
Force.com Migration Tool Guide
Version 34.0, Summer ’15

 @salesforcedocs
Last updated: September 1, 2015

https://twitter.com/salesforcedocs

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Force.com Migration Tool Overview . 1

Chapter 2: Installing the Force.com Migration Tool . 2

Prerequisites for Using the Force.com Migration Tool . 2
Install the Force.com Migration Tool . 3

Chapter 3: Using the Force.com Migration Tool . 4

Entering Salesforce Connection Information . 4
Constructing a Project Manifest . 5

Specifying Named Components . 6
Specifying all Components of a Type . 6
Specifying Standard Objects . 7
Getting Information About Metadata Types . 7
Describing Metadata Types . 7
Listing Components for a Metadata Type . 8

Creating Retrieve Targets . 10
Retrieving Unpackaged Components . 12
Retrieving Managed or Unmanaged Packages . 12
Retrieving Components in Bulk . 13

Retrieving Metadata from a Salesforce Organization . 14
Editing Metadata . 14
Deleting Files from an Organization . 14
Deploying Changes to a Salesforce Organization . 16

Deploying Components . 18
Deploying Code . 19
Deploying a Recent Validation . 19
Running Tests in a Deployment . 20
Running a Subset of Tests in a Deployment . 22
Run the Same Tests in Sandbox and Production Deployments 22
Canceling a Deployment . 23

Checking the Status of a Task . 24

Chapter 4: Common Migration Issues . 25

Glossary . 28

Index . 42

CHAPTER 1 Force.com Migration Tool Overview

The Force.com Migration Tool is a Java/Ant-based command-line utility for moving metadata between a local directory and a Salesforce
organization. The Force.com Migration Tool is especially useful in the following scenarios:

• Development projects where you need to populate a test environment with large amounts of setup changes — Making these
changes using a Web interface could take a long time.

• Multistage release processes — A typical development process requires iterative building, testing, and staging before releasing to
a production environment. Scripted retrieval and deployment of components can make this process much more efficient.

• Repetitive deployment using the same parameters — You can retrieve all the metadata in your organization, make changes, and
deploy a subset of components. If you need to repeat this process, it's as simple as calling the same deployment target again.

• When migrating from stage to production is done by IT — Anyone that prefers deploying in a scripting environment will find the
Force.com Migration Tool a familiar process.

Understanding Metadata API

Metadata API contains a set of objects that manage setup and customization information (metadata) for your organizations, and the
SOAP calls that manipulate those objects. With Metadata API you can:

• Work with setup configuration as XML metadata files

• Migrate configuration changes between organizations

• Create your own tools for managing organization and application metadata

Though you could write your own client applications for using Metadata API SOAP calls, Salesforce provides the Force.com Migration
Tool to retrieve and deploy Apex and metadata.

Understanding Package and Directory Structure

Metadata API functions in a package-centric manner. Components may be in one or more packages, or in no package at all. Packages
may be local (created in your Salesforce organization) or installed from Force.com AppExchange. Whenever the Force.com Migration
Tool retrieves a set of components, that set will be limited to what’s in a single package or what’s in no package at all. There are three
kinds of packages:

• Unpackaged—Components that live natively in your organization, such as standard objects, go in the unpackaged package.

• Unmanaged package—Unmanaged packages are typically used to distribute open-source projects or application templates to
provide developers with the basic building blocks for an application. Once the components are installed from an unmanaged
package, the components can be edited in the organization they are installed in. The developer who created and uploaded the
unmanaged package has no control over the installed components, and can't change or upgrade them. Unmanaged packages
should not be used to migrate components from a sandbox to production organization. Instead, use Change Sets.

• Managed package—A collection of application components that is posted as a unit on the AppExchange and associated with a
namespace and possibly a License Management Organization. To support upgrades, a package must be managed. An organization
can create a single managed package that can be downloaded and installed by many different organizations. Managed packages
differ from unmanaged packages by having some locked components, allowing the managed package to be upgraded later.
Unmanaged packages do not include locked components and cannot be upgraded. In addition, managed packages obfuscate
certain components (like Apex) on subscribing organizations to protect the intellectual property of the developer.

1

CHAPTER 2 Installing the Force.com Migration Tool

Before you install the Force.com Migration Tool you will need Java and Ant installed on your local machine. Then you can download the
Force.com Migration Tool from a Salesforce organization.

1. Install Java and Ant, as described in Prerequisites for Using the Force.com Migration Tool.

2. Log into a Salesforce organization and download the Force.com Migration Tool, as described in Install the Force.com Migration Tool.

Prerequisites for Using the Force.com Migration Tool

Before you can use the Force.com Migration Tool you must have Java and Ant installed and configured correctly. You may not need to
install Java and Ant if you already have them on your computer, so first verify the installation from a command prompt.

Java
To see if you have Java installed:

1. Open a command prompt.

2. At the prompt, type java -version and press Enter.

The output should look something like the following:

java version "1.6.0_39"
Java(TM) SE Runtime Environment (build 1.6.0_39-b04)
Java HotSpot(TM) 64-Bit Server VM (build 20.14-b01, mixed mode)

The Force.com Migration Tool works with Java version 1.6.x or later. If you have an earlier version, you’ll need to install Java 1.6.x or later.

To install Java, go to http://www.oracle.com/technetwork/java/javase/downloads/index.html and get the latest version of the Java JDK.
When you’re finished with the installation, verify by typing java -version at a command prompt.

Ant
To see if you have Ant installed:

1. Open a command prompt.

2. At the prompt, type ant -version and press Enter.

The output should look something like the following:

Apache Ant version 1.7.0 compiled on December 13 2006

If the Ant version is 1.5.x or earlier, you will need to download the latest version of Ant.

Note: Even if you have Ant installed, you may still need to put the bin directory on your path. On a Windows operation system,
you may also need to set the ANT_HOME and JAVA_HOME environment variables as follows.

To install and configure Ant:

1. Download Apache Ant version 1.6 or newer to a directory of your choice: http://ant.apache.org/bindownload.cgi.
This directory will be known as ANT_HOME. Once the files are on your computer, there is no further installation required.

2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/bindownload.cgi

2. Add the bin directory to your path. (Only the bin and lib directories are required to run Ant.)

3. If you are using a Windows operation system, create an ANT_HOME environment variable and set the value to where you have
installed Ant. Also create a JAVA_HOME environment variable and set the value to the location of your JDK.

For additional information, see http://ant.apache.org/manual/install.html.

Install the Force.com Migration Tool

Follow these steps to download and install the Force.com Migration Tool.

1. Log in to a Salesforce organization on your deployment machine.

2. From Setup, click Develop > Tools, and then click Force.com Migration Tool.

3. Save the ZIP file locally and extract the contents to the directory of your choice.

Note:

• If you don’t have Ant installed, see Prerequisites for Using the Force.com Migration Tool.

• If you installed a previous version of the Force.com Migration Tool and copied the ant-salesforce.jar file to the Ant
lib directory, delete the jar file in the lib directory. The lib directory is located in the root folder of your Ant installation.
The Force.com Migration Tool uses the ant-salesforce.jar file that’s in the distribution ZIP file. You don’t need to
copy this file to the Ant lib directory.

When you extract the Force.com Migration Tool ZIP files, the following folders and files are written to the location you specified:

• A Readme.html file that explains how to use the tools

• A Jar file containing the ant task: ant-salesforce.jar

• A sample folder containing:

– A codepkg\classes folder that contains SampleDeployClass.cls and SampleFailingTestClass.cls

– A codepkg\triggers folder that contains SampleAccountTrigger.trigger

– A mypkg\objects folder that contains the custom objects used in the examples

– A removecodepkg folder that contains XML files for removing the examples from your organization

– A sample build.properties file that you must edit, specifying your credentials, in order to run the sample ant tasks in
build.xml

– A sample build.xml file, that exercises the deploy and retrieve API calls

3

Install the Force.com Migration ToolInstalling the Force.com Migration Tool

http://ant.apache.org/manual/install.html

CHAPTER 3 Using the Force.com Migration Tool

The Force.com Migration Tool is a Java/Ant-based command-line utility for moving metadata between a local directory and a Salesforce
organization. You can use the Force.com Migration Tool to retrieve components, create scripted deployment, and repeat deployment
patterns.

The general procedure you will follow when using the Force.com Migration Tool to copy metadata from one Salesforce organization to
another is:

1. Enter credentials and connection information for source Salesforce organization in build.properties

2. Create retrieve targets in build.xml

3. Construct a project manifest in package.xml

4. Run the Force.com Migration Tool to retrieve metadata files from Salesforce

5. Enter credentials and connection information for destination Salesforce organization in build.properties

6. Run the Force.com Migration Tool to deploy metadata files or deletions to Salesforce

Entering Salesforce Connection Information

In order to retrieve or deploy metadata components, you need to edit build.properties to point to a Salesforce organization:

1. Go to the location where you extracted the Force.com Migration Tool files and open the sample subdirectory.

2. Open build.properties in a text editor and do either of the following.

• To use a username and password for login, substitute a valid Salesforce username and password. If you’re using a security token,
paste the 25-digit token value at the end of your password.

• To use an active Salesforce session for login, uncomment the sf.sessionId property and substitute a valid session ID. Also,
make sure to comment out the sf.username and sf.password properties.

ValueParameter

The Salesforce username for login. The username associated with this connection must have the
“Modify All Data” permission. Typically, this is only enabled for System Administrator users. When

sf.username

connecting to a sandbox instance your sandbox name is appended to your username. For example,
if your production username is foo@salesforce.com, and one of your sandboxes is called
bar, then your sandbox username is foo@salesforce.com.bar.

The password you use to log into the organization associated with this project. If you are using a
security token, paste the 25-digit token value to the end of your password.

sf.password

The salesforce server URL. Use https://login.salesforce.com to connect to a
production or Developer Edition organization. To connect to a sandbox instance, change this to
https://test.salesforce.com.

sf.serverurl

The ID of an active Salesforce session. A session is created after a user logs in to Salesforce
successfully with a username and password. Use a session ID for logging into an existing session
instead of creating a new session.

sf.sessionId

4

Note: In the build.properties file, you can specify values for either the sf.password and sf.serverurl property
pair, or the sf.sessionId property, but not both. In the build.xml file, your targets can contain all three parameters
(password, serverurl, and sessionId). Either the username and password or the session ID will be used for authentication.

Constructing a Project Manifest

The package.xml file is a project manifest that lists all the components you want to retrieve or deploy in a single request. You can
retrieve or deploy only a single package at a time.

The following elements may be defined in package.xml:

DescriptionName

The name of the server-side package to deploy into. If the <fullName> field is omitted,
components will not be assigned to a package when deployed, and will be in the
unpackaged package. This field is not used for retrieve.

<fullName>

This element contains one or more <members> tags and one <name> tag, and is
used to list the metadata components of a certain type to retrieve or deploy.

<types>

The full name of a component. There is one <members> element defined for each
component in the directory. You can replace the value in this member with the wildcard

<members>

character * (asterisk) instead of listing each member separately. This is a child element
of <types>.

Contains the type of the component, for example CustomObject or Profile.
There is one name defined for each component type in the directory. This is a child element
of <types>.

<name>

The Metadata API version number of the files being retrieved or deployed. When deploying,
all the files must conform to the same version of the Metadata API.

<version>

Component Types

For a complete list of the component types that can be defined by the <name> element in package.xml, see Metadata Types in
the Metadata API Developer’s Guide.

Specifying Standard Objects
To retrieve standard objects and/or custom fields on standard objects, you must name the component in package.xml. The following
package.xml file will retrieve a single field EngineeringReqNumber__c, on the Case object, as well as the entire Account
object.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Case.EngineeringReqNumber__c</members>
<name>CustomField</name>

</types>
<types>

<members>Account</members>

5

Constructing a Project ManifestUsing the Force.com Migration Tool

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/

<name>CustomObject</name>
</types>
<version>34.0</version>

</Package>

Note: Custom objects and standard objects should be specified in the same <types> section, the one containing
<name>CustomObject</name>.

Specifying Named Components
To retrieve a component, specify the type of component in the <name> element and declare each component to be retrieved or
deployed in the <members> element. The following is a sample package.xml project manifest that names two custom objects
to be retrieved or deployed:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c</members>
<members>MyHelloWorldObject__c</members>
<name>CustomObject</name>

</types>
<version>34.0</version>

</Package>

Some metadata components are sub-components of another component. This means you must dot-qualify the sub-component with
the parent component name.

The following metadata components are defined as part of an object:

• CustomField

• Picklist

• RecordType

• Weblink

• ValidationRule

For example, the following code retrieves a validation rule called ValidationRuleName on the Opportunity object:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Opportunity.ValidationRuleName</members>
<name>ValidationRule</name>

</types>
<version>34.0</version>

</Package>

Specifying all Components of a Type
To retrieve all components of a particular type, use the wildcard symbol (*). For example, to retrieve all custom objects:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>

6

Specifying Named ComponentsUsing the Force.com Migration Tool

<members>*</members>
<name>CustomObject</name>

</types>
<version>34.0</version>

</Package>

The wildcard symbol does not apply to all metadata types. For example, using the wildcard with the CustomObject type name will
not retrieve standard objects. To retrieve a standard object, you must explicitly name the object in package.xml. Likewise, if you
want to retrieve custom fields defined on standard objects, you must name the object and field.

Specifying Standard Objects
To retrieve standard objects and/or custom fields on standard objects, you must name the component in package.xml. The following
package.xml file will retrieve a single field EngineeringReqNumber__c, on the Case object, as well as the entire Account
object.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Case.EngineeringReqNumber__c</members>
<name>CustomField</name>

</types>
<types>

<members>Account</members>
<name>CustomObject</name>

</types>
<version>34.0</version>

</Package>

Note: Custom objects and standard objects should be specified in the same <types> section, the one containing
<name>CustomObject</name>.

Getting Information About Metadata Types
You sometimes need to experiment with the composition of your package.xml manifest file before you settle on the final version
that retrieves or deploys the metadata that you want. There are a couple of helper targets, <sf:describeMetadata> and
<sf:listMetadata>, that are useful for gathering the relevant information during this experimentation period. The build.xml
file specifies a series of commands to be executed by Ant. Within the build.xml file are named targets that process a series of
commands when you run Ant with a target name.

Describing Metadata Types
The describeMetadata target returns a list of metadata types that are enabled for your organization. This target is useful when
you want to identify the syntax needed for a metadata type in a <name> element in package.xml; for example, CustomObject
for custom objects or Layout for page layouts. The following parameters may be set for each <sf:describeMetadata> target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this is
only enabled for System Administrator users.

username

7

Specifying Standard ObjectsUsing the Force.com Migration Tool

DescriptionField

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value to
the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce session.
A session is created after a user logs in to Salesforce successfully with a username and password.
Use a session ID for logging into an existing session instead of creating a new session.

sessionId

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com). To
connect to a sandbox instance, change this to test.salesforce.com.

serverurl

Optional. The API version to use for the metadata. The default is 34.0.apiVersion

Optional. The path of the output file where results are stored. The default output is the console.
Directing the output to a file makes it easier to extract the relevant information for your
package.xml manifest file.

resultFilePath

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note that
this will show the user's password in plain text during login.

trace

To get the list of metadata types enabled for your organization, specify a target in the build.xml file using
<sf:describeMetadata>.

<target name="describeMetadata">
<sf:describeMetadata
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
resultFilePath="describeMetadata/describe.log"/>

</target>

Listing Components for a Metadata Type
The listMetadata target retrieves property information about metadata components in your organization. This target is useful
when you want to identify individual components in package.xml for a retrieval or if you want a high-level view of particular
metadata types in your organization. For example, you could use this target to return a list of names of all the CustomObject or
Layout components in your organization, and use this information to make a subsequent retrieval to return a subset of these
components. The following parameters may be set for each <sf:listMetadata> target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this is
only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value to
the end of your password.

password

8

Listing Components for a Metadata TypeUsing the Force.com Migration Tool

DescriptionField

Required if username and password aren’t specified. The ID of an active Salesforce session.
A session is created after a user logs in to Salesforce successfully with a username and password.
Use a session ID for logging into an existing session instead of creating a new session.

sessionId

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com). To
connect to a sandbox instance, change this to test.salesforce.com.

serverurl

Required. The name of the metadata type for which you are retrieving property information; for
example, CustomObject for custom objects, or Report for custom reports. For a full list
of allowed values, see Component Types on page 5.

metadataType

The folder associated with the component. This field is required for components that use folders,
such as Dashboard, Document, EmailTemplate, or Report.

folder

Optional. The API version to use for the metadata. The default is 34.0.apiVersion

Optional. The path of the output file where results are stored. The default output is the console.
Directing the output to a file makes it easier to extract the relevant information for your
package.xml manifest file.

resultFilePath

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note that
this will show the user's password in plain text during login.

trace

To get property information for components of one metadata type, such as CustomObject, specify a target in the build.xml
file using <sf:listMetadata>.

<target name="listMetadata">
<sf:listMetadata
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
metadataType="CustomObject"
resultFilePath="listMetadata/list.log"/>

</target>

The following example uses a component that resides in a folder.

<target name="listMetadata">
<sf:listMetadata
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
metadataType="Report"
folder="Marketing_Reports"
resultFilePath="listMetadata/list.log"/>

</target>

9

Listing Components for a Metadata TypeUsing the Force.com Migration Tool

Creating Retrieve Targets

The build.xml file specifies a series of commands to be executed by Ant. Within the build.xml file are named targets that
process a series of commands when you run Ant with a target name. The following parameters may be set for each <sf:retrieve>
target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this
is only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value
to the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce
session. A session is created after a user logs in to Salesforce successfully with a username

sessionId

and password. Use a session ID for logging into an existing session instead of creating a
new session.

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com).
To connect to a sandbox instance, change this to test.salesforce.com.

serverurl

Required. The root of the directory structure into which the metadata files are retrieved.retrieveTarget

Required if unpackaged is not specified. A comma-separated list of the names of the
packages to retrieve. You must specify either packageNames or unpackaged, but
not both.

packageNames

Optional. The Metadata API version to use for the retrieved metadata files. The default is
34.0.

apiVersion

Optional. Defaults to 10000. The number of milliseconds to wait between attempts when
polling for results of the retrieve request. The client continues to poll the server up to the
limit defined by maxPoll.

pollWaitMillis

Optional. Defaults to 200. The number of times to poll the server for the results of the
retrieve request. The wait time between successive poll attempts is defined by
pollWaitMillis.

maxPoll

Optional. Defaults to true. This must be set to false if you are retrieving multiple
packages. If set to false, the retrieved zip file includes an extra top-level directory
containing a subdirectory for each package.

singlePackage

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note
that this will show the user's password in plain text during login.

trace

Required if packageNames is not specified. The path and name of a file manifest that
specifies the components to retrieve. You must specify either unpackaged or
packageNames, but not both.

unpackaged

10

Creating Retrieve TargetsUsing the Force.com Migration Tool

DescriptionField

Optional. Defaults to true. If set to true, the retrieved components are unzipped. If set
to false, the retrieved components are saved as a zip file in the retrieveTarget
directory.

unzip

Retrieving Components in Bulk
This target is the optimal way to download a large number of components of a single metadata type, such as custom reports, into a set
of local files. The following parameters may be set for each <sf:bulkRetrieve> target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this
is only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value
to the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce
session. A session is created after a user logs in to Salesforce successfully with a username

sessionId

and password. Use a session ID for logging into an existing session instead of creating a
new session.

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com).
To connect to a sandbox instance, change this to test.salesforce.com.

serverurl

Required. The root of the directory structure into which the metadata files are retrieved.retrieveTarget

Required. The name of the metadata type to be retrieved; for example, CustomObject
for custom objects, or Report for custom reports. For a full list of allowed values, see
Component Types on page 5.

metadataType

Optional. If the metadata is contained in a folder, this parameter should be the name of
the folder from which the contents are retrieved.

containingFolder

Optional, defaults to 10. The number of items to retrieve while doing multi-part retrieve.batchSize

Optional. The Metadata API version to use for the retrieved metadata files. The default is
34.0.

apiVersion

Optional. Defaults to 200. The number of times to poll the server for the results of the
retrieve request. The clients waits for two seconds after the first poll attempt. The wait time

maxPoll

is doubled for each successive poll attempt up to maximum of 30 seconds between poll
attempts.

Optional. Defaults to true. If set to true, the retrieved components are unzipped. If set
to false, the retrieved components are saved as a zip file in the retrieveTarget
directory.

unzip

11

Creating Retrieve TargetsUsing the Force.com Migration Tool

To retrieve custom report components in bulk, specify a target in the build.xml file using <sf:bulkRetrieve>.

<target name="bulkRetrieve">
<sf:bulkRetrieve
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
metadataType="Report"
retrieveTarget="retrieveUnpackaged"/>

</target>

Retrieving Unpackaged Components
The unpackaged package contains all of the standard objects, custom objects, Apex classes and other metadata components that exist
natively in your organization, and not within a package. To retrieve unpackaged components, use a build.xml target that contains
the unpackaged attribute that points to a package.xml file. For example:

<target name="retrieveUnpackaged">
<mkdir dir="projectFolder"/>
<sf:retrieve

username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
retrieveTarget="projectFolder"
unpackaged="unpackaged/package.xml"/>

</target>

The salesforce-ant.jar file contains Ant tasks for accessing the Metadata API. In the code above, sf:retrieve is an Ant
task. The full list of metadata Ant tasks are described in the Metadata API Developer's Guide.

Retrieving Managed or Unmanaged Packages
Packages are useful for distributing related bundles of metadata across multiple instances or organizations, via Force.com AppExchange.
However, you can use the Force.com Migration Tool to freely retrieve and deploy packaged metadata without using AppExchange. You
retrieve both managed and unmanaged packages in the same way.

To retrieve a package, specify a packageNames parameter in the build.xml file. For example:

<target name="retrieveNamedPackage">
<sf:retrieve

username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
retrieveTarget="projectFolder"
packageNames="mySourcePackage"/>

</target>

12

Retrieving Unpackaged ComponentsUsing the Force.com Migration Tool

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/

Retrieving Components in Bulk
This target is the optimal way to download a large number of components of a single metadata type, such as custom reports, into a set
of local files. The following parameters may be set for each <sf:bulkRetrieve> target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this
is only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value
to the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce
session. A session is created after a user logs in to Salesforce successfully with a username

sessionId

and password. Use a session ID for logging into an existing session instead of creating a
new session.

Optional. The Salesforce server URL (if blank, defaults to login.salesforce.com).
To connect to a sandbox instance, change this to test.salesforce.com.

serverurl

Required. The root of the directory structure into which the metadata files are retrieved.retrieveTarget

Required. The name of the metadata type to be retrieved; for example, CustomObject
for custom objects, or Report for custom reports. For a full list of allowed values, see
Component Types on page 5.

metadataType

Optional. If the metadata is contained in a folder, this parameter should be the name of
the folder from which the contents are retrieved.

containingFolder

Optional, defaults to 10. The number of items to retrieve while doing multi-part retrieve.batchSize

Optional. The Metadata API version to use for the retrieved metadata files. The default is
34.0.

apiVersion

Optional. Defaults to 200. The number of times to poll the server for the results of the
retrieve request. The clients waits for two seconds after the first poll attempt. The wait time

maxPoll

is doubled for each successive poll attempt up to maximum of 30 seconds between poll
attempts.

Optional. Defaults to true. If set to true, the retrieved components are unzipped. If set
to false, the retrieved components are saved as a zip file in the retrieveTarget
directory.

unzip

To retrieve custom report components in bulk, specify a target in the build.xml file using <sf:bulkRetrieve>.

<target name="bulkRetrieve">
<sf:bulkRetrieve
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"

13

Retrieving Components in BulkUsing the Force.com Migration Tool

metadataType="Report"
retrieveTarget="retrieveUnpackaged"/>

</target>

Retrieving Metadata from a Salesforce Organization

To retrieve Force.com components:

1. Open a command prompt.

2. Run Ant by specifying a target name in build.xml. If this is the first time you are running Ant, use ant retrieveUnpackaged
to retrieve unpackaged components specified in package.xml.

Note:

• The sample build.xml contains a number of useful targets for various retrieve() and deploy() options that
you can modify or use as is. To see a list of all of your named targets in build.xml, enter ant -p at the command line.

• Metadata API can deploy and retrieve up to 10,000 files or 400 MB at one time. If you are working with a large number of
components, you should use the listMetadata target to identify the subset of files that you want to retrieve, or you
should retrieve batches of components using the Retrieving Components in Bulk.

Editing Metadata

You can use any UTF-8 text editor to make changes to the files you retrieve.

Warning: Text editors that do not natively support UTF-8 may insert a byte order mark (BOM) at the top of the file, which can
cause problems in the XML metadata.

Deleting Files from an Organization

The package.xml file is a project manifest that lists all the components to retrieve or deploy. Although you can use package.xml
to add components, it’s not sufficient to delete them. To delete files, create a delete manifest that’s called
destructiveChanges.xml. The format of the delete manifest is the same as package.xml, except that wildcards aren’t
supported.

Deleting Components in a Deployment
To delete components, use the same procedure as with deploying components, but also include a delete manifest file that’s named
destructiveChanges.xml and list the components to delete in this manifest. The format of this manifest is the same as
package.xml except that wildcards aren’t supported.

The following sample destructiveChanges.xml file names a single custom object to be deleted:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c</members>
<name>CustomObject</name>

</types>
</Package>

14

Retrieving Metadata from a Salesforce OrganizationUsing the Force.com Migration Tool

To deploy the destructive changes, you must also have a package.xml file that lists no components to deploy, includes the API
version, and is in the same directory as destructiveChanges.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<version>34.0</version>
</Package>

Note:

• To bypass the Recycle Bin, set the purgeOnDelete option to true.

• If you try to delete some components that don’t exist in the organization, the rest of the deletions are still attempted.

Adding and Deleting Components in a Single Deployment
You can perform a deployment that specifies components to delete in destructiveChanges.xml and components to add or
update in package.xml. The process is the same as with performing a delete-only deployment except that package.xml contains
the components to add or update.

By default, deletions are processed before component additions. In API version 33.0 and later, you can specify components to be deleted
before and after component additions. The process is the same as with performing a delete-only deployment except that the name of
the deletion manifest file is different.

• To delete components before adding or updating other components, create a manifest file that’s named
destructiveChangesPre.xml and include the components to delete.

• To delete components after adding or updating other components, create a manifest file that’s named
destructiveChangesPost.xml and include the components to delete.

The ability to specify when deletions are processed is useful when you’re deleting components with dependencies. For example, if a
custom object is referenced in an Apex class, you can’t delete it unless you modify the Apex class first to remove the dependency on
the custom object. In this example, you can perform a single deployment that updates the Apex class to clear the dependency and then
deletes the custom object by using destructiveChangesPost.xml. The following are samples of the package.xml and
destructiveChangesPost.xml manifests that would be used in this example.

Sample package.xml, which specifies the class to update:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>SampleClass</members>
<name>ApexClass</name>

</types>
<version>34.0</version>

</Package>

Sample destructiveChangesPost.xml, which specifies the custom object to delete after the class update:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c</members>
<name>CustomObject</name>

</types>
</Package>

15

Deleting Files from an OrganizationUsing the Force.com Migration Tool

Note: The API version that the deployment uses is the API version that’s specified in package.xml.

Deploying Changes to a Salesforce Organization

The build.xml file specifies targets to retrieve and deploy. The following parameters may be set for each deploy target:

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this is
only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value to
the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce session.
A session is created after a user logs in to Salesforce successfully with a username and password.
Use a session ID for logging into an existing session instead of creating a new session.

sessionId

Optional. The Salesforce server URL (if blank, defaults to www.salesforce.com). To connect
to a sandbox instance, change this to test.salesforce.com.

serverurl

Optional. Defaults to 10000. The number of milliseconds to wait when polling for results of
the deployment. Note that deployment may succeed even if you stop waiting.

pollWaitMillis

Optional. Defaults to false. Set to true to check the validity of the deployed files without
making any changes in the organization. This will not deploy any components or change the
organization in any way.

checkOnly

Optional. Defaults to 200. The number of times to poll the server for the results of the deploy
request. Note that deployment may succeed even if you stop waiting.

maxPoll

Required if zipFile isn't specified. Specifies the root of the directory tree of files to deploy.
You must define a value for either zipFile or deployRoot.

deployRoot

Required if deployRoot isn't specified.. Specifies the path of the metadata zip file to be
deployed. You must define a value for either zipFile or deployRoot.

zipFile

Optional. Defaults to false. Declares that the zipFile or deployRoot parameter points
to a directory structure with a single package, as opposed to a set of packages.

singlePackage

Optional. Defaults to false. Specifies whether a deploy succeeds even if files that are specified
in package.xml are not in the zip file. Do not use this parameter for deployment to
production organizations.

allowMissingFiles

Optional. Defaults to false. Specifies whether a deploy should continue even if files present
in the zip file are not specified in package.xml. Do not use this parameter for deployment
to production organizations.

autoUpdatePackage

Optional. Defaults to false. This setting indicates that a deployment should succeed even if
there are warnings (true) or that one or more warnings will cause the deployment to fail and

ignoreWarnings

16

Deploying Changes to a Salesforce OrganizationUsing the Force.com Migration Tool

DescriptionField

roll back (false). If there are errors, as opposed to warnings, the deployment will always fail
and roll back.

Optional. The debug logging level for running tests. The default is None. Valid options are:logType

• None

• Debugonly

• Db

• Profiling

• Callout

• Detail

If true, the deleted components in the destructiveChanges.xml manifest file aren't
stored in the Recycle Bin. Instead, they become immediately eligible for deletion.This option

purgeOnDelete

only works in Developer Edition or sandbox organizations; it doesn't work in production
organizations.

Optional. Defaults to true. Indicates whether any failure causes a complete rollback (true)
or not (false). If false, whatever set of actions can be performed without errors are

rollbackOnError

performed, and errors are returned for the remaining actions. This parameter must be set to
true if you are deploying to a production organization.

Note: In earlier versions of the Force.com Migration Tool (Spring '14 and earlier), this
parameter is ignored in build.xml and Salesforce behaves as if this parameter is set
to true.

(Deprecated and available only in API version 33.0 and earlier.) This parameter is optional and
defaults to false. Set to true to run all Apex tests after deployment, including tests that
originate from installed managed packages.

runAllTests

Optional child elements. A list of Apex classes containing tests run after deploy. For more
information, see Running a Subset of Tests in a Deployment.

To use this option, set testLevel to RunSpecifiedTests.

runTest

Optional. Specifies which tests are run as part of a deployment. The test level is enforced
regardless of the types of components that are present in the deployment package. Valid values
are:

testLevel

• NoTestRun—No tests are run. This test level applies only to deployments to development
environments, such as sandbox, Developer Edition, or trial organizations. This test level is
the default for development environments.

• RunSpecifiedTests—Only the tests that you specify in the runTests option are
run. Code coverage requirements differ from the default coverage requirements when using
this test level. Each class and trigger in the deployment package must be covered by the
executed tests for a minimum of 75% code coverage. This coverage is computed for each
class and trigger individually and is different than the overall coverage percentage.

17

Deploying Changes to a Salesforce OrganizationUsing the Force.com Migration Tool

DescriptionField

• RunLocalTests—All tests in your organization are run, except the ones that originate
from installed managed packages. This test level is the default for production deployments
that include Apex classes or triggers.

• RunAllTestsInOrg—All tests are run. The tests include all tests in your organization,
including tests of managed packages.

If you don’t specify a test level, the default test execution behavior is used. See “Running Tests
in a Deployment” in the Metadata API Developer’s Guide.

This field is available in API version 34.0 and later.

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note that
this will show the user's password in plain text during login.

trace

Note: The Force.com Migration Tool ignores any files or folders with a name starting with a period (.) or ending with a tilde (~)
when deploying files. Some source control systems, such as Subversion, create files or folders with names starting with a period.
These files can cause issues during deployment to Salesforce, so the Force.com Migration Tool ignores them.

The Force.com Migration Tool comes with a sample build.xml file that lists several deployment targets. You will want to create
your own custom targets using the sample targets as starting points. A description of the sample targets follows:

• deployUnpackaged — deploys unpackaged components specified in the target.

• deployCode — deploys the contents of the codepkg package specified in the target.

• undeployCode — deletes classes and triggers in the removecodepkg directory specified by the
destructiveChanges.xml manifest. This file is similar to package.xml, but lists components to be deleted. For more
information, see Deleting Files from an Organization on page 14.

• deployCodeFailingTest — deploys code that fails testing requirements, strictly for demonstration purposes.

• deployCodeCheckOnly — verifies that deployment will work, but does not deploy any components.

Deploying Components
You can deploy any set of components as a package or into your organization directly in the unpackaged package. The package used
is not determined by the build.xml target, but by the project manifest (package.xml). A sample deployment target follows:

<target name="deployUnpackaged">
<sf:deploy

username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
deployroot="projectFolder"/>

</target>

18

Deploying ComponentsUsing the Force.com Migration Tool

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/

Deploying Code
You can deploy metadata components and Apex at the same time, but you may find it useful to create separate targets for deploying
Apex, so that you can run tests as part of the deployment. A portion of a build.xml file is listed below, with a target named
deployCode that deploys the contents of the codepkg package and runs the tests for one class.

<target name="deployCode">
<sf:deploy

username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
deployroot="codepkg">

<runTest>SampleDeployClass</runTest>
</sf:deploy>

</target>

SEE ALSO:

Running a Subset of Tests in a Deployment

Deploying a Recent Validation
Deploying a validation helps you shorten your deployment time because tests aren’t rerun. If you have a recent successful validation,
you can deploy the validated components without running tests. You can deploy a recent validation with the
<sf:deployRecentValidation> task.

A validation doesn’t save any components in the organization. You use a validation only to check the success or failure messages that
you would receive with an actual deployment. To validate your components, add the checkOnly="true" parameter in your deploy
target (<sf:deploy>).

Before deploying a recent validation, ensure that the following requirements are met.

• The components have been validated successfully for the target environment within the last four days (96 hours).

• As part of the validation, all Apex tests in the target organization have passed.

• The overall code coverage in the organization is at least 75%, and Apex triggers have some coverage.

The <sf:deployRecentValidation> task supports these parameters.

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this is
only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value to
the end of your password.

password

Required. Specifies the ID of a recent validation.recentValidationId

Required if username and password aren’t specified. The ID of an active Salesforce session.
A session is created after a user logs in to Salesforce successfully with a username and password.
Use a session ID for logging into an existing session instead of creating a new session.

sessionId

19

Deploying CodeUsing the Force.com Migration Tool

DescriptionField

Optional. The Salesforce server URL (if blank, defaults to www.salesforce.com). To connect
to a sandbox instance, change this to test.salesforce.com.

serverurl

Optional. Defaults to true. Indicates whether any failure causes a complete rollback (true)
or not (false). If false, whatever set of actions can be performed without errors are

rollbackOnError

performed, and errors are returned for the remaining actions. This parameter must be set to
true if you are deploying to a production organization.

Optional. Defaults to 200. The number of times to poll the server for the results of the deploy
request. Note that deployment may succeed even if you stop waiting.

maxPoll

Optional. Defaults to 10000. The number of milliseconds to wait when polling for results of
the deployment. Note that deployment may succeed even if you stop waiting.

pollWaitMillis

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note that
this will show the user's password in plain text during login.

trace

This example shows a target for deploying a recent validation. The value of recentValidationId (sf.recentValidationId)
is defined in the build.properties file.

<target name="quickDeploy">
<sf:deployRecentValidation username="${sf.username}" password="${sf.password}"

sessionId="${sf.sessionId}" serverurl="${sf.serverurl}"
maxPoll="${sf.maxPoll}"
recentValidationId="${sf.recentValidationId}"/>

</target>

Support for <sf:deployRecentValidation> starts with version 34.0 of the Force.com Migration Tool.

Running Tests in a Deployment

Default Test Execution in Production
When no test level is specified in the deployment options, the default test execution behavior depends on the contents of your deployment
package. When deploying to production, all tests, except those that originate from managed packages, are executed if your deployment
package contains Apex classes or triggers. If your package doesn’t contain Apex components, no tests are run by default.

In API version 33.0 and earlier, tests were run for components that required tests, such as custom objects, and not only for Apex
components. For example, if your package contains a custom object, all tests are run in API version 33.0 and earlier. In contrast, starting
with API version 34.0, no tests are run for this package. The API version corresponds to the version of your API client or the version of the
tool you’re using (Force.com Migration Tool).

You can run tests for a deployment of non-Apex components. You can override the default test execution behavior by setting the test
level in your deployment options. Test levels are enforced regardless of the types of components present in your deployment package.
We recommend that you run all local tests in your development environment, such as sandbox, prior to deploying to production. Running
tests in your development environment reduces the amount of tests needed to run in a production deployment.

Note: This default test execution behavior doesn’t apply to change sets. When you deploy change sets to production, all local
tests are executed if your change sets include components that require tests. The executed tests must cover your code at a minimum
of 75%. For a list of components that require tests, see this next section.

20

Running Tests in a DeploymentUsing the Force.com Migration Tool

Default Test Execution in Production for API Version 33.0 and Earlier
For deployment to a production organization, all local tests in your organization are run by default. Tests that originate from installed
managed packages aren’t run by default. If any test fails, the entire deployment is rolled back.

If the deployment includes components for the following metadata types, all local tests are run. For change sets, this test execution
behavior applies to all API versions.

• ApexClass

• ApexComponent

• ApexPage

• ApexTrigger

• ArticleType

• BaseSharingRule

• CriteriaBasedSharingRule

• CustomDataType

• CustomField

• CustomObject

• DataCategoryGroup

• Flow

• InstalledPackage

• NamedFilter

• OwnerSharingRule

• PermissionSet

• Profile

• Queue

• RecordType

• RemoteSiteSetting

• Role

• SharingReason

• Territory

• Validation Rules

• Workflow

For example, no tests are run for the following deployments:

• 1 CustomApplication component

• 100 Report components and 40 Dashboard components

All tests are run for the following deployments:

• 1 CustomField component

• 1 ApexComponent component and 1 ApexClass component

• 5 CustomField components and 1 ApexPage component

• 100 Report components, 40 Dashboard components, and 1 CustomField component

21

Running Tests in a DeploymentUsing the Force.com Migration Tool

Running a Subset of Tests in a Deployment
Test levels enable you to have more control over which tests are run in a deployment. To shorten deployment time to production, run
a subset of tests when deploying Apex components. The default test execution behavior in production has also changed. By default, if
no test level is specified, no tests are executed, unless your deployment package contains Apex classes or triggers.

If the code coverage of an Apex component in the deployment is less than 75%, the deployment fails. If one of the specified tests fails,
the deployment also fails. We recommend that you test your deployment in sandbox first to ensure that the specified tests cover each
component sufficiently. Even if your organization’s overall code coverage is 75% or more, the individual coverage of the Apex components
being deployed can be less. If the code coverage requirement isn’t met, write more tests and include them in the deployment.

To run a subset of tests, add the testLevel="RunSpecifiedTests" parameter to the deploy target. Specify each test class
to run for a deploy target in a <runTest> </runTest> child element within the sf:deploy element. Add the test class name
within the <runTest> </runTest> tags. Add as many runTest tags as you need, one for each test class.

This deploy target example shows three test classes. Salesforce runs these test classes when deploying this package.

<target name="deployCode">
<sf:deploy username="${sf.username}" password="${sf.password}"

sessionId="${sf.sessionId}" serverurl="${sf.serverurl}"
deployroot="codepkg" testLevel="RunSpecifiedTests">

<runTest>TestClass1</runTest>
<runTest>TestClass2</runTest>
<runTest>TestClass3</runTest>

</sf:deploy>
</target>

The test class name can include a namespace prefix. Add a namespace prefix if your organization has a namespace defined or if the test
class belongs to a managed package. For example, if the namespace is MyNamespace, specify the test class as
MyNamespace.TestClass1.

If you don’t specify a test class to run in the target, the default deployment behavior applies when deploying to production. The default
is all tests in your organization run on deployment except the tests that originate from installed managed packages. The default code
coverage requirements are also enforced. The requirements are a minimum overall percentage of 75% for all classes and triggers, and
no trigger can have 0% coverage.

Notes About Running Specific Tests
• You can only specify test classes. You can’t specify individual test methods.

• We recommend that you refactor test classes to include the minimum number of tests that meet code coverage requirements.
Refactoring your test classes can contribute to shorter test execution times, and as a result, shorter deployment times.

• You can deactivate a trigger in the target organization by deploying it with an inactive state. However, the trigger must have been
previously deployed with an active state.

Run the Same Tests in Sandbox and Production Deployments
Starting in API version 34.0, you can choose which tests to run in your development environment, such as only local tests, to match the
tests run in production. In earlier versions, if you enabled tests in your sandbox deployment, you couldn’t exclude managed package
tests.

By default, no tests are run in a deployment to a non-production organization, such as a sandbox or a Developer Edition organization.
To specify tests to run in your development environment, set a testLevel deployment option. For example, to run local tests in a

22

Running a Subset of Tests in a DeploymentUsing the Force.com Migration Tool

deployment and to exclude managed package tests, add the testLevel="RunLocalTests" parameter to the deploy target
as shown in this example.

<target name="deployCode">
<sf:deploy username="${sf.username}" password="${sf.password}"

sessionId="${sf.sessionId}" serverurl="${sf.serverurl}"
deployroot="codepkg" testLevel="RunLocalTests">

</sf:deploy>
</target>

Note: The RunLocalTests test level is enforced regardless of the contents of the deployment package. In contrast, tests are
executed by default in production only if your deployment package contains Apex classes or triggers. You can use
RunLocalTests for sandbox and production deployments.

Canceling a Deployment
You can cancel a deployment that’s in progress or queued with the <sf:cancelDeploy> task.

The <sf:cancelDeploy> task supports these parameters.

DescriptionField

Required if sessionId isn’t specified. The Salesforce username for login. The username
associated with this connection must have the “Modify All Data” permission. Typically, this is
only enabled for System Administrator users.

username

Required if sessionId isn’t specified. The password you use to log into the organization
associated with this project. If you are using a security token, paste the 25-digit token value to
the end of your password.

password

Required if username and password aren’t specified. The ID of an active Salesforce session.
A session is created after a user logs in to Salesforce successfully with a username and password.
Use a session ID for logging into an existing session instead of creating a new session.

sessionId

Required. Specifies the ID of an in-progress or queued deployment to cancel.requestId

Optional. The Salesforce server URL (if blank, defaults to www.salesforce.com). To connect
to a sandbox instance, change this to test.salesforce.com.

serverurl

Optional. Defaults to 200. The number of times to poll the server for the results of the deploy
request. Note that deployment may succeed even if you stop waiting.

maxPoll

Optional. Defaults to 10000. The number of milliseconds to wait when polling for results of
the deployment. Note that deployment may succeed even if you stop waiting.

pollWaitMillis

Optional. Defaults to false. Prints the SOAP requests and responses to the console. Note that
this will show the user's password in plain text during login.

trace

This example shows a target for canceling a deployment. The value of requestId (sf.deployRequestId) is defined in the
build.properties file.

<target name="cancel">
<sf:cancelDeploy username="${sf.username}" password="${sf.password}"

23

Canceling a DeploymentUsing the Force.com Migration Tool

sessionId="${sf.sessionId}" serverurl="${sf.serverurl}" maxPoll="${sf.maxPoll}
requestId="${sf.deployRequestId}"/>

</target>

Support for sf:cancelDeploy starts with version 34.0 of the Force.com Migration Tool.

Checking the Status of a Task

When you run a target, the Force.com Migration Tool outputs the request ID for each deploy or retrieve task included in the target. You
can use the request ID to check the status of a deploy or retrieve task. This is particularly useful if a client is running for a long time and
there is a network issue that breaks the connectivity between the Force.com Migration Tool on your machine and Salesforce.

To check the status of a run target, use the following command:

ant -Dsf.asyncRequestId=requestID targetName

Use the requestID that was printed out when you ran the target. For example, if you run the deployZip target, you can run the
following command to check the status of the retrieval:

ant -Dsf.asyncRequestId=04sx00000002aGuAAI deployZip

Note: You should not use this command with targets that contain multiple retrieve or deploy tasks. You should not use this
command with the bulkRetrieve task also as this task batches retrievals in multiple requests.

To track the status of deployments from within Salesforce, you can also from Setup, click Monitor > Deployments.

24

Checking the Status of a TaskUsing the Force.com Migration Tool

CHAPTER 4 Common Migration Issues

There are a number of common issues you may run into when migrating metadata and deploying changes. These issues can be grouped
into three categories:

• Metadata — Special considerations for dealing with certain metadata components

• Connectivity — Problems connecting to an organization or polling for results

• Testing and Code Coverage — Testing Apex before deployment

Common Metadata Issues

The most common metadata issues are detailed below:

• Retrieving custom fields on standard objects — When you use the wildcard symbol in package.xml, to retrieve all objects, you
will not retrieve standard objects, or custom fields on standard objects. To retrieve custom fields on standard objects, see Constructing
a Project Manifest on page 5.

• Profiles or permission sets and field-level security — The contents of a retrieved profile or permission set depend on the other
contents of the retrieve request. For example, field-level security for fields included in custom objects are returned at the same time
as profiles or permission sets. For more information, see Profile and PermissionSet in the Force.com Metadata API Developer's Guide.

• Understanding packages — Packages are used to bundle related components so they can be shared with multiple organizations,
or distributed on Force.com AppExchange. Managed packages are packages that can be upgraded in the installer's organization.
They differ from unmanaged packages in that some components are locked, in order to permit upgrades. Metadata components
that are not in any package can be accessed with the unpackaged attribute of sf:retrieve and sf:deploy.

• Workflow — A .workflow file is a container for the individual workflow components associated with an object, including
WorkflowAlert, WorkflowFieldUpdate, WorkflowOutboundMessage, WorkflowRule, and WorkflowTask. To retrieve all workflows,
include the following XML in package.xml:

<types>
<members>*</members>
<name>Workflow</name>

</types>

• Retrieving or deploying components that depend on an object definition — The following metadata components are dependent
on a particular object for their definition: CustomField, Picklist, RecordType, Weblink, and ValidationRule.
This means you must dot-qualify the component name with the object name in package.xml, and may not use the wildcard
symbol. For more information, see Constructing a Project Manifest on page 5.

• Personal folders — Users' personal folders, for both reports and documents, are not exposed in the Metadata API. To migrate reports
or documents you must move them to a public folder.

Connection Problems

The most common connection problems are detailed below:

• Request timed out — When you retrieve or deploy metadata, the request is sent asynchronously, meaning that the response is not
returned immediately. Because these calls are asynchronous, the server will process a deploy() to completion even if the
Force.com Migration Tool times out. If the deploy succeeds, the changes will be committed to the server. If the deploy fails after

25

http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_profile.htm
http://www.salesforce.com/us/developer/docs/api_meta/index_CSH.htm#meta_permissionset.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/

timing out, there is no way to retrieve the error message from the server. For this reason, it is important to tune your
pollWaitMillis and maxPoll parameters if you receive time-out errors:

– pollWaitMillis — The number of milliseconds to wait between polls for retrieve/deploy results. The default value is
10000 milliseconds (ten seconds). For long-running processes, increase this number to reduce the total number of polling
requests, which count against your daily API limits.

– maxPoll — The number of polling attempts to be performed before aborting. The default value is 200. When combined
with the default value of pollWaitMillis (10000), this means the Force.com Migration Tool will give the server process
a total of 2,000 seconds (33 minutes) to complete before timing out. The total time is computed as 200 poll attempts, waiting
10 seconds between each.

Note: Since these parameters have default values, they do not have to be specified, and may not exist on your named targets.
To add these parameters, include them in the target definition. For example:

<sf:retrieve
username="${sf.username}"
password="${sf.password}"
sessionId="${sf.sessionId}"
serverurl="${sf.serverurl}"
retrieveTarget="retrieveUnpackaged"
unpackaged="unpackaged/package.xml"
pollWaitMillis="10000"
maxPoll="100"/>

• Invalid username, password, security token; or user locked out - This error indicates a problem with the credentials in
build.properties:

– Username — Verify that your username is correct on this account. When connecting to a sandbox instance your sandbox name
is appended to your username. For example, if your production username is foo@salesforce.com, and one of your
sandboxes is called bar, then your sandbox username is foo@salesforce.com.bar.

– Password — Verify that your password is correct for this account. Note that you security token is appended to the end of your
pasword.

– Security token — The security token is a 25-digit string appended to your password. To reset your security token, go to the Reset
My Security Token page in your personal settings.

– Locked out — If you unsuccessfully attempt to log into an organization too many times, you may be temporarily locked out.
The number of times you may fail to connect and the lockout duration depend on your organization settings. Either contact
your administrator to have the lock removed, or wait until the lockout period expires.

– Connection mismatch between sandbox and production — If all of your connection credentials in build.properties
are correct, you may have a URL mismatch. The server URL is different for sandbox and production environments. In
build.properties, the sf.serverurl value for production is https://login.salesforce.com. For
sandbox environments, the value is https://test.salesforce.com.

• Proxy settings — If you connect through a proxy, you will need to follow the Ant Proxy Configuration instructions.

Testing in Apex

When you deploy to a production organization and don’t specify the tests to run, every unit test in your organization namespace is
executed. Before you deploy Apex, the following must be true:

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete successfully.

Note the following.

26

Common Migration Issues

http://ant.apache.org/manual/proxy.html

When deploying Apex to a production organization, each unit test in your organization namespace is executed by default.–

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the percentage of code that is covered.
Instead, you should make sure that every use case of your application is covered, including positive and negative cases, as well
as bulk and single records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

If you specify the tests to run, the code coverage calculation for the deployment is slightly different See Running a Subset of Tests in a
Deployment.

Salesforce recommends that you write tests for the following:

Single action
Test to verify that a single record produces the correct, expected result.

Bulk actions
Any Apex code, whether a trigger, a class or an extension, may be invoked for 1 to 200 records. You must test not only the single
record case, but the bulk cases as well.

Positive behavior
Test to verify that the expected behavior occurs through every expected permutation, that is, that the user filled out everything
correctly and did not go past the limits.

Negative behavior
There are likely limits to your applications, such as not being able to add a future date, not being able to specify a negative amount,
and so on. You must test for the negative case and verify that the error messages are correctly produced as well as for the positive,
within the limits cases.

Restricted user
Test whether a user with restricted access to the sObjects used in your code sees the expected behavior. That is, whether they can
run the code or receive error messages.

Note: Conditional and ternary operators are not considered executed unless both the positive and negative branches are executed.

For more information, see “Understanding Testing in Apex” in the Force.com Apex Code Developer's Guide.

27

Common Migration Issues

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_testing_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/

GLOSSARY

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A

Apex
Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction control
statements on the Force.com platform server in conjunction with calls to the Force.com API. Using syntax that looks like Java and
acts like database stored procedures, Apex enables developers to add business logic to most system events, including button clicks,
related record updates, and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing is only
available for custom objects.

App
Short for “application.” A collection of components such as tabs, reports, dashboards, and Visualforce pages that address a specific
business need. Salesforce provides standard apps such as Sales and Call Center. You can customize the standard apps to match the
way you work. In addition, you can package an app and upload it to the AppExchange along with related components such as
custom fields, custom tabs, and custom objects. Then, you can make the app available to other Salesforce users from the AppExchange.

AppExchange
The AppExchange is a sharing interface from Salesforce that allows you to browse and share apps and services for the Force.com
platform.

AppExchange Upgrades
Upgrading an app is the process of installing a newer version.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services from it
and exchange data.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata API and Bulk API
are asynchronous.

B

Boolean Operators
You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the AND operator
between two values yields search results that include both values. Likewise, the OR operator between two values yields search results
that include either value.

Bulk API
The REST-based Bulk API is optimized for processing large sets of data. It allows you to query, insert, update, upsert, or delete a large
number of records asynchronously by submitting a number of batches which are processed in the background by Salesforce. See
also SOAP API.

28

C

Class, Apex
A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods, variables,
exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in Java.

Client App
An app that runs outside the Salesforce user interface and uses only the Force.com API or Bulk API. It typically runs on a desktop or
mobile device. These apps treat the platform as a data source, using the development model of whatever tool and platform for
which they are designed.

Component, Metadata
A component is an instance of a metadata type in the Metadata API. For example, CustomObject is a metadata type for custom
objects, and the MyCustomObject__c component is an instance of a custom object. A component is described in an XML file
and it can be deployed or retrieved using the Metadata API, or tools built on top of it, such as the Force.com IDE or the Force.com
Migration Tool.

Component, Visualforce
Something that can be added to a Visualforce page with a set of tags, for example, <apex:detail>. Visualforce includes a
number of standard components, or you can create your own custom components.

Component Reference, Visualforce
A description of the standard and custom Visualforce components that are available in your organization. You can access the
component library from the development footer of any Visualforce page or the Visualforce Developer's Guide.

Controller, Visualforce
An Apex class that provides a Visualforce page with the data and business logic it needs to run. Visualforce pages can use the standard
controllers that come by default with every standard or custom object, or they can use custom controllers.

Controlling Field
Any standard or custom picklist or checkbox field whose values control the available values in one or more corresponding dependent
fields.

Custom App
See App.

Custom Field
A field that can be added in addition to the standard fields to customize Salesforce for your organization’s needs.

Custom Help
Custom text administrators create to provide users with on-screen information specific to a standard field, custom field, or custom
object.

Custom Links
Custom links are URLs defined by administrators to integrate your Salesforce data with external websites and back-office systems.
Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

Custom S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

29

Glossary

https://developer.salesforce.com/docs/atlas.en-us.pages.meta/pages/

D

Database
An organized collection of information. The underlying architecture of the Force.com platform includes a database where your data
is stored.

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also Object.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the right of a
decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter, if necessary. For
example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99. Salesforce uses the round half-up
rounding algorithm. Half-way values are always rounded up. For example, 1.45 is rounded to 1.5. –1.45 is rounded to –1.5.

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Developer Edition
A free, fully-functional Salesforce organization designed for developers to extend, integrate, and develop with the Force.com platform.
Developer Edition accounts are available on developer.salesforce.com.

Salesforce Developers
The Salesforce Developers website at developer.salesforce.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

Document Library
A place to store documents without attaching them to accounts, contacts, opportunities, or other records.

E

Email Alert
Email alerts are workflow and approval actions that are generated using an email template by a workflow rule or approval process
and sent to designated recipients, either Salesforce users or others.

Email Template
A form email that communicates a standard message, such as a welcome letter to new employees or an acknowledgement that a
customer service request has been received. Email templates can be personalized with merge fields, and can be written in text,
HTML, or custom format.

Enterprise Edition
A Salesforce edition designed for larger, more complex businesses.

Enterprise WSDL
A strongly-typed WSDL for customers who want to build an integration with their Salesforce organization only, or for partners who
are using tools like Tibco or webMethods to build integrations that require strong typecasting. The downside of the Enterprise WSDL
is that it only works with the schema of a single Salesforce organization because it is bound to all of the unique objects and fields
that exist in that organization's data model.

30

Glossary

http://developer.salesforce.com
http://developer.salesforce.com

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform) and
define the relationships between them. ERD diagrams for key Salesforce objects are published in the SOAP API Developer's Guide.

Enumeration Field
An enumeration is the WSDL equivalent of a picklist field. The valid values of the field are restricted to a strict set of possible values,
all having the same data type.

F

Field
A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users. Available in Enterprise, Unlimited,
Performance, and Developer Editions only.

Filter Condition/Criteria
Condition on particular fields that qualifies items to be included in a list view or report, such as “State equals California.”

Force.com
The Salesforce platform for building applications in the cloud. Force.com combines a powerful user interface, operating system, and
database to allow you to customize and deploy applications in the cloud for your entire enterprise.

Force.com IDE
An Eclipse plug-in that allows developers to manage, author, debug and deploy Force.com applications in the Eclipse development
environment.

Force.com Migration Tool
A toolkit that allows you to write an Apache Ant build script for migrating Force.com components between a local file system and
a Salesforce organization.

Foreign Key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary key from
another table. A relationship is made between two tables by matching the values of the foreign key in one table with the values of
the primary key in another.

Formula Field
A type of custom field. Formula fields automatically calculate their values based on the values of merge fields, expressions, or other
values.

Function
Built-in formulas that you can customize with input parameters. For example, the DATE function creates a date field type from a
given year, month, and day.

G

Gregorian Year
A calendar based on a 12-month structure used throughout much of the world.

31

Glossary

https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/

H

HTTP Debugger
An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave as proxy
servers running on your local machine and allow you to inspect and author individual requests.

I

ID
See Salesforce Record ID.

Inline S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

An s-control that displays within a record detail page or dashboard, rather than on its own page.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their applications.
The Force.com platform runs on multiple instances, but data for any single organization is always stored on a single instance.

Integration User
A Salesforce user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

J

Junction Object
A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many” relationship
between two objects. For example, you may have a custom object called “Bug” that relates to the standard case object such that a
bug could be related to multiple cases and a case could also be related to multiple bugs.

K

No Glossary items for this entry.

L

License Management Application (LMA)
A free AppExchange app that allows you to track sales leads and accounts for every user who downloads your managed package
(app) from the AppExchange.

License Management Organization (LMO)
The Salesforce organization that you use to track all the Salesforce users who install your package. A license management organization
must have the License Management Application (LMA) installed. It automatically receives notification every time your package is

32

Glossary

installed or uninstalled so that you can easily notify users of upgrades. You can specify any Enterprise, Unlimited, Performance, or
Developer Edition organization as your license management organization. For more information, go to
http://www.salesforce.com/docs/en/lma/index.htm.

List View
A list display of items (for example, accounts or contacts) based on specific criteria. Salesforce provides some predefined views.

In the Agent console, the list view is the top frame that displays a list view of records based on specific criteria. The list views you
can select to display in the console are the same list views defined on the tabs of other objects. You cannot create a list view within
the console.

Local Project
A .zip file containing a project manifest (package.xml file) and one or more metadata components.

Locale
The country or geographic region in which the user is located. The setting affects the format of date and number fields, for example,
dates in the English (United States) locale display as 06/30/2000 and as 30/06/2000 in the English (United Kingdom) locale.

In Professional, Enterprise, Unlimited, Performance, and Developer Edition organizations, a user’s individual Locale setting overrides
the organization’s Default Locale setting. In Personal and Group Editions, the organization-level locale field is called Locale,
not Default Locale.

Logged-in User
In a SOAP API context, the username used to log into Salesforce. Client applications run with the permissions and sharing of the
logged-in user. Also referred to as an integration user.

Lookup Field
A type of field that contains a linkable value to another record. You can display lookup fields on page layouts where the object has
a lookup or master-detail relationship with another object. For example, cases have a lookup relationship with assets that allows
users to select an asset using a lookup dialog from the case edit page and click the name of the asset from the case detail page.

M

Managed Package
A collection of application components that is posted as a unit on the AppExchange and associated with a namespace and possibly
a License Management Organization. To support upgrades, a package must be managed. An organization can create a single
managed package that can be downloaded and installed by many different organizations. Managed packages differ from unmanaged
packages by having some locked components, allowing the managed package to be upgraded later. Unmanaged packages do not
include locked components and cannot be upgraded. In addition, managed packages obfuscate certain components (like Apex) on
subscribing organizations to protect the intellectual property of the developer.

Manifest File
The project manifest file (package.xml) lists the XML components to retrieve or deploy when working with the Metadata API,
or clients built on top of the Metadata API, such as the Force.com IDE or the Force.com Migration Tool.

Manual Sharing
Record-level access rules that allow record owners to give read and edit permissions to other users who might not have access to
the record any other way.

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships are
implemented through the use of junction objects.

33

Glossary

http://www.salesforce.com/docs/en/lma/index.htm

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, accounts have a
master-detail relationship with opportunities. This type of relationship affects record deletion, security, and makes the lookup
relationship field required on the page layout.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses XML to describe
metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

N

Namespace
In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents from packages
of other developers onAppExchange, similar to a domain name. Salesforce automatically prepends your namespace prefix, followed
by two underscores (“__”), to all unique component names in your Salesforce organization.

Native App
An app that is built exclusively with setup (metadata) configuration on Force.com. Native apps do not require any external services
or infrastructure.

O

Object
An object allows you to store information in your Salesforce organization. The object is the overall definition of the type of information
you are storing. For example, the case object allow you to store information regarding customer inquiries. For each object, your
organization will have multiple records that store the information about specific instances of that type of data. For example, you
might have a case record to store the information about Joe Smith's training inquiry and another case record to store the information
about Mary Johnson's configuration issue.

Object-Level Help
Custom help text that you can provide for any custom object. It displays on custom object record home (overview), detail, and edit
pages, as well as list views and related lists.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists. Object-level
security is specified with object permissions.

onClick JavaScript
JavaScript code that executes when a button or link is clicked.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an account may have one or more related
contacts.

34

Glossary

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you can set
organization-wide defaults so that any user can see any record of a particular object that is enabled via their object permissions, but
they need extra permissions to edit one.

Outbound Message
An outbound message is a workflow, approval, or milestone action that sends the information you specify to an endpoint you
designate, such as an external service. Outbound messaging is configured in the Salesforce setup menu. Then you must configure
the external endpoint. You can create a listener for the messages using the SOAP API.

Overlay
An overlay displays additional information when you hover your mouse over certain user interface elements. Depending on the
overlay, it will close when you move your mouse away, click outside of the overlay, or click a close button.

Owner
Individual user to which a record (for example, a contact or case) is assigned.

P

Package
A group of Force.com components and applications that are made available to other organizations through the AppExchange. You
use packages to bundle an app along with any related components so that you can upload them to AppExchange together.

Partner WSDL
A loosely-typed WSDL for customers, partners, and ISVs who want to build an integration or an AppExchange app that can work
across multiple Salesforce organizations. With this WSDL, the developer is responsible for marshaling data in the correct object
representation, which typically involves editing the XML. However, the developer is also freed from being dependent on any particular
data model or Salesforce organization. Contrast this with the Enterprise WSDL, which is strongly typed.

Picklist
Selection list of options available for specific fields in a Salesforce object, for example, the Industry field for accounts. Users can
choose a single value from a list of options rather than make an entry directly in the field. See also Master Picklist.

Picklist (Multi-Select)
Selection list of options available for specific fields in a Salesforce object. Multi-select picklists allow users to choose one or more
values. Users can choose a value by double clicking on it, or choose additional values from a scrolling list by holding down the CTRL
key while clicking a value and using the arrow icon to move them to the selected box.

Picklist Values
Selections displayed in drop-down lists for particular fields. Some values come predefined, and other values can be changed or
defined by an administrator.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies the record.
This field is called the primary key. The relationship is made between two tables by matching the values of the foreign key in one
table with the values of the primary key in another.

Production Organization
A Salesforce organization that has live users accessing data.

Professional Edition
A Salesforce edition designed for businesses who need full-featured CRM functionality.

35

Glossary

Q

Queue
A holding area for items before they are processed. Salesforce uses queues in a number of different features and technologies.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character. For example:

http://na1.salesforce.com/001/e?name=value

R

Record
A single instance of a Salesforce object. For example, “John Jones” might be the name of a contact record.

Record Name
A standard field on all Salesforce objects. Whenever a record name is displayed in a Force.com application, the value is represented
as a link to a detail view of the record. A record name can be either free-form text or an autonumber field. Record Name does
not have to be a unique value.

Record Type
A record type is a field available for certain records that can include some or all of the standard and custom picklist values for that
record. You can associate record types with profiles to make only the included picklist values available to users with that profile.

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the records that
the user is allowed to see.

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Related Object
Objects chosen by an administrator to display in the Agent console's mini view when records of a particular type are shown in the
console's detail view. For example, when a case is in the detail view, an administrator can choose to display an associated account,
contact, or asset in the mini view.

Relationship
A connection between two objects, used to create related lists in page layouts and detail levels in reports. Matching values in a
specified field in both objects are used to link related data; for example, if one object stores data about companies and another
object stores data about people, a relationship allows you to find out which people work at the company.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child and
child-to-parent syntax differs in SOQL queries.

Report Type
A report type defines the set of records and fields available to a report based on the relationships between a primary object and its
related objects. Reports display only records that meet the criteria defined in the report type. Salesforce provides a set of pre-defined
standard report types; administrators can create custom report types as well.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit information
owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

36

Glossary

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

S

SaaS
See Software as a Service (SaaS).

S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

Custom Web content for use in custom links. Custom s-controls can contain any type of content that you can display in a browser,
for example a Java applet, an Active-X control, an Excel file, or a custom HTML Web form.

Salesforce Record ID
A unique 15- or 18-character alphanumeric string that identifies a single record in Salesforce.

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Sandbox
A nearly identical copy of a Salesforce production organization for development, testing, and training. The content and size of a
sandbox varies depending on the type of sandbox and the editioin of the production organization associated with the sandbox.

Search Layout
The organization of fields included in search results, in lookup dialogs, and in the key lists on tab home pages.

Session ID
An authentication token that is returned when a user successfully logs in to Salesforce. The Session ID prevents a user from having
to log in again every time he or she wants to perform another action in Salesforce. Different from a record ID or Salesforce ID, which
are terms for the unique ID of a Salesforce record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined length
of inactivity, which can be configured in Salesforce from Setup by clicking Security Controls. The default is 120 minutes (two hours).
The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an API call.

Setup
A menu where administrators can customize and define organization settings and Force.com apps. Depending on your organization’s
user interface settings, Setup may be a link in the user interface header or in the drop-down list under your name.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:

• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and whether
to use the hierarchies when determining access to data.

• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned by or
shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.

• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is automatically
shared to the members of another group or role.

• Manual Sharing—allows individual users to share records with other users or groups.

37

Glossary

• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s behavior.
See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information created
by users within a given group or role.

Sites
Force.com Sites enables you to create public websites and applications that are directly integrated with your Salesforce
organization—without requiring users to log in with a username and password.

Snippet

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

A type of s-control that is designed to be included in other s-controls. Similar to a helper method that is used by other methods in
a piece of code, a snippet allows you to maintain a single copy of HTML or JavaScript that you can reuse in multiple s-controls.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS vendor
takes responsibility for the daily maintenance, operation, and support of the application and each customer's data. The service
alleviates the need for customers to install, configure, and maintain applications with their own hardware, software, and related IT
resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be used to
select data from the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Force.com API.

Standard Object
A built-in object included with the Force.com platform. You can also build custom objects to store information that is unique to
your app.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code you want
to test at the bottom of the window and click Execute. The body of the System Log displays system resource information, such as
how long a line took to execute or how many database calls were made. If the code did not run to completion, the console also
displays debugging information.

T

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments, commit
no data to the database, and can be executed by the runTests() system method either through the command line or in an
Apex IDE, such as the Force.com IDE.

38

Glossary

Translation Workbench
The Translation Workbench lets you specify languages you want to translate, assign translators to languages, create translations for
customizations you’ve made to your Salesforce organization, and override labels and translations from managed packages. Everything
from custom picklist values to custom fields can be translated so your global users can use all of Salesforce in their language.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database. Every
trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all triggers run in
bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

U

Unit Test
A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make sure it
works correctly. See also Test Method.

Unlimited Edition
Unlimited Edition is Salesforce’s solution for maximizing your success and extending that success across the entire enterprise through
the Force.com platform.

Unmanaged Package
A package that cannot be upgraded or controlled by its developer.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

URL S-Control

Note: S-controls have been superseded by Visualforce pages. After March 2010 organizations that have never created
s-controls, as well as new organizations, won't be allowed to create them. Existing s-controls will remain unaffected, and can
still be edited.

An s-control that contains an external URL that hosts the HTML that should be rendered on a page. When saved this way, the HTML
is hosted and run by an external website. URL s-controls are also called Web controls.

V

Validation Rule
A rule that prevents a record from being saved if it does not meet the standards that are specified.

Visualforce
A simple, tag-based markup language that allows developers to easily define custom pages and components for apps built on the
platform. Each tag corresponds to a coarse or fine-grained component, such as a section of a page, a related list, or a field. The
components can either be controlled by the same logic that is used in standard Salesforce pages, or developers can associate their
own logic with a controller written in Apex.

39

Glossary

W

Web Control
See URL S-Control.

Web Links
See Custom Links.

Web Service
A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms, are
written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application. Web service
methods must be defined in a global class.

Web Services API
A Web services application programming interface that provides access to your Salesforce organization's information. See also SOAP
API and Bulk API.

Web Tab
A custom tab that allows your users to use external websites from within the application.

Workflow Action
A workflow action, such as an email alert, field update, outbound message, or task, fires when the conditions of a workflow rule are
met.

Workflow Email Alert
A workflow action that sends an email when a workflow rule is triggered. Unlike workflow tasks, which can only be assigned to
application users, workflow alerts can be sent to any user or contact, as long as they have a valid email address.

Workflow Field Update
A workflow action that changes the value of a particular field on a record when a workflow rule is triggered.

Workflow Outbound Message
A workflow action that sends data to an external Web service, such as another cloud computing application. Outbound messages
are used primarily with composite apps.

Workflow Queue
A list of workflow actions that are scheduled to fire based on workflow rules that have one or more time-dependent workflow actions.

Workflow Rule
A workflow rule sets workflow actions into motion when its designated conditions are met. You can configure workflow actions to
execute immediately when a record meets the conditions in your workflow rule, or set time triggers that execute the workflow
actions on a specific day.

Workflow Task
A workflow action that assigns a task to an application user when a workflow rule is triggered.

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development environment's SOAP
client uses the Salesforce Enterprise WSDL or Partner WSDL to communicate with Salesforce using the SOAP API.

40

Glossary

X

XML (Extensible Markup Language)
A markup language that enables the sharing and transportation of structured data. All Force.com components that are retrieved or
deployed through the Metadata API are represented by XML definitions.

Y

No Glossary items for this entry.

Z

Zip File
A data compression and archive format.

A collection of files retrieved or deployed by the Metadata API. See also Local Project.

41

Glossary

INDEX

A
ant-salesforce.jar file 3
ApexClass component 5
ApexComponent component 5
ApexPage component 5
ApexTrigger component 5
ApprovalProcess component 5

B
build.properties file 4
build.xml 10, 12–13

C
Cancel deployment 23
checking status 24
code coverage 25
code, deploying 16, 19
common deployment problems 25
connection problems 25
CustomApplication component 5
CustomField component 5
CustomObject component 5
CustomPageWebLink component 5
CustomTab component 5

D
Deleting components 14
deploy call

cancel 23
deploy recent validation 19
running a subset of tests 22
running tests 20

deploy targets 10, 12–13
deploying changes 16
deploying code 16, 19
deploying components 18
deploying metadata 25
describeMetadata 7
destructiveChanges.xml file 14
Document component 5

E
editing metadata 14
EmailTemplate component 5

F
Flow component 5
Folder component 5
Force.com Migration Tool

checking status 24
connecting 4
deploy recent validation 19
deploying 16, 18–19
downloading 3
editing metadata 14
prerequisites 2
retrieving metadata 14
running a subset of tests 22
using 4

H
helper targets

describeMetadata 7
listMetadata 8

HomePageComponent component 5
HomePageLayout component 5

I
installation overview 2

L
Layout component 5
Letterhead component 5
listMetadata 7–8

M
managed packages 1
manifest file 5
maxPoll parameter 25
metadata

deploying 4, 25
editing 14
retrieving 14

Metadata API 1
metadata component types 5
migration 1

N
named components 6
named packages 1

42

P
package.xml

constructing 7–8
package.xml file 5–7, 14
Picklist component 5
pollWaitMillis parameter 25
PostTemplate component 5
prerequisites for Force.com Migration Tool 2
Profile component 5
project manifest 5–7
proxy settings 25

Q
quick deploy 19

R
Readme.html file 3
RecordType component 5
retrieve targets 10, 12–13
retrieving metadata 14

S
Scontrol component 5

security token 25
sf.password 4
sf.serverurl 4
sf.username 4
standard objects 7
StaticResource component 5

T
targets for deploy and retrieve 10, 12–13

U
unpackaged package 1

V
validation 19
ValidationRule component 5
Visualforce page component 5

W
WebLink component 5
wildcard symbol in package.xml 5–6
Workflow component 5

43

Index

	Force.com Migration Tool Overview
	Installing the Force.com Migration Tool
	Prerequisites for Using the Force.com Migration Tool
	Install the Force.com Migration Tool

	Using the Force.com Migration Tool
	Entering Salesforce Connection Information
	Constructing a Project Manifest
	Specifying Named Components
	Specifying all Components of a Type
	Specifying Standard Objects
	Getting Information About Metadata Types
	Describing Metadata Types
	Listing Components for a Metadata Type

	Creating Retrieve Targets
	Retrieving Unpackaged Components
	Retrieving Managed or Unmanaged Packages
	Retrieving Components in Bulk

	Retrieving Metadata from a Salesforce Organization
	Editing Metadata
	Deleting Files from an Organization
	Deploying Changes to a Salesforce Organization
	Deploying Components
	Deploying Code
	Deploying a Recent Validation
	Running Tests in a Deployment
	Running a Subset of Tests in a Deployment
	Run the Same Tests in Sandbox and Production Deployments
	Canceling a Deployment

	Checking the Status of a Task

	Common Migration Issues
	Glossary
	Index

