version 24.0 or later.

onFocusedSubtab()
Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in APl version
24.0 or later.

onTabSave()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method,
you must call setTabUnsavedChanges () in the callback method. This notifies the console that the custom save operation
completed. In the call to setTabUnsavedChanges (), pass the first parameter as false to indicate a successful save or
true toindicate an unsuccessful save. This method is only available in API version 28.0 or later.

openConsoleUrl()
Opens a URL created by the generateConsoleUrl () method (a URL to a tab, or group of related tabs, in the Salesforce
console). This method is only available in APl version 28.0 or later.

openPrimaryTab()
Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an
existing tab. This method is only available in APl version 20.0 or later.

n

Methods for Primary Tabs and Subtabs

openSubtab()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available
in APl version 20.0 or later.

openSubtabByPrimaryTabName()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can
also override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available
in APl version 22.0 or later.

refreshPrimaryTabBylId()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshPrimaryTabByName()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

refreshSubtabByld()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab If the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

refreshSubtabByNameAndPrimaryTabld()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab If the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
refreshSubtabByNameAndPrimaryTabName()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab If
the last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.
reopenLastClosedTab()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available
in APl version 35.0 or later.

resetSessionTimeOut()

Resets a session timeout on a Visualforce page so that users can continue working without being logged out. This method is only
available in APl version 24.0 or later.

setTabUnsavedChanges()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.
setTablcon()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s
icon. This method is only available in APl version 28.0 or later.

setTabLink()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.
setTabStyle()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method
to customize a tab’s look and feel. This method is only available in APl version 28.0 or later.

setTabTextStyle()

Sets a cascading style sheet (CSS) on a specified tab's text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

12

Methods for Primary Tabs and Subtabs closeTabl)

setTabTitle()
Sets the title of a primary tab or subtab. This method is only available in API version 20.0 or later.

closeTab ()

Closes a specified primary tab or subtab. Note that closing the first tab in a primary tab closes the primary tab itself. This method is only
available in APl version 20.0 or later.

Syntax

sforce.console.closeTab (id:String, (optional) callback:Function)

Arguments
Name Type Description
id string ID of the primary tab or subtab to close.
callback function For APl version 35.0 or later, the JavaScript method that's called upon completion

of the method.

Sample Code API 20.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/20.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId) ;
}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

None

13

Methods for Primary Tabs and Subtabs focusPrimaryTabByld|()

Sample Code API Version 35.0 or Later-Visualforce

<apex:page standardController="Case'">

Click here to close this tab

<apex:includeScript value="/support/console/35.0/integration.js"/>
<script type="text/javascript">
var callback = function () {
if (result.error) {
alert ("Error message is " + result.error);
}
}i
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId, callback);
}i
</script>
</apex:page>

Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the tab was re-opened, false otherwise.

error string Error message if the tab couldn’t be closed.

O Tip: When using Firefox, we recommend that youdon'tcall closeTab () onatab with an active alert box because the browser
may not load properly.

focusPrimaryTabById()

Focuses the browser on a primary tab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

14

Methods for Primary Tabs and Subtabs focusPrimaryTabByld()

Syntax

sforce.console.focusPrimaryTabById(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to an open primary tab by id

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.focusPrimaryTabById (primaryTabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the open primary tab was successful
if (result.success == true) {

alert ('Going to the primary tab was successful');
} else {
alert ('Going to the primary tab was not successful');
}i
</script>
</apex:page>
Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”

in the Salesforce online help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

15

Methods for Primary Tabs and Subtabs focusPrimaryTabByName()

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary
tab wasn't successful.

focusPrimaryTabByName ()

Focuses the browser on a primary tab that is already open with the specified name. This method is only available in API version 22.0 or
later.

Syntax

sforce.console.focusPrimaryTabByName (name:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the primary tab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a primary tab by name

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testFocusPrimaryTabByName () {
//Get the value for 'myPrimaryTab' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';
sforce.console.focusPrimaryTabByName (primaryTabName, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the primary tab was successful
if (result.success == true) {

alert ('Going to the primary tab was successful');
} else {
alert ('Going to the Primary tab was not successful');

b

</script>

16

Methods for Primary Tabs and Subtabs focusSidebarComponent()

</apex:page>

@ Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the primary tab was successful; false if going to the primary

tab wasn't successful.

focusSidebarComponent ()

Focuses the browser on a sidebar component. Use this method to focus on a component with the tab or accordion sidebar style. For
more information, see “Sidebar Styles for Console Components” in the Salesforce Help. This method is only available in API version 34.0
or later.

Syntax

sforce.console.focusSidebarComponent (componentInfo:string (optional)tabld:string,
callback:Function)

Arguments
Name Type Description
componentInfo string The JSON object that represents the component to focus on. This argument must

include one of the following forms:

Unambiguous types:

¢ {componentType: 'CASE EXPERT WIDGET' }
¢ {componentType: 'FILES WIDGET' }

¢ {componentType: 'HIGHLIGHTS PANEL' }

¢ {componentType: 'KNOWLEDGE ONE'}

¢ {componentType: 'MILESTONE WIDGET' }

¢ {componentType: 'TOPICS WIDGET' }

® {componentType: 'VISUALFORCE' }

Types that require additional parameters:

17

Methods for Primary Tabs and Subtabs focusSubtabByld()

Name Type Description
® {componentType: 'CANVAS', canvasAppld:
'09Hxx0000000001 "}

® {componentType: 'RELATED LIST', listName:
'Solution'}

® {componentType: 'LOOKUP', fieldName: 'Account'}
® {componentType: 'VISUALFORCE', pageName: 'VF1'}
tabId string The ID of the tab on which to focus the browser.

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {

alert ('Congratulations!");
}else(
alert ('Something is wrong!');
}
}i
function focusKnowledgeComponent () {

sforce.console. focusSidebarComponent (JSON.stringify ({componentType:
'KNOWLEDGE_ONE'}),"scc—st—Z", callback) ;
}
</script>
Focus Knowledge Component
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if focusing the sidebar component was successful; false otherwise.
focusSubtabById()

Focuses the browser on a subtab that is already open with the specified ID. This method is only available in APl version 22.0 or later.

18

Methods for Primary Tabs and Subtabs focusSubtabByld()

Syntax

sforce.console.focusSubtabById(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the subtab to go to.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by id

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabById() {
//Get the value for 'scc-st-0' from the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.focusSubtabById(subtabId, focusSuccess);

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {
alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

}i
</script>
</apex:page>

Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

19

Methods for Primary Tabs and Subtabs focusSubtabByNameAndPrimaryTabld()

Name Type Description
success boolean true if going to the subtab was successful; false if going to the subtab wasn't
successful.

focusSubtabByNameAndPrimaryTabId ()

Focuses the browser on a subtab that is already open with the specified name and primary tab ID. This method is only available in API
version 22.0 or later.

Syntax

sforce.console. focusSubtabByNameAndPrimaryTabId (name:String,
primaryTabId:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabId string ID of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to go to a subtab by name and primary tab ID

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabByNameAndPrimaryTabId() {
//Get the values for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console. focusSubtabByNameAndPrimaryTabId (subtabName, primaryTabld,
focusSuccess) ;
}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {

alert ('Going to the subtab was successful');
} else {

20

Methods for Primary Tabs and Subtabs focusSubtabByNameAndPrimaryTabName()

alert ('Going to the subtab was not successful');
bi
</script>
</apex:page>

@ Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

focusSubtabByNameAndPrimaryTabName ()

Focuses the browser on a subtab that is already open with the specified name and primary tab name. This method is only available in
APl version 22.0 or later.

Syntax

sforce.console.focusSubtabByNameAndPrimaryTabName (name:String,
primaryTabName:String, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to go to.
primaryTabName string Name of the primary tab in which the subtab opened.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to go to a subtab by name and primary tab name

21

Methods for Primary Tabs and Subtabs generateConsoleUrl()

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testFocusSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.focusSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,
focusSuccess) ;

}

var focusSuccess = function focusSuccess (result) {
//Report whether going to the subtab was successful
if (result.success == true) {
alert ('Going to the subtab was successful');
} else {
alert ('Going to the subtab was not successful');

}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if going to the subtab was successful; false if going to the subtab wasn't

successful.

generateConsoleUrl ()

Generates a URL to a tab, or group of related tabs, in the Salesforce console. If any tabs include external URLs, then add the external URLs
to the console’s whitelist so that they can display correctly. For more information, see “Whitelist Domains for a Salesforce Console” in
the online help. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.generateConsoleUrl (urls:String, (optional)callback:Function)

22

Methods for Primary Tabs and Subtabs getEnclosingPrimaryTabld|)

Arguments
Name Type Description
urls string An array of URLs. The first URL is a primary tab and subsequent URLs are subtabs.
Note that the last URL is the subtab on which the console is focused. These URLs
can be standard Salesforce URLs or relative URLs.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/28.0/integration.js"/>

Click here to generate a console URL

<script type="text/javascript">
function showConsoleUrl (result) {
alert (result.consoleUrl) ;

}

function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityId,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl); }
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

consoleUrl string Console URL that represents the array of URLs passed into Salesforce.

success boolean true if the URL was generated successfully, false if otherwise.

callback function JavaScript method that's called upon completion of the method.

getEnclosingPrimaryTabId()

Returns the ID of the current primary tab. This method works within a primary tab or subtab, not within the navigation tab or custom
console components. This method is only available in API version 20.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabId ((optional)callback:function)

23

Methods for Primary Tabs and Subtabs getEnclosingPrimaryTabObjectld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this primary tab

<apex:includeScript value="/support/console/20.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current primary tab to close it
sforce.console.getEnclosingPrimaryTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the primary tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The ID of the current primary tab that contains this tab.

getEnclosingPrimaryTabObjectId ()

Returns the object ID of the current primary tab, which contains a subtab. For example, a case ID or account ID. This method works within
a primary tab or subtab. This method is only available in APl version 24.0 or later.

Syntax

sforce.console.getEnclosingPrimaryTabObjectId((optional)callback:Function)

24

Methods for Primary Tabs and Subtabs getEnclosingTabld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to get enclosing primary tab object ID

<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">
function testGetEnclosingPrimaryTabObjectId() {
sforce.console.getEnclosingPrimaryTabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
}i
</script>
</apex:page>

@ Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

id string The ID of the current primary tab that contains this subtab.

success boolean true if returning the enclosing primary tab was successful; false if returning

the enclosing primary tab wasn't successful.

getEnclosingTabId()

Returns the ID of the tab that contains the current Visualforce page, which may be a primary tab or subtab. This method will work if the
call is made within a component enclosed within a subtab. This method is only available in APl version 20.0 or later.

Syntax

sforce.console.getEnclosingTabId ()

25

Methods for Primary Tabs and Subtabs getFocusedPrimaryTabld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to close this tab

<apex:includeScript value="/support/console/20.0/integration.js"/>
<script type="text/javascript">
function testCloseTab () {
//First find the ID of the current tab to close it
sforce.console.getEnclosingTabId (closeSubtab) ;

var closeSubtab = function closeSubtab (result) {
//Now that we have the tab ID, we can close it
var tabId = result.id;
sforce.console.closeTab (tabId);
}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The ID of the current primary tab or subtab.

getFocusedPrimaryTabId()

Returns the ID of the primary tab on which the browser is focused. This method is only available in API version 25.0 or later.

Syntax

sforce.console.getFocusedPrimaryTabld ((optional) callback:Function)

26

Methods for Primary Tabs and Subtabs getFocusedPrimaryTabObijectld()

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the focused primary tab ID

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabId() ({
sforce.console.getFocusedPrimaryTabId (showTabId) ;

}

var showTabId = function showTabId(result) {
//Display the tab ID
alert('Tab ID: ' + result.id);
}i
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The ID of the primary tab on which the browser is focused. If no primary tab is open,
the ID is null.
success boolean true ifreturning the primary tab ID on which the browser is focused was successful;
false if returning the primary tab ID on which the browser is focused wasn't
successful.

getFocusedPrimaryTabObjectId ()

Returns the object ID of the primary tab on which the browser is focused. This method is only available in APl version 25.0 or later.

27

Methods for Primary Tabs and Subtabs getFocusedPrimaryTabObijectld|)

Syntax

sforce.console.getFocusedPrimaryTabObjectId((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the focused primary tab object ID

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedPrimaryTabObjectId () {
sforce.console.getFocusedPrimaryTabObjectId (showObjectId) ;
}
var showObjectId = function showObjectId(result) {
//Display the object ID
alert ('Object ID: ' + result.id);
}i

</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
id string The object ID of the primary tab on which the browser is focused. If there is no
primary tab open, the ID is null.
success boolean true ifreturning the primary tab object ID on which the browser is focused was

successful; false if returning the primary tab object ID on which the browser is
focused wasn't successful.

28

Methods for Primary Tabs and Subtabs getFocusedSubtabld()

getFocusedSubtabId()

Returns the ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available in API
version 25.0 or later.

Syntax

sforce.console.getFocusedSubtablId((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the ID of the focused subtab

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabId() {
sforce.console.getFocusedSubtabId (showTabId) ;
}
var showTabId = function showTabId(result) {
// Display the tab ID
alert ('Tab ID: ' + result.id);
bi
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The ID of the subtab on which the browser is focused. If no subtab is open, the ID is
null.
success boolean true ifreturning the ID of the focused subtab was successful; f£alse ifreturning

the ID of the focused subtab wasn't successful.

29

Methods for Primary Tabs and Subtabs getFocusedSubtabObijectld()

getFocusedSubtabObjectId()

Returns the object ID of the subtab on which the browser is focused. For example, a case ID or account ID. This method is only available
in APl version 24.0 or later.

Syntax

sforce.console.getFocusedSubtabObjectId((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to get the object ID of the focused subtab

<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">
function testGetFocusedSubtabObjectId() {
sforce.console.getFocusedSubtabObjectId (showObjectId) ;

var showObjectId = function showObjectId(result) {
// Display the object ID
alert ('Object ID: ' + result.id);
bi
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
id string The object ID of the subtab on which the browser is focused. If no subtab is open,
the IDis null.
success boolean true if returning the object ID of the focused subtab was successful; false if

returning the object ID of the focused subtab wasn't successful.

30

Methods for Primary Tabs and Subtabs getPagelnfo()

getPageInfo()

Returns page information for the specified tab after its content has loaded. If the tab ID is null, it returns page information for the enclosing
primary tab or subtab. Note that to get the page information from a custom console component, a tabId must be passed as the first
parameter to this method.This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPagelnfo (tabId:String, (optional)callback:Function)

Arguments
Name Type Description
tabId string ID of the tab from which page information is returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get page information

<apex:includeScript value="/support/console/26.0/integration.js"/>
<script type="text/javascript">
function testGetPageInfo() {
//Get the page information of 'scc-pt-1'
//This value is for example purposes only
var tabId = 'scc-pt-1';
sforce.console.getPageInfo(tabId , showPageInfo);

var showPageInfo = function showPagelInfo(result) {
alert ('Page Info: ' + result.pagelnfo);
}i
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

31

Methods for Primary Tabs and Subtabs getPrimaryTablds|()

Name Type Description

pageInfo string Returns the URL of the current page as a JSON string, and includes any applicable object ID, object
name, object type, and for APl version 33.0 or later, the object tab name. For example:

{"url":"http://na.salesforce.com/001x0000003DGQR",
"dojectId": "001x0000003DER", "dojectNane" : "Aare", "doject" : "Account", "displayNane" : "Canpany’

For APlversion 31.0 and later, invoking this APl method on a PersonAccount object returns the following
additional information.

e accountld or contactld, the associated account or contact ID

e personAccount, which is t rue if the object is a PersonAccount and false otherwise

For example:

{"url":"http://nal.salesforce.com/001x0000003DGQR",
"objectId":"001x0000003DGQR", "objectName":"Acme Person Account",
"object":"Account", "contactId":"003D000000QOMgg",
"personAccount":true}

callback function JavaScript method that's called upon completion of the method.

getPrimaryTablIds ()

Returns all of the IDs of open primary tabs. This method is only available in APl version 26.0 or later.

Syntax

sforce.console.getPrimaryTabIds ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the primary tab IDs

<apex:includeScript value="/support/console/26.0/integration.js"/>
<script type="text/javascript">
function testGetPrimaryTabIds () {
sforce.console.getPrimaryTabIds (showTabId) ;

32

Methods for Primary Tabs and Subtabs getSubtabldsi)

var showTabId = function showTabId(result) {
//Display the primary tab IDs
alert ('Primary Tab IDs: ' + result.ids);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open primary tab IDs , in order of appearance.

success boolean true if returning the IDs of open primary tabs was successful; £alse if returning

the IDs of open primary tabs wasn't successful.

getSubtablIds ()

Returns all of the IDs of the subtabs on the primary tab specified by a primary tab ID. If the primary tab ID is null, it returns the IDs of the
subtabs on the current primary tab. This method can only be called from a custom console component or a detail page overwritten by
a Visualforce page. This method is only available in API version 26.0 or later.

Syntax

sforce.console.getSubtabIds((optional) primaryTabId:String, (optional) callback:Function)

Arguments
Name Type Description
primaryTabId string ID of the primary tab from which the subtab IDs are returned.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to get the subtab IDs

<apex:includeScript value="/support/console/26.0/integration.js"/>

<script type="text/javascript">
function testGetSubtabIds () {

33

Methods for Primary Tabs and Subtabs gefTabLink()

//Get the subtabs of the primary tab 'scc-pt-0'
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.getSubtablds (primaryTabId , showTabId);

var showTabId = function showTabId(result) {
//Display the subtab IDs
alert ('Subtab IDs: ' + result.ids);
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string An array of open subtab IDs.

success boolean true iffiring the event was successful; false iffiring the event wasn't successful.
getTabLink ()

Retrieves the URL to a tab, or group of related tabs, from the Salesforce console. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.getTabLink (level:String, (optional) tabId:String,
(optional)callback: Function)

Arguments
Name Type Description
level string Level that matches one of the Link to Share options in the Salesforce console user

interface. The options are:

e All primary tabs and subtabs —
sforce.console.TabLink.PARENT AND CHILDREN.

® Only the specified tab — sforce.console.TabLink.TAB ONLY

e Astandard Salesforce URL —
sforce.console.TabLink.SALESFORCE URL

For more information, see “Salesforce Console Tabs” in the online help.

34

Methods for Primary Tabs and Subtabs isinConsole()

Name Type Description

tabId string Optional tab ID of the tab from which you're retrieving the URL. If you do not pass
atab ID, the URL to the current tab is returned.

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/28.0/integration.js"/>

Click here to get tab link

<script type="text/javascript">
var getEnclosingPrimaryTabId = function getEnclosingPrimaryTabId() {
sforce.console.getEnclosingPrimaryTabId (getTabLink) ;
}
var getTabLink = function getTabLink (result) {
sforce.console.getTabLink (sforce.console.TabLink.PARENT AND CHILDREN, result.id,
showTabLink) ;
}
var showTabLink = function showTablLink (result) {
var link = result.tabLink;
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
tabLink string The retrieved URL.
success boolean true if the link was retrieved successfully, false if retrieving was unsuccessful.
callback function JavaScript method that's called upon completion of the method.

isInConsole()

Determines if the page is in the Salesforce console. This method is only available in API version 22.0 or later.

Syntax

sforce.console.isInConsole ()

35

Methods for Primary Tabs and Subtabs onEnclosingTabRefresh()

Arguments

None

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to check if the page is in the Service Cloud console

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testIsInConsole() {
if (sforce.console.isInConsole()) {
alert ('in console');
} else {
alert ('not in console');

}
</script>

</apex:page>

@ Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

Returns true if the page is in the Salesforce console; false if the page is not in the Salesforce console.

onEnclosingTabRefresh ()

Registers a function to call when the enclosing tab refreshes. This method is only available in APl version 24.0 or later.

Syntax

sforce.console.onEnclosingTabRefresh (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the enclosing tab refreshes.

36

Methods for Primary Tabs and Subtabs onFocusedSubtab)

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/24.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function eventHandler (result) {
alert ('Enclosing tab has refreshed:' + result.id
+ 'and the object Id is:' + result.objectId);
i
sforce.console.onEnclosingTabRefresh (eventHandler) ;
</script>
</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:

Name Type Description

id string The ID of the refreshed tab.

objectId string The object ID of the refreshed tab or null if no object exists.
onFocusedSubtab ()

Registers a function to call when the focus of the browser changes to a different subtab. This method is only available in APl version 24.0
or later.

Syntax

sforce.console.onFocusedSubtab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

subtab.

Sample Code-Visualforce

<apex:page>

37

Methods for Primary Tabs and Subtabs onTabSave()

<apex:includeScript value="/support/console/24.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) ({
alert ('Focus changed to a different subtab. The subtab Id is:'

+ result.id + 'and the object Id is:' + result.objectId);
}i
sforce.console.onFocusedSubtab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the subtab on which the browser is focused.
objectId string The object ID of the subtab on which the browser is focused or nullif no object exists.

onTabSave ()

Registers and calls a callback method when a user clicks Save in a subtab’s Unsaved Changes dialog box. When using this method, you
must call set TabUnsavedChanges () inthe callback method. This notifies the console that the custom save operation completed.
Inthe callto setTabUnsavedChanges (), pass the first parameter as false toindicate a successful save or true to indicate
an unsuccessful save. This method is only available in API version 28.0 or later.

Registering a callback method affects the user interface. When no save handler is registered, the user is presented with two options
when closing a tab with unsaved changes: Continue or Cancel. When a save handler is registered, the user is presented with three
options when closing the tab: Save, Don’t Save, or Cancel. In this scenario, the callback method registered is called when the user
chooses Save.

(:) Important: When using onTabSave () with setTabUnsavedChanges ():

e Notethatcalling sforce.console.setTabUnsavedChanges (false, ...) closesthe specified tab. We
recommend placing the callto sforce.console.setTabUnsavedChanges () atthe end of the callback method,
as any subsequent save logic might not execute.

e Notcalling sforce.console.setTabUnsavedChanges () will have a severe affect on the user interface. For
example, closing a primary tab with a subtab for which sforce.console.setTabUnsavedChanges () hasnot
been called prevents a Saving. .. modal dialog box from closing.

e Anycallback passed to sforce.console.setTabUnsavedChanges () will not execute if the specified tab saves
successfully and closes.

Note: Calling onTabSave () froma custom console component prevents that component from refreshing when saving the
tab. For more information on custom console components, see “Console Components” in the Salesforce online help.

38

Methods for Primary Tabs and Subtabs openConsoleUrl()

Syntax

sforce.console.onTabSave (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called to handle the save operation.

Sample Code-Visualforce

<apex:page>

Click here to register save handler

<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">

function testOnTabSave () {

sforce.console.onTabSave (handleSave) ;

}
var handleSave = function handleSave (result) {

alert ('save handler called from tab with id ' + result.id +

' and objectId ' + result.objectId);
//Perform save logic here

//Mark tab as 'clean'
sforce.console.setTabUnsavedChanges (false, undefined, result.id);
bi
</script>
</apex:page>

Response

Name Type Description

id string ID of the tab being saved.

objectId string Object ID of the tab being saved, if applicable; null otherwise.

openConsoleUrl ()

Opens a URL created by the generateConsoleUrl () method (a URL toatab, or group of related tabs, in the Salesforce console).
This method is only available in APl version 28.0 or later.

39

Methods for Primary Tabs and Subtabs openConsoleUrl()

Syntax

sforce.console.openConsoleUrl (id:String, consoleUrl:URL, active:Boolean,
(optional) tabLabels:String, (optional) tabNames:String, (optional)callback:Function)

Arguments

Name Type Description

id string ID of the console tab to override. If the ID corresponds to an existing primary tab,
then the existing primary tab is redirected to the given URL because the console
prevents duplicate tabs. Use null to create a new primary tab.

consoleUrl string Console URL that represents the array of URLs passed into Salesforce.

active boolean If true, the opened primary tab displays immediately. If £alse, the opened
primary tab displays in the background and the current tab maintains focus.

tabLabels string Optional array of labels of the opened primary tab or subtabs. The order in which
the tabs appear in the console URL should match the order of the labels that appear
in the array. If you do not want to set the labels of tabs, use an empty string (').

tabNames string Optional array of names of the opened primary and subtabs. The order in which the
tabs appear in the console URL should match the order of the names that appear in
the array. If you do not want to set the names of tabs, use an empty string (').

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/28.0/integration.js"/>

Click here to open a console URL

<script type="text/javascript">
var generateConsoleUrl = function testGenerateConsoleURL() {
sforce.console.generateConsoleUrl ([/apex/pagename, /entityIld,
www.externalUrl.com, Standard Salesforce Url/entityId], showConsoleUrl);

}

var openConsoleUrl = function showConsoleUrl (result) {
sforce.console.openConsoleUrl (null, result.consoleUrl, true, ['Apex', '"',
'Salesforce', '"'1, ['', '', 'externalUrl', ''])
}
</script>

</apex:page>

@ Nofe: This example shows that if you want to set a label or name, you must set the other values to empty string (* 7).

40

Methods for Primary Tabs and Subtabs openPrimaryTabl)

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the console URL was opened successfully, false otherwise.

openPrimaryTab ()

Opens a new primary tab to display the content of the specified URL, which can be relative or absolute. You can also override an existing
tab. This method is only available in APl version 20.0 or later.

e IfthelD corresponds to an existing primary tab, the existing tab is redirected to the given URL because the Salesforce console prevents
duplicate tabs.

e Ifthe URL s to a Salesforce object, that object displays as specified in the Salesforce console app settings. For example, if cases are
set to open as a subtab of their parent accounts, and openPrimaryTab () is called on a case, the case opens as subtab on its
parent account's primary tab.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openPrimaryTab (id:String, url:URL, active:Boolean,
(optional) tabLabel:String, (optional)callback:Function, (optional)name)

Arguments
Name Type Description
id string ID of the primary tab to override.
Use null to create a new primary tab.
If the ID corresponds to an existing primary tab, the existing tab is redirected to the
given URL because the Salesforce console prevents duplicate tabs.
url URL URL of the opened primary tab.

If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a subtab of their parent
accounts,and openPrimaryTab () iscalled ona case, the case opens as subtab
on its parent account's primary tab.

Note that users can open an external URL if it has been added to the console’s
whitelist. For more information, see “Whitelist Domains for a Salesforce Console” in
the online help.

4

Methods for Primary Tabs and Subtabs openPrimaryTabl()

Name Type Description

active boolean If true, the opened primary tab displays immediately. If false, the opened
primary tab displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened primary tab. If a label isn't specified, External
Page displays.

Add labels as text; HTML isn't supported.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened primary tab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new primary tab

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testOpenPrimaryTab () {
//Open a new primary tab with the salesforce.com home page in it
sforce.console.openPrimaryTab (null, 'http://www.salesforce.com', false,
'salesforce', openSuccess, 'salesforceTab');

var openSuccess = function openSuccess (result) {
//Report whether opening the new tab was successful
if (result.success == true) ({
alert ('Primary tab successfully opened');
} else {
alert ('Primary tab cannot be opened');

bi
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

42

Methods for Primary Tabs and Subtabs openSubtabl)

Name Type Description
success boolean true if the tab successfully opened; false if the tab didn't open.
id string ID of the primary tab. IDs are only valid during a user session; IDs become invalid

when a user leaves the Salesforce console.

openSubtab ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's ID. This method is only available in AP
version 20.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtab (primaryTabId:String, url:URL, active:Boolean, tabLabel:String,
id:String, (optional)callback:Function, (optional)name:String)

Arguments

Name Type Description

primaryTabId string ID of the primary tab in which the subtab opened.

url URL URL of the opened subtab.
If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab () is called on a case, the case opens as a primary tab.
Note that users can open an external URL if it has been added to the console’s
whitelist. For more information, see “Whitelist Domains for a Salesforce Console” in
the online help.

active boolean If true, the opened subtab displays immediately. If £alse, the opened subtab
displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page
displays.
Add labels as text; HTML isn't supported.

id string ID of the subtab to override.
Use null to create a new subtab.

callback function JavaScript method called upon completion of the method.

43

Methods for Primary Tabs and Subtabs

Name Type Description

name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to open a new subtab

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtab () ({
//First find the ID of the primary tab to put the new subtab in
sforce.console.getEnclosingPrimaryTabId (openSubtab) ;

var openSubtab = function openSubtab (result) {

//Now that we have the primary tab ID, we can open a new subtab in it

var primaryTabId = result.id;

sforce.console.openSubtab (primaryTabId , 'http://www.salesforce.com',

'salesforce', null, openSuccess, 'salesforceSubtab');

var openSuccess = function openSuccess (result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) {
alert ('subtab successfully opened');
} else {
alert ('subtab cannot be opened');

bi
</script>
</apex:page>

openSubtab)

false,

Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”

in the Salesforce online help.

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

success boolean true if the subtab successfully opened; false if the subtab didn't open.

44

Methods for Primary Tabs and Subtabs openSubtabByPrimaryTabName()

Name Type Description

id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when
the user leaves the Salesforce console.

openSubtabByPrimaryTabName ()

Opens a new subtab (within a primary tab) that displays the content of a specified URL, which can be relative or absolute. You can also
override an existing subtab. Use to open a new subtab on a primary tab via the primary tab's name. This method is only available in API
version 22.0 or later.

If there's an error opening the tab, the error code is reported in the JavaScript console.

Syntax

sforce.console.openSubtabByPrimaryTabName (primaryTabName:String, url:URL, active:Boolean,
tabLabel :String, id:String, (optional)callback:Function, (optional)name:String)

Arguments

Name Type Description

primaryTabName string Name of the primary tab in which the subtab opened.

url URL URL of the opened subtab.
If the URL is to a Salesforce object, that object displays as specified in the Salesforce
console app settings. For example, if cases are set to open as a primary tab, and
openSubtab () iscalled on a case, the case opens as a primary tab.
Note that users can open an external URL if it has been added to the console’s
whitelist. For more information, see “Whitelist Domains for a Salesforce Console” in
the online help.

active boolean If true, the opened subtab displays immediately. If false, the opened subtab
displays in the background and the current tab maintains focus.

tabLabel string Optional label of the opened subtab. If a label isn't specified, External Page
displays.
Add labels as text; HTML isn't supported.

id string ID of the subtab to override.
Use null to create a new subtab.

callback function JavaScript method called upon completion of the method.

name string Optional name of the opened subtab.

This argument is only available in APl version 22.0 and later.

45

Methods for Primary Tabs and Subtabs openSubtabByPrimaryTabNamel()

Sample Code-Visualforce

<apex:page standardController="Case'">

Click here to open a new subtab by primary tab name

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testOpenSubtabByPrimaryTabName () {
//First open a primary tab by name

sforce.console.openPrimaryTab (null, 'http://www.yahoo.com', true, 'Yahoo',
openSubtab, 'yahoo');

}

var openSubtab = function openSubtab (result) {
//Open the subtab by the name specified in function
testOpenSubtabByPrimaryTabName ()

sforce.console.openSubtabByPrimaryTabName ('yahoo', 'http://www.salesforce.com',

true,
'salesforce', null, openSuccess);
}i
var openSuccess = function openSuccess (result) {
//Report whether we succeeded in opening the subtab
if (result.success == true) ({
alert ('subtab successfully opened');
} else {
alert ('subtab cannot be opened');
}
}i
</script>

</apex:page>

Nofte: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description
success boolean true if the subtab successfully opened; false if the subtab didn't open.
id string ID of the subtab. IDs are only valid during a user session; IDs become invalid when

the user leaves the Salesforce console.

46

Methods for Primary Tabs and Subtabs refreshPrimaryTabByld()

refreshPrimaryTabById()

Refreshes a primary tab specified by ID, including its subtabs. This method can't refresh subtabs with URLs to external pages or Visualforce
pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabById(id:String, active:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
id string ID of the primary tab to refresh.
active boolean If true, the refreshed primary tab displays immediately. If false, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by id

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabById() {
//Get the value for 'scc-pt-0' from the openPrimaryTab method
//This value is for example purposes only
var primaryTabId = 'scc-pt-0';
sforce.console.refreshPrimaryTabById (primaryTabId, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {

alert ('Primary tab refreshed successfully');
} else {
alert ('Primary did not refresh');
i

</script>

</apex:page>

47

Methods for Primary Tabs and Subtabs refreshPrimaryTabByNamel()

@ Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the primary tab refreshed successfully; £alse if the primary tab didn't

refresh.

refreshPrimaryTabByName ()

Refreshes a primary tab specified by name, including its subtabs. This method can't refresh subtabs with URLs to external pages or
Visualforce pages. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshPrimaryTabByName (name:String, active:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
name string Name of the primary tab to refresh.
active boolean If true, the refreshed primary tab displays immediately. If £alse, the refreshed
primary tab displays in the background.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a primary tab by name

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testRefreshPrimaryTabByName () {
//Set the name of the tab by using the openPrimaryTab method
//This value is for example purposes only
var primaryTabName = 'myPrimaryTab';

48

Methods for Primary Tabs and Subtabs refreshSubtabByld()

sforce.console.refreshPrimaryTabByName (primaryTabName, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the primary tab was successful
if (result.success == true) {
alert ('Primary tab refreshed successfully');
} else {
alert ('Primary tab did not refresh');

}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:

Name Type Description

success boolean true if the primary tab refreshed successfully; false if the primary tab didn't
refresh.

refreshSubtabById()

Refreshes a subtab with the last known URL with a specified ID. This method can't refresh a subtab If the last known URL is an external
page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabById(id:String, active:Boolean, (optional)callback:Function)

Arguments
Name Type Description
id string ID of the subtab to refresh.
active boolean If t rue, the refreshed subtab displaysimmediately. If false, the refreshed subtab

displays in the background.

49

Methods for Primary Tabs and Subtabs refreshSubtabByNameAndPrimaryTabld)

Name Type Description

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by id

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabById() {
//Set the name of the tab by using the openSubtab method
//This value is for example purposes only
var subtabId = 'scc-st-0';
sforce.console.refreshSubtabById (subtabId, true, refreshSuccess);

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {
alert ('Subtab refreshed successfully');
} else {
alert ('Subtab did not refresh');

}i
</script>
</apex:page>

Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; £alse if the subtab didn't refresh.

refreshSubtabByNameAndPrimaryTabId ()

Refreshes a subtab with the last known URL with the specified name and primary tab ID. This method can't refresh a subtab If the last
known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

50

Methods for Primary Tabs and Subtabs refreshSubtabByNameAndPrimaryTabld|)

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabId (name:String, primaryTabId:String,
active:Boolean, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabId string ID of the primary tab in which the subtab opened.
active boolean If t rue, therefreshed subtab displays immediately. If false,the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab ID

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabByNameAndPrimaryTabId() ({
//Get the value for 'mySubtab' and 'scc-pt-0' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabId = 'scc-pt-0';
sforce.console.refreshSubtabByNameAndPrimaryTabId (subtabName, primaryTabId,
true, refreshSuccess);

}

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {

alert ('Subtab refreshed successfully');
} else {
alert ('Subtab did not refresh');
}i
</script>

</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

51

Methods for Primary Tabs and Subtabs refreshSubtabByNameAndPrimaryTabName()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; false if the subtab didn't refresh.

refreshSubtabByNameAndPrimaryTabName ()

Refreshes a subtab with the last known URL with the specified name and primary tab name. This method can't refresh a subtab If the
last known URL is an external page or a Visualforce page. This method is only available in APl version 22.0 or later.

Syntax

sforce.console.refreshSubtabByNameAndPrimaryTabName (name:String, primaryTabName:String,
active:Boolean, (optional)callback:Function)

Arguments
Name Type Description
name string Name of the subtab to refresh.
primaryTabName string Name of the primary tab in which the subtab opened.
active boolean If t rue, the refreshed subtab displaysimmediately. If £alse, the refreshed subtab
displays in the background.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to refresh a subtab by name and primary tab name

<apex:includeScript value="/support/console/22.0/integration.js"/>
<script type="text/javascript">
function testRefreshSubtabByNameAndPrimaryTabName () {
//Get the value for 'mySubtab' and 'myPrimaryTab' from the openSubtab method
//These values are for example purposes only
var subtabName = 'mySubtab';
var primaryTabName = 'myPrimaryTab';
sforce.console.refreshSubtabByNameAndPrimaryTabName (subtabName, primaryTabName,
true, refreshSuccess);

52

Methods for Primary Tabs and Subtabs reopenLastClosedTabl)

var refreshSuccess = function refreshSuccess (result) {
//Report whether refreshing the subtab was successful
if (result.success == true) {
alert ('Subtab successfully refreshed');
} else {

alert ('Subtab did not refresh');
}i
</script>
</apex:page>

@ Nofte: This example s set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the subtab refreshed successfully; £alse if the subtab didn't refresh.

reopenlLastClosedTab ()

Reopens the last closed primary tab, and any of its subtabs that were open, the moment it was closed. This method is only available in
APl version 35.0 or later.

Syntax

sforce.console.reopenLastClosedTab ()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/35.0/integration.js"/>

53

Methods for Primary Tabs and Subtabs resetSessionTimeOut()

<script type="text/javascript">

var = callback = function (result) {
if (result.success) {
alert ('Last tab was re-opened!');
} else {
alert ('No tab was re-opened.');
}
}i
function reopenlLastClosedTabTest () {

sforce.console.reopenlastClosedTab (callback) ;

</script>
Re-open Last Closed Tab
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the tab was reopened, false otherwise.

resetSessionTimeOut ()

Resets a session timeout on a Visualforce page so that users can continue working without being logged out. This method is only available
in APl version 24.0 or later.

For more information, see “Modify Session Security Settings” in the Salesforce Help.

Syntax

sforce.console.resetSessionTimeOut ()

Arguments

None

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to reset session timeout

54

Methods for Primary Tabs and Subtabs sefTabUnsavedChangesi)

<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">
function testResetSessionTimeOut () {
sforce.console.resetSessionTimeOut () ;
}i
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

None

setTabUnsavedChanges ()

Sets the unsaved changes icon (4) on subtabs to indicate unsaved data. This method is only available in APl version 23.0 or later.

Syntax

sforce.console.setTabUnsavedChanges (unsaved:Boolean, callback:Function,
(optional) subtabId:String)

Arguments
Name Type Description
unsaved boolean If true, the tabis marked as having unsaved changes.
callback function JavaScript method that's called upon completion of the method.
subtabId string The ID of the subtab that is marked as having unsaved changes.

This argument is only available in APl version 25.0 or later.

Sample Code API Version 23.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/23.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.setTabUnsavedChanges (true, displayResult);
}i
function displayResult (result) {

55

Methods for Primary Tabs and Subtabs sefTabUnsavedChangesi)

if (result.success) {

alert ('Tab status has been successfully updated');
} else {

alert ('Tab status couldn’t be updated');

</script>
</apex:page>

@ Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

This method returns its response in an object in a callback method. The response object contains the following field:
Name Type Description
success boolean true if update was successful; false if update wasn't successful.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page standardController="Case">

Click here to indicate this tab has unsaved changes

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testSetTabUnsavedChanges () {
sforce.console.getFocusedSubtabId (setTabDirty) ;
}i
function setTabDirty(result) {
sforce.console.setTabUnsavedChanges (true, displayResult, result.id);
}i
function displayResult (result) {
if (result.success) {
alert ('Tab status has been successfully updated');
} else {
alert ('Tab status couldn’t be updated');

}i
</script>
</apex:page>

Note: Thisexampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 84.

56

Methods for Primary Tabs and Subtabs sefTablcon()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if returning the focused subtab ID was successful; false ifif returning the

focused subtab ID wasn't successful.

setTabIcon|()

Sets an icon on the specified tab. If a tab is not specified, the icon is set on the enclosing tab. Use this method to customize a tab’s icon.
This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabIcon (iconUrl:String, tabID:String, (optional)callback:Function)

Arguments
Name Type Description
iconUrl string A URL pointing to an image, which is used as the tab’s icon. If null or undefined, the
tab’s default icon is used.
tabId string The ID of the tab on which to set the icon. If null or undefined, the enclosing tab’s
IDis used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s icon

Click here to reset the enclosing tab’s icon

<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {

alert ('Tab icon set successfully!');
} else {
alert ('Tab icon cannot be set!');

57

Methods for Primary Tabs and Subtabs sefTabLinki()

function testSetTabIcon () {
sforce.console.setTabIcon ('http://host/path/to/your/icon.png', null,
checkResult) ;
}
function testResetTabIcon () {
sforce.console.setTabIcon(null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting the tab'sicon was successful, false if settingthe tab’sicon wasn't

successful.

@ Nofe: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabLink ()

Sets a console tab’s URL attribute to the location of the tab’s content. Use this method to generate secure console URLs when users
navigate to tabs displaying content outside of the Salesforce domain.This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabLink ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page standardController="Account">
<apex: detail />
<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">

58

Methods for Primary Tabs and Subtabs sefTabStyle()

window.onload = function() {
sforce.console.setTabLink () ;
}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean true if the link was set successfully, false if setting was unsuccessful.
callback function JavaScript method that's called upon completion of the method.

setTabStyle ()

Sets a cascading style sheet (CSS) on the specified tab. If a tab is not specified, the CSS is set on the enclosing tab. Use this method to
customize a tab’s look and feel. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.setTabStyle (style:String, tabld:String, (optional)callback:Function)

Arguments
Name Type Description
style string A CSS specification string used to style the tab. If null or undefined, the tab’s default
style is used.
tabId string The ID of the tab on which to set the style. If null or undefined, the enclosing tab’s
IDis used.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s background color to red

Click here to reset the enclosing tab’s style

<apex:includeScript value="/support/console/28.0/integration.js"/>

59

Methods for Primary Tabs and Subtabs sefTabTexiStyle()

<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab style set successfully!');
} else {
alert ('Tab style cannot be set!');

function testSetTabStyle() {
sforce.console.setTabStyle ('background:red; "', null, checkResult);

function testResetTabStyle () {
sforce.console.setTabStyle (null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifsetting the tab’s style was successful, false if setting the tab’s style wasn't

successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays
in the browser’s developer console.

setTabTextStyle ()

Sets a cascading style sheet (CSS) on a specified tab’s text. If a tab is not specified, the CSS is set on the enclosing tab’s text. Use this
method to customize a tab’s text style. This method is only available in APl version 28.0 or later.

Syntax

sforce.console. setTabTextStyle (style:String, tabID:String, (optional)callback:Function))

Arguments
Name Type Description
style string A CSS specification string used to set a tab’s text style. If null or undefined, the tab’s

default text style is used.

60

Methods for Primary Tabs and Subtabs sefTabTexiStyle()

Name Type Description

tabId string The ID of the tab on which to set the text style. If null or undefined, the enclosing
tab’s ID is used.

callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to change the enclosing tab’s text style

Click here to reset the enclosing tab’s text style

<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('Tab text style set successfully!');
} else {
alert ('Tab text style cannot be set!');

function testSetTabTextStyle () {
sforce.console.setTabTextStyle ('color:blue; font-style:italic;"', null,
checkResult) ;
}
function testResetTabTextStyle() {
sforce.console.setTabTextStyle (null, null, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the tab’s text style was successful, false if setting the tab’s text

style wasn't successful.

@ Note: If this method is called without passing in a tab ID, the tab in which the Visualforce page is enclosed is used. If there isn't
an enclosing tab, the error message Cannot get a workspace or view tab from the given ID displays

in the browser’s developer console.

61

Methods for Primary Tabs and Subtabs sefTabTitle()

setTabTitle ()

Sets the title of a primary tab or subtab. This method is only available in APl version 20.0 or later.

Syntax

sforce.console.setTabTitle (tabTitle:String, (optional)tabID:String)

Arguments
Name Type Description
tabTitle string Title of a primary tab or subtab.
tabId string The ID of the tab in which to set the title.

This argument is only available in APl version 25.0 or later.

Sample Code-Visualforce API Version 20.0 or Later

<apex:page standardController="Case">

Click here to change this tab's title

<apex:includeScript value="/support/console/20.0/integration.js"/>
<script type="text/javascript">
function testSetTabTitle () {
//Set the current tab's title
sforce.console.setTabTitle ('My New Title');

}
</script>
</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see “Define Custom Buttons and Links”
in the Salesforce online help.

Response

None

Sample Code-Visualforce API Version 25.0 or Later

<apex:page>

Click here to change the title of the focused primary tab

<apex:includeScript value="/support/console/25.0/integration.js"/>

62

Methods for Primary Tabs and Subtabs sefTabTitle()

<script type="text/javascript">
sforce.console.getFocusedPrimaryTabId (function (result) {
sforce.console.setTabTitle ('My New Title', result.id);
}) i
</script>
</apex:page>

Nofte: Thisexampleis only set to run if the Visualforce page is inside an application-level custom component. For more information,
see Methods for Application-Level Custom Console Components on page 84.

Response

None

63

CHAPTER 4 Methods for Navigation Tabs

A Salesforce console displays a navigation tab from which users can select objects to view lists or home pages. Administrators choose
the objects that users can access from a navigation tab. For more information, see “Salesforce Console Navigation Tab” and “Create a
Salesforce Console App” in the online help.

IN THIS SECTION:

focusNavigationTab()
Focuses the browser on the navigation tab. This method is only available in API version 31.0 or later.

getNavigationTabs()
Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

getSelectedNavigationTab()
Returns the selected object in the navigation tab. This method is only available in APl version 31.0 or later.

refreshNavigationTab()
Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

setSelectedNavigationTab()
Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

focusNavigationTab ()

Focuses the browser on the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.focusNavigationTab ((optional)callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) ({}
if (result.success) {

64

Methods for Navigation Tabs getNavigationTabs()

alert ('success');

}
else{
alert ('Something is wrong.');
}
}i
sforce.console.focusNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if returning the object IDs was successful; false otherwise.

getNavigationTabs ()

Returns all of the objects in the navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.getNavigationTabs ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>

<script type="text/javascript">

var callback = function (result) {

var id;
if (result.success) {
var tempIltem = JSON.parse (result.items);

for (var 1 = 0, len = templtem.length; i < len; i++) {

alert ('Label:'+tempIltem[i].label+'listViewURLl: '+tempItem[i].listViewUrl+'navTabid:"'

65

Methods for Navigation Tabs getSelectedNavigationTab()

+tempIltem([i] .navigationTabId+'Selected ' +templtem[i].selected);
}
} else {
alert ('something is wrong!');
}
}i
sforce.console.getNavigationTabs (callback) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

menultems object The IDs of objects in the navigation tab.

success boolean true if returning the IDs of objects in the navigation tab was successful, false

otherwise.

getSelectedNavigationTab ()

Returns the selected object in the navigation tab. This method is only available in API version 31.0 or later.

Syntax

sforce.console.getSelectedNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {}
if (result.success) {
alert ('the navigation tab id is ' + result.navigationTabId + ' and navigation

url is ' + result.listViewUrl):;

66

Methods for Navigation Tabs refreshNavigationTab()

} else {
alert ('something is wrong!');

b
sforce.console.getSelectedNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
navigationTabId string The object ID of the selected object.
listViewUrl object The list view URL of the selected object.
label object The label of the selected object.
selected boolean true ifreturning the selected field of the object was successful, false otherwise.
success boolean true if returning the object IDs was successful, false otherwise.

refreshNavigationTab ()

Refreshes the selected navigation tab. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.refreshNavigationTab ((optional)callback: Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>

<script type="text/javascript">

var callback = function (result) {}
if (result.success) {

67

Methods for Navigation Tabs setSelectedNavigationTab)

alert ('success');
}
else(
alert ('Something is wrong.');

}s
sforce.console.refreshNavigationTab (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if refreshing the navigation tab was successful, false otherwise.

setSelectedNavigationTab ()

Sets the navigation tab with a specific ID or URL. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.setSelectedNavigationTab ((optional)callback, navigatorTabId: (optional)string,
url: (optional) string)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.
navigatorTabId string The ID of the navigation tab to be selected.
url string The URL of the navigation tab to be selected.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">
var callback = function (result) ({}
if (result.success) {
alert ('Successful');
} else {

68

Methods for Navigation Tabs setSelectedNavigationTab)

alert ('something is wrong!');

}i
sforce.console.setSelectedNavigationTab (callback, 'nav-tab-4");
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the navigation tab with a specific ID or URL was successful, false

otherwise.

69

CHAPTER 5 Methods for Computer-Telephony
Integration (CTI)

Salesforce Call Center seamlessly integrates Salesforce with Computer-Telephony Integration systems. Whether developers create a CTl
system with Open CTl or the CTI Toolkit, console users access telephony features through a SoftPhone, which is a call-control tool that
appears in the footer of a console. For more information, see “Salesforce Open CTI Overview” and “Call Center Overview” in the Salesforce
Help.

IN THIS SECTION:

fireOnCallBegin()
Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom
console component. This method is only available in APl version 31.0 or later.

fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom
console component. This method executes when fireOnCallBegin () is called first. This method is only available in API
version 31.0 or later.

fireOnCallLogSaved()
Callsthe eventHandler function registered with onCallLogSaved () .Useto getinformation or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.

getCallAttachedData()
Returns the attached data of a call represented by the call object ID or null if there isn't an active call. The data is returned in JSON
format. This method is for computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

getCallObjectlds()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

onCallBegin()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only
available in APl version 24.0 or later.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTl); it's only available in API
version 24.0 or later.

onCallLogSaved()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an
interaction log and a custom console component. This method is only available in APl version 31.0 or later.

onSendCTIMessage()

Registers a function that s fired when a message is sent with the sendCTIMessage () . Use to getinformation or send information
between an interaction log and a custom console component. This method is only available in API version 31.0 or later.
sendCTIMessage()

Sends a message to the CTl adapter or Open CTI. This method is for computer-telephony integration (CTl); it’s only available in API
version 24.0 or later.

70

Methods for Computer-Telephony Integration (CTI) fireOnCallBeginl)

setCallAttachedData()
Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a
custom console component.This method is only available in APl version 31.0 or later.

setCallObjectlds()
Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

fireOnCallBegin ()

Fires an event that notifies a call has begun. Use to get information or send information between an interaction log and a custom console
component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.fireOnCallBegin(callObjectId:String, callType:String, calllabel:String,
(optional)callback:Function)

Arguments

Name Type Description

callObjectId string The object ID of the call.

callType string String that specifies the call type, which must be internal, inbound or
outbound

callLabel string String that specifies a call as it appears in the Attach Call drop-down button. For
exmﬂpb,Call Label — Inbound Call 12:52:31 PM

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to start a call

<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallBegin () {
sforce.console.cti.fireOnCallBegin('call.794937"' , 'outbound' , 'label 1');

</script>
</apex:page>

71

Methods for Computer-Telephony Integration (CTI) fireOnCallEnd()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.
fireOnCallEnd()

Fires an event that notifies a call has ended. Use to get information or send information between an interaction log and a custom console
component. This method executes when fireOnCallBegin () is called first. This method is only available in APl version 31.0 or
later.

Syntax

sforce.console.cti.fireOnCallEnd(callObjectId:String, callDuration:Number,
callDisposition:String, (optional)callback:Function)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callDuration number Number specifying the duration of the call.
callDisposition string String representing the call’s disposition, such as call successful, left voicemail, or
disconnected.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to end a call

<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

function testFireOnCallEnd () {

//Here, 'call.l' refers to a call that is in progress.
sforce.console.cti.fireOnCallEnd('call.l', 60, 'Set Appointment');

72

Methods for Computer-Telephony Integration (CTI) fireOnCallLogSaved])

</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.

fireOnCallLogSaved ()

Callsthe eventHandler function registered with onCallLogSaved (). Use to get information or send information between
an interaction log and a custom console component.. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.fireOnCalllogSaved(id:String, (optional)callback:Function)

Arguments
Name Type Description
id string The object ID of the saved call log.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

var MyCallback = function (result) {
alert ('fireOnCalllLogSaved was thrown: ' + result.success);

i

function testFireOnCallLogSaved () {
// Simulates that a call log was saved by passing the task object Id as input.

sforce.console.cti.fireOnCallLogSaved ('00Txx000003gf8u', myCallback);

var callback = function (result) {

73

Methods for Computer-Telephony Integration (CTI) getCallAttachedDatal)

alert('Call Log was saved! Object Id saved is : ' + result.id);
b

sforce.console.cti.onCalllLogSaved (callback);
</script>

Test fireOnCallLogSaved API!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false otherwise.
getCallAttachedData ()

Returns the attached data of a call represented by the call object ID or null if there isn't an active call. The data is returned in JSON format.
This method is for computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallAttachedData(callObjectId, getCallType, (optional)
callback: Function)

Arguments
Name Type Description
callObjectId string The call object ID of the call that retrieves the attached data.
getCallType boolean true ifthetype of call is returned as either INTERNAL, INBOUND, or ‘OUTBOUND";
false otherwise. This field is only available in APl version 29.0 or later.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">

/* Note: Open CTI needs to set call type to before getting it, and call type is
INTERNAL/INBOUND/OUTBOUND.

74

Methods for Computer-Telephony Integration (CTI) getCallObjectlds|()

*/

var callback2 = function (result) {

alert('Call attached data is ' + result.data + '\n Call Type is ' +
result.type);

}i

/* Retrieving call ID of first call that came in and
* calling getCallAttachedData () to retrieve call data.
*/
var callbackl = function (result) {
if (result.ids && result.ids.length > 0) {
sforce.console.cti.getCallAttachedData (result.ids[0], callback2,
{getCallType:true});
}
}:

//Note that we are using the CTI submodule here
function testGetCallAttachedData () {

sforce.console.cti.getCallObjectIds (callbackl);
}i

</script>
<h1>CTI</hl>
<button onclick="testGetCallAttachedData () ">getAttachedData</button>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

data string The attached data of a call in JSON format.

success boolean true ifreturning the attached data was successful; false ifreturning the attached

data wasn't successful.
type string The type of call. Possible values are 'INTERNAL', INBOUND', and 'OUTBOUND'.

getCallObjectIds ()

Returns any active call object IDs in the order in which they arrived or null if there aren’t any active calls. This method is for
computer-telephony integration (CTI); it's only available in APl version 24.0 or later.

Syntax

sforce.console.cti.getCallObjectIds((optional) callback:Function)

75

Methods for Computer-Telephony Integration (CTI) onCallBeginl)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert ('"Active call object ids: ' + result.ids);

b

//Note that we are using the CTI submodule here
sforce.console.cti.getCallObjectIds (callback);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

ids string The call object IDs of active calls or null if no call is active.

success boolean true if returning the active call object IDs was successful; false ifreturning the

active call object IDs wasn't successful.
onCallBegin ()

Registers a function that is called when a call begins (comes in). This method is for computer-telephony integration (CTI); it's only available
in APl version 24.0 or later.

Syntax

sforce.console.cti.onCallBegin(eventHandler:Function)

76

Methods for Computer-Telephony Integration (CTI) onCallEnd()

Arguments
Name Type Description
eventHandler function JavaScript method called when a call begins.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call ' + result.id + 'Just came in!'");

}7

//Note that we are using the CTI submodule here
sforce.console.cti.onCallBegin (callback) ;
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string The call object ID of the call which has begun.

onCallEnd()

Registers a function that is called when a call ends. This method is for computer-telephony integration (CTI); it's only available in API
version 24.0 or later.

Syntax

sforce.console.cti.onCallEnd(eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a call ends.

77

Methods for Computer-Telephony Integration (CTI) onCallLogSaved])

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/24.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
var str = 'Call ' + result.id + ' ended! ';
str += 'Call duration is ' + result.duration + '. ';
str += 'Call disposition is ' + result.disposition;

alert (str);

}i

//Note that we are using the CTI submodule here
sforce.console.cti.onCallEnd(callback);
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

id string The call object ID of the call which has ended.

duration string The duration of the call.

disposition string The disposition of the call.

onCallLogSaved ()

Registers a function that is fired when an interaction log saves a call log. Use to get information or send information between an interaction
log and a custom console component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.onCallLogSaved(eventHandler:Function)

Arguments
Name Type Description
eventHandler function Forastandardinteractionlog, eventHandler isafunction thatis executed when

acalllogis saved. Fora custom interaction log, eventHandler isafunction that
is executed when the fireOnCallLogSaved APlis called in your Visualforce

page.

78

Methods for Computer-Telephony Integration (CTI) onSendCTIMessage()

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
alert('Call Log was saved! Object Id saved is : ' + result.id);
}i

sforce.console.cti.onCalllLogSaved (callback);
</script>

<p>Registered onCallLogSaved listener...</p>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

id string Call log object ID that was saved.

onSendCTIMessage ()

Registers a function that is fired when a message is sent with the sendCTIMessage (). Use to get information or send information
between an interaction log and a custom console component. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.onSendCTIMessage (eventHandler:Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a message is sent with the sendCTIMessage ()

method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

79

Methods for Computer-Telephony Integration (CTI) sendCTIMessagel)

var callback = function (result) {
alert ('sendCTIMessage API sent the following message: ' + result.message);

}i
sforce.console.cti.onSendCTIMessage (callback) ;

function sendCTIMessage () {
sforce.console.cti.sendCTIMessage ('sending a message to CTI');
}
</script>

Send a message to see your listener receiving it!
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message that was sent with the sendCTIMessage () method.

sendCTIMessage ()

Sends a message to the CTladapter or Open CTl. This method is for computer-telephony integration (CTl); it's only available in APl version
24.0 or later.

Syntax

sforce.console.cti.sendCTIMessage (msg, (optional) callback:Function)

Arguments

Name Type Description

msg string Message to send to the adapter.

callback function JavaScript method called when the message is sent.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/24.0/integration.js"/>

80

Methods for Computer-Telephony Integration (CTI) setCallAttachedDatal)

<script type="text/javascript">

var callback = function (result) {
if (result.success) {
alert ('CTI message was sent successfully!');
} else {
alert ('CTI message was not sent successfully.');

}i

//Note that we are using the CTI submodule here
sforce.console.cti.sendCTIMessage ('/ANSWER?LINE NUMBER=1', callback);
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true if sending the message was successful; f£alse if sending the message wasn't
successful.
setCallAttachedData ()

Sets the call data associated with a call object ID. Use to get information or send information between an interaction log and a custom
console component.This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallAttachedData(callObjectId:String, callData:JSON string
callType:String, (optional)callback:Functional)

Arguments
Name Type Description
callObjectId string The object ID of the call.
callData string JSON string that specifies the data to attach to the call.
callType string String that specifies the call type, suchas internal, inbound, or outbound.
callback function JavaScript method called upon completion of the method.

81

Methods for Computer-Telephony Integration (CTI) setCallObjectlds|()

Sample Code-Visualforce

<apex:page>

Click here to set call attached data

<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

function testSetCallAttachedData () {
//callData must be a JSON string. We assume that your browser has
//access to a JSON library.
var callData = JSON.stringify ({"ANI":"4155551212", "DNIS":"8005551212"});

//Set the call attached data associated to call id 'call.l'
sforce.console.cti.setCallAttachedData('call.l', callData, 'outbound');
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the event firing was successful; false otherwise.

setCallObjectIds ()

Sets call object IDs, in ascending order of arrival. This method is only available in APl version 31.0 or later.

Syntax

sforce.console.cti.setCallObjectIds(callObjectIds:Array, callback:Function)

Arguments
Name Type Description
callObjectId array An array of string IDs specifying the calls to set.
callback function JavaScript method called upon completion of the method.

82

Methods for Computer-Telephony Integration (CTI) setCallObjectids|)

Sample Code-Visualforce

<apex:page>

Click here to set call object Ids

<apex:includeScript value="/support/console/31.0/integration.js"/>
<script type="text/javascript">

function checkResult (result) {
if (result.success) {

alert ('Call object ids set successfully!');
} else {
alert ('Call object ids cannot be set!');

function testSetCallObjectIds () {
sforce.console.cti.setCallObjectIds(['call.l1', 'call.2', 'call.3'],
checkResult) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the call IDs was successful; false otherwise.

83

CHAPTER 6 Methods for Application-Level Custom
Console Components

Custom console components let you customize, extend, or integrate the footer, sidebars, highlights panels, and interaction logs of a
Salesforce console using Visualforce, canvas apps, lookup fields, or related lists. Administrators can add components to either:

e Page layouts to display content on specific pages

e Salesforce console apps to display content across all pages and tabs

For more information, see “Console Components” in the Salesforce Help.

IN THIS SECTION:

addToBrowserTitleQueue()
Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or later.

blinkCustomConsoleComponentButtonText()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

isCustomConsoleComponentPoppedOut()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the online help. This
method is only available in APl version 30.0 or later.

isCustomConsoleComponentWindowHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0
through 31.0.

isCustomConsoleComponentHidden()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and
later. In APl version 31.0 and earlier, this method was called i sCustomConsoleComponentWindowHidden ().

isinCustomConsoleComponent()

Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or
later.

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

onFocusedPrimaryTab()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in AP
version 25.0 or later.

removeFromBrowserTitleQueue()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version
28.0 or later.

scrollCustomConsoleComponentButtonText()

Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in API
version 25.0 or later.

84

Methods for Application-Level Custom Console Components addToBrowserTitleQueue|)

setCustomConsoleComponentButtonlconUrl()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in API
version 25.0 or later.

setCustomConsoleComponentButtonStyle()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only
available in APl version 25.0 or later.

setCustomConsoleComponentButtonText()

Sets the text on a button used to launch an application-level custom console component that's on a page. This method is only
available in APl version 25.0 or later.

setCustomConsoleComponentHeight()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version
32.0 or later.

setCustomConsoleComponentVisible()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl version
32.0and later.In APl version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().
setCustomConsoleComponentWidth()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version
32.0or later.

setCustomConsoleComponentPopoutable()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components
must be turned on. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the online help. This
method is only available in APl version 30.0 or later.

setCustomConsoleComponentWindowVisible()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in APl versions
25.0 through 31.0.

setSidebarVisible()

Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later.

addToBrowserTitleQueue ()

Adds a browser tab title to a list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or later.

Syntax

sforce.console.addToBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title that is displayed.
callback function JavaScript method that's called upon completion of the method.

85

Methods for Application-Level Custom Console Components blinkCustomConsoleComponentButtonText()

Sample Code-Visualforce

<apex:page >

Click here to enqueue a browser title

<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">
function testAddToBrowserTitleQueue () {
var title = 'TestTitle';

sforce.console.addToBrowserTitleQueue (title) ;

}
</script>

</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If true, the title was successfully added to the browser title queue. If false,the
title wasn't added to the browser title queue.
callback function JavaScript method that's called upon completion of the method.

blinkCustomConsoleComponentButtonText ()

Blinks a button’s text on an application-level custom console component that's on a page. This method is only available in API version
25.0 or later.

Syntax

sforce.console.blinkCustomConsoleComponentButtonText (alternateText:String, interval:number,
(optional)callback:Function)

Arguments
Name Type Description
alternateText string The alternate text to display when the button text blinks.
interval number Controls how often the text blinks in milliseconds.
callback function JavaScript method that's called upon completion of the method.

86

Methods for Application-Level Custom Console Components isCustomConsoleComponentPoppedOut()

Sample Code-Visualforce

<apex:page>

Click here to blink the button text on a custom console component

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testBlinkCustomConsoleComponentButtonText () {
//Blink the custom console component button text
sforce.console.blinkCustomConsoleComponentButtonText ('Hello World', 10,
function (result) {
if (result.success) {
alert ('The text blinking starts!');
} else {
alert ('Could not initiate the text blinking!');
}
})
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifblinking, the button text was successful; false if blinking the button text

wasn't successful.

isCustomConsoleComponentPoppedOut ()

Determines if a custom console component is popped out from a browser. To use this method, multi-monitor components must be
turned on. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the online help. This method is
only available in APl version 30.0 or later.

Syntax

sforce.console.isCustomConsoleComponentPoppedOut (callback:Function)

Arguments
Name Type Description
callback function JavaScript method that's called upon completion of the method.

87

Methods for Application-Level Custom Console Components isCustomConsoleComponentWindowHidden()

Sample Code-Visualforce

<apex:page>

Is this component popped out?

<apex:includeScript value="/support/console/30.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert('Is this component popped out: ' + result.poppedOut);
} else {
alert ('Error invoking this method. Check the browser developer console for
more information.');
}
}
function checkPoppedOut () {
sforce.console.isCustomConsoleComponentPoppedOut (checkResult) ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true ifreturning the component’s pop out status was successful; false otherwise.
poppedOut boolean true if the component is popped out; false otherwise.

isCustomConsoleComponentWindowHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl versions 25.0 through
31.0.

@ Nofte: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the online
help. Starting in APl version 32.0, this method is no longer available and has been replaced by
isCustomConsoleComponentHidden ().Formoreinformation,see“isCustomConsoleComponentHidden ().

"

Syntax

sforce.console.isCustomConsoleComponentWindowHidden ((optional) callback:Function)

88

Methods for Application-Level Custom Console Components isCustomConsoleComponentHidden()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentWindowHidden () {
sforce.console.isCustomConsoleComponentWindowHidden (checkWindowVisibility) ;

var checkWindowVisibility = function checkWindowVisibility(result) ({
//Display the window visibility
if (result.success) {

alert ('Is window hidden: ' + result.hidden);
} else {
alert ("Exror!");

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
hidden boolean true if the custom console component window is hidden; false if the custom
console component window is visible.
success boolean true ifreturning the custom console component window visibility was successful;
false if returning the custom console component window visibility wasn't
successful.

isCustomConsoleComponentHidden ()

Determines if the application-level custom console component window is hidden. This method is available in APl version 32.0 and later.
In APl version 31.0 and earlier, this method was called isCustomConsoleComponentWindowHidden ().

89

Methods for Application-Level Custom Console Components isCustomConsoleComponentHidden|)

Syntax

sforce.console.isCustomConsoleComponentHidden ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to check if the custom console component window is hidden

<apex:includeScript value="/support/console/32.0/integration.js"/>
<script type="text/javascript">
function testIsCustomConsoleComponentHidden () {
sforce.console.isCustomConsoleComponentHidden (checkWindowVisibility) ;

var checkWindowVisibility = function checkWindowVisibility (result) {
//Display the window visibility
if (result.success) {
alert ('Is window hidden: ' + result.hidden);
} else {
alert ('Error!');

}
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
hidden boolean true if the custom console component window is hidden; false if the custom
console component window is visible.
success boolean true ifthe isCustomConsoleComponentHidden () callwassuccessful;

false ifthe isCustomConsoleComponentHidden () call wasn't
successful.

90

Methods for Application-Level Custom Console Components isinCustomConsoleComponent()

isInCustomConsoleComponent ()

Determines if the page is in an application-level custom console component. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.isInCustomConsoleComponent ((optional) callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to check if the page is in an app-level custom console component

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testIsInCustomConsoleComponent () {
sforce.console.isInCustomConsoleComponent (checkInComponent) ;

var checkInComponent = function checkInComponent (result) {
//Check if in component
alert('Is in custom console component: ' + result.inCustomConsoleComponent) ;
b
</script>

</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field

Name Type Description

inCustarConsoleComponent boolean true if the page isin a custom console component; false ifthe pageisn'tina

custom console com ponent.

91

Methods for Application-Level Custom Console Components onCustomConsoleComponentButtonClicked()

Name Type Description

success boolean true if returning the page status was successful; false if returning the page
status wasn't successful.

onCustomConsoleComponentButtonClicked()

Registers a function to call when a button is clicked on an application-level custom console component. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler: Function)

Arguments
Name Type Description
callback function JavaScript method called when a button is clicked on a custom console component.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('The Custom Console Component button is clicked. The component ID
is: ' + result.id +
' and the component window is: ' + (result.windowHidden ? 'hidden'
'visible'));

b

sforce.console.onCustomConsoleComponentButtonClicked (eventHandler) ;
</script>

</apex:page>

Event Handler Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following

field:
Name Type Description
id string The ID of the custom console component which includes the page.

92

Methods for Application-Level Custom Console Components onFocusedPrimaryTab()

Name Type Description

windowHidden boolean true if the custom console component window is hidden after the button is clicked;
false if the custom console component window is visible after the button is
clicked.

onFocusedPrimaryTab ()

Registers a function to call when the focus of the browser changes to a different primary tab. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.onFocusedPrimaryTab (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the focus of the browser changes to a different

primary tab.

Sample Code-Visualforce
<apex:page>
<apex:includeScript value="/support/console/25.0/integration.js"/>

<script type="text/javascript">

var eventHandler = function (result) {
alert ('Focus changed to a different primary tab. The primary tab ID is:'

+ result.id + 'and the object Id is:' + result.objectId);
}i
sforce.console.onFocusedPrimaryTab (eventHandler) ;

</script>

</apex:page>

Event Handler Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

fields:
Name Type Description
id string The ID of the primary tab on which the browser is focused.

93

Methods for Application-Level Custom Console Components removeFromBrowserTitleQueuel)

Name Type Description
objectId string The object ID of the primary tab on which the browser is focused or null if no object
exists.

removeFromBrowserTitleQueue ()

Removes a browser tab title from the list of titles, which rotates every three seconds. This method is only available in APl version 28.0 or
later.

Syntax

sforce.console.removeFromBrowserTitleQueue (title:String, callback:Function)

Arguments
Name Type Description
title string Browser tab title to remove.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/28.0/integration.js"/>
<script type="text/javascript">

 {
Click here to enqueue a browser title

Click here to remove browser title

var title = 'TestTitle';
function testAddToBrowserTitleQueue () {
sforce.console.addToBrowserTitleQueue (title) ;
}
function testRemoveFromBrowserTitleQueue () {
sforce.console.removeFromBrowserTitleQueue (title) ;
}
</script>
</apex:page>

94

Methods for Application-Level Custom Console Components scrollCustomConsoleComponentButtonText()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:
Name Type Description
success boolean If t rue, the title was successfully removed from the browser title queue. If false,
the title wasn't removed from the browser title queue.
callback function JavaScript method that's called upon completion of the method.

scrollCustomConsoleComponentButtonText ()

Scrolls a button’s text on an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.scrollCustomConsoleComponentButtonText (interval :number, pixelsToScroll:number,
isLeftScrolling:boolean, (optional)callback:Function)

Arguments
Name Type Description
interval number Controls how often the button text is scrolled in milliseconds.
pixelsToScroll number Controls how many pixels the button text scrolls.
isLeftScrolling boolean If true, the text scrolls left. If £alse, the text scrolls right.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to scroll the button text on a custom console component

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testScrollCustomConsoleComponentButtonText () {
//Scroll the custom console component button text from right to left
sforce.console.scrollCustomConsoleComponentButtonText (500, 10, true,
function (result) {
if (result.success) {

95

Methods for Application-Level Custom Console Components setCustomConsoleComponentButtonlconUrl()

alert ('The text scrolling starts!');
} else {
alert ('Could not initiate the text scrolling!');
}
})
}
</script>
</apex:page>
Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:
Name Type Description
success boolean true ifscrolling the button text was successful; false if scrolling the button text

wasn't successful.

setCustomConsoleComponentButtonIconUrl ()

Sets the button icon URL of an application-level custom console component that's on a page. This method is only available in APl version
25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonIconUrl (iconURL: String,
(optional)callback: Function)

Arguments
Name Type Description
iconUrl string A URL that points to an image that's used as a button to launch a custom console
component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the custom console component button icon

<apex:includeScript value="/support/console/25.0/integration.js"/>

96

Methods for Application-Level Custom Console Components setCustomConsoleComponentButtonStyle()

<script type="text/javascript">
function testSetCustomConsoleComponentButtonIconUrl () {

sforce.console.setCustomConsoleComponentButtonIconUrl ('http://imageserver/img.png') ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button icon URL was successful; false if setting the button

icon URL wasn't successful.

setCustomConsoleComponentButtonStyle ()

Sets the style of a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonStyle (style:String, (optional)callback:

Function)
Arguments
Name Type Description
style string The style of a button used to launch a custom console component. The styles
supported include font, font color, and background color. Font and font color isn't
available for Internet Explorer” 7.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the style of a button used to launch a custom console
component

97

Methods for Application-Level Custom Console Components setCustomConsoleComponentButtonText()

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentButtonStyle () {
sforce.console.setCustomConsoleComponentButtonStyle ('background:red; ") ;
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if setting the button style was successful; false if setting the button style

wasn't successful.

setCustomConsoleComponentButtonText ()

Sets the text on a button used to launch an application-level custom console component that's on a page. This method is only available
in APl version 25.0 or later.

Syntax

sforce.console.setCustomConsoleComponentButtonText (text:String, (optional)callback:Function)

Arguments
Name Type Description
text string Text that's displayed on a button used to launch a custom console component.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the text on a button used to launch a custom console component

<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentButtonText () {

98

Methods for Application-Level Custom Console Components setCustomConsoleComponentHeight()

//Change the custom console component button text to 'Hello World'

sforce.console.setCustomConsoleComponentButtonText ('Hello World') ;

}
</script>
</apex:page>

Response
Name Type Description
success boolean true if setting the button text was successful; false if setting the button text

wasn't successful.

setCustomConsoleComponentHeight ()

Sets the window height of an application-level custom console component that's on a page. This method is available in APl version 32.0

or later.

@ Nofte: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the Salesforce

Help.

Syntax

sforce.console.setCustomConsoleComponentHeight (height:number, (optional)callback:Function)

Arguments
Name Type Description
height number The new height in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the custom console component height to 100px

<apex:includeScript value="/support/console/32.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentHeight () {

// Set the custom console component height
sforce.console.setCustomConsoleComponentHeight (100) ;

99

Methods for Application-Level Custom Console Components setCustomConsoleComponentVisible()

}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in API version
32.0 and later. In APl version 31.0 and earlier, this method was called setCustomConsoleComponentWindowVisible ().

Syntax

sforce.console.setCustomConsoleComponentVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/32.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentVisible () {
// Make the custom console component window visible
sforce.console.setCustomConsoleComponentVisible (true);

100

Methods for Application-Level Custom Console Components setCustomConsoleComponentWidth()

</script>
</apex:page>

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

setCustomConsoleComponentWidth ()

Sets the window width of an application-level custom console component that's on a page. This method is available in APl version 32.0

or later.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-monitor components is turned
on, nothing will happen. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the Salesforce

Help.

Syntax

sforce.console.setCustomConsoleComponentWidth (width:number, callback:Function)

Arguments
Name Type Description
width number The new width in pixels.
callback function Javascript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to set the custom console component width to 100px

<apex:includeScript value="/support/console/32.0/integration.js"/>
<script type="text/javascript">
function testSetCustomConsoleComponentWidth () {
// Set the custom console component width
sforce.console.setCustomConsoleComponentWidth (100) ;

}
</script>
</apex:page>

101

Methods for Application-Level Custom Console Components setCustomConsoleComponentPopoutable()

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

setCustomConsoleComponentPopoutable ()

Sets a custom console component to be popped out or popped into a browser. To use this method, multi-monitor components must
be turned on. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the online help. This method
is only available in API version 30.0 or later.

Syntax

sforce.console.setCustomConsoleComponentPopoutable (popoutable:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
popoutable boolean If true, the component can be popped out or popped into a browser. If false,
the component cannot be popped out or popped into a browser.
callback function JavaScript method that's called upon completion of the method.

Sample Code-Visualforce

<apex:page>

Click here to enable pop out or pop in functionality

Click here to disable pop out or pop in functionality

<apex:includeScript value="/support/console/30.0/integration.js"/>
<script type="text/javascript">
function checkResult (result) {
if (result.success) {
alert ('The method was successfully invoked.');
} else {
alert ('Error while invoking this method. Check the browser developer console
for more information.');

}

102

Methods for Application-Level Custom Console Components setCustomConsoleComponentWindowVisible()

function enablePopout () {
sforce.console.setCustomConsoleComponentPopoutable (true, checkResult);

function disablePopout () {
sforce.console.setCustomConsoleComponentPopoutable (false, checkResult);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true ifenabling pop out or pop in functionality for the component was successful;

false otherwise.

setCustomConsoleComponentWindowVisible ()

Sets the window visibility of an application-level custom console component that's on a page. This method is available in API versions
25.0 through 31.0.

@ Note: If this method is called from a popped out component in a Salesforce console where multi-montior components is turned
on, nothing will happen. For more information, see “Turn on Multi-Monitor Components for a Salesforce Console” in the Salesforce
Help. Starting in APl version 32.0, this method is no longer available and has been replaced by
setCustomConsoleComponentVisible ().For more information, see
setCustomConsoleComponentVisible ().

Syntax

sforce.console.setCustomConsoleComponentWindowVisible (visible:Boolean,
(optional)callback: Function)

Arguments
Name Type Description
visible boolean true to make the custom console component window visible, false to hide
the custom console component window.
callback function JavaScript method that's called upon completion of the method.

103

Methods for Application-Level Custom Console Components setSidebarVisible()

Sample Code-Visualforce
<apex:page>

Click here to make the custom console component window visible

<apex:includeScript value="/support/console/25.0/integration.js"/>

<script type="text/javascript">
function testSetCustomConsoleComponentWindowVisible () {
//Make the custom console component window visible

sforce.console.setCustomConsoleComponentWindowVisible (true) ;

}

</script>

</apex:page>

Response
Name Type Description
success boolean true if setting the button window visibility was successful; false if setting the

button window visibility wasn't successful.

setSidebarVisible ()

Shows or hides a console sidebar based on tabId and region. This method is available in APl version 33.0 or later.

Syntax

sforce.console.setSidebarVisible(visible:Boolean, (optional)tabId:String,
(optional)region:String, (optional)callback:Function)

Arguments

Name Type Description

visible boolean true toshow the sidebar or false to hide the sidebar.

tabId string The ID of the tab on which to show or hide the sidebar.

region string The region on the console where the sidebar is located, such as left or right, top or

bottom. Regions are represented as:

® sforce.console.Region.LEFT
® sforce.console.Region.RIGHT
® sforce.console.Region.TOP

® sforce.console.Region.BOTTOM

104

Methods for Application-Level Custom Console Components setSidebarVisiblel()

Name Type Description

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/33.0/integration.js"/>
<script type="text/javascript">

var callback = function (result) {
if (result.success) {
alert ('Congratulations!');
lelse {
alert ('something is wrong!');
}
}i
function setSidebarVisible () {

sforce.console.setSidebarVisible (true, 'scc-st-1"',sforce.console.Region.LEFT, callback) ;

}

</script>

<A HREF="#" onClick="setSidebarVisible () ;

return false">SetSidebarToExpand
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true if the method call was successful; false otherwise.

105

CHAPTER 7 Methods for Push Notifications

Push notifications are visual indicators on lists and detail pages in a console that show when a record or field has changed during a user’s
session. For example, if two support agents are working on the same case, and one agent changes the Priority, a push notification
appears to the other agent so he or she spots the change and doesn’t duplicate the effort.

When administrators set up a Salesforce console, they choose when push notifications display, and which objects and fields trigger push
notifications. Developers can use push notification methods to customize push notifications beyond the default visual indicators supplied
by Salesforce. For example, developers can use the methods below to create personalized notifications about objects accessible to
specific console users, thereby eliminating the need for email notifications. For more information, see “Configure Push Notifications for
a Salesforce Console” in the Salesforce Help.

Consider the following when using push notification methods:
e Push notification listener response is only available for the objects and fields selected to trigger push notifications for a console.

e When a Visualforce page includes a listener added by the addPushNotificationListener () method, the page receives
notifications. The listener receives notifications when there is an update by any user to the objects selected for triggering console
push notifications and the current user has access to the modified record. This functionality is slightly different from push notifications
set up in the Salesforce user interface in that:

— Listeners receive update notifications for changes made by all users.

- Listeners receive notifications when an object’s fields are updated or created, even if those fields aren't selected to trigger push
notifications; and the notifications don't include details about what changed. For example, if Status on the Case object is set
totrigger a push notification, but Priority onthe Case object changes, a listener receives a notification that the case changed
without specifying details.

— Listeners don't obey the Choose How Lists Refresh and Choose How Detail Pages Refresh push
notifications settings in a Salesforce console.

- The only way to stop receiving notifications is to remove listeners using the removePushNotificationListener ()
method.

IN THIS SECTION:

addPushNotificationListener()
Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

removePushNotificationListener()
Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

addPushNotificationListener ()

Adds a listener for a push notification. A user can only register a listener once until he or she removes the listener, or the listener is
removed by another user. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 106.

106

Methods for Push Notifications addPushNotificationListener()

Syntax

sforce.console.addPushNotificationListener (objects: array, eventHandler:Function)

Arguments
Name Type Description
objects array Objects set to receive notifications.
eventHandler function JavaScript method called when there is a push notification.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/26.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('There is a push notification of object: ' + result.Id);
}i
//Add a push notification listener for Case and Account
sforce.console.addPushNotificationListener (['Case', 'Account'], eventHandler):;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method.
Name Type Description
id string The object ID of the push notification.
entityType string The type of object included in the push notification. For example, Account or Contact.

Objects available for push notifications are determined by the administrator who
set up a Salesforce console. For more information, see “Configure Push Notifications
for a Salesforce Console” in the Salesforce online help.

Type string The field of the object included in the push notification. For example, the Account
Name field on Account. Notifications occur when the field is either updated or
created.

Fields on objects available for push notifications are determined by the administrator
who set up a Salesforce console. For more information, see “Configure Push
Notifications for a Salesforce Console” in the Salesforce online help.

LastModifiedById string The user ID of the user who last modified the object in the push notification.

107

Methods for Push Notifications removePushNofificationListener()

removePushNotificationListener ()

Removes a listener that gets added for a push notification. This method is only available in APl version 26.0 or later.

For more information on push notifications, see Methods for Push Notifications on page 106.

Syntax

sforce.console.removePushNotificationListener ((optional) callback:Function)

Arguments
Name Type Description
callback function A function called when the removal of the push notification listener completes.

Sample Code-Visualforce

<apex:page standardController="Case">

Click here to remove push notification

<apex:includeScript value="/support/console/26.0/integration.js"/>
<script type="text/javascript">

function testRemovePushNotification() {
sforce.console.removePushNotificationlListener (removeSuccess) ;
}
var removeSuccess = function removeSuccess (result) {
//Report whether removing the push notification listener is successful
if (result.success == true) {
alert ('Removing push notification was successful');
} else {
alert ('Removing push notification wasn't successful');

}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method.
Name Type Description
success boolean true ifremoving the push notification listener was successful; false ifremoving

the push notification listener wasn't successful.

108

CHAPTER 8 Methods for Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. The following standard
events are supported:

Event Description Payload

sforce.amsole.CansoleBvent.OFEN TB Fired when a primary tab or subtab is opened.

e id — The ID of the opened tab.
Available in APl version 30.0 or later.

e objectId — The object D of the
opened tab, if available.

sforce.amsole. ConsoleBvent .CIOSE B Fired when a primary tab or subtab with a
specified ID in the additionalParams
argument is closed. Or, fired when a primary
tab or subtab with no specified ID is closed.
Available in APl version 30.0 or later.

e id —TheID of the closed tab.

objectID — The object ID of the
closed tab, if available.

sforce. arsale. GrealeRert.GQNBIE IGET Delays the execution of logging out of a None
console when a user clicks Logout. When
Logout is clicked:

1. Anoverlay appears, which tells a user that
logout is in progress.
2. Callbacks are executed that have been

registered by using
sfarce.arsole.ConsoleBeant .CNSIE I033T

3. Console logout logic is executed.

If the callback contains synchronous blocking
code, the console logout code isn't executed
until the blocking code is executed. As a best
practice, avoid synchronous blocking code or
long code execution during logout.

Available in APl version 31.0 or later.

IN THIS SECTION:

addEventListener()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom
event types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

fireEvent()

Fires a custom event. This method is only available in APl version 25.0 or later.

removeEventListener()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

109

Methods for Console Events addEventListener()

addEventListener ()

Adds a listener for a custom event type or a standard event type when the event is fired. This method adds a listener for custom event
types in APl version 25.0 or later; it adds a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 109.

Syntax

sforce.console.addEventListener (eventType: String, eventlistener:Function,
(optional)additionalParams:Object)

Arguments
Name Type Description
eventType string Custom event type for which eventListener listens.
eventListener function JavaScript method called when an eventType is fired.
additionalParams object Optional parameters accepted by this method. The supported properties on this

object are tabId: The ID of the tab to listen for the specified event.

This argument is only available in API version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">

var listener = function (result) {
alert ('Message received from event: ' + result.message);
}i
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);
</script>
</apex:page>

Response

This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

110

Methods for Console Events addEventListener()

Name Type Description

message string The message which is sent with the fired event.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

1. Object ID of the primary tab
2. ID of the primary tab

3. Object ID of the subtab

4. D of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console”
in the online help.

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/30.0/integration.js"/>
<script type="text/javascript">

var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id
+ ', Object ID: ' + (result.objectId ? result.objectId : 'not available'));

b

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) ({
if (result.id) {
sforce.console.addEventListener (sforce.console.ConsoleEvent.CLOSE TAB,
onEnclosingPrimaryTabClose, { tabId : result.id });
} else {
alert ('Could not find an enclosing primary TAB!'");

}) i
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

message string The message which is sent with the fired event.

If the response is from a console event, the message includes payload details as
described in Methods for Console Events on page 109.

If the response is from a custom keyboard shortcut, the message includes the
following information on which the browser is focused, in this order:

m

Methods for Console Events fireEvent()

Name Type Description
1. Object ID of the primary tab
2. ID of the primary tab
3. ObjectID of the subtab
4. D of the subtab

For more information, see “Customize Keyboard Shortcuts for a Salesforce Console”
in the online help.

fireEvent ()

Fires a custom event. This method is only available in APl version 25.0 or later.

Syntax

sforce.console.fireEvent (eventType:String, message:String, (optional)callback:Function

)

Arguments

Name Type Description

eventType string The type of custom event to fire.

message string The message which is sent with the fired event.
callback function JavaScript method called when the custom event is fired.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/25.0/integration.js"/>
<script type="text/javascript">

Click here to fire an event of type 'SampleEvent'

var callback = function (result) {
if (result.success) {
alert ('The custom event is fired!');
} else {
alert ('The custom event could not be fired!'):;

}i

function testFireEvent () {

N2

Methods for Console Events removeEventlistener()

//Fire an event of type 'SampleEvent'
sforce.console.fireEvent ('SampleEvent', 'EventMessage',6 callback);
}
</script>
</apex:page>

Response
This method is asynchronous, so it returns its response in an object in a callback method. The response object contains the following
field:

Name Type Description

success boolean true iffiring the event is successful, false if firing the event wasn't successful.

removeEventListener ()

Removes a listener for a custom event type or a standard event type. This method removes a listener for custom event types in API
version 25.0 or later; it removes a listener for standard event types in APl version 30.0 or later.

For the list of standard events, see Methods for Console Events on page 109.

Syntax

sforce.console.removeEventListener (eventType: String, eventlistener:Function,
(optional)additionalParams:0bject)

Arguments
Name Type Description
eventType string Event type for which eventListener is removed.
eventListener function Event listener to remove.
additionalParams object Optional parameters accepted by this method. The supported properties on this

object are tabId: The ID of the tab to remove the listener for the specified event.

This argument is only available in API version 30.0 or later.

Sample Code API Version 25.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/25.0/integration.js"/>

Click here to remove an event listener for the 'SampleEvent' event type

13

Methods for Console Events removeEventListener()

<script type="text/javascript">
var listener = function (result) {
alert ('Message received from event: ' + result.message);
}i
//Add a listener for the 'SampleEvent' event type
sforce.console.addEventListener ('SampleEvent', listener);

function testRemoveEventListener () {
sforce.console.removeEventListener ('SampleEvent', listener);

}
</script>
</apex:page>

Response

None

Sample Code API Version 30.0 or Later-Visualforce

<apex:page>
<apex:includeScript value="/support/console/30.0/integration.js"/>

Click here to remove an event listener for the console 'CLOSE TAB' event

type

<script type="text/javascript">
var tabId;

var onEnclosingPrimaryTabClose = function (result) {
alert ('The enclosing primary tab is about to be closed. Tab ID: ' + result.id

Object ID: ' + (result.objectId ? result.objectId : 'not available'));

b

//Add a listener to handle the closing of the enclosing primary tab
sforce.console.getEnclosingPrimaryTabId (function (result) {
if (result.id) {
tabId = result.id;
sforce.console.addEventListener (sforce.console.ConsoleEvent.CLOSE TAB,

onEnclosingPrimaryTabClose, { tabId : tabId });

} else {
alert ('Could not find an enclosing primary TAB!');
}
)i
function testRemoveEventListener () {

sforce.console.removeEventListener (sforce.console.ConsoleEvent.CLOSE TAB,
onEnclosingPrimaryTabClose, { tabId : tabId });

114

Methods for Console Events removeEventListener()

</script>
</apex:page>

Response

None

15

CHAPTER 9 Methods for Live Agent

Live Agent lets you connect with customers or website visitors in real time through Web-based chat. For more information, see “Add
Live Agent to the Salesforce Console” in the Salesforce Help.

IN THIS SECTION:

acceptChat()

Accepts a chat request. Available in APl version 29.0 or later.

cancelFileTransferByAgent()

Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.
declineChat()

Declines a chat request. Available in APl version 29.0 or later.

endChat()

Ends a chat in which an agent is currently engaged. Available in APl version 29.0 or later.
getAgentinput()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available
in APl version 29.0 or later.

getAgentState()

Returns the agent's current Live Agent status, such as Online, Away, or Offline. Available in APl version 29.0 or later.
getChatlLog()

Returns the chat log of a chat associated with a specific chat key. Available in APl version 29.0 or later.
getChatRequests()

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.
getDetailsByChatKey()

Returns the details of the chat associated with a specific chat key. Available in APl version 29.0 or later.
getDetailsByPrimaryTabld()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.
getEngagedChats()

Returns the chat keys of the chats in which the agent is currently engaged. Available in APl version 29.0 or later.
getMaxCapacity()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

initFileTransfer()

Initiates the process of transferring a file from a customer to an agent. Available in APl version 31.0 or later.
onAgentSend()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

116

Methods for Live Agent

onAgentStateChanged()

Registers a function to call when agents change their Live Agent status, such as from Online to Away. Available in APl version 29.0
or later.

onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in APl version 29.0 or later.

onChatCriticalWaitState()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or
later.

onChatDeclined()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

onChatEnded()

Registers a function to call when an engaged chat ends. Available in APl version 29.0 or later.

onChatRequested()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

onChatStarted()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
onChatTransferredOut()

Registers a function to call when an engaged chat is transferred out to another agent. Available in API version 29.0 or later.
onCurrentCapacityChanged()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat,
ends a currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed
to their chat queue. Available in APl version 29.0 or later.

onCustomEvent()

Registers a function to call when a custom event takes place during a chat. Available in APl version 29.0 or later.
onFileTransferCompleted()

Registers a function to call when afile is transferred from a customer to an agent. Available in APl version 31.0 or later.
onNewMessage()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.
onTypingUpdate()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called
whenever the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer
starts or stops typing in the chat window. Available in APl version 29.0 or later.

sendCustomEvent()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in APl version 29.0 or later.
sendMessage()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

setAgentinput()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or
later.

setAgentState()

Sets an agent's Live Agent status, such as Online, Away, or Offline. Available in API version 29.0 or later.

n7

Methods for Live Agent acceptChat()

Methods for Live Agent Chat Visitors
There are a few methods available that you can use to customize the chat visitor experience for Live Agent in a custom Visualforce
chat window.

acceptChat ()

Accepts a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.acceptChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat request you wish to accept.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Accept Chat

<script type="text/javascript">
function testAcceptChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested/()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.acceptChat (chatKey, acceptSuccess);

function acceptSuccess (result) {
//Report whether accepting the chat was succesful

if (result.success == true) {
alert ('Accepting the chat was successful');
} else {

alert ('Accepting the chat was not successful');
b

</script>
</apex:page>

18

Methods for Live Agent cancelFileTransferByAgent()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if accepting the chat was successful; false if accepting the chat wasn't

successful.

cancelFileTransferByAgent ()

Indicates that a file transfer request has been canceled by an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.cancelFileTransferByAgent (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat for which the agent canceled the file transfer request.
callback function JavaScript method that is called when the method is completed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>
Cancel file transfer

<script type="text/javascript">
function testCancelFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested ()

methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';

sforce.console.chat.cancelFileTransferByAgent (chatKey, fileSuccess);

function fileSuccess (result) {
//Report whether canceling was successful

if (result.success == true) {
alert ('Canceling file transfer was successful.');
} else {

19

Methods for Live Agent declineChat()

alert ('Canceling file transfer was not successful.');
}
}i
</script>
</apex:page>
Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if canceling the file transfer request was successful; false if canceling the
file transfer request wasn't successful.
declineChat ()

Declines a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.declineChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the request you wish to decline.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Decline Chat

<script type="text/javascript">
function testDeclineChat () {
//Get the value for 'myChatKey'from the getChatRequests () or onChatRequested()
methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.declineChat (chatKey, declineSuccess);

120

Methods for Live Agent endChat()

function declineSuccess (result) {
//Report whether declining the chat was succesful
if (result.success == true) {
alert ('Declining the chat was successful');
} else {
alert ('Declining the chat was not successful');

}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if declining the event was successful; £alse if declining the event wasn't
successful.
endChat ()

Ends a chat in which an agent is currently engaged. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.endChat (chatKey:String, (optional)callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the engaged chat you wish to end.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
End Chat

<script type="text/javascript">

121

Methods for Live Agent getAgentinput()

function testEndChat () {
//Get the value for 'myChatKey'from the getEngagedChats() or onChatStarted()

methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.endChat (chatKey, endSuccess);
}
function endSuccess (result) {
//Report whether ending the chat was succesful
if (result.success == true) ({
alert ('Ending the chat was successful');
} else {
alert ('Ending the chat was not successful');
}
}i
</script>

</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true ifending the chat was successful; false ifending the chat wasn't successful.
getAgentInput ()

Returns the string of text which is currently in the agent’s text input area in the chat log of a chat with a specific chat key. Available in
APl version 29.0 or later.

Syntax

sforce.console.chat.getAgentInput (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to retrieve the agent’s input text.
callback function JavaScript method called upon completion of the method.

122

Methods for Live Agent getAgentState()

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Agent Input

<script type="text/javascript">

function testGetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getAgentInput (chatKey, getAgentInputSuccess);

function getAgentInputSuccess (result) {
//Report whether getting the agent's input was successful

if (result.success == true) ({

agentInput = result.text;

alert ('The text in the agent input is: ' + agentInput);
} else {

alert ('Getting the agent input was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

text String The text that is currently in an agent’s text input area.

success Boolean true if getting the agent’s input was successful; false if getting the agent’s

input wasn't successful.

getAgentState ()

Returns the agent's current Live Agent status, such as Online, Away, or Offline. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getAgentState (callback: Function)

123

Methods for Live Agent getChatLog()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Agent State

<script type="text/javascript">
function testGetAgentState() {
sforce.console.chat.getAgentState (function (result) {
if (result.success) {
alert ("Agent State:' + result.state);
} else {
alert ('getAgentState has failed');

}) i
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

state String String representing the current agent state—for example, Online, Away, or Offline.
success Boolean true if getting the agent’s Live Agent status was successful; false if getting the

agent's Live Agent status wasn't successful.
getChatLog ()

Returns the chat log of a chat associated with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getChatLog(chatKey:String, callback:Function)

124

Methods for Live Agent

Arguments

Name Type Description

chatKey String The chatKey associated with the chat for which to retrieve the chat log.
callback function

JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >

<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Chat Log

<script type="text/javascript">

function testGetChatLog() {

//Get the value for 'myChatKey'from the

sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.

//These values are for example purposes only
var chatKey = 'myChatKey';

sforce.console.chat.getChatLog (chatKey, getChatLogSuccess)

function getChatLogSuccess (result) {

//Report whether getting the chat log was succesful
if (result.success == true) {

chatLogMessage = result.messages[0].content;

alert ('The first message in this chatlLog is: '

+ chatLogMessage) ;
} else {

alert ('Getting the chat log was not successful');

</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
fields:

Name Type Description

customEvents Array of

customEvent duringa chat.
objects

125

An array of custom event objects representing the custom events that occurred

getChatLog()

Methods for Live Agent

Name Type
messages Array of
message
objects
success Boolean
customEvent

getChatRequests|()

Description

An array of chat message objects containing all of the chat messages from the chat
log.

true if getting the chat log was successful; £alse if getting the chat log wasn't
successful.

The customEvent object contains a single event from the chat log and the following properties:

Property Type

source String

type String

data String

timestamp Date/Time
message

Description
The person who initiated the custom event, either the chat visitor or the agent.
The type of custom event that occurred.

The data of the custom event that was sent to the chat; corresponds to the data
argument of the 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.

The date and time a custom event was received.

The message object contains a single chat message from the chat log and the following properties:

Property Type
content String
name String
type String
timestamp Date/Time

getChatRequests ()

Description
The text content of a message in the chat log.

The name of the user who sent the message in the chat log. This appears exactly as
it is displayed in the chat log.

The type of message that was received, such as Agent or Visitor.

The date and time the chat message was received.

Returns the chat keys of the chat requests that have been assigned to an agent. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getChatRequests (callback: Function)

126

Methods for Live Agent getDetailsByChatKeyl()

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Chat Requests

<script type="text/javascript">
function testGetChatRequests () {
sforce.console.chat.getChatRequests (function (result) {
if (result.success) {
alert ("Number of Chat Requests ' + result.chatKey.length);
} else {
alert ('getChatRequests has failed');

}) i
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey Array Array of chatKey values, one for each of the current chat requests.

success Boolean true if getting chat requests was successful; false if getting chat requests wasn't

successful.

getDetailsByChatKey ()

Returns the details of the chat associated with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByChatKey (chatKey:String, callback:Function)

127

Methods for Live Agent getDetailsByChatKeyl()

Arguments

Name Type Description

chatKey String The chatKey associated with the chat for which to retrieve details.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByChatKey () {
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.getDetailsByChatKey (chatKey, getDetailsSuccess);

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful

if (result.success == true) {

ipAddress = result.details.ipAddress;

alert ('The Visitor IP Address for this chat is: ' + ipAddress);
} else {

alert ('Getting the details was not successful');

</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name Type Description

primaryTabId String The ID of the primary tab associated with the chat.

details Object An object that contains all the details for a chat associated with a particular primary
tab.

success Boolean true ifretrieving the details was successful; false ifretrieving the details wasn't
successful.

128

Methods for Live Agent

details

getDetailsByChatKeyl)

The details object contains the following properties:

Property
acceptTime

breadcrumbs

chatKey

customDetails

geoLocation

ipAddress
isEnded
isEngaged

isPushRequest

isTransferringOut

liveChatButtonId

liveChatDeploymentId

name
requestTime

visitorInfo

breadcrumb

Type
Date/Time

Array of
breadcrumb
objects

String

Array of
customDetail
objects

Object

String
Boolean
Boolean

Boolean

Boolean

String
String
String
Date/Time

Object

Description
The date and time an agent accepted the chat request.

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

The chat key associated with the chat.

Anarray of custombDetail objects that represent custom details that have
been passed in to this chat via the Deployment API or Pre-Chat Form API.

An object representing the details of a chat visitor's location, derived from a
geolP lookup on the chat visitor's IP address.

The IP address of the chat visitor in dot-decimal format.
Specifies whether a chat has ended (true) or not (false).
Specifies whether a chat is currently engaged (t rue) or not (false).

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

Specifies whether a chat is currently in the process of being transferred to another
agent (true) ornot (false).

The 15-digit record ID for the chat button from which the chat request originated.
The 15-digit record ID for the deployment from which the chat request originated.
The name of the chat visitor.

The date and time the chat was requested.

An object containing information about the visitor's web browser.

A breadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property
location

time

Type Description
String The URL of a Web page viewed by a chat visitor.
Date/Time The date and time a chat visitor visited a specific breadcrumb URL.

129

Methods for Live Agent

customDetail

getDetailsByChatKeyl)

Custom details are details have been passed into the chat through the Deployment APl or Pre-Chat Form APIl. The custombDetail
object contains the following properties:

Property

label
value

transcriptFields

entityMaps

entityMap

Type
String

String

Array of Strings

Array of
entityMap
objects

Description

The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
APIL.

The value of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

The names of fields where the customer’s details on the chat transcript are saved.

An array of pre-created records used for mapping custom detail information.

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property
entityName
fieldName

isFastFillable

isAutoQueryable

isExactMatchable

geoLocation

Type
String
String

Boolean

Boolean

Boolean

Description
The record to search for or create.
The name of the field associated with the details.

Specifies whether the value can be used to populate the field when an agent creates
or edits a record (true) or not (false) (Live Agent console only).

If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property

city

Type
String

Description

The name of the chat visitor's city.

130

Methods for Live Agent

Property
countryCode
countryName
latitude
longitude
organization

region

visitorInfo

Type
String
String
String
String
String
String

getDetailsByPrimaryTabld)

Description

The two-digit ISO-3166 country code for the chat visitor's country.
The name of chat visitor's country.

The chat visitor's approximate latitude.

The chat visitor's approximate longitude.

The organization name of the chat visitor's internet service provider.

The chat visitor's region, such as state or province.

The visitorInfo object representsinformation about the visitor's web browser. It contains the following properties:

Property
browserName
language
originalReferrer

screenResolution

sessionKey

Type
String
String
String
String

String

Description

The name and version of the chat visitor's web browser.

The language of the chat visitor's web browser.

The original URL of the Web page from which the chat visitor requested a chat.

The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor
record as a unigue reference to this live chat visitor

getDetailsByPrimaryTabId()

Returns the details of the chat associated with a specific primary tab ID. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getDetailsByPrimaryTabId (primaryTabId:String, callback:Function)

Arguments

Name
primaryTabId

callback

Type
String

function

Description

The ID of the primary tab associated with the chat for which to retrieve details.

JavaScript method called upon completion of the method.

131

Methods for Live Agent getDetailsByPrimaryTabld|)

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Chat Details

<script type="text/javascript">

function testGetDetailsByPrimaryTabId() {
//Get the value for 'myPrimaryTabId'from the getPrimaryTabIds () or
getEnclosingPrimaryTabId () methods.
//These values are for example purposes only
var primaryTabId = 'myPrimaryTabId';
sforce.console.chat.getDetailsByPrimaryTabld (primaryTabId, getDetailsSuccess);

function getDetailsSuccess (result) {
//Report whether accepting the chat was succesful
if (result.success == true) {
console.log(result);
chatKey = result.details.chatKey;
alert ('The chatKey for this chat is: ' + chatKey);
} else {
alert ('Getting the details was not Succesful');

b

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
primaryTabId String The ID of the primary tab associated with the chat.
details Object An object that contains all the details for a chat associated with a particular primary
tab.
success Boolean true ifretrieving the details was successful; false if retrieving the details wasn't
successful.
details

The details object contains the following properties:

132

Methods for Live Agent

Property
acceptTime

breadcrumbs

chatKey

customDetails

geoLocation

ipAddress
isEnded
isEngaged

isPushRequest

isTransferringOut

liveChatButtonId

liveChatDeploymentId

name
requestTime

visitorInfo

breadcrumb

Type
Date/Time

Array of
breadcrumb
objects

String

Array of
customDetail
objects

Object

String
Boolean
Boolean

Boolean

Boolean

String
String
String
Date/Time

Object

getDetailsByPrimaryTabld|)

Description
The date and time an agent accepted the chat request.

An array of breadcrumb objects representing a list of Web pages visited by
the visitor before and during the chat.

The chat key associated with the chat.

An array of customDetail objects that represent custom details that have
been passed in to this chat via the Deployment APl or Pre-Chat Form API.

An object representing the details of a chat visitor's location, derived from a
geolP lookup on the chat visitor's IP address.

The IP address of the chat visitor in dot-decimal format.
Specifies whether a chat has ended (true) or not (false).
Specifies whether a chat is currently engaged (t rue) ornot (false).

Specifies whether a chat was routed to an agent through a push-based routing
method such as Least Active or Most Available (true) or not (false).

Specifies whether a chatis currently in the process of being transferred to another
agent (true) or not (false).

The 15-digit record ID for the chat button from which the chat request originated.
The 15-digit record ID for the deployment from which the chat request originated.
The name of the chat visitor.

The date and time the chat was requested.

An object containing information about the visitor's web browser.

Abreadcrumb represents a Web page viewed by a chat visitor. The breadcrumb object contains the following properties:

Property
location

time

customDetail

Type Description
String The URL of a Web page viewed by a chat visitor.
Date/Time The date and time a chat visitor visited a specific breadcrumb URL.

Custom details are details that have been passed into the chat through the Deployment APl or Pre-Chat Form APl. The customDetail
object contains the following properties:

133

Methods for Live Agent

Property

label
value

transcriptFields

entityMaps

entityMap

Type
String

String

Array of Strings

Array of
entityMap
objects

getDetailsByPrimaryTabld|)

Description

The name of the custom detail as specified in the Deployment APl or Pre-Chat Form
API.

The value of the custom detail as specified in the Deployment API or Pre-Chat Form
API.

The names of fields where the customer's details on the chat transcript are saved.

An array of pre-created records used for mapping the custom detail information.

Entities are records that are created when a customer starts a chat with an agent. You can use the API to auto-populate these records
with customer details. The entityMap object contains the following properties:

Property
entityName
fieldName

isFastFillable

isAutoQueryable

isExactMatchable

geoLocation

Type
String
String

Boolean

Boolean

Boolean

Description
The record to search for or create.
The name of the field associated the details.

Specifies whether the value can be used to populate the field when an agent creates
or edits a record (true) or not (false) (Live Agent console only).

If you're using the Live Agent console, specifies whether to perform a a SOSL query
(in the Live Agent console) (true) or not (false) to find records with a
fieldName containing the value.

If you're using the Salesforce console, specifies whether to perform a SOQL query
(in the Salesforce console) (true) or not (false) to find records with a
fieldName containing the value.

Specifies whether to only search for records that have fields exactly matching the
field fieldName (true)ornot(false).

The geoLocation object represents the details of a chat visitor's location. It contains the following properties:

Property

city
countryCode
countryName

latitude

Type
String
String
String
String

Description

The name of the chat visitor's city.

The two-digit ISO-3166 country code for the chat visitor's country.
The name of chat visitor's country.

The chat visitor's approximate latitude.

134

Methods for Live Agent getEngagedChats|)

Property Type Description

longitude String The chat visitor's approximate longitude.

organization String The organization name of the chat visitor's internet service provider.

region String The chat visitor's region, such as state or province.
visitorInfo

The visitorInfo object represents information about the visitor's web browser. It contains the following properties:

Property Type Description

browserName String The name and version of the chat visitor's web browser.

language String The language of the chat visitor's web browser.

originalReferrer String The original URL of the Web page from which the chat visitor requested a chat.

screenResolution String The screen resolution of the chat visitor's computer, as passed by the chat visitor’s
browser.

sessionKey String the sessionKey of the visitor which will ultimately be stored on the LiveChatVisitor

record as a unique reference to this live chat visitor

getEngagedChats ()

Returns the chat keys of the chats in which the agent is currently engaged. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.getEngagedChats (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Engaged Chats

<script type="text/javascript">

135

Methods for Live Agent getMaxCapacity()

function testGetEngagedChats () {
sforce.console.chat.getEngagedChats (function (result) {
if (result.success) {
alert ('"Number Engaged Chats: ' + result.chatKey.length);
} else {
alert ('getEngagedChats has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey array Array of chatKey values, one for each of the currently engaged chats.
success boolean true if getting engaged chats was successful; false if getting engaged chats

wasn't successful.
getMaxCapacity ()

Returns the maximum chat capacity for the current agent, as specified in the agent's assigned agent configuration. Available in API
version 29.0 or later.

Syntax

sforce.console.chat.getMaxCapacity (callback:Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Get Max Capacity

<script type="text/javascript">

136

Methods for Live Agent initFileTransfer()

function testGetMaxCapacity () {
sforce.console.chat.getMaxCapacity (function (result) {
if (result.success) {
alert ('max capacity '+result.count);
} else {
alert ('getMaxCapacity failed, agent my not be online');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

count integer Agent's current, maximum chat capacity.

success boolean true if getting the agent’s capacity was successful; false if getting the agent’s

capacity wasn't successful.

initFileTransfer ()

Initiates the process of transferring a file from a customer to an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.initFileTransfer (chatKey:String, entityId:String,
(optional)callback: Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file is transferred from.
entityId String The ID of the transcript object to attach the transferred file to.
callback function JavaScript method that is called when the method is completed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/31.0/integration.js"/>

137

Methods for Live Agent onAgentSend|)

Init file transfer

<script type="text/javascript">
function testInitFileTransfer () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested/()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey'; var entityId = 'myEntityId';
sforce.console.chat.initFileTransfer (chatKey, entityId, fileSuccess);

function fileSuccess (result) {
//Reports whether initiating the file transfer was successful.

if (result.success == true) {
alert('Initiating file transfer was successful.');
} else {

alert('Initiating file transfer was not successful.');

}i
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if the request to transfer a file was sent successfully; false if the request
wasn't sent successfully.

@ Note: Avalueof true doesn't necessarily mean that the file was successfully
transferred to an agent. Rather, it indicates that the request to begin a file
transfer was sent successfully.

onAgentSend ()

Registers a function to call when an agent sends a chat message through the Salesforce console. This method intercepts the message
and occurs before it is sent to the chat visitor. Available in APl version 29.0 or later.

@ Nofte: This method is only called when an agent sends a message through the chat window interface. This method doesn't apply
when a sendMessage () method is called in the API.

Syntax

sforce.console.chat.onAgentSend (chatKey:String, callback:Function)

138

Methods for Live Agent

Arguments

Name

chatKey

callback

Sample Code-Visualforce

<apex:page >

Type
String

function

onAgentSend|)

Description

The chatKey associated with the chat for which to call a function when the agent
sends a message.

JavaScript method called upon completion of the method.

<apex:includeScript value="/support/console/29.0/integration.js"/>

<script type="text/javascript">
var eventHandler = function (result) {
var theMessage =
alert ('The agent is attempting to send the following message: ' +

result.content) ;

result.content;

sforce.console.chat.sendMessage (chatKey, theMessage)
alert ('The following message has been sent: ' + theMessage);

}

//Get the value for
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

var chatKey

'myChatKey' from the

'myChatKey';

sforce.console.chat.onAgentSend (chatKey, eventHandler);

</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name
content

name

type
timestamp

success

Type
String
String

String
Date/Time

Boolean

Description
The text of the agent’s message.

The name of the agent who is attempting to send the message as it appears in the
chat log.

The type of message that was received—for example, agent.
The date and time the agent attempted to send the chat message.

true iffiring event was successful; false if firing event wasn't successful.

139

Methods for Live Agent onAgentStateChanged|)

onAgentStateChanged ()

Registers a function to call when agents change their Live Agent status, such as from Online to Away. Available in APl version 29.0 or
later.

Syntax

sforce.console.chat.onAgentStateChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's Live Agent status has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ("Agent's State has Changed to: " + result.state);
}i
sforce.console.chat.onAgentStateChanged (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

state String String that represents the agent’s current Live Agent status—for example, Online,

Away, or Offline.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatCanceled()

Registers a function to call when a chat visitor cancels a chat request. Available in API version 29.0 or later.

140

Methods for Live Agent onChatCriticalWaitState()

Syntax

sforce.console.chat.onChatCanceled (callback: Function)

Arguments
Name Type Description
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('The chat request has been canceled for this chatKey: ' + result.chatKey);

}

sforce.console.chat.onChatCanceled (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey string The chat key for the chat request that has been canceled.

onChatCriticalWaitState ()

Registers a function to call when a chat becomes critical to answer or a waiting chat is answered. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatCanceled (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which the critical wait state has changed.

141

Methods for Live Agent onChatDeclined|)

Name Type Description

callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('This chat has reached a critical wait');
}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
sforce.console.chat.onChatCriticalWaitState (chatKey, eventHandler);
</script>

</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description
state Boolean Indicates whether the chat is in critical wait state (true) or not (false).
onChatDeclined ()

Registers a function to call when an agent declines a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatDeclined (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is declined.

142

Methods for Live Agent onChatEnded|)

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat request with this chatKey has been declined: ' + result.chatKey);

}
sforce.console.chat.onChatDeclined (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has been declined.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatEnded ()

Registers a function to call when an engaged chat ends. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatEnded (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when an engaged chat ends.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A chat with this chatKey has ended: ' + result.chatKey);

143

Methods for Live Agent onChatRequested|)

sforce.console.chat.onChatEnded (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the engaged chat that has ended.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatRequested ()

Registers a function to call when an agent receives a chat request. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatRequested (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat request is assigned to an agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new incoming chat request with this chatKey: ' +
result.chatKey) ;
}
sforce.console.chat.onChatRequested (eventHandler) ;
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

144

Methods for Live Agent onChatStarted()

Name Type Description

chatKey String The chat key for the incoming chat request.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
onChatStarted ()

Registers a function to call when an agent starts a new chat with a customer. Available in APl version 29.0 or later.
Usage

Syntax

sforce.console.chat.onChatStarted (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat requestis accepted and becomes an engaged

chat.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('A new engaged chat has started for this chatKey: ' + result.chatKey);
}
sforce.console.chat.onChatStarted (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat request that has become an engaged chat.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.

145

Methods for Live Agent onChatTransferredOut()

onChatTransferredOut ()

Registers a function to call when an engaged chat is transferred out to another agent. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onChatTransferredOut (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when a chat has been successfully transferred out to another

agent.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) ({
alert ('A chat with this chatKey has been transferred out: ' + result.chatKey);

}

sforce.console.chat.onChatTransferredOut (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

chatKey String The chat key for the chat that has been transferred.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.

onCurrentCapacityChanged ()

Registers a function to call when an agent's capacity for accepting chats changes—for example, if an agent accepts a new chat, ends a
currently engaged chat, or otherwise changes the number of chats to which they are assigned, or if a chat request is pushed to their
chat queue. Available in APl version 29.0 or later.

146

Methods for Live Agent onCustomEvent()

Syntax

sforce.console.chat.onCurrentCapacityChanged (eventHandler: Function)

Arguments
Name Type Description
eventHandler function JavaScript method called when the agent's capacity for accepting chats has changed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('Capacity Changed. Current Requests + Engaged Chats is now: ' +
result.count) ;
}
sforce.console.chat.onCurrentCapacityChanged (eventHandler) ;
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

count integer The number of chats in which the agent is currently engaged plus the number of

chat requests currently assigned to the agent.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.
onCustomEvent ()

Registers a function to call when a custom event takes place during a chat. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onCustomEvent (chatKey:String, type:String, callback:Function)

147

Methods for Live Agent onCustomEvent()

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a custom
event takes place.
type String The name of the custom event you want to listen for. This should match the name
of the custom event sent from the chat window.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">

var eventHandler = function (result) {
alert ('A new custom event has been received of type ' + result.type + ' and
with data: ' + result.data);

}
//Get the value for 'myChatKey' from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var type = 'myCustomEventType';
sforce.console.chat.onCustomEvent (chatKey, type, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
type String The type of the custom event that was sent to this chat; corresponds to the type
argument ofthe 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
data String The data of the custom event that was sent to this chat; corresponds to the data
argumentofthe 1iveagent.chasitor.sendCustomEvent () method
used to send this event from the chat window.
source String The source of the custom event that was sent to this chat; corresponds to either the
agent or the chat visitor, depending on who triggered the custom event.
timestamp Date/Time The time and date the event was received.
success Boolean true iffiring event was successful; false if firing event wasn't successful.

148

Methods for Live Agent onFileTransferCompleted|)

onFileTransferCompleted()

Registers a function to call when afile is transferred from a customer to an agent. Available in APl version 31.0 or later.

Syntax

sforce.console.chat.onFileTransferCompleted (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chat key for the chat the file was transferred from.
callback function JavaScript method that is called when the method is complete.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/31.0/integration.js"/>

test on file transfer
complete

<script type="text/javascript">
function testOnFileComplete () {
//Gets the value for 'myChatKey'from the getChatRequests () or onChatRequested/()
methods.
//These values are for example purposes only.
var chatKey = 'myChatKey';
sforce.console.chat.onFileTransferCompleted (chatKey, fileSuccess);

function fileSuccess (result) {
//Reports status of the file transfer.
if (result.success == true) {
alert ('File transfer was successful.');
} else {
alert ('File transfer was not successful.');

bi
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

149

Methods for Live Agent onNewMessagel()

Name Type Description
attachmentId String The ID of the object created for the transferred file.
success Boolean true iffiring event was successful; false if firing event was unsuccessful.

onNewMessage ()

Registers a function to call when a new message is sent from a customer, agent, or supervisor. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onNewMessage (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey string The chatKey associated with the chat for which to call a function when a new
customer message is received.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) {
alert ('There is a new message in this chat: ' + result.content);
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
sforce.console.chat.onNewMessage (chatKey, eventHandler);
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

content String The text of a message in the chat log.

150

Methods for Live Agent onTypingUpdate()

Name Type Description

name String The name of the user who sent the message. This appears exactly as it is displayed
in the chat log.

type String The type of message that was received, such as an Agent or Visitor message.
timestamp Date/Time The date and time the message was received.

success Boolean true iffiring event was successful; false iffiring event wasn't successful.
onTypingUpdate ()

Registers a function to call when the customer’s text in the chat window changes. If Sneak Peek is enabled, this function is called whenever
the customer edits the text in the chat window. If Sneak Peek is not enabled, this function is called whenever a customer starts or stops
typing in the chat window. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.onTypingUpdate (chatKey:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to call a function when a customer
begins typing a new message to the agent.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
<script type="text/javascript">
var eventHandler = function (result) ({
alert ('There is a new typing update in this chat');
}
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
sforce.console.chat.onTypingUpdate (chatKey, eventHandler);
</script>

</apex:page>

151

Methods for Live Agent sendCustomEvent()

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

isTyping Boolean Indicates whether a chat visitor is typing (t rue) or not (false).

sneakPeek String The text the chat visitor is currently typing into their input box in the chat window.

This is visible only if Sneak Peek is enabled for the agent.

success Boolean true iffiring event was successful; false if firing event wasn't successful.
sendCustomEvent ()

Sends a custom event to the client-side chat window for a chat with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.sendCustomEvent (chatKey:String, type:String, data:String,
callback: Function)

Arguments
Name Type Description
chatKey String The chatKey associated with the chat to which to send a custom event.
type String The name of the custom event you want to send to the chat window.
data String Additional data you want to send to the chat window along with the custom event.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Send Custom Event

<script type="text/javascript">

function testSendCustomEvent () {

//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only

var chatKey = 'myChatKey';
var type = 'myCustomEventType'

152

Methods for Live Agent sendMessage|)

var data = 'myCustomEventData'
sforce.console.chat.sendCustomEvent (chatKey, type, data, sendCustomEventSuccess);

function sendCustomEventSuccess (result) {
//Report whether sending the custom event was successful

if (result.success == true) {
alert ('The customEvent has been sent');
} else {

alert ('Sending the customEvent was not successful');

b

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if sending the custom event was successful; false if sending the custom

event wasn't successful.

sendMessage ()

Sends a new chat message from the agent to a chat with a specific chat key. Available in APl version 29.0 or later.

Syntax

sforce.console.chat.sendMessage (chatKey:String, message:String, callback:Function)

Arguments
Name Type Description
chatKey String The chatKey of the chat where the agent’s message is sent.
message String The message you would like to send from the agent to the customer in a chat.
callback function JavaScript method called upon completion of the method.

153

Methods for Live Agent setAgentinput()

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Send Message

<script type="text/javascript">

function testSendMessage () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId() or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text ='This is sample text to send as a message';
sforce.console.chat.sendMessage (chatKey, text, sendMessageSuccess)

function sendMessageSuccess (result) {
//Report whether getting the chat log was successful

if (result.success == true) {
alert ('Message Sent');
} else {

alert ('Sending the message was not successful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if sending the message was successful; false if sending the message wasn't
successful.
setAgentInput ()

Sets the string of text in the agent’s text input area in the chat log of a chat with a specific chat key.Available in APl version 29.0 or later.

Syntax

sforce.console.chat.setAgentInput (chatKey:String, text:String, callback:Function)

154

Methods for Live Agent setAgentinput()

Arguments
Name Type Description
chatKey String The chatKey associated with the chat for which to set the agent’s input text.
text String The string of text which you want to set into an agent's input.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/29.0/integration.js"/>
Set Agent Input

<script type="text/javascript">

function testSetAgentInput () {
//Get the value for 'myChatKey'from the
sforce.console.chat.getDetailsByPrimaryTabId () or other chat methods.
//These values are for example purposes only
var chatKey = 'myChatKey';
var text = 'This is example text to set the agent input'
sforce.console.chat.setAgentInput (chatKey, text, setAgentInputSuccess);

function setAgentInputSuccess (result) {
//Report whether setting the agent's input was succesful
if (result.success == true) {
alert ('The text in the agent input has been updated');
} else {
alert ('Setting the agent input was not Succesful');

</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if setting the agent’s input was successful; false if setting the agent'sinput

wasn't successful.

155

Methods for Live Agent setAgentState()

setAgentState ()

Sets an agent's Live Agent status, such as Online, Away, or Offline. Available in API version 29.0 or later.

Syntax

sforce.console.chat.setAgentState (state:String, (optional)callback:Function)

Arguments
Name Type Description
state String Live Agent status you want to set the agent to—for example, Online, Away, or Offline.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/29.0/integration.js"/>
Set Agent Status to
Online
<script type="text/javascript">
function testSetAgentState(state) {
sforce.console.chat.setAgentState (state, function(result) {
if (result.success) {
alert ('Agent State Set to Online');
} else {
alert ('setAgentState has failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if setting the agent’s Live Agent status was successful; false if setting the

agent's Live Agent status wasn't successful.

156

Methods for Live Agent Methods for Live Agent Chat Visitors

Methods for Live Agent Chat Visitors

There are a few methods available that you can use to customize the chat visitor experience for Live Agent in a custom Visualforce chat
window.

IN THIS SECTION:

chasitor.addCustomEventListener()
Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

chasitor.getCustomEvents()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0
or later.

chasitor.sendCustomEvent()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in APl version 29.0 or
later.

chasitor.addCustomEventListener ()

Registers a function to call when a custom event is received in the chat window. Available in API version 29.0 or later.

Syntax

liveagent.chasitor.addCustomEventListener (type:String, callback:Function)

Arguments
Name Type Description
type string The type of custom event you want to listen for.
callback function JavaScript method called upon completion of the method.

Sample Code-Visualforce

<script type="text/javascript">
function testAddCustomEventListener () {
//These values are for example purposes only
var type = 'myCustomEventType'
liveagent.chasitor.addCustomEventListener (type, customEventReceived)

function customEventReceived (result) {
eventType = result.getType();

eventData = result.getDatal();
alert ('A custom event of type: ' + eventType + ' has been received with the
following data: ' + eventData);

b

157

Methods for Live Agent chasitor.getCustomEvents|)

testAddCustomEventListener () ;

</script>
Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods:
Name Type Description
getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.
getData method Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.
getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.
getDate method Accesses the date of the custom event that was sent to this chat window. Returns

the date and time the event was received.

chasitor.getCustomEvents ()

Retrieves a list of custom events that have been received in this chat window during this chat session. Available in APl version 29.0 or
later.

Syntax

liveagent.chasitor.getCustomEvents ()

Sample Code-Visualforce

Get Custom Events

<script type="text/javascript">
function testGetCustomEvents () {
events = liveagent.chasitor.getCustomEvents() ;
eventsCount = events.length;
alert ('The following number of custom events have occurred: ' + eventsCount);

}i
</script>

158

Methods for Live Agent chasitor.sendCustomEvent()

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
methods and properties:

Name Type Description

events Array of Anarray of event objects. Each object represents a custom event that has occurred
event objects inthis chat. Data on each message object can be accessed by the following methods:
¢ getType()
® getDhata()
® getSource ()

® getDhate()

getType method Accesses the type of the custom event that was sent to this chat window. Returns
the type argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

getData method Accesses the data of the custom event that was sent to this chat window. Returns
the data argument of the
sforce.console.chat.sendCustomEvent () method used to send
this event.

getSource method Accesses the source of the custom event that was sent to this chat window—for
example, agent or chat visitor.

getDate method Accesses the date of the custom event that was sent to this chat window. Returns
the date and time the event was received.

chasitor.sendCustomEvent ()

Sends a custom event to the agent console of the agent who is currently chatting with a customer. Available in APl version 29.0 or later.

Syntax

liveagent.chasitor.sendCustomEvent (type:String, data:String)

Arguments
Name Type Description
type string The name of the custom event to send to the agent console.
data string Additional data you want to send to the agent console along with the custom event.

159

Methods for Live Agent chasitor.sendCustomEvent()

Sample Code-Visualforce

Send Custom Event

<script type="text/javascript">

function testSendCustomEvent () {
type = 'myCustomEventType';
data = 'myCustomEventData';

liveagent.chasitor.sendCustomEvent (type, data);
alert ('The custom event has been sent');
bi
</script>

Response

This method returns no responses.

160

CHAPTER 10 Methods for Omni-Channel

Omni-Channelis a comprehensive customer service solution that lets your call center route any type of incoming work item—including
cases, chats, phone calls, or leads—to the most qualified, available agents in your organization. Omni-Channel provides a customizable
customer service solution that integrates seamlessly into the Salesforce console and benefits your customers and support agents.

For more information on Omni-Channel, see Set Up Omni-Channel.

IN THIS SECTION:

acceptAgentWork
Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in
APl versions 32.0 and later.

declineAgentWork

Declines a work item that's assigned to an agent. Available in APl versions 32.0 and later.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in APl versions 32.0
and later.

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in APl versions
32.0 and later.

getServicePresenceStatusld

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

login

Logs an agent into Omni-Channel with a specific presence status. Available in APl versions 32.0 and later.

logout

Logs an agent out of Omni-Channel. Available in APl versions 32.0 and later.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user
is not already logged in. This will remove the need for you to make additional calls.

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the
standard methods for console events, there are a few events that are specific to Omni-Channel.

161

Methods for Omni-Channel acceptAgentWork

acceptAgentWork

Accepts a work item that's assigned to an agent. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.acceptAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item the agent accepts.
callback function JavaScript method to call when an agent accepts the work item associated with the

workId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>
Accept Assigned Work Item

<script type="text/javascript">
function testAcceptWork() {
//First get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
if (!work.isEngaged) {
//Now that we have the assigned work item ID, we can accept it
sforce.console.presence.acceptAgentWork (work.workId,
function (result) {
if (result.success) {
alert ('Accepted work successfully');
} else {
alert ('Accept work failed');

});
} else {
alert ('The work item has already been accepted');

1)
}
</script>
</apex:page>

162

Methods for Omni-Channel closeAgentWork

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if accepting the work item was successful; false if accepting the work
item wasn't successful.
closeAgentWork

Changes the status of a work item to “Closed” and removes it from the list of work items in the Omni-Channel widget. Available in API
versions 32.0 and later.

Syntax

sforce.console.presence.closeAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that's closed.
callback function JavaScript method to call when the work item associated with the workId is

closed.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>
Close Engaged Work Item
<script type="text/javascript">
function testCloseWork() {
//First get the ID of the engaged work item to close it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[0];
if (work.isEngaged) {
//Now that we have the engaged work item ID, we can close it
sforce.console.presence.closeAgentWork (work.workId, function (result)

if (result.success) {

alert ('Closed work successfully');
} else {

163

Methods for Omni-Channel declineAgentWork

alert ('Close work failed');

1)
} else {
alert ('The work item should be accepted first');

b
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if closing the work item was successful; false if closing the work item
wasn't successful.
declineAgentWork

Declines a work item that's assigned to an agent. Available in API versions 32.0 and later.

Syntax

sforce.console.presence.declineAgentWork (workId:String, (optional) callback:function)

Arguments
Name Type Description
workId String The ID of the work item that the agent declines.
callback function JavaScript method to call when an agent declines the work item associated with the

workId.

Sample Code-Visualforce

<apex:page >
<apex:includeScript value="/support/console/34.0/integration.js"/>
Accept Assigned Work Item

<script type="text/javascript">

164

Methods for Omni-Channel getAgentWorks

function testAcceptWork() {
//First get the ID of the assigned work item to accept it
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
var works = JSON.parse (result.works);
var work = works[O0];
if (!work.isEngaged) {
//Now that we have the assigned work item ID, we can accept it

sforce.console.presence.acceptAgentWork (work.workId, function (result)

if (result.success) {

alert ("Accepted work successfully');
} else {

alert ('Accept work failed');

1)
} else {
alert ('The work item has already been accepted');

1)
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name Type Description

success Boolean true if declining the work item was successful; £alse if declining the workitem
wasn't successful.

getAgentWorks

Returns a list of work items that are currently assigned to an agent and open in the agent’s workspace. Available in APl versions 32.0 and
later.

Syntax

sforce.console.presence.getAgentWorks ((optional) callback:function)

165

Methods for Omni-Channel getAgentWorks

Arguments
Name Type Description
callback function JavaScript method to call when the list of an agent’s work items is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>
Get Agent’s Current Work Items

<script type="text/javascript">
function testGetWorks () {
//These values are for example purposes only.
sforce.console.presence.getAgentWorks (function (result) {
if (result.success) {
alert ('Get work items successful');

var works = JSON.parse (result.works);
alert ('First Agent Work ID is: ' + works[0].workId);
alert ('Assigned Entity Id of the first Agent Work is: ' +
works[0] .workItemId);
alert ('Is first Agent Work Engaged: ' + works[0].isEngaged);
} else {

alert ('Get work items failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if retrieving the agent’s work items was successful; false if retrieving the
agent's work items wasn't successful.
works JSON string of A JSON string of work objects that represents the work items assigned to the agent
work objects that are open in the agent's workspace.
work

The work object contains the following properties:

166

Methods for Omni-Channel getAgentWorkload

Name Type Description

workItemId String The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

workId String The ID of a work assignment that's routed to an agent.

isEngaged Boolean Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot(false).

getAgentWorkload

In APl version 35.0 and later, we can retrieve an agent’s currently assigned workload. Use this method for rerouting work to available
agents.

Syntax

sforce.console.presence.getAgentWorkload ((optional) callback:function)

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s configured capacity and work retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/35.0/integration.js"/>

Get Agent’s configured capacity and current workload

<script type="text/javascript">
function testGetAgentWorkload() {
sforce.console.presence.getAgentWorkload (function (result) {
if (result.success) {
alert ('Retrieved Agent Configured Capacity and Current Workload
successfully');
alert ('Agent\'s configured capacity is: ' + result.configuredCapacity);

alert ('Agent\'s currently assigned workload is: ' +
result.currentWorkload) ;
} else {
alert ('Get Agent Workload failed');

167

Methods for Omni-Channel

</script>
</apex:page>

getServicePresenceStatusChannels

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

Response

properties:

Name Type
success Boolean

configuredCapacity Number

currentWorkload Number

work

Description

true if retrieving the agent’s work items was successful; false if retrieving the
agent's work items wasn't successful.

Indicates the agent’s configured capacity (work that's assigned to the current user)
through Presence Configuration.

Indicates the agent’s currently assigned workload.

The work object contains the following properties:

Name Type
workItemId String
workId String
isEngaged Boolean

Description

The ID of the object that's routed through Omni-Channel. This object becomes a
work assignment with a workId when it's assigned to an agent.

The ID of a work assignment that's routed to an agent.

Indicates whether an agent is working on a work item that's been assigned to them
(true)ornot (false).

getServicePresenceStatusChannels

Retrieves the service channels that are associated with an Omni-Channel user’s current presence status. Available in APl versions 32.0

and later.

Syntax

sforce.console.presence.getServicePresenceStatusChannels ((optional) callback:function)

Arguments
Name Type
callback function

Description

JavaScript method to call when the channels associated with a presence status are

retrieved.

168

Methods for Omni-Channel getServicePresenceStatusld

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>

Get Channels Associated with a Presence Status

<script type="text/javascript">
function testGetChannels () {
//These values are for example purposes only.
sforce.console.presence.getServicePresenceStatusChannels (function (result) {
if (result.success) {
alert ('Retrieved Service Presence Status Channels successfully');
var channels = JSON.parse (result.channels);
//For example purposes, just retrieve the first channel
alert ('First channel ID is: ' + channels[0].channelId);
alert ('First channel developer name is: ' + channels[0].developerName) ;

} else {
alert ('Get Service Presence Status Channels failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:
Name Type Description
success Boolean true if retrieving the current presence status channels was successful; false if
the retrieving the current presence status channels wasn't successful.
channels JSON string of ~ Returns the IDs and API names of the channels associated with the presence status.
channel
objects

getServicePresenceStatusId

Retrieves an agent’s current presence status. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.getServicePresenceStatusId((optional) callback: function)

169

Methods for Omni-Channel login

Arguments
Name Type Description
callback function JavaScript method to call when the agent’s presence status is retrieved.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/34.0/integration.js"/>
Get Omni-Channel Status ID

<script type="text/javascript">
function testGetStatusId() {
sforce.console.presence.getServicePresenceStatusId (function (result) {

if (result.success) {
alert ('Get Status Id successful');
alert ('Status Id is: ' + result.statusId);

} else {
alert ('Get Status Id failed'):;

1)
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following

properties:

Name Type Description

success Boolean true if retrieving the presence status ID was successful; false if the retrieving
the presence status ID wasn't successful.

statusId String The ID of the agent's current presence status.

login

Logs an agent into Omni-Channel with a specific presence status. Available in APl versions 32.0 and later.

Syntax

sforce.console.presence.login(statusId:String, (optional) callback:function)

170

Methods for Omni-Channel

Arguments
Name Type Description
statusId String The ID of the presence status. Agents must be given access to this presence status
through their associated profile or permission set.
callback function JavaScript method to call when the agent is logged in with the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/32.0/integration.js"/>
Log In to
Omni-Channel

<script type="text/javascript">
function testLogin(statusId) {
//Gets the Salesforce ID of the presence status entity which the current user
has been assigned through their permission set or profile.
//These values are for example purposes only.
sforce.console.presence.login(statusId, function(result) {
if (result.success) {
alert ('Login successful');
} else {
alert ('Login failed');

1)
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if the login was successful; false if the login wasn't successful.
logout

logout

Logs an agent out of Omni-Channel. Available in API versions 32.0 and later.

171

Methods for Omni-Channel setServicePresenceStatus

Syntax

sforce.console.presence.logout ((optional) callback: function)

Arguments
Name Type Description
callback function JavaScript method to call when the agent is logged out of Omni-Channel.

Sample Code-Visualforce

<apex:page>
<apex:includeScript value="/support/console/32.0/integration.js"/>
Log out of Omni-Channel

<script type="text/javascript">
function testLogout () {
sforce.console.presence.logout (function (result) {
if (result.success) {
alert ('Logout successfully');
} else {
alert ('Logout failed');

P
}
</script>
</apex:page>

Response
This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

Name Type Description

success Boolean true if the logout was successful; false if the logout wasn't successful.

setServicePresenceStatus

Sets an agent's presence status to a status with a particular ID. In APl version 35.0 and later, we log the user into presence if that user is
not already logged in. This will remove the need for you to make additional calls.

172

Methods for Omni-Channel setServicePresenceStatus

Syntax

sforce.console.presence.setServicePresenceStatus (statusIld: String,
(optional) callback:function)

Arguments
Name Type Description
statusId String The ID of the presence status you want to set the agent to. Agents must be given
access to this presence status through their associated profile or permission set.
callback function JavaScript method to call when the agent’s status is changed to the presence status

associated with statusId.

Sample Code-Visualforce

<apex:page>

<apex:includeScript value="/support/console/32.0/integration.js"/>

Set Presence
Status

<script type="text/javascript">
function testSetStatus (statusId) {

//Sets the user’s presence status to statusID. Assumes that the user was
assigned this presence status through Setup.

//These values are for example purposes only

sforce.console.presence.setServicePresenceStatus (statusId, function(result) {

if (result.success) {
alert ('Set status successful'):;

alert ('Current statusId is: ' + result.statusId);
alert ('Channel list attached to this status is: ' + result.channels);
//printout in console for lists
} else {

alert ('Set status failed');

P
}
</script>
</apex:page>

Response

This method is asynchronous so it returns its response in an object in a callback method. The response object contains the following
properties:

173

Methods for Omni-Channel

Methods for Omni-Channel Console Events

true if setting the agent’s status was successful; false if setting the agent’s

The ID of the agent's current presence status.

Returns the IDs and API names of the channels associated with the presence status.

Name Type Description
success Boolean
status wasn't successful.
statusId String
channels JSON string of
channel
objects

Methods for Omni-Channel Console Events

JavaScript can be executed when certain types of events occur in a console, such as when a user closes a tab. In addition to the standard
methods for console events, there are a few events that are specific to Omni-Channel.

Omni-Channel Console Events

Event

sforce.console.ConsoleEvent.
PRESENCE.LOGIN_ SUCCESS

sforce.console.ConsoleEvent.
PRESENCE.STATUS CHANGED

sforce.console.ConsoleEvent.
PRESENCE.SFDC LOGOUT

sforce.console.ConsoleEvent.
PRESENCE.WORK ASSIGNED

sforce.console.ConsoleEvent.
PRESENCE.WORK_ACCEPTED

Description

Fired when a
Omni-Channel user logs
into Omni-Channel
successfully.

Available in APl version
32.0 or later.

Fired when a user changes
his or her presence status.

Available in APl version
32.0or later.

Fired when a user logs out
of Omni-Channel.

Available in APl version
32.0or later.

Fired when a useris
assigned a new work item.

Available in APl version
32.0or later.

Fired when a user accepts
a work assignment, or

174

Payload

® statusId—thelDoftheagent’scurrent presence status

* statusId—thelDoftheagent’scurrent presence status

channels—an array of channel objects on page 175

None

* workItemId—thelDoftheobjectthat'sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workIdwhenit'sassigned to an agent.

e workId—the D of a work assignment that's routed to an
agent.

e workItemId—thelD oftheobjectthat’srouted through
Omni-Channel. This object becomes a work assignment with
a workIdwhenit's assigned to an agent.

Methods for Omni-Channel Methods for Omni-Channel Console Events

Event Description Payload

when awork assignment e workId—the ID of a work assignment that's routed to an
is automatically accepted. agent.

Available in APl version
32.0or later.

sforce.console.ConsoleEvent. Firedwhenauserdeclines workTtemTd—the ID of the object that's routed through

PRESENCE.WORK_DECLINED a work assignment. Omni-Channel. This object becomes a work assignment with
Available in APl version a workIdwhen it's assigned to an agent.
320 or later. e workId—the D of aworkassignment that's routed to an

agent.

sforce.console.ConsoleEvent. Firedwhena userclosesa

PRESENCE.WORK CLOSED tab in the console that's
associated with a work
item. When the tab for
that work item is closed,

* workItemId —thelDoftheobjectthat’sroutedthrough
Omni-Channel. This object becomes a work assignment with
a workIdwhen it'sassigned to an agent.

workId — theID of a work assignment that's routed to

the status of the an agent.
Omni-Channel object
associated with it
automatically changes to
“Closed.”
Available in API version
32.0 or later.
channel
The channel object contains the following functions:
Name Type Description
channellId function Retrieves the ID of a service channel that's associated with a presence status.
getDeveloperName function Retrieves the developer name of the the service channel that's associated with the
channelId.

175

GLOSSARY

ABI|CIDIEIFIGIH|IJ|KILIM|N|O|P|QIRIS|T|U|V W X]|Y|Z

A

Administrator (System Administrator)
One or more individuals in your organization who can configure and customize the application. Users assigned to the System
Administrator profile have administrator privileges.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services from it
and exchange data.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata APl and Bulk API
are asynchronous.

B

Boolean Operators
You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the AND operator
between two values yields search results that include both values. Likewise, the OR operator between two values yields search results
that include either value.

C

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.
Formerly known as Web links.

D

Database
An organized collection of information. The underlying architecture of the Force.com platform includes a database where your data
is stored.

Database Table
Alist of information, presented with rows and columns, about the person, thing, or concept you want to track. See also Object.

Developer Edition
Afree, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Force.com platform.
Developer Edition accounts are available on developer.salesforce.com.

176

http://developer.salesforce.com

Glossary

Salesforce Developers
The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

E

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

F

Field
A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Enterprise, Unlimited,
Performance, and Developer Editions only.

Force.com
The Salesforce platform for building applications in the cloud. Force.com combines a powerful user interface, operating system, and
database to allow you to customize and deploy applications in the cloud for your entire enterprise.

G

Group Edition
A product designed for small businesses and workgroups with a limited number of users.

H

No Glossary items for this entry.

ID
See Salesforce Record ID.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.
The Force.com platform runs on multiple instances, but data for any single organization is always stored on a single instance.

Interaction Log
An area in a Salesforce console where you can jot notes about the main record you're working on without clicking a button, viewing
a new tab, or scrolling to the Notes & Attachments related list. Interaction logs are archived on the Activity History related list for
easy review and retrieval. Administrators can customize interaction logs to include task fields.

177

http://developer.salesforce.com

Glossary

J

No Glossary items for this entry.

K

No Glossary items for this entry.

L

Logged-in User
In a SOAP API context, the username used to log into Salesforce. Client applications run with the permissions and sharing of the
logged-in user. Also referred to as an integration user.

M

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses XML to describe
metadata.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

N

Navigation Tab
Atab with a drop-down button in a Salesforce console that lets you select and view object home pages.

O

Object
An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information
you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your
organization will have multiple records that store the information about specific instances of that type of data. For example, you
might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information
about Mary Johnson's configuration issue.

Organization
A deployment of Salesforce with a defined set of licensed users. An organization is the virtual space provided to an individual customer
of Salesforce. Your organization includes all of your data and applications, and is separate from all other organizations.

178

Glossary

P

Personal Edition
Product designed for individual sales representatives and single users.

Platform Edition
A Salesforce edition based on Enterprise, Unlimited, or Performance Edition that does not include any of the standard Salesforce
apps, such as Sales or Service & Support.

Primary Tab
Atab in a Salesforce console that displays the main item to work on, such as an account.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

Q

No Glossary items for this entry.

R

Record
A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

S

Salesforce Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Salesforce.

Sandbox
A nearly identical copy of a Salesforce production organization for development, testing, and training. The content and size of a
sandbox varies depending on the type of sandbox and the editioin of the production organization associated with the sandbox.

Salesforce Console
The Salesforce console is designed for users in fast-paced environments who need to find, update, and create records quickly. It
improves upon the Agent Console in the Console tab by displaying records and related items as tabs on one screen.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having
to log in again every time he or she wants to perform another action in Salesforce. Different from a record ID or Salesforce ID, which
are terms for the unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length
of inactivity, which can be configured in Salesforce from Setup by clicking Security Controls. The defaultis 120 minutes (two hours).
The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

179

Glossary

e Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether
to use the hierarchies when determining access to data.

e Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or
shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

e Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically
shared to the members of another group or role.

e Manual Sharing—allows individual users to share records with other users or groups.

® Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.
See Apex-Managed Sharing.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

Standard Object
A built-in object included with the Force.com platform. You can also build custom objects to store information that is unique to

your app.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want
to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as
how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also
displays debugging information.

T

Test Organization
See Sandbox.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every
trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in
bulk mode—that is, they process several records at once, rather than just one record at a time.

U

Unlimited Edition
Unlimited Edition is Salesforce’s solution for maximizing your success and extending that success across the entire enterprise through
the Force.com platform.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

V

Version
A number value that indicates the release of an item. Iltems that can have a version include API objects, fields and calls; Apex classes
and triggers; and Visualforce pages and components.

180

Glossary

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the
platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The
components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their
own logic with a controller written in Apex.

W

Web Service
A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are
written in different languages, or are geographically remote from each other.

Web Services API
A Web services application programming interface that provides access to your Salesforce organization's information. See also SOAP
API'and Bulk API.

Wrapper Class
A class that abstracts common functions such as logging in, managing sessions, and querying and batching records. A wrapper class
makes an integration more straightforward to develop and maintain, keeps program logic in one place, and affords easy reuse across
components. Examples of wrapper classes in Salesforce include theAJAX Toolkit, which is a JavaScript wrapper around the Salesforce
SOAP API, wrapper classes suchas CCritical Section inthe CTlI Adapter for Salesforce CRM Call Center, or wrapper classes
created as part of a client integration application that accesses Salesforce using the SOAP API.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP
client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

X

No Glossary items for this entry.

Y

No Glossary items for this entry.

Z

No Glossary items for this entry.

181

INDEX

A

acceptAgentWork() 162
acceptChat() 118
addCustomEventListener() 157
addEventListener() 110
addPushNotificationListener() 106
addToBrowserTitleQueue() 85
Asynchronous calls 8
Authentication 8

B

Backward compatibility 3
Best practices 9
blinkCustomConsoleComponentButtonText() 86

C

cancelFileTransferByAgent() 119
closeAgentWork() 163

closeTab() 13

Connecting to the Toolkit 7
Custom console components 9, 84

D

declineAgentWork() 164
declineChat() 120
Domains

multiple 1

whitelist 1

E

End-of-life 3
endChat() 121
events 109

F

fireEvent() 112

fireOnCallBegin() 71

fireOnCallEnd() 72

fireOnCallLogSaved() 73
focusNavigationTab() 64
focusPrimaryTabByld() 14
focusPrimaryTabByName() 16
focusSidebarComponent() 17
focusSubtabByld() 18
focusSubtabByNameAndPrimaryTablD() 20

focusSubtabByNameAndPrimaryTabName() 21
Force.com canvas 8

G

generateConsoleUrl() 22
getAgentinput() 122
getAgentState() 123
getAgentWorks() 165, 167
getCallAttachedData() 74
getCallObjectlds() 75

getChatlLog() 124
getChatRequests() 126
getCustomEvents() 158
getDetailsByChatKey() 127
getDetailsByPrimaryTabld() 131
getEnclosingPrimaryTabld() 23
getEnclosingPrimaryTabObjectld() 24
getEnclosingTabld() 25
getEngagedChats() 135
getFocusedPrimaryTabld() 26
getFocusedPrimaryTabObjectld() 27
getFocusedSubtabld() 29
getFocusedSubtabObjectld() 30
getMaxCapacity() 136
getNavigationTabs() 65
getPagelnfo() 31

getPrimaryTablds() 32
getSelectedNavigationTab() 66
getServicePresenceStatusChannels() 168
getServicePresenceStatusld() 169
getSubtablds() 33

getTabLink() 34

initFileTransfer() 137

integration.js 7

Introduction 1
isCustomConsoleComponentHidden() 89
isCustomConsoleComponentPoppedOut() 87

isCustomConsoleComponentWindowHidden() 88

isinConsole() 35
isinCustomConsoleComponent() 91

L

Live Agent 116, 157
login() 170

182

Index

logout() 171 Methods (continued)
getFocusedPrimaryTabld() 26

N\ getFocusedPrimaryTabObjectld() 27

Methods getFocusedSubtabld() 29

acceptAgentWork() 162

acceptChat() 118
addCustomEventListener() 157
addEventListener() 110
addPushNotificationListener() 106
addToBrowserTitleQueue() 85

app-level custom console components 84
blinkCustomConsoleComponentButtonText() 86
call center 70
cancelFileTransferByAgent() 119
closeAgentWork() 163

closeTab() 13

computer-telephony integration (CTI) 70
console events 109

custom console components 84
declineAgentWork() 164

declineChat() 120

endChat() 121

events 109, 174

fireEvent() 112

fireOnCallBegin() 71

fireOnCallEnd() 72

fireOnCallLogSaved() 73
focusNavigationTab() 64
focusPrimaryTabByld() 14
focusPrimaryTabByName() 16
focusSidebarComponent() 17
focusSubtabByld() 18
focusSubtabByNameAndPrimaryTabld() 20
focusSubtabByNameAndPrimaryTabName() 21
generateConsoleUrl() 22
getAgentlnput() 122

getAgentState() 123

getAgentWorks() 165, 167
getCallAttachedData() 74
getCallObjectlds() 75

getChatlog() 124

getChatRequests() 126
getCustomEvents() 158
getDetailsByChatKey() 127
getDetailsByPrimaryTabld() 131
getEnclosingPrimaryTabld() 23
getEnclosingPrimaryTabObjectld() 24
getEnclosingTabld() 25
getEngagedChats() 135

183

getFocusedSubtabObjectld() 30
getMaxCapacity() 136
getNavigationTabs() 65

getPagelnfo() 31

getPrimaryTablds() 32
getSelectedNavigationTab() 66
getServicePresenceStatusChannels() 168
getServicePresenceStatusld() 169
getSubtablds() 33

getTabLink() 34

initFileTransfer() 137
isCustomConsoleComponentHidden() 89
isCustomConsoleComponentPoppedOut() 87

isCustomConsoleComponentWindowHidden() 88

isinConsole() 35
islnCustomConsoleComponent() 91
Live Agent 116, 157

login() 170

logout() 171

navigation tabs 64

Omni-Channel 161

Omni-Channel console events 174
onAgentSend() 138
onAgentStateChanged() 140
onCallBegin() 76

onCallEnd() 77

onCallLogSaved() 78
onChatCanceled() 140
onChatCriticalWaitState() 141
onChatDeclined() 142
onChatEnded() 143
onChatRequested() 144-145
onChatTransferredOut() 146
onCurrentCapacityChanged() 146
onCustomConsoleComponentButtonClicked() 92
onCustomEvent() 147
onknclosingTabRefresh() 36
onFileTransferCompleted() 149
onFocusedPrimaryTab() 93
onFocusedSubtab() 37
onNewMessage() 150
onSendCTIMessage() 79
onTabSave() 38
onTypingUpdate() 151
openConsoleUrl() 39

Index

Methods (continued)

O

openPrimaryTab() 41

openSubtab() 43
openSubtabByPrimaryTabName() 45

primary tabs 10

push notifications 106

refreshNavigationTab() 67
refreshPrimaryTabByld() 47
refreshPrimaryTabByName() 48
refreshSubtabByld() 49
refreshSubtabByNameAndPrimaryTabld() 50
refreshSubtabByNameAndPrimaryTabName() 52
removeEventListener() 113
removeFromBrowserTitleQueue() 94
removePushNotificationListener() 108
reopenlastClosedTab() 53
resetSessionTimeQut() 54
scrollCustomConsoleComponentButtonText() 95
sendCTIMessage() 80

sendCustomEvent() 152, 159

sendMessage() 153

setAgentinput() 154

setAgentState() 156

setCallAttachedData() 81

setCallObjectlds() 82
setCustomConsoleComponentButtonlconUrl() 96
setCustomConsoleComponentButtonStyle() 97
setCustomConsoleComponentButtonText() 98
setCustomConsoleComponentHeight() 99
setCustomConsoleComponentPopoutable() 102
setCustomConsoleComponentVisible() 100
setCustomConsoleComponentWidth() 101
setCustomConsoleComponentWindowVisible() 103
setSelectedNavigationTab() 68
setServicePresenceStatus() 172
setSidebarVisible() 104

setTablcon() 57

setTablink() 58

setTabStyle() 59

setTabTextStyle() 60

setTabTitle() 62

setTabUnsavedChanges() 55

subtabs 10

OAuth 8

Omni-Channel 161
Omni-Channel events 174
onAgentSend() 138

onAgentStateChanged() 140
onCallBegin() 76

onCallEnd() 77

onCallLogSaved() 78
onChatCanceled() 140
onChatCriticalWaitState() 141
onChatDeclined() 142
onChatEnded() 143
onChatRequested() 144-145
onChatTransferredOut() 146
onCurrentCapacityChanged() 146
onCustomConsoleComponentButtonClicked() 92
onCustomEvent() 147
onEnclosingTabRefresh() 36
onFileTransferCompleted() 149
onFocusedPrimaryTab() 93
onFocusedSubtab() 37
onNewMessage() 150
onSendCTIMessage() 79
onTabSave() 38
onTypingUpdate() 151
openConsoleUrl() 39
openPrimaryTab() 41
openSubtab() 43
openSubtabByPrimaryTabName() 45
Other resources 3

P

Push notifications 106

R

refreshNavigationTab() 67
refreshPrimaryTabByld() 47
refreshPrimaryTabByName() 48
refreshSubtabByld() 49
refreshSubtabByNameAndPrimaryTabld() 50
refreshSubtabByNameAndPrimaryTabName() 52
removeEventListener() 113
removeFromBrowserTitleQueue() 94
removePushNotificationListener() 108
reopenLastClosedTab() 53
resetSessionTimeOut() 54

Resources for developers 3

S

Salesforce Console Integration Toolkit

Using 7
Sample page 5
scrollCustomConsoleComponentButtonText() 95

184

Index

sendCTIMessage() 80

sendCustomEvent() 152, 159

sendMessage() 153

setAgentinput() 154

setAgentState() 156

setCallAttachedData() 81

setCallObjectlds() 82
setCustomConsoleComponentButtonlconUrl() 96
setCustomConsoleComponentButtonStyle() 97
setCustomConsoleComponentButtonText() 98
setCustomConsoleComponentHeight() 99
setCustomConsoleComponentPopoutable() 102
setCustomConsoleComponentVisible() 100
setCustomConsoleComponentWidth() 101
setCustomConsoleComponentWindowVisible() 103
setSelectedNavigationTab() 68

setServicePresenceStatus() 172
setSidebarVisible() 104
setTablcon() 57

setTabLink() 58

setTabStyle() 59
setTabTextStyle() 60
setTabTitle() 62
setTabUnsavedChanges() 55
Support policy 2

T

Typographical conventions 4

W

When to use the Salesforce Console Integration Toolkit 2
Working with the Salesforce Console Integration Toolkit 7

185

	Introducing the Salesforce Console Integration Toolkit
	When to Use the Salesforce Console Integration Toolkit
	Salesforce Console Integration Toolkit Support Policy
	Backward Compatibility
	End-of-Life

	Other Resources
	Salesforce Console Integration Toolkit Typographical Conventions
	Sample Visualforce Page Using the Salesforce Console Integration Toolkit

	Working with the Salesforce Console Integration Toolkit
	Connecting to the Toolkit
	Asynchronous Calls with the Salesforce Console Integration Toolkit
	Working with Force.com Canvas
	Best Practices

	Methods for Primary Tabs and Subtabs
	closeTab()
	focusPrimaryTabById()
	focusPrimaryTabByName()
	focusSidebarComponent()
	focusSubtabById()
	focusSubtabByNameAndPrimaryTabId()
	focusSubtabByNameAndPrimaryTabName()
	generateConsoleUrl()
	getEnclosingPrimaryTabId()
	getEnclosingPrimaryTabObjectId()
	getEnclosingTabId()
	getFocusedPrimaryTabId()
	getFocusedPrimaryTabObjectId()
	getFocusedSubtabId()
	getFocusedSubtabObjectId()
	getPageInfo()
	getPrimaryTabIds()
	getSubtabIds()
	getTabLink()
	isInConsole()
	onEnclosingTabRefresh()
	onFocusedSubtab()
	onTabSave()
	openConsoleUrl()
	openPrimaryTab()
	openSubtab()
	openSubtabByPrimaryTabName()
	refreshPrimaryTabById()
	refreshPrimaryTabByName()
	refreshSubtabById()
	refreshSubtabByNameAndPrimaryTabId()
	refreshSubtabByNameAndPrimaryTabName()
	reopenLastClosedTab()
	resetSessionTimeOut()
	setTabUnsavedChanges()
	setTabIcon()
	setTabLink()
	setTabStyle()
	setTabTextStyle()
	setTabTitle()

	Methods for Navigation Tabs
	focusNavigationTab()
	getNavigationTabs()
	getSelectedNavigationTab()
	refreshNavigationTab()
	setSelectedNavigationTab()

	Methods for Computer-Telephony Integration (CTI)
	fireOnCallBegin()
	fireOnCallEnd()
	fireOnCallLogSaved()
	getCallAttachedData()
	getCallObjectIds()
	onCallBegin()
	onCallEnd()
	onCallLogSaved()
	onSendCTIMessage()
	sendCTIMessage()
	setCallAttachedData()
	setCallObjectIds()

	Methods for Application-Level Custom Console Components
	addToBrowserTitleQueue()
	blinkCustomConsoleComponentButtonText()
	isCustomConsoleComponentPoppedOut()
	isCustomConsoleComponentWindowHidden()
	isCustomConsoleComponentHidden()
	isInCustomConsoleComponent()
	onCustomConsoleComponentButtonClicked()
	onFocusedPrimaryTab()
	removeFromBrowserTitleQueue()
	scrollCustomConsoleComponentButtonText()
	setCustomConsoleComponentButtonIconUrl()
	setCustomConsoleComponentButtonStyle()
	setCustomConsoleComponentButtonText()
	setCustomConsoleComponentHeight()
	setCustomConsoleComponentVisible()
	setCustomConsoleComponentWidth()
	setCustomConsoleComponentPopoutable()
	setCustomConsoleComponentWindowVisible()
	setSidebarVisible()

	Methods for Push Notifications
	addPushNotificationListener()
	removePushNotificationListener()

	Methods for Console Events
	addEventListener()
	fireEvent()
	removeEventListener()

	Methods for Live Agent
	acceptChat()
	cancelFileTransferByAgent()
	declineChat()
	endChat()
	getAgentInput()
	getAgentState()
	getChatLog()
	getChatRequests()
	getDetailsByChatKey()
	getDetailsByPrimaryTabId()
	getEngagedChats()
	getMaxCapacity()
	initFileTransfer()
	onAgentSend()
	onAgentStateChanged()
	onChatCanceled()
	onChatCriticalWaitState()
	onChatDeclined()
	onChatEnded()
	onChatRequested()
	onChatStarted()
	onChatTransferredOut()
	onCurrentCapacityChanged()
	onCustomEvent()
	onFileTransferCompleted()
	onNewMessage()
	onTypingUpdate()
	sendCustomEvent()
	sendMessage()
	setAgentInput()
	setAgentState()
	Methods for Live Agent Chat Visitors
	chasitor.addCustomEventListener()
	chasitor.getCustomEvents()
	chasitor.sendCustomEvent()

	Methods for Omni-Channel
	acceptAgentWork
	closeAgentWork
	declineAgentWork
	getAgentWorks
	getAgentWorkload
	getServicePresenceStatusChannels
	getServicePresenceStatusId
	login
	logout
	setServicePresenceStatus
	Methods for Omni-Channel Console Events

	Glossary
	Index

