
Salesforce1 Platform API Services Guide

Version 2, September 2014

This book provides comprehensive information for all Salesforce APIs. Use this book
to explore common scenarios that require using Salesforce APIs. Once you’ve
learned which APIs fit your needs, you can use this guide to get detailed API
overviews, examples, best practices, and more.

Salesforce1 Platform API Services Guide

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of
salesforce.com, inc., as are other names and marks. Other marks appearing herein may be trademarks of
their respective owners.

Various trademarks held by their respective owners.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent
of the publisher.

CONTENTS

INTRODUCTION . 3

Chapter 1: Introducing the Salesforce1 Platform . 3

Features of Salesforce1 . 3
Key Business Use Cases . 6

Customize Salesforce Apps and Make Them Mobile . 7
Orchestrate Targeted Multi-Channel Marketing Campaigns 8
Create Interactions Between Customer- and Employee-Facing Apps 9
Let Employees Access Corporate Data from Anywhere . 11
Analyze Real-Time Data from Connected Devices . 13
Create Mobile Apps that Drive Employee Productivity . 14
Evolve Identity and Data Security Beyond the Perimeter . 15

Chapter 2: Overview of Force.com . 17

Resources . 18

Chapter 3: Overview of Heroku . 19

Key Features of Heroku . 21
Heroku Quick Start . 25
Best Practices for Consuming Salesforce1 APIs from Heroku . 30
Resources . 31

Chapter 4: Overview of ExactTarget . 33

Customer Touchpoints for Developers . 34
Resources . 37

FORCE.COM . 39

Chapter 5: Authentication . 39

Defining Connected Apps . 39
Understanding OAuth Endpoints . 40
Understanding the Web Server OAuth Authentication Flow . 40
Understanding the User-Agent OAuth Authentication Flow . 49

Understanding the Username-Password OAuth Authentication Flow 53
Understanding the OAuth Refresh Token Process . 56
Finding Additional Resources . 59

Chapter 6: SOAP API . 61

Quick Start . 61
Best Practices . 62
Resources . 66

Chapter 7: REST API . 67

Quick Start . 67
Prerequisites . 67
Step One: Obtain a Salesforce Developer Edition Organization 194
Step Two: Set Up Authorization . 68
Step Three: Send HTTP Requests with cURL . 72
Step Four: Walk Through the Sample Code . 74

Best Practices . 81
Resources . 82

Chapter 8: Metadata API . 83

Quick Start . 83
Prerequisites . 84
Step 1: Generate or Obtain the Web Service WSDLs for Your Organization 85
Step 2: Import the WSDL Files Into Your Development Platform 85
Step 3: Walk through the Java Sample Code . 86

Best Practices . 97
Resources . 99

Chapter 9: Bulk API . 101

Quick Start . 101
Setting Up a Salesforce Developer Edition Organization 102
Setting Up Your Client Application . 102
Sending HTTP Requests with cURL . 103

Step 1: Logging In Using the SOAP API . 103
Step 2: Creating a Job . 104
Step 3: Adding a Batch to the Job . 105

Contents

Step 4: Closing the Job . 107
Step 5: Checking Batch Status . 107
Step 6: Retrieving Batch Results . 108

Best Practices . 109
General Guidelines for Data Loads . 109
Using Compression for Responses . 111

Resources . 111

Chapter 10: Streaming API . 113

Quick Start Using Workbench . 114
Prerequisites . 114
Step 1: Create an Object . 115
Step 2: Create a PushTopic . 116
Step 3: Subscribe to the PushTopic Channel . 117
Step 4: Test the PushTopic Channel . 118

Best Practices . 119
Clients and Timeouts . 119
Clients and Cookies for Streaming API . 119
Supported Browsers . 120
HTTPS Recommended . 120
Debugging Streaming API Applications . 120
Monitoring Events Usage . 121
Notification Message Order . 121

Resources . 122

Chapter 11: Data.com API . 123

Data.com Search API . 124
Data.com Match API . 125
Data.com Purchase API . 125
Data.com DUNSRight Match API . 125
Data.com Social Profile Match API . 126
Purchasing Data.com Records . 126

Chapter 12: SOQL and SOSL . 127

Resources . 128

Contents

Chapter 13: Apex . 129

Apex Quick Start . 130
Writing Your First Apex Class and Trigger . 130

Creating a Custom Object . 130
Adding an Apex Class . 131
Adding an Apex Trigger . 133
Adding a Test Class . 134
Deploying Components to Production . 136

Best Practices . 138
Developing Code in the Cloud . 138
Writing Tests . 138
Execution Governors and Limits . 139

Resources . 149

Chapter 14: Visualforce . 151

Quick Start . 152
Creating Your First Page . 152
Displaying Field Values with Visualforce . 154
Using the Visualforce Component Library . 156
Using Input Components in a Page . 159
Adding and Customizing Input Field Labels . 161
Adding Dependent Fields to a Page . 163
Creating Visualforce Dashboard Components . 166

Best Practices . 168
Best Practices for Improving Visualforce Performance . 168
Best Practices for Accessing Component IDs . 170
Best Practices for Static Resources . 175
Best Practices for Controllers and Controller Extensions 175

Resources . 177

Chapter 15: Force.com Canvas . 179

Quick Start . 180
Prerequisites . 180
Create the App . 181
Set the App Location . 182

Contents

Best Practices . 183
Resources . 185

Chapter 16: Tooling API . 187

Resources . 188

Chapter 17: Salesforce1 Reporting REST API . 189

Best Practices . 190
Resources . 191

COLLABORATION . 193

Chapter 18: Chatter REST API . 193

Chatter REST API Quick Start . 194
Prerequisites . 194
Step One: Obtain a Salesforce Developer Edition Organization 194
Step Two: Set Up Authorization . 194
Step Three: Connect to Chatter REST API Using OAuth . 195
Connecting to Salesforce Communities . 197

Best Practices . 198
Resources . 199

MOBILE . 201

Chapter 19: Salesforce Mobile SDK . 201

Chapter 20: Resources . 203

MARKETING CLOUD . 205

Chapter 21: ExactTarget API . 205

Using Fuel to Send Email . 205
Fuel SDKs . 207
App Center . 208
Building the App . 213
Using the API Directly . 221
Using Data Extensions and AMPscript for Advanced Personalization 223

Contents

Resources . 229

Chapter 22: Radian6 API . 231

Supported Browsers . 231
Supported Salesforce Editions . 231
Quick Start . 232

Step One: Authenticate with the API . 232
Step Two: Issue a Call to a Method . 234
Step Three: Fetch Data . 235

Using the Services . 238
Post Service . 238

Resources for Post Service . 240
User Service . 241

Resources for User Service . 243
Insight Service . 243

Resources for Insight Service . 245
Topic Service . 245

Resources for Topic Service . 248
Data Service . 249

Resources for Data Service . 254
Blog Service . 255

Resources for Blog Service . 258
Authentication Service . 258
Lookup Service . 260

Resources for Lookup Service . 263
Resources . 264

Chapter 23: Pardot API . 265

Supported Browsers . 265
Supported Salesforce Editions . 265
Quick Start . 266

Step One: Authenticate with the API . 266
Step Two: Issue Requests Using the Pardot API . 267

Using the API . 270
Using Prospects . 270
Using Opportunities . 274

Contents

Using Visitors . 276
Using Visitor Activities . 277
Using Users . 278
Using Visits . 280
Using Lists . 281
Using Prospect Accounts . 281
Reading Emails . 283

Sending One to One Emails . 283
Sending List Emails . 284

Resources . 285

SERVICE CLOUD . 287

Chapter 24: Desk.com API . 287

Supported Browsers . 287
Supported Salesforce Editions . 287
Quick Start . 288

Step One: Authenticate with the API . 288
Step Two: Request for data . 290

Best Practices . 293
Using the API . 297

Articles . 297
Calls for Articles . 299

Brands . 300
Cases . 301

Calls for Cases . 302
Companies . 306

Calls for Companies . 307
Custom Fields . 308
Customers . 309

Calls for Customers . 310
ETags . 311
Facebook Accounts . 311
Facebook Feeds . 311
Facebook Users . 312

Contents

Filters . 312
Groups . 313

Calls for Groups . 314
Inbound Mailboxes . 314
Insights . 315
Integration URLs . 316

Calls for Integration URLs . 317
Jobs . 318
Labels . 319

Calls for Labels . 320
Macros . 321

Calls for Macros . 322
Outbound Mailboxes . 322
Rules . 323
Site Settings . 324
System Message . 325
Topics . 326

Calls for Topics . 327
Twitter Accounts . 327

Calls for Twitter Accounts . 328
Twitter Users . 329
Users . 330

Calls for Users . 331
Resources . 331

Chapter 25: Live Agent API . 333

Supported Salesforce Editions . 333
Prerequisites . 333
API Versions . 334
Creating Deployments . 335
Customize Deployments with the Deployment API . 335

Creating Deployments . 335
Logging Deployment Activity with the Deployment API 336

enableLogging . 336
Customizing Your Chat Window with the Deployment API 337

Contents

setChatWindowHeight . 337
setChatWindowWidth . 337

Launching a Chat Request with the Deployment API . 338
startChat . 338
startChatWithWindow . 339

Customizing Visitor Details with the Deployment API . 340
addCustomDetail . 340
setName . 341

Creating Records Automatically with the Deployment API 342
findOrCreate . 342
Creating Records Deployment API Code Sample 346

Customizing Chat Buttons with the Deployment API . 347
showWhenOnline . 347
showWhenOffline . 348
addButtonEventHandler . 350

Customizing Automated Chat Invitations with the Deployment API 351
rejectChat . 352
addButtonEventHandler . 352
setCustomVariable . 354
Automated Chat Invitation Code Sample . 355

Deployment API Code Sample . 357
Accessing Chat Details with the Pre-Chat API . 359

preChatInit . 359
Create Records Automatically with the Pre-Chat API . 362

findOrCreate.map . 362
findOrCreate.map.doFind . 363
findOrCreate.map.isExactMatch . 364
findOrCreate.map.doCreate . 365

findOrCreate.saveToTranscript . 367
findOrCreate.showOnCreate . 367
findOrCreate.linkToEntity . 368
findOrCreate.displayToAgent . 369
Creating Records Pre-Chat API Code Sample . 371

Resources . 372

Chapter 26: Salesforce Console Integration Toolkit . 373

Contents

Supported Browsers . 373
Supported Salesforce Editions . 373
Quick Start . 374

Connecting to the Toolkit . 374
Asynchronous Calls with the Salesforce Console Integration Toolkit 375
Working with Force.com Canvas . 375
Best Practices . 377
Sample Visualforce Page Using the Salesforce Console Integration Toolkit 377

Methods . 379
Methods for Primary Tabs and Subtabs . 380
Methods for Computer-Telephony Integration (CTI) . 380
Methods for Application-Level Custom Console Components 380
Methods for Push Notifications . 380
Methods for Live Agent . 381

Resources . 381

Chapter 27: Open CTI . 383

Supported Browsers . 383
Supported Salesforce Editions . 384
Quick Start . 384

Connecting to Open CTI . 385
Asynchronous Calls with Open CTI . 385
Working with Force.com Canvas . 386
Best Practices . 387

Call Center Definition Files . 387
Call Center Definition File XML Format . 388
Required Call Center Elements and Attributes . 390
Optional Call Center Elements and Attributes . 391
Sample Call Center Definition File . 392

Methods . 393
Methods for Salesforce Application Interaction . 393
Methods for Computer-Telephony Integration (CTI) . 395

Resources . 396

INDEX . 397

Contents

ABOUT THIS BOOK

This book provides a comprehensive tour of all the APIs in the Salesforce1 Platform. It’s organized into the
following parts.

• Introduction — overview of the Salesforce1 Platform and its key components: Force.com, Heroku,
and ExactTarget Fuel

• Force.com — APIs and development tools for Force.com

• Collaboration — Chatter REST API

• Mobile — Mobile SDK, including all the developer tools for HTML5, iOS, and Android

• Marketing Cloud — APIs for ExactTarget, Radian6, and Pardot

• Service Cloud — APIs for Desk.com, Live Agent, Open CTI, and the Console Integration Toolkit

After reading this book, you’ll have a solid understanding of the features of the Salesforce1 Platform. Once
you’re ready to start development, consult the documentation for each individual API for technical details
and reference information.

1

INTRODUCTION

CHAPTER 1 Introducing the Salesforce1 Platform

Mobile has become the new normal for staying connected in our personal and professional lives. We follow
friends, update status feeds, check in at local businesses, collaborate with colleagues, email suppliers, and
much more, all increasingly on the go. The successful businesses of the future must adapt to this mobile-first
world today, embracing the freedom mobile provides to get things done regardless of where you are and
what you are doing.

Consumer mobile apps in the enterprise have often lagged behind their desktop equivalents in functionality
and adoption. IT departments don’t typically have mobile expertise in house, and must allocate precious
technical resources to keep pace with the demands of their current backlogs of projects. When they have
delivered custom mobile apps, development cycles have been long, complicated, and expensive, and the
results have failed to engage users as effectively as today’s leading consumer-facing apps.

Salesforce1 solves the problems of lack of mobile specialists and lagging innovation with a revolutionary
approach to app development for the social and mobile-first world. It delivers breakthrough productivity
for all users by putting customers—employees, partners, consumers, and devices—at the center of
everything, and making every employee a mobile developer. The result is an insanely fast, hyper-connected
mobile solution with the potential to be as disruptive as Software as a Service. It’s time to build the future
today!

The Salesforce1 Platform gives organizations the freedom to innovate. Designed for scale, it provides open
APIs for extensibility and integration as well as powerful developer tools; there’s no limit to what developers
can build. The Salesforce1 Platform’s flexible development models enable every administrator or developer
to create custom apps with a unique yet familiar mobile user experience, powered by mobile back-end
services.

Features of Salesforce1

The Salesforce1 Platform is a mobile app development platform for everyone. It allows incredible freedom
for ISVs, developers, administrators, and every user to innovate. This revolutionary approach to unlocking
mobile app development for organizations is built for today’s needs: mobile and social solutions, delivered
in weeks or even days! Apps, driven by metadata, intelligently provide context to the user experience,
delivering information-based mobile device features: responsive design, address fields plotted on maps,
and phone numbers dialed with a simple tap, feed-centric workflows, and much more.

3

Business users and adminstrators can develop apps with clicks, not code, using powerful workflow rules,
approval processes, databases, and dynamic user interfaces. Unlike other solutions, for which business
users often created independent applications that gave IT little visibility over security, or reliability,
Salesforce1 provides administrators the tools they need to centrally manage and govern apps without
limiting businesses’ ability to innovate.

There is no limit to what developers and ISVs can build using the platform’s massive scalability, open APIs
for extensibilty and integration, and powerful developer tools. Salesforce1’s flexibile development models
enable every user to create custom apps backed by mobile backend services and a unique, yet familar,
mobile user experience. ISVs developing on the Salesforce1 Platform can develop apps that take advantange
of advanced packaged and version management controls, complete enterprise marketplace capabilities
with the AppExchange, and feed-first discovery of their apps within the Salesforce1 Platform.

The Salesforce1 Platform brings together Force.com, Heroku, and ExactTarget Fuel into one incredibly
powerful family of social, mobile, and cloud services—all built API first. Salesforce1 delivers the following
capabilities.

Social Data
The ability to share, follow, collaborate, and take business actions directly on data within the Salesforce1
app is at the core of the platform. Users can follow records and data with a single tap. They can be notified
of changes in real time and collaborate directly within the record feed. This feed-based approach to working
lets users can focus on what’s most important to them.

By treating data as social and as an important participant in business, Salesforce1 allows data to trigger
workflows, share updates, and be part of the collaboration process with workers, teams, partners, and
customers. The result is an unparalleled opportunity to create new business apps and processes for business
productivity.

Declarative and Programmatic Development
IT departments have struggled to keep pace with the level of change required for businesses to remain
competitive. Too often, IT is resource-constrained because they must manage existing on-premise systems
while at the same time recruiting and retaining professional developers, especially those with mobile
application development experience.

Salesforce1 solves the problem of speed-to-delivery by providing intuitive drag-and-drop tools for storing
and working with data, defining cloud-based logic with workflows, creating approval processes and
formulas, and creating mobile-ready apps.

Professional developers can use the most popular open-source languages, tools, and standards to build
completely custom apps and user interfaces. Unlike other platforms, Salesforce1 delivers a unique experience

4

Chapter 1 Introducing the Salesforce1 Platform

where developers and administrators create apps on the same platform, eliminating the effort required
to build complicated integration solutions.

Action-Based App Model
Salesforce1 puts the customer at the center of the development process. Rather than requiring complicated
development cycles, apps can be declared through actions: create an order, set a delivery date, select a
route, and so on. Administrators can define default values for actions to streamline apps down to the click
of a mouse or swipe of a finger.

Actions defined via the desktop are instantly available in context-sensitive menus on mobile devices. And,
for developers building integrations with Salesforce1, actions are automatically enabled with RESTful
endpoints capable of accepting either XML or JSON data envelopes.

Connect to Everything with Open APIs
Salesforce provides the connectivity and flexibility to create apps that connect to everything using efficient
and scalable APIs that perform over 1.3 billion transactions a day. Every object or data entity is instantly
REST-enabled.

Our APIs include access to bulk APIs for data loading, social APIs for ubiquitous collaboration, cutting-edge
streaming APIs to support push notification integrations, and metadata APIs that describe every aspect of
your app and business such as permissions, data access policies, field types, and user experience.

To date, developers have built more than 500,000 apps on the platform. These apps connect to existing
back-end systems, cloud platforms including Google, Facebook, and Twitter, and, in ever-increasing
numbers, consumer devices such as refrigerators, cars, vending machines, and much more.

Trusted Identity
Today’s IT landscape consists of on-premises systems, internal processes, cloud providers, social networks,
and mobile devices. The ability to have a single, simple identity to span these technology and business
silos is a fundamental ingredient for business success and velocity for change. With over 7 billion logins a
year, Salesforce1 provides a trusted identity hub that reaches beyond perimeter-based identity management
solutions and leverages the social data and multi-tenant core of the platform.

Organizations can build solutions that leverage standards such as:

• SAML and delegated authentication to authenticate with on-premises systems

• OAuth for connecting to social and cloud platforms

• Connected app policies for app providers to connect to Salesforce as a trusted identity provider

5

Chapter 1 Introducing the Salesforce1 Platform

Further, Salesforce1 supports easy-to-use, centralized policy-management tools for controlling record
visibility across organizational units and disparate systems regardless of location.

Key Business Use Cases

The Salesforce1 Platform is designed to deliver customer benefits behind every app. It is API and mobile
first, allowing every aspect to be extended and customized by all users, regardless of whether they work
within lines of business, manage IT, or are looking to build an entire company and product. And every app
is instantly mobile.

From an engineering perspective, Salesforce1 as a philosophy means:

• Every new feature must be designed for mobile first, and have an API for developers.

• User interfaces should be responsive and change dynamically depending on whether the app is running
on a smartphone, tablet, or laptop.

• The user experience should change depending on device features. Address fields should leverage
geo-location and provide maps, nearby information, and context. You should be able to click on a
phone number to make a call.

• Apps should be personal. Your identity should drive the user interface by interacting with calendars,
personal preferences, and usage history.

• The entire platform should grow with your needs, constantly delivering customer benefit for every
app and every action.

Salesforce1 is a transformation, not a re-invention. We have invested years of effort in providing exactly
what you expect from Salesforce—scale, trust, no software or hardware, and painless upgrades. If you’re
an existing customer with data, applications, custom logic or user interfaces built on Salesforce, this
investment is now instantly mobile-aware. Tomorrow’s leading businesses are those companies that get
to the future first. Customers should not spend months or years building mobile apps. Salesforce1 delivers
this mobile-first future now.

Salesforce1 is an enabler for business success. Developing with the Salesforce1 Platform is about delivering
apps that customers benefit from. The business use cases in this guide describe the most common scenarios
customers request to deliver the apps their employees, customers, and partners will love. Each scenario
includes intended customer benefits, a high-level depiction of app architecture, and references to the
recommended APIs and design strategies for success. Readers should use this section by starting with the
questions, “What benefits to my customers or end users will this app provide? And how do I build it?”

6

Chapter 1 Introducing the Salesforce1 Platform

Customize Salesforce Apps and Make Them Mobile

Motivation
Many current Salesforce customers have existing apps and processes developed in Salesforce. Salesforce1
can be used to access all of this information instantly—no development is required.

Strategy
Salesforce app development typically falls into two categories: those created with declarative tools that
use the traditional Salesforce web interface, and those created with custom user interfaces and
programmatic technologies, including Apex and Visualforce. Salesforce1 supports the rendering of both
types of apps on mobile devices. However, depending on the level of user interface customization,
developers may be required to modify Visualforce and Apex pages for optimal user experience. Specific
attention should be given to complicated Visualforce pages designed for heavy data manipulation, and
to graphic-intensive activity. Mobile Web page development requires optimizing data traffic and the user
interface to make it intuitive for users on smaller screens.

Getting Started
Start by performing an inventory of custom apps, Visualforce pages, and any business processes that take
multiple steps/pages to complete. Rank potential candidates for optimization by frequency of use. If there
are opportunities to eliminate steps by creating custom actions, prioritize these first.

7

Chapter 1 Introducing the Salesforce1 Platform

Next, look for performance optimizations that do no require significant re-coding. Modern browsers such
as Safari, Firefox, and Chrome include tools that let developers view the relative size and duration of HTTP
requests for pages. Example quick-change candidates may be reducing the size of large image files,
modifying pages to use server-side view state, and compressing non-optimized JavaScript libraries (look
for JavaScript libraries ending with -min to identify compressed versions).

Orchestrate Targeted Multi-Channel Marketing Campaigns

Motivation
Your customers are inundated with messages of all types—email in the inbox, printed material in the
mailbox, billboards on highways, and SMS and push messages on mobile devices. To be effective, your
marketing campaigns have to stand out, to be highly-targeted and relevant. Highly-targeted, relevant
communication is as much a technology problem as it is a marketer's dilemma—the most successful
marketing campaigns involve highly sophisticated interactions across multiple channels, driven by data
from multiple data sources tied to precise audience segments, delivering just the right message at just
the right moment.

Strategy
Customers interact with your business through dozens of sources: web, mobile, social networks, and much
more. In order to effectively target customers it is critical to be able to synchronize data between systems
using a flexible data model and integration strategies without complicated, multi-month IT projects. Just
as bad as long, complicated projects are rushed implementations that miss key customer touchpoints.

Successful campaigns rely on targeted, relevant messages. How relevant a message is to a customer
depends on your ability to analyze the information obtained through customer touchpoints. Analysis of
this customer information ensures that marketers are able to deliver just the right message at just the right
moment.

8

Chapter 1 Introducing the Salesforce1 Platform

Getting Started
Developers typically use ExactTarget Fuel to build integrated campaigns. ExactTarget Fuel provides
developer SDKs for exposing customer touchpoints as integrations and configuring them via the App
Center. Developers familar with the connected app model in Force.com should find the ExactTarget App
Center very similar: the App Center portal lets you create and register your application so it can access the
Fuel Platform and take advantage of ExactTarget functionality.

Create Interactions Between Customer- and
Employee-Facing Apps

Motivation
Customers engage with your products and brands via social networks, websites, and mobile apps. However,
many organizations have disconnected systems for customer-facing and employee-facing apps. The result

9

Chapter 1 Introducing the Salesforce1 Platform

is complicated integration processes in best-case scenarios, and in many cases the result is poor customer
experience.

Strategy
Salesforce1 provides easy integration between all aspects of the platform to ensure that organizations
have a complete view of their customers. Heroku is designed for consumer scale, and supports the most
current development languages used by today’s most popular apps and websites. Force.com is designed
for employee apps and working with business data. ExactTarget offers the ability to send targeted messages
and marketing campaigns to users. Seamless customer interaction touches all aspects of these products.
The Salesforce1 Platform delivers this functionality in an optimized experience for developers, business
users, and customers.

Developers building customer-facing apps should either develop their apps on Heroku and configure
Heroku Connect, or use language-specific open-source libraries for API-level integration. Typical integrations
use an integration user account established in Force.com that manages customer details as contact records

10

Chapter 1 Introducing the Salesforce1 Platform

rather than a one-to-one mapping of consumer profiles to Force.com accounts. The decoupled approach
lets consumer and employee apps scale independently.

With integration users and customer contact strategies established, developers and business users should
identify what information should be synchronized between Heroku and Force.com. When relationships
form between customers and businesses, products are the driving factors in determining the right data
and triggers for synchronization. For example, typical Web and mobile consumer apps display generic
information until users register or express interest in particular products or services. As soon as these
relationships are established, customer companies begin to build customer profiles around each of their
users: What are the user’s interests? How can we send targeted marketing messages, and keep track of
customer contacts such as service tickets and social network interactions? How can we analyze trends
across all customers to better determine business priorities?

Getting Started
Start with the customer experience. Create a list of relationship touch points that can be used to define
which data to sync between systems at what intervals. After they’re established, development teams can
work independently on apps for customers and employees, using the right technology, scale, and feedback
loops to maintain or grow each relationship. Heroku apps are typically architected in a stateless usage
model for consumer scale, while Force.com apps are typically architected based on users. With the touch
points and apps created, business users should create reports based on customer information. From these
reports marketers can easily create targeted campaigns using ExactTarget.

Let Employees Access Corporate Data from Anywhere

Motivation
The majority of organizations have considerable investment in existing back-end systems and custom
applications. These systems often perform current functions well, but using them to create new apps is
often difficult and costly, especially for mobile. Salesforce1 provides open APIs to connect to existing
systems and customer applications, letting customers create an agile layer for innovation.

Strategy
Existing systems are either located behind corporate firewalls or in cloud providers. Traditional approaches
to integration, such as ETL (Extract, Transform, Load), solve problems with data access but can create
duplicated data silos. When possible, determine systems of record—often existing systems that are no
longer used for new application development—and connect them to Salesforce using the most efficient

11

Chapter 1 Introducing the Salesforce1 Platform

Salesforce1 API based on the integration requirements. For example, avoid polling-based solutions because
of heavy computational overhead and complex try-retry logic; use the Streaming API instead.

Wherever possible, maintain user identity from the source of data entry (typically Salesforce1 for new app
development) to destination (system of record). Begin to create external identifiers to maintain data
integrity between systems with Salesforce1 as the source of new app innovation. Expose business process
actions in existing systems that can be executed from Salesforce1 actions, and actionable from mobile
apps. Use the strategies for identity management defined in the “Evolve Identity and Data Security Beyond
the Perimeter” section in this guide.

Getting Started
Start with the business need, not with the need for data access alone. Clearly identitying business needs
will expose opportunities for determining whether a system-of-record-based approach is correct, and
which Salesforce1 API is most appropriate. For example, the Bulk API is useful for data loading, the Streaming
API for pub-sub models, and action-based integration for tap-to-turnkey business processes that can span
system boundaries. A data migration exercise will unlock future innovation and retire legacy systems.
Developers should become familiar with triggers, custom Apex REST, External IDs for data modeling, and
Canvas-based custom quick actions.

12

Chapter 1 Introducing the Salesforce1 Platform

Analyze Real-Time Data from Connected Devices

Motivation
“The Internet of things” is a term used to describe the next wave of smart devices connected to the Internet.
Today, the most prevalent of these devices are mobile phones and tablets. We are beginning to see cars,
vending machines, and much more, sharing information back to businesses on customer usage and habits.
The future of business lies in remembering that behind every device is a customer. The result is the need
to connect everything back to your business and analyze data on customer usage and habits for exceptional
customer service.

Strategy
Connected device strategies are evolving incredibly rapidly. Salesforce1 provides robust reporting and
dashboard functionality, including Analytics APIs for aggregating data and representing it on mobile
devices to help users make information decisions in real time.

Organizations looking to capitalize on connected devices and tie them to customer service goals should
focus on how to work effectively with data on customer usage and habits and on how to communicate
back with their customers.

13

Chapter 1 Introducing the Salesforce1 Platform

Getting Started
Connected devices typically require system integrators who are specialists in connecting physical devices
to the Internet. After connecting, app developers should focus on what information retrieved from the
devices is important for customer service requirements. Perhaps developers’ focus should be on the analysis
of heat sensors, or an indication of every time a fridge door is opened, or when a truck’s speed falls below
a certain threshold.

With data points identified, reports and dashboards should be created to identify trends, and to analyze
usage with key workflows and actions that support immediate customer escalations.

Create Mobile Apps that Drive Employee Productivity

Getting Started
Without the ability to deliver timely and accurate business information where the customer needs it,
adoption of any system will fail. Apps must not only deliver this information, but also make it relevant,
contextual, and easy to work with.

Motivation
Today’s business environment requires data to be available on mobile devices. However, enterprise mobile
app strategies often fail due to trying to replicate existing systems on a mobile phone or tablet. How users
access and interact with data on each device is different. Data must be delivered in context of where the
user is, both geographically—as identified through geo-enabled devices—and organizationally—as
identified through which record a user is working with.

Feed-centric discovery, integration with social networks, and action-based workflows help you deliver
important, timely information to users on mobile devices, and help your users, with a tap or a swipe,
perform actions immediately.

14

Chapter 1 Introducing the Salesforce1 Platform

Strategy
Start by defining actions on records and identifying areas where default values may be set on the user’s
behalf. The goal is to eliminate the requirement to enter data that can be obtained from contextual
information. Typical examples may include geolocation, date, username, and associated record information
such as a contact details or account name.

Once actions are defined, study user activities on an a daily basis and create apps which can be configured
to appear in the Salesforce1 left-hand menu for single tab access.

Evolve Identity and Data Security Beyond the Perimeter

Getting Started
Modern identity management solutions must support more than traditional perimeter based authentication,
and offer a single, simple, and trusted way to manage authentication and authorization of on-premise
systems, cloud-based offerings, and, ever-increasingly, social and mobile applications.

Motivation
Salesforce1 can be used to connect to on-premise systems using standards such as SAML and Delegated
Authentication, offering organizations a flexible way of leveraging existing identity stores and extending
them to the cloud. For cloud-based and custom mobile apps, OAuth2 has become the leading mechanism

15

Chapter 1 Introducing the Salesforce1 Platform

for securely authenticating and authorizing apps. Salesforce1 provides a robust connected app model
which allows administrators to declaratively define permissions on an app-by-app basis.

Combining the powerful role and profile capabilities of Salesforce1, administrators can control which
records are accessible to what users, or groups of users, regardless of whether a user is connecting using
on-premise authentication tokens or via a connected app running on a mobile device on the other side
of the world.

Strategy
Start with the data that your apps need. Define what this data is, where it comes from, and who has access.
With a clear understanding of data requirements, map out where users’ identity comes from. Does the
organization have an existing ActiveDirectory implementation, is single sign-on important, and are external
apps going to be connecting to Salesforce1?

16

Chapter 1 Introducing the Salesforce1 Platform

CHAPTER 2 Overview of Force.com

Force.com, a core component of the Salesforce1 Platform, is designed to help create custom apps in
minutes. Administrators and users can build apps using intuitive drag-and-drop tools, a powerful workflow
and approval engine, and much more. Developers and ISVs can build apps using programmatic tools,
open APIs, and the leading languages and frameworks.

Force.com provides APIs that can be used for developing integration and data access applications, adding
application logic to your organization’s data, creating custom user interfaces or integrating existing
application user interfaces in your organizations, and developing applications that use the Salesforce social
and collaboration functionality. Because there are no servers or software to buy or manage, you can focus
solely on building apps that include built-in social and mobile functionality, business processes, reporting,
and search. Your apps run on a secure, proven service that scales, tunes, and backs up data automatically.

For integration and data access, Force.com provides:

• SOAP API: A SOAP-based API for accessing your Salesforce data.

• REST API: A REST-based API for accessing your Salesforce data.

• Metadata API: An API used for managing and migrating organization metadata.

• Bulk API: A REST-based API for asynchronously loading or querying very large sets of data.

• Streaming API: A push technology API for efficiently managing notifications of organization data
changes.

• Salesforce Object Query Language (SOQL): A query language used to form complex queries, used in
many of the Salesforce APIs.

• Salesforce Object Search Language (SOSL): A search language used to form complex data searches,
used in many of the Salesforce APIs.

• Tooling API: A REST- and SOAP-based API used for creating custom Salesforce development tools.

• Salesforce1 Reporting REST API: A REST-based API used for running and accessing report data in
Salesforce.

For application logic, Force.com provides:

• Apex: An object-oriented programming language that lets you add business logic, triggers, and more
to you organization’s data.

For user interface development and integration, Force.com provides:

17

• Visualforce: A tag-based markup language used for building applications and custom interfaces in
Salesforce.

• Force.com Canvas: A set of tools and frameworks used to integrate your existing web applications
directly in Salesforce.

Resources

Search on the Salesforce Developers Library at http://developer.salesforce.com/docs
for comprehensive documentation on all aspects of Force.com.

18

Chapter 2 Overview of Force.com

http://developer.salesforce.com/docs

CHAPTER 3 Overview of Heroku

Heroku, a core component of the Salesforce1 Platform, empowers your business to build, deliver, and
manage all of your customer-facing apps. You can use the Salesforce1 APIs to bring deep customer insight
into your applications, integrate and extend your core business systems, and connect your business to
customers, end-to-end. Heroku is the ideal place to run these applications.

This chapter covers how to use Heroku to build, deploy, and scale your customer-facing apps, leveraging
Salesforce1 APIs on the backend and Heroku’s suite of powerful developer tools and cutting-edge cloud
services for better and faster application delivery.

Apps are the new channel to reach customers, letting companies create contextual, interactive experiences
that can reach today’s mobile, social, and connected customers—wherever they are, on any device. In
addition to leveraging robust APIs, core business systems, and rich customer data, today’s companies need
to deliver customer-facing apps and new features quickly, optimize for mobile and connected devices,
and efficiently scale out to meet traffic spikes and accommodate new users.

Here are some examples of apps that bring together Salesforce1 APIs and Heroku’s application delivery
platform to deliver engaging, customized experiences to users.

• Customer Engagement — These apps connect company to customer through engaging app
experiences. Some of the successful customer engagement apps deployed on the Heroku platform
include: marketing campaigns around major events and product launches, viral campaigns, acquisition
and loyalty campaigns, consumer purchase flows, social apps, content platforms, and innovative
connected device apps. These apps can help companies reach new markets, achieving broader and
deeper reach into new customer bases and demographics.

• Consumer Mobile — In order to remain competitive, today’s companies must be able to extend
their brand, services, and products across across the many screens of today’s connected consumer.
Mobile apps enable relevant engagement regardless of location and across all of your customers’
mobile devices—or their connected products, gaming consoles, TV sets, and even their cars. These
apps can build brand loyalty, bridging the brick and mortar experience to allow customers to browse
and buy on any device, access important data, and receive notifications, interact, and socialize with
the company on-the-go. These apps can also power self-service experiences ranging from e-commerce
to business interactions like making appointments, checking order statuses, and more.

• Force.com + Heroku — These apps connect a company to customers through the rich customer
data stored within a Salesforce organization. Integrated with intelligent data, companies are able to
build deeply customized, contextual customer applications, automate business processes, capture
data, and tie everything back to core business systems using Heroku Connect.

19

About Heroku

Heroku is designed from the ground up for developer productivity, removing the pains of managing
infrastructure, operations, and scaling, so you and your team can focus on delivering amazing apps to
customers. Heroku provides instant deployment, streamlined workflows, a marketplace of fully managed
cloud services, and built-in best practices for application development—all from a single, scalable, reliable
platform for running and managing your apps.

Heroku provides the essential tools and building blocks for your applications, including:

• Support for Node.js, Java, Python, Ruby, and PHP, so your development team can be productive
immediately with languages they already know.

• Heroku Connect, which makes it easy for you to build Heroku apps that share data with your Salesforce
environment. Using bi-directional synchronization between Salesforce and Heroku Postgres, Heroku
Connect unifies the data in your Postgres database with the contacts, accounts, and other standard
and custom objects in the Salesforce database, letting you effortlessly combine the capabilities of the
Force.com and Heroku platforms.

• A robust, on-demand Add-on marketplace of fully managed services you can add and scale in a single
command, including services for monitoring, logging, persistence, caching, and mail delivery. Add-ons
give you the power to easily provision and consume top technologies, including Redis, MongoDB,
PubNub, Mailgun, Hadoop, and more, without needing to manage the underlying infrastructure.

• Mobile backend services for essential mobile app infrastructure, including push notifications, data
synchronization, and in-app purchases.

• Heroku Postgres, a SQL database-as-a-service that lets you focus on your data with continuous
protection, automated health checks, simple configuration, easy set-up of read-only replicas, and
powerful querying features.

More than an infrastructure provider, Heroku is a developer productivity platform designed from the
ground-up to maximize developer productivity and application maintainability at every stage of the
lifecycle, featuring:

• An efficient, safe workflow that lets you deploy with Git and easily create staging, development, and
production environments for fast and continuous delivery.

• A simple, powerful model for scaling your app up as your grow.

• Easy, intuitive interfaces and tools — including a powerful command line interface and streamlined
dashboard.

• Built-in collaboration for more efficient work across your team, extended team, and third-party partners,
such as application development shops.

• Centralized billing and management for all of your apps.

20

Chapter 3 Overview of Heroku

Key Features of Heroku

This section provides a tour of the essential features and core concepts of Heroku, and how to leverage
them in your applications. It covers running and deployment, the Add-on marketplace, Heroku Postgres,
and workflow and collaboration on the platform.

Deploy, Run, and Scale
Getting started on Heroku is easy—simply sign up for an account and install our Toolbelt, your get-started
package which installs the Heroku CLI and other essential tools. On Heroku, you can write apps in the
languages you know—we support standard Ruby, Node.js, Python, PHP, and Java. When your app is ready
to deploy, use Git to push your code to Heroku. Heroku will fetch and compile app dependencies, binaries
and assets, apply the configuration you’ve specified, and execute its processes. Your app will be up and
running immediately, and accessible from any browser or device on a unique URL. Of course, when you’re
ready to launch, you can easily apply a custom domain. We take care of provisioning, operations, security,
and upgrades so you can focus on your app instead of managing the infrastructure.

Heroku uses a simple, powerful process model to support fast, efficient, and tunable scale. “Dynos” are the
basic unit of scale on Heroku. A dyno is a lightweight, virtualized container running a single user-specified
command. Dynos run web, worker, queue, and other processes needed to power your app. Dynos can be
scaled up independently and on-demand as you grow—through the Heroku CLI, or through the Heroku
dashboard, our web-based UI.

An app may consist of one or many dynos, depending on the memory and concurrency requirements of
the app. Heroku offers two dyno sizes:

• 1x dynos are the default on Heroku, and each provides 512 MB of memory and 1x CPU share.

• 2x dynos offer double the memory and CPU share of 1x dynos, for a total of 1024 MB of memory and
2x CPU share. 2x dynos are ideal for memory-intensive applications or those that require enhanced
concurrency.

• PX dynos contain 8 cores and are highly isolated, with superior performance characteristics. PX dynos
offer 6 GB of memory with dedicated compute.

Because your application can be scaled on a per-dyno basis and new resources are provisioned to your
app within seconds, you have a great deal of flexibility and control over your app. For example, if you need
to accommodate more web traffic you simply need to scale up the number of web dynos—Heroku will
take care of routing and additional operations overhead.

21

Chapter 3 Overview of Heroku

Add-Ons
Sure, you can can scale dynos up and down on demand in response to events like peak hours, a viral event,
growth in users, or the addition of new features. But what if you want to try an auto-scaling service, or
hook in top monitoring systems so you can better anticipate and respond to increased demand on your
app?

In addition to providing on-demand, highly scalable infrastructure for running your core app infrastructure,
Heroku also makes it easy to extend your app with best-of-breed technologies from our Add-ons
marketplace. The marketplace features over 100 fully managed cloud services, operated by experts in their
fields and integrated directly into Heroku.

Add-ons are fully managed third-party services by top providers, integrated into Heroku so they can be
easily added, scaled, and consumed by your application. Add-ons can be added through one command,
and come in a variety of plans of various price points in order to accommodate apps of all sizes—from
small demo apps and sample projects to large-scale production applications. Many of these add-ons
specifically provide services required for launched and growing apps, such as monitoring, persistence,
logging, and caching. Here are some examples.

• Persistence: Persisting, managing, and scaling state is one of the primary concerns of a production
application. The Heroku Add-ons marketplace provides a variety of data storage solutions so you can
easily integrate the type of data store that best meets you needs. Add-ons span relational, non-relational
and graph databases, as well as analytics solutions including Postgres, MongoDB, Neo4j, Hadoop, and
others.

• Caching: Caching is critical for web and mobile performance, significantly improving the response
time and user experience of your app. Caching add-ons include MemCachier, which lets you add
memcache to your production app; IronCache, which supports the memcache protocol; and Cachely,
which is a rack middleware for Ruby on Rails apps.

• Monitoring: Monitoring provides peace-of-mind, problem detection, and visibility into key indicators
over time. Heroku’s Add-on marketplace offers New Relic, one of our most popular Add-ons, which
will automatically create a private New Relic account and configure access to your apps so you can
get up and running quickly. For those who want to customize their dashboards, Librato is quick to set
up and consumes data right from your application logs.

• Logging: Logs provide the foundation for trend analysis, error inspection, performance tuning, and
other processes critical for running production apps. Heroku routes and collates real-time logs from
each part of your app, including running processes, system components, API events, and even Add-ons
themselves. We offer several Add-ons which consume your log stream and provide higher-order
services such as persistence, search, alerts, and integration with other services—including Papertrail,
Logentries, Loggly, and Flydata.

• Other: Add-ons include services to provide core engagement features to your customers, such as
services for email delivery, telephony services, push notifications, video encoders, payments, and more.

22

Chapter 3 Overview of Heroku

Our full selection includes Add-ons from providers including StatusPage, Zencoder, PandaStream,
Blitz, Pusher, PubNub, and many more.

Heroku Postgres
Heroku Postgres is Heroku’s database-as-a-service product, allowing you to easily provision and scale a
Postgres database for your Heroku application. Heroku Postgres offers a number of features, including
continuous protection, automated health care checks, “followers” so you can easily set up read-only replicas
of your database, and simple configuration for a variety of languages, command line tools, and application
frameworks. You can also use the Heroku Postgres “fork” feature to create a perfect, byte-for-byte clone
of your database for use in testing, load experiments, safely trying new schema migrations, and more.

We know that the data stored in Heroku Postgres isn’t only important for your application to access. The
app and user data it holds is incredibly valuable to your core business—and people need to access it. To
this end, Heroku Postgres makes it easy to access, query, and share your data across your company. Dataclips,
available on all Heroku Postgres production and starter databases, let you run SQL queries against your
data and share the results in an easy, visual way with your team members.

Dataclips can be downloaded or shared via URLs, are downloadable and exportable in many formats, and
are executed via a read-only transaction so your data stays safe. This makes it easy to safely and easily
capture and share the data that drives your business.

Heroku Connect
Heroku Connect provides bi-directional data synchronization between Salesforce and Heroku Postgres.
With your Salesforce data in Heroku Postgres, you can easily combine the capabilities of the Force.com
and Heroku platforms.

Apps built using standard open-source languages and stacks, like Rails, Node.js, Java, PHP, and Python,
connect natively to Postgres and—via Heroku Connect—directly back to Salesforce.

This opens up a raft of new opportunities, from processing your Salesforce data using SQL and code on
Heroku, to seamlessly shipping consumer data captured in Heroku apps back to your Salesforce org.

Workflow
In addition to providing the core infrastructure needed to run your app, Heroku also provides a number
of features to ensure you can set up fast, efficient developer workflows for maximum productivity and
faster time to market. Using Heroku’s application fork feature, you can easily set up a natural, standardized
workflow with homogenous staging, development, and production environments—providing a safe way
to develop code, test it, then promote it to production when you are ready. Further, continuous integration

23

Chapter 3 Overview of Heroku

Add-ons in the Heroku Add-on marketplace, including Travis CI and CircleCI, can improve your development
workflow even further.

Collaboration
Collaboration is integral to developer productivity. Customer-facing apps are often the product of extended
application development teams that may include product managers, engineering managers, remote
employees, and application development agencies and consultants. To support the often complex and
changing composition and velocity of app teams, Heroku makes it easy to add collaborators to your
application so you can work together. Collaborators can immediately access your application, push code,
and pull down and merge changes. If you need to revoke permissions down the road, it’s easy to do that
too. Collaboration is built into every part of Heroku—you can view and manage all collaborators from the
Heroku Dashboard, and Heroku’s comprehensive logging system tracks collaborators so you can easily
see a full history of actions on your apps—especially useful for drilling down into specific events like
releases.

Visibility and App Management
For today’s businesses, visibility and app management are critical to ensure efficient business operations
and app delivery. Heroku provides centralized invoicing and management for all of your application
resources—from dynos to Add-ons—all in a single interface.

When you sign into Heroku from your browser, you’re in the Heroku Dashboard. Dashboard is a personalized,
interactive command center for all of your apps on Heroku. It provides simple visibility and management
for app status, activity, resources, Add-ons, collaborators, and other critical aspects of your app. You can
also use it to manage all information about your Heroku account—from SSH keys to past invoices. You
can even use Dashboard to run a production check on your app. Production check runs a series of tests
on your app that we recommend for maintaining and monitoring availability—such as appropriate DNS
configuration, dyno redundancy, and app and log monitoring.

Finally, we would be remiss to discuss visibility on Heroku without talking about Heroku logging in more
depth. Logs tell the story of your app—a continuous, living stream of events, changes, and behaviors.
Logs let you rapidly identify and act on critical events, debug issues in your code, and analyze trends to
make better decisions over time.

Heroku brings simplicity and order back to logging. Heroku automatically collates and routes logs from
every part of your app into a single channel, providing truly comprehensive, extensible, app-centric logging.
Your log stream comes with rich command line functionality, is easy to plug into other services, and handles
the heavy lifting of log management for you. Logplex collects underlying events from the Heroku platform,
API logs with administrative actions performed by you and your collaborators, and output from within
your app, app server, installed libraries, and any backing services that have been configured to publish to

24

Chapter 3 Overview of Heroku

your stream. The result is a full story of your application—logs from every piece of Heroku, each component
of your app, all of its processes, and all changes made to it by you or your teammates.

Trusted, Open Platform
Heroku is a part of Salesforce1, the #1 enterprise cloud computing platform trusted by over 100,000
customers. Over 4 million apps have been deployed on Heroku. And Heroku is open, built on open-source
components. Heroku buildpacks—the scripts that prepare your code for execution on Heroku—are all
open source, extensible, and supported on other cloud platforms for maximum portability. Heroku supports
standard tools and languages including Git, standard versions of all major languages, and standard
implementations of Postgres, WebHooks, and other open-source technologies. Heroku also offers a platform
API, allowing third-party developers to automate, extend, and combine the Heroku platform with other
services in a programmatic, self-service way—building third-party businesses and services like continuous
integration tools, mobile apps for managing your Heroku apps, and more.

Heroku Quick Start

In this section, we’ll walk through how to get started deploying your first app on Heroku. For illustration’s
sake, we’ll use a Ruby app as an example. However, the process for deploying applications in all of Heroku’s
supported languages—Ruby, Python, Node.js, and Java—is similar, even though some small differences
due to the norms and structure of the language might be present. Visit
https://devcenter.heroku.com/quickstart for more language-specific details.

Step 1: Sign up
First, go to Heroku.com and click Sign up to get your free Heroku account. Along with your free account,
you’ll receive some free dyno hours to get you started.

Step 2: Install the Heroku Toolbelt
The Heroku Toolbelt contains the Heroku client, a command-line tool for creating and managing Heroku
apps; Foreman, an easy option for running your apps locally; and Git, the revision control system needed
for pushing applications to Heroku.

The Heroku Toolbelt offers packages for Mac OS X, Windows, and Debian/Ubuntu, in addition to a
stand-alone package.

25

Chapter 3 Overview of Heroku

https://devcenter.heroku.com/quickstart

Step 3: Log In from Your Command Line
After installing the Toolbelt, you’ll have access to the heroku command from your command shell.

Authenticate using the email address and password you used when creating your Heroku account. If you
have previously uploaded a key to Heroku, we assume you’ll keep using it and don’t prompt you about
creating a new one during login.

Press enter at the prompt to upload your existing ssh key or create a new one, used for pushing code later
on.

$ heroku login
Enter your Heroku credentials.
Email: adam@example.com
Password:
Could not find an existing public key.
Would you like to generate one? [Yn]
Generating new SSH public key.
Uploading ssh public key /Users/adam/.ssh/id_rsa.pub

If you would prefer to create and upload a new key after login, simply run heroku keys:add.

Step 4: Prepare your App for Deployment
Now you’re ready to deploy your app on Heroku! (If you don’t have an existing app, we have “Hello World!”
examples available in our online Dev Center for you to try.)

Heroku detects that your app is written in Ruby by the presence of a Gemfile. Heroku looks for a pom.xml
file for Java, requirements.txt for Python, and package.json for Node.js.

When getting ready to deploy an app to Heroku, there are a few things you must do to prepare: declare
dependencies, declare process types, test your app locally, and commit your code to Git.

First, you must declare dependencies, making sure not to list any system-level dependencies. Test your
app locally to make sure that all gems your app depends on are present in the Gemfile—and don’t forget
to specify the version of Ruby you use. Heroku supports Ruby 2.0 by default, but all apps should specify a
version for consistency.

Next, you need to declare process types in a Procfile—a text file in the root of your application to explicitly
declare what command should be executed to start a dyno. This may include web, worker, or other
processes. For this example, we’ll start a web dyno.

web: bundle exec ruby web.rb -p $PORT

26

Chapter 3 Overview of Heroku

This declares a single process type—web—and the command needed to run it. The name “web” is
important here. It declares that this process type will be attached to the HTTP routing stack of Heroku, and
will receive web traffic when deployed.

At this point, you can should try running your app locally using Foreman, a command-line tool for running
Procfile-backed apps. Foreman got installed along with the Heroku Toolbelt.

Simply run foreman start and your app will boot up on port 5000 for you to check out.

Finally, you’ll want to commit your app files to a local Git repository.

$ git init
$ git add
$ git commit -m "init"

Step 5: Deploy
Now you’re ready to deploy your application to Heroku - the hard work is over.

First, create the app on Heroku using the heroku create command.

$ heroku create
Creating blazing-galaxy-997... done, stack is cedar
http://blazing-galaxy-997.herokuapp.com/ |
git@heroku.com:blazing-galaxy-997.git
Git remote heroku added

Then, deploy your app with Git using the git push heroku master command.

$ git push heroku master
Counting objects: 6, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (6/6), 660 bytes, done.
Total 6 (delta 0), reused 0 (delta 0)

-----> Ruby/Rack app detected
-----> Using Ruby version: ruby-2.1.2
-----> Installing dependencies using Bundler version 1.3.2

Running: bundle install --without development:test --path
vendor/bundle --binstubs vendor/bundle/bin --deployment

Fetching gem metadata from https://rubygems.org/..........
Fetching gem metadata from https://rubygems.org/..
Installing rack (1.2.2)
Installing tilt (1.3)

27

Chapter 3 Overview of Heroku

Installing sinatra (1.1.0)
Using bundler (1.3.2)
Your bundle is complete! It was installed into ./vendor/bundle

Cleaning up the bundler cache.
-----> Discovering process types

Procfile declares types -> web
Default types for Ruby/Rack -> console, rake

-----> Compiled slug size: 25.1MB
-----> Launching... done, v3

http://blazing-galaxy-997.herokuapp.com deployed to Heroku

To git@heroku.com:blazing-galaxy-997.git
* [new branch] master -> master

In this example, you’d be able to view your app in a web browser, or test it with curl, at
http://blazing-galaxy-997.herokuapp.com.

Congratulations, you’ve deployed your first app on Heroku!

Step 6: Using the CLI
The Heroku CLI can be used to manipulate your app, letting you view the consolidated logs, scale the
application, or even add Add-on services.

If you need to scale up web traffic, simply tell Heroku to dial up the number of web dynos.

$ heroku ps:scale web=2
Scaling web dynos... done, now running 2

Check to see how many dynos are running.

$ heroku ps
git:master
=== web (1X): `bundle exec ruby web.rb -p $PORT`
web.1: up 2013/10/15 11:28:17 (~ 5m ago)
web.2: up 2013/10/15 11:33:24 (~ 1s ago)

View the consolidated log stream, tailing it to see all new log events as they come in.

$ heroku logs --tail
2013-10-15T10:24:25.602652+00:00 app[web.1]: Started GET
"/articles/getting-started-with-nodejs" for 84.32.143.141 at 2013-10-15
10:24:25 +0000
2013-10-15T10:24:25.885004+00:00 heroku[router]: at=info method=GET

28

Chapter 3 Overview of Heroku

http://blazing-galaxy-997.herokuapp.com

path=/assets/public/feed-icon-sprite.png host=devcenter.heroku.com
request_id=fd511f6195f52e8e58f58cccbc07109c fwd="77.252.246.255"
dyno=web.12 connect=0ms service=15ms status=200 bytes=4867
2013-10-15T10:24:26.563176+00:00 heroku[web.1]: source=web.1
dyno=heroku.12227120.90edce79-b91e-403e-be3f-2f2ba11aa5af
sample#load_avg_1m=0.00 sample#load_avg_5m=0.00 sample#load_avg_15m=0.00
…

Want to persist logs and send alerts on critical events? Add one of our many logging Add-ons, like Papertrail.

$ heroku addons:add papertrail
Adding papertrail on blazing-galaxy-997... done, v6 (free)
Use `heroku addons:docs papertrail` to view documentation.

Want to set up a more efficient and productive developer workflow? Heroku lets you fork entire apps so
you can easily set up homogenous staging environments.

$ heroku fork staging-galaxy
Creating fork blazing-galaxy-997... done
Copying slug... done
Copying config vars... done
Fork complete, view it at http://staging-galaxy.herokuapp.com/

Now you can deploy a new branch of your source to this new application.

$ heroku git:remote -a staging-galaxy -r staging

git:master
Git remote staging added
$ git push staging newbranch:master

Ready to launch with a custom domain? It’s easy to do once you’ve set up your DNS and CNAME.

$ heroku domains:add www.mydomain.com
Adding www.mydomain.com to blazing-galaxy-997... done

Heroku separates configuration from code, making it easy to change values that may affect your app, such
as secret keys.

$ heroku config:set SECRET_KEY=2342434434343433555422
Setting config vars and restarting blazing-galaxy-997….done, v8

29

Chapter 3 Overview of Heroku

Want to drill down into your release history to get more information on your velocity, latest changes or to
troubleshoot problems? There’s a command for that too.

$ heroku releases
=== demo-for-james Releases
v6 Add SECRET_KEY config jon@heroku.com

2013/10/15 12:00:10 (~ 59s ago)
v5 Add papertrail:choklad add-on jon@heroku.com
2013/10/15 11:26:59 (~ 34m ago)
v4 Deploy 9579f23 jon@heroku.com
2013/10/15 10:23:32 (~ 1h ago)
v3 Deploy 0eb78aa jon@heroku.com
2013/10/15 10:21:33 (~ 1h ago)
v2 Enable Logplex heroku@herokumanager.com
2013/10/15 09:58:21 (~ 2h ago)
v1 Initial release heroku@herokumanager.com
2013/10/15 09:58:20 (~ 2h ago)

Rollback to a previous release in order to fix a problem.

$ heroku rollback v6
Rolling back blazing-galaxy-997... done, v6
! Warning: rollback affects code and config vars; it doesn't add
or remove addons. To undo, run: heroku rollback v7

Best Practices for Consuming Salesforce1 APIs from
Heroku

Let's say you want to build an application to extend the functionality of your Salesforce organization. You
can use OAuth to authenticate your app with the platform, and allow users to authenticate using their
Salesforce credentials so your app can take actions on their behalf. For detailed instructions on setting up
OAuth credentials, refer to Authentication on page 39. Here, we discuss safely managing OAuth on Heroku.

One security best practice that Heroku enforces for application development is separating configuration
information (such as credentials) from code. Doing this prevents sensitive information such as passwords
from unnecessarily proliferating in source-code repos and development computers. Separating configuration
information from code also lets you independently manage configuration for different deployments of
your app (for example, staging and production), a model that scales up smoothly as the app naturally
expands into more deploys over its lifetime.

For this reason, Heroku stores configuration—like your OAuth consumer key and consumer secret—in
config vars, keeping your keys out of your code. Heroku manifests these config vars as environment variables

30

Chapter 3 Overview of Heroku

to the application. These environment variables are persistent—they will remain in place across deploys
and app restarts—so, unless you need to change values, you only need to set them once.

Here’s an example of how to manage your app’s OAuth credentials for authenticating with Salesforce.

First, set the config for the OAuth consumer key and secret.

$ heroku config:set
OAUTH_ID=3MRG8lKcPoNINVBJSoQsNCD.HHDdbugPsNXwwyFbgb47KWa_ABc
Adding config vars and restarting myapp... done, v12
OAUTH_ID: 3MRG8lKcPoNINVBJSoQsNCD.HHDdbugPsNXwwyFbgb47KWa_ABc
$ heroku config:set OAUTH_SECRET=5678471853609579511
Adding config vars and restarting myapp... done, v13
OAUTH_SECRET: 5678471853609579511

Then you can retrieve, unset, or change the config at any time through the command line.

$ heroku config:get OAUTH_ID
3MRG8lKcPoNINVBJSoQsNCD.HHDdbugPsNXwwyFbgb47KWa_ABc

$ heroku config:unset OAUTH_ID
Unsetting OAUTH_ID and restarting myapp... done, v14

Once you’ve set your consumer key and consumer secret in your app’s config vars on Heroku, your app
will be able to implement OAuth logic and perform the OAuth authentication flow against the appropriate
Salesforce authorization endpoint. Simply access the config vars from within your app just as you would
any other environment variable.

Resources

Use the following resources to get more information about Heroku.

• Heroku Dev Center: https://devcenter.heroku.com

• Getting Started with Heroku: https://devcenter.heroku.com/articles/quickstart

• Heroku Connect: https://www.heroku.com/connect

31

Chapter 3 Overview of Heroku

https://devcenter.heroku.com
https://devcenter.heroku.com/articles/quickstart
https://www.heroku.com/connect

CHAPTER 4 Overview of ExactTarget

ExactTarget Fuel, a core component of the Salesforce1 Platform, powers multi-channel marketing programs
for many of the world’s top brands. The foundation of the ExactTarget Marketing Cloud, Fuel is open to
third-party development, enabling you to build upon, extend, and integrate with ExactTarget’s
industry-leading digital marketing products.

Fuel is an integrated collection of technologies and includes:

• APIs: Fuel’s APIs are the foundation of our platform. Fuel provides SOAP and REST APIs to support
cloud and enterprise development scenarios.

• SDKs: Fuel’s software development kits (SDKs) enable developers to integrate with ExactTarget by
using native language constructs. Fuel SDKs are available for Java, .NET, PHP, Python, and Ruby.

• Fuel UX: Fuel UX is the user interface toolkit that’s used by the ExactTarget Marketing Cloud and
ExactTarget’s Marketing Cloud apps. Based on leading open-source JavaScript technologies, including
Bootstrap, jQuery, and RequireJS, Fuel UX makes it easy to build apps that deeply integrate with the
look and feel of the Marketing Cloud.

33

• Data extensions: A data extension is a flexible table of almost any type of data and can be used for
personalization, for segmentation, or as a sending data source. Data extensions are powerful constructs
and can be thought of as cloud-based, relational marketing databases.

• AMPscript: AMPscript is the Marketing Cloud’s content scripting language and can be used to
programmatically personalize the content of an email, SMS message, or landing page. AMPscript can
interact with data extensions, so you can read data from data extensions in your messages and write
data to your data extensions in your landing pages.

• Single Sign-On: Fuel provides a Single Sign-On environment for the ExactTarget Marketing Cloud
and its applications, secured by multiple technologies including, but not limited to, two-factor
authentication, IP whitelisting, IP blocking, and real-time alerting and monitoring.

What can you do with Fuel? If you’re a customer, you can use Fuel to automate entire marketing campaigns,
customize the ExactTarget application to your exact needs, or integrate ExactTarget with a variety of
marketing, analytics, and other business software. If you’re a partner, you can use Fuel to build or extend
marketing applications and take those applications to market with ExactTarget via one of our
platform-related partner programs.

The next section explains the fundamental concepts behind successful customer touchpoints: permission,
personalization and data, and describes the opportunity developers have to use technology to reach
individual customers.

Customer Touchpoints for Developers

Every email that’s sent, every message that’s delivered, and every notification is different. The goal might
be as simple as letting customers know that their credit card has expired, or your messages might be part
of something as complex as a multi-channel marketing campaign that’s designed to sell an automobile.

Yet as different as they are, they have something in common: They touch people, people who are customers,
existing or prospective. Think of every email, every message, and every notification as a customer touchpoint,
an opportunity to influence your customers and prospects.

Unfortunately, these opportunities are often lost when there’s a rush to get a new system online or when
you’re utilizing existing infrastructure to save time. Even worse, if you’re not careful, you can negatively
influence your customers and prospects.

The ExactTarget Marketing Cloud helps marketers take maximum advantage of customer touchpoints.
This section discusses the keys to maximizing the impact of each customer touchpoint from a developer’s
perspective. Those keys revolve around permission, personalization, and maximizing the value of each
interaction.

34

Chapter 4 Overview of ExactTarget

Relevancy Drives Engagement
Your customers are inundated with messages of all types—emails in the inbox, printed material in the
mailbox, billboards on highways, SMS and push messages on mobile devices, ads on social networks,
tweets and Facebook friend requests, and so on. Marketers know that to be effective they have to make
these messages relevant just to get noticed.

Highly targeted, relevant communication is as much a technology problem as it is a marketer’s
dilemma—the most successful marketing campaigns involve highly sophisticated integrations across
multiple channels, driven by data from multiple data sources that are tied to precise audience segments,
delivering the right message at the right moment. As such, marketers routinely require technical help to
accomplish their goals, giving developers the opportunity to innovate alongside them.

Data Drives Relevancy
To help marketers build more relevant communications, the ExactTarget Marketing Cloud enables large
amounts of data to be synchronized across multiple systems through a flexible data model and multiple
integration methods. This data from multiple sources can be used at the time of customer communication
using AMPscript—the Marketing Cloud’s scripting language for messaging—to create unique messages
for each customer. For example, you can create a data extension (more on data extensions later) that maps
zip codes to city names and use that mapping dynamically in your communications via the following
AMPscript.

%%=Lookup("PostalCode","City","PostalCode",postalcode)=%%

35

Chapter 4 Overview of ExactTarget

Every Event Improves Relevancy
Event-driven architectures are critical for scaling real-time systems and applications—especially as we
enter the era of the Internet of Things. Each event, whether generated by a server, a web browser or a
mobile application, represents an opportunity to interact with a customer or provide insight into that
customer through his or her response to that event—insight that can be used to make later interactions
more relevant and timely.

What could a marketer using the Marketing Cloud do with additional insight on customer interactions? A
customer event (such as a “Contact Us” confirmation) may directly lead to a specific message on a specific
channel delivered through the Marketing Cloud. Or a customer event (like a “Purchase” event) may just
need to be passed into the Marketing Cloud Journey Builder engine so a marketer can decide how valuable
it and what messages to deliver in response.

For example, a movie rental system might want to send receipts to customers that also ask them to rate
the movie or provide incentives to rent other movies. Using ExactTarget Fuel to inform the Marketing
Cloud Interactions engine that a customer has rented a movie might trigger a number of other events or
wait states in the system, all designed to take that customer along the next desired step of the customer
journey. This represents a collaboration between technology and marketing to pull off a sophisticated
chain of events geared toward adding value to your organization’s relationship with individual customers
while respecting their privacy.

36

Chapter 4 Overview of ExactTarget

The Importance of Permission
If you’re not careful about how you manage your customer touchpoints, your email could be considered
unsolicited commercial email—a.k.a. spam.

In the United States, CAN-SPAM is a law passed in 2003 that mandates the addition of an unsubscribe
mechanism to all emails and requires the sender to comply with customer opt-out requests within ten
days. Many other countries have similar laws in place to protect consumers.

CAN-SPAM draws a distinction between commercial email, which is designed to advertise or promote a
commercial product or service, and transactional email, which is triggered as the result of an event or
contains information about a specific transaction (for example, password reset emails, purchase confirmation
emails, and so on).

A common mistake companies make is sending commercial email to a list of email addresses that have
been either accumulated over time or purchased. If that list is old or has a large number of subscribers
who flag your message as spam because it is not relevant to them, your ability to send email successfully
in the future will be impeded by a negative reputation applied to your sending IP address.

The key to successfully managing your customer touchpoints is permission. The ExactTarget Marketing
Cloud helps you manage the complexity of permission by persisting communication preferences associated
with customers (for example, whether they have opted in or opted out to a particular communication)
and allowing message sends to be specified as commercial or transactional. If the type of send is commercial,
ExactTarget will validate your email content for opt-out links to ensure that subscribers have a way to
express their desire to opt-in or opt-out of future communications as required by CAN-SPAM.

The Technology Is about the Customer
For all the possibilities for technology and marketing to intersect using the Marketing Cloud, the focus is
always about innovating on behalf of customers and how they relate to your business or organization.
The ExactTarget Marketing Cloud enables you to innovate in critical ways to gain and retain customers or
build systems that help others do the same thing.

The technologies exposed through ExactTarget Fuel, in conjunction with Marketing Cloud applications,
enable developers to innovate and add value to their organization at the individual customer level. The
technologies exposed reach out to customers and are accessible by marketers, allowing Fuel to be a
conduit for business growth and innovation.

Resources

Use the following resources to get more information about ExactTarget.

37

Chapter 4 Overview of ExactTarget

• Code@ExactTarget Developer Community: https://code.exacttarget.com

• Code@ExactTarget App Center: https://code.exacttarget.com/appcenter

• Fuel APIs: https://code.exacttarget.com/api

• Fuel SDKs: https://code.exacttarget.com/sdks

• Fuel UX: https://code.exacttarget.com/fuelux

38

Chapter 4 Overview of ExactTarget

https://code.exacttarget.com
https://code.exacttarget.com/appcenter
https://code.exacttarget.com/api
https://code.exacttarget.com/sdks
https://code.exacttarget.com/fuelux

FORCE.COM

CHAPTER 5 Authentication

Force.com APIs use authentication to securely access Salesforce user information.

Before using any Force.com API that accesses user data, use OAuth to authenticate as the desired user.
Successful authentication provides an access token that is used to make authenticated Force.com API calls.

To authenticate using OAuth, you’ll need to:

• Set up a remote access application definition in Salesforce.

• Determine the correct OAuth endpoint to use.

• Authenticate the user via one of several different OAuth 2.0 authentication flows. An OAuth
authentication flow defines a series of steps used to coordinate the authentication process between
your application and Salesforce. Supported OAuth flows include:

– Web server flow, where the server can securely protect the consumer secret.

– User-agent flow, used by applications that cannot securely store the consumer secret.

– Username-password flow, where the application has direct access to user credentials.

Defining Connected Apps

To authenticate using OAuth, you must create a connected app that defines your application’s OAuth
settings for the Salesforce organization.

When you develop an external application that needs to authenticate with Salesforce, you need to define
it as a new connected app within the Salesforce organization that informs Salesforce of this new
authentication entry point.

Use the following steps to create a new connected app.

1. From Setup, click Create > Apps and click New to start defining a connected app.

2. Enter the name of your application.

3. Enter the contact email information, as well as any other information appropriate for your
application.

4. Select Enable OAuth Settings.

39

5. Enter a Callback URL. Depending on which OAuth flow you use, this is typically the URL that
a user’s browser is redirected to after successful authentication. As this URL is used for some OAuth
flows to pass an access token, the URL must use secure HTTP (HTTPS) or a custom URI scheme.

6. Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions
given by the user running the connected app.

7. Enter a URL for Info URL. This is where the user can go for more information about your
application.

8. Click Save. The Consumer Key is created and displayed, and the Consumer Secret is
created (click the link to reveal it).

Once you define a connected app, you use the consumer key and consumer secret to authenticate your
application. See Creating a Connected App in the Salesforce online help for specific steps to create a
connected app for the type of authentication you need.

Understanding OAuth Endpoints

OAuth endpoints are the URLs you use to make OAuth authentication requests to Salesforce.

You need to use the correct Salesforce OAuth endpoint when issuing authentication requests in your
application. The primary OAuth endpoints are:

• For authorization: https://login.salesforce.com/services/oauth2/authorize

• For token requests: https://login.salesforce.com/services/oauth2/token

• For revoking OAuth tokens:
https://login.salesforce.com/services/oauth2/revoke

All endpoints require secure HTTP (HTTPS). Each OAuth flow defines which endpoints you need to use
and what request data you need to provide.

If you’re verifying authentication on a sandbox organization, use “test.salesforce.com” instead of
“login.salesforce.com” in all the OAuth endpoints listed above.

Understanding the Web Server OAuth Authentication
Flow

The Web server authentication flow is used by applications that are hosted on a secure server. A critical
aspect of the Web server flow is that the server must be able to protect the consumer secret. You can also
use code challenge and verifier values in the flow to prevent authorization code interception.

40

Chapter 5 Authentication

https://help.salesforce.com/apex/HTViewHelpDoc?id=connected_app_create.htm

In this flow, the client application requests the authorization server to redirect the user to another web
server or resource that authorizes the user and sends the application an authorization code. The application
uses the authorization code to request an access token. The following shows the steps for this flow.

1. The application redirects the user to the appropriate Salesforce authorization endpoint, such as
https://login.salesforce.com/services/oauth2/authorize. The following
parameters are required:

DescriptionParameter

Must be code for this authentication flow.response_type

41

Chapter 5 Authentication

DescriptionParameter

The Consumer Key from the connected
app definition.

client_id

The Callback URL from the connected
app definition.

redirect_uri

The following parameters are optional:

DescriptionParameter

Specifies the SHA256 hash value of the
code_verifier value in the token request

code_challenge

to help prevent authorization code interception
attacks. The hash value must be base64url
encoded as defined here:
https://tools.ietf.org/html/rfc4648#section-5.

• If the code_challenge value is
provided in the authorization request and
a code_verifier value is provided in
the token request, Salesforce compares the
code_challenge to the
code_verifier. If the
code_challenge is invalid or doesn’t
match, the login fails with the
invalid_request error code.

• If the code_challenge value is
provided in the authorization request, but
a code_verifier value is not
provided in the token request, the login
fails with the invalid_grant error
code.

Note: The value should be
base64url-encoded only once.

42

Chapter 5 Authentication

https://tools.ietf.org/html/rfc4648#section-5

DescriptionParameter

Changes the login page’s display type. Valid
values are:

display

• page—Full-page authorization screen.
This is the default value if none is specified.

• popup—Compact dialog optimized for
modern Web browser popup windows.

• touch—Mobile-optimized dialog
designed for modern smartphones such as
Android and iPhone.

• mobile—Mobile optimized dialog
designed for smartphones such as
BlackBerry OS 5 that don’t support touch
screens.

Determines whether the user should be
prompted for login and approval. Values are
either true or false. Default is false.

immediate

• If set to true, and if the user is currently
logged in and has previously approved the
application, the approval step is skipped.

• If set to true and the user is not logged
in or has not previously approved the
application, the session is immediately
terminated with the
immediate_unsuccessful error
code.

Provides a valid username value to pre-populate
the login page with the username. For

login_hint

example:login_hint=username@company.com.
If a user already has an active session in the
browser, then the login_hint parameter
does nothing; the active user session continues.

Specifies a value to be returned in the response;
this is useful for detecting "replay" attacks.

nonce

43

Chapter 5 Authentication

DescriptionParameter

Optional with the openid scope for getting a
user ID token.

Specifies how the authorization server prompts
the user for reauthentication and reapproval.

prompt

This parameter is optional. The only values
Salesforce supports are:

• login—The authorization server must
prompt the user for reauthentication,
forcing the user to log in again.

• consent—The authorization server must
prompt the user for reapproval before
returning information to the client.

It is valid to pass both values, separated by a
space, to require the user to both log in and
reauthorize. For example:

?prompt=login%20consent

Specifies what data your application can access.
See “Scope Parameter Values” in the online help
for more information.

scope

Specifies any additional URL-encoded state data
to be returned in the callback URL after
approval.

state

An example authorization URL might look something like the following:

https://login.salesforce.com/services/oauth2/authorize?response_type=code
&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3X
HrXDiCQjK1mdgAvhCscA9GE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2F
code_callback.jsp&state=mystate

2. The user logs into Salesforce with their credentials. The user is interacting with the authorization
endpoint directly, so the application never sees the user’s credentials. After successfully logging
in, the user is asked to authorize the application. Note that if the user has already authorized the
application, this step is skipped.

44

Chapter 5 Authentication

3. After Salesforce confirms that the client application is authorized, the end-user’s Web browser is
redirected to the callback URL specified by the redirect_uri parameter. Salesforce appends
authorization information to the redirect URL with the following values:

DescriptionParameters

Authorization code the consumer must use to
obtain the access and refresh tokens.

code

The state value that was passed in as part of the
initial request, if applicable.

state

An example callback URL with authorization information might look something like:

https://www.mysite.com/authcode_callback?code=aWekysIEeqM9PiT
hEfm0Cnr6MoLIfwWyRJcqOqHdF8f9INokharAS09ia7UNP6RiVScerfhc4w%3D%3D

4. The application extracts the authorization code and passes it in a request to Salesforce for an access
token. This request is a POST request sent to the appropriate Salesforce token request endpoint,
such as https://login.salesforce.com/services/oauth2/token. The
following parameters are required:

DescriptionParameter

Value must be authorization_code for
this flow.

grant_type

The Consumer Key from the connected
app definition.

client_id

The Consumer Secret from the
connected app definition.

client_secret

The Callback URL from the connected
app definition.

redirect_uri

Authorization code the consumer must use to
obtain the access and refresh tokens.

code

The following parameters are optional:

45

Chapter 5 Authentication

DescriptionParameter

Instead of passing in client_secret you
can choose to provide a

client_assertion

client_assertion and
client_assertion_type. If a
client_secret parameter is not provided,
Salesforce checks for the
client_assertion and
client_assertion_type automatically.
The value of client_assertion must be
a typical JWT bearer token, signed with the
private key associated with the OAuth
consumer’s uploaded certificate. Only the RS256
algorithm is currently supported. For more
information on using client_assertion,
see the OpenID Connect specifications for the
private_key_jwt client authentication method.

Provide this value when using the
client_assertion parameter. The value

client_assertion_type

of client_assertion_type must be
urn:ietf:params:oauth:client-assertion-type:jwt-bearer.

Specifies 128 bytes of random data with high
enough entropy to make it difficult to guess the

code_verifier

value to help prevent authorization code
interception attacks. The value also must be
base64url encoded as defined here:
https://tools.ietf.org/html/rfc4648#section-5.

• If the code_verifier value is provided
in the token request and a
code_challenge value is in the
authorization request, Salesforce compares
the code_verifier to the
code_challenge. If the
code_verifier is invalid or doesn’t
match, the login fails with the
invalid_grant error code.

46

Chapter 5 Authentication

https://tools.ietf.org/html/rfc4648#section-5

DescriptionParameter

• If the code_verifier value is provided
in the token request, but a
code_challenge value was not
provided in the authorization request, the
login fails with the invalid_grant
error code.

Note: The value should be
base64url-encoded only once.

Expected return format. The default is json.
Values are:

format

• urlencoded

• json

• xml

The return format can also be specified in the
header of the request using one of the
following:

• Accept:
application/x-www-form-urlencoded

• Accept: application/json

• Accept: application/xml

An example access token POST request might look something like:

POST /services/oauth2/token HTTP/1.1
Host: login.salesforce.com
grant_type=authorization_code&code=aPrxsmIEeqM9PiQroGEWx1UiMQd95_5JUZ
VEhsOFhS8EVvbfYBBJli2W5fn3zbo.8hojaNW_1g%3D%3D&client_id=3MVG9lKcPoNI
NVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCs
cA9GE&client_secret=1955279925675241571&
redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fcode_callback.jsp

5. If this request is successful, the server returns a response body that contains the following:

47

Chapter 5 Authentication

DescriptionParameters

Access token that acts as a session ID that the
application uses for making requests. This token

access_token

should be protected as though it were user
credentials.

Token that can be used in the future to obtain
new access tokens.

refresh_token

Warning: This value is a secret. You
should treat it like the user's password
and use appropriate measures to protect
it.

Identifies the Salesforce instance to which API
calls should be sent.

instance_url

Identity URL that can be used to both identify
the user as well as query for more information

id

about the user. Can be used in an HTTP request
to get more information about the end user.

When the signature was created, represented
as the number of seconds since the Unix epoch
(00:00:00 UTC on 1 January 1970).

issued_at

Base64-encoded HMAC-SHA256 signature
signed with the consumer's private key

signature

containing the concatenated ID and
issued_at value. The signature can
be used to verify that the identity URL wasn’t
modified because it was sent by the server.

An example JSON response body might look something like:

{"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448101416",
"refresh_token":"5Aep8614iLM.Dq661ePDmPEgaAW9Oh_L3JKkDpB4xReb54_
pZebnUG0h6Sb4KUVDpNtWEofWM39yg==",
"instance_url":"https://na1.salesforce.com",
"signature":"CMJ4l+CCaPQiKjoOEwEig9H4wqhpuLSk4J2urAe+fVg=",

48

Chapter 5 Authentication

"access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0R
NBaT1cyWk7TrqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4"}

6. The application uses the provided access token and refresh token to access protected user data.

Understanding the User-Agent OAuth Authentication
Flow

The user-agent authentication flow is used by client applications (consumers) residing in the user’s device.
This could be implemented in a browser using a scripting language such as JavaScript, or from a mobile
device or a desktop application. These consumers cannot keep the client secret confidential.

In this flow, the client application requests the authorization server to redirect the user to another Web
server or resource which is capable of extracting the access token and passing it back to the application.
The following shows the steps for this flow.

49

Chapter 5 Authentication

1. The application redirects the user to the appropriate Salesforce authorization endpoint, such as
https://login.salesforce.com/services/oauth2/authorize. The following
parameters are required:

DescriptionParameter

Must be token for this authentication flowresponse_type

The Consumer Key from the connected
app definition.

client_id

The Callback URL from the connected
app definition.

redirect_uri

50

Chapter 5 Authentication

The following parameters are optional:

DescriptionParameter

Changes the login page’s display type. Valid
values are:

display

• page—Full-page authorization screen.
This is the default value if none is specified.

• popup—Compact dialog optimized for
modern Web browser popup windows.

• touch—Mobile-optimized dialog
designed for modern smartphones such as
Android and iPhone.

• mobile—Mobile optimized dialog
designed for smartphones such as
BlackBerry OS 5 that don’t support touch
screens.

Specifies what data your application can access.
See “Scope Parameter Values” in the online help
for more information.

scope

Specifies any additional URL-encoded state data
to be returned in the callback URL after
approval.

state

An example authorization URL might look something like the following:

https://login.salesforce.com/services/oauth2/authorize?response_type=token&
client_id=3MVG9lKcPoNINVBIPJjdw1J9LLJbP_pqwoJYyuisjQhr_LLurNDv7AgQvDTZwCoZuD
ZrXcPCmBv4o.8ds.5iE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fuser_callback.jsp&
state=mystate

2. The user logs into Salesforce with their credentials. The user interacts with the authorization
endpoint directly, so the application never sees the user’s credentials.

3. Once authorization is granted, the authorization endpoint redirects the user to the redirect URL.
This URL is defined in the remote access application created for the application. Salesforce appends
access token information to the redirect URL with the following values:

51

Chapter 5 Authentication

DescriptionParameters

Access token that acts as a session ID that the
application uses for making requests. This token

access_token

should be protected as though it were user
credentials.

Amount of time the access token is valid, in
seconds.

expires_in

Token that can be used in the future to obtain
new access tokens.

refresh_token

Warning: This value is a secret. You
should treat it like the user's password
and use appropriate measures to protect
it.

The refresh token is only returned if the redirect
URI is
https://login.salesforce.com/services/oauth2/success
or used with a custom protocol that is not
HTTPS.

The state value that was passed in as part of the
initial request, if applicable.

state

Identifies the Salesforce instance to which API
calls should be sent.

instance_url

Identity URL that can be used to both identify
the user as well as query for more information

id

about the user. Can be used in an HTTP request
to get more information about the end user.

When the signature was created, represented
as the number of seconds since the Unix epoch
(00:00:00 UTC on 1 January 1970).

issued_at

Base64-encoded HMAC-SHA256 signature
signed with the consumer's private key

signature

containing the concatenated ID and
issued_at value. The signature can

52

Chapter 5 Authentication

DescriptionParameters

be used to verify that the identity URL wasn’t
modified because it was sent by the server.

An example callback URL with access information appended after the hash sign (#) might look
something like:

https://www.mysite.com/user_callback.jsp#access_token=00Dx0000000BV7z%21AR8
AQBM8J_xr9kLqmZIRyQxZgLcM4HVi41aGtW0qW3JCzf5xdTGGGSoVim8FfJkZEqxbjaFbberKGk
8v8AnYrvChG4qJbQo8&refresh_token=5Aep8614iLM.Dq661ePDmPEgaAW9Oh_L3JKkDpB4xR
eb54_pZfVti1dPEk8aimw4Hr9ne7VXXVSIQ%3D%3D&expires_in=7200&state=mystate

4. The application uses the provided access token and refresh token to access protected user data.

Keep the following considerations in mind when using the user-agent OAuth flow:

• Because the access token is encoded into the redirection URI, it might be exposed to the end-user and
other applications residing on the computer or device. If you’re authenticating using JavaScript, call
window.location.replace(); to remove the callback from the browser’s history.

Understanding the Username-Password OAuth
Authentication Flow

The username-password authentication flow can be used to authenticate when the consumer already
has the user’s credentials.

In this flow, the user’s credentials are used by the application to request an access token as shown in the
following steps.

Warning: This OAuth authentication flow involves passing the user’s credentials back and forth.
Use this authentication flow only when necessary. No refresh token will be issued.

53

Chapter 5 Authentication

1. The application uses the user’s username and password to request an access token. This is done
via an out-of-band POST request to the appropriate Salesforce token request endpoint, such as
https://login.salesforce.com/services/oauth2/token. The following
request fields are required:

DescriptionParameter

Must be password for this authentication
flow.

grant_type

The Consumer Key from the connected
app definition.

client_id

The Consumer Secret from the
connected app definition.

client_secret

54

Chapter 5 Authentication

DescriptionParameter

End-user’s username.username

End-user’s password.password

Note: You must append the user’s
security token to their password A
security token is an
automatically-generated key from
Salesforce. For example, if a user's
password is mypassword, and their
security token is XXXXXXXXXX, then the
value provided for this parmeter must
be mypasswordXXXXXXXXXX. For more
information on security tokens see
“Resetting Your Security Token” in the
online help.

An example request body might look something like the following:

grant_type=password&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82Hn
FVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=
1955279925675241571&username=testuser%40salesforce.com&password=mypassword123456

2. Salesforce verifies the user credentials, and if successful, sends a response to the application with
the access token. This response contains the following values:

DescriptionParameters

Access token that acts as a session ID that the
application uses for making requests. This token

access_token

should be protected as though it were user
credentials.

Identifies the Salesforce instance to which API
calls should be sent.

instance_url

Identity URL that can be used to both identify
the user as well as query for more information

id

55

Chapter 5 Authentication

DescriptionParameters

about the user. Can be used in an HTTP request
to get more information about the end user.

When the signature was created, represented
as the number of seconds since the Unix epoch
(00:00:00 UTC on 1 January 1970).

issued_at

Base64-encoded HMAC-SHA256 signature
signed with the consumer's private key

signature

containing the concatenated ID and
issued_at value. The signature can
be used to verify that the identity URL wasn’t
modified because it was sent by the server.

An example response body might look something like:

{"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448832702","instance_url":"https://na1.salesforce.com",
"signature":"0CmxinZir53Yex7nE0TD+zMpvIWYGb/bdJh6XfOH6EQ=","access_token":
"00Dx0000000BV7z!AR8AQAxo9UfVkh8AlV0Gomt9Czx9LjHnSSpwBMmbRcgKFmxOtvxjTrKW1
9ye6PE3Ds1eQz3z8jr3W7_VbWmEu4Q8TVGSTHxs"}

3. The application uses the provided access token to access protected user data.

Keep the following considerations in mind when using the user-agent OAuth flow:

• Since the user is never redirected to login at Salesforce in this flow, the user can’t directly authorize
the application, so no refresh tokens can be used. If your application requires refresh tokens, you should
consider using the Web server or user-agent OAuth flow.

Understanding the OAuth Refresh Token Process

The Web server OAuth authentication flow and user-agent flow both provide a refresh token that can be
used to obtain a new access token.

Access tokens have a limited lifetime specified by the session timeout in Salesforce. If an application uses
an expired access token, a “Session expired or invalid” error is returned. If the application is using the Web
server or user-agent OAuth authentication flows, a refresh token may be provided during authorization
that can be used to get a new access token.

56

Chapter 5 Authentication

The client application obtains a new access token by sending a POST request to the token request endpoint
with the following request parameters:

DescriptionParameters

Value must be refresh_token.grant_type

The refresh token the client application already
received.

refresh_token

The Consumer Key from the connected app
definition.

client_id

The Consumer Secret from the connected
app definition. This parameter is optional.

client_secret

Expected return format. The default is json. Values
are:

format

• urlencoded

• json

• xml

The return format can also be specified in the
header of the request using one of the following:

• Accept:
application/x-www-form-urlencoded

• Accept: application/json

• Accept: application/xml

This parameter is optional.

An example refresh token POST request might look something like:

POST /services/oauth2/token HTTP/1.1
Host: https://login.salesforce.com/
grant_type=refresh_token&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0
QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=1955279925675241571
&refresh_token=your token here

Once Salesforce verifies the refresh token request, it sends a response to the application with the following
response body parameters:

57

Chapter 5 Authentication

DescriptionParameters

Access token that acts as a session ID that the
application uses for making requests. This token

access_token

should be protected as though it were user
credentials.

Identifies the Salesforce instance to which API calls
should be sent.

instance_url

Identity URL that can be used to both identify the
user as well as query for more information about

id

the user. Can be used in an HTTP request to get
more information about the end user.

When the signature was created, represented as
the number of seconds since the Unix epoch
(00:00:00 UTC on 1 January 1970).

issued_at

Base64-encoded HMAC-SHA256 signature signed
with the consumer's private key containing the

signature

concatenated ID and issued_at value. The
signature can be used to verify that the
identity URL wasn’t modified because it was sent
by the server.

An example JSON response body might look something like:

{
"id":"https://login.salesforce.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448384422","instance_url":"https://na1.salesforce.com",
"signature":"SSSbLO/gBhmmyNUvN18ODBDFYHzakxOMgqYtu+hDPsc=",
"access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0RNBaT1cyWk7T
rqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4"}

Keep in mind the following considerations when using the refresh token OAuth process:

• The session timeout for an access token can be configured in Salesforce from Setup by clicking Security
Controls > Session Settings.

• If the application uses the username-password OAuth authentication flow, no refresh token is issued,
as the user cannot authorize the application in this flow. If the access token expires, the application
using username-password OAuth flow must re-authenticate the user.

58

Chapter 5 Authentication

Finding Additional Resources

The following resources provide additional information about using OAuth with Salesforce:

• Authenticating Apps with OAuth

• Digging Deeper into OAuth on Force.com

• Using OAuth to Authorize External Applications

The following resources are examples of third party client libraries that implement OAuth that you might
find useful:

• For Ruby on Rails: OmniAuth

• For Java: Apache Amber

• Additional OAuth client libraries: OAuth.net

59

Chapter 5 Authentication

https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_authenticate.htm
https://developer.salesforce.com/page/Digging_Deeper_into_OAuth_2.0_on_Force.com
https://developer.salesforce.com/page/Using_OAuth_to_Authorize_External_Applications
https://github.com/intridea/omniauth/wiki
https://cwiki.apache.org/confluence/display/AMBER/OAuth+2.0+Client
http://oauth.net/code/

CHAPTER 6 SOAP API

SOAP API lets you integrate Force.com applications that can create, retrieve, update or delete records
managed by Salesforce, using any development environment that supports Web services.

When to Use SOAP API

SOAP API provides a powerful, convenient, and simple SOAP-based Web services interface for interacting
with Salesforce. You can use SOAP API to create, retrieve, update, or delete records. You can also use SOAP
API to perform searches and much more. Use SOAP API in any language that supports Web services.

For example, you can use SOAP API to integrate Salesforce with your organization’s ERP and finance systems,
deliver real-time sales and support information to company portals, and populate critical business systems
with customer information.

Supported Editions and Platforms

To use SOAP API, your organization must use Enterprise Edition, Performance Edition, Unlimited Edition,
or Developer Edition. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

Quick Start

Use this quick start to create a sample application in your development environment.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

• Read through all the steps before beginning this quick start. You may also wish to review the
rest of this document to familiarize yourself with terms and concepts.

61

Best Practices

Before you build an integration application or other client application, consider the data management,
use limits, and communication issues explained in this section.

User Permissions
When your client application connects to the SOAP API, it must first log in. Client applications run with
the permissions and sharing of the logged-in user.

An organization's Salesforce administrator controls the availability of various features and views by
configuring profiles and permission sets, and assigning users to them. To access the API (to issue calls and
receive the call results), a user must be granted the “API Enabled” permission. Client applications can query
or update only those objects and fields to which they have access via the permissions of the logged-in
user.

If the client application logs in as a user who has access to data via a sharing rule, then the API must issue
an extra query to check access. To avoid this, log in as a user with the “Modify All Data” permission.

API Usage Monitoring
You can monitor the number of SOAP API requests generated by your organization in two ways.

• Any user can see the number of API requests sent in the last 24 hours. To view the information, from
Setup, click Company Profile > Company Information. Look for the “API Requests, Last 24 Hours”
field in the right column.

• If a user has the “Modify All Data” permission, the user can view a report of the API requests sent for
the last seven days. To view the information, click the Reports tab, scroll to the Administrative Reports
section and click the API Usage Last 7 Days link. Users can sort the report by any of the fields listed
in the Summarize Information by: drop-down list.

Query Limits
There is a limit on the number of queries that a user can execute concurrently. A user can have up to 10
query cursors open at a time. If 10 QueryLocator cursors are open when a client application, logged
in as the same user, attempts to open a new one, then the oldest of the 10 cursors is released. If the client
application attempts to open the released query cursor, an error results.

Multiple client applications can log in using the same username argument. However, this increases
your risk of getting errors due to query limits.

62

Chapter 6 SOAP API

If multiple client applications are logged in using the same user, they all share the same session. If one of
the client applications calls logout(), it invalidates the session for all the client applications. Using a
different user for each client application makes it easier to avoid these limits.

API Request Limits
To maintain optimum performance and ensure that the Force.com API is available to all our customers,
Salesforce balances transaction loads by imposing two types of limits:

• Concurrent API Request Limits

• Total API Request Limits

When a call exceeds a request limit, an error is returned.

The following table lists the limits for various types of organizations for concurrent requests (calls) with a
duration of 20 seconds or longer.

LimitOrganization Type

5Developer Edition

5Trial organizations

25Production organizations

25Sandbox

The following table lists the limits for the total API requests (calls) per 24-hour period for an organization.

MaximumMinimumAPI Calls Per License TypeSalesforce Edition

1,0001,000N/AAll Editions:
DebuggingHeader on API
testing calls for Apex
specified. Valid in API
version 20 and later.

15,00015,000N/ADeveloper Edition

1,000,00015,000•• Salesforce: 1,000Enterprise Edition

63

Chapter 6 SOAP API

MaximumMinimumAPI Calls Per License TypeSalesforce Edition

• • Force.com Light App: 200Professional Edition
with API access
enabled

• Force.com Enterprise App: 200

• Salesforce Platform: 1,000

• Force.com - One App: 200

Note: This license is not
available to new customers.

• Partner Community: 200

• Gold Partner: 200

Note: This license is not
available to new customers.

Unlimited.
However, at

15,000•• Salesforce: 5,000Unlimited Edition

• •Performance Edition Force.com Light App: 200 any high limit,
it is likely that• Force.com Enterprise App: 200

other limiting• Force.com App Bundle: 1,000
factors such as• Salesforce Platform: 5,000
system load

• Force.com - One App: 200
may prevent

Note: This license is not
available to new customers.

you from using
your entire
allocation of

• Partner Community: 200 calls in a
• Gold Partner: 200 24–hour

period.
Note: This license is not
available to new customers.

5,000,000N/AN/ASandbox

Limits are enforced against the aggregate of all API calls made by the organization in a 24 hour period;
limits are not on a per-user basis. When an organization exceeds a limit, all users in the organization may
be temporarily blocked from making additional calls. Calls will be blocked until usage for the preceding
24 hours drops below the limit.

64

Chapter 6 SOAP API

Multiple Instances of Salesforce Database Servers
Salesforce provides many database server instances. Although organizations are generally allocated by
geographic regions, an organization may be on any instance.

Content Type Requirement
In the API version 7.0 and later, all requests must contain a correct content type HTTP header, for example:
Content-Type: text/xml; charset=utf-8. Earlier versions of the API do not enforce this
requirement.

Compression
SOAP API allows the use of compression on the request and the response, using the standards defined by
the HTTP 1.1 specification. This is automatically supported by some SOAP/WSDL clients, and can be
manually added to others. Visit https://developer.salesforce.com/page/Tools for
more information on particular clients.

To indicate that the client supports compression, you should include the HTTP header “Accept-Encoding:
gzip, deflate” or a similar heading. SOAP API compresses the response if the client properly specifies this
header. The response includes the header “Content-Encoding: deflate” or “Content-Encoding: gzip,” as
appropriate. You can also compress any request by including a “Content-Encoding: deflate” or “gzip”
header.

HTTP Persistent Connections
Most clients achieve better performance if they use HTTP 1.1 persistent connection to reuse the socket
connection for multiple requests. Persistent connections are normally handled by your SOAP/WSDL client
automatically. For more details, see the HTTP 1.1 specification at:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1

HTTP Chunking
Clients that use HTTP 1.1 may receive chunked responses. Chunking is normally handled by your SOAP/WSDL
client automatically.

65

Chapter 6 SOAP API

https://developer.salesforce.com/page/Tools
http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on SOAP API.

• SOAP API Developer's Guide

• SOAP API Developer Cheat Sheet

• Salesforce Object Reference

• APIs and Integration forums

66

Chapter 6 SOAP API

CHAPTER 7 REST API

REST API provides a REST-based API for interacting with Salesforce. You can use REST API to create Force.com
applications that can create, retrieve, update or delete records managed by Salesforce, using any
development environment that supports Web services.

When to Use REST API

REST API provides a powerful, convenient, and simple REST-based Web services interface for interacting
with Salesforce. Its advantages include ease of integration and development, and it’s an excellent choice
of technology for use with mobile applications and Web projects. However, if you have a large number of
records to process, you may wish to use Bulk API, which is based on REST principles and optimized for
large sets of data.

Supported Editions and Platforms

To use REST API, your organization must use Enterprise Edition, Performance Edition, Unlimited Edition,
or Developer Edition. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

Quick Start

Create a sample REST application in your development environment to see the power and flexibility of
REST API

Prerequisites
Completing the prerequisites makes it easier to build and use the quick-start sample. If you’re unfamiliar
with cURL and JavaScript Object Notation (JSON), you can also use Workbench to obtain data.

• Install your development platform according to its product documentation.

• Become familiar with cURL, the tool used to execute REST requests in this quick start. If you use another
tool, you should be familiar enough with it to translate the example code.

67

http://tools.ietf.org/html/draft-zyp-json-schema-02

• Become familiar with JSON which is used in this quick start, or be able to translate samples from JSON
to the standard you use.

• Enable an SSL endpoint in your application server.

• Become familiar with OAuth 2.0, which requires some setup. We provide the steps, but it will help if
you are familiar with the basic concepts and workflow.

• Read through all the steps before beginning this quick start. You may also wish to review the rest of
this document to familiarize yourself with terms and concepts.

Step One: Obtain a Salesforce Developer Edition
Organization
If you are not already a member of the Force.com developer community, go to
developer.salesforce.com/signup and follow the instructions for signing up for a Developer
Edition organization. Even if you already have Enterprise Edition, Unlimited Edition, or Performance Edition,
use Developer Edition for developing, staging, and testing your solutions against sample data to protect
your organization’s live data. This is especially true for applications that insert, update, or delete data (as
opposed to simply reading data).

If you already have a Developer Edition organization, verify that you have the “API Enabled” permission.
This permission is enabled by default, but may have been changed by an administrator. For more
information, see the help in the Salesforce user interface.

Step Two: Set Up Authorization
You can set up authorization using OAuth 2.0 or by passing a session ID.

Important: If you're handling someone else's password, don't use session ID.

Partners, who wish to get an OAuth consumer Id for authentication, can contact Salesforce

Setting Up OAuth 2.0
Setting up OAuth 2.0 requires that you take some steps within Salesforce and in other locations. If any of
the steps are unfamiliar, see Understanding Authentication or the Salesforce online help. The following
example uses the Web server OAuth flow.

1. In Salesforce, from Setup, click Create > Apps, and under Connected Apps click New to create
a new connected app if you have not already done so. The Callback URL you supply here
is the same as your Web application's callback URL. Usually it is a servlet if you work with Java. It
must be secure: http:// does not work, only https://. For development environments,

68

Chapter 7 REST API

https://developer.salesforce.com/signup

the callback URL is similar to
https://localhost:8443/RestTest/oauth/_callback. When you click Save,
the Consumer Key is created and displayed, and a Consumer Secret is created (click
the link to reveal it).

Note: The OAuth 2.0 specification uses “client” instead of “consumer.” Salesforce supports
OAuth 2.0.

The values here correspond to the following values in the sample code in the rest of this procedure:

• client_id is the Consumer Key

• client_secret is the Consumer Secret

• redirect_uri is the Callback URL.

In your client application, redirect the user to the appropriate Salesforce authorization endpoint.
On successful user login, Salesforce will call your redirect URI with an authorization code. You use
the authorization code in the next step to get the access token.

2. From your Java or other client application, make a request to the appropriate Salesforce token
request endpoint that passes in grant_type, client_id, client_secret, and
redirect_uri. The redirect_uri is the URI that Salesforce sends a callback to.

initParams = {
@WebInitParam(name = "clientId", value =

"3MVG9lKcPoNINVBJSoQsNCD.HHDdbugPsNXwwyFbgb47KWa_PTv"),
@WebInitParam(name = "clientSecret", value =

"5678471853609579508"),
@WebInitParam(name = "redirectUri", value =

"https://localhost:8443/RestTest/oauth/_callback"),

@WebInitParam(name = "environment", value =
"https://na1.salesforce.com/services/oauth2/token")

}

HttpClient httpclient = new HttpClient();
PostMethod post = new PostMethod(environment);
post.addParameter("code",code);
post.addParameter("grant_type","authorization_code");

/** For session ID instead of OAuth 2.0, use "grant_type",
"password" **/
post.addParameter("client_id",clientId);

69

Chapter 7 REST API

post.addParameter("client_secret",clientSecret);
post.addParameter("redirect_uri",redirectUri);

If the value of client_id (or consumer key) and client_secret (or consumer
secret) are valid, Salesforce sends a callback to the URI specified in redirect_uri that
contains a value for access_token.

3. Store the access token value as a cookie to use in all subsequent requests. For example:

//exception handling removed for brevity...
//this is the post from step 2
httpclient.executeMethod(post);

String responseBody = post.getResponseBodyAsString();

String accessToken = null;
JSONObject json = null;
try {

json = new JSONObject(responseBody);
accessToken = json.getString("access_token");
issuedAt = json.getString("issued_at");
/** Use this to validate session
* instead of expiring on browser close.
*/

} catch (JSONException e) {
e.printStackTrace();

}

HttpServletResponse httpResponse =
(HttpServletResponse)response;

Cookie session = new Cookie(ACCESS_TOKEN, accessToken);

session.setMaxAge(-1); //cookie not persistent, destroyed
on browser exit

httpResponse.addCookie(session);

This completes the authentication.

4. Once authenticated, every request must pass in the access_token value in the header. It
cannot be passed as a request parameter.

HttpClient httpclient = new HttpClient();
GetMethod gm = new GetMethod(serviceUrl);

70

Chapter 7 REST API

//set the token in the header
gm.setRequestHeader("Authorization", "Bearer "+accessToken);
//set the SOQL as a query param
NameValuePair[] params = new NameValuePair[1];

/**
* other option instead of query string, pass just the fields

you want back:
*

https://instance_name.salesforce.com/services/data/v20.0/sobjects/Account/

* 001D000000INjVe?fields=AccountNumber,BillingPostalCode

*/
params[0] = new NameValuePair("q","SELECT name, title FROM

Contact LIMIT 100");
gm.setQueryString(params);

httpclient.executeMethod(gm);
String responseBody = gm.getResponseBodyAsString();

//exception handling removed for brevity
JSONObject json = new JSONObject(responseBody);

JSONArray results = json.getJSONArray("records");

for(int i = 0; i < results.length(); i++)

response.getWriter().write(results.getJSONObject(i).getString("Name")+
",

"+results.getJSONObject(i).getString("Title")+"\n");

The syntax to provide the access token in your REST requests:

Authorization: Bearer access_token

For example:

curl https://instance_name.salesforce.com/services/data/v20.0/ -H
'Authorization: Bearer access_token'

71

Chapter 7 REST API

Session ID Authorization
You can use a session ID instead of an OAuth 2.0 access token if you aren't handling someone else's
password:

1. Obtain a session ID, for example, a SOAP API login() call returns the session ID. You may also
have the session ID, for example as part of the Apex current context. If you need a session ID just
for testing purposes during development, you can use the username-password OAuth flow in a
cURL command similar to the following:

curl https://login.salesforce.com/services/oauth2/token -d
"grant_type=password" -d "client_id=myclientid" -d
"client_secret=myclientsecret"

-d "username=mylogin@salesforce.com" -d
"password=mypassword123456"

You will need to provide your client id, client secret, username and password with user security
token appended.

2. Use the session ID when you send a request to the resource. Substitute the ID for the token
value. The syntax is the same:

Authorization: Bearer access_token

For example:

curl https://instance_name.salesforce.com/services/data/v20.0/
-H 'Authorization: Bearer access_token'

Step Three: Send HTTP Requests with cURL
To interact with the Force.com REST API, you need to set up your client application (we use cURL) to
construct HTTP requests.

Setting Up Your Client Application
The REST API uses HTTP GET and HTTP POST methods to send and receive JSON and XML content, so it is
very simple to build client applications using the tool or the language of your choice. We use a
command-line tool called cURL to simplify sending and receiving HTTP requests and responses.

cURL is pre-installed on many Linux and Mac systems. Windows users can download a version at
curl.haxx.se/. When using HTTPS on Windows, ensure that your system meets the cURL requirements
for SSL.

72

Chapter 7 REST API

http://curl.haxx.se/

Sending HTTP Requests Using REST API Resources
Your HTTP requests to a REST API resource should contain the following information:

• An HTTP method (HEAD, GET, POST, PATCH, or DELETE).

• An OAuth 2.0 access token used to authenticate the request. For information on how to retrieve the
token, see Quick Start on page 194.

• An HTTP ACCEPT header used to indicate the resource format (XML or JSON), or a .json or .xml
extension to the URI. The default is JSON.

• The Force.com REST resource.

• Any JSON or XML files containing information needed for requests, such as updating a record with
new information.

The HTTP methods are used to indicate the desired action, such as retrieving information, as well as creating,
updating, and deleting records.

• HEAD is used to retrieve resource metadata.

• GET is used to retrieve information, such as basic resource summary information.

• POST is used to create a new object.

• PATCH is used to update a record.

• DELETE is used to delete a record.

To access a resource, submit an HTTP request containing a header, method, and resource name.

For example, assume you want to create an Account record using a JSON-formatted file called
newaccount.json. It contains the information to be stored in the new account:

{
"Name" : "test"

}

Using cURL on instance na1, the request would appear as follows:

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Account/
-H "Authorization: Bearer token -H "Content-Type: application/json"
-d "@newaccount.json"

The request HTTP header:

POST /services/data/v20.0/sobjects/Account HTTP/1.1
User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7
OpenSSL/0.9.8l zlib/1.2.3
Host: na7.salesforce.com
Accept: */*

73

Chapter 7 REST API

Content-Length: 1411
Content-Type: application/json
Authorization: Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
X-PrettyPrint:1

The response:

Date: Thu, 21 Oct 2010 22:16:22 GMT
Content-Length: 71
Location: /services/data/v20.0/sobjects/Account/001T000000NU96UIAT
Content-Type: application/json; charset=UTF-8 Server:
{ "id" : "001T000000NU96UIAT",
"errors" : [],
"success" : true }

For a list of the resources and their corresponding URIs, see Reference.

Step Four: Walk Through the Sample Code
In this section you will create a series of REST requests. cURL will be used to construct the requests, and
JSON will be used as the format for all requests and responses. In each request, a base URI will be used in
conjunction with the REST resource. The base URI for these examples is
https://na1.salesforce.com/services/data. For more information, see Understanding
Force.com REST Resources.

In this example, a series of REST requests will be used in the following scenario:

1. Get the Salesforce version.

2. Use the Salesforce version to get a list of the resources available.

3. Use one of the resources to get a list of the available objects.

4. Select one of the objects and get a description of its metadata.

5. Get a list of fields on that same object.

6. Execute a SOQL query to retrieve values from all name fields on Account records.

7. Update the Billing City for one of the Account objects.

Get the Salesforce Version
Begin by retrieving information about each available Salesforce version. To do this, submit a request for
the Versions resource. In this case the request does not require authentication:

curl https://na1.salesforce.com/services/data/

74

Chapter 7 REST API

The output from this request, including the response header:

Content-Length: 88
Content-Type: application/json;
charset=UTF-8 Server:
[

{
"version":"20.0",
"url":"/services/data/v20.0",
"label":"Winter '11"

}
...

]

The output specifies the resources available for all valid versions (your result may include more than one
value). Next, use one of these versions to discover the resources it contains.

Get a List of Resources
The next step is to retrieve a list of the resources available for Salesforce, in this example for version 20.0.
To do this, submit a request for the Resources by Version:

curl https://na1.salesforce.com/services/data/v20.0/ -H "Authorization:
Bearer access_token" -H "X-PrettyPrint:1"

The output from this request is as follows:

{
"sobjects" : "/services/data/v20.0/sobjects",
"search" : "/services/data/v20.0/search",
"query" : "/services/data/v20.0/query",
"recent" : "/services/data/v20.0/recent"

}

From this output you can see that sobjects is one of the available resources in Salesforce version 20.0.
You will be able to use this resource in the next request to retrieve the available objects.

Get a List of Available Objects
Now that you have the list of available resources, you can request a list of the available objects. To do this,
submit a request for the Describe Global:

curl https://na1.salesforce.com/services/data/v20.0/sobjects/ -H
"Authorization: Bearer access_token" -H "X-PrettyPrint:1"

75

Chapter 7 REST API

The output from this request is as follows:

Transfer-Encoding: chunked
Content-Type: application/json;
charset=UTF-8 Server:
{
"encoding" : "UTF-8",
"maxBatchSize" : 200,
"sobjects" : [{

"name" : "Account",
"label" : "Account",
"custom" : false,
"keyPrefix" : "001",
"updateable" : true,
"searchable" : true,
"labelPlural" : "Accounts",
"layoutable" : true,
"activateable" : false,
"urls" : { "sobject" : "/services/data/v20.0/sobjects/Account",
"describe" : "/services/data/v20.0/sobjects/Account/describe",
"rowTemplate" : "/services/data/v20.0/sobjects/Account/{ID}" },
"createable" : true,
"customSetting" : false,
"deletable" : true,
"deprecatedAndHidden" : false,
"feedEnabled" : false,
"mergeable" : true,
"queryable" : true,
"replicateable" : true,
"retrieveable" : true,
"undeletable" : true,
"triggerable" : true },
},

...

From this output you can see that the Account object is available. You will be able to get more information
about the Account object in the next steps.

76

Chapter 7 REST API

Get Basic Object Information
Now that you have identified the Account object as an available resource, you can retrieve some basic
information about its metadata. To do this, submit a request for the SObject Basic Information:

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Account/
-H "Authorization: Bearer access_token" -H "X-PrettyPrint:1"

The output from this request is as follows:

{
"objectDescribe" :
{

"name" : "Account",
"updateable" : true,
"label" : "Account",
"keyPrefix" : "001",

...

"replicateable" : true,
"retrieveable" : true,
"undeletable" : true,
"triggerable" : true

},
"recentItems" :
[

{
"attributes" :
{

"type" : "Account",
"url" :

"/services/data/v20.0/sobjects/Account/001D000000INjVeIAL"
},
"Id" : "001D000000INjVeIAL",
"Name" : "asdasdasd"

},

...

]
}

From this output you can see some basic attributes of the Account object, such as its name and label, as
well as a list of the most recently used Accounts. Since you may need more information about its fields,

77

Chapter 7 REST API

such as length and default values, in the next step you will retrieve more detailed information about the
Account object.

Get a List of Fields
Now that you have some basic information about the Account object's metadata, you may be interested
in retrieving more detailed information. To do this, submit a request for the SObject Describe:

curl
https://na1.salesforce.com/services/data/v20.0/sobjects/Account/describe/
-H "Authorization: Bearer access_token" -H "X-PrettyPrint:1"

The output from this request is as follows:

{
"name" : "Account",
"fields" :
[

{
"length" : 18,
"name" : "Id",
"type" : "id",
"defaultValue" : { "value" : null },
"updateable" : false,
"label" : "Account ID",
...

},
...

],
"updateable" : true,
"label" : "Account",
...
"urls" :
{

"uiEditTemplate" : "https://na1.salesforce.com/{ID}/e",
"sobject" : "/services/data/v20.0/sobjects/Account",
"uiDetailTemplate" : "https://na1.soma.salesforce.com/{ID}",

"describe" : "/services/data/v20.0/sobjects/Account/describe",

"rowTemplate" : "/services/data/v20.0/sobjects/Account/{ID}",

"uiNewRecord" : "https://na1.salesforce.com/001/e"
},

78

Chapter 7 REST API

"childRelationships" :
[

{
"field" : "ParentId",
"deprecatedAndHidden" : false,
...

},
...

],

"createable" : true,
"customSetting" : false,
...

}

From this output you can see much more detailed information about the Account object, such as its field
attributes and child relationships. Now you have enough information to construct useful queries and
updates for the Account objects in your organization, which you will do in the next steps.

Execute a SOQL Query
Now that you know the field names on the Account object, you can execute a SOQL query, for example,
to retrieve a list of all the Account name values. To do this, submit a Query request:

curl
https://na1.salesforce.com/services/data/v20.0/query?q=SELECT+name+from+Account
-H "Authorization: Bearer access_token" -H "X-PrettyPrint:1"

The output from this request is as follows:

{
"done" : true,
"totalSize" : 14,
"records" :
[

{
"attributes" :
{

"type" : "Account",
"url" :

"/services/data/v20.0/sobjects/Account/001D000000IRFmaIAH"
},
"Name" : "Test 1"

},

79

Chapter 7 REST API

{
"attributes" :
{

"type" : "Account",
"url" :

"/services/data/v20.0/sobjects/Account/001D000000IomazIAB"
},
"Name" : "Test 2"

},
...

]
}

From this output you have a listing of the available Account names, and each name's preceding attributes
include the Account IDs. In the next step you will use this information to update one of the accounts.

Note: You can find more information about SOQL in the Salesforce SOQL and SOSL Reference Guide.

Update a Field on a Record
Now that you have the Account names and IDs, you can retrieve one of the accounts and update its Billing
City. To do this, you will need to submit an SObject Rows request. To update the object, supply the new
information about the Billing City. Create a text file called patchaccount.json containing the
following information:

{
"BillingCity" : "Fremont"

}

Specify this JSON file in the REST request. The cURL notation requires the —d option when specifying data.
For more information, see http://curl.haxx.se/docs/manpage.html.

Also, specify the PATCH method, which is used for updating a REST resource. The following cURL command
retrieves the specified Account object using its ID field, and updates its Billing City.

curl
https://na1.salesforce.com/services/data/v20.0/sobjects/Account/001D000000IroHJ
-H "Authorization: Bearer access_token" -H "X-PrettyPrint:1" -H
"Content-Type: application/json" --data-binary @patchaccount.json -X
PATCH

80

Chapter 7 REST API

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/
http://curl.haxx.se/docs/manpage.html

No response body is returned, just the headers:

HTTP/1.1 204 No Content
Server:
Content-Length: 0

Refresh the page on the account and you will see that the Billing Address has changed to Fremont.

Other Resources
• Search for Ruby on developer.salesforce.com

• Force.com Cookbook recipe for getting started in Ruby

• Force.com REST API Board

Best Practices

Consider the best practices explained in this section.

JSON and XML Support
JSON is the default for REST API request and response bodies, however XML is also supported. You can
use the HTTP ACCEPT header to specify either JSON or XML. XML serialization is similar to SOAP API. XML
requests are supported in UTF-8 and UTF-16, and XML responses are provided in UTF-8.

Date and Time Formats
Date-time information in requests and responses is specified using the ISO8601 format.

Compression
REST API allows the use of compression on the request and the response, using the standards defined by
the HTTP 1.1 specification. Compression is automatically supported by some clients, and can be manually
added to others. For better performance, we recommend using clients that can support HTTP 1.1
compression.

Responses are compressed if the client uses a Accept-Encoding: gzip or Accept-Encoding:
deflate HTTP header in a request. REST API compresses the response and includes
Accept-Encoding: gzip or Accept-Encoding: deflate in the header of the response.

81

Chapter 7 REST API

https://developer.salesforce.com
http://developer.force.com/cookbook/recipe/interact-with-the-forcecom-rest-api-from-ruby
http://boards.developerforce.com/t5/REST-API-Integration/bd-p/integration
http://www.iso.org/iso/catalogue_detail?csnumber=40874

You can send compressed request data if you specify Content-Encoding: gzip or
Content-Encoding: deflate header in your request. REST API will decompress any request
content it receives if a Content-Encoding request header with supported compression algorithm
is provided.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on REST API.

• REST API Developer’s Guide

• REST API Developer Cheat Sheet

• Salesforce Object Reference

• APIs and Integration forums

82

Chapter 7 REST API

CHAPTER 8 Metadata API

Metadata API provides an API for interacting with the metadata of your Salesforce organization. You can
use Metadata API through a file-based API that provides calls to deploy and retrieve wholesale metadata
information via .zip files, or a components-based API that provides calls to create, update and delete
individual metadata components.

When to Use Metadata API

Use Metadata API to retrieve, deploy, create, update, or delete customizations for your organization. The
most common use is to migrate changes from a sandbox or testing organization to your production
environment. Metadata API is intended for managing customizations and for building tools that can
manage the metadata model, not the data itself.

The easiest way to access the functionality in Metadata API is to use the Force.com IDE or Force.com
Migration Tool. These tools are built on top of Metadata API and use the standard Eclipse and Ant tools
respectively to simplify the task of working with Metadata API. Built on the Eclipse platform, the Force.com
IDE provides a comfortable environment for programmers familiar with integrated development
environments, allowing you to code, compile, test, and deploy all from within the IDE itself. The Force.com
Migration Tool is ideal if you want to use a script or a command-line utility for moving metadata between
a local directory and a Salesforce organization.

Supported Editions and Platforms

Metadata API is available in Enterprise Edition, Performance Edition, Unlimited Edition, Developer Edition,
or Database.com. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

Quick Start

The easiest way to access the functionality in Metadata API is to use the Force.com IDE or Force.com
Migration Tool. These tools are built on top of Metadata API and use the standard Eclipse and Ant tools
respectively to simplify the task of working with Metadata API. Built on the Eclipse platform, the Force.com
IDE provides a comfortable environment for programmers familiar with integrated development

83

environments, allowing you to code, compile, test, and deploy all from within the IDE itself. The Force.com
Migration Tool is ideal if you want to use a script or a command-line utility for moving metadata between
a local directory and a Salesforce organization. For more information about the Force.com IDE or Force.com
Migration Tool, see developer.salesforce.com.

However, the underlying calls of Metadata API have been exposed for you to use directly, if you prefer to
build your own client applications. This quick start gives you all the information you need to start writing
applications that directly use Metadata API to manage customizations for your organization. It shows you
how to get started with File-Based Development. For an example of CRUD-Based Development, see Java
Sample for CRUD-Based Development with Synchronous Calls.

Prerequisites
Make sure you complete these prerequisites before you start using Metadata API.

• Create a development environment.

It is strongly recommended that you use a sandbox, which is an exact replica of your production
organization. Enterprise, Unlimited, and Performance Editions come with a free developer sandbox.
For more information, see
http://www.salesforce.com/platform/cloud-infrastructure/sandbox.jsp.

Alternatively, you can use a Developer Edition organization, which provides access to all of the features
available with Enterprise Edition, but is limited by the number of users and the amount of storage
space. A Developer Edition organization is not a copy of your production organization, but it provides
an environment where you can build and test your solutions without affecting your organization’s
data. Developer Edition accounts are available for free at
http://developer.salesforce.com/signup.

• Identify a user that has the “API Enabled” and “Modify All Data” permissions. These permissions are
required to access Metadata API calls.

• Install a SOAP client. Metadata API works with current SOAP development environments, including,
but not limited to, Visual Studio® .NET and the Force.com Web Service Connector (WSC).

In this document, we provide Java examples based on WSC and JDK 6 (Java Platform Standard Edition
Development Kit 6). To run the samples, first download the latest force-wsc JAR file and its dependencies
(dependencies are listed on the page when you select a version) from
mvnrepository.com/artifact/com.force.api/force-wsc/.

Note: Development platforms vary in their SOAP implementations. Implementation differences
in certain development platforms might prevent access to some or all of the features in Metadata
API.

84

Chapter 8 Metadata API

http://developer.salesforce.com
http://www.salesforce.com/platform/cloud-infrastructure/sandbox.jsp
https://developer.salesforce.com/signup
http://mvnrepository.com/artifact/com.force.api/force-wsc/

Step 1: Generate or Obtain the Web Service WSDLs for Your
Organization
To access Metadata API calls, you need a Web Service Description Language (WSDL) file. The WSDL file
defines the Web service that is available to you. Your development platform uses this WSDL to generate
stub code to access the Web service it defines. You can either obtain the WSDL file from your organization’s
Salesforce administrator, or you can generate it yourself if you have access to the WSDL download page
in the Salesforce user interface. For more information about WSDL, see
http://www.w3.org/TR/wsdl.

Before you can access Metadata API calls, you must authenticate to use the Web service using the
login() call, which is defined in the enterprise WSDL and the partner WSDL. Therefore, you must also
obtain one of these WSDLs.

Any user with the “Modify All Data” permission can download the WSDL file to integrate and extend the
Salesforce platform. (The System Administrator profile has this permission.)

The sample code in Step 3: Walk through the Java Sample Code on page 86 uses the enterprise WSDL,
though the partner WSDL works equally well.

To generate the metadata and enterprise WSDL files for your organization:

1. Log in to your Salesforce account. You must log in as an administrator or as a user who has the
“Modify All Data” permission.

2. From Setup, click Develop > API.

3. Click Generate Metadata WSDL and save the XML WSDL file to your file system.

4. Click Generate Enterprise WSDL and save the XML WSDL file to your file system.

Step 2: Import the WSDL Files Into Your Development
Platform
Once you have the WSDL files, import them into your development platform so that your development
environment can generate the necessary objects for use in building client Web service applications. This
section provides sample instructions for WSC. For instructions about other development platforms, see
your platform’s product documentation.

Note: The process for importing WSDL files is identical for the metadata and enterprise WSDL files.

85

Chapter 8 Metadata API

http://www.w3.org/TR/wsdl

Instructions for Java Environments (WSC)
Java environments access the API through Java objects that serve as proxies for their server-side counterparts.
Before using the API, you must first generate these objects from your organization’s WSDL file.

Each SOAP client has its own tool for this process. For WSC, use the wsdlc utility.

Note: Before you run wsdlc, you must have the WSC JAR file installed on your system and
referenced in your classpath. You can download the latest force-wsc JAR file and its dependencies
(dependencies are listed on the page when you select a version) from
mvnrepository.com/artifact/com.force.api/force-wsc/.

The basic syntax for wsdlc is:

java -classpath pathToWsc;pathToWscDependencies
com.sforce.ws.tools.wsdlc pathToWsdl/WsdlFilename
pathToOutputJar/OutputJarFilename

For example, on Windows:

java –classpath force-wsc-30.0.0.jar;ST4-4.0.7.jar;antlr-runtime-3.5.jar
com.sforce.ws.tools.wsdlc metadata.wsdl metadata.jar

On Mac OS X and Unix, use a colon instead of a semicolon in between items in the classpath:

java –classpath force-wsc-30.0.0.jar:ST4-4.0.7.jar:antlr-runtime-3.5.jar
com.sforce.ws.tools.wsdlc metadata.wsdl metadata.jar

wsdlc generates a JAR file and Java source code and bytecode files for use in creating client applications.
Repeat this process for the enterprise WSDL to create an enterprise.JAR file.

Step 3: Walk through the Java Sample Code
Once you have imported the WSDL files, you can begin building client applications that use Metadata API.
The sample is a good starting point for writing your own code.

Before you run the sample, modify your project and the code to:

1. Include the WSC JAR, its dependencies, and the JAR files you generated from the WSDLs.

Note: Although WSC has other dependencies, the following sample only requires Rhino
(js-1.7R2.jar), which you can download from mvnrepository.com/artifact/rhino/js.

2. Update USERNAME and PASSWORD variables in the MetadataLoginUtil.login()
method with your user name and password. If your current IP address isn’t in your organization's
trusted IP range, you'll need to append a security token to the password.

86

Chapter 8 Metadata API

http://mvnrepository.com/artifact/com.force.api/force-wsc/
http://mvnrepository.com/artifact/rhino/js

3. If you are using a sandbox, be sure to change the login URL.

Login Utility
Java users can use ConnectorConfig to connect to Enterprise, Partner, and Metadata SOAP API.
MetadataLoginUtil creates a ConnectorConfig object and logs in using the Enterprise WSDL
login method. Then it retrieves sessionId and metadataServerUrl to create a
ConnectorConfig and connects to Metadata API endpoint. ConnectorConfig is defined in
WSC.

The MetadataLoginUtil class abstracts the login code from the other parts of the sample, allowing
portions of this code to be reused without change across different Salesforce APIs.

import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.soap.enterprise.LoginResult;
import com.sforce.soap.metadata.MetadataConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

/**
* Login utility.
*/
public class MetadataLoginUtil {

public static MetadataConnection login() throws ConnectionException
{

final String USERNAME = "user@company.com";
// This is only a sample. Hard coding passwords in source files

is a bad practice.
final String PASSWORD = "password";
final String URL =

"https://login.salesforce.com/services/Soap/c/34.0";
final LoginResult loginResult = loginToSalesforce(USERNAME,

PASSWORD, URL);
return createMetadataConnection(loginResult);

}

private static MetadataConnection createMetadataConnection(
final LoginResult loginResult) throws ConnectionException

{
final ConnectorConfig config = new ConnectorConfig();

config.setServiceEndpoint(loginResult.getMetadataServerUrl());

87

Chapter 8 Metadata API

config.setSessionId(loginResult.getSessionId());
return new MetadataConnection(config);

}

private static LoginResult loginToSalesforce(
final String username,
final String password,
final String loginUrl) throws ConnectionException {

final ConnectorConfig config = new ConnectorConfig();
config.setAuthEndpoint(loginUrl);
config.setServiceEndpoint(loginUrl);
config.setManualLogin(true);
return (new EnterpriseConnection(config)).login(username,

password);
}

}

Java Sample Code for File-Based Development
The sample code logs in using the login utility. Then it displays a menu with retrieve, deploy, and exit.

The retrieve() and deploy() calls both operate on a .zip file named components.zip. The
retrieve() call retrieves components from your organization into components.zip, and the
deploy() call deploys the components in components.zip to your organization. If you save the
sample to your computer and execute it, run the retrieve option first so that you have a
components.zip file that you can subsequently deploy. After a retrieve call, the sample calls
checkRetrieveStatus() in a loop until the operation is completed. Similarly, after a deploy call,
the sample checks checkDeployStatus() in a loop until the operation is completed.

The retrieve() call uses a manifest file to determine the components to retrieve from your
organization. A sample package.xml manifest file follows. For more details on the manifest file structure,
see Working with the Zip File. For this sample, the manifest file retrieves all custom objects, custom tabs,
and page layouts.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

</types>
<types>

<members>*</members>
<name>CustomTab</name>

88

Chapter 8 Metadata API

</types>
<types>

<members>*</members>
<name>Layout</name>

</types>
<version>34.0</version>

</Package>

Note the error handling code that follows each API call.

import java.io.*;
import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.channels.ReadableByteChannel;
import java.rmi.RemoteException;
import java.util.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;
import org.xml.sax.SAXException;

import com.sforce.soap.metadata.*;

/**
* Sample that logs in and shows a menu of retrieve and deploy metadata
options.
*/
public class FileBasedDeployAndRetrieve {

private MetadataConnection metadataConnection;

private static final String ZIP_FILE = "components.zip";

// manifest file that controls which components get retrieved
private static final String MANIFEST_FILE = "package.xml";

private static final double API_VERSION = 29.0;

// one second in milliseconds
private static final long ONE_SECOND = 1000;

// maximum number of attempts to deploy the zip file
private static final int MAX_NUM_POLL_REQUESTS = 50;

89

Chapter 8 Metadata API

private BufferedReader reader = new BufferedReader(new
InputStreamReader(System.in));

public static void main(String[] args) throws Exception {
FileBasedDeployAndRetrieve sample = new

FileBasedDeployAndRetrieve();
sample.run();

}

public FileBasedDeployAndRetrieve() {
}

private void run() throws Exception {
this.metadataConnection = MetadataLoginUtil.login();

// Show the options to retrieve or deploy until user exits
String choice = getUsersChoice();
while (choice != null && !choice.equals("99")) {

if (choice.equals("1")) {
retrieveZip();

} else if (choice.equals("2")) {
deployZip();

} else {
break;

}
// show the options again
choice = getUsersChoice();

}
}

/*
* Utility method to present options to retrieve or deploy.
*/
private String getUsersChoice() throws IOException {

System.out.println(" 1: Retrieve");
System.out.println(" 2: Deploy");
System.out.println("99: Exit");
System.out.println();
System.out.print("Enter 1 to retrieve, 2 to deploy, or 99 to

exit: ");
// wait for the user input.
String choice = reader.readLine();
return choice != null ? choice.trim() : "";

90

Chapter 8 Metadata API

}

private void deployZip() throws Exception {
byte zipBytes[] = readZipFile();
DeployOptions deployOptions = new DeployOptions();
deployOptions.setPerformRetrieve(false);
deployOptions.setRollbackOnError(true);
AsyncResult asyncResult = metadataConnection.deploy(zipBytes,

deployOptions);
DeployResult result =

waitForDeployCompletion(asyncResult.getId());
if (!result.isSuccess()) {

printErrors(result, "Final list of failures:\n");
throw new Exception("The files were not successfully

deployed");
}
System.out.println("The file " + ZIP_FILE + " was successfully

deployed\n");
}

/*
* Read the zip file contents into a byte array.
*/
private byte[] readZipFile() throws Exception {

byte[] result = null;
// We assume here that you have a deploy.zip file.
// See the retrieve sample for how to retrieve a zip file.
File zipFile = new File(ZIP_FILE);
if (!zipFile.exists() || !zipFile.isFile()) {

throw new Exception("Cannot find the zip file for deploy()
on path:"

+ zipFile.getAbsolutePath());
}

FileInputStream fileInputStream = new FileInputStream(zipFile);

try {
ByteArrayOutputStream bos = new ByteArrayOutputStream();
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (-1 != (bytesRead = fileInputStream.read(buffer)))

{
bos.write(buffer, 0, bytesRead);

}

91

Chapter 8 Metadata API

result = bos.toByteArray();
} finally {

fileInputStream.close();
}
return result;

}

/*
* Print out any errors, if any, related to the deploy.
* @param result - DeployResult
*/
private void printErrors(DeployResult result, String messageHeader)

{
DeployDetails details = result.getDetails();
StringBuilder stringBuilder = new StringBuilder();
if (details != null) {

DeployMessage[] componentFailures =
details.getComponentFailures();

for (DeployMessage failure : componentFailures) {
String loc = "(" + failure.getLineNumber() + ", " +

failure.getColumnNumber();
if (loc.length() == 0 &&

!failure.getFileName().equals(failure.getFullName()))
{

loc = "(" + failure.getFullName() + ")";
}
stringBuilder.append(failure.getFileName() + loc + ":"

+ failure.getProblem()).append('\n');
}
RunTestsResult rtr = details.getRunTestResult();
if (rtr.getFailures() != null) {

for (RunTestFailure failure : rtr.getFailures()) {
String n = (failure.getNamespace() == null ? "" :

(failure.getNamespace() + ".")) +
failure.getName();

stringBuilder.append("Test failure, method: " + n
+ "." +

failure.getMethodName() + " -- " +
failure.getMessage() +

" stack " + failure.getStackTrace() +
"\n\n");

92

Chapter 8 Metadata API

}
}
if (rtr.getCodeCoverageWarnings() != null) {

for (CodeCoverageWarning ccw :
rtr.getCodeCoverageWarnings()) {

stringBuilder.append("Code coverage issue");
if (ccw.getName() != null) {

String n = (ccw.getNamespace() == null ? "" :

(ccw.getNamespace() + ".")) + ccw.getName();
stringBuilder.append(", class: " + n);

}
stringBuilder.append(" -- " + ccw.getMessage() +

"\n");
}

}
}
if (stringBuilder.length() > 0) {

stringBuilder.insert(0, messageHeader);
System.out.println(stringBuilder.toString());

}
}

private void retrieveZip() throws Exception {
RetrieveRequest retrieveRequest = new RetrieveRequest();
// The version in package.xml overrides the version in

RetrieveRequest
retrieveRequest.setApiVersion(API_VERSION);
setUnpackaged(retrieveRequest);

AsyncResult asyncResult =
metadataConnection.retrieve(retrieveRequest);

RetrieveResult result = waitForRetrieveCompletion(asyncResult);

if (result.getStatus() == RetrieveStatus.Failed) {
throw new Exception(result.getErrorStatusCode() + " msg:

" +
result.getErrorMessage());

} else if (result.getStatus() == RetrieveStatus.Succeeded) {

// Print out any warning messages
StringBuilder stringBuilder = new StringBuilder();

93

Chapter 8 Metadata API

if (result.getMessages() != null) {
for (RetrieveMessage rm : result.getMessages()) {

stringBuilder.append(rm.getFileName() + " - " +
rm.getProblem() + "\n");

}
}
if (stringBuilder.length() > 0) {

System.out.println("Retrieve warnings:\n" + stringBuilder);

}

System.out.println("Writing results to zip file");
File resultsFile = new File(ZIP_FILE);
FileOutputStream os = new FileOutputStream(resultsFile);

try {
os.write(result.getZipFile());

} finally {
os.close();

}
}

}

private DeployResult waitForDeployCompletion(String asyncResultId)
throws Exception {

int poll = 0;
long waitTimeMilliSecs = ONE_SECOND;
DeployResult deployResult;
boolean fetchDetails;
do {

Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration

waitTimeMilliSecs *= 2;
if (poll++ > MAX_NUM_POLL_REQUESTS) {

throw new Exception(
"Request timed out. If this is a large set of

metadata components, " +
"ensure that MAX_NUM_POLL_REQUESTS is sufficient.");

}
// Fetch in-progress details once for every 3 polls
fetchDetails = (poll % 3 == 0);

94

Chapter 8 Metadata API

deployResult =
metadataConnection.checkDeployStatus(asyncResultId, fetchDetails);

System.out.println("Status is: " +
deployResult.getStatus());

if (!deployResult.isDone() && fetchDetails) {
printErrors(deployResult, "Failures for deployment in

progress:\n");
}

}
while (!deployResult.isDone());

if (!deployResult.isSuccess() &&
deployResult.getErrorStatusCode() != null) {

throw new Exception(deployResult.getErrorStatusCode() + "
msg: " +

deployResult.getErrorMessage());
}

if (!fetchDetails) {
// Get the final result with details if we didn't do it

in the last attempt.
deployResult =

metadataConnection.checkDeployStatus(asyncResultId, true);
}

return deployResult;
}

private RetrieveResult waitForRetrieveCompletion(AsyncResult
asyncResult) throws Exception {

// Wait for the retrieve to complete
int poll = 0;
long waitTimeMilliSecs = ONE_SECOND;
String asyncResultId = asyncResult.getId();
RetrieveResult result = null;
do {

Thread.sleep(waitTimeMilliSecs);
// Double the wait time for the next iteration
waitTimeMilliSecs *= 2;
if (poll++ > MAX_NUM_POLL_REQUESTS) {

throw new Exception("Request timed out. If this is a
large set " +

"of metadata components, check that the time allowed
" +

95

Chapter 8 Metadata API

"by MAX_NUM_POLL_REQUESTS is sufficient.");
}
result = metadataConnection.checkRetrieveStatus(

asyncResultId);
System.out.println("Retrieve Status: " +

result.getStatus());
} while (!result.isDone());

return result;
}

private void setUnpackaged(RetrieveRequest request) throws Exception
{

// Edit the path, if necessary, if your package.xml file is
located elsewhere

File unpackedManifest = new File(MANIFEST_FILE);
System.out.println("Manifest file: " +

unpackedManifest.getAbsolutePath());

if (!unpackedManifest.exists() || !unpackedManifest.isFile())
{

throw new Exception("Should provide a valid retrieve
manifest " +

"for unpackaged content. Looking for " +
unpackedManifest.getAbsolutePath());

}

// Note that we use the fully quualified class name because
// of a collision with the java.lang.Package class
com.sforce.soap.metadata.Package p =

parsePackageManifest(unpackedManifest);
request.setUnpackaged(p);

}

private com.sforce.soap.metadata.Package parsePackageManifest(File
file)

throws ParserConfigurationException, IOException,
SAXException {

com.sforce.soap.metadata.Package packageManifest = null;
List<PackageTypeMembers> listPackageTypes = new

ArrayList<PackageTypeMembers>();
DocumentBuilder db =

DocumentBuilderFactory.newInstance().newDocumentBuilder();

96

Chapter 8 Metadata API

InputStream inputStream = new FileInputStream(file);
Element d = db.parse(inputStream).getDocumentElement();
for (Node c = d.getFirstChild(); c != null; c =

c.getNextSibling()) {
if (c instanceof Element) {

Element ce = (Element) c;
NodeList nodeList = ce.getElementsByTagName("name");
if (nodeList.getLength() == 0) {

continue;
}
String name = nodeList.item(0).getTextContent();
NodeList m = ce.getElementsByTagName("members");
List<String> members = new ArrayList<String>();
for (int i = 0; i < m.getLength(); i++) {

Node mm = m.item(i);
members.add(mm.getTextContent());

}
PackageTypeMembers packageTypes = new

PackageTypeMembers();
packageTypes.setName(name);
packageTypes.setMembers(members.toArray(new

String[members.size()]));
listPackageTypes.add(packageTypes);

}
}
packageManifest = new com.sforce.soap.metadata.Package();
PackageTypeMembers[] packageTypesArray =

new PackageTypeMembers[listPackageTypes.size()];

packageManifest.setTypes(listPackageTypes.toArray(packageTypesArray));

packageManifest.setVersion(API_VERSION + "");
return packageManifest;

}
}

Best Practices

Consider the best practices in this section.

97

Chapter 8 Metadata API

Testing Metadata Changes
You should verify initial metadata changes in a test environment rather than directly on your production
organization.

It is strongly recommended that you use a sandbox, which is an exact replica of your production
organization. Enterprise, Unlimited, and Performance Editions come with a free developer sandbox. For
more information, see
http://www.salesforce.com/platform/cloud-infrastructure/sandbox.jsp.

Alternatively, you can use a Developer Edition organization, which provides access to all of the features
available with Enterprise Edition, but is limited by the number of users and the amount of storage space.
A Developer Edition organization is not a copy of your production organization, but it provides an
environment where you can build and test your solutions without affecting your organization’s data.
Developer Edition accounts are available for free at
http://developer.salesforce.com/signup.

Other Common Metadata Issues
The most common metadata issues are detailed below:

• Retrieving custom fields on standard objects — When you use the wildcard symbol in package.xml,
to retrieve all objects, you will not retrieve standard objects, or custom fields on standard objects. To
retrieve custom fields on standard objects, you must name the component in package.xml.

• Profiles or permission sets and field-level security — The contents of a retrieved profile or permission
set depend on the other contents of the retrieve request. For example, field-level security information
for fields included in custom objects is returned at the same time as profiles or permission sets. For
more information, see Profile and PermissionSet in the Metadata API Developer's Guide.

• Workflow — A .workflow file is a container for the individual workflow components associated
with an object, including WorkflowAlert, WorkflowFieldUpdate, WorkflowOutboundMessage,
WorkflowRule, and WorkflowTask. To retrieve all workflows, include the following XML in
package.xml:

<types>
<members>*</members>
<name>Workflow</name>

</types>

• Retrieving or deploying components that depend on an object definition — The following metadata
components are dependent on a particular object for their definition: CustomField, Picklist,
RecordType, Weblink, and ValidationRule. This means you must dot-qualify the
component name with the object name in package.xml, and may not use the wildcard symbol.

98

Chapter 8 Metadata API

http://www.salesforce.com/platform/cloud-infrastructure/sandbox.jsp
https://developer.salesforce.com/signup
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/

• Personal folders — Users' personal folders, for both reports and documents, are not exposed in Metadata
API. To migrate reports or documents you must move them to a public folder.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Metadata API.

• Metadata API Developer's Guide

• Migration Tool Guide

• APIs and Integration forums

99

Chapter 8 Metadata API

CHAPTER 9 Bulk API

Bulk API provides programmatic access to allow you to efficiently load and retrieve your organization’s
data into Salesforce.

When to Use Bulk API

Bulk API is based on REST principles and is optimized for loading or deleting large sets of data. You can
use it to query, insert, update, upsert, or delete a large number of records asynchronously by submitting
batches which are processed in the background by Salesforce. Bulk API is designed to make it simple to
process data from a few thousand to millions of records.

You can use Bulk API to process a set of records by creating a job that contains one or more batches. The
job specifies which object is being processed and what type of action is being used (query, insert, upsert,
update, or delete). A batch is a set of records sent to the server in an HTTP POST request. Each batch is
processed independently by the server, not necessarily in the order it is received. Batches may be processed
in parallel. It's up to the client to decide how to divide the entire data set into a suitable number of batches.

Supported Editions and Platforms

To use Bulk API, your organization must use Enterprise Edition, Performance Edition, Unlimited Edition, or
Developer Edition. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

Quick Start

Use the quick start sample in this section to create HTTP requests that insert new contact records using
the REST-based Bulk API. The instructions progress through logging in, submitting the records, checking
status, and retrieving the results.

Note: Before you begin building an integration or other client application:

• Install your development platform according to its product documentation.

101

• Read through all the steps before beginning this quick start. You may also wish to review the
rest of this document to familiarize yourself with terms and concepts.

Setting Up a Salesforce Developer Edition Organization
First, you must obtain a Salesforce Developer Edition organization and enable Bulk API:

1. Obtain a Salesforce Developer Edition organization.

If you're not already a member of the developer community, go to
developer.salesforce.com/signup and follow the instructions for signing up for a
Developer Edition account. Even if you already have an Enterprise Edition, Unlimited Edition, or
Performance Edition account, it's strongly recommended that you use Developer Edition for
developing, staging, and testing your solutions against sample data to protect your organization’s
live data. This is especially true for applications that query, insert, update, or delete data (as opposed
to simply reading data).

2. Enable Bulk API.

You must have the “API Enabled” permission. This permission is enabled in the System Administrator
profile.

Setting Up Your Client Application
The Bulk API uses HTTP GET and HTTP POST methods to send and receive CSV and XML content, so it's
very simple to build client applications using the tool or the language of your choice. This quick start uses
a command-line tool called cURL to simplify sending and receiving HTTP requests and responses.

cURL is pre-installed on many Linux and Mac systems. Windows users can download a version at
curl.haxx.se/. When using HTTPS on Windows, ensure that your system meets the cURL requirements
for SSL.

Note: cURL is an open source tool and is not supported by Salesforce.

Escaping the Session ID or Using Single Quotes on Mac and Linux Systems
When running the cURL examples for the REST resources, you may get an error on Mac and Linux
systems due to the presence of the exclamation mark special character in the session ID argument.
To avoid getting this error, do one of the following:

102

Chapter 9 Bulk API

https://developer.salesforce.com/signup
http://curl.haxx.se/

• Escape the exclamation mark (!) special character in the session ID by inserting a backslash before
it (\!) when the session ID is enclosed within double quotes. For example, the session ID string in
this cURL command has the exclamation mark (!) escaped:

curl https://instance_name.salesforce.com/services/data/v34.0/
-H "Authorization: Bearer
00D50000000IehZ\!AQcAQH0dMHZfz972Szmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1E6
LYUfiDUkWe6H34r1AAwOR8B8fLEz6n04NPGRrq0FM"

• Enclose the session ID within single quotes. For example:

curl https://instance_name.salesforce.com/services/data/v34.0/
-H 'Authorization: Bearer sessionID'

Sending HTTP Requests with cURL
Now that you have configured cURL, you can start sending HTTP requests to the Bulk API. You send HTTP
requests to a URI to perform operations with Bulk API.

The URI where you send HTTP requests has the following format:

Web_Services_SOAP_endpoint_instance_name/services/async/APIversion/Resource_address

The part after the API version (Resource_address) varies depending on the job or batch being
processed.

The easiest way to start using the Bulk API is to enable it for processing records in Data Loader using CSV
files. If you use Data Loader, you don't need craft your own HTTP requests or write your own client
application. For an example of writing a client application using Java, see Sample Client Application Using
Java.

Step 1: Logging In Using the SOAP API
The Bulk API doesn't provide a login operation, so you must use SOAP API to log in.

To log in to Salesforce using cURL:

1. Create a text file called login.txt containing the following text:

<?xml version="1.0" encoding="utf-8" ?>
<env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

<env:Body>
<n1:login xmlns:n1="urn:partner.soap.sforce.com">

103

Chapter 9 Bulk API

<n1:username>your_username</n1:username>
<n1:password>your_password</n1:password>

</n1:login>
</env:Body>

</env:Envelope>

2. Replace your_username and your_password with your Salesforce user name and
password.

3. Using a command-line window, execute the following cURL command:

curl https://login.salesforce.com/services/Soap/u/34.0 -H
"Content-Type: text/xml; charset=UTF-8" -H "SOAPAction: login"
-d @login.txt

The Soap/u/ portion of the URI specifies the partner WSDL. You can use Soap/c/ to specify
the enterprise WSDL.

4. Salesforce returns an XML response that includes <sessionId> and <serverUrl> elements.
Note the values of the <sessionId> element and the first part of the host name (instance),
such as na1-api, from the <serverUrl> element. Use these values in subsequent requests
to the Bulk API.

Step 2: Creating a Job
Before you can load any data, you first have to create a job. The job specifies the type of object, such as
Contact, that you're loading, and the operation that you're performing, such as query, insert, update, upsert,
or delete. A job also grants you some control over the data load process. For example, you can abort a job
that is in progress.

To create a job using cURL:

1. Create a text file called job.txt containing the following text:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<operation>insert</operation>
<object>Contact</object>
<contentType>CSV</contentType>

</jobInfo>

Warning: The operation value must be all lower case. For example, you get an error if
you use INSERT instead of insert.

104

Chapter 9 Bulk API

2. Using a command-line window, execute the following cURL command:

curl https://instance.salesforce.com/services/async/34.0/job
-H "X-SFDC-Session: sessionId" -H "Content-Type:
application/xml; charset=UTF-8" -d @job.txt

instance is the portion of the <serverUrl> element and sessionId is the
<sessionId> element that you noted in the login response.

Salesforce returns an XML response with data such as the following:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>750x0000000005LAAQ</id>
<operation>insert</operation>
<object>Contact</object>
<createdById>005x0000000wPWdAAM</createdById>
<createdDate>2009-09-01T16:42:46.000Z</createdDate>
<systemModstamp>2009-09-01T16:42:46.000Z</systemModstamp>
<state>Open</state>
<concurrencyMode>Parallel</concurrencyMode>
<contentType>CSV</contentType>
<numberBatchesQueued>0</numberBatchesQueued>
<numberBatchesInProgress>0</numberBatchesInProgress>
<numberBatchesCompleted>0</numberBatchesCompleted>
<numberBatchesFailed>0</numberBatchesFailed>
<numberBatchesTotal>0</numberBatchesTotal>
<numberRecordsProcessed>0</numberRecordsProcessed>
<numberRetries>0</numberRetries>
<apiVersion>34.0</apiVersion>

</jobInfo>

3. Note the value of the job ID returned in the <id> element. Use this ID in subsequent operations.

Step 3: Adding a Batch to the Job
After creating the job, you're now ready to create a batch of contact records. You send data in batches in
separate HTTP POST requests. The URI for each request is similar to the one you used when creating the
job, but you append jobId/batch to the URI.

Format the data as either CSV or XML if you're not including binary attachments. For information about
binary attachments, see Loading Binary Attachments. For information about batch size limitations, see
Batch size and limits.

105

Chapter 9 Bulk API

This example shows CSV as this is the recommended format. It's your responsibility to divide up your data
set in batches that fit within the limits. In this example, we'll keep it very simple with just a few records.

To add a batch to a job:

1. Create a CSV file named data.csv with the following two records:

FirstName,LastName,Department,Birthdate,Description
Tom,Jones,Marketing,1940-06-07Z,"Self-described as ""the top""
branding guru on the West Coast"
Ian,Dury,R&D,,"World-renowned expert in fuzzy logic design.
Influential in technology purchases."

Note that the value for the Description field in the last row spans multiple lines, so it's
wrapped in double quotes.

2. Using a command-line window, execute the following cURL command:

curl
https://instance.salesforce.com/services/async/34.0/job/jobId/batch
-H "X-SFDC-Session: sessionId" -H "Content-Type: text/csv;
charset=UTF-8" --data-binary @data.csv

instance is the portion of the <serverUrl> element and sessionId is the
<sessionId> element that you noted in the login response. jobId is the job ID that was
returned when you created the job.

Salesforce returns an XML response with data such as the following:

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">
<id>751x00000000079AAA</id>
<jobId>750x0000000005LAAQ</jobId>
<state>Queued</state>
<createdDate>2009-09-01T17:44:45.000Z</createdDate>
<systemModstamp>2009-09-01T17:44:45.000Z</systemModstamp>
<numberRecordsProcessed>0</numberRecordsProcessed>

</batchInfo>

Salesforce does not parse the CSV content or otherwise validate the batch until later. The response
only acknowledges that the batch was received.

3. Note the value of the batch ID returned in the <id> element. You can use this batch ID later to
check the status of the batch.

106

Chapter 9 Bulk API

Step 4: Closing the Job
When you're finished submitting batches to Salesforce, close the job. This informs Salesforce that no more
batches will be submitted for the job, which, in turn, allows the monitoring page in Salesforce to return
more meaningful statistics on the progress of the job.

To close a job using cURL:

1. Create a text file called close_job.txt containing the following text:

<?xml version="1.0" encoding="UTF-8"?>
<jobInfo xmlns="http://www.force.com/2009/06/asyncapi/dataload">

<state>Closed</state>
</jobInfo>

2. Using a command-line window, execute the following cURL command:

curl
https://instance.salesforce.com/services/async/34.0/job/jobId
-H "X-SFDC-Session: sessionId" -H "Content-Type:
application/xml; charset=UTF-8" -d @close_job.txt

instance is the portion of the <serverUrl> element and sessionId is the
<sessionId> element that you noted in the login response. jobId is the job ID that was
returned when you created the job.

This cURL command updates the job resource state from Open to Closed.

Step 5: Checking Batch Status
You can check the status of an individual batch by running the following cURL command:

curl
https://instance.salesforce.com/services/async/34.0/job/jobId/batch/batchId
-H "X-SFDC-Session: sessionId"

instance is the portion of the <serverUrl> element and sessionId is the <sessionId>
element that you noted in the login response. jobId is the job ID that was returned when you created
the job. batchId is the batch ID that was returned when you added a batch to the job.

Salesforce returns an XML response with data such as the following:

<?xml version="1.0" encoding="UTF-8"?>
<batchInfo

xmlns="http://www.force.com/2009/06/asyncapi/dataload">

107

Chapter 9 Bulk API

<id>751x00000000079AAA</id>
<jobId>750x0000000005LAAQ</jobId>
<state>Completed</state>
<createdDate>2009-09-01T17:44:45.000Z</createdDate>
<systemModstamp>2009-09-01T17:44:45.000Z</systemModstamp>
<numberRecordsProcessed>2</numberRecordsProcessed>

</batchInfo>

If Salesforce couldn't read the batch content or if the batch contained errors, such as invalid field names
in the CSV header row, the batch state is Failed. When batch state is Completed, all records in the
batch have been processed. However, individual records may have failed. You need to retrieve the batch
result to see the status of individual records.

You don't have to check the status of each batch individually. You can check the status for all batches that
are part of the job by running the following cURL command:

curl
https://instance.salesforce.com/services/async/34.0/job/jobId/batch
-H "X-SFDC-Session: sessionId"

Step 6: Retrieving Batch Results
Once a batch is Completed, you need to retrieve the batch result to see the status of individual records.

Retrieve the results for an individual batch by running the following cURL command:

curl
https://instance.salesforce.com/services/async/34.0/job/jobId/batch/batchId/result
-H "X-SFDC-Session: sessionId"

instance is the portion of the <serverUrl> element and sessionId is the <sessionId>
element that you noted in the login response. jobId is the job ID that was returned when you created
the job. batchId is the batch ID that was returned when you added a batch to the job.

Salesforce returns a response with data such as the following:

"Id","Success","Created","Error"
"003x0000004ouM4AAI","true","true",""
"003x0000004ouM5AAI","true","true",""

The response body is a CSV file with a row for each row in the batch request. If a record was created, the
ID is contained in the row. If a record was updated, the value in the Created column is false. If a record
failed, the Error column contains an error message.

108

Chapter 9 Bulk API

Best Practices

Consider the best practices explained in this section.

General Guidelines for Data Loads
This section gives you some tips for planning your data loads for optimal processing time. Always test your
data loads in a sandbox organization first. Note that the processing times may be different in a production
organization.

Use Parallel Mode Whenever Possible
You get the most benefit from the Bulk API by processing batches in parallel, which is the default mode
and enables faster loading of data. However, sometimes parallel processing can cause lock contention
on records. The alternative is to process using serial mode. Don't process data in serial mode unless
you know this would otherwise result in lock timeouts and you can't reorganize your batches to avoid
the locks.

You set the processing mode at the job level. All batches in a job are processed in parallel or serial
mode.

Organize Batches to Minimize Lock Contention
For example, when an AccountTeamMember record is created or updated, the account for this record
is locked during the transaction. If you load many batches of AccountTeamMember records and they
all contain references to the same account, they all try to lock the same account and it's likely that
you'll experience a lock timeout. Sometimes, lock timeouts can be avoided by organizing data in
batches. If you organize AccountTeamMember records by AccountId so that all records referencing
the same account are in a single batch, you minimize the risk of lock contention by multiple batches.

The Bulk API doesn't generate an error immediately when encountering a lock. It waits a few seconds
for its release and, if it doesn't happen, the record is marked as failed. If there are problems acquiring
locks for more than 100 records in a batch, the Bulk API places the remainder of the batch back in the
queue for later processing. When the Bulk API processes the batch again later, records marked as failed
are not retried. To process these records, you must submit them again in a separate batch.

If the Bulk API continues to encounter problems processing a batch, it's placed back in the queue and
reprocessed up to 10 times before the batch is permanently marked as failed. Even if the batch failed,
some records could have completed successfully. To get batch results to see which records, if any,
were processed, see Getting Batch Results. If errors persist, create a separate job to process the data
in serial mode, which ensures that only one batch is processed at a time.

Be Aware of Operations that Increase Lock Contention
The following operations are likely to cause lock contention and necessitate using serial mode:

109

Chapter 9 Bulk API

• Creating new users

• Updating ownership for records with private sharing

• Updating user roles

• Updating territory hierarchies

If you encounter errors related to these operations, create a separate job to process the data in serial
mode.

Note: Because your data model is unique to your organization, Salesforce can't predict exactly
when you might see lock contention problems.

Minimize Number of Fields
Processing time is faster if there are fewer fields loaded for each record. Foreign key, lookup relationship,
and roll-up summary fields are more likely to increase processing time. It's not always possible to
reduce the number of fields in your records, but, if it is possible, loading times will improve.

Minimize Number of Workflow Actions
Workflow actions increase processing time.

Minimize Number of Triggers
You can use parallel mode with objects that have associated triggers if the triggers don't cause
side-effects that interfere with other parallel transactions. However, Salesforce doesn't recommend
loading large batches for objects with complex triggers. Instead, you should rewrite the trigger logic
as a batch Apex job that is executed after all the data has loaded.

Optimize Batch Size
Salesforce shares processing resources among all its customers. To ensure that each organization
doesn't have to wait too long to process its batches, any batch that takes more than 10 minutes is
suspended and returned to the queue for later processing. The best course of action is to submit
batches that process in less than 10 minutes. For more information on monitoring timing for batch
processing, see Monitoring a Batch.

Batch sizes should be adjusted based on processing times. Start with 5000 records and adjust the
batch size based on processing time. If it takes more than five minutes to process a batch, it may be
beneficial to reduce the batch size. If it takes a few seconds, the batch size should be increased. If you
get a timeout error when processing a batch, split your batch into smaller batches, and try again. For
more information, see Bulk API Limits.

Note: For Bulk queries, the batch size is not applied to either the query result set, or the retrieved
data size. If your bulk query is taking too long to process, you will need to filter your query
statement to return less data.

110

Chapter 9 Bulk API

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_batch.htm

Minimize Number of Batches in the Asynchronous Queue
Salesforce uses a queue-based framework to handle asynchronous processes from such sources as
future and batch Apex, as well as Bulk API batches. This queue is used to balance request workload
across organizations. If more than 2,000 unprocessed requests from a single organization are in the
queue, any additional requests from the same organization will be delayed while the queue handles
requests from other organizations. Minimize the number of batches submitted at one time to ensure
that your batches are not delayed in the queue.

Using Compression for Responses
In API version 27.0 and later, Bulk API can compress response data which reduces network traffic and
improves response time.

Responses are compressed if the client makes a request using the Accept-Encoding header, with
a value of gzip. Bulk API compresses the response in gzip format and sends the response to the client
with a Content-Encoding: gzip response header. If a request is made using the
Accept-Encoding header with a value other than gzip, the encoding type is ignored, and the
response is not compressed.

As an example, if a Batch Results request is made with the Accept-Encoding: gzip header, the
response looks something like:

HTTP/1.1 200 OK
Date: Tue, 09 Oct 2012 18:36:45 GMT
Content-Type: text/csv; charset=UTF-8
Content-Encoding: gzip
Transfer-Encoding: chunked

...compressed response body...

Bulk API follows the HTTP 1.1 standards for response compression. Most clients automatically support
compressed responses. Visit https://developer.salesforce.com/page/Tools for more
information on particular clients.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Bulk API.

• Bulk API Developer's Guide

• Salesforce Object Reference

111

Chapter 9 Bulk API

https://developer.salesforce.com/page/Tools

• APIs and Integration forums

112

Chapter 9 Bulk API

CHAPTER 10 Streaming API

Use Streaming API to receive notifications for changes to Salesforce data that match a data query you
define, in a secure and scalable way.

When to Use Streaming API

Streaming API is useful when you want notifications to be pushed from the server to the client. Consider
Streaming API for applications that poll frequently. Applications that have constant polling action against
the Salesforce infrastructure, consuming unnecessary API call and processing time, would benefit from
this API which reduces the number of requests that return no data. Streaming API is also ideal for applications
that require general notification of data changes. This enables you to reduce the number of API calls and
improve performance.

Streaming API events can be received by:

• Pages in the Salesforce application.

• Application servers outside of Salesforce.

• Clients outside the Salesforce application.

Streaming API uses push technology to send notification events to clients. In push technology, the server
pushes out information to the client after the client has subscribed to a channel of information. In order
for the client to receive the information, the client must maintain a connection to the server. Streaming
API uses the Bayeux protocol and CometD, so the client-to-server connection is maintained through long
polling.

Supported Editions and Platforms

To use Streaming API, your organization must use Enterprise Edition, Performance Edition, Unlimited
Edition, or Developer Edition. If you are an existing Salesforce customer and want to upgrade to Enterprise,
Unlimited, or Performance Edition, contact your account representative.

For Streaming API you should ensure that the “Streaming API” and “API Enabled” permissions are enabled
for your organization, under Setup in Customize > User Interface.

113

Quick Start Using Workbench

This quick start shows you how to get started with Streaming API by using Workbench. This quick start
takes you step-by-step through the process of using Streaming API to receive a notification when a record
is updated.

• Prerequisites

• Step 1: Create an Object

• Step 2: Create a PushTopic

• Step 3: Subscribe to the PushTopic Channel

• Step 4: Test the PushTopic Channel

Prerequisites
You need access and appropriate permissions to complete the quick start steps.

• Access to a Developer Edition organization.

If you are not already a member of the Force.com developer community, go to
developer.salesforce.com/signup and follow the instructions for signing up for a
Developer Edition organization. Even if you already have Enterprise Edition, Unlimited Edition, or
Performance Edition, use Developer Edition for developing, staging, and testing your solutions against
sample data to protect your organization’s live data. This is especially true for applications that insert,
update, or delete data (as opposed to simply reading data).

• The “API Enabled” permission must be enabled for your Developer Edition organization. This permission
is enabled by default, but may have been changed by an administrator.

• The “Streaming API” permission must be enabled.

Note: To verify that the “API Enabled” and “Streaming API” permissions are enabled in your
organization, from Setup, click Customize > User Interface.

• The logged-in user must have “Read” permission on the PushTopic standard object to receive
notifications.

• The logged-in user must have “Create” permission on the PushTopic standard object to create and
manage PushTopic records.

• The logged-in user must have “Author Apex” permissions to create a PushTopic by using the Developer
Console.

114

Chapter 10 Streaming API

https://developer.salesforce.com/signup

Step 1: Create an Object
The first step is to create an InvoiceStatement object. After you create a PushTopic and subscribe to it,
you’ll get notifications when an InvoiceStatement record is created, updated, deleted, or undeleted. You’ll
create the object with the user interface.

1. From Setup, click Create > Objects.

2. Click New Custom Object and fill in the custom object definition.

• In the Label field, type Invoice Statement.

• In the Plural Label field, type Invoice Statements.

• Select Starts with vowel sound.

• In the Record Name field , type Invoice Number.

• In the Data Type field , select Auto Number.

• In the Display Format field, type INV-{0000}.

• In the Starting Number field, type 1.

3. Click Save.

4. Add a Status field.

a. Scroll down to the Custom Fields & Relationships related list and click New.

b. For Data Type, select Picklist and click Next.

c. In the Field Label field, type Status.

d. Type the following picklist values in the box provided, with each entry on its own line.

Open
Closed
Negotiating
Pending

e. Select the checkbox for Use first value as default value.

f. Click Next.

g. For field-level security, select Read Only and then click Next.

h. Click Save & New to save this field and create a new one.

5. Now create an optional Description field.

a. In the Data Type field, select Text Area and click Next.

b. In the Field Label and Field Name fields, enter Description.

115

Chapter 10 Streaming API

c. Click Next, accept the defaults, and click Next again.

d. Click Save to go the detail page for the Invoice Statement object.

Your InvoiceStatement object should now have two custom fields.

Step 2: Create a PushTopic
Use the Developer Console to create the PushTopic record that contains a SOQL query. Event notifications
are generated for updates that match the query. Alternatively, you can also use Workbench to create a
PushTopic.

1. Select Your Name > Developer Console.

2. Click Debug > Open Execute Anonymous Window.

3. In the Enter Apex Code window, paste in the following Apex code, and click Execute.

PushTopic pushTopic = new PushTopic();
pushTopic.Name = 'InvoiceStatementUpdates';
pushTopic.Query = 'SELECT Id, Name, Status__c, Description__c
FROM Invoice_Statement__c';
pushTopic.ApiVersion = 34.0;
pushTopic.NotifyForOperationCreate = true;
pushTopic.NotifyForOperationUpdate = true;
pushTopic.NotifyForOperationUndelete = true;
pushTopic.NotifyForOperationDelete = true;
pushTopic.NotifyForFields = 'Referenced';
insert pushTopic;

Note: If your organization has a namespace prefix defined, then you’ll need to preface
the custom object and field names with that namespace when you define the PushTopic
query. For example, SELECT Id, Name, namespace__Status__c,
namespace__Description__c FROM
namespace__Invoice_Statement__c.

Because NotifyForOperationCreate, NotifyForOperationUpdate,
NotifyForOperationDelete and NotifyForOperationUndelete are set to
true, Streaming API evaluates records that are created, updated, deleted, or undeleted and
generates a notification if the record matches the PushTopic query. Because NotifyForFields
is set to Referenced, Streaming API will use fields in both the SELECT clause and the WHERE
clause to generate a notification. Whenever the fields Name, Status__c, or
Description__c are updated, a notification will be generated on this channel. For more
information about NotifyForOperationCreate, NotifyForOperationUpdate,

116

Chapter 10 Streaming API

NotifyForOperationDelete, NotifyForOperationUndelete, and
NotifyForFields, see Event Notification Rules.

Note: In API version 28.0 and earlier, notifications are only generated when records are
created or updated. The NotifyForOperationCreate,
NotifyForOperationUpdate, NotifyForOperationDelete, and
NotifyForOperationUndelete fields are unavailable and the
NotifyForOperations enum field is used instead to set which record events
generate a notification. For more information see PushTopic.

Step 3: Subscribe to the PushTopic Channel
In this step, you’ll subscribe to the channel you created with the PushTopic record in the previous step.

Important: Workbench is a free, open source, community-supported tool (see the Help page in
Workbench). Salesforce provides a hosted instance of Workbench for demonstration purposes
only—Salesforce recommends that you do not use this hosted instance of Workbench to access
data in a production database. If you want to use Workbench for your production database, you can
download, host, and configure it using your own resources.

You can download Workbench from http://code.google.com/p/forceworkbench/downloads/list.

1. In your browser, navigate to
https://developer.salesforce.com/page/Workbench.

2. For Environment, select Production.

3. For API Version, select 34.0.

4. Accept the terms of service and click Login with Salesforce.

5. Once you successfully establish a connection to your database, you land on the Select page.

6. Click queries > Streaming Push Topics.

7. In the Push Topic field, select InvoiceStatementUpdates.

8. Click Subscribe.

You’ll see the connection and response information and a response like "Subscribed to
/topic/InvoiceStatementUpdates."

Keep this browser window open and make sure the connection doesn’t time out. You’ll be able to see the
event notifications triggered by the InvoiceStatement record you create in the next step.

117

Chapter 10 Streaming API

http://code.google.com/p/forceworkbench/downloads/list
https://developer.salesforce.com/page/Workbench

Step 4: Test the PushTopic Channel
Make sure the browser that you used in Step 3: Subscribe to the PushTopic Channel stays open and the
connection doesn’t time out. You’ll view event notifications in this browser.

The final step is to test the PushTopic channel by creating a new InvoiceStatement record in Workbench
and viewing the event notification.

1. In a new browser window, open an instance of Workbench and log in using the same username
by following the steps in Step 3: Subscribe to the PushTopic Channel.

Note: If the user that makes an update to a record and the user that’s subscribed to the
channel don’t share records, then the subscribed user won’t receive the notification. For
example, if the sharing model for the organization is private.

2. Click data > Insert.

3. For Object Type, select Invoice_Statement__c. Ensure that the Single Record field is selected,
and click Next.

4. Type in a value for the Description__c field.

5. Click Confirm Insert.

6. Switch over to your Streaming Push Topics browser window. You’ll see a notification that the
invoice statement was created. The notification returns the Id, Status__c, and
Description__c fields that you defined in the SELECT statement of your PushTopic query.
The message looks something like this:

{
"channel": "/topic/InvoiceStatementUpdates",
"data": {
"event": {
"type": "created",
"createdDate": "2011-11-14T17:33:45.000+0000"

},
"sobject": {
"Name": "INV-0004",
"Id": "a00D0000008oLi8IAE",
"Description__c": "Test invoice statement",
"Status__c": "Open"

}
}

}

118

Chapter 10 Streaming API

Best Practices

Consider the best practices explained in this section.

Clients and Timeouts
Streaming API imposes two timeouts, as supported in the Bayeux protocol.

Socket timeout: 110 seconds
A client receives events (JSON-formatted HTTP responses) while it waits on a connection. If no events
are generated and the client is still waiting, the connection times out after 110 seconds and the server
closes the connection. Clients should reconnect before two minutes to avoid the connection timeout.

Reconnect timeout: 40 seconds
After receiving the events, a client needs to reconnect to receive the next set of events. If the
reconnection doesn't happen within 40 seconds, the server expires the subscription and the connection
is closed. If this happens, the client must start again and handshake, subscribe, and connect.

Each Streaming API client logs into an instance and maintains a session. When the client handshakes,
connects, or subscribes, the session timeout is restarted. A client session times out if the client doesn’t
reconnect to the server within 40 seconds after receiving a response (an event, subscribe result, and so
on).

Note that these timeouts apply to the Streaming API client session and not the Salesforce authentication
session. If the client session times out, the authentication session remains active until the
organization-specific timeout policy goes into effect.

Clients and Cookies for Streaming API
The client you create to work with the Streaming API must obey the standard cookie protocol with the
server. The client must accept and send the appropriate cookies for the domain and URI path, for example
https://instance_name.salesforce.com/cometd.

Streaming API requirements on clients:

• The "Content-Type: application/json" header is required on all calls to the cometd
servlet if the content of the post is JSON.

• A header containing the Salesforce session ID or OAuth token is required. For example,
Authorization: Bearer sessionId.

• The client must accept and send back all appropriate cookies for the domain and URI path. Clients
must obey the standard cookie protocol with the server.

119

Chapter 10 Streaming API

• The subscribe response and other responses might contain the following fields. These fields aren't
contained in the CometD specification.

– EventType contains either created or updated.

– CreatedDate contains the event's creation date.

Supported Browsers
Streaming API supports the following browsers:

• Internet Explorer 8 and greater

• Firefox 4 and greater

We recommend using the latest version of your browser with the most recent security updates and fixes
applied. For regions that must use Internet Explorer 6 or 7, Salesforce has confirmed that these browsers
will work with Streaming API using jQuery 1.5.1 and CometD 2.2.0.

HTTPS Recommended
Streaming API follows the preference set by your administrator for your organization. By default this is
HTTPS. To protect the security of your data, we recommend you use HTTPS.

Debugging Streaming API Applications
You must be able to see all of the requests and responses in order to debug Streaming API applications.
Because Streaming API applications are stateful, you need to use a proxy tool to debug your application.
Use a tool that can report the contents of all requests and results, such as Burp Proxy, Fiddler, or Firebug.

The most common errors include:

• Browser and JavaScript issues

• Sending requests out of sequence

• Malformed requests that don't follow the Bayeux protocol

• Authorization issues

• Network or firewall issues with long-lived connections

Using these tools, you can look at the requests, headers, body of the post, as well as the results. If you must
contact us for help, be sure to copy and save these elements to assist in troubleshooting.

The first step for any debugging process is to follow the instructions in the Quick Start Using Workbench,
Example: Interactive Visualforce Page, Example: Visualforce Page, or Example: Java Client and verify that

120

Chapter 10 Streaming API

http://portswigger.net/burp/proxy.html
http://www.fiddler2.com/fiddler2/
http://getfirebug.com/

you can implement the samples provided. The next step is to use your debug tool to help isolate the
symptoms and cause of any problems.

402 Error
You may sometimes receive an error notification that contains “402::Unknown client” and looks something
like this:

Thu Mar 29 06:08:08 PDT 2012 [CHANNEL:META_CONNECT]:
{"id":"78","error":"402::Unknown
client","successful":false,"advice":{"interval":500,"reconnect":"handshake"}

This can be caused by various conditions including when your client connection times out. If you see this
error, you should reconnect to the server with a handshake. For more information about client timeouts
and Streaming API limits, see

Clients and Timeouts and Streaming API Limits.

Monitoring Events Usage
The number of events that can be generated in a 24–hour period depends on your type of organization.
For more information, see Streaming API Limits. You can monitor Streaming API events usage on the
Company Information page.

• From Setup, click Company Profile > Company Information.

If you refresh the Company Information page, the Streaming API Events value may fluctuate slightly.
Regardless of these small fluctuations, your limits are being assessed accurately.

Notification Message Order
Changes to data in your organization happen in a sequential manner. However, the order in which you
receive event notification messages in Streaming API isn’t guaranteed. On the client side, you can use
createdDate to order the notification messages returned in a channel. The value of createdDate
is a UTC date/time value that indicates when the event occurred.

This code shows multiple messages, one generated by the creation of a record and one generated by the
update of a record.

{
"channel": "/topic/InvoiceStatementUpdates",
"clientId": "1g177wgjj14omtdo3rcl0hjhm4w",
"data": {

121

Chapter 10 Streaming API

"event": {
"type": "updated",
"createdDate": "2013-05-10T18:16:19.000+0000"

},
"sobject": {
"Name": "INV-0002",
"test_ds__Status__c": "Negotiating",
"test_ds__Description__c": "Update to invoice statement #2",
"Id": "a00D0000008pvxcIAA"

}
}

}

{
"channel": "/topic/InvoiceStatementUpdates",
"clientId": "1g177wgjj14omtdo3rcl0hjhm4w",
"data": {
"event": {
"type": "created",
"createdDate": "2013-05-10T18:15:11.000+0000"

},
"sobject": {
"Name": "INV-0003",
"test_ds__Status__c": "Open",
"test_ds__Description__c": "New invoice statement #1",
"Id": "a00D0000008pvzdIAA"

}
}

}

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Streaming API.

• Streaming API Developer’s Guide

• SOQL and SOSL Reference Guide

• APIs and Integration forums

122

Chapter 10 Streaming API

CHAPTER 11 Data.com API

The Data.com API Developer’s Guide includes theData.com Search API, Data.com Match API, Data.com
Social Profile Match API, Data.com Purchase API, Data.com DUNSRight Match API, and the Purchasing
Data.com Records process.

Data.com Search API
A SOQL-based interface that searches the Data.com database for contacts and companies, and returns
information for the fields you’ve specified. The API is available to customers who have purchased
Data.com Prospector.

Data.com Match API
A REST based API that provides a matching service (or algorithm) to match contact and company
information with the latest Data.com data . The Match API is available to customers who have purchased
Data.com Full Clean.

Data.com Purchase API
Purchase Data.com company and contact records with the Data.com Purchase API. In a single POST
request purchase multiple contacts or records. You can also retrieve purchase usage information,
contact and company details, and detailed information on your purchases.

Data.com Social Profile Match API
Match Data.com contacts with social handles such as LinkedIn and Twitter.

Data.com DUNSRight Match API
Match companies by DUNS numbers and other key fields. The Data.com DUNSRight Match API uses
a unified match API call pattern. Match options can now be specified in the POST body instead of the
URL.

Data.com Record Purchase Process Flow
A general overview about the Data.com record purchase process.

When to Use Data.com API

The Data.com Purchase API provides a Conntect-style API to purchase contacts or companies in a single
API call.

Data.com Prospector and Data.com Clean already provide advanced searching and matching capabilities
through Data.com. Use Data.com Search API and Data.com Match API to extend capabilities that Data.com

123

Prospector and Data.com Clean don’t provide. Data.com API gives you a powerful, convenient, and simple
interface for interacting with Salesforce.

Click Introduction to read about the latest Data.com APIs.

Supported Editions and Platforms

To use Data.com APIs, your organization must use Enterprise Edition, Performance Edition, or Developer
Edition. Your organization must also purchase Data.com Prospector to use Data.com Search API, or Data.com
Clean to use Data.com Match API, Data.com Social Profile Match API, or Data.com DUNSRight Match API.
Contact your account representative to upgrade your edition of Salesforce, or to purchase Data.com
Prospector or Data.com Clean.

For more information about all the latest Data.com APIs, see Data.com API Deverloper’s Guide.

Data.com Search API

EDITIONS

Available in: Developer,
Professional (add-on),
Enterprise, and
Performance Editions.

The Data.com Search API works with Datacloud objects to search the
Data.com database for contacts and companies. The search is based
on the criteria in the query and returns information for the specified
fields.

There is a 24-hour rolling quota on the number of API calls that you
can make. Your organization gets 1,000 daily calls for every Data.com
Prospector license purchased. For example, an organization with 10
prospector licenses has a daily limit of 10,000 Search API calls (1,000
x 10 = 10,000). Call quotas are implemented at the Salesforce organization level.

You can view your API call limits from your organization’s user interface.

1. From Setup, click Data.com Administration > Licenses & Limits.

2. View Data.com API Limits (Daily) under the Data.com API section.

For more information about all the latest Data.com APIs, see Data.com API Deverloper’s Guide.

124

Chapter 11 Data.com API

https://developer.salesforce.com/docs/atlas.en-us.datadotcom_api_dev_guide.meta/datadotcom_api_dev_guide/
https://developer.salesforce.com/docs/atlas.en-us.datadotcom_api_dev_guide.meta/datadotcom_api_dev_guide/

Data.com Match API

EDITIONS

Available in: Developer,
Professional (add-on),
Enterprise, and
Performance Editions.

The Data.com Match API provides a matching service (or algorithm)
to match contact and company information with the latest Data.com
data. The API matches your records with Data.com records and
indicates how the records differ.

The REST API for Data.com Match has two resources.

• DatacloudContact: Returns matched data from Contacts in the
Data.com database.

• DatacloudCompany: Returns matched data from Companies in the Data.com database.

Use POST requests to match your data with records in Data.com.

There is a 24–hour rolling quota on the number of API calls you can make. Your organization gets 1,000
daily calls for every licence purchased. For example, an organization with 10 clean licenses would have a
daily limit of 10,000 Match API calls (1,000 x 10 = 10,000). Call quotas are implemented at the Salesforce
organization level.

For more information about all the latest Data.com APIs, see Data.com API Deverloper’s Guide.

Data.com Purchase API

Purchase Data.com company and contact records with the Data.com Purchase API.

The Data.com Purchase API, part of the Chatter REST API, is used to purchase Data.com contact and
company records, retrieve record details, and get purchase details about specific orders.

Data.com DUNSRight Match API

Use the Data.com DUNSRight Match API to match your account records with Data.com company records
using the DUNSRight match engine. You can match by DUNS number and other key fields.

The Data.com DUNSRight Match API uses a unified match API call pattern. Match options can now be
specified in the POST body instead of the URL.

Note: All examples for the Data.com DUNSRight Match API have been formatted for readability.

125

Chapter 11 Data.com API

https://developer.salesforce.com/docs/atlas.en-us.datadotcom_api_dev_guide.meta/datadotcom_api_dev_guide/
https://developer.salesforce.com/docs/atlas.en-us.chatterapi.meta/chatterapi/

Data.com Social Profile Match API

Match Data.com contacts with social handles such as LinkedIn and Twitter.

The Data.com Social Profile Match API uses a unified match API call pattern. Match options can now be
specified in the POST body instead of the URL.

Purchasing Data.com Records

You can use the Data.com APIs to purchase contact or company records from Data.com.When you purchase
a record, you get access to all the Data.com information for that record, all from within Salesforce.

For more information about all the latest Data.com APIs, see Data.com API Deverloper’s Guide.

126

Chapter 11 Data.com API

https://developer.salesforce.com/docs/atlas.en-us.datadotcom_api_dev_guide.meta/datadotcom_api_dev_guide/

CHAPTER 12 SOQL and SOSL

Salesforce Object Query Language (SOQL) and Salesforce Object Search Language (SOSL) are a data query
language and a data search language, respectively, used within many other Salesforce APIs.

When to Use SOQL

Use SOQL whenever you need to construct powerful data query strings. SOQL isn’t used directly, but rather
through another Salesforce API environment. Some examples of where SOQL is used include:

• The queryString parameter in the query() and queryAll() SOAP API calls.

• The query request parameter used in the REST API query and queryAll resources.

• The query portion of a bulk query request in Bulk API.

• The query field in a PushTopic record that defines the basis of a Streaming API channel.

• The query strings for regular and dynamic SOQL statements in Apex.

SOQL is used to specify objects and fields, using a syntax similar to the SELECT statement in Structured
Query Language (SQL). For example, the following SOQL statement returns the Id field for all Merchandise
custom object records that have a Name value of “My Merchandise”:

SELECT Id FROM Merchandise__c WHERE Name = 'My Merchandise'

When to Use SOSL

Use SOSL whenever you need to construct data search strings. SOSL isn’t used directly, but rather through
another Salesforce API environment. Some examples of where SOSL is used include:

• The searchString parameter in the search() SOAP API call.

• The search request parameter used in the REST API search resource.

• The search strings for regular and dynamic SOSL statements in Apex.

• Visualforce controllers and getter methods.

127

SOSL is used to specify text to search for across all records in your organization, using a specialized search
syntax. For example, the following SOSL statement returns the IDs of all records in your organization that
contain the text “Joe Smith” or “Dan Fielding” in the Name field of any object:

FIND {"Joe Smith" OR "Dan Fielding"}
IN NAME FIELDS

Supported Editions and Platforms

Since SOQL and SOSL aren’t directly accessed APIs, refer to the supported editions and platforms information
for the API you are using that uses SOQL or SOSL.

Note that not every API supports SOQL and SOSL, and some APIs that do use them only support a subset
of the available SOQL clauses. For example, a bulk query in Bulk API does not support nested queries or
the COUNT, ROLLUP, SUM, GROUP BY CUBE, or OFFSET clauses. See the individual developer guides for
the API you are using to determine how SOQL and SOSL are supported in that API.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on SOQL and SOSL.

• SOQL and SOSL Reference Guide

• APIs and Integration forums

128

Chapter 12 SOQL and SOSL

CHAPTER 13 Apex

Apex is an object-oriented, on-demand programming language that lets you add business logic and
triggers for your organization’s data on Salesforce.

When to Use Apex

Apex is a strongly typed, object-oriented programming language that allows developers to execute flow
and transaction control statements on the Force.com platform server in conjunction with calls to the
Force.com API. Using syntax that looks like Java and acts like database stored procedures, Apex enables
developers to add business logic to most system events, including button clicks, related record updates,
and Visualforce pages. Apex code can be initiated by Web service requests and from triggers on objects.

Use Apex if you want to:

• Create Web services.

• Create email services.

• Perform complex validation over multiple objects.

• Create complex business processes that are not supported by workflow.

• Create custom transactional logic (logic that occurs over the entire transaction, not just with a single
record or object).

• Attach custom logic to another operation, such as saving a record, so that it occurs whenever the
operation is executed, regardless of whether it originates in the user interface, a Visualforce page, or
from SOAP API.

Supported Editions and Platforms

Apex is included in Enterprise Edition, Performance Edition, Unlimited Edition, Developer Edition, and
Database.com. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

129

Apex Quick Start

Once you have a Developer Edition or sandbox organization, you may want to learn some of the core
concepts of Apex. Because Apex is very similar to Java, you may recognize much of the functionality.

After reviewing the basics, you are ready to write your first Apex program—a very simple class, trigger,
and unit test.

In addition, there is a more complex shipping invoice example that you can also walk through. This example
illustrates many more features of the language.

Note: The Hello World and the shipping invoice samples require custom fields and objects. You
can either create these on your own, or download the objects, fields and Apex code as a managed
packaged from Force.com AppExchange. For more information, see
https://developer.salesforce.com/docs.

Writing Your First Apex Class and Trigger
This step-by-step tutorial shows how to create a simple Apex class and trigger. It also shows how to deploy
these components to a production organization.

This tutorial is based on a custom object called Book that is created in the first step. This custom object is
updated through a trigger.

Creating a Custom Object
Prerequisites:

A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization, or an
account in a Developer organization.

For more information about creating a sandbox organization, see “Sandbox Overview” in the Salesforce
online help. To sign up for a free Developer organization, see the Developer Edition Environment Sign Up
Page.

In this step, you create a custom object called Book with one custom field called Price.

1. Log into your sandbox or Developer organization.

2. From Setup, click Create > Objects and click New Custom Object.

3. Enter Book for the label.

4. Enter Books for the plural label.

5. Click Save.

130

Chapter 13 Apex

https://developer.salesforce.com/docs
http://developer.force.com/join
http://developer.force.com/join

Ta dah! You've now created your first custom object. Now let's create a custom field.

6. In the Custom Fields & Relationships section of the Book detail page, click New.

7. Select Number for the data type and click Next.

8. Enter Price for the field label.

9. Enter 16 in the length text box.

10. Enter 2 in the decimal places text box, and click Next.

11. Click Next to accept the default values for field-level security.

12. Click Save.

You’ve just created a custom object called Book, and added a custom field to that custom object. Custom
objects already have some standard fields, like Name and CreatedBy, and allow you to add other fields
that are more specific to your implementation. For this tutorial, the Price field is part of our Book object
and it is accessed by the Apex class you will write in the next step.

Adding an Apex Class
Prerequisites:

• A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization, or
an account in a Developer organization.

• The Book custom object.

In this step, you add an Apex class that contains a method for updating the book price. This method is
called by the trigger that you will be adding in the next step.

1. From Setup, click Develop > Apex Classes and click New.

2. In the class editor, enter this class definition:

public class MyHelloWorld {

}

The previous code is the class definition to which you will be adding one method in the next step.
Apex code is generally contained in classes. This class is defined as public, which means the
class is available to other Apex classes and triggers. For more information, see Classes, Objects,
and Interfaces.

3. Add this method definition between the class opening and closing brackets.

public static void applyDiscount(Book__c[] books) {
for (Book__c b :books){

131

Chapter 13 Apex

b.Price__c *= 0.9;
}

}

This method is called applyDiscount, and it is both public and static. Because it is a static
method, you don't need to create an instance of the class to access the method—you can just
use the name of the class followed by a dot (.) and the name of the method. For more information,
see Static and Instance Methods, Variables, and Initialization Code.

This method takes one parameter, a list of Book records, which is assigned to the variable books.
Notice the __c in the object name Book__c. This indicates that it is a custom object that you
created. Standard objects that are provided in the Salesforce application, such as Account, don't
end with this postfix.

The next section of code contains the rest of the method definition:

for (Book__c b :books){
b.Price__c *= 0.9;

}

Notice the __c after the field name Price__c. This indicates it is a custom field that you created.
Standard fields that are provided by default in Salesforce are accessed using the same type of dot
notation but without the __c, for example, Name doesn't end with __c in Book__c.Name.
The statement b.Price__c *= 0.9; takes the old value of b.Price__c, multiplies it
by 0.9, which means its value will be discounted by 10%, and then stores the new value into the
b.Price__c field. The *= operator is a shortcut. Another way to write this statement is
b.Price__c = b.Price__c * 0.9;. See Understanding Expression Operators.

4. Click Save to save the new class. You should now have this full class definition.

public class MyHelloWorld {
public static void applyDiscount(Book__c[] books) {

for (Book__c b :books){
b.Price__c *= 0.9;

}
}

}

You now have a class that contains some code that iterates over a list of books and updates the Price field
for each book. This code is part of the applyDiscount static method called by the trigger that you
will create in the next step.

132

Chapter 13 Apex

Adding an Apex Trigger
Prerequisites:

• A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization, or
an account in a Developer organization.

• The MyHelloWorld Apex class.

In this step, you create a trigger for the Book__c custom object that calls the applyDiscount
method of the MyHelloWorld class that you created in the previous step.

A trigger is a piece of code that executes before or after records of a particular type are inserted, updated,
or deleted from the Force.com platform database. Every trigger runs with a set of context variables that
provide access to the records that caused the trigger to fire. All triggers run in bulk; that is, they process
several records at once.

1. From Setup, click Create > Objects and click the name of the object you just created, Book.

2. In the triggers section, click New.

3. In the trigger editor, delete the default template code and enter this trigger definition:

trigger HelloWorldTrigger on Book__c (before insert) {

Book__c[] books = Trigger.new;

MyHelloWorld.applyDiscount(books);
}

The first line of code defines the trigger:

trigger HelloWorldTrigger on Book__c (before insert) {

It gives the trigger a name, specifies the object on which it operates, and defines the events that
cause it to fire. For example, this trigger is called HelloWorldTrigger, it operates on the Book__c
object, and runs before new books are inserted into the database.

The next line in the trigger creates a list of book records named books and assigns it the contents
of a trigger context variable called Trigger.new. Trigger context variables such as
Trigger.new are implicitly defined in all triggers and provide access to the records that caused
the trigger to fire. In this case, Trigger.new contains all the new books that are about to be
inserted.

Book__c[] books = Trigger.new;

133

Chapter 13 Apex

The next line in the code calls the method applyDiscount in the MyHelloWorld class.
It passes in the array of new books.

MyHelloWorld.applyDiscount(books);

You now have all the code that is needed to update the price of all books that get inserted. However, there
is still one piece of the puzzle missing. Unit tests are an important part of writing code and are required.
In the next step, you will see why this is so and you will be able to add a test class.

Adding a Test Class
Prerequisites:

• A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization, or
an account in a Developer organization.

• The HelloWorldTrigger Apex trigger.

In this step, you add a test class with one test method. You also run the test and verify code coverage. The
test method exercises and validates the code in the trigger and class. Also, it enables you to reach 100%
code coverage for the trigger and class.

Note: Testing is an important part of the development process. Before you can deploy Apex or
package it for the Force.com AppExchange, the following must be true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete
successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization
namespace is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the
percentage of code that is covered. Instead, you should make sure that every use case of
your application is covered, including positive and negative cases, as well as bulk and single
records. This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

1. From Setup, click Develop > Apex Classes and click New.

134

Chapter 13 Apex

2. In the class editor, add this test class definition, and then click Save.

@isTest
private class HelloWorldTestClass {

static testMethod void validateHelloWorld() {
Book__c b = new Book__c(Name='Behind the Cloud',

Price__c=100);
System.debug('Price before inserting new book: ' +

b.Price__c);

// Insert book
insert b;

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

}
}

This class is defined using the @isTest annotation. Classes defined as such can only contain
test methods. One advantage to creating a separate class for testing is that classes defined with
isTest don't count against your organization limit of 3 MB for all Apex code. You can also add
the @isTest annotation to individual methods. For more information, see IsTest Annotation
and Execution Governors and Limits.

The method validateHelloWorld is defined as a testMethod. This means that if any
changes are made to the database, they are automatically rolled back when execution completes
and you don't have to delete any test data created in the test method.

First the test method creates a new book and inserts it into the database temporarily. The
System.debug statement writes the value of the price in the debug log.

Book__c b = new Book__c(Name='Behind the Cloud', Price__c=100);
System.debug('Price before inserting new book: ' + b.Price__c);

// Insert book
insert b;

135

Chapter 13 Apex

Once the book is inserted, the code retrieves the newly inserted book, using the ID that was initially
assigned to the book when it was inserted, and then logs the new price that the trigger modified:

// Retrieve the new book
b = [SELECT Price__c FROM Book__c WHERE Id =:b.Id];
System.debug('Price after trigger fired: ' + b.Price__c);

When the MyHelloWorld class runs, it updates the Price__c field and reduces its value
by 10%. The following line is the actual test, verifying that the method applyDiscount actually
ran and produced the expected result:

// Test that the trigger correctly updated the price
System.assertEquals(90, b.Price__c);

3. Now let’s switch to the Developer Console to run this test and view code coverage information.
Click Your Name > Developer Console.
The Developer Console window opens.

4. In the Developer Console, click Test > New Run.

5. To add your test class, click HelloWorldTestClass, and then click >.

6. To run the test, click Run.
The test result displays in the Tests tab. Optionally, you can expand the test class in the Tests tab
to view which methods were run. In this case, the class contains only one test method.

7. The Overall Code Coverage pane shows the code coverage of this test class. To view the lines of
code in the trigger covered by this test, which is 100%, double-click the code coverage line for
HelloWorldTrigger. Also, because the trigger calls a method from the MyHelloWorld class,
this class has some coverage too (100%). To view the class coverage, double-click MyHelloWorld.

8. To open the log file, in the Logs tab, double-click the most recent log line in the list of logs. The
execution log displays, including logging information about the trigger event, the call to the
applyDiscount class method, and the debug output of the price before and after the trigger.

By now, you have completed all the steps necessary for writing some Apex code with a test that runs in
your development environment. In the real world, after you’ve sufficiently tested your code and you’re
satisfied with it, you want to deploy the code along with any other prerequisite components to a production
organization. The next step will show you how to do this for the code and custom object you’ve just
created.

Deploying Components to Production
Prerequisites:

• A Salesforce account in a sandbox Performance, Unlimited, or Enterprise Edition organization.

136

Chapter 13 Apex

• The HelloWorldTestClass Apex test class.

• A deployment connection between the sandbox and production organizations that allows inbound
change sets to be received by the production organization. See “Change Sets Overview” in the Salesforce
online help.

• “Create and Upload Change Sets” user permission to create, edit, or upload outbound change sets.

In this step, you deploy the Apex code and the custom object you created previously to your production
organization using change sets.

This procedure doesn't apply to Developer organizations since change sets are available only in
Performance, Unlimited, Enterprise, or Database.com Edition organizations. If you have a Developer
Edition account, you can use other deployment methods. For more information, see Deploying Apex.

1. From Setup, click Deploy > Outbound Changesets.

2. If a splash page appears, click Continue.

3. In the Change Sets list, click New.

4. Enter a name for your change set, for example, HelloWorldChangeSet, and optionally a
description. Click Save.

5. In the Change Set Components section, click Add.

6. Select Apex Class from the component type drop-down list, then select the MyHelloWorld and
the HelloWorldTestClass classes from the list and click Add to Change Set.

7. Click View/Add Dependencies to add the dependent components.

8. Select the top checkbox to select all components. Click Add To Change Set.

9. In the Change Set Detail section of the change set page, click Upload.

10. Select the target organization, in this case production, and click Upload.

11. After the change set upload completes, deploy it in your production organization.

a. Log into your production organization.

b. From Setup, click Deploy > Inbound Change Sets.

c. If a splash page appears, click Continue.

d. In the change sets awaiting deployment list, click your change set's name.

e. Click Deploy.

In this tutorial, you learned how to create a custom object, how to add an Apex trigger, class, and test
class. Finally, you also learned how to test your code, and how to upload the code and the custom object
using Change Sets.

137

Chapter 13 Apex

Best Practices

Consider the best practices in this section.

Developing Code in the Cloud
The Apex programming language is saved and runs in the cloud—the Force.com multitenant platform.
Apex is tailored for data access and data manipulation on the platform, and it enables you to add custom
business logic to system events. While it provides many benefits for automating business processes on
the platform, it is not a general purpose programming language. As such, Apex cannot be used to:

• Render elements in the user interface other than error messages

• Change standard functionality—Apex can only prevent the functionality from happening, or add
additional functionality

• Create temporary files

• Spawn threads

Tip: All Apex code runs on the Force.com platform, which is a shared resource used by all other
organizations. To guarantee consistent performance and scalability, the execution of Apex is bound
by governor limits that ensure no single Apex execution impacts the overall service of Salesforce.
This means all Apex code is limited by the number of operations (such as DML or SOQL) that it can
perform within one process.

All Apex requests return a collection that contains from 1 to 50,000 records. You cannot assume that
your code only works on a single record at a time. Therefore, you must implement programming
patterns that take bulk processing into account. If you don’t, you may run into the governor limits.

Writing Tests
Testing is the key to successful long-term development and is a critical component of the development
process. We strongly recommend that you use a test-driven development process, that is, test development
that occurs at the same time as code development.

To facilitate the development of robust, error-free code, Apex supports the creation and execution of unit
tests. Unit tests are class methods that verify whether a particular piece of code is working properly. Unit
test methods take no arguments, commit no data to the database, send no emails, and are flagged with
the testMethod keyword or the isTest annotation in the method definition. Also, test methods
must be defined in test classes, that is, classes annotated with isTest.

138

Chapter 13 Apex

In addition, before you deploy Apex or package it for the Force.com AppExchange, the following must be
true.

• At least 75% of your Apex code must be covered by unit tests, and all of those tests must complete
successfully.

Note the following.

– When deploying Apex to a production organization, each unit test in your organization namespace
is executed by default.

– Calls to System.debug are not counted as part of Apex code coverage.

– Test methods and test classes are not counted as part of Apex code coverage.

– While only 75% of your Apex code must be covered by tests, your focus shouldn't be on the
percentage of code that is covered. Instead, you should make sure that every use case of your
application is covered, including positive and negative cases, as well as bulk and single records.
This should lead to 75% or more of your code being covered by unit tests.

• Every trigger must have some test coverage.

• All classes and triggers must compile successfully.

For more information on writing tests, see Testing Apex.

Execution Governors and Limits
Because Apex runs in a multitenant environment, the Apex runtime engine strictly enforces limits to ensure
that runaway Apex doesn’t monopolize shared resources. If some Apex code ever exceeds a limit, the
associated governor issues a run-time exception that cannot be handled.

The Apex limits, or governors, track and enforce the statistics outlined in the following tables and sections.

• Per-Transaction Apex Limits

• Per-Transaction Certified Managed Package Limits

• Force.com Platform Apex Limits

• Static Apex Limits

• Size-Specific Apex Limits

• Miscellaneous Apex Limits

In addition to the core Apex governor limits, email limits, and push notification limits are also included
later in this topic for your convenience.

139

Chapter 13 Apex

Per-Transaction Apex Limits
These limits count for each Apex transaction. For Batch Apex, these limits are reset for each execution of
a batch of records in the execute method.

This table lists limits for synchronous Apex and asynchronous Apex (Batch Apex and future methods) when
they’re different. Otherwise, this table lists only one limit that applies to both synchronous and asynchronous
Apex.

Asynchronous
Limit

Synchronous
Limit

Description

200100Total number of SOQL queries issued1 (This limit doesn’t apply to
custom metadata types. In a single Apex transaction, custom metadata
records can have unlimited SOQL queries.)

50,000Total number of records retrieved by SOQL queries

10,000Total number of records retrieved by
Database.getQueryLocator

20Total number of SOSL queries issued

2,000Total number of records retrieved by a single SOSL query

150Total number of DML statements issued2

10,000Total number of records processed as a result of DML statements,
Approval.process, or database.emptyRecycleBin

16Total stack depth for any Apex invocation that recursively fires triggers
due to insert, update, or delete statements3

100Total number of callouts (HTTP requests or Web services calls) in a
transaction

120 secondsMaximum timeout for all callouts (HTTP requests or Web services calls)
in a transaction

50Maximum number of methods with the future annotation allowed
per Apex invocation

50Maximum number of Apex jobs added to the queue with
System.enqueueJob

10Total number of sendEmail methods allowed

140

Chapter 13 Apex

Asynchronous
Limit

Synchronous
Limit

Description

12 MB6 MBTotal heap size4

60,000
milliseconds

10,000
milliseconds

Maximum CPU time on the Salesforce servers5

10 minutesMaximum execution time for each Apex transaction

10Maximum number of unique namespaces referenced6

10Maximum number of push notification method calls allowed per Apex
transaction

2,000Maximum number of push notifications that can be sent in each push
notification method call

1 In a SOQL query with parent-child relationship subqueries, each parent-child relationship counts as an
extra query. These types of queries have a limit of three times the number for top-level queries. The row
counts from these relationship queries contribute to the row counts of the overall code execution. In
addition to static SOQL statements, calls to the following methods count against the number of SOQL
statements issued in a request.

• Database.countQuery

• Database.getQueryLocator

• Database.query
2 Calls to the following methods count against the number of DML queries issued in a request.

• Approval.process

• Database.convertLead

• Database.emptyRecycleBin

• Database.rollback

• Database.setSavePoint

• delete and Database.delete

• insert and Database.insert

• merge and Database.merge

• undelete and Database.undelete

• update and Database.update

141

Chapter 13 Apex

• upsert and Database.upsert

• System.runAs
3 Recursive Apex that does not fire any triggers with insert, update, or delete statements exists
in a single invocation, with a single stack. Conversely, recursive Apex that fires a trigger spawns the trigger
in a new Apex invocation, separate from the invocation of the code that caused it to fire. Because spawning
a new invocation of Apex is a more expensive operation than a recursive call in a single invocation, there
are tighter restrictions on the stack depth of these types of recursive calls.
4 Email services heap size is 36 MB.
5 CPU time is calculated for all executions on the Salesforce application servers occurring in one Apex
transaction. CPU time is calculated for the executing Apex code, and for any processes that are called from
this code, such as package code and workflows. CPU time is private for a transaction and is isolated from
other transactions. Operations that don’t consume application server CPU time aren’t counted toward
CPU time. For example, the portion of execution time spent in the database for DML, SOQL, and SOSL isn’t
counted, nor is waiting time for Apex callouts.
6 In a single transaction, you can only reference 10 unique namespaces. For example, suppose you have
an object that executes a class in a managed package when the object is updated. Then that class updates
a second object, which in turn executes a different class in a different package. Even though the second
package wasn’t accessed directly by the first, because it occurs in the same transaction, it’s included in the
number of namespaces being accessed in a single transaction.

Note:

• Limits apply individually to each testMethod.

• To determine the code execution limits for your code while it is running, use the Limits methods.
For example, you can use the getDMLStatements method to determine the number of
DML statements that have already been called by your program. Or, you can use the
getLimitDMLStatements method to determine the total number of DML statements
available to your code.

Per-Transaction Certified Managed Package Limits
Certified managed packages—managed packages that have passed the security review for
AppExchange—get their own set of limits for most per-transaction limits. Certified managed packages
are developed by Salesforce ISV Partners, are installed in your organization from Force.com AppExchange,
and have unique namespaces.

Here is an example that illustrates the separate certified managed package limits for DML statements. If
you install a certified managed package, all the Apex code in that package gets its own 150 DML statements.
These DML statements are in addition to the 150 DML statements your organization’s native code can

142

Chapter 13 Apex

execute. This limit increase means more than 150 DML statements can execute during a single transaction
if code from the managed package and your native organization both execute. Similarly, the certified
managed package gets its own 100-SOQL-query limit for synchronous Apex, in addition to the organization’s
native code limit of 100 SOQL queries.

All per-transaction limits count separately for certified managed packages except for:

• The total heap size

• The maximum CPU time

• The maximum transaction execution time

• The maximum number of unique namespaces

These limits count for the entire transaction, regardless of how many certified managed packages are
running in the same transaction.

Also, if you install a package from AppExchange that isn’t created by a Salesforce ISV Partner and isn’t
certified, the code from that package doesn’t have its own separate governor limits. Any resources it uses
count against the total governor limits for your organization. Cumulative resource messages and warning
emails are also generated based on managed package namespaces.

For more information on Salesforce ISV Partner packages, see Salesforce Partner Programs.

Force.com Platform Apex Limits
The limits in this table aren’t specific to an Apex transaction and are enforced by the Force.com platform.

LimitDescription

250,000 or the number
of user licenses in your

The maximum number of asynchronous Apex method executions (batch
Apex, future methods, Queueable Apex, and scheduled Apex) per a 24-hour
period1 organization multiplied

by 200, whichever is
greater

10Number of synchronous concurrent requests for long-running requests that
last longer than 5 seconds for each organization.2

100Maximum number of Apex classes scheduled concurrently

100Maximum number of Batch Apex jobs in the Apex flex queue that are in
Holding status

5Maximum number of Batch Apex jobs queued or active concurrently3

143

Chapter 13 Apex

http://sites.force.com/partners/PP2Page?p=P_PartnerPrograms

LimitDescription

1Maximum number of Batch Apex job start method concurrent executions4

5Maximum number of batch jobs that can be submitted in a running test

The greater of 500 or 10
multiplied by the

Maximum number of test classes that can be queued per 24-hour period
(production organizations other than Developer Edition)5

number of test classes in
the organization

The greater of 500 or 20
multiplied by the

Maximum number of test classes that can be queued per 24-hour period
(sandbox and Developer Edition organizations)5

number of test classes in
the organization

50Maximum number of query cursors open concurrently per user6

15Maximum number of query cursors open concurrently per user for the Batch
Apex start method

5Maximum number of query cursors open concurrently per user for the Batch
Apex execute and finish methods

1 For Batch Apex, method executions include executions of the start, execute, and finish
methods. This limit is for your entire organization and is shared with all asynchronous Apex: Batch Apex,
Queueable Apex, scheduled Apex, and future methods. The licenses that count toward this limit are full
Salesforce user licenses or Force.com App Subscription user licenses. Chatter Free, Chatter customer users,
Customer Portal User, and partner portal User licenses aren’t included.
2 If more requests are made while the 10 long-running requests are still running, they’re denied.
3 When batch jobs are submitted, they’re held in the flex queue before the system queues them for
processing.
4 Batch jobs that haven’t started yet remain in the queue until they’re started. If more than one job is
running, this limit doesn’t cause any batch job to fail and execute methods of batch Apex jobs still run
in parallel.
5 This limit applies to tests running asynchronously. This group of tests includes tests started through the
Salesforce user interface including the Developer Console or by inserting ApexTestQueueItem
objects using SOAP API.
6 For example, if 50 cursors are open and a client application still logged in as the same user attempts to
open a new one, the oldest of the 50 cursors is released. Cursor limits for different Force.com features are

144

Chapter 13 Apex

tracked separately. For example, you can have 50 Apex query cursors, 15 cursors for the Batch Apex start
method, 5 cursors each for the Batch Apex execute and finish methods, and 5 Visualforce cursors
open at the same time.

Static Apex Limits

LimitDescription

10 secondsDefault timeout of callouts (HTTP requests or Web services calls) in a transaction

6 MB for synchronous
Apex or 12 MB for
asynchronous Apex

Maximum size of callout request or response (HTTP request or Web services
call)1

120 secondsMaximum SOQL query run time before Salesforce cancels the transaction

5,000Maximum number of class and trigger code units in a deployment of Apex

200For loop list batch size

50 millionMaximum number of records returned for a Batch Apex query in
Database.QueryLocator

1 The HTTP request and response sizes count towards the total heap size.

Size-Specific Apex Limits

LimitDescription

1 millionMaximum number of characters for a class

1 millionMaximum number of characters for a trigger

3 MBMaximum amount of code used by all Apex code in an organization1

65,535 bytecode
instructions in compiled
form

Method size limit 2

145

Chapter 13 Apex

1 This limit does not apply to certified managed packages installed from AppExchange (that is, an app that
has been marked AppExchange Certified). The code in those types of packages belongs to a namespace
unique from the code in your organization. For more information on AppExchange Certified packages,
see the Force.com AppExchange online help. This limit also does not apply to any code included in a class
defined with the @isTest annotation.
2 Large methods that exceed the allowed limit cause an exception to be thrown during the execution of
your code.

Miscellaneous Apex Limits
SOQL Query Performance

For best performance, SOQL queries must be selective, particularly for queries inside of triggers. To
avoid long execution times, the system can terminate nonselective SOQL queries. Developers receive
an error message when a non-selective query in a trigger executes against an object that contains
more than 100,000 records. To avoid this error, ensure that the query is selective. See More Efficient
SOQL Queries.

Chatter in Apex
For classes in the ConnectApi namespace, every write operation costs one DML statement against
the Apex governor limit. ConnectApi method calls are also subject to rate limiting. ConnectApi
rate limits match Chatter REST API rate limits. Both have a per user, per namespace, per hour rate limit.
When you exceed the rate limit, a ConnectApi.RateLimitException is thrown. Your Apex
code must catch and handle this exception.

Event Reports
The maximum number of records that an event report returns for a user who is not a system
administrator is 20,000; for system administrators, 100,000.

Data.com Clean
If you use the Data.com Clean product and its automated jobs, and you have set up Apex triggers on
account, contact, or lead records that run SOQL queries, the queries can interfere with Clean jobs for
those objects. Your Apex triggers (combined) must not exceed 200 SOQL queries per batch. If they
do, your Clean job for that object fails. In addition, if your triggers call future methods, they are
subject to a limit of 10 future calls per batch.

146

Chapter 13 Apex

Email Limits
Inbound Email Limits

Number of user licenses
multiplied by 1,000, up to a daily
maximum of 1,000,000

Email Services: Maximum Number of Email Messages Processed

(Includes limit for On-Demand Email-to-Case)

10 MB1Email Services: Maximum Size of Email Message (Body and
Attachments)

25 MBOn-Demand Email-to-Case: Maximum Email Attachment Size

Number of user licenses
multiplied by 1,000, up to a daily
maximum of 1,000,000

On-Demand Email-to-Case: Maximum Number of Email Messages
Processed

(Counts toward limit for Email Services)

1 The maximum size of email messages for Email Services varies depending on language and character
set. The size of an email message includes the email headers, body, attachments, and encoding. As a
result, an email with a 25 MB attachment would likely exceed the 25 MB total size limit for an email
message, after accounting for the size of headers, body, and encoding. .

When defining email services, note the following:

• An email service only processes messages it receives at one of its addresses.

• Salesforce limits the total number of messages that all email services combined, including
On-Demand Email-to-Case, can process daily. Messages that exceed this limit are bounced,
discarded, or queued for processing the next day, depending on how you configure the failure
response settings for each email service. Salesforce calculates the limit by multiplying the number
of user licenses by 1,000, up to a daily maximum of 1,000,000. For example, if you have 10 licenses,
your organization can process up to 10,000 email messages a day.

• Email service addresses that you create in your sandbox cannot be copied to your production
organization.

• For each email service, you can tell Salesforce to send error email messages to a specified address
instead of the sender's email address.

• Email services reject email messages and notify the sender if the email (combined body text, body
HTML, and attachments) exceeds approximately 10 MB (varies depending on language and
character set).

147

Chapter 13 Apex

Outbound Email: Limits for Single and Mass Email Sent Using Apex

Using the API or Apex, you can send single emails to a maximum of 1,000 external email addresses
per day based on Greenwich Mean Time (GMT). Single emails sent using the Salesforce application
don't count toward this limit. There’s no limit on sending individual emails to contacts, leads, person
accounts, and users in your organization directly from account, contact, lead, opportunity, case,
campaign, or custom object pages.

When sending single emails, keep in mind:

• You can send 100 emails per SingleEmailMessage.

• If you use SingleEmailMessage to email your organization’s internal users, specifying the
user’s ID in setTargetObjectId means the email doesn’t count toward the daily limit.
However, specifying internal users’ email addresses in setToAddresses means the email
does count toward the limit.

You can send mass email to a maximum of 1,000 external email addresses per day per organization
based on Greenwich Mean Time (GMT). The maximum number of external addresses you can include
in each mass email depends on your edition:

External Address Limit per Mass EmailEdition

Mass email not availablePersonal, Contact Manager, and Group Editions

250Professional Edition

500Enterprise Edition

1,000Unlimited and Performance Edition

Note: Note the following about email limits:

• The single and mass email limits don't take unique addresses into account. For example, if
you have johndoe@example.com in your email 10 times, that counts as 10 against
the limit.

• You can send an unlimited amount of email to your organization’s internal users, which
includes portal users.

• In Developer Edition organizations and organizations evaluating Salesforce during a trial
period, your organization can send mass email to no more than 10 external email addresses
per day. This lower limit does not apply if your organization was created before the Winter
'12 release and already had mass email enabled with a higher limit. Additionally, your
organization can send single emails to a maximum of 15 email addresses per day.

148

Chapter 13 Apex

Push Notification Limits
The maximum number of push notifications that are allowed for each mobile application associated with
your Salesforce organization depends on the type of application.

LimitMaximum number of push notifications allowed for

50,000 notifications per
app per day

Mobile applications provided by Salesforce (for example, Salesforce1)

35,000 notifications per
app per day

Mobile applications developed by your organization for internal employee
usage

5,000 notifications per
app per day

Mobile applications installed from the AppExchange

Only deliverable notifications count toward this limit. For example, consider the scenario where a notification
is sent to 1,000 employees in your company, but 100 employees haven’t installed the mobile application
yet. Only the notifications sent to the 900 employees who have installed the mobile application count
toward this limit.

Each test push notification that is generated through the Test Push Notification page is limited to a single
recipient. Test push notifications count toward an application’s daily push notification limit.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Apex.

• Apex Code Developer’s Guide

• Apex Cheat Sheet

• Apex Workbook

• Apex development forums

149

Chapter 13 Apex

CHAPTER 14 Visualforce

Visualforce is a framework that allows developers to build sophisticated, custom user interfaces that can
be hosted on Salesforce, using a tag-based markup language, similar to HTML.

When to Use Visualforce

Visualforce consists of a tag-based markup language that gives developers a more powerful way of building
applications and customizing the Salesforce user interface. With Visualforce you can:

• Build wizards and other multistep processes.

• Create your own custom flow control through an application.

• Define navigation patterns and data-specific rules for optimal, efficient application interaction.

In the Visualforce markup language, each Visualforce tag corresponds to a coarse or fine-grained user
interface component, such as a section of a page, related list, or field. The behavior of Visualforce
components can either be controlled by the same logic that is used in standard Salesforce pages, or
developers can associate their own logic with a controller class written in Apex.

Supported Editions and Platforms

Visualforce is available in Contact Manager, Group, Professional, Enterprise, Unlimited, Performance, and
Developer Editions.

Visualforce development requires various permissions, depending on the specific activity.

User Permissions Needed

“Customize Application”To enable Visualforce development mode:

“Customize Application”To create, edit, or delete Visualforce pages:

“Customize Application”To create and edit custom Visualforce components:

“Author Apex”To edit custom Visualforce controllers or Apex

“Manage Profiles and Permission Sets”To set Visualforce page security:

151

User Permissions Needed

“Customize Application”To set version settings for Visualforce pages:

“Customize Application”To create, edit, or delete static resources:

“Customize Application”To create Visualforce Tabs:

Quick Start

To showcase the essential elements of Visualforce, this chapter includes a set of examples that demonstrate
features of the language. While the examples do not go into every detail, rule, or exception for every tag
or controller, new Visualforce developers can use this tutorial to understand how Visualforce works.

Creating Your First Page
With development mode enabled, you can create your first Visualforce page by entering a URL for the
page in your browser's address bar as follows:

https://Salesforce_instance/apex/myNewPageName

For example, if you want to create a page called “HelloWorld” and your Salesforce organization uses
na3.salesforce.com, enter http://na3.salesforce.com/apex/HelloWorld.

Because the page does not yet exist, you are directed to an intermediary page from which you can create
your new page. Click Create Page <myNewPageName> to create it automatically.

Note: If you do not have Visualforce development mode enabled, you can also create a new page
from Setup by clicking Develop > Pages, and then clicking New.

Visualforce pages can always be edited from this part of setup, but to see the results of your edits
you have to navigate to the URL of your page. For that reason, most developers prefer to work with
development mode enabled so they can view and edit pages in a single window.

152

Chapter 14 Visualforce

A New Visualforce Page

You now have a Visualforce page that includes default text. To edit your new page, click the Page Editor
bar that appears at the bottom of the browser. It expands to show you the following Visualforce markup:

<apex:page>
<!-- Begin Default Content REMOVE THIS -->
<h1>Congratulations</h1>
This is your new Apex Page: HelloWorld
<!-- End Default Content REMOVE THIS -->

</apex:page>

This default markup includes the only required tag for any page— the <apex:page> tag that begins
and ends any page markup. Embedded within the start and close <apex:page> tags is plain text, some
of which is formatted with a standard HTML tag, <h1>.

As long as you keep the required <apex:page> tag you can add as much plain text or valid HTML to
this page as you want. For example, after entering the following code and clicking Save in the Page Editor,
the page displays the text “Hello World!” in bold:

<apex:page>
Hello World!

</apex:page>

Tip: Pay attention to warnings—the Visualforce editor displays a warning if you save a page with
HTML that does not include a matching end tag for every opened tag. Although the page saves, this
malformed HTML might cause problems in your rendered page.

153

Chapter 14 Visualforce

Displaying Field Values with Visualforce
Visualforce pages use the same expression language as formulas—that is, anything inside {! } is
evaluated as an expression that can access values from records that are currently in context. For example,
you can display the current user's first name by adding the {!$User.FirstName} expression to a
page:

<apex:page>
Hello {!$User.FirstName}!

</apex:page>

$User is a global variable that always represents the current user record. All global variables are referenced
with a $ symbol. For a list of global variables that you can use in Visualforce, see Global Variables.

To access fields from a record that is not globally available, like a specific account, contact, or custom object
record, you need to associate your page with a controller. Controllers provide pages with the data and
business logic that make your application run, including the logic that specifies how to access a particular
object's records. While you can define a custom controller for any page with Apex, Salesforce includes
standard controllers for every standard and custom object.

For example, to use the standard controller for accounts, add the standardController attribute
to the <apex:page> tag, and assign it the name of the account object:

<apex:page standardController="Account">
Hello {!$User.FirstName}!

</apex:page>

After you save your page, the Accounts tab is highlighted for the page, and the look-and-feel for the
components on the page match the Accounts tab. Additionally, you can now access fields on the account
record currently in context by using {!account.<fieldName>} expression syntax.

For example, to display an account's name on a page, use {!account.name} in the page markup:

<apex:page standardController="Account">
Hello {!$User.FirstName}!
<p>You are viewing the {!account.name} account.</p>

</apex:page>

The {!account.name} expression makes a call to the getAccount() method in the standard
Account controller to return the record ID of the account currently in context. It then uses dot notation to
access the name field for that record.

Note: You cannot access parent objects using this expression language. In other words,
{!account.parent.name} will return an error.

154

Chapter 14 Visualforce

Note: When you save a page, the value attribute of all input
components—<apex:inputField>, <apex:inputText>, and so on—is validated to
ensure it’s a single expression, with no literal text or white space, and is a valid reference to a single
controller method or object property. An error will prevent saving the page.

To bring an account record into the current context, you must add a query parameter to the page URL
that specifies the ID of the record. To do this:

1. Find the ID of an account by any means you wish. One easy way is to view the detail page of an
account record and copy the character code at the end of the URL. For example, if you navigate
to an account detail page with the following URL:

https://na3.salesforce.com/001D000000IRt53

Then 001D000000IRt53 is the ID for the account.

2. Back on your page, add the account ID as a query string parameter to the URL in your browser's
address bar. For example, if your page is located at:

https://na3.salesforce.com/apex/HelloWorld2

Add ?id=001D000000IRt53 to the end of the URL:

https://Salesforce_instance/apex/HelloWorld2?id=001D000000IRt53

Note: If you use the id parameter in a URL, it must refer to the same entity referred to in the
standard controller.

Once an account ID is specified in the URL, the page displays the appropriate account name, as shown in
the following figure.

155

Chapter 14 Visualforce

Displaying Account Data in a Visualforce Page

Using the Visualforce Component Library
Up to this point, the only Visualforce tag that has been used in the examples is the mandatory
<apex:page> tag that must be placed at the start and end of all Visualforce markup. However, just as
you can insert images or tables into an HTML document with the or <table> tags, respectively,
you can add user interface components to your Visualforce pages using tags that are defined in the
Visualforce component library.

For example, to add a component that looks like a section on a detail page, use the <apex:pageBlock>
component tag:

<apex:page standardController="Account">
<apex:pageBlock title="Hello {!$User.FirstName}!">

You are viewing the {!account.name} account.
</apex:pageBlock>

</apex:page>

156

Chapter 14 Visualforce

The <apex:pageBlock> Component

Tags also exist for other common Salesforce interface components, such as related lists, detail pages, and
input fields. For example, to add the content of a detail page, use the <apex:detail> component
tag:

<apex:page standardController="Account">
<apex:pageBlock title="Hello {!$User.FirstName}!">

You are viewing the {!account.name} account.
</apex:pageBlock>
<apex:detail/>

</apex:page>

157

Chapter 14 Visualforce

The <apex:detail> Component Without Attributes

Without any specified attributes on the tag, <apex:detail> displays the complete detail view for
the context record. If you want to modify properties such as which record details are displayed, or whether
related lists or the title appear, you can use attributes on the tag. For example, the following markup
displays the details of the context account's owner, without related lists or a colored title bar:

<apex:page standardController="Account">
<apex:pageBlock title="Hello {!$User.FirstName}!">

You are viewing the {!account.name} account.
</apex:pageBlock>
<apex:detail subject="{!account.ownerId}" relatedList="false"

title="false"/>
</apex:page>

158

Chapter 14 Visualforce

The <apex:detail> Component Without Related List or Title Elements

To browse the component library, click Component Reference in the Page Editor. From this page you
can drill down into any component to see the attributes that are available for each, including any custom
components that you define.

Using Input Components in a Page
So far the examples in this quick start tutorial show ways that you can display data in a Visualforce page.
To capture input from a user, use the <apex:form> tag with one or more input components and a
<apex:commandLink> or <apex:commandButton> tag to submit the form.

The input component tag that is most often used in a form is <apex:inputField>. This tag renders
the appropriate input widget based on a standard or custom object field’s type. For example, if you use
an <apex:inputField> tag to display a date field, a calendar widget displays on the form. If you
use an <apex:inputField> tag to display a picklist field, a drop-down list displays instead. The
<apex:inputField> tag can be used to capture user input for any standard or custom object field,
and respects any metadata that is set on the field definition, such as whether the field is required or unique,
or whether the current user has permission to view or edit it.

For example, the following page allows users to edit and save the name of an account:

159

Chapter 14 Visualforce

Note: Remember, for this page to display account data, the ID of a valid account record must be
specified as a query parameter in the URL for the page. For example:

https://Salesforce_instance/apex/myPage?id=001x000xxx3Jsxb

Displaying Field Values with Visualforce on page 154 has more information about retrieving the ID
of a record.

<apex:page standardController="Account">
<apex:form>

<apex:pageBlock title="Hello {!$User.FirstName}!">
You are viewing the {!account.name} account. <p/>
Change Account Name: <p/>
<apex:inputField value="{!account.name}"/> <p/>

<apex:commandButton action="{!save}" value="Save New Account
Name"/>

</apex:pageBlock>
</apex:form>

</apex:page>

Notice in the example that:

• The <apex:inputField> tag is bound to the account name field by setting the tag’s value
attribute. The expression contains the familiar {!account.name} dot-notation used to display
the field’s value elsewhere in the page.

• The <apex:commandButton> tag has an action attribute. The value for this attribute invokes
the save action of the standard Account controller, which performs identically to the Save button
on the standard Account edit page.

Note: When you save a page, the value attribute of all input
components—<apex:inputField>, <apex:inputText>, and so on—is validated to
ensure it’s a single expression, with no literal text or white space, and is a valid reference to a single
controller method or object property. An error will prevent saving the page.

160

Chapter 14 Visualforce

The <apex:form> Component with a Single Input Field

The only fields that the <apex:inputField> tag cannot display are those defined as member
variables of a custom controller class written in Apex. To gather data for these variables, use the
<apex:inputCheckbox>, <apex:inputHidden>, <apex:inputSecret>,
<apex:inputText>, or <apex:inputTextarea> tags instead.

Adding and Customizing Input Field Labels
When used inside of a <apex:pageBlockSection> component, Visualforce input components
and some output components automatically display a form label for the field. For components that map
to standard or custom object fields, the displayed label is the object field label by default. To override the
default value, and for components that aren’t mapped directly to object fields, you can set the label using
the label attribute of the component. For example:

<apex:page standardController="Contact">
<apex:form>

<apex:pageBlock title="Quick Edit: {!Contact.Name}">
<apex:pageBlockSection title="Contact Details" columns="1">

<apex:inputField value="{!Contact.Phone}"/>
<apex:outputField value="{!Contact.MobilePhone}"

label="Mobile #"/>

161

Chapter 14 Visualforce

<apex:inputText value="{!Contact.Email}"
label="{!Contact.FirstName + '’s Email'}"/>

</apex:pageBlockSection>
<apex:pageBlockButtons >

<apex:commandButton action="{!save}" value="Save"/>
</apex:pageBlockButtons>

</apex:pageBlock>
</apex:form>

</apex:page>

Note: For this page to display contact data, the ID of a valid contact record must be specified as a
query parameter in the URL for the page. For example,

https://Salesforce_instance/apex/myPage?id=003D000000Q513R

Displaying Field Values with Visualforce on page 154 has more information about retrieving the ID
of a record.

The label attribute may be a string, or an expression that evaluates to a string. If you set label to an
empty string, the form label for that field will be suppressed.

The label attribute can be set on the following Visualforce components:

• <apex:inputCheckbox>

• <apex:inputField>

• <apex:inputSecret>

• <apex:inputText>

162

Chapter 14 Visualforce

• <apex:inputTextarea>

• <apex:outputField>

• <apex:outputText>

• <apex:selectCheckboxes>

• <apex:selectList>

• <apex:selectRadio>

Custom Labels and Error Messages
When set, the label attribute will be used for component-level error messages, for example, when a
field is required or must be unique. Custom labels won't be used in custom error messages, and the default
object field label will be used instead. If you set a label attribute to an empty string, the default object
field label will be used in all error messages.

Adding Dependent Fields to a Page
Dependent fields provide a way to filter the field values displayed on a Visualforce page. Dependent fields
consist of two parts: a controlling field that determines the filtering, and a dependent field that has its
values filtered. Dependent fields can dynamically filter values in fields such as picklists, multi-select picklists,
radio buttons, and checkboxes. Dependent picklists can only be displayed on Visualforce pages with
Salesforce API version 19.0 or higher. For more information, see About Dependent Picklists in the Salesforce
online help.

For this example, we’ll be adding a dependent picklist, Subcategories, to a Visualforce page. First, create
this custom picklist:

1. From Setup, click Customize > Accounts > Fields.

2. Click New in the Custom Fields & Relationships section of the page.

3. Choose Picklist and click Next.

4. Enter Subcategories for the Field Label.

5. Enter the following terms for the list of values:

• Apple Farms

• Cable

• Corn Fields

• Internet

• Radio

163

Chapter 14 Visualforce

• Television

• Winery

6. Click Next twice, then click Save.

To define the field dependencies for Subcategories:

1. From Setup, click Customize > Accounts > Fields.

2. Click Field Dependencies.

3. Click New.

4. Choose Industry as a controlling field, and Subcategories as a dependent field.

5. Click Continue.

6. Each value in the controlling field (from Industry) is listed in the top row and each value in the
dependent field (from Subcategory) is displayed in the column below it. Set your field dependencies
to match this image:

The Field Dependency Matrix for Subcategories

You can disregard any other Industry types that aren’t shown above.

7. Click Save.

Now, create a Visualforce page called dependentPicklists that looks like this:

<apex:page standardController="Account">
<apex:form >

<apex:pageBlock mode="edit">
<apex:pageBlockButtons >

<apex:commandButton action="{!save}" value="Save"/>
</apex:pageBlockButtons>
<apex:pageBlockSection title="Dependent Picklists"

columns="2">
<apex:inputField value="{!account.industry}"/>
<apex:inputField value="{!account.subcategories__c}"/>
</apex:pageBlockSection>

</apex:pageBlock>

164

Chapter 14 Visualforce

</apex:form>
</apex:page>

When you select Agriculture from the Industry picklist, the Subcategories picklist contains Apple Farms,
Corn Fields, and Winery. If you select Communication, your Subcategories picklist contains all the
Communication types defined earlier.

Dependent Picklist Considerations
Consider the following when using dependent picklists in Visualforce pages:

• You can mix controlling and dependent fields across various field types, such as picklists, multi-picklists,
radio buttons, and checkboxes.

• There’s a limit of 10 dependent picklist pairs per page. This is totalled across all objects. Thus, you could
have five dependent picklists on Account, and five on Contact, but no more. However, you can repeat
the same pair of dependent picklists, such as in an iterative tag like <apex:repeat>, without
counting more than once against your limit.

• If the user viewing the page has read-only access to the controlling field, a dependent picklist might
not behave as expected. In this case, the dependent picklist shows all possible values for the picklist,
instead of being filtered on the read-only value. This is a known limitation in Visualforce.

• Pages must include the controlling field for a dependent picklist. Failing to include the controlling
field on the page causes a runtime error when the page displays.

• Don’t mix inline edit-enabled fields with regular input fields from the same dependency group. For
example, don’t mix a standard input field for a controlling field with an inline edit-enabled dependent
field:

<apex:page standardController="Account">
<apex:form>

<!-- Don't mix a standard input field... -->
<apex:inputField value="{!account.Controlling__c}"/>
<apex:outputField value="{!account.Dependent__c}">

<!-- ...with an inline-edit enabled dependent field -->

<apex:inlineEditSupport event="ondblClick" />
</apex:outputField>

</apex:form>
</apex:page>

• If you combine inline edit-enabled dependent picklists with Ajax-style partial page refreshes, refresh
all fields with dependent or controlling relationships to each other as one group. Refreshing fields

165

Chapter 14 Visualforce

individually isn’t recommended and might result in inconsistent undo/redo behavior. Here’s an example
of the recommended way to partially refresh a form with inline edit-enabled dependent picklists:

<apex:form>
<!-- other form elements ... -->

<apex:outputPanel id="locationPicker">
<apex:outputField value="{!Location.country}">

<apex:inlineEditSupport event="ondblClick" />
</apex:outputField>
<apex:outputField value="{!Location.state}">

<apex:inlineEditSupport event="ondblClick" />
</apex:outputField>
<apex:outputField value="{!Location.city}">

<apex:inlineEditSupport event="ondblClick" />
</apex:outputField>

</apex:outputPanel>
<!-- ... -->
<apex:commandButton value="Refresh Picklists"

reRender="locationPicker" />
</apex:form>

All of the inline edit-enabled picklists are wrapped in the <apex:outputPanel> component.
The <apex:outputPanel> rerenders when the <apex:commandButton> action method
fires.

Creating Visualforce Dashboard Components
Visualforce pages can be used as dashboard components. A dashboard shows data from source reports
as visual components, which can be charts, gauges, tables, metrics, or Visualforce pages. The components
provide a snapshot of key metrics and performance indicators for your organization. Each dashboard can
have up to 20 components.

Visualforce pages that use the Standard Controller can’t be used in dashboards. To be included in a
dashboard, a Visualforce page must have either no controller, use a custom controller, or reference a page
bound to the StandardSetController Class. If a Visualforce page does not meet these requirements, it does
not appear as an option in the dashboard component Visualforce Page drop-down list.

166

Chapter 14 Visualforce

Create a Visualforce page called VFDashboard. The following markup shows an example of a Visualforce
page that uses a standard list controller and can be used within a dashboard. It displays a list of the cases
associated with your organization:

<apex:page standardController="Case" recordSetvar="cases">
<apex:pageBlock>

<apex:form id="theForm">
<apex:panelGrid columns="2">

<apex:outputLabel value="View:"/>
<apex:selectList value="{!filterId}" size="1">

<apex:actionSupport event="onchange"
rerender="list"/>

<apex:selectOptions value="{!listviewoptions}"/>
</apex:selectList>

</apex:panelGrid>
<apex:pageBlockSection>

<apex:dataList var="c" value="{!cases}" id="list">
{!c.subject}
</apex:dataList>

</apex:pageBlockSection>
</apex:form>

</apex:pageBlock>
</apex:page>

To create a dashboard that uses this Visualforce page:

1. View the dashboard and click Edit.

2. Click Add Component from the top of any column.

3. Choose a Visualforce Page as the component type.

4. Optionally, enter a header to display at the top of the dashboard component.

5. Optionally, enter a footer to display at the bottom of the dashboard component.

6. From the Visualforce Page drop-down list, select VFDash.

7. Click Save.

167

Chapter 14 Visualforce

Sample Visualforce Page Running in a Dashboard

For a more complex example that uses a custom list controller, see Advanced Visualforce Dashboard
Components.

Best Practices

Consider the best practices explained in this section.

Best Practices for Improving Visualforce Performance
Visualforce was designed to provide developers with the ability to match the functionality, behavior, and
performance of standard Salesforce pages. If your users experience delays, unexpected behavior, or other
issues specifically around Visualforce, there are several actions you can take to not only improve their
experience, but to also make for improved coding.

First, determine whether Visualforce is the problem by ensuring that:

• The problems aren’t confined to a single user’s computer by testing expected Visualforce functionality
on other machines as well as using different browsers.

• Slow load times aren’t the result of a network issue by checking the load time of other Salesforce pages.
If they’re also slow, it could be the result of bandwidth or latency issues to Salesforce. To check on the
status of the Salesforce servers, visit trust.salesforce.com. You should also check the status of your
network connections and ensure they’re functioning properly.

• You’re following general Web design best practices, such as the minification of JavaScript and CSS,
optimizing images for the Web, and avoiding iframes whenever possible.

168

Chapter 14 Visualforce

http://trust.salesforce.com/
http://en.wikipedia.org/wiki/Minification_(programming)

• You’ve used the Developer Console to step through the request and determine which items in the
request used the most system resources. See “Using the Developer Console” in the Salesforce online
help.

The following is a list of commonly encountered Visualforce performance issues and their possible solutions:

View State Size
The view state size of your Visualforce pages must be under 135 KB. By reducing your view state size,
your pages can load quicker and stall less often.

You can monitor view state performance through the View State tab in the development mode footer
and take the following actions:

• Use the transient keyword in your Apex controllers for variables that aren’t essential for
maintaining state and aren’t necessary during page refreshes.

• If you notice that a large percentage of your view state comes from objects used in controllers or
controller extensions, consider refining your SOQL calls to return only data that's relevant to the
Visualforce page.

• If your view state is affected by a large component tree, try reducing the number of components
your page depends on.

Load Times
Large page sizes directly affects load times. To improve Visualforce page load times:

• Cache any data that is frequently accessed, such as icon graphics.

• Avoid SOQL queries in your Apex controller getter methods.

• Reduce the number of records displayed on a page by:

– Limiting the data coming back from SOQL calls in your Apex controllers. For example, using
AND statements in your WHERE clause, or removing null results

– Taking advantage of pagination with a list controller to present fewer records per page

• “Lazy load” Apex objects to reduce request times.

• Consider moving any JavaScript outside of the <apex:includeScript> tag and placing
it into a <script> tag right before your closing <apex:page> tag. The
<apex:includeScript> tag places JavaScript right before the closing <head> element;
thus, Visualforce attempts to load the JavaScript before any other content on the page. However,
you should only move JavaScript to the bottom of the page if you’re certain it doesn’t have any
adverse effects to your page. For example, JavaScript code snippets requiring document.write
or event handlers should remain in the <head> element.

In all cases, Visualforce pages must be under 15 MB.

169

Chapter 14 Visualforce

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_conditionexpression.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_conditionexpression.htm
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_null.htm
http://en.wikipedia.org/wiki/Lazy_loading

Multiple Concurrent Requests
Concurrent requests are long-running tasks that could block other pending tasks. To reduce these
delays:

• Action methods used by <apex:actionPoller> should be lightweight. It’s a best practice
to avoid performing DML, external service calls, and other resource-intensive operations in action
methods called by an <apex:actionPoller>. Carefully consider the effect of your action
method being called repeatedly by an <apex:actionPoller> at the interval you specify,
especially if it’s used on a page that will be widely distributed, or open continuously.

• Increase the time interval for calling Apex from your Visualforce page. For example, when using
the <apex:actionPoller> component, you could adjust the interval attribute to 30
seconds instead of 15.

• Move non-essential logic to an asynchronous code block using Ajax.

Queries and Security
By using the with sharing keyword when creating your Apex controllers, you have the possibility
of improving your SOQL queries by only viewing a data set for a single user.

Preventing Field Values from Dropping Off the Page
If your page contains many fields, including large text area fields, and has master-detail relationships
with other entities, it may not display all data due to limits on the size of data returned to Visualforce
pages and batch limits. The page displays this warning: “You requested too many fields to display.
Consider removing some to prevent field values from being dropped from the display.”

To prevent field values from being dropped from the page, remove some fields to reduce the amount
of data returned. Alternatively, you can write your own controller extensions to query child records to
be displayed in the related lists.

Best Practices for Accessing Component IDs
To refer to a Visualforce component in JavaScript or another Web-enabled language, you must specify a
value for the id attribute for that component. A DOM ID is constructed from a combination of the id
attribute of the component and the id attributes of all components that contain the element.

Use the $Component global variable to simplify referencing the DOM ID that is generated for a Visualforce
component, and reduce some of the dependency on the overall page structure. To reference a specific
Visualforce component’s DOM ID, add a component path specifier to $Component, using dot notation
to separate each level in the component hierarchy of the page. For example, use $Component.itemId
to reference a component at the same level in the Visualforce component hierarchy, or use
$Component.grandparentId.parentId.itemId to specify a more complete component path.

A $Component path specifier is matched against the component hierarchy:

170

Chapter 14 Visualforce

• At the current level of the component hierarchy where $Component is used; and then

• At each successive higher level in the component hierarchy, until a match is found, or the top-level of
the component hierarchy is reached.

There is no backtracking, so if the ID you’re trying to match requires a traversal up and then back down, it
won’t match.

The following example illustrates several uses of $Component:

<apex:page >

<style>
.clicker { border: 1px solid #999; cursor: pointer;

margin: .5em; padding: 1em; width: 10em; text-align: center;
}

</style>

<apex:form id="theForm">
<apex:pageBlock id="thePageBlock" title="Targeting IDs with

$Component">
<apex:pageBlockSection id="theSection">

<apex:pageBlockSectionItem id="theSectionItem">
All the alerts refer to this component.

<p>The full DOM ID resembles something like
this:

j_id0:theForm:thePageBlock:theSection:theSectionItem</p>
</apex:pageBlockSectionItem>

<!-- Works because this outputPanel has a parent in
common

with "theSectionItem" component -->
<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('{!$Component.theSectionItem}');">

First click here
</apex:outputPanel>

</apex:pageBlockSection>

<apex:pageBlockButtons id="theButtons" location="bottom">

<!-- Works because this outputPanel has a grandparent

171

Chapter 14 Visualforce

("theSection")
in common with "theSectionItem" -->

<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('{!$Component.theSection.theSectionItem}');">
Second click here

</apex:outputPanel>

<!-- Works because this outputPanel has a distant
ancestor ("theForm")

in common with "theSectionItem" -->
<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('

{!$Component.theForm.thePageBlock.theSection.theSectionItem}');">
Third click here

</apex:outputPanel>
</apex:pageBlockButtons>

</apex:pageBlock>

<!-- Works because this outputPanel is a sibling to
"thePageBlock",

and specifies the complete ID path from that sibling -->

<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('{!$Component.thePageBlock.theSection.theSectionItem}');">

Fourth click here
</apex:outputPanel>

<hr/>

<!-- Won't work because this outputPanel doesn't provide a
path

that includes a sibling or common ancestor -->
<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('{!$Component.theSection.theSectionItem}');">

This won't work
</apex:outputPanel>

172

Chapter 14 Visualforce

<!-- Won't work because this outputPanel doesn't provide a
path

that includes a sibling or common ancestor -->
<apex:outputPanel layout="block" styleClass="clicker"

onclick="alert('{!$Component.theSectionItem}');">
Won't work either

</apex:outputPanel>

</apex:form>
</apex:page>

Using Unique IDs
Within each hierarchy segment in a page, the component id must be unique. However, Salesforce
recommends you use an id that is unique on the page for every component you need to reference, and
any components above it in the component hierarchy that are needed to reference it.

For example, suppose you had two data tables in a single page. If both data tables are contained in the
same page block, they must have unique id attributes. If each is contained in a separate page block, it’s
possible to give them the same component id. If you do so, however, the only way to reference a specific
data table is to assign an id to every component and then reference the data table component using
the complete hierarchy, rather than letting Visualforce do it automatically. If the page hierarchy ever
changes, your program will no longer work.

Iterating with Component IDs
Some components, such as tables and lists, support iteration over a collection of records. After you assign
an ID for these types of components, the system assigns a unique “compound ID” to each iteration of the
component based on the initial ID.

For example, the following page contains a data table with an ID set to theTable.

<apex:page standardController="Account" recordSetVar="accounts"
id="thePage">

<apex:dataTable value="{!accounts}" var="account" id="theTable">
<apex:column id="firstColumn">

<apex:outputText value="{!account.name}"/>
</apex:column>
<apex:column id="secondColumn">

<apex:outputText value="{!account.owner.name}"/>
</apex:column>

173

Chapter 14 Visualforce

</apex:dataTable>
</apex:page>

When the page is rendered, the <apex:dataTable> component results in the following HTML:

<table id="thePage:theTable" border="0" cellpadding="0" cellspacing="0">
<colgroup span="2"/>
<tbody>

<tr class="">
<td id="thePage:theTable:0:firstColumn">

Burlington
Textiles

</td>
<td id="thePage:theTable:0:secondColumn">

Vforce
Developer

</td>
</tr>
<tr class="">

<td id="thePage:theTable:1:firstColumn">
Dickenson

</td>
<td id="thePage:theTable:1:secondColumn">

Vforce
Developer

</td>
</tr>

</table>

Each table cell has a unique ID based on the ID value of the containing components. The first table cell in
the first row has the ID thePage:theTable:0:firstColumn, the second cell in the first row has
the ID thePage:theTable:0:secondColumn, the first cell in the second row has the ID
thePage:theTable:1:firstColumn, and so on.

To refer to all entries in a column, you have to iterate across the table rows, referring to each <td> element
that has an ID following the format of the column.

The same type of ID generation is done for elements within the table cells. For example, the account name
in the first row is generated as a span with the ID thePage:theTable:0:accountName. Notice
that ID does not include the value of the ID for the column it’s in.

174

Chapter 14 Visualforce

Best Practices for Static Resources
Displaying the Content of a Static Resource with the action Attribute on <apex:page>

You can use the action attribute on a <apex:page> component to redirect from a Visualforce
page to a static resource. This functionality allows you to add rich, custom help to your Visualforce
pages. For example, to redirect a user to a PDF:

1. Upload the PDF as a static resource named customhelp.

2. Create the following page:

<apex:page sidebar="false" showHeader="false"
standardStylesheets="false"

action="{!URLFOR($Resource.customhelp)}">
</apex:page>

Notice that the static resource reference is wrapped in a URLFOR function. Without that, the page
does not redirect properly.

This redirect is not limited to PDF files. You can also redirect a page to the content of any static resource.
For example, you can create a static resource that includes an entire help system composed of many
HTML files mixed with JavaScript, images, and other multimedia files. As long as there is a single entry
point, the redirect works. For example:

1. Create a zip file that includes your help content.

2. Upload the zip file as a static resource named customhelpsystem.

3. Create the following page:

<apex:page sidebar="false" showHeader="false"
standardStylesheets="false"

action="{!URLFOR($Resource.customhelpsystem, 'index.htm')}">
</apex:page>

When a user visits the page, the index.htm file in the static resource displays.

Best Practices for Controllers and Controller Extensions
Enforcing Sharing Rules in Controllers

Like other Apex classes, custom controllers and controller extensions run in system mode.

Typically, you want a controller or controller extension to respect a user’s organization-wide defaults,
role hierarchy, and sharing rules. You can do that by using the with sharing keywords in the

175

Chapter 14 Visualforce

class definition. For information, see “Using the with sharing or without sharing
Keywords” in the Force.com Apex Code Developer's Guide.

Note: If a controller extension extends a standard controller, the logic from the standard
controller doesn’t execute in system mode. Instead, it executes in user mode, in which the
permissions, field-level security, and sharing rules of the current user apply.

Controller Constructors Evaluate Before Setter Methods
Do not depend on a setter method being evaluated before a constructor. For example, in the following
component, the component's controller depends on the setter for selectedValue being called
before the constructor method:

<apex:component controller="CustCmpCtrl">
<apex:attribute name="value" description=""

type="String" required="true"
assignTo="{!selectedValue}">

</apex:attribute>
//...
//...

</apex:component>

public class CustCmpCtrl {

// Constructor method
public CustCmpCtrl() {

if (selectedValue != null) {
EditMode = true;

}
}

private Boolean EditMode = false;

// Setter method
public String selectedValue { get;set; }

}

Since the constructor is called before the setter, selectedValue will always be null when the
constructor is called. Thus, EditMode will never be set to true.

Methods may evaluate more than once — do not use side-effects
Methods, including methods in a controller, action attributes, and expressions, may be called more
than once. Do not depend on evaluation order or side-effects when creating custom methods in a
controller or controller extension.

176

Chapter 14 Visualforce

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_classes_keywords_sharing.htm

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Visualforce.

• Visualforce Developer’s Guide

• Visualforce Cheat Sheet

• Visualforce Workbook

• Visualforce development forums

177

Chapter 14 Visualforce

CHAPTER 15 Force.com Canvas

Force.com Canvas is a set of tools and JavaScript APIs that you can use to expose an application as a canvas
app.

When to Use Force.com Canvas

Force.com Canvas enables you to easily integrate a third-party application in Salesforce. This means you
can take your new or existing applications and make them available to your users as part of their Salesforce
experience. Instead of redesigning and reintegrating your external applications, you can now use these
tools to integrate your technology within Force.com Canvas. The third-party app that you want to expose
as a canvas app can be written in any language. The only requirement is that the app has a secure URL
(HTTPS).

From a high-level view, there are two common scenarios where Force.com Canvas is implemented.

• Application integration—You’re a partner, systems integrator, or customer that builds cloud apps,
and you’d like to integrate these applications with Salesforce.

• Application rationalization/enterprise desktop—You’re a large organization that has many existing
apps that your users access in addition to Salesforce. You’d like to integrate these apps into Salesforce
so that users can accomplish all of their tasks in one place.

Supported Editions and Platforms

Force.com Canvas supports these Salesforce editions:

Install a canvas appPublish a canvas appCreate a canvas appEdition

Yes*NoYes*Group

Yes*NoYes*Professional

YesNoYesEnterprise

YesNoYesUnlimited

YesNoYesPerformance

179

Install a canvas appPublish a canvas appCreate a canvas appEdition

YesYesYesDeveloper

*Professional Edition organizations must have Force.com Canvas enabled in order for a canvas app to
appear in the specified location.

Force.com Canvas supports the following browsers:

• Mozilla® Firefox® (preferred)

• Google Chrome™

• Microsoft® Internet Explorer® version 8, 9, 10 (be sure Compatibility Mode is disabled), and 11

• Apple® Safari® (be sure to set the Block Cookies setting to Never)

If your app uses session cookies, you might need to set your P3P header to allow for third-party cookies
or change the browser settings to allow all session cookies.

The following Salesforce user permissions are required to create canvas apps and view them in the Canvas
App Previewer:

• Customize Application

• Modify All Data

Quick Start

This simple quick start shows you how to get started with Force.com Canvas by using the Heroku Quick
Start. The Heroku Quick Start creates a “hello world” app on Heroku in either Java or Ruby, depending on
the template you select. At the same time, it creates a corresponding canvas app in Salesforce.

The Heroku app is a “hello world” Web page that calls the Force.com Canvas SDK to display information
about the current user and lets you post to the current user’s Chatter feed.

Prerequisites
You need the appropriate access and tools to complete the quick start steps.

• Access to a Developer Edition organization.

If you are not already a member of the Force.com developer community, go to
developer.salesforce.com/signup and follow the instructions for signing up for a
Developer Edition organization. Even if you already have Enterprise Edition, Unlimited Edition, or
Performance Edition, use Developer Edition for developing, staging, and testing your solutions against

180

Chapter 15 Force.com Canvas

https://developer.salesforce.com/signup

sample data to protect your organization’s live data. This is especially true for applications that insert,
update, or delete data (as opposed to simply reading data).

If you have an existing Developer Edition organization, and, from Setup, you don’t see the menu item
Canvas App Previewer, contact Salesforce.

• “Customize Application” and “Modify All Data” user permissions. If you’re an administrator, you most
likely already have these permissions. Otherwise, you need to add them so that you can see the Canvas
App Previewer and create canvas apps.

• A Heroku account. Go here to create a Heroku account: https://api.heroku.com/signup.

• Java version 1.6 or 1.7 to run the local instance of the “hello world” app that you create. (The Heroku
instance of the app automatically downloads the correct version of Java.)

Create the App
In this step, you’ll create both the Heroku “hello world” app and the associated canvas app in your Salesforce
organization.

1. In Salesforce, from Setup, click Canvas App Previewer.

2. Click Heroku Quick Start.

3. In the Template field, select Java – Quick Start Template.

4. In the Canvas App Name field, enter a unique name of up to 30 characters.

5. In the Heroku App Name field, enter a unique name of up to 30 characters that begins with
a letter and contains only lowercase letters, numbers, and dashes. The newappName must be
unique across all Heroku apps. This name becomes part of the URL for your app, for example,
newappName.herokuapp.com.

6. In the Auth Type field, select Username/Password.

7. In the Heroku Username field, enter the username for the account used to log in to Heroku.
This is typically an email address. The Heroku app is created under this user’s credentials.

Note: This field has a maximum length of 30 characters. If your Heroku username is longer
than 30 characters, you’ll need to use the API key associated with your account. You can
find this value on the Heroku My Account page.

8. In the Heroku Password field, enter the password for the account used to log in to Heroku.

Tip: Instead of using the username and password for the Heroku account, you can use
the account’s associated API key. You can find this value on the Heroku Account page.

181

Chapter 15 Force.com Canvas

https://api.heroku.com/signup

Alternatively, you can use Heroku OAuth which initiates the Heroku OAuth flow or, if you’re
currently logged in to Heroku, uses the Heroku token.

9. Click Create. The app displays in the left navigation pane.

If you see an error like “Error [Read timed out] executing POST to Heroku clone REST service,” this
means the operation has timed out trying to contact Heroku. You can check the status of Heroku
at http://status.heroku.com.

10. Click the link to your new app on the left.

The app appears and you’ll see the message Hello User.FullName, as well as other
information about the current user.

You just created a canvas app—congratulations! You’ll only be able to see your canvas app in the Canvas
App Previewer until you set the locations where it can appear by following the steps in Set the App Location.
This defines where a user sees your app after it’s installed in their organization.

Behind the scenes, the Heroku Quick Start sets the canvas app’s Permitted Users, which includes
admin-approved users and your profile. For example, if your user profile is System Administrator, that
profile is added to the canvas app you just created, and any users with that profile can access the canvas
app.

Set the App Location
In this step, you’ll specify where your canvas app can display to a user in Salesforce.

1. In the Salesforce application, from Setup, click Create > Apps.

2. In the Connected Apps related list, click the app you just created and then click Edit.

3. In the Canvas Apps Settings section, in the Locations field, select where the canvas app can
appear to the user. For this walkthrough, select Chatter Tab.

• Chatter Feed—The canvas app appears in the feed. If this option is selected, you must create
a CanvasPost feed item and ensure that the current user has access to the canvas app.

• Chatter Tab—The canvas app appears in the app navigation list on the Chatter tab. If this
option is selected, the canvas app appears there automatically.

• Console—The canvas app appears in the footer or sidebars of a Salesforce console. If this
option is selected, you must choose where the canvas app appears in a console by adding it
as a custom console component.

• Layouts and Mobile Cards—The canvas app can appear on a page layout or a mobile card.
If this option is selected, you choose where the canvas app appears by adding it to the page
layout.

182

Chapter 15 Force.com Canvas

http://status.heroku.com

• Mobile Nav—The canvas app is accessible from the navigation menu in Salesforce1.

• Open CTI—The canvas app appears in the call control tool. If this option is selected, you must
specify the canvas app in your call center’s definition file for it to appear.

• Publisher—The canvas app appears in the Chatter publisher and Salesforce1 action bar. If
this option is selected, you must also create a canvas custom action and add it to the global
publisher layout or to an object’s page layout.

• Visualforce Page—The canvas app can appear on a Visualforce page . If you add an
<apex:canvasApp> component to expose a canvas app on a Visualforce page, be sure
to select this location for the canvas app; otherwise, you’ll receive an error.

4. Click Save.

Because you selected Chatter Tab, your canvas app now appears in the left navigation pane on
the Chatter tab.

Best Practices

Consider the best practices explained in this section.

Referencing the Force.com Canvas SDK
The Force.com Canvas SDK is available on GitHub, and you have two options for referencing it from your
canvas app.

• Host the SDK on your own Web server and access it there

• Access the SDK hosted on the Salesforce server

For example, here’s what the include statement looks like if you host the SDK on your own Web server:

<script type="text/javascript" src="/sdk/js/canvas-all.js></script>

Here’s what the include statement looks like if you reference the hosted SDK:

<script type="text/javascript"
src="https://<instance>.salesforce.com/canvas/sdk/js/34.0/canvas-all.js"></script>

The ability to reference the SDK on the Salesforce server is useful when you want to include one of the
SDK files in a Web app or from a Visualforce page.

183

Chapter 15 Force.com Canvas

https://github.com/forcedotcom/salesforcecanvasframeworksdk

User Interface Considerations
Here are some things to be aware of when designing and implementing the user interface for your canvas
app.

Canvas size
The frame size for canvas apps varies depending on the location where the app appears.When using
the SDK, these values are returned in the Dimensions Canvas object.

Logo image
The logo image associated with a canvas app is displayed when someone installs your canvas app or
during OAuth authentication when the user is prompted to allow the app to run. We recommend that
you use an image of size 256 pixels (high) by 256 pixels (wide).

Icon image
The icon image associated with a canvas app is displayed in these locations:

• To the left of the link to your canvas app on the Chatter tab, in the Chatter apps list.

• To the left of the link to your canvas app in the Canvas App Previewer.

Thumbnail image

The thumbnail image associated with a canvas app feed item is displayed when someone accesses
your canvas app in the feed. If specified, this image appears next to the feed item title and description.

We recommend that you use an image of size 120 pixels (high) by 120 pixels (wide) or smaller.

Visualforce Considerations with Force.com Canvas
Keep the following considerations in mind when using the <apex:canvasApp> component:

• The <apex:canvasApp> component is available only in organizations that have Force.com
Canvas enabled and in Visualforce pages at version 27.0 or higher.

• If you include a canvas app on an object detail layout, you must provide the height of the canvas app
in the page layout as well as in the <apex:canvasApp> component.

• Location—If the canvas app is in a Visualforce page, then the Environment.displayLocation
field contains the value Visualforce.

Force.com Canvas Limits
Because Force.com Canvas runs in a multitenant environment, limits are enforced to ensure protection of
shared resources.

184

Chapter 15 Force.com Canvas

LimitDescription

50Number of canvas apps per user that can be
displayed on the Chatter tab. Only the first 50 canvas
apps are displayed (sorted alphabetically).

5,000

This includes SDK calls to get context and signed
request calls. Note that when you call a

Number of Force.com Canvas calls per day per user
(24–hour period)

SignedRequest method, there are actually two calls
that are made—one call for the method and one
call for internal logging.

100

Heroku accounts have their own limits on the
number of calls you can make.

Heroku Quick Start calls per day per user

Cross-Domain XHR
Canvas apps are loaded on a Salesforce page in an iFrame. Therefore, the canvas app (in its own domain)
can’t make XHR (XML HTTP request) calls back to the *.salesforce.com domain. You can develop and deploy
your own proxies as part of the SDK, however, Force.com Canvas provides a client-side proxy written in
JavaScript. This proxy enables client-side XHR calls back to Salesforce.

If you use this proxy from the client to make an XHR request, the API forwards the request to the outer
iFrame and the request is submitted on your behalf. When the request is complete, the SDK calls the client’s
callback function with the results.

Note: The SDK supports cross-domain XHR calls, however, it shouldn’t be used to make same-domain
calls.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Force.com Canvas.

• Force.com Canvas Developer’s Guide

• APIs and Integration forum (see posts tagged with “Canvas”)

185

Chapter 15 Force.com Canvas

CHAPTER 16 Tooling API

Use Tooling API to build custom development tools for Salesforce applications.

When to Use Tooling API

Tooling API provides SOAP and REST interfaces that allow you to build custom development tools for
Force.com applications.Tooling API exposes metadata used in developer tooling that you can access
through REST or SOAP. Use Tooling API like the Salesforce REST API and SOAP API with one of the Tooling
WSDLs.

For example, using Tooling API you can:

• Add features and functionality to your existing Force.com tools.

• Build dynamic modules for Force.com development into your enterprise integration tools.

• Build specialized development tools for a specific application or service.

To accomplish these goals, Tooling API gives you calls to do the following:

• Manage working copies of Apex classes and triggers and Visualforce pages and components.

• Manage working copies of static resource files.

• Check for updates and errors in working copies of Apex classes and triggers and Visualforce pages and
components, and commit changes to your organization.

• Set heap dump markers.

• Overlay Apex code or SOQL statements on an Apex execution.

• Execute anonymous Apex.

• Set checkpoints to generate log files for yourself or for other users.

• Access debug log and heap dump files.

• Manage custom fields on custom objects.

• Access code coverage results.

The following Java code snippet uses the SOAP-based interface of Tooling API to programmatically create
an Apex class with a single method called SayHello.

String classBody = "public class Messages {\n"
+ "public string SayHello() {\n"

187

+ " return 'Hello';\n" + "}\n"
+ "}";

// create a new ApexClass object and set the body
ApexClass apexClass = new ApexClass();
apexClass.Body = classBody;
ApexClass[] classes = { apexClass };

// call create() to add the class
SaveResult[] saveResults = sforce.create(classes);
for (int i = 0; i < saveResults.Length; i++)

{
if (saveResults[i].success)

{
Console.WriteLine("Successfully created Class: " +
saveResults[i].id);

}
else

{
Console.WriteLine("Error: could not create Class ");
Console.WriteLine(" The error reported was: " +
saveResults[i].errors[0].message + "\n");

}
}

Supported Editions and Platforms

To use Tooling API, your organization must use Enterprise Edition, Performance Edition, Unlimited Edition,
or Developer Edition. If you are an existing Salesforce customer and want to upgrade to Enterprise, Unlimited,
or Performance Edition, contact your account representative.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Tooling API.

• Tooling API Developer’s Guide

• APIs and Integration forums

188

Chapter 16 Tooling API

CHAPTER 17 Salesforce1 Reporting REST API

The REST-based Salesforce1 Reporting API provides programmatic access to your report data in Salesforce.

When to Use Salesforce1 Reporting REST API

Salesforce1 Reporting REST API lets you integrate report data as defined in the report builder into any web
or mobile application, inside or outside the Salesforce platform. For example, you might use the API to
trigger a Chatter post with a snapshot of top-performing reps each quarter.

Using the alesforce1 Reporting API, you can:

• Integrate report data into custom objects.

• Define rich visualizations on top of the API to animate the data.

• Build custom dashboards.

• Automate reporting tasks.

At a high level, the API resources let you query and filter report data. You can:

• Run tabular, summary, or matrix reports synchronously or asynchronously.

• Filter for specific data on the fly.

• Query report metadata.

As an example, you could use the Salesforce1 Reporting API execute async REST resource to asynchronously
run a report. You’d use a REST resource URL of the form:

/services/data/<latest API version>/analytics/reports/<report
ID>/instances

In your POST request, you’d provide JSON data indicating the desired groupings and filters. After a successful
request, Salesforce will queue the report to be run and return JSON response data containing information
on where to get the report status and results, that might look something like this:

{
"id": "0LGD000000000IjOAI",
"requestDate": "2013-08-12T18:39:06Z",
"status": "New",
"ownerId": "005D0000001KvxRIAS",
"url":

189

"/services/data/v29.0/analytics/reports/00OD0000001ZbP7MAK/instances/0LGD000000000IjOAI",

"hasDetailRows": false,
"completionDate": null

}

Supported Editions and Platforms

To use Salesforce1 Reporting API, your organization must use Enterprise Edition, Performance Edition,
Unlimited Edition, or Developer Edition. If you are an existing Salesforce customer and want to upgrade
to Enterprise, Unlimited, or Performance Edition, contact your account representative.

Best Practices

Consider the best practices explained in this section.

Use JSON for Request and Response Data
Salesforce1 Reporting REST API supports request and response data in JSON, and not in XML. While using
the Salesforce1 Reporting API with a request body, use Content-Type: application/json
in your request headers.

Salesforce1 Reporting API Limits
Salesforce1 Reporting API has the following limitations:

Reports API Limits

• Cross filters, standard report filters, and filtering by row limit are unavailable when filtering data.

• Historical trend reports are only supported for matrix reports.

• The API can process only reports that contain up to 100 fields selected as columns.

• A list of up to 200 recently viewed reports can be returned.

• Your organization can request up to 500 synchronous report runs per hour.

• The API supports up to 20 synchronous report run requests at a time.

• A list of up to 2,000 instances of a report that was run asynchronously can be returned.

• The API supports up to 200 requests at a time to get results of asynchronous report runs.

• Your organization can request up to 1,200 asynchronous requests per hour.

190

Chapter 17 Salesforce1 Reporting REST API

• Asynchronous report run results are available within a 24-hour rolling period.

• The API returns up to the first 2,000 report rows. You can narrow results using filters.

• You can add up to 20 custom field filters when you run a report.

Dashboards API Limits

• Your organization can request up to 200 dashboard refreshes per hour.

• Your organization can request results for up to 5,000 dashboards per hour.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Salesforce1 Reporting REST API.

• Salesforce1 Reporting REST API Developer’s Guide

• APIs and Integration forums

191

Chapter 17 Salesforce1 Reporting REST API

COLLABORATION

CHAPTER 18 Chatter REST API

Use Chatter REST API for programmatic access to Chatter feeds, groups, and social data in your Salesforce
organization.

When to Use Chatter REST API

Use Chatter REST API to display Salesforce data, especially in mobile applications. Chatter REST API responses
are localized and structured for presentation. You can filter responses so they contain only what the app
needs. In addition to Chatter feeds, users, groups, and followers, Chatter REST API provides programmatic
access to files, recommendations, topics, notifications, Data.com purchasing, and more. Chatter REST API
is similar to APIs offered by other companies with feeds, such as Facebook and Twitter, but it also exposes
Salesforce features beyond Chatter.

Use Chatter REST API to:

• Build a mobile app.

• Integrate a third-party Web application with Salesforce so it can notify groups of users about events.

• Display a feed on an external system, such as an intranet site, after users are authenticated.

• Make feeds actionable and integrated with third-party sites. For example, an app that posts a Chatter
item to Twitter whenever the post includes #tweet hashtag.

• Create simple games that interact with the feed for notifications.

• Creating a custom, branded skin for Chatter for your organization.

Chatter REST API complements the SOAP API and the REST API by making it easy to interact with Chatter
data. Many Chatter REST API resource actions are also exposed as static methods on Apex classes in the
ConnectApi namespace. This namespace is also referred to as Chatter in Apex. Use Chatter in Apex to
develop Chatter applications on the Force.com platform without using HTTP callouts from Apex.

Supported Editions and Platforms

Chatter REST API is available in all editions except Personal Edition. Also, most features require Chatter to
be enabled for the organization.

193

Chatter REST API Quick Start

Connect to Salesforce and authenticate, then make a request to Chatter REST API and look at the response.

Prerequisites
Complete these prerequisites before you begin the quick start.

Become familiar with:

• cURL, which is a command-line tool the quick start uses as the client application that makes HTTP
requests to Salesforce. cURL is pre-installed on many Linux and Mac systems. Windows users can
download a version at curl.haxx.se/. When using HTTPS on Windows, ensure that your system
meets the cURL requirements for SSL.

Note: cURL is an open source tool and is not supported by Salesforce.

• JavaScript Object Notation (JSON), which is the data format returned in this quick start.

• OAuth 2.0, which is the framework Salesforce uses for authentication. The quick start provides the
steps, but it would be helpful to familiarize yourself with OAuth terms and concepts.

Step One: Obtain a Salesforce Developer Edition
Organization
If you are not already a member of the Force.com developer community, go to
developer.salesforce.com/signup and follow the instructions for signing up for a Developer
Edition organization. Even if you already have Enterprise Edition, Unlimited Edition, or Performance Edition,
use Developer Edition for developing, staging, and testing your solutions against sample data to protect
your organization’s live data. This is especially true for applications that insert, update, or delete data (as
opposed to simply reading data).

If you already have a Developer Edition organization, verify that you have the “API Enabled” permission.
This permission is enabled by default, but may have been changed by an administrator. For more
information, see the help in the Salesforce user interface.

Step Two: Set Up Authorization
Create a connected app in a Salesforce organization and enable OAuth. The client application uses the
connected app to connect to Salesforce.

194

Chapter 18 Chatter REST API

http://curl.haxx.se/
https://developer.salesforce.com/signup

1. In your Developer Edition organization, from Setup, click Create > Apps, and in the Connected
Apps section, click New to create a new connected app.

Clients can use a connected app to sign in to any organization, even if the connected app isn’t
defined in that organization.

2. Enter a connected app name.

3. Enter the contact email, as well as any other required information.

4. Select Enable OAuth Settings.

5. Enter a Callback URL. It must be secure: http:// does not work, only https:// works.
For this quick start, you can simply enter https://.

6. Enter an OAuth scope. Select Access and manage your Chatter feed in addition
to any other scope you want your connected app to allow access to.

7. Click Save.
The Consumer Key is created and displayed, and a Consumer Secret is created (click
the link to reveal it).

Step Three: Connect to Chatter REST API Using OAuth
Use OAuth to connect to Salesforce and get an access token. Pass the access token in requests to Chatter
REST API.

Complete Step Two: Set Up Authorization and create a connected app before starting this task.

This table maps the terms used in the connected app you created to the OAuth properties used in the
examples. The OAuth 2.0 specification uses the word “client” instead of “consumer.”

Value in ExampleConnected App Application Label

client_idConsumer Key

client_secretConsumer Secret

Note: This quick start uses the username-password OAuth authentication flow. The
username-password authentication flow passes the user’s credentials back and forth. Use this
authentication flow only when necessary, such as in this quick start. No refresh token will be issued.
In addition, Salesforce Communities doesn’t support the username-password authentication flow.
In this quick start, don’t make a request to a Communities URL.

To make a request to Salesforce, substitute values from your organization into these examples:

195

Chapter 18 Chatter REST API

1. Generate the access token.

This cURL command generates an access token:

curl --form client_id=3MVG9PhR6g6B7ps4xDycwGrI4PvjVZvK9
--form client_secret=8870355475032095511
--form grant_type=password
--form username=admin@seattleapps.com
--form password=1Lsfdc!
https://login.salesforce.com/services/oauth2/token

Tip: To paste a multi-line command into a Mac or Linux command line interface, escape
each line with a backslash (“\”) to indicate that the command continues on the next line.
An escaped line looks like this:

curl --form client_id=3MVG9PhR6g6B7ps4xDycwGrI4PvjVZvK9 \

To paste a multi-line command into the Windows Command Prompt, escape each line
with a caret (“^”). An escaped line looks like this:

curl --form client_id=3MVG9PhR6g6B7ps4xDycwGrI4PvjVZvK9 ^

The response includes the server instance and the access token:

{
"id":"https://login.salesforce.com/id/00Di0000000hT9uEAE/005i00000022uIbAAI",
"issued_at":"1302907727777",
"instance_url":"https://na1.salesforce.com",
"signature":"5jcevY5fUai0lWntuSxkwBzWcvRjd01RCOkIBZpyGv0=",
"access_token":"00DD0000000FJ6T!AQkAQPde_DMF2vGzddfZmBRS95GojDbtA

rKkgukAgZP0OVFYY5KkAqhLw9ejeKIlpJ3FgwGAWeRlBiWRt8mfXEuAZGbZNosk"
}

2. To request a Chatter REST API resource, use the returned instance_url as the server instance.
Pass the returned access_token as a Bearer token in the Authorization request
header.

curl -X GET
https://na1.salesforce.com/services/data/v34.0/chatter/users/me

-H 'Authorization: Bearer
00DD0000000FJ6T!AQkAQPde_DMF2vGzddfZmBRS95Goj

196

Chapter 18 Chatter REST API

DbtArKkgukAgZP0OVFYY5KkAqhLw9ejeKIlpJ3FgwGAWeRlBiWRt8mfXEuAZGbZNosk'

This example uses these values:

ValueProperty

na1.salesforce.comServer instance

3MVG9PhR6g6B7ps4xDycwGrI4PvjVZvK9client_id

8870355475032095511client_secret

password

The value of grant_type depends on the
OAuth authentication flow you are using.

grant_type

admin@seattleapps.comusername

1Lsfdc!password

Connecting to Salesforce Communities
To use OAuth to connect to a Salesforce community, replace the server instance name with the full path
to the community URL.

To connect to a Salesforce community, you can use the OAuth Web server and user-agent workflows.

To authenticate a user using the authorize URL, replace the login.salesforce.com host name
with the full path to the community URL. This is the non-Communities URL:

https://login.salesforce.com/services/oauth2/authorize?
response_type=token&client_id=your_app_id&redirect_uri=your_redirect_uris

This is the Communities URL:

https://acme.force.com/customers/services/oauth2/authorize?
response_type=token&client_id=your_app_id&redirect_uri=your_redirect_uri

When implemented successfully, this URL directs users to your app’s branded login page. After they
authorize the app, set a user access token and a refresh token for future authentication. In requests for the
token endpoint, replace the host with the community, like this:

https://acme.force.com/customers/services/oauth2/token

197

Chapter 18 Chatter REST API

To request a Chatter REST API resource, use the Salesforce host name and specify the community ID:

https://na1.salesforce.com/services/data/v29.0/connect
/communities/communityId/chatter/feeds/news/me/feed-elements

Alternately, you can replace the host name with the full path to the community URL:

https://communitydomain.force.com/communitypath/services/data/v29.0/connect
/communities/communityId/chatter/feeds/news/me/feed-elements

Best Practices

Consider the best practices in this section.

Chatter REST API Limits
Chatter REST API requests are subject to rate limiting. Chatter REST API has a different rate limit than other
Salesforce APIs. Chatter REST API has a per user, per application, per hour rate limit. When you exceed the
rate limit, all Chatter REST API resources return a 503 Service Unavailable error code.

For applications using a session ID from Force.com, the rate limit is per user, per hour—there isn't a separate
bucket for applications. All applications the user accesses with a session ID use this general quota. To take
advantage of the per user, per application, per hour limit, use OAuth tokens.

Note: Load, performance, and other system issues can prevent some limits from being reached.
Limits can change without notice. Applications should make efficient use of available requests and
gracefully handle the 503 error code.

Using Wildcards to Match Text Patterns
Use wildcard characters to match text patterns in Chatter REST API and Chatter in Apex searches. A common
use for wildcards is searching a feed. Pass a search string and wildcards in the q parameter. This example
is a Chatter REST API request:

/chatter/feed-items?q=chat*

This example is a Chatter in Apex method call:

ConnectApi.ChatterFeeds.searchFeedItems(null, 'chat*');

198

Chapter 18 Chatter REST API

Understanding Response Body Encoding
Chatter REST API serves user-submitted content that is often not filtered at input and may come from
many different sources including third-party mobile and web applications. Therefore, developers creating
applications that consume Chatter REST API output must take care to properly process the output for the
context in which they use the data.

Chatter REST API strings are minimally HTML entity encoded by default, which is suitable in most cases for
display between HTML tags, but not necessarily in other HTML contexts.Chatter REST API output may be
used in many contexts. Developers should not assume that the default entity encoding is appropriate for
all contexts. In particular, using Chatter REST API output inside HTML attribute values, inside URLs, with
javascript, inside script tags and inside CSS all require different encoding and whitelisting.

For non-HTML contexts, such as native mobile applications, Chatter REST API clients can request raw
(unencoded) output. Set the X-Chatter-Entity-Encoding HTTP header in a request to false.

Chatter REST API does special encoding of any URL values included in response payloads. The main part
of the URL is URL-encoded as per RFC2396, and the query string is HTML-form encoded. This encoding
cannot be turned off.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Chatter REST API.

• Chatter REST API Developer’s Guide

• Chatter Code Recipes

• Chatter REST API Cheat Sheet

• Chatter development forum

199

Chapter 18 Chatter REST API

http://www.apps.ietf.org/rfc/rfc2396.html

MOBILE

CHAPTER 19 Salesforce Mobile SDK

The Salesforce Mobile SDK provides a set of frameworks and tools that let you easily create sophisticated
mobile apps that integrate with Salesforce.

When to Use Mobile SDK

Salesforce Mobile SDK lets you develop native Objective-C apps for iOS and Java apps for Android. You
can also use it to provide a native container for hybrid apps written in HTML5 and JavaScript. Npm scripts
for iOS and Android help you get started building native and hybrid apps. Salesforce Mobile SDK provides:

• Native device services. You can access device features such as the camera, GPS, and contacts across a
broad range of iOS and Android devices.

• Secure offline storage and data synchronization. You can build applications which continue to function
with limited or no network connectivity. The data stored on the device is securely encrypted and safe,
even if the device is lost or stolen.

• Application security. You’re free from having to rebuild login pages and general authentication in
mobile apps. Mobile SDK apps quickly and easily integrate with enterprise security management.

Mobile SDK also integrates with the Force.com cloud architecture by providing:

• SmartSync Data Framework for accessing Salesforce data through JavaScript

• SmartSQL support for advanced data queries

• Data syncing for native and hybrid apps

• Implementation of Force.com Connected App policy that works out of the box

• OAuth credentials management, including persistence and refresh capabilities

• Support for Salesforce Communities logins and external authentication providers

• Built-in registration with Salesforce for push notifications

• Wrappers for Salesforce REST APIs

• Libraries for building native iOS and Android applications

• Cordova-based containers for building hybrid applications

201

Supported Editions and Platforms

You’ll need the following to use the Mobile SDK:

• To build iOS applications (hybrid or native), you’ll need Mac OS X 10.8 (“Mountain Lion”) or later, iOS
7 or later, and Xcode 5.0 or later.

• To build Android applications (hybrid or native), you’ll need the Java JDK 6, Eclipse, Apache Ant, the
Android ADT plug-in for Eclipse, and Android SDK Tools, version 21 or later.

• Mobile SDK resources are on GitHub, a social coding community. You can access all of our files in our
public repository, but we think it’s a good idea to join. https://github.com/forcedotcom

Depending on how you use the Mobile SDK to integrate with Salesforce, you might also end up using
Visualforce, Apex, or the REST API. See the sections in this guide on these APIs to understand what Salesforce
editions are supported, and what additional requirements might be needed.

202

Chapter 19 Salesforce Mobile SDK

https://github.com/forcedotcom

CHAPTER 20 Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Salesforce Mobile SDK.

• Salesforce Mobile SDK Development Guide

• Platform Mobile Services site

• Mobile SDK release notes

• Mobile development forums

203

MARKETING CLOUD

CHAPTER 21 ExactTarget API

ExactTarget’s core offerings include an award-winning product, called Fuel, that powers multi-channel
marketing programs for many of the world’s top brands. The foundation of the ExactTarget Marketing
Cloud, Fuel is open to third-party development, enabling you to build upon, extend, and integrate with
ExactTarget’s industry-leading digital marketing products.

If you’re reading this, you’re probably a developer who works for an ExactTarget customer or partner, and
you’re probably wondering how to get started. The next few sections will introduce you to Fuel and how
to leverage the ExactTarget Marketing Cloud to build innovative customer touchpoints.

Using Fuel to Send Email

One of the most common uses of Fuel is to send email. This section walks you through the process of
sending an email to a list of subscribers. This example is designed to illustrate many of the basic concepts
that you will need to use Fuel programatically to send email, both promotionally and transactionally.

Specifically, you’ll learn how to add attributes associated with purchase activity to the subscriber data
model. You’ll learn how to create a list, add a subscriber to that list, create an email, send the email to the

205

list, and get back tracking events from the send, all programatically. Finally, you’ll learn how to use content
scripting to build a highly personalized message using additional data sets.

Basic Concepts: Subscribers, Attributes, Lists, and Emails
Before you write any code, we need to introduce a few key ExactTarget Marketing Cloud concepts:
subscribers, lists, profile attributes, and emails. These four concepts are the basis of any email communication
that ties contacts, subscription, and content together.

Subscribers are contacts that have an email address and status. A subscriber can be active, unsubscribed,
or held. If a subscriber is active, the Marketing Cloud can send email to that email address. If a subscriber
is unsubscribed, the Marketing Cloud will prevent email from being sent to that email address. If a subscriber
is held, previous attempts to send email to that email address bounced.

Lists contain subscribers and represent the simplest way to send email to multiple subscribers. Every
account in the Marketing Cloud has an “All Subscribers” list that, as the name implies, contains all subscribers
on all lists. All lists in an account are considered children of the “All Subscribers” list, so if a subscriber is
unsubscribed on the “All Subscribers” list, that subscriber is considered unsubscribed on all lists, and the
Marketing Cloud will not allow email to be sent to that subscriber.

Profile attributes are arbitrary name-and-value pairs that can be associated with each subscriber. For example,
you might use a profile attribute to store the subscriber’s first name so that you can personalize email to
that subscriber and address him or her by name (for example, “Hi Dale”). Profile attributes exist at the “All
Subscribers” list level and apply to all child lists that are created. You can create up to 200 profile attributes

206

Chapter 21 ExactTarget API

in an account. A more flexible attribute model exists with data extensions. See this guide’s section on data
extensions on page 223 for information on personalizing your messages further.

Emails are delivered to lists of subscribers. Every email is a template that can be personalized with
substitution strings represented by your profile attributes. The email template governs how an email goes
from being a skeleton of structure to being a fully formed email that’s can be automatically sent using a
production data source. You can create an email by using our Fuel SDKs in the tutorial in this chapter.

In this tutorial,you’ll learn how to use Fuel to programmatically create a profile attribute, create a list, add
a subscriber to the list, create a personalized email, send the email to the list, and get tracking events such
as opens and clicks. In the last section of the tutorial, you’ll learn how to personalize your email further by
using advanced Marketing Cloud features such as data extensions and AMPscript.

Setting Up Your Development Environment
Before you write any code, you need to set up your development environment. Let’s do that now.

Fuel SDKs

Fuel SDKs
First, download the Fuel SDK for your preferred environment. The Fuel SDKs are wrappers around Fuel’s
APIs that enable developers to integrate with those APIs by using native language constructs. You can
find the SDKs at https://code.exacttarget.com/sdks. Fuel SDKs are available for Java, .NET, PHP, Python,
and Ruby. You’ll be using the PHP SDK to build your app, but all Fuel SDKs employ common patterns, so
you’ll be able to adapt the example code to any of the other SDKs fairly easily. Install the PHP SDK in a
subdirectory of your workspace, called sdk. Make sure that you have all dependencies installed as described
in the SDK’s README. Building the App on page 213 explains how to configure the SDK, but don’t worry
about that now.

The SDKs provide protocol agnostic interfaces across Fuel’s SOAP and REST APIs as well as automated
token management and other features that are designed to reduce development time. Our SOAP API is
our oldest and most comprehensive API, but its functionality is limited to the ExactTarget email application,
and like all SOAP APIs, it’s fairly heavyweight. Our REST API is newer and less comprehensive, but it exposes
a broader set of Marketing Cloud capabilities and is more lightweight and easy to use (and is getting more
comprehensive with every release). Both share a common authentication mechanism based on OAuth 2.

By using the SDKs, you get the best of both worlds. And, in most cases, you can accomplish the same task
with less code by using the SDKs. We’ve also encapsulated common patterns and best practices directly
into the SDKs. That’s why they’re the most popular way to integrate with the Fuel Platform.

207

Chapter 21 ExactTarget API

https://code.exacttarget.com/sdk

If there’s no SDK for your preferred environment, or if you’d rather not use an SDK, don’t worry—you can
always access the APIs directly. We’ll show you a few examples of how to do that, but we won’t be able
to be comprehensive. You can find more information about how to use the API directly at Code@ExactTarget.

App Center

Next, you’ll create an App Center account and log in to that account. App Center is the central development
console for using Fuel’s APIs and building ExactTarget Marketing Cloud apps. To create an account:

1. Navigate to https://code.exacttarget.com/.

2. Click App Center.

3. Click Create an account now.

4. Complete the form, and then click Create new account.

5. In the confirmation email that you receive, click Update Profile, and then set a password.

Once you’ve created an account on Code@ExactTarget, logged in to that account, and downloaded the
appropriate Fuel SDK (if applicable), the next step is to connect an application to ExactTarget using App
Center. App Center is the central development console for building applications and integrating with the
Fuel Platform. An extension to the Code@ExactTarget developer community, App Center enables ExactTarget
developers to obtain API keys for authenticating with Fuel APIs as well as create and manage their Marketing
Cloud apps.

App Center is accessed via the Code@ExactTarget top menu bar.

1. Navigate to https://appcenter.exacttarget.com/.

2. Click the Login link in the upper-right corner to get to the next screen.

3. Enter your credentials, and then click Log In.

4. The App Center button appears in your main navigation bar after you’ve logged in. Click it, and
then proceed with the registration process. Simply fill out the form and click Continue.

5. Accept the End User License Agreement to proceed.

After you accept the EULA, you can create your first app.

Each app in App Center represents an application that has been connected to the Fuel Platform. If you’re
familiar with connected apps in Force.com, you’ll find the concept of connected apps in Fuel familiar.
There are currently three types of connected apps.

• Server-to-Server apps are secure, API-based, server-to-server integrations. Create a Server-to-Server
app when you want to use Fuel’s APIs to automate tasks or integrate business systems. Server-to-Server
apps utilize an OAuth 2.0 client credentials flow to acquire access tokens directly from Fuel’s
authentication service.

208

Chapter 21 ExactTarget API

https://code.exacttarget.com/
https://appcenter.exacttarget.com/

• Marketing Cloud apps live within the ExactTarget Marketing Cloud and are launched via the Marketing
Cloud’s app menu. Marketing Cloud apps can be custom apps that are built by your organization or
apps that are installed from the ExactTarget HubExchange. Marketing Cloud apps utilize a JSON Web
Token (JWT) to acquire access tokens on behalf of logged-in users.

• MobilePush apps are built for the iOS, Android, or Blackberry mobile platforms that use MobilePush
to communicate with their users via push messages. MobilePush apps are classified as consumer-grade
applications and utilize long-lived, limited-access tokens.

Connect an App
Because you’re building an API-based integration with the ExactTarget Marketing Cloud, you’ll be creating
a Server-to-Server App. After you’re in App Center, click Server-to-Server. Give the app a name and
description, and then specify myapp as your package name. Packages uniquely identify the app in
ExactTarget Fuel.

209

Chapter 21 ExactTarget API

Connect Your App to an Account
Next, you need to link your app to an ExactTarget Marketing Cloud account. This is the account your app
will access when it makes API calls and can be thought of as your app’s development environment.

The first time you link an app to an account, you need to select New… from the drop-down menu. App
Center saves account references, so if you want to use the same account for future apps, you can select
that account from the drop-down menu rather than linking a new one.

When you link an account, you need to tell App Center what type of account it is. A Production
ExactTarget Account is what most developers have access to and use for development purposes. A
Sandbox ExactTarget Account is a special type of account that some organizations have purchased that
is used in conjunction with a production account for testing. If you’re not sure which type of account to
choose, choose Production ExactTarget Account.

After you have selected what type of ExactTarget account you want to link to your app, click the Link to
Account button. A new browser window will open, showing the Marketing Cloud login screen asking for
a username and password. You may need to ask your administrator to create a user account for you if you
do not have existing credentials.

210

Chapter 21 ExactTarget API

Note: Don’t confuse the username and password you used to log into Code@ExactTarget with your
Marketing Cloud credentials—they’re different!

Give Your App Access to Account Features
Upon completion of the login process, you will automatically be moved to the next step of the wizard. In
this step, you need to tell App Center what account features your app will need to use. Your app will only
be able to access the account features you specify here, and for other app types, like Marketing Cloud
Apps, the users of your app must also have access to those features to use your app in their Marketing
Cloud account.

Your app will need to create and modify emails, lists, subscribers, and data extensions, as well as send
email and retrieve tracking event data. So, in this step, you should give the app access to the following
account features and operations.

• Channels - Email: Read, Write, Send

• Contacts - List and Subscribers: Read, Write

• Data - Data Extensions: Read, Write

• Data - Tracking Events: Read

Finishing Up
After completing this step of the wizard, you’ll be shown a summary screen. If everything looks good, click
Finish.

Among other things, the summary screen shows you the connected app’s OAuth client credentials, which
will be used with Fuel’s authentication service to get OAuth tokens that will authenticate your app with
other Fuel APIs.

211

Chapter 21 ExactTarget API

Also note the Courtesy Limit. The Courtesy Limit is a soft-capped limit on the number of API calls that your
app can make. If your app needs to make more than 50,000 API calls per day, it will not be prevented from
making them. However, the Fuel Platform monitors the usage of each app and can rate limit or throttle
apps that are either intentionally or accidentally abusing Marketing Cloud resources.

Note: The connected app’s OAuth client credentials represent pre-authorized access to the account
granted through the authorization step of the App Center wizard. You should NEVER expose the
client secret on the client side via JavaScript, and you should ALWAYS take steps to ensure that the
client secret is stored securely in your application, as knowledge of the client secret will give anyone
full access to the linked account!

You can get back to the app’s summary screen at any time from the App Center main window.

212

Chapter 21 ExactTarget API

Now your application is connected to a Marketing Cloud account and you have OAuth credentials to that
account. Let’s write some code!

Building the App

You’ll be using the PHP SDK to build your app, but all Fuel SDKs employ common patterns, so you’ll be
able to adapt the example code to any of the other SDKs fairly easily.

If you haven’t already done so, download the PHP SDK from https://code.exacttarget.com/sdks, and then
install the PHP SDK in a subdirectory of your workspace, called sdk. Make sure that you have all
dependencies installed as described in the SDK’s README.

To configure the SDK, you’ll need to add your OAuth credentials to config.php (the SDK contains a
template file you can use to create config.php). Note that it’s safe to include the client ID and client
secret in config.php, because config.php is hosted server-side and not exposed to the client.

return array(
'appsignature' => 'none',

'clientid' => 'YOUR_CLIENT_ID_FROM_APP_CENTER',
'clientsecret' => 'YOUR_CLIENT_SECRET_FROM_APP_CENTER',
'defaultwsdl' =>

'https://webservice.exacttarget.com/etframework.wsdl'
);

Initialize the Fuel SDK
Now that the PHP SDK is configured, initialize the SDK by instantiating an ET_Client object.

require('sdk/ET_Client.php');

$client = new ET_Client();

The ET_Client object is the central object in all Fuel SDKs and performs a number of tasks for you
automatically, including acquiring and refreshing OAuth access tokens using the client ID and client secret
you specify in config.php.

213

Chapter 21 ExactTarget API

https://code.exacttarget.com/sdks

Create a Profile Attribute (a.k.a. Define your Subscriber
Data Model)
Next, create a profile attribute to hold the subscriber’s first name so you can personalize the email to that
subscriber. Here’s how to create a profile attribute using the SDK.

$profileAttribute = new ET_ProfileAttribute();
$profileAttribute->authStub = $client;

$profileAttribute->props = array("Name" => "FirstName", "PropertyType"
=> "string", "Description" => "The subscriber's first name");

$response = $profileAttribute->post();

print_r($response);

This is a typical interaction with a Fuel SDK object and highlights the patterns common to all Fuel SDKs.

1. Instantiate the object you want to interact with (in this case, ET_ProfileAttribute).

2. Supply the ExactTarget account context via the authStub property on the object
($profileAttribute->authStub = $client).

3. Set the appropriate properties that govern the operation (in this case, you’re creating a profile
attribute called FirstName, which is a string and contains the subscriber’s first name).

4. Perform a REST-like operation (get, post, patch, or delete) on the object depending on
whether you want to retrieve, create, update, or delete it. In the example in this section you’re
creating a profile attribute, so you perform a post.

The following example shows typical results of loading the PHP file in a browser.

ET_Configure Object
(

[status] => 1
[code] => 200
[message] =>
[results] => Array

(
[0] => stdClass Object

(
[StatusCode] => OK
[StatusMessage] => Success
[OrdinalID] => 0
[Object] => stdClass Object

(

214

Chapter 21 ExactTarget API

[PartnerKey] =>
[ID] => 348977
[ObjectID] =>
[Name] => FirstName
[PropertyType] => string
[Description] => The subscriber's first

name
)

)
)

[request_id] =>
[moreResults] =>

)

This is a typical response to a PHP SDK method invocation. For now, just note that the call (hopefully)
succeeded, as indicated by StatusCode and StatusMessage.

Create a List
Next, create a list to hold your subscribers using the same pattern that you used to create a profile attribute.

$list = new ET_List();
$list->authStub = $client;

$list->props = array("ListName" => "my subscribers");

$response = $list->post();

print_r($response);

The following example shows typical results of loading the PHP file in a browser.

ET_Post Object
(

[status] => 1
[code] => 200
[message] =>
[results] => Array

(
[0] => stdClass Object

(
[StatusCode] => OK
[StatusMessage] => Created List.
[OrdinalID] => 0

215

Chapter 21 ExactTarget API

[NewID] => 1992264
[Object] => stdClass Object

(
[PartnerKey] =>
[ID] => 1992264
[ObjectID] =>
[ListName] => my subscribers

)
)

)
[request_id] =>
[moreResults] =>

)

This time, note the NewID property. When an object is created in the ExactTarget Marketing Cloud, a
unique identifier is assigned to that object, and that unique identifier can be found in the response object’s
NewID property. To refer to the object later, you can store its value in a variable like this.

$listID = $response->results[0]->NewID;

For now, make a note of what the value is. You’ll use that value in the next API call.

Add a Subscriber to the List
After creating a list, create a subscriber, and then add that subscriber to the list that you just created. For
the ID property, use the value of NewID that you noted after creating your list. For the FirstName
property, use your email address.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();

$subscriber = new ET_Subscriber();
$subscriber->authStub = $client;

$subscriber->props = array("EmailAddress" =>
"YOUR_EMAIL_ADDRESS_GOES_HERE", "Lists" => array("ID" =>
"YOUR_LIST_ID_GOES_HERE"));

// specify profile attributes
$subscriber->props['Attributes'] = array(array('Name' => 'FirstName',
'Value' => 'YOUR_FIRST_NAME_GOES_HERE'));

216

Chapter 21 ExactTarget API

$response = $subscriber->post();

Note that if your account is enabled with SubscriberKey, the previous code sample will not work
unless you specify a SubscriberKey attribute in props. For more information about
SubscriberKey, please
see http://help.exacttarget.com/en/documentation/exacttarget/subscribers/subscriber_key.

Create an Email
Next, create an email to send to your list.

$email = new ET_Email();
$email->authStub = $client;

$emailBody = <<<EMAIL
<html>
<body>
<p>%%FirstName%%,</p>

<p>We're pretty sure you would love our products!</p>

<small>
<p>This email was sent by:</p>

<p>
%%Member_Busname%%

%%Member_Addr%%

%%Member_City%%, %%Member_State%%, %%Member_PostalCode%%

%%Member_Country%%

</p>

Profile Center

</small>

<custom name="opencounter" type="tracking">
</body>
</html>
EMAIL;

217

Chapter 21 ExactTarget API

http://help.exacttarget.com/en/documentation/exacttarget/subscribers/subscriber_key

$email->props = array("Name" => "my email", "CustomerKey" => "123",
"Subject" => "Hi %%FirstName%%, we think you will like this", "HTMLBody"
=> $emailbody, "IsHTMLPaste" => true);

$response = $email->post();

print_r($response);

This operation is much more complex than previous operations. Let’s use this call to highlight a few
important concepts and features.

• You’ve added a property called CustomerKey to the ET_Email object. This property is on every
object in ExactTarget, and you can use it to attach your own identifier to an object. This makes it easier
to integrate ExactTarget with your existing infrastructure.

• A customer opening an email is an important touchpoint. To have ExactTarget track when customers
open HTML email, you’ve added the following tag to the email body: <custom
name="opencounter" type="tracking">.

• Both the email subject (the Subject property) and the email body (the HTMLBody property)
contain substitution strings, denoted by %% on either side of the substitution string name. Some of
these substitution strings are user-defined in profile attributes (like FirstName), and others are
automatically resolved by ExactTarget.

• There’s a property, called IsHTMLPaste, that’s set to true so that users of the Marketing Cloud
UI can edit the content by using only the HTML editor. By default, and when IsHTMLPaste is set
to false, the WYSIWYG editor will be the editing experience, but the content must provide templating
hooks to be editable. If you’re doing an API-only integration, you don’t need to specify a value for
IsHTMLPaste.

Use Substitution Strings to Personalize Your Email
User-defined substitution strings enable you to personalize your email for each recipient. A good email
subject line is critical in creating a successful customer touchpoint, as a good subject line increases the
chance that the recipient will open an email. Subject lines in ExactTarget can be personalized in a number
of ways, including using substitution strings (for example, “Thanks for your purchase, %%FirstName%%!”).

Once the recipient has opened your email, the content of the email will determine whether or not the
recipient will engage (for example, buy a product) or disengage (for example, unsubscribe). In addition to
substitution strings, ExactTarget provides many features to help you innovate and make your content
more relevant, including the AMPscript content scripting language, HTTPGet content scraping, and
sophisticated dynamic content functionality.

218

Chapter 21 ExactTarget API

Substitution strings that are automatically resolved by ExactTarget make it easy for you to ensure your
content complies with CAN-SPAM laws for commercial sending. To help marketers comply with CAN-SPAM,
ExactTarget requires every email to contain the following personalization strings:

%%Member_Busname%%
%%Member_Addr%%
%%Member_City%%
%%Member_State%%
%%Member_PostalCode%%
%%Member_Country%%

These substitution strings contain the elements of the sending organization’s physical address, as required
by CAN-SPAM, and will be automatically filled in by ExactTarget based on your account information.

In addition, ExactTarget requires every email to contain a link to a profile center to manage subscription
preferences, including whether the recipient of the email wants to opt out of future communications.
ExactTarget builds and hosts these profile centers. To comply with CAN-SPAM, all you need to do is include
the following substitution string.

%%profile_center_url%%

Send Your Email to Your List
Now that you’ve created a list, added a subscriber to that list, and created an email to send to that list,
you’re ready to send your first email!

$response = new ET_Post($myclient, 'Send', array("List"=> array("ID"
=> "YOUR_LIST_ID_GOES_HERE"), "Email" => array("CustomerKey" =>
"123")));

print_r($response);

Be sure to put the list ID that you saved after you created your list where it says YOUR_LIST_ID_GOES_HERE.

Note that this example uses a slightly different SDK pattern—rather than calling a method on the email
object, the code is calling an SDK method directly.

Reload the page. As before, make note of the value of the NewID property—this is the unique identifier
of the send you’ve just initiated, and it can be used to retrieve summary and raw individual statistics about
the send, get the status of the send, pause it, restart it, or cancel it. You’ll be using this NewID value in
the next section to get back a list of open events related to the send.

219

Chapter 21 ExactTarget API

Retrieve Tracking-Event Data
Retrieving event data from ExactTarget is how you can measure the success of any customer touchpoint.
ExactTarget captures a variety of events for each send.

Delivery events related to the send enable you to know if your data is of good quality. These events are
SentEvent, which indicates that the email was rendered and sent; and BounceEvent, which
indicates that the email bounced (was not delivered) either synchronously or asynchronously.

Engagement events related to the send enable you to learn how a customer engaged with your email
content. These events are UnsubEvent, which indicates that the recipient unsubscribed from the list
either by spam complaint, reply mail management, or the profile center; OpenEvent, which indicates
that the recipient opened the email (this only works for HTML emails that include the tracking pixel above,
and after the recipient allows images to load); and ClickEvent, which indicates that the recipient
clicked on a link in the email (this only works if ExactTarget wraps the links).

In this example, get all of the SentEvents for the send that you just performed, and then print them to the
browser window or console.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();
$openEvent = new ET_OpenEvent();
$openEvent->authStub = $client;

$openEvent->props = array("SubscriberKey", "EventType", "EventDate");
$openEvent->filter = array("Property" => "SendID", "SimpleOperator"
=> "equals", "Value" => array(YOUR_SEND_ID_GOES_HERE));

$response = $openEvent->get();

print_r($response);
?>

Again, be sure to put the send ID that you saved after you performed the send where it says
YOUR_SEND_ID_GOES_HERE .

The following example shows typical results of loading the PHP file you’ve modified in a browser.

ET_Get Object
(

[status] => 1
[code] => 200
[message] =>

220

Chapter 21 ExactTarget API

[results] => Array
(

[0] => stdClass Object
(

[PartnerKey] =>
[ObjectID] =>
[SubscriberKey] => jflathead@example.com
[EventDate] => 2013-11-09T19:01:33
[EventType] => Open

)

)

[request_id] => 6816994f-125b-4932-9003-bc669c1ea7cc
[moreResults] =>

)

This example shows that the subscriber with the subscriber key jflathead@example.com opened the email
on November 9, 2013, at 7:01 p.m. Subsequent calls will return only open events since the last call.

Using the API Directly

If you’re using a language or platform where the SDKs are not available or are otherwise not a viable
solution, you can use the API directly rather than going through the SDK.

Getting an Access Token
The first step in any API-based integration is getting an access token, which will be used to authenticate
other API calls. To get an access token, you will use Fuel’s authentication service. The code sample below
demonstrates how to use an HTTP POST request to acquire an access token:

POST https://auth.exacttargetapis.com/v1/requestToken
Content-Type: application/json
{

"clientId": "YOUR_CLIENT_ID_FROM_APP_CENTER",
"clientSecret": "YOUR_CLIENT_SECRET_FROM_APP_CENTER"

}

200 OK
{

"accessToken": "dfy3dsnqw3gre6e3pbatcr4s"

221

Chapter 21 ExactTarget API

"expiresIn": 3600
}

The access token is returned in the accessToken property. You can use this token to authenticate other
API calls by specifying it via the Authorization header field with the Bearer HTTP authorization
scheme. For example:

GET https://www.exacttargetapis.com/platform/v1/endpoints
Accept: application/json
Authorization: Bearer dfy3dsnqw3gre6e3pbatcr4s

Fuel access tokens can be used to authenticate with ExactTarget’s SOAP API as well. Here is an example
of using the same access token to authenticate with the SOAP API.

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">
<s:Header>
<h:fueloauth xmlns="http://exacttarget.com"

xmlns:h="http://exacttarget.com">
dfy3dsnqw3gre6e3pbatcr4s

</h:fueloauth>
</s:Header>
[...]

</s:Envelope>

Refreshing an Access Token
Note the expiresIn property in the HTTP response to the requestToken API call. Fuel access
tokens expire one hour after they’re issued. If you attempt to use an expired token, you’ll receive a 401
Unauthorized HTTP response. If this happens, you’ll need to refresh your access token.

Important Considerations When Using the API Directly
There are two important considerations to keep in mind if you use the API directly and do your own OAuth
token management rather than using the SDKs.

First of all, you should NOT request a new token for every API call you make—each token is good for an
hour and should be reused. Making two API calls for every one operation is inefficient and may result in
throttling.

Secondly, and we cannot say this enough, be careful where you store your client secret. In particular, you
should NOT store your client secret in a mobile application because a mobile device is not a secure
environment; it is recommended that you utilize an Authorization Code or Implicit Grant OAuth flow
instead.

222

Chapter 21 ExactTarget API

Using Data Extensions and AMPscript for Advanced
Personalization

In this section, you’ll make your message even more personalized and relevant through the use of two
advanced Marketing Cloud technologies: data extensions and AMPscript.

A data extension is a flexible table of almost any type of data and can be used for personalization,
segmentation, or as a sending data source. Data extensions are very powerful constructs and can be
thought of as cloud-based, relational marketing databases.

AMPscript is the Marketing Cloud’s content scripting language and can be used to programmatically
personalize the content of an email, SMS message, or landing page. AMPscript can interact with data
extensions, so you can read data from data extensions in your messages and write data to your data
extensions in your landing pages.

In this example, you’ll use a data extension to store information about products that you can use to further
personalize the email you sent in the last section. Specifically, you'll use the subscriber’s previous purchase
behavior to include a relevant offer that’s designed to drive the next purchase in your email.

Create a Data Extension
First, create a data extension called Products to store information about your products. In this example,
each product will have a unique identifier, a name, a price, and an image URL.

imagepricenameid

............

Let’s go ahead and create the data extension using the SDK.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();

$de = new ET_DataExtension();
$de->authStub = $client;

$de->props = array("Name" => "Products", "CustomerKey" => "products");

// specify the data extension columns

223

Chapter 21 ExactTarget API

$de->columns = array();
$de->columns[] = array("Name" => "id", "FieldType" => "Number",
"IsPrimaryKey" => "true", "IsRequired" => "true");
$de->columns[] = array("Name" => "name", "FieldType" =>
"Text","MaxLength" => "100");
$de->columns[] = array("Name" => "price", "FieldType" => "Decimal",
"Precision" => "18", "Scale" => "2");
$de->columns[] = array("Name" => "image", "FieldType" =>
"Text","MaxLength" => "100");

$response = $de->post();
?>

Populate the Data Extension
Now that you’ve created the Products data extension, add some product data to your data extension.
In essence, you’ll be adding two new rows to the Products database.

imagepricenameid

http://bit.ly/H76rMz$99.95iPhone 5c1234

http://bit.ly/Hesctp$29.95iPhone 5c case5678

Let’s go ahead and create the two new rows.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();

$deRow = new ET_DataExtension_Row();
$deRow->authStub = $client;

// specify the name of the data extension
$deRow->Name = "Products";

// specify the values of data extension row #1
$deRow->props = array("id" => "1234", "name" => "iPhone 5c", "price"
=> "99.95", "image" => "http://bit.ly/H76rMz");

$response = $deRow->post();

224

Chapter 21 ExactTarget API

print_r($response);

// specify the values of data extension row #2
$deRow->props = array("id" => "5678", "name" => "iPhone 5c case",
"price" => "29.95", "image" => "http://bit.ly/Hesctp");

$response = $deRow->post();

print_r($response);
?>

The approach above is ideal for small- to medium-sized data sets like real-time or near real-time updates
to single rows or small batches of data in periodic updates. For example, if you want to send ExactTarget
purchase data as it happens or on a frequent basis—such as hourly—utilizing the API approach is ideal.

Other scenarios require bulk loading of data into a data extension. For example, if you want to load millions
of products into ExactTarget regularly, a file-based approach may be more efficient from a bandwidth and
processing standpoint. Importing compressed files dropped onto an FTP site is the most efficient way to
bulk load millions of rows of data into a data extension.

Extend the Subscriber Data Model
Next, create another profile attribute, this time to store the ID of the product to recommend next.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();

$profileAttribute = new ET_ProfileAttribute();
$profileAttribute->authStub = $client;

$profileAttribute->props = array("Name" => "productID", "PropertyType"
=> "double", "Description" => "ID of next product recommendation");

$response = $profileAttribute->post();

print_r($response);
?>

In a real-world use case, a background process might be running that analyzes past purchases and populates
the productID profile attribute with the product it determines is most relevant to include next for each

225

Chapter 21 ExactTarget API

subscriber. In this case, you'll need to populate the productID profile attribute manually. Go ahead
and set it to 5678.

<?php
require('sdk/ET_Client.php');

$client = new ET_Client();

$subscriber = new ET_Subscriber();
$subscriber->authStub = $client;

$subscriber->props = array(array('Name' => 'FirstName', 'Value' =>
'YOUR_FIRST_NAME_GOES_HERE'));

$response = $subscriber->post();

print_r($response);
?>

Use AMPscript to Bring it All Together
Finally, update the email to include AMPscript that uses the profile attribute productID to read details
about that product from the Products data extension and include those details in the email message.
Note that this time you’ll use patch, because you’re updating an existing email.

<?php
require('sdk/ET_Client.php');

$email = new ET_Email();
$email->authStub = $client;

$emailBody = <<<EMAIL
<html>
<body>
<p>%%FirstName%%,</p>

<p>We're pretty sure you would love the following product:</p>

<p>
%%=Lookup("Products", "name", "id", productID)=%%

<i>%%=Lookup("Products", "price", "id", productID)=%%</i>

</p>

226

Chapter 21 ExactTarget API

<img src="%%=Lookup("Products", "image", "id", productID)=%%"
width="25%" />

<p>We appreciate your continued business!</p>

<small>
<p>This email was sent by:</p>

<p>
%%Member_Busname%%

%%Member_Addr%%

%%Member_City%%, %%Member_State%%, %%Member_PostalCode%%

%%Member_Country%%

</p>

Profile Center

</small>

<custom name="opencounter" type="tracking">
</body>
</html>
EMAIL;

// set the subject line and HTML email body
$email->props = array("CustomerKey" => "123", "Subject" => "Hi
%%FirstName%%, may we suggest for your next purchase...", "HTMLBody"
=> $emailBody);

// update the ET_Email object
$response = $email->patch();

print_r($response);

$response = new ET_Post($client, 'Send', array("List" => array("ID"
=> "YOUR_LIST_ID_GOES_HERE"), "Email" => array("CustomerKey" =>
"123")));

print_r($response);
?>

227

Chapter 21 ExactTarget API

The AMPscript used in the email above is the Lookup function. The Lookup function returns a single
field value for a single row in a data extension. For example, in this case, the AMPscript:

%%=Lookup("Products", "price", "id", productID)=%%

produces this output:

29.95

In this example, you’re looking up the value of the price field from the Products data extension.
The Products data extension has one primary key, and the final two parameters of the Lookup
function provide the name and value of that primary key. In this case, the value of this key is the product
ID data specified in the subscriber’s profile attribute productID.

You should receive an email that looks something like this.

228

Chapter 21 ExactTarget API

Now It’s Your Turn
You’ve finished building a relatively sophisticated email communication using a number of ExactTarget
technologies and concepts. This exercise, hopefully, has you thinking of creative ways to use your
organization’s data to create more personalized and beneficial customer touchpoints.

Many of the concepts that you’ve learned in this section translate to how you personalize content on other
channels, such as SMS.

Resources

Check https://code.exacttarget.com/getting-started/ for the latest version of the information in this chapter.
You can find other useful information at the following locations.

General Developer Resources
• Code@ExactTarget Developer Community: https://code.exacttarget.com

• Code@ExactTarget App Center: https://code.exacttarget.com/appcenter

• Fuel APIs: https://code.exacttarget.com/api

• Fuel SDKs: https://code.exacttarget.com/sdks

• Fuel UX: https://code.exacttarget.com/fuelux

• Data Extensions and Data Relationships:
http://help.exacttarget.com/en/documentation/exacttarget/subscribers/data_extensions_and_data_relationships

Email Communication
• ExactTarget Email Developer Documentation: https://code.exacttarget.com/sdks

• ExactTarget Email Product Documentation: http://help.exacttarget.com/en/documentation/exacttarget

• ExactTarget Email Product Information: http://www.exacttarget.com/products/email-marketing

• Email Content Syndication:
http://help.exacttarget.com/en/documentation/exacttarget/content/content_syndication

• Email Personalization Strings:
http://help.exacttarget.com/en/documentation/exacttarget/content/personalization_strings

• AMPScript Documentation:
http://help.exacttarget.com/en/documentation/exacttarget/content/ampscript

229

Chapter 21 ExactTarget API

https://code.exacttarget.com/getting-started/
https://code.exacttarget.com
https://code.exacttarget.com/appcenter
https://code.exacttarget.com/api
https://code.exacttarget.com/sdks
https://code.exacttarget.com/fuelux
http://help.exacttarget.com/en/documentation/exacttarget/subscribers/data_extensions_and_data_relationships/
https://code.exacttarget.com/sdks
http://help.exacttarget.com/en/documentation/exacttarget
http://www.exacttarget.com/products/email-marketing
http://help.exacttarget.com/en/documentation/exacttarget/content/content_syndication
http://help.exacttarget.com/en/documentation/exacttarget/content/personalization_strings
http://help.exacttarget.com/en/documentation/exacttarget/content/ampscript

SMS Communication
• MobileConnect Product Documentation:

http://help.exacttarget.com/en/documentation/mobileconnect/

• ExactTarget Marketing Cloud Mobile Products Information:
http://www.exacttarget.com/products/mobile-marketing

Push Communication
• MobilePush Developer Documentation: https://code.exacttarget.com/getting-started/mobilepush

• MobilePush Product Documentation: http://help.exacttarget.com/en/documentation/mobilepush

• ExactTarget Marketing Cloud Mobile Products Information:
http://www.exacttarget.com/products/mobile-marketing

230

Chapter 21 ExactTarget API

http://help.exacttarget.com/en/documentation/mobileconnect/
http://www.exacttarget.com/products/mobile-marketing
https://code.exacttarget.com/getting-started/mobilepush
http://help.exacttarget.com/en/documentation/mobilepush
http://www.exacttarget.com/products/mobile-marketing

CHAPTER 22 Radian6 API

Radian6 enables you to listen, analyze, and engage in your customers’ conversations about your company,
products, and competitors.

Use the Radian6 API to extend the functionality of the Salesforce Marketing Cloud. With the Radian6 API,
you can:

• Create custom reporting and make your own visualizations.

• Extract post data directly from your Topic Profiles.

• Extract the data from visualizations or widgets from the Radian6 Dashboard.

• Access appended post data like post tags and source tags.

• Access Radian6 Insights data like demographics, sentiment, and entities, and so on.

Then, you can use this data to drive integration, from creating custom internal reporting to enhancing the
value of your applications and services.

Supported Browsers

Radian6 supports the following browsers:

• Mozilla® Firefox®

• Google Chrome™

• Microsoft® Internet Explorer®

• Apple® Safari®

Older versions of Internet Explorer might not support the Summary Dashboard. We recommend Internet
Explorer 9 and above, or another browser listed above.

Supported Salesforce Editions

Radian6 supports these Salesforce Editions:

• Developer Edition

• Enterprise Edition

• Unlimited Edition

231

http://www.salesforcemarketingcloud.com/

If you’re an existing Salesforce customer and want to upgrade to any of these editions, contact your account
representative.

Quick Start

The Radian6 REST API retrieves, analyzes, and modifies social media posts and data from any Topic profile
in your Radian6 account.

Before your begin, make sure that you have:

• A valid username and password

• A unique application key for your application

If you don’t already have an application key, contact your account representative.

The following endpoints are available for access to the Radian6 API.

Development endpoint
https://demo-api.radian6.com/socialcloud/v1/

All development work should be performed and tested on the development endpoint before running
your application against production.

Production endpoint
https://api.radian6.com/socialcloud/v1/

Run your application against the production endpoint after you have tested it on the development
endpoint.

If you currently have an account on only one of the two environments, please contact
apisupport@radian6.com in order to have your account replicated and available at both endpoints.

To get started with the Radian6 API, follow these steps.

1. Authenticate with the API.

2. Issue a basic call to one of the API methods.

3. Fetch some data from the Radian6 system.

Step One: Authenticate with the API
You must authenticate with the API before issuing calls.

232

Chapter 22 Radian6 API

The API currently only supports a basic authentication mechanism. An initial call needs to be made to the
authentication service in order to fetch an authentication token used in subsequent API calls.

https://api-endpoint/auth/authenticate

This call expects the following request headers for an authentication check.

DescriptionParameter

The username on your accountauth_user

The password in plain textauth_pass

The API key to include in your header parameterauth_appkey

All parameters are required. If authentication was successful, XML containing basic user account information
and a token tag will be returned in the following format:

<token>70d756801c703f3e78f81726c11b00249fb81770a446958b2577cd223811e</token>

This is the token used to perform subsequent API requests.

<auth>
<token>e008252b4dce9b29c4c8155f0010cc8e128290b9e3ae99c8e9d15c
</token>
<UserDetails>
<user>
<userId>132972</userId>
<clientId>1226</clientId>
<displayName>Joe User</displayName>
<emailAddress>joe.user@radian6.com</emailAddress>
<packages />
</user>
<Packages>
<feature>
<featureId>1</featureId>
<description>Workflow</description>
</feature>
<feature>
<featureId>4</featureId>
<description>Admin Portal Full</description>
</feature>
<feature>

233

Chapter 22 Radian6 API

<featureId>6</featureId>
<description>Require PO Number</description>
</feature>
<feature>
<featureId>8</featureId>
<description>SENTIMENT</description>

</feature>
</Packages>
</UserDetails>
</auth>

Step Two: Issue a Call to a Method
After authenticating with the Radian6 API, issue a call to an API method.

Now that you have the authentication token and API application key, you can make a call to one of the
API methods. Fetching data requires the use of Topic Profiles, so let’s start by getting a list of Topics. The
call used to fetch the list of topics is TopicService.fetchTopicList.

https://api-endpoint/topics

As with all other calls, you must provide two request headers, auth_token and auth_appkey,
obtained in Step One: Authenticate with the API.

You should receive an XML response containing a list of Topic Profiles and related information.

Sample XML Response Format

<topicFilters>
<topicFilter>

<name><![CDATA[2013 Candidates]]></name>
<public>1</public>
<status>1</status>
<estimateVolume>317900</estimateVolume>
<competeEnabled>0</competeEnabled>
<bCode></bCode>
<creatorId>2</creatorId>
<creatorName>Chris Doe</creatorName>
<creatorEmail>someguy@radian6.com</creatorEmail>
<createDate>20080124</createDate>
<topicFilterId>232</topicFilterId>
<sentiment>0</sentiment>

234

Chapter 22 Radian6 API

<postTopicIgnoreStatus>-1</postTopicIgnoreStatus>
<inboundOnTopicLinksCount>0</inboundOnTopicLinksCount>
<number_queries>13</number_queries>
<filterGroups>

<filterGroup>
<filterGroupId>541</filterGroupId>
<name><![CDATA[Group 1]]></name>
<filterGroupTypeId>1</filterGroupTypeId>
<filterQueries>

<filterQuery>
<query>"John" AND "president"</query>
<filterQueryId>2031</filterQueryId>
<isExcludeQuery>false</isExcludeQuery>

</filterQuery>
<filterQuery>

<query>"Jane" AND "ceo"</query>
<filterQueryId>2039</filterQueryId>
<isExcludeQuery>false</isExcludeQuery>

</filterQuery>
</filterQueries>

</filterGroup>
</filterGroups>
<sentimentQueries></sentimentQueries>
<includeSourceFilterList>

<filterIds></filterIds>
</includeSourceFilterList>
<excludeSourceFilterList>

<filterIds></filterIds>
</excludeSourceFilterList>
<includeAllSourceFilterList>

<filterIds></filterIds>
</includeAllSourceFilterList>
<languages></languages>
<mediaType></mediaType>
<projects></projects>
<regions></regions>

</topicFilter>
</topicFilters>

Step Three: Fetch Data
After authenticating with the Radian6 API and getting a list of topics, you can now fetch some data for a
topic.

235

Chapter 22 Radian6 API

This example shows you how to fetch the most recent 100 items from the Radian6 system for a topic over
the last 24 hours. The call used to fetch this data is DataService.fetchRecentTopicPosts.

https://api-endpoint/data/topicdata/recent/{recentXhours}/{topics}
/{mediatypes}/{PageIndex}/{pageSize}

recentXHours
24 (the last 24 hours of data)

topics
232 (a topicId fetched from the call in Step Two: Issue a Call to a Method)

mediatypes
1,2,3,4 (fetched from LookupService.fetchMediaTypes)

PageIndex
1 (the first page)

pageSize
100 (all items on current page)

For example, the call to development endpoint would look like this:

https://sandbox-insights.radian6.com/socialcloud/v1/data/topicdata
/realtime/24/232/1,2,3,4/1/100

This call returns a list of matching posts, sorted by default sort by publish_date. Each item in the
result set is defined by an <Article> tag.

<radian6_RiverOfNews_export>
<report_date>Fri Oct 30 10:22:06 ADT 2009</report_date>
<user_name>Jane Smith</user_name>
<RoN_sort_order>publishedDate</RoN_sort_order>
<article_count>1</article_count>
<article ID="1934621185">

<description charset="UTF-8">
<headline><![CDATA[TWEET FROM: ACME]]>
</headline>
<author><![CDATA[ACME]]>
</author>
<content><![CDATA[The content of the Tweet]]>
</content>

</description>
<source><![CDATA[TWEET FROM: ACME]]></source>
<host><![CDATA[twitter.com]]></host>
<article_url> <![CDATA[

236

Chapter 22 Radian6 API

http://twitter.com/username/statuses/4735539663]]>
</article_url>
<media_provider>TWITTER</media_provider>
<media_type_id>8</media_type_id>
<spam_rating>TODO</spam_rating>
<publish_date>Oct 09, 2009 11:31 AM</publish_date>
<harvest_date>Oct 09, 2009 11:31 AM</harvest_date>
<PostDynamicsIteration>

<PostDynamicsDefinition>
<fieldId>9</fieldId>
<label>Following</label>
<value>0</value>
<sortOrder>1</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>8</fieldId>
<label>Followers</label>
<value>0</value>
<sortOrder>2</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>10</fieldId>
<label>Updates</label>
<value>0</value>
<sortOrder>3</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>21</fieldId>
<label>Sentiment</label>
<shortLabel>S</shortLabel>
<sortOrder>4</sortOrder>
<value>15418,0</value>
<exceptionValue>15418,false</exceptionValue>
<reportValue>Neutral</reportValue>
<tooltip />

</PostDynamicsDefinition>
<reportFormatedData><![CDATA[<span

style="font-weight:bold; color: #FF9900; font-size: 11pt"> Following:
0 <span style="font-weight:bold; color: #FF9900; font-size:
11pt"> Followers:
0 <span style="font-weight:bold; color: #FF9900; font-size:
11pt"> Updates: 0 <span style="font-weight:bold; color:
#FF9900; font-size: 11pt"> Sentiment: Neutral]]>

</reportFormatedData>

237

Chapter 22 Radian6 API

</PostDynamicsIteration>
</article>

</radian6_RiverOfNews_export>

Using the Services

Access and manage your posts, users, insights, topics, and other data.

This section walks you through common operations for each of the services. See theRadian6 API Reference
at http://socialcloud.radian6.com/docs/ for a full list of examples and response details.

Post Service
The Post Service enables you to perform operations such as assigning users to posts, setting the engagement
type on posts, and adding tags to posts.

Calls can be made no more than once every 30 seconds.

Get Post Details
Fetch post details, such as the content, title, author, and published date.

GET /post

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

URL of the post.PathParamurl

Example
http://api.radian6.com/socialcloud/v1/post?url=http://twitter.com
/username/statuses/13...4

238

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/SocialCloud_Reference

Request Headers
GET /socialcloud/v1/post?url HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Response
<?xml version="1.0" encoding="iso-8859-1"?>
<PostDetails>

<blogPost>
<Post>

<postId>12....</postId>
<title>

<![CDATA[Tweet from username (r6ts)]]>
</title>
<author>

<![CDATA[username]]>
</author>
<content>

<![CDATA[]]>
</content>
<publishedDate>1321898901000</publishedDate>
<link>

<![CDATA[http://twitter.com/username/statuses/13.....3]]>
</link>
<providerId>10</providerId>
<mediaTypeId>1</mediaTypeId>
<languageId>1</languageId>
<regionId>235</regionId>

239

Chapter 22 Radian6 API

<postStatusId>0</postStatusId>
</Post>

</blogPost>
<blog>

<blogId>44....7</blogId>
<title>

<![CDATA[Twitter / username]]>
</title>
<feed>

<![CDATA[http://twitter.com/statuses/user_timeline/username.atom]]>
</feed>
<link>

<![CDATA[http://twitter.com/username]]>
</link>
<languageId>1</languageId>
<languageAccuracy>0.99</languageAccuracy>

</blog>
</PostDetails>

Resources for Post Service
The following list shows other operations you can use with the Post Service.

ExampleOperations

POST /post/workflow/assign/{postId}/{userId}
/{topicList}

Assign user to post

POST /post/workflow/classification/{postId}
/{classificationTypeId}

Assign post classification

POST /post/workflow/engagement/{postId}
/{engagementTypeId}

Set post engagement

POST /post/workflow/sentiment/{postId}/{TopicId}
/{sentimentValue}

Assign post sentiment

240

Chapter 22 Radian6 API

ExampleOperations

POST /post/workflow/note/{postId}
Add post note

POST /post/workflow/notereply/{postId}
Add post note reply

POST /post/workflow/tags/{postId}
Add tags to posts

POST /post/workflow/toggleSpam/{postList}
/{topicList}/{spamValue}

Toggle spam

GET /post/metrics/{postId}
Get post dynamics

GET /post/workflow/updates/{epoch}/{postIdList}
Get post workflow
updates

POST /post/workflow/removeTagsAndNotes
/{tagAndNoteIds}

Remove tags and notes

GET /v1/post/{parentPostId}/childcount
Get child posts count

GET /v1/post/list/{parentPostIdList}/childcount
Get child posts count for
multiple posts

The auth_token and auth_appkey header parameters are required for all calls. See the Post Service
reference in the Radian6 API Documentation for details on each of these operations.

User Service
The User Service enables you to perform operations such as retrieving user details and their dashboards.

Calls can be made no more than once every 30 seconds.

241

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/post_service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/post_service

Get User
Return basic information for the user making the request.

GET /user

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Example
http://api.radian6.com/socialcloud/v1/user

Request Headers
GET /socialcloud/v1/smm/user HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Response
<user>

<userId>538</userId>
<clientId>1</clientId>
<displayName>

242

Chapter 22 Radian6 API

<![CDATA[John Doe]]>
</displayName>
<emailAddress>John.Doe@example.com</emailAddress>
<timezone>GMT</timezone>

</user>

Resources for User Service
The following list shows other operations you can use with the User Service.

ExampleOperations

GET /socialcloud/v1/user/detailsGet user details

GET /clientGet client

GET /user/dashboardGet dashboard widgets

GET /user/avatarSet avatar

The auth_token and auth_appkey header parameters are required for all calls. See the User
Service reference in the Radian6 API Documentation for details on each of these operations.

Insight Service
The Insight Service enables you to perform operations such as aggregating insights and returning the
insight types.

Get Insight Types
Fetch a list of the associated Insight Types for an Insights Package. The client must have access to the
provided Topic Profile, and the Topic Profile must be subscribed to the provided Insights Package.

GET /socialcloud/v1/insights/insightTypes

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

243

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/user_service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/user_service

DescriptionTypeParameters

The ID of the Insights Package for which to fetch a list of
Insight Types.

QueryParampackageId

The ID of the Topic Profile that is subscribed to the
provided Insights Package.

QueryParamtopicProfileId

Example
http://api.radian6.com/socialcloud/v1/insights/insightTypes

Request Headers
GET
/socialcloud/v1/insights/insightTypes?packageId=1...2&topicProfileId=1...2
HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Mon, 05 Dec 2011 14:24:31 GMT
Server: Apache-Coyote/1.1
Content-Type: application/xml
Content-Length: 135

Response
<insightTypes>

<insightType>
<dataDescriptor>multi-value</dataDescriptor>
<description>Retweeted usernames</description>
<displayName>Retweeted Usernames</displayName>
<isPrivacyRelated>false</isPrivacyRelated>
<name>retweet_username</name>
<objectId>4d6...bbb</objectId>

244

Chapter 22 Radian6 API

<providerName>radian6</providerName>
</insightType>
...

</insightTypes>

Resources for Insight Service
The following list shows other operations you can use with the Insight Service.

ExampleOperations

POST /socialcloud/v1/insights
/aggregateInsightsByTopic

Aggregate insights

GET /socialcloud/v1/insights/packageSubscriptions
Get package
subscriptions

GET /socialcloud/v1/insights/fetchFilterValues
/{topicFilterId}

Filter values

GET /socialcloud/v1/insights/fetchInsightsBySource
/{topicProfileId}/{blogIds}/{providers}

Source insights

The auth_token and auth_appkey header parameters are required for all calls. See the Insight
Service reference in the Radian6 API Documentation for details on each of these operations.

Topic Service
The Insight Service enables you to perform operations such as creating topic profiles, filter groups, and
filter queries.

Create or Update Topic Profile
Create or update a topic.

POST /topics/createTP/{topicId}/{name}/{isPublic}/{mediatypes}
/{languages}/{regions}

245

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/insight_service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/insight_service

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Unique Id of topic (required when updating)PathParamtopicId

Display name of the topic filterPathParamname

Integer value indicating if the topic is public or privatePathParamisPublic

Comma delimited list of valid media types for the topicPathParammediatypes

Comma delimited list of valid languages for the topicPathParamlanguages

Comma delimited list of valid regions for the topicPathParamregions

The billing code for the topic. Default is an empty string.QueryParambillingCode

Integer value indicating if the topic is a trial. Default is 1.QueryParamisTrial

Example
http://api.radian6.com/socialcloud/v1/topics/createTP/1/My Topic/1/8/1/2

Request Headers
GET /socialcloud/v1/topics/createTP/{topicId}/{name}/{isPublic}
/{mediatypes}/{languages}/{regions} HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705

246

Chapter 22 Radian6 API

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Response
<topicFilter>

<name>
<![CDATA[My Topic]]>

</name>
<public>0</public>
<status>2</status>
<estimateVolume>-1</estimateVolume>
<competeEnabled>0</competeEnabled>
<topicFilterTypeId>1</topicFilterTypeId>
<bCode>

<![CDATA[]]>
</bCode>
<creatorId>538</creatorId>
<creatorName>

<![CDATA[Jane Smith]]>
</creatorName>
<creatorEmail>Jane.Smith@...</creatorEmail>
<topicFilterId>3...3</topicFilterId>
<inboundOnTopicLinksCount>0</inboundOnTopicLinksCount>
<languages/>
<mediaType>8,12,14,13,11,10,9,5,2,1,16,4</mediaType>
<projects/>
<regions/>
<deactivationDate>null</deactivationDate>
<evp>false</evp>
<topicFilterTier>

<topicFilterTierId>-1</topicFilterTierId>
<name/>
<lowerTrafficLimit>-1</lowerTrafficLimit>
<upperTrafficLimit>-1</upperTrafficLimit>

</topicFilterTier>
<number_queries>0</number_queries>
<filterGroups>

<filterGroup>
<filterGroupId>2...9</filterGroupId>
<name>

<![CDATA[Group 1]]>

247

Chapter 22 Radian6 API

</name>
<filterGroupTypeId>1</filterGroupTypeId>
<filterQueries/>

</filterGroup>
</filterGroups>
<sentimentQueries/>
<includeSourceFilterList>

<filterIds/>
</includeSourceFilterList>
<excludeSourceFilterList>

<filterIds/>
</excludeSourceFilterList>
<includeAllSourceFilterList>

<filterIds/>
</includeAllSourceFilterList>

</topicFilter>

Resources for Topic Service
The following list shows other operations you can use with the Topic Service.

ExampleOperations

GET /topicsGet multiple topic
profiles

GET /topics/{topicId}Get topic profile

GET /topics/usageGet topic profile usage

POST /topics/remove/{topicId}Delete topic profile

POST /topics/{topicId}/sourcefiltersCreate source filter
association

GET /topics/{topicId}/filterGroupsGet multiple filter
groups

GET /topics/{topicId}/filterGroups/{filterGroupId}Get filter group

GET /topics/{topicId}/sourcefiltersGet source filters

DELETE /topics/{topicId}/filterGroups
/{filterGroupId}

Delete filter group

248

Chapter 22 Radian6 API

ExampleOperations

POST /topics/{topicId}/filterGroupsCreate filter group

PUT /topics/{topicId}/filterGroups/{filterGroupId}Update filter group

GET /topics/{topicId}/filterGroups
/{filterGroupId}/filterQueries

Get multiple filter
queries

GET /topics/{topicId}/filterGroups
/{filterGroupId}/filterQueries

Create filter query

GET /topics/{topicId}/filterGroups
/{filterGroupId}/filterQueries/{filterQueryId}

Get filter query

DELETE /topics/{topicId}/filterGroups
/{filterGroupId)/filterQueries/{filterQueryId}

Delete filter query

GET /topics/{topicId}/subscriptionWindowGet insight subscription
window

The auth_token and auth_appkey header parameters are required for all calls. See the Topic
Service reference in the Radian6 API Documentation for details on each of these operations.

Data Service
The Data Service enables you to perform operations such as fetching posts and topic comparison data.

Get Post Data
Fetch posts matching given query parameters.

GET /data/topicdata/realtime/{recentXhours}/{topics}/{mediatypes}
/{pageIndex}/{pageSize}

249

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/Topic_Service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/Topic_Service

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Number of hours to go back. For example, setting this to
48 will return all posts within the last two days. This

PathParamrecentXhours

references the published date as they are returned within
the response.

Comma delimited list of topic profile ids to get posts for.PathParamtopics

Comma delimited list of media types from which post
will be returned.

PathParammediaTypes

Specifies which page of data to return.PathParampageIndex

Number of posts to return per page.PathParampageSize

Example
http://api.radian6.com/socialcloud/v1/data/topicdata/realtime
/2/3..9/1,2,4,5,8,10,9,11,12,13,14,16/1/20?includeWorkflow=1&includeSpam=0
&merged=1&token=1321987774350&extendedMediaTypes=2,3,4

Request Headers
GET /socialcloud/v1/data/topicdata/realtime/{recentXhours}/{topics}
/{mediatypes}/{pageIndex}/{pageSize} HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705

250

Chapter 22 Radian6 API

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Response
<?xml version="1.0" encoding="UTF-8"?>
<radian6_RiverOfNews_export>

<report_date>2012-07-11 02:24:04 +1200</report_date>
<user_name>Jane.Smith@...</user_name>
<RoN_sort_order>publishedDate</RoN_sort_order>
<article_count>2</article_count>
<total_article_count>101</total_article_count>
<article ID="2...9">

<description charset="UTF-8">
<headline/>
<author fbid="-1" externalId="3...2"/>
<author_full_name />
<recipient/>
<content/>
<external_id>2...73</external_id>
<parentExternalId>2...70</parentExternalId>

</description>
<avatar/>
<source/>
<host>

<![CDATA[twitter.com]]>
</host>
<article_url>

<![CDATA[2...73]]>
</article_url>
<media_provider>TWITTER</media_provider>
<media_type_id>8</media_type_id>
<language_id>16</language_id>
<spam_rating>0</spam_rating>
<publish_date epoch="1341901361000">2012-07-10 18:22:41

+1200</publish_date>
<harvest_date epoch="1341901379000">2012-07-10 18:22:59

+1200</harvest_date>
<PostInsights>

<PostInsight>
<Provider>

<![CDATA[provider_name]]>

251

Chapter 22 Radian6 API

</Provider>
<Type>

<![CDATA[type_name]]>
</Type>
<Value>

<!CDATA[some_value]]>
</Value>

</PostInsight>
</PostInsights>
<SourceInsights>

<SourceInsight>
<Provider>

<![CDATA[provider_name]]>
</Provider>
<Type>

<![CDATA[type_name]]>
</Type>
<Value>

<![CDATA[some_value]]>
</Value>

<SourceInsight>
</SourceInsights>
<PostDynamicsIteration>

<PostDynamicsDefinition>
<fieldId>9</fieldId>
<label>Following</label>
<value/>
<sortOrder>1</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>8</fieldId>
<label>Followers</label>
<value/>
<sortOrder>2</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>10</fieldId>
<label>Updates</label>
<value/>
<sortOrder>3</sortOrder>

</PostDynamicsDefinition>
<PostDynamicsDefinition>

<fieldId>21</fieldId>
<label>Sentiment</label>

252

Chapter 22 Radian6 API

<shortLabel>S</shortLabel>
<sortOrder>4</sortOrder>
<value/>
<exceptionValue>2860,false</exceptionValue>
<reportValue>Neutral</reportValue>
<tooltip/>

</PostDynamicsDefinition>
<reportFormatedData/>

</PostDynamicsIteration>
</article>
<article ID="252359343">

<description charset="UTF-8">
<headline>

<![CDATA[Post from Facebook user]]>
</headline>
<author fbid="1769972299" externalId="1769972299">

<![CDATA[Facebook user]]>
</author>
<recipient>

<![CDATA[None]]>
</recipient>
<content>

<![CDATA[Facebook post content...]]>
</content>
<external_id>17...9_22...4</external_id>

</description>
<source ID="1...2">

<![CDATA[Post from Facebook user]]>
</source>
<host>

<![CDATA[www.facebook.com]]>
</host>
<article_url>

<![CDATA[http://www.facebook.com/permalink.php?story_fbid=22...4&id=17...9]]>

</article_url>
<media_provider>facebook.com Discussions</media_provider>
<media_type_id>12</media_type_id>
<language_id>1</language_id>
<spam_rating>0</spam_rating>
<publish_date epoch="1341886037000">2012-07-10 14:07:17

+1200</publish_date>
<harvest_date epoch="1341886905000">2012-07-10 14:21:45

253

Chapter 22 Radian6 API

+1200</harvest_date>
<PostDynamicsIteration>

<PostDynamicsDefinition>
<fieldId>21</fieldId>
<label>Sentiment</label>
<shortLabel>S</shortLabel>
<sortOrder>1</sortOrder>
<value>

<![CDATA[2860,0]]>
</value>
<exceptionValue>2860,false</exceptionValue>
<reportValue>Neutral</reportValue>
<tooltip/>

</PostDynamicsDefinition>
<reportFormatedData>

<![CDATA[<span style="font-weight:bold; color: #FF9900;
font-size: 11pt"> Sentiment: Neutral]]>

</reportFormatedData>
</PostDynamicsIteration>

</article>
</radian6_RiverOfNews_export>

For a complete list of parameters for this operation, see Get Post Data in the Radian6 API Documentation.

Resources for Data Service
The following list shows other operations you can use with the Data Service.

ExampleOperations

GET /data/topicdata/realtime/{daterangeStart}
/{daterangeEnd}/{topics}/{mediatypes}/{pageIndex}/{pageSize}

Get data by range

GET /data/tagclouddata/{recentXhours}/{topics}
/{mediatypes}/{advancedQueryFilters}

Get tag cloud data

GET /data/tagclouddata/{daterangeStart}
/{daterangeEnd}/{topics}/{mediatypes}/{advancedQueryFilters}

Get tag cloud data by
range

254

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/Data_Service#h2-get_topic_match_data

ExampleOperations

GET /data/comparisondata/{recentXhours}/{topics}
/{mediatypes}/{segmentation}/{countBy}

Get topic match data

GET /data/comparisondata/{daterangeStart}
/{daterangeEnd}/{topics}/{mediatypes}/{segmentation}/{countBy}

Get topic match data by
range

GET /data/widget/{widgetId}
Get widget data

The auth_token and auth_appkey header parameters are required for all calls. See the Data
Service reference in the Radian6 API Documentation for details on each of these operations.

Blog Service
The Blog Service enables you to perform operations such as fetching a list of posts for a given site and
adding notes to a site.

Get Blog Details
Fetch a list of posts for a given site including workflow details.

GET /blog/workflow/{blogId}/{topicId}

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Blog Ids for which to get posts for.PathParamblogId

Comma delimited list of topic Ids.PathParamtopicId

Total number of post to return per request.QueryParammaxPostCount

255

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/Data_Service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/Data_Service

DescriptionTypeParameters

The page index to return posts for. For example if the total
count of posts for the request exceeds the maximum

QueryParampageNum

number of posts (as indicated by the maxPostCount
paramter), the page number can be incremented to fetch
those posts not returned in the current request.

Example
http://api.radian6.com/socialcloud/v1/blog/workflow/5...5/2...7

Request Headers
GET /socialcloud/v1/blog/workflow/{blogId}/{topicId} HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Response
<?xml version="1.0" encoding="UTF-8"?>
<radian6_RiverOfNews_export>

<report_date>2012-07-11 02:24:04 +1200</report_date>
<user_name>Jane.Smith@...</user_name>
<RoN_sort_order>publishedDate</RoN_sort_order>
<article_count>1</article_count>
<total_article_count>1</total_article_count>
<article ID="2...3">

256

Chapter 22 Radian6 API

<description charset="UTF-8">
<headline>

<![CDATA[Post from Facebook user]]>
</headline>
<author fbid="17...9" externalId="17...9">

<![CDATA[Facebook user]]>
</author>
<recipient>

<![CDATA[None]]>
</recipient>
<content>

<![CDATA[Facebook post content...]]>
</content>
<external_id>17...9_22...4</external_id>

</description>
<source ID="1...2">

<![CDATA[Post from Facebook user]]>
</source>
<host>

<![CDATA[www.facebook.com]]>
</host>
<article_url>

<![CDATA[http://www.facebook.com/permalink.php?story_fbid=22...4&id=17...9]]>

</article_url>
<media_provider>facebook.com Discussions</media_provider>
<media_type_id>12</media_type_id>
<language_id>1</language_id>
<spam_rating>0</spam_rating>
<publish_date epoch="1341886037000">2012-07-10 14:07:17

+1200</publish_date>
<harvest_date epoch="1341886905000">2012-07-10 14:21:45

+1200</harvest_date>
<PostDynamicsIteration>

<PostDynamicsDefinition>
<fieldId>21</fieldId>
<label>Sentiment</label>
<shortLabel>S</shortLabel>
<sortOrder>1</sortOrder>
<value>

<![CDATA[2860,0]]>
</value>
<exceptionValue>2860,false</exceptionValue>

257

Chapter 22 Radian6 API

<reportValue>Neutral</reportValue>
<tooltip/>

</PostDynamicsDefinition>
<reportFormatedData>

<![CDATA[<span style="font-weight:bold; color: #FF9900;
font-size: 11pt"> Sentiment: Neutral]]>

</reportFormatedData>
</PostDynamicsIteration>

</article>
</radian6_RiverOfNews_export>

Resources for Blog Service
The following list shows other operations you can use with the Blog Service.

ExampleOperations

POST /blog/workflow/note/{blogIdList}Add note to a site

POST /blog/workflow/noteByPostId/{blogPostId}Add note by post Id

POST /blog/workflow/tagsByPostId/{blogPostId}Add tag by post Id

GET /blog/metrics/{siteId}/{topicId}Get site metrics

GET /blog/sourcetagged/{tags}Get tagged blogs

POST /blog/workflow/removeTagsAndNotes
/{tagAndNoteIds}

Remove tags and notes

The auth_token and auth_appkey header parameters are required for all calls. See the Blog
Service reference in the Radian6 API Documentation for details on each of these operations.

Authentication Service
The Authentication Service enables you to authenticate a user in the Radian6 system.

Responds with authentication token to be used for subsequent requests as request header called
auth_token. auth_appkey must also be provided for every request.

GET /socialcloud/v1/auth/authenticate

258

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/Blog_Service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/Blog_Service

DescriptionTypeParameters

Required. Request header containing username.HeaderParamauth_user

Required. Request header containing the plain text
password.

HeaderParamauth_pass

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Comma delimited list of elements to return such as
userdetails and clientattributes.

QueryParamfields

Example
https://api.radian6.com/socialcloud/v1/auth/authenticate
?fields=userdetails,clientattributes

Request Headers
GET /socialcloud/v1/auth/authenticate HTTP/1.1
Host: api.radian6.com
auth_user: mikemullen
auth_pass: NotARealPassword
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

259

Chapter 22 Radian6 API

Response
<auth>
<token>b65e06d1b5383...</token>
<UserDetails>
<user>
<userId>12345</userId>
<clientId>99</clientId>
<displayName><![CDATA[Mike Mullen]]></displayName>
<emailAddress>Mike.Mullen@...</emailAddress>
<timezone>GMT</timezone>
<packages></packages>
<userRoleId>1</userRoleId>
<createdDate>Jun 22, 2010 05:18 PM</createdDate>
<enabled>true</enabled>
<aihUsers><aihUser>
<userKey>84ba97...</userKey>
<registerDate>2010</registerDate>
<type>1</type>
</aihUser></aihUsers>

</user>
<avatar

userId="12345"><![CDATA[http://path-to-avatar-image.jpg]]></avatar>
<Packages></Packages>
<ClientAttributes>
<attribute>
<id>12</id>
<description>IDLE_TIMEOUT</description>
<value>10800000</value>

</attribute>
...

</ClientAttributes>
</UserDetails>

</auth>

Lookup Service
The Lookup Service enables you to perform operations such as fetching a list of media types, languages,
users, and workflow items.

260

Chapter 22 Radian6 API

Get Media Types
Fetch a list of valid media types. Media types are used to indicate the type and source of social media posts
within the Radian6 API. They can be used to create source filters within the Analysis Dashboard (Topic
Profile Configuration) and can also be used to filter results in the calls of the Data Service. This call shows
you the name and id of all the media types in the system.

GET /lookup/mediaproviders

DescriptionTypeParameters

Required. Request header containing the token returned
from authentication with the API.

HeaderParamauth_token

Required. Application key unique to your account.HeaderParamauth_appkey

Example
http://api.radian6.com/socialcloud/v1/lookup/mediaproviders

Request Headers
GET /socialcloud/v1/lookup/mediaproviders HTTP/1.1
Host: api.radian6.com
auth_token: NotARealToken
auth_appkey: NotARealAppKey

Response Headers
HTTP/1.1 200 OK
Date: Thu, 29 Sep 2011 17:17:16 GMT
Content-Type: application/xml
Content-Length: 705
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

261

Chapter 22 Radian6 API

Response
<?xml version="1.0" encoding="utf-8"?>
<MediaTypeList>

<MediaTypeItem>
<mediaTypeId>1</mediaTypeId>
<mediaTypeName>Blogs</mediaTypeName>
<displayOrder>1</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>2</mediaTypeId>
<mediaTypeName>Videos</mediaTypeName>
<displayOrder>2</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>4</mediaTypeId>
<mediaTypeName>Images</mediaTypeName>
<displayOrder>3</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>5</mediaTypeId>
<mediaTypeName>Mainstream News</mediaTypeName>
<displayOrder>4</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>8</mediaTypeId>
<mediaTypeName>MicroMedia</mediaTypeName>
<displayOrder>5</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>10</mediaTypeId>
<mediaTypeName>Forums</mediaTypeName>
<displayOrder>6</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>9</mediaTypeId>
<mediaTypeName>Forum Replies</mediaTypeName>
<displayOrder>7</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>11</mediaTypeId>
<mediaTypeName>Comments</mediaTypeName>
<displayOrder>8</displayOrder>

</MediaTypeItem>

262

Chapter 22 Radian6 API

<MediaTypeItem>
<mediaTypeId>12</mediaTypeId>
<mediaTypeName>Facebook</mediaTypeName>
<displayOrder>9</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>13</mediaTypeId>
<mediaTypeName>Aggregator</mediaTypeName>
<displayOrder>10</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>14</mediaTypeId>
<mediaTypeName>Buy/Sell</mediaTypeName>
<displayOrder>11</displayOrder>

</MediaTypeItem>
<MediaTypeItem>

<mediaTypeId>16</mediaTypeId>
<mediaTypeName>MySpace</mediaTypeName>
<displayOrder>13</displayOrder>

</MediaTypeItem>
</MediaTypeList>

Resources for Lookup Service
The following list shows other operations you can use with the Lookup Service.

ExampleOperations

GET /lookup/sorttypesGet sort types

GET /lookup/languagesGet languages

GET /lookup/timezonesGet timezones

GET /lookup/filtertypesGet filter types

GET /lookup/counttypesGet count types

GET /lookup/usersGet users

GET /lookup/tagsGet tags

GET /lookup/advancedfiltertypesGet advanced filter types

GET /lookup/regionsGet regions

263

Chapter 22 Radian6 API

ExampleOperations

GET /lookup/projectsGet projects

GET /lookup/influencermetricsGet influencer metrics

GET /lookup/externalaccounttypesGet external account types

GET /lookup/extendedmediatypesGet extended media types

GET /lookup/mediagroupprovidersGet media group types

GET /lookup/workflowGet workflow

The auth_token and auth_appkey header parameters are required for all calls. See the Lookup
Service reference in the Radian6 API Documentation for details on each of these operations.

Resources

Use the following resources to get more information about the Radian6 API.

• Radian6 API Documentation: http://socialcloud.radian6.com/docs

• Get started with Radian6:
http://www.salesforcemarketingcloud.com/products/social-media-listening/

• Radian6 case studies:
http://www.salesforcemarketingcloud.com/resources/videos/

264

Chapter 22 Radian6 API

http://socialcloud.radian6.com/docs/read/socialcloud_reference/lookup_service
http://socialcloud.radian6.com/docs/read/socialcloud_reference/lookup_service
http://socialcloud.radian6.com/docs
http://www.salesforcemarketingcloud.com/products/social-media-listening/
http://www.salesforcemarketingcloud.com/resources/videos/

CHAPTER 23 Pardot API

Pardot enables you to create, deploy, and manage online marketing campaigns efficiently. The Pardot
REST API allows your application to access prospects, visitors, activities, opportunities, and other data in
Pardot.

All Pardot accounts and user roles have full access to the API. Pardot integrates and syncs automatically
with Salesforce using a connector. You can use the Pardot API if you’re performing custom integrations
involving third-party tools and services not supported by our connectors.

You must authenticate with the API before issuing requests. All requests must use HTTP GET or POST.
Although GET requests are secure due to the use of SSL, we recommend using POST, with sensitive or
lengthy parameter values being part of the POST message body.

When performing update requests, only the fields specified in the request are updated, and all others
are left unchanged. If a required field is cleared during an update, the request will be declined.

Objects available through the API correspond to objects within the Pardot user interface. These objects
may include opportunities, prospects, users, visitors, and so on.

Supported Browsers

Pardot supports the following browsers:

• Mozilla® Firefox®

• Google Chrome™

• Microsoft® Internet Explorer®

• Apple® Safari®

If you receive an “outdated browser” warning, upgrade to the latest version of a browser listed above.

Supported Salesforce Editions

Pardot supports these Salesforce Editions:

• Professional Edition

• Enterprise Edition

265

http://www.pardot.com/faqs/series/salesforce-connector/

• Unlimited Edition

If you’re an existing Salesforce customer and want to upgrade to any of these editions, contact your account
representative.

Quick Start

The Pardot API allows your application to access data within Pardot.

To get started with the Pardot API, follow these steps.

1. Authenticate with the API.

2. Issue requests using the API. You can test out API requests via the API Console.

Example: Visit the Pardot Developer site to learn more and watch a demo on how to get your API
key and learn how to query and create prospects.

Step One: Authenticate with the API
You must authenticate with the API before issuing requests.

A few prerequisites must be met to successfully authenticate a connection to the API.

1. All requests to the Pardot API must be made via SSL encrypted connection.

2. Authentication requests must use HTTP POST.

3. Obtain the email, password, and user_key (available in the application under My Settings)
for the Pardot user account that will be submitting API requests.

With these requirements met, an API key must be acquired. Both User and API keys are unique to individual
users. API keys are valid for 60 minutes. In contrast, user keys are valid indefinitely. To authenticate, issue
the following request (having replaced the values denoted in italics with values for your account):

POST: https://pi.pardot.com/api/login/version/3
message body: email=email&password=password&user_key=user_key

DescriptionParameter

The email address of your user accountemail

The password of your user accountpassword

The 32-bit hexadecimal user key for your user
account

user_key

266

Chapter 23 Pardot API

http://www.pardot.com/api/
http://developer.pardot.com/

All parameters are required. If authentication was successful, a 32-character hexadecimal API key will be
returned in the following format:

<rsp stat="ok" version="1.0">
<api_key>5a1698a233e73d7c8ccd60d775fbc68a</api_key>

</rsp>

Otherwise, the response will contain the following:

<rsp stat="fail" version="1.0">
<err code="15">Login failed</err>

</rsp>

Subsequent authentication requests will return either the current valid API key or a newly generated API
key if the previous one had expired.

Step Two: Issue Requests Using the Pardot API
The Pardot API handles a variety of requests for many of the objects available through the Pardot user
interface.

Most requests to the API use the following standardized format. All requests must use HTTP GET or POST.
Although GET requests are secure due to the use of SSL, we recommend using POST, with sensitive or
lengthy parameter values being part of the POST message body. You’re responsible for issuing requests
with the following components:

POST:
https://pi.pardot.com/api/object/version/3/do/operator/identifier_field/identifier
message body:
api_key=your_api_key&user_key=your_user_key¶meters_for_request

GET:
https://pi.pardot.com/api/object/version/3/do/operator/identifier_field/identifier
?api_key=your_api_key&user_key=your_user_key¶meters_for_request

DescriptionParameter

The object type to be returned by the API requestobject

The operation to be performed on the specified
object type

operator

The field to be used as the identifier for the specified
object type

identifier_field

267

Chapter 23 Pardot API

DescriptionParameter

The identifier for the specified object(s)identifier

The API key that was obtained during
authentication

your_api_key

The user key that was used during authenticationyour_user_key

The API data format. Either xml or json (xml is
default)

format

Parameters specific to your requestparameters_for_request

With the exception of format and parameters_for_request, all parameters are required.

The ordering of parameters is arbitrary. Parameters are passed using conventional HTML parameter syntax,
with '?' indicating the start of the parameter string (for GET requests only) and '&' as the separator
between parameters. Data returned from the API is formatted using JSON or XML 1.0 with UTF-8 character
encoding. Keep in mind that some characters in the response may be encoded as HTML entities, requiring
client-side decoding. Also, keep in mind that all parameters specified in an API request MUST be
URL-encoded before they are submitted.

In general, the API will return XML or JSON containing a current version of the target object's data. However,
unsuccessful requests will return a short response containing an error code and message.

Querying Objects
Search criteria may be used together in any combination and/or order unless otherwise specified. Unless
output=mobile is specified, each query request returns 200 results. This limit is not enforced for
responses formatted for mobile devices. For parameter values that can be quite large such as those with
comma-separated IDs, we recommend using a POST request due to the URL character limits on GET
requests. When querying objects, you can include parameters to navigate through the result set, retrieve
the remaining results, and sort.

Changing the API Response Format
The Pardot API supports several output formats, each of which returns different levels of detail in the XML
or JSON response. Output formats are defined by specifying the output request parameter. Supported
output formats include:

• full—Returns all supported data for the Pardot object and all objects associated with it.

268

Chapter 23 Pardot API

• simple—Returns all supported data for the data for the Pardot object.

• mobile—Returns an abbreviated version of the object data. This output format is ideal for mobile
applications.

If the output request parameter is not defined, the output format defaults to full.

Sample XML Response Format
The following examples show the XML response formats for an opportunity.

For output=full:

<rsp stat="ok" version="1.0">
<opportunity>

...
<campaign>

...
</campaign>
<prospects>

<prospect>
...

</prospect>
</prospects>
<opportunity_activities>

<visitor_activity>
...

</visitor_activity>
</opportunity_activities>

</opportunity>
</rsp>

For output=simple:

<rsp stat="ok" version="1.0">
<opportunity>

...
<campaign>

...
</campaign>
<prospects>

<prospect>
...

</prospect>
</prospects>

269

Chapter 23 Pardot API

</opportunity>
</rsp>

For output=mobile:

<rsp stat="ok" version="1.0">
<opportunity>

...
</opportunity>

</rsp>

Using the API

Each field returned by the API maps to a field within the Pardot user interface. Field mappings for individual
records (prospects and leads/contacts) and accounts are set up automatically when you verify your
connector.

By default, Salesforce is the master for all of these fields except for the proprietary Pardot fields (score,
grade, Pardot campaign, and so on), referrer fields, and Google Analytics fields created when you install
the AppExchange package.

At this time, we only sync with lead, contact, account, and opportunity fields. However, you can choose
to make Pardot the master for most other fields and change most of the default mappings if you’d like.

For more information on field mapping, see the following resources.

• Getting Started with the Salesforce Integration

• Opportunities in Pardot

• Default Prospect and Account Field Mapping

For more information on fields that can be returned or updated via the API, see the Object Field References
in the Pardot API Documentation.

Using Prospects
Access and manage your prospects.

Supported Operations
Supported operations for prospects are assign, unassign, create, read, update, upsert,
delete, and query.

270

Chapter 23 Pardot API

http://www.pardot.com/faqs/salesforce/getting-started-salesforce-com/
https://www.pardot.com/faqs/sugarcrm-crm/opportunities-in-pardot/
https://www.pardot.com/faqs/salesforce/how-do-pardot-fields-map-to-salesforce-com-fields/
http://developer.pardot.com/kb/api-version-3/object-field-references

DescriptionOperation

Format

/api/prospect/version/3/do/assign/email/email?...

assign

Required Parameters
user_key, api_key, email (user_email OR user_id
OR group_id)

Description
Assigns or reassigns the prospect specified by email to a specified
Pardot user or group. One of the following parameters must be
provided to identify the target user or group: user_email,
user_id, or group_id. Returns an updated version of the
prospect.

Format

/api/prospect/version/3/do/assign/id/id?...

assign

Required Parameters
user_key, api_key, id (user_email OR user_id OR
group_id)

Description
Assigns or reassigns the prospect specified by id to a specified Pardot
user or group. One of the following parameters must be provided to
identify the target user or group: user_email, user_id, or
group_id Returns an updated version of the prospect.

Format

/api/prospect/version/3/do/create/email/email?...

create

Required Parameters
user_key, api_key, email

Description
Creates a new prospect using the specified data. email must be a
unique email address. Email list subscriptions and custom field data
may also be added with this request.

271

Chapter 23 Pardot API

DescriptionOperation

Format

/api/prospect/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the prospects matching the specified criteria parameters.

Format

/api/opportunity/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the opportunities matching the specified criteria parameters.

Assigning and Reassigning Prospects
To assign or reassign a prospect, both the prospect to be assigned and the target user or group of the
assignment must be defined. Prospects can be specified by their Pardot ID or email address. Users or groups
can be specified by their Pardot user ID, email address, or Pardot group ID.

272

Chapter 23 Pardot API

The following examples show possible combinations of parameters. You must substitute specific values
for parameters denoted in italics.

/api/prospect/version/3/do/assign/email/?user_email=user_email
&api_key=api_key&user_key=user_key

/api/prospect/version/3/do/assign/email/?user_id=user_id
&api_key=api_key&user_key=user_key

/api/prospect/version/3/do/assign/email/?group_id=group_id
&api_key=api_key&user_key=user_key

/api/prospect/version/3/do/assign/id/?user_email=user_email
&api_key=api_key&user_key=user_key

/api/prospect/version/3/do/assign/id/?user_id=user_id
&api_key=api_key&user_key=user_key

/api/prospect/version/3/do/assign/id/?group_id=group_id
&api_key=api_key&user_key=user_key

Only values that are specifically named in the request are updated. All others are left unchanged. To clear
a value, submit an update request containing a parameter with no specified value, such as status=.

Creating Prospects
To create a prospect via the API, only a valid and unique email address is required. Values for any other
prospect fields may also be provided in the create request. Developers are responsible for substituting
specific values for parameters denoted in italics.

The following example shows how to create a new prospect.

/api/prospect/version/3/do/create/email/new_prospect@pardot.com?first_name=first_name
&last_name=last_name&api_key=api_key&user_key=user_key

See Using Prospects and the Prospect field reference in the Pardot API Documentation for complete
descriptions of prospects.

Updating Field Values
Modifying values of prospect data fields is done by submitting an update request with parameters for
each field to be updated. Each parameter is formatted as field_name=value. Custom field values
are updated using the same syntax.

273

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-prospects
http://developer.pardot.com/kb/api-version-3/object-field-references#prospect

The following example shows how to update the phone number of a prospect whose email address is
bob@pardot.com.

/api/prospect/version/3/do/update/email/bob@pardot.com?phone=888-123-4567
&api_key=api_key&user_key=user_key

Only values that are specifically named in the request are updated. All others are left unchanged. To clear
a value, submit an update request containing a parameter with no specified value, such as phone=.

Note: Any field that is set to record multiple responses cannot have its values cleared this way.

Using Opportunities
Access and manage your opportunities.

Supported Operations
Supported operations for opportunities are create, read, update, delete, undelete, and
query.

DescriptionOperation

Format

/api/opportunity/version/3/do/create/
prospect_email/prospect_email?...

create

Required Parameters
user_key, api_key, prospect_email, name, value,
probability

Description
Creates a new opportunity using the specified data. The
prospect_email parameter must correspond to an existing
prospect. name, value, and probability must also be specified.

Note: If both prospect_email and prospect_id are
specified, both must correspond to the same prospect.

274

Chapter 23 Pardot API

DescriptionOperation

Format

/api/opportunity/version/3/do/create/
prospect_id/prospect_id?...

create

Required Parameters
user_key, api_key, prospect_email, name, value,
probability

Description
Creates a new opportunity using the specified data. The
prospect_id parameter must correspond to an existing prospect.
name, value, and probability must also be specified.

Format

/api/opportunity/version/3/do/update/id/id?...

update

Required Parameters
user_key, api_key, id

Description
Updates the provided data for the opportunity specified by id, which
is the Pardot ID for the target opportunity. Fields that are not updated
by the request remain unchanged. Returns an updated version of the
opportunity.

Format

/api/opportunity/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the opportunities matching the specified criteria parameters.

275

Chapter 23 Pardot API

Usage
Modifying values of opportunity data fields is done by submitting an update request with parameters
for each field to be updated. Each parameter is formatted as field_name=value.

The following example updates the value of an opportunity whose Pardot ID is 27.

POST: /api/opportunity/version/3/do/update/id/27 message body:
value=50000&api_key=api_key&user_key=user_key

Only values that are specifically named in the request are updated. All others are left unchanged. To clear
a value, submit an update request containing a parameter with no specified value, such as status=.

See Using Opportunities and the Opportunity field reference in the Pardot API Documentation for complete
descriptions of opportunity.

Using Visitors
Access and query your visitors.

Supported Operations
Supported operations for visitors are assign, read, and query.

DescriptionOperation

Format

/api/visitor/version/3/do/assign/id/id?...

assign

Required Parameters
user_key, api_key, id (prospect_email OR
prospect_id)

Description
Assigns or reassigns the visitor specified by id to a specified prospect.
One (and only one) of the following parameters must be provided to
identify the target prospect: prospect_email or prospect_id.
Returns an updated version of the visitor.

Format

/api/visitor/version/3/do/read/id/id?...

read

276

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-opportunities
http://developer.pardot.com/kb/api-version-3/object-field-references#opportunity

DescriptionOperation

Required Parameters
user_key, api_key, id

Description
Returns the data for the visitor specified by id, including associated
visitor activities, identified company data, and visitor referrers. The id
parameter is the Pardot ID for the target visitor.

Format

/api/visitor/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the visitors matching the specified criteria parameters.

Assigning and Reassigning Visitors
To assign or reassign a visitor, both the visitor to be assigned and the target prospect of the assignment
must be defined. Visitors are specified by their Pardot ID. Prospects can be specified by their Pardot user
ID or by their email address.

The following example shows possible combinations of parameters. You must substitute specific values
for parameters denoted in italics.

/api/visitor/version/3/do/assign/id/visitor_id?prospect_email=prospect_email
&api_key=api_key&user_key=user_key

/api/visitor/version/3/do/assign/id/visitor_id?prospect_id=prospect_id
&api_key=api_key&user_key=user_key

See Using Visitors and the Visitor field reference in the Pardot API Documentation for complete descriptions
of visitors.

Using Visitor Activities
Read and query your visitor activities.

277

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-visitors
http://developer.pardot.com/kb/api-version-3/object-field-references#visitor

Supported Operations
Supported operations for visitor activities are read and query. The following examples show how you
can read and query visitors.

DescriptionOperation

Format

/api/visitorActivity/version/3/do/read/id/id?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the visitor activity specified by id, which is the
Pardot ID for the target visitor activity.

Format

/api/visitorActivity/version/3/do/query?...

query

Required Parameters
user_key, api_key, search_criteria,
result_set_criteria

Description
Returns the visitor activities matching the specified criteria parameters.

Usage
See Using Visitor Activities and the Visitor Activity field reference in the Pardot API Documentation for
complete descriptions of visitor activities.

Using Users
Read and query your users.

278

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/querying-visitor-activities
http://developer.pardot.com/kb/api-version-3/object-field-references#visitor-activity

Supported Operations
Supported operations for users are read, and query. The following examples show how you can assign,
read and query users.

DescriptionOperation

Format

/api/user/version/3/do/read/email/email?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the user specified by email, which is the email
address of the target user.

Format

/api/user/version/3/do/read/id/id?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the user specified by id, which is the Pardot ID
of the target user.

Format

/api/user/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the users matching the specified criteria parameters.

Usage
See Using Users and the User field reference in the Pardot API Documentation for complete descriptions
of users.

279

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-users
http://developer.pardot.com/kb/api-version-3/object-field-references#user

Using Visits
Read and query your users’ visits.

Supported Operations
Supported operations for visits are read and query. The following examples show how you can read
and query visits.

DescriptionOperation

Format

/api/visit/version/3/do/read/id/id?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the visit specified by id, including associated
visitor page views. The id parameter is the Pardot ID for the target
visit.

Format

/api/visit/version/3/do/query?...

query

Required Parameters
user_key, api_key, (ids, visitor_ids,
prospect_ids)

Description
Returns the visits matching the specified criteria parameters.

Usage
See Using Visits and the Visit field reference in the Pardot API Documentation for complete descriptions
of visits.

280

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-visits
http://developer.pardot.com/kb/api-version-3/object-field-references#visit

Using Lists
Read and query your email list subscriptions.

Supported Operations
Supported operations for lists are read and query. The following examples show how you can read
and query lists.

DescriptionOperation

Format

/api/list/version/3/do/read/id/id?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the list specified by id, which is the Pardot ID for
the target list.

Format

/api/list/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the lists matching the specified criteria parameters.

Usage
See Using Lists and the List field reference in the Pardot API Documentation for complete descriptions of
lists.

Using Prospect Accounts
Access and manage your prospect accounts.

281

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-lists
http://developer.pardot.com/kb/api-version-3/object-field-references#list

Supported Operations
Supported operations for prospects are create, describe, read, update, and query. The
following examples show how you can create, read, and query prospect accounts.

DescriptionOperation

Format

/api/prospectAccount/version/3/do/create?...

create

Required Parameters
user_key, api_key

Description
Create a new prospect accounts.

Format

/api/prospectAccount/version/3/do/read/id/id?...

read

Required Parameters
user_key, api_key, id

Description
Returns the data for the prospect account specified by id, which is
the Pardot ID of the target prospect account.

Format

/api/prospectAccount/version/3/do/query?...

query

Required Parameters
user_key, api_key

Description
Returns the prospect accounts matching the specified criteria
parameters.

Usage
See Using Prospect Accounts and the Prospect Account field reference in the Pardot API Documentation
for complete descriptions of prospect accounts.

282

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/using-prospect-accounts
http://developer.pardot.com/kb/api-version-3/object-field-references#prospectAccount

Reading Emails
Read emails based on the Pardot ID.

Supported Operations
The following example shows how you can read emails.

DescriptionOperation

Format

/api/email/version/3/do/read/id/email_id?...

read

Required Parameters
user_key, api_key, email

Description
Returns the data for the email specified by id, which is the Pardot ID
for the target email.

Usage
For more information, see the Email field reference in the Pardot API Documentation.

Sending One to One Emails
Send an email to a prospect.

Supported Operations
The following example shows how you can send one-to-one email to a prospect.

DescriptionOperation

Format

/api/email/version/3/do/send/prospect_id
/<prospect_id>?...

send

283

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/object-field-references#email

DescriptionOperation

Required Parameters
user_key, api_key, campaign_id,
(email_template_id OR (text_content, name, &
subject)), (from_email OR from_user_id)

Description
Sends a one-to-one email to the prospect identified by
<prospect_id>.

Format

/api/email/version/3/do/send/prospect_email
/<prospect_email>?...

send

Required Parameters
user_key, api_key, campaign_id,
(email_template_id OR (text_content, name, &
subject)), (from_email OR from_user_id)

Description
Sends a one-to-one email to the prospect identified by
<prospect_email>.

Usage
For more information, see the Email field reference in the Pardot API Documentation.

Sending List Emails
Send emails to prospects at a scheduled date and time.

Supported Operations
The following example shows how you can send emails to prospects.

284

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/object-field-references#email

DescriptionOperation

Format

/api/email/version/3/do/send

send

Required Parameters
user_key, api_key, list_ids[], campaign_id,
(email_template OR (text_content, name, &
subject)), (from_email OR from_user_id)

Description
Sends an email to all prospects in a list identified by list_ids[].

Usage
For more information, see the Email field reference in the Pardot API Documentation.

Resources

Use the following resources to get more information about the Pardot API.

• Pardot API Documentation: http://developer.pardot.com/

• Object Field References:
http://developer.pardot.com/kb/api-version-3/object-field-references

• Getting Started with the Salesforce Integration:
http://www.pardot.com/faqs/salesforce/getting-started-salesforce-com/

285

Chapter 23 Pardot API

http://developer.pardot.com/kb/api-version-3/object-field-references#email
http://developer.pardot.com/
http://developer.pardot.com/kb/api-version-3/object-field-references
http://www.pardot.com/faqs/salesforce/getting-started-salesforce-com/

SERVICE CLOUD

CHAPTER 24 Desk.com API

Desk.com enables you to deliver efficient all-in-one customer service, from customer and content
management to business process automation and insights.

The Desk.com API provides a powerful and simple RESTful interface for interacting with your Desk.com
data. With the Desk.com API, you can:

• Read all your cases

• Search for customers by name

• Create a new company

• Update an article translation

• Delete a topic

With over 100 endpoints, the Desk.com API can help you to build rich integrations and applications.

Supported Browsers

Desk.com supports the following browsers:

• Mozilla® Firefox®

• Google Chrome™

• Microsoft® Internet Explorer®

• Apple® Safari®

We recommend using the latest version of a browser listed above. Cookies and JavaScript must be enabled.

Supported Salesforce Editions

Desk.com provides deep two-way integration with these Salesforce Editions:

• Developer Edition

• Group Edition

• Professional Edition

• Enterprise Edition

287

• Unlimited Edition

If you’re an existing Salesforce customer and want to upgrade to any of these editions, contact your account
representative.

Quick Start

The Desk.com API handles requests over HTTPS and in JSON format.

Each resource represents the state of an object within Desk.com, such as a case, customer, or company,
as well as its relationships with other resources. Each resource is identified by a named URI, and is accessed
using HTTP methods like GET, POST, PATCH, and DELETE. Each request you make to the server must contain
all information necessary to process the request as no state is stored on the server.

PATCH is used to modify a resource. If your HTTP client can’t perform PATCH/DELETE requests, you can
perform a POST request using an X-HTTP-Method-Override header to specify PATCH or DELETE.

$ curl https://yoursite.desk.com/api/v2/cases/1 \
-u email:password \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-H 'X-HTTP-Method-Override: PATCH' \
-X POST \
-d '{ "subject":"Updated" }'

The actions you can request on each resource is based on your role. These roles are: Agent, Reporting
Agent, Workflow Manager, Knowledgebase Manager, Content Manager, Business Manager, Administrative
Manager, Administrator, Knowledgebase Administrator, and Billing Administrator. See Authorization for
more information on these roles and their permissions.

To get started with the Desk.com API, follow these steps.

1. Authenticate with the API.

2. Request for data.

Step One: Authenticate with the API
You must authenticate with the API before sending or receiving data.

288

Chapter 24 Desk.com API

http://dev.desk.com/API/using-the-api/#authorization

The API supports both basic authentication over SSL/TLS and OAuth 1.0a authentication. If you require
access to your own account’s data only, use basic authentication with your Desk.com email and password.

$ curl https://yoursite.desk.com/api/v2/cases \
-u email:password \
-H 'Accept: application/json'

If you are writing an API application that needs to access other accounts on behalf of their users, OAuth
1.0a provides you the capability to use the API without storing emails and passwords of users.

Before an API call can be made, a registered Desk.com user must first go through theOAuth Authorization
workflow and allow the client application to access Desk.com on behalf of the user. During the process,
the user will be required to login to Desk.com and “Allow” access. As an added layer of security, we require
that a site administrator authorize your application before users of that site can authorize it. The user will
then be redirected to a callback URL configured for the client application with an authorization code which
the application can use to retrieve an “Access Token” for subsequent API calls.

Table 1: OAuth Endpoints

EndpointType

/oauth/authorizeAuthorize

/oauth/request_tokenRequest Token

/oauth/access_tokenAccess Token

Your token can be found under your client application's details in Admin > Settings > API. The
combination of your consumer key, secret, access token, and access token secret provides you everything
you need to make an API request.

This example shows how you can use the standard Ruby OAuth library to authenticate with the API.

require 'rubygems'
require 'oauth'

KEY and SECRET are available in Desk.com Admin -> Settings -> API
->
My Applications -> Key and Secret fields
KEY = "YOUR_OAUTH_KEY"
SECRET = "YOUR_OAUTH_SECRET"
SITE = "https://yoursite.desk.com"

Start the process by requesting a token
callback_url = "https://example.com/oauth/callback"

289

Chapter 24 Desk.com API

consumer = OAuth::Consumer.new(KEY, SECRET, site: SITE)
request_token = consumer.get_request_token(oauth_callback: callback_url)

For demonstration purposes, visit this URL in your web browser and
authorize
the request. for a live application, redirect your user user to this
URL
puts request_token.authorize_url(oauth_callback: callback_url)

After the application is authorized, Desk.com will send a request
to your
callback_url with two parameters, oauth_token and oauth_verifier
oauth_token = "oauth_token_param"
oauth_verifier = "oauth_verifier_param"

Retrieve the access token
access_token = request_token.get_access_token(oauth_token: oauth_token,

oauth_verifier: oauth_verifier)

Send a GET request to Desk.com
access_token.get("/api/v2/cases")

From here, you can store the credentials to make requests in the
future

Step Two: Request for data
After authenticating with the Desk.com API, request for your data.

This section walks through some sample Ruby code showing how to read, create, update, and delete
Topics and Topic Translations. The purpose of it is to demonstrate basic API calls in a simple manner. A
real world application would need to additionally implement error handling for HTTP calls and prompt
the user to fix any validation problems that may arise from POST and PATCH calls.

The following code assumes your system has these items installed:

• Ruby 1.9.3

• Ruby gems

• JSON gem version 1.8.0

290

Chapter 24 Desk.com API

• httparty gem version 0.11.0

require 'rubygems'
require 'json'
require 'httparty'

AUTH = { basic_auth: { username: 'you@yoursite.com', password:
"password" } }
BASE_URI = "https://yoursite.desk.com"

get a resource
def get(uri, opts = {})
opts = opts.merge(AUTH)
uri = BASE_URI + uri

puts "getting #{uri}"

response = HTTParty.get(uri, opts)

JSON.parse(response.body)
end

patch a resource
def patch(uri, opts = {})
opts = opts.merge(AUTH)
uri = BASE_URI + uri

puts "patching #{uri}"

HTTParty.patch(uri, opts)
end

post a resource
def post(uri, opts = {})
opts = opts.merge(AUTH)
uri = BASE_URI + uri

puts "posting #{uri}"

HTTParty.post(uri, opts)
end

delete a resource
def delete(uri, opts = {})

291

Chapter 24 Desk.com API

opts = opts.merge(AUTH)
uri = BASE_URI + uri

puts "deleting #{uri}"

HTTParty.delete(uri, opts)
end

def get_topics
get("/api/v2/topics", { query: { per_page: 1 } })

end

def get_topic_translations(topic)
get(topic["_links"]["translations"]["href"])

end

get the first topic
topics = get_topics
topic = topics["_embedded"]["entries"].first

get that topic's first translation
translations = get_topic_translations(topic)
translation = translations["_embedded"]["entries"].first

puts "current translation name: #{translation['name']}"

update the translation's name
patch(translation["_links"]["self"]["href"], { query: { name: "name
updated via API at #{Time.now.to_s}" } })

get the updated translation
translation = get(translation["_links"]["self"]["href"])

puts "new translation name: #{translation['name']}"

create a new topic
topic_options = { name: "new topic via API", allow_questions: false,
in_support_center: false }
post("/api/v2/topics", { query: topic_options })

find the last topic
topics = get_topics
topics = get(topics["_links"]["last"]["href"])
topic = topics["_embedded"]["entries"].last

292

Chapter 24 Desk.com API

puts "last topic's name: #{topic['name']}"

delete the topic
response = delete(topic["_links"]["self"]["href"])

Best Practices

The Desk.com API uses a RESTful Architecture. This section explains this architecture and offers several
best practices.

JSON interface
Requests and responses are in JSON format.

Authentication
Both HTTP Basic Authentication and OAuth 1.0a are supported.

Authorization
Authorization is handled transparently based on the given user’s role.

Stateless
Each request from the client to the server must contain all of the information necessary to process the
request. No state is stored on the server.

Caching Behavior
Responses are labeled as cacheable or non-cacheable with HTTP ETags.

Uniform Interface
All resources are accessed with a generic interface over HTTPS.

Named Resources
All resources are named using a base URI that follows your Desk.com URI.

Layered Components
The architecture of Desk.com API v2 allows for intermediaries such as proxy servers and gateways to
exist between the client and the server.

Rate Limit
Rate limiting is implemented on a per-user basis, irrespective of the method of authentication. The current
threshold is 60 requests per minute multiplied by the number of full-time agents and administrators on
your site, up to a maximum of 300 requests per minute. For example, a site with one administrator and
one agent would have a rate limit of 120 requests per minute. Requests are limited in 1-minute windows.

293

Chapter 24 Desk.com API

All responses include headers with status info about rate limiting.

X-Rate-Limit-Limit
Maximum number of requests per minute to the endpoint

X-Rate-Limit-Remaining
Available requests remaining in the current window

X-Rate-Limit-Reset
Seconds remaining until the next window begins

If your application hits the rate limit, an HTTP 429 error response will be returned with this body.

{
"message": "Too Many Requests"
}

Assuming it is 40 seconds into the current window, for a site with a single administrator or agent, these
headers will be returned.

{
"X-Rate-Limit-Limit": 60,
"X-Rate-Limit-Remaining": 0,
"X-Rate-Limit-Reset": 20
}

When the limit is reached, your application should stop making requests until X-Rate-Limit-Reset
seconds have elapsed.

Reducing Requests and Conserving Bandwidth
When requesting for data, you’ll receive a response code with your data to indicate success or failure.
Resources such as labels, groups, macros, and users also support ETag caching.

The example responses below show only the headers. If the data on the server has changed, a 200 will be
returned along with the entire response body. If the data on the server has not changed, a 304 will be
returned with an empty response body, signifying that your application has up-to-date data.

The following example shows a request without an ETag and its example response headers.

$ curl https://yoursite.desk.com/api/v2/groups \
-u email:password \
-I

HTTP/1.1 200 OK
Date: Fri, 24 May 2013 15:00:10 GMT

294

Chapter 24 Desk.com API

Content-Type: application/json; charset=utf-8
Connection: keep-alive
X-Rate-Limit-Remaining: 59
X-Rate-Limit-Limit: 60
X-Rate-Limit-Reset: 50
X-AppVersion: 120.1
ETag: "1369407549"
X-Frame-Options: SAMEORIGIN
X-UA-Compatible: IE=Edge
Cache-Control: no-cache, private
X-Runtime: 0.323047
X-Rack-Cache: miss

The following example shows a request with a current ETag and its example response headers.

$ curl https://yoursite.desk.com/api/v2/groups \
-u email:password \
-H "if-none-match \"1369407549\""
-I

HTTP/1.1 304 Not Modified
Date: Fri, 24 May 2013 15:05:42 GMT
Connection: keep-alive

Embedding Resources
Related resources are linked and embedded using the HAL specification.

Most resources with a 1:1 or N:1 relationship with a second resource can embed the second one. If your
application reads Cases and needs to retrieve the associated Customer, a naive approach might make a
request to get the Case and another request to get the Customer. However, the Customer can be embedded
within the Case, which will only count as one request.

Here’s how you would request a case and embed the related customer, along with the response with
embedded resource.

$ curl https://yoursite.desk.com/api/v2/cases/1?embed=customer \
-u email:password \
-H 'Accept: application/json'

{
"subject": "Some case",
"_links": {
"self": {

295

Chapter 24 Desk.com API

http://blog.stateless.co/post/13296666138/json-linking-with-hal

"href": "/api/v2/cases/1",
"class": "case"

},
"customer": {
"href": "/api/v2/customers/1",
"class": "customer"

}
},
"_embedded": {
"customer": {
"first_name": "John",
"last_name": "Doe",
"_links": {
"self": {
"href": "/api/v2/customers/1",
"class": "customer"

}
}

}
}

}

Embedding is useful when you need to grab a particular resource or collection of resources along with
the related resources. Not every relationship can be embedded, and you can only specify embedded
relationships on the top level resource or collection of resources.

Selecting Fields
The fields included in a response can be limited by providing the comma separated fields param in
the request. _links will be returned with all responses. The following example shows a request using
field selection.

$ curl
https://yoursite.desk.com/api/v2/cases/:id\?fields\=subject,status \

-u email:password \
-H 'Accept: application/json'

Adjusting Pagination
Requests to collections of resources will return a page of 50 resources by default. You can request up to
100 entries per page by using the per_page parameter. By default, the first page is returned unless

296

Chapter 24 Desk.com API

specified with the page parameter. You can follow links to different pages using _links and access the
resulting resources under the _embedded entries.

curl https://yoursite.desk.com/api/v2/cases?per_page=100 \
-u email:password \
-H 'Accept: application/json'

For more information, see the Desk.com API Documentation.

Using the API

Access and manage your articles, brands, cases, companies, customers, and other Desk.com data.

This section walks you through common actions for each resources. See the Desk.com API Documentation
for a full list of examples and response details.

Articles
Perform actions on your articles, such as listing, creating, or updating them.

Retrieve a paginated list of all articles.

GET https://yoursite.desk.com/api/v2/articles

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/articles \

-u email:password \
-H 'Accept: application/json'

Example Response
The body content has been simplified in the following example.

{
"total_entries": 2,
"_links": {
"self": {
"href": "/api/v2/articles?page=1&per_page=30",
"class": "page"

},

297

Chapter 24 Desk.com API

http://dev.desk.com/API/using-the-api/#etag-caching
http://dev.desk.com/API/articles/

"first": {
"href": "/api/v2/articles?page=1&per_page=30",
"class": "page"

},
"last": {
"href": "/api/v2/articles?page=1&per_page=30",
"class": "page"

},
"next": null,
"previous": null
},
"_embedded": {
"entries": [
{
"subject": "Awesome Subject",
"body": "<p>Awesome apples</p>",
"internal_notes": "Notes to the agent here",
"publish_at": "2013-10-14T20:41:32Z",
"created_at": "2013-10-14T20:36:32Z",
"updated_at": "2013-10-14T20:41:32Z",
"_links": {
"self": {
"href": "/api/v2/articles/1",
"class": "article"

},
"topic": {
"href": "/api/v2/topics/1",
"class": "topic"

},
"translations": {
"href": "/api/v2/articles/1/translations",
"class": "article_translation"

}
}

},
{
"subject": "How to make your customers happy",
"body": "Use Desk.com",
"body_email": "Email just doesn't cut it",
"internal_notes": "Notes to the agent here",
"publish_at": "2013-10-14T20:41:32Z",
"created_at": "2013-10-14T20:36:32Z",
"updated_at": "2013-10-14T20:41:32Z",
"_links": {

298

Chapter 24 Desk.com API

"self": {
"href": "/api/v2/articles/2",
"class": "article"

},
"topic": {
"href": "/api/v2/topics/1",
"class": "topic"

},
"translations": {
"href": "/api/v2/articles/2/translations",
"class": "article_translation"

}
}

}
]

}
}

Calls for Articles
The following list shows all other calls for your articles.

ExampleActions

GET https://yoursite.desk.com/api/v2/articles/:id
Show a single article

POST https://yoursite.desk.com/api/v2/articles
Create an article

PATCH https://yoursite.desk.com/api/v2/articles/:id
Update an article

DELETE https://yoursite.desk.com/api/v2/articles/:id
Delete an article

GET https://yoursite.desk.com/api/v2/articles/search
Search across all public
articles

GET https://yoursite.desk.com/api/v2/articles/
:article_id/translations

List translations for an
article

299

Chapter 24 Desk.com API

ExampleActions

GET https://yoursite.desk.com/api/v2/articles/
:article_id/translations/:locale

Show a single article
translation

POST https://yoursite.desk.com/api/v2/articles/
:article_id/translations

Create an article
translation

PATCH https://yoursite.desk.com/api/v2/articles/
:article_id/translations/:locale

Update an article
translation

See the Articles reference for details on each of these actions, including roles and fields.

Brands
List all your brands or retrieve them individually.

Retrieve a paginated list of all brands.

GET https://yoursite.desk.com/api/v2/brands

Retrieve a single brand.

GET https://yoursite.desk.com/api/v2/brands/:id

Retrieve all articles for a brand.

GET https://yoursite.desk.com/api/v2/brands/:id/articles

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/brands/:id \

-u email:password \
-H 'Accept: application/json'

300

Chapter 24 Desk.com API

http://dev.desk.com/API/articles/#list

Example Response
The body content has been simplified in the following example.

{
"name": "Desk.com",
"created_at": "2013-10-14T20:36:32Z",
"updated_at": "2013-10-14T20:36:32Z",
"_links": {
"self": {
"href": "/api/v2/brands/1",
"class": "brand"

}
}

}

See the Brands reference for details on retrieving brands.

Cases
Perform actions on your cases, such as listing, creating, or updating them.

Retrieve a paginated list of all cases.

GET https://yoursite.desk.com/api/v2/cases

Retrieve a single case. An external ID can be used by URL-encoding it and prefacing it with e-, such as
e-case%405-300.

GET https://yoursite.desk.com/api/v2/cases/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/cases/1 \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"external_id": null,
"subject": "Welcome",
"priority": 5,

301

Chapter 24 Desk.com API

http://dev.desk.com/API/brands/#list

"locked_until": null,
"description": null,
"status": "new",
"type": "email",
"language": "en_us",
"created_at": "2013-10-14T20:36:32Z",
"updated_at": "2013-10-14T20:36:32Z",
"active_at": null,
"received_at": "2012-05-02T21:38:48Z",
"custom_fields": {
"level": "vip"

},
"_links": {
"self": {
"href": "/api/v2/cases/1",
"class": "case"

},
"message": {
"href": "/api/v2/cases/1/message",
"class": "message"

},
"customer": {
"href": "/api/v2/customers/1",
"class": "customer"

},
"assigned_user": {
"href": "/api/v2/users/2",
"class": "user"

},
"assigned_group": {
"href": "/api/v2/groups/1",
"class": "group"

},
"locked_by": null

}
}

Calls for Cases
The following list shows all other calls for your cases.

302

Chapter 24 Desk.com API

Case Actions

ExampleAction

POST https://yoursite.desk.com/api/v2/customers
/:customer_id/cases

Create a case

DELETE https://yoursite.desk.com/api/v2/cases/:id
Delete a case

POST
https://yoursite.desk.com/api/v2/cases/:id/forward

Forward a case

GET https://yoursite.desk.com/api/v2/cases
/search?name=John+Doe&status=open

Search cases

PATCH https://yoursite.desk.com/api/v2/cases/:id
Update a case

Message Actions

ExampleAction

DELETE
https://yoursite.desk.com/api/v2/cases/:case_id/message

Delete a message

GET https://yoursite.desk.com/api/v2/cases
/:case_id/message

Retrieve a message

PATCH
https://yoursite.desk.com/api/v2/cases/:case_id/message

Update a message

303

Chapter 24 Desk.com API

Reply Actions

ExampleAction

POST
https://yoursite.desk.com/api/v2/cases/:case_id/replies/:id

Create a reply

GET https://yoursite.desk.com/api/v2/cases
/:case_id/replies

List all replies

GET https://yoursite.desk.com/api/v2/cases/
:case_id/replies/:id

Retrieve a reply

PATCH https://yoursite.desk.com/api/v2/cases
/:case_id/replies/:id

Update a reply

Note Actions

ExampleAction

POST https://yoursite.desk.com/api/v2/cases
/:id/notes

Create a note

DELETE
https://yoursite.desk.com/api/v2/cases/:case_id/notes/:id

Delete a note

GET
https://yoursite.desk.com/api/v2/cases/:case_id/notes

List all notes

GET https://yoursite.desk.com/api/v2/cases
/:case_id/notes/:id

Retrieve a note

304

Chapter 24 Desk.com API

ExampleAction

PATCH
https://yoursite.desk.com/api/v2/cases/:case_id/notes/:id

Update a note

Attachment Actions

ExampleAction

POST https://yoursite.desk.com/api/v2/cases/:id
/attachments

Create a case
attachment

POST https://yoursite.desk.com/api/v2/cases/:case_id
/replies/:reply_id/attachments

Create a reply
attachment

GET https://yoursite.desk.com/api/v2/cases/:case_id
/attachments

Retrieve all case
attachments

GET https://yoursite.desk.com/api/v2/cases/:case_id
/message/attachments

Retrieve all message
attachments

GET https://yoursite.desk.com/api/v2/cases/:case_id
/replies/:reply_id/attachments

Retrieve all reply
attachments

GET https://yoursite.desk.com/api/v2/cases/:case_id
/attachments/:id

Retrieve an attachment

305

Chapter 24 Desk.com API

Other Calls for Cases

ExampleAction

POST
https://yoursite.desk.com/api/v2/cases/:case_id/macros/preview

Preview a macro

GET
https://yoursite.desk.com/api/v2/cases/:case_id/history

Read case history

GET
https://yoursite.desk.com/api/v2/cases/:case_id/links

Retrieve all case links

GET
https://yoursite.desk.com/api/v2/cases/:case_id/labels

Retrieve all labels

See the Cases reference for details on each of these actions, including roles and fields.

Companies
Perform actions on your companies, such as listing, creating, or updating them.

Retrieve a paginated list of all companies.

GET https://yoursite.desk.com/api/v2/companies

Retrieve a single company.

GET https://yoursite.desk.com/api/v2/companies/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/companies/:id \

-u email:password \
-H 'Accept: application/json'

306

Chapter 24 Desk.com API

http://dev.desk.com/API/cases/#list

Example Response
{
"name": "Acme Inc",
"domains": [
"acmeinc.com",
"acmeinc.net"

],
"created_at": "2013-10-16T17:25:16Z",
"updated_at": "2013-10-16T17:25:16Z",
"custom_fields": {
"employer_id": "123456789"

},
"_links": {
"self": {
"href": "/api/v2/companies/1",
"class": "company"

},
"customers": {
"href": "/api/v2/companies/1/customers",
"class": "customer"

}
}

}

Calls for Companies
The following list shows all other calls for your companies.

ExampleAction

POST https://yoursite.desk.com/api/v2/companies
Create a company

GET
https://yoursite.desk.com/api/v2/companies/:company_id/cases

Retrieve all company
cases

GET https://yoursite.desk.com/api/v2/companies
/search

Search

307

Chapter 24 Desk.com API

ExampleAction

PATCH https://yoursite.desk.com/api/v2/companies/:id
Update a company

See the Companies reference for details on each of these actions, including roles and fields.

Custom Fields
List all your custom fields or retrieve them individually.

Retrieve a paginated list of all custom fields.

GET https://yoursite.desk.com/api/v2/custom_fields

Retrieve a single brand.

GET https://yoursite.desk.com/api/v2/brands/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/custom_fields/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "frequent_buyer",
"label": "Frequent Buyer",
"type": "customer",
"active": true,
"data": {
"type": "boolean"

},
"_links": {
"self": {
"href": "/api/v2/custom_fields/1",
"class": "custom_field"

}

308

Chapter 24 Desk.com API

http://dev.desk.com/API/companies/#list

}
}

See the Custom fields reference for details on retrieving custom fields.

Customers
List, create, or update customer data.

Retrieve a paginated list of all customers.

GET https://yoursite.desk.com/api/v2/customers

Retrieve a single customer.

GET https://yoursite.desk.com/api/v2/customers/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/customers/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"first_name": "John",
"last_name": "Doe",
"company": "ACME, Inc",
"title": "Senior Ninja",
"external_id": null,
"background": "Great customer!",
"language": "en_us",
"locked_until": null,
"created_at": "2013-10-16T17:25:16Z",
"updated_at": "2013-10-16T17:25:16Z",
"custom_fields": {
"level": "vip"

},
"emails": [
{
"type": "work",

309

Chapter 24 Desk.com API

http://dev.desk.com/API/custom-fields/

"value": "john@acme.com"
},
{
"type": "home",
"value": "john@home.com"

}
],
"phone_numbers": [
{
"type": "work",
"value": "123-456-7890"

}
],
"addresses": [
{
"type": "work",
"value": "123 Main St, San Francisco, CA 94105"

}
],
"_links": {
"self": {
"href": "/api/v2/customers/1",
"class": "customer"

},
"cases": {
"href": "/api/v2/customers/1/cases",
"class": "case"
},
"locked_by": null

}
}

Calls for Customers
The following list shows all other calls for your customers.

ExampleActions

GET https://yoursite.desk.com/api/v2/customers
Create a customer

PATCH https://yoursite.desk.com/api/v2/customers/:id
Update a customer

310

Chapter 24 Desk.com API

ExampleActions

GET https://yoursite.desk.com/api/v2/customers
/search

Search customers

GET
https://yoursite.desk.com/api/v2/customers/:id/cases

Retrieve all customer
cases

See the Customers reference for details on each of these actions, including roles and fields.

ETags
List ETag values for various endpoints.

GET https://yoursite.desk.com/api/v2/etags

Facebook Accounts
List all your Facebook accounts or retrieve them individually.

Retrieve a paginated list of all Facebook accounts.

GET https://yoursite.desk.com/api/v2/facebook_accounts

Retrieve a single Facebook account.

GET https://yoursite.desk.com/api/v2/facebook_accounts/:id

Facebook Feeds
List all your Facebook feeds or retrieve them individually.

Retrieve a paginated list of all Facebook feeds.

GET https://yoursite.desk.com/api/v2/facebook_feeds

Retrieve a single Facebook feed.

GET https://yoursite.desk.com/api/v2/facebook_feeds/:id

311

Chapter 24 Desk.com API

http://dev.desk.com/API/customers/

Facebook Users
List all your Facebook users or retrieve them individually.

Retrieve a paginated list of all Facebook users.

GET https://yoursite.desk.com/api/v2/facebook_users

Retrieve a single Facebook user.

GET https://yoursite.desk.com/api/v2/facebook_users/:id

Filters
List all your filters, retrieve them individually, or retrieve all cases for the given filter.

Retrieve a paginated list of all filters.

GET https://yoursite.desk.com/api/v2/filters

Retrieve a single filter.

GET https://yoursite.desk.com/api/v2/filters/:id

Retrieve cases for the given filter.

GET https://yoursite.desk.com/api/v2/filters/:id/cases

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/filters/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "My Active Cases",
"sort": "priority",
"sort_field": "priority",
"sort_direction": "desc",
"position": 1,
"active": true,
"_links": {

312

Chapter 24 Desk.com API

"self": {
"href": "/api/v2/filters/1",
"class": "filter"

},
"group": null,
"user": null

}
}

See the Filters reference for details on using filters.

Groups
Perform actions on your groups, such as listing, creating, or updating them.

Retrieve a paginated list of all groups.

GET https://yoursite.desk.com/api/v2/groups

Retrieve a single group.

GET https://yoursite.desk.com/api/v2/groups/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/groups/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "Support Ninjas",
"_links": {
"self": {
"href": "/api/v2/groups/1",
"class": "group"

}
}

}

313

Chapter 24 Desk.com API

http://dev.desk.com/API/filters/

Calls for Groups
The following list shows all other calls for your groups.

ExampleAction

GET https://yoursite.desk.com/api/v2/groups/:id
/filters

Retrieve all filters for
the given group

GET
https://yoursite.desk.com/api/v2/groups/:id/permissions

Retrieve all permissions
for the given group

GET https://yoursite.desk.com/api/v2/groups/:id
/users

Retrieve all users for the
given group

See the Groups reference for details on each of these actions, including roles and fields.

Inbound Mailboxes
List all your inbound mailboxes or retrieve them individually.

List all inbound mailboxes.

GET https://yoursite.desk.com/api/v2/mailboxes/inbound

Retrieve a single inbound mailbox.

GET https://yoursite.desk.com/api/v2/mailboxes/inbound/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/mailboxes/inbound/:id \

-u email:password \
-H 'Accept: application/json'

314

Chapter 24 Desk.com API

http://dev.desk.com/API/groups

Example Response
{
"name": "Support Mailbox",
"enabled": true,
"type": "imaps",
"hostname": "mail.example.com",
"port": 993,
"email": "support@example.com",
"last_checked_at": "2013-10-16T17:25:16Z",
"created_at": "2013-10-16T17:25:16Z",
"updated_at": "2013-10-16T17:25:16Z",
"last_error": null,
"inbound_address_filter": null,
"outbound_address_filter": null,
"_links": {
"self": {
"href": "/api/v2/mailboxes/inbound/1",
"class": "inbound_mailbox"

},
"default_group": {
"href": "/api/v2/groups/1",
"class": "group"

},
"created_by": {
"href": "/api/v2/users/1",
"class": "user"

},
"updated_by": {
"href": "/api/v2/users/1",
"class": "user"

}
}

}

See the Inbound mailboxes reference for details on retrieving mailboxes.

Insights
Retrieve meta data or create a report for your business insights.

Retrieve insights meta data for the authenticated site.

GET https://yoursite.desk.com/api/v2/insights/meta

315

Chapter 24 Desk.com API

http://dev.desk.com/API/inbound-mailboxes

To create a report, use the following request.

POST https://yoursite.desk.com/api/v2/insights/reports

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/insights/reports \

-u email:password \
-X POST \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"resolution":"days", "min_date":"2013-06-01",

"max_date":"2013-07-30",
"dimension1_name":"*", "dimension1_values":"*",
"dimension2_name":"*", "dimension2_values":"*"}'

Example Request Body
{
"resolution": "days",
"min_date": "2012-06-01",
"max_date": "2013-07-30",
"dimension1_name": "*",
"dimension1_values": "*",
"dimension2_name": "*",
"dimension2_values": "*"

}

See the Insights reference for details on using insights.

Integration URLs
Perform actions on your integration URLs, such as listing, creating, or updating them.

Retrieve a paginated list of all integration URLs.

GET https://yoursite.desk.com/api/v2/integration_urls

Retrieve a single integration URL.

GET https://yoursite.desk.com/api/v2/integration_urls/:id

316

Chapter 24 Desk.com API

http://dev.desk.com/API/brands/#list

Example Curl Request
$ curl
https://yoursite.desk.com/api/v2/integration_urls/:id\?customer_id\=1
\

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "Sample URL",
"description": "A sample Integration URL",
"enabled": true,
"markup": "http://www.example.com/name={{customer.name |

url_encode}}",
"rendered": "http://www.example.com/name=Andrew",
"created_at": "2013-10-16T17:25:16Z",
"updated_at": "2013-10-16T17:25:16Z",
"_links": {
"self": {
"href": "/api/v2/integration_urls/1",
"class": "integration_url"

}
}

}

Calls for Integration URLs
The following list shows all other calls for your integration URLs.

ExampleActions

POST https://yoursite.desk.com/api/v2
/integration_urls

Create an integration
URL

PATCH https://yoursite.desk.com/api/v2
/integration_urls/:id

Update an integration
URL

317

Chapter 24 Desk.com API

ExampleActions

DELETE https://yoursite.desk.com/api/v2
/integration_urls/:id

Delete an integration
URL

See the Integration URLs reference for details on each of these actions, including roles and fields.

Jobs
List, show, or create jobs.

Retrieve a paginated list of all jobs.

GET https://yoursite.desk.com/api/v2/jobs

To retrieve a single job, append its id to the request.

GET https://yoursite.desk.com/api/v2/jobs/:id

To create a background job, use the following request.

POST https://yoursite.desk.com/api/v2/jobs

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/jobs \

-u email:password \
-X POST \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"type": "bulk_case_update", "case": {"priority": 5, "_links":

{ "assigned_user": {"href": "/api/v2/users/1", "class": "user"}}},
"case_ids": [1,2,3]}'

Example Request Body
{
"type": "bulk_case_update",
"case": {
"priority": 5,

318

Chapter 24 Desk.com API

http://dev.desk.com/API/integration-urls

"_links": {
"assigned_user": {
"href": "/api/v2/users/1",
"class": "user"
}

}
},
"case_ids": [1,2,3]

}

Example Response
{
"type": "bulk_case_update",
"status_message": "Completed",
"progress": 100,
"created_at": "2013-10-16T16:35:16Z",
"completed_at": "2013-10-16T17:25:16Z",
"_links": {
"self": {
"href": "/api/v2/jobs/1",
"class": "job"
},
"user": {
"href": "/api/v2/users/1",
"class": "user"

}
}

}

See the Jobs reference for details on using jobs.

Labels
Perform actions on your labels, such as listing, creating, or updating them.

Retrieve a paginated list of all labels.

GET https://yoursite.desk.com/api/v2/labels

Retrieve a single label.

GET https://yoursite.desk.com/api/v2/labels/:id

319

Chapter 24 Desk.com API

http://dev.desk.com/API/jobs

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/labels/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "MyLabel",
"description": "My Label Description",
"types": ["case","macro"],
"active": true,
"position": 1,
"_links": {
"self": {
"href": "/api/v2/labels/1",
"class": "label"

}
}

}

Calls for Labels
The following list shows all other calls for your labels.

ExampleActions

POST https://yoursite.desk.com/api/v2/labels
Create a label

PATCH https://yoursite.desk.com/api/v2/labels/:id
Update a label

DELETE https://yoursite.desk.com/api/v2/labels/:id
Delete a label

See the Labels reference for details on each of these actions, including roles and fields.

320

Chapter 24 Desk.com API

http://dev.desk.com/API/labels

Macros
Perform actions on your macros, such as listing, creating, or updating them.

Retrieve a paginated list of all macros.

GET https://yoursite.desk.com/api/v2/macros

Retrieve a single macro.

GET https://yoursite.desk.com/api/v2/macros/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/macros/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "Macro Macro",
"description": "On repeat",
"enabled": true,
"position": 1,
"folders": [
"Sample Macros",
"Favorites"

],
"_links": {
"self": {
"href": "/api/v2/macros/1",
"class": "macro"

},
"actions": {
"href": "/api/v2/macros/1/actions",
"class": "macro_action"

}
}

}

321

Chapter 24 Desk.com API

Calls for Macros
The following list shows all other calls for your macros.

ExampleActions

POST https://yoursite.desk.com/api/v2/macros
Create a macro

PATCH https://yoursite.desk.com/api/v2/macros/:id
Update a macro

DELETE https://yoursite.desk.com/api/v2/macros/:id
Delete a macro

GET https://yoursite.desk.com/api/v2/macros/:macro_id
/actions

Retrieve all actions for
a macro

GET https://yoursite.desk.com/api/v2/macros/:macro_id
/actions/:id

Retrieve an action for a
macro

PATCH
https://yoursite.desk.com/api/v2/macros/:macro_id
/actions/:id

Update an action

See the Macros reference for details on each of these actions, including roles and fields.

Outbound Mailboxes
List all your outbound mailboxes or retrieve them individually.

Retrieve a paginated list of all outbound mailboxes.

GET https://yoursite.desk.com/api/v2/outbound_mailboxes

Retrieve a single outbound mailbox.

GET https://yoursite.desk.com/api/v2/outbound_mailboxes/:id

322

Chapter 24 Desk.com API

http://dev.desk.com/API/macros

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/outbound_mailboxes/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
The body content has been simplified in the following example.

{
"from_name": "Support",
"from_email: "support@desk.com",
"enabled": true,
"reply_to": "",
"hostname": "smtp.example.com",
"port": 587,
"last_error": null,
"type": "custom",
"created_at": "2014-05-20T19:18:09Z",
"updated_at": "2014-05-20T19:18:09Z",
"_links": {

"self": {
"href": "/api/v2/mailboxes/outbound/1",
"class": "outbound_mailbox"

}
}

}

Rules
List all your rules or retrieve them individually.

Retrieve a paginated list of all rules.

GET https://yoursite.desk.com/api/v2/rules

Retrieve a single rule.

GET https://yoursite.desk.com/api/v2/rules/:id

323

Chapter 24 Desk.com API

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/rules/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
The body content has been simplified in the following example.

{
"name": "Assign to Support",
"description": "Assign inbound tweets to support group",
"enabled": true,
"created_at": "2013-10-16T17:25:16Z",
"updated_at": "2013-10-16T17:25:16Z",
"_links": {
"self": {
"href": "/api/v2/rules/1",
"class": "rule"

}
}

}

See the Rules reference for details on retrieving rules.

Site Settings
List all your site settings or retrieve them individually.

Retrieve a paginated list of all site settings.

GET https://yoursite.desk.com/api/v2/site_settings

Retrieve a single rule.

GET https://yoursite.desk.com/api/v2/site_settings/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/site_settings/:id \

-u email:password \
-H 'Accept: application/json'

324

Chapter 24 Desk.com API

http://dev.desk.com/API/rules

Example Response
{
"name": "company_name",
"value": "Cool Surfboard Co.",
"_links": {
"self": {
"href": "/api/v2/site_settings/1",
"class": "site_setting"

}
}

}

See the Sites reference for details on retrieving site settings.

System Message
Desk.com uses the system message resource to announce upcoming maintenance or any other news that
may affect its users. This is a read-only endpoint that exposes the current system message if one exists.

Retrieve all system messages.

GET https://yoursite.desk.com/api/v2/system_message

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/system_message \

-u email:password \
-X GET \
-H 'Accept: application/json' \
-H 'Content-Type: application/json'

Example Response
The body content has been simplified in the following example.

{
"message": "We're not doing maintenance today, but if we were then

we would tell you about it here.",
"updated_at": "2013-10-16T17:25:16Z"

}

See the System message reference for details on retrieving system messages.

325

Chapter 24 Desk.com API

http://dev.desk.com/API/site-settings
http://dev.desk.com/API/system-message

Topics
Perform actions on your topics, such as listing, creating, or updating them.

Retrieve a paginated list of all topics.

GET https://yoursite.desk.com/api/v2/topics

Retrieve a single topic.

GET https://yoursite.desk.com/api/v2/topics/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/topics/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "Customer Support",
"description": "This is key to going from good to great",
"position": 1,
"allow_questions": true,
"in_support_center": true,
"created_at": "2013-10-06T17:35:16Z",
"updated_at": "2013-10-11T17:35:16Z",
"_links": {
"self": {
"href": "/api/v2/topics/1",
"class": "topic"

},
"articles": {
"href": "/api/v2/topics/1/articles",
"class": "article"

},
"translations": {
"href": "/api/v2/topics/1/translations",
"class": "topic_translation"

}
}

}

326

Chapter 24 Desk.com API

Calls for Topics
The following list shows all other calls for your topics.

ExampleActions

POST https://yoursite.desk.com/api/v2/topics
Create a topic

PATCH https://yoursite.desk.com/api/v2/topics/:id
Update a topic

DELETE https://yoursite.desk.com/api/v2/topics/:id
Delete a topic

GET https://yoursite.desk.com/api/v2/topics/:topic_id
/translations

Retrieve translations for
a topic

GET https://yoursite.desk.com/api/v2/topics/:id
/translations/:locale

Retrieve a single topic
translation

POST
https://yoursite.desk.com/api/v2/topics/:topic_id
/translations

Create a topic
translation

PATCH https://yoursite.desk.com/api/v2/topics/:id
/translations/:locale

Update a topic
translation

DELETE https://yoursite.desk.com/api/v2/topics/:id
/translations/:locale

Delete a topic
translation

See the Topics reference for details on each of these actions, including roles and fields.

Twitter Accounts
Perform actions on your Twitter accounts, such as listing or creating Tweets.

327

Chapter 24 Desk.com API

http://dev.desk.com/API/topics

Retrieve a paginated list of all Twitter accounts.

GET https://yoursite.desk.com/api/v2/twitter_accounts

Retrieve a single Twitter account.

GET https://yoursite.desk.com/api/v2/twitter_accounts/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/twitter_accounts/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"handle": "desk_dev",
"name": "Desk.com Development",
"profile_image": "http://www.example.com/image.png",
"active": true,
"created_at": "2013-04-16T17:35:16Z",
"updated_at": "2013-05-16T17:35:16Z",
"_links": {
"self": {
"href": "/api/v2/twitter_accounts/1",
"class": "twitter_account"

}
}

}

Calls for Twitter Accounts
The following list shows all other calls for your Twitter accounts.

ExampleActions

POST
https://yoursite.desk.com/api/v2/twitter_accounts
/:id/tweets

Post a Tweet from a
Twitter account

328

Chapter 24 Desk.com API

ExampleActions

GET https://yoursite.desk.com/api/v2/twitter_accounts
/:id/tweets

Retrieve all Tweets for
a Twitter account

GET https://yoursite.desk.com/api/v2/twitter_accounts
/:twitter_account_id/tweets/:id

Retrieve a Tweet

See the Twitter accounts reference for details on each of these actions, including roles and fields.

Twitter Users
List, show, or create Twitter users.

Retrieve a paginated list of Twitter users.

GET https://yoursite.desk.com/api/v2/twitter_users

Retrieve a single Twitter user.

GET https://yoursite.desk.com/api/v2/twitter_users/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/twitter_users/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{

"handle": "desk_dev",
"image_url": "http://example.com/image.png",
"followers_count": "123",
"verified": false,
"created_at": "2014-05-20T19:18:09Z",
"updated_at": "2014-05-20T19:18:09Z",
"_links": {

329

Chapter 24 Desk.com API

http://dev.desk.com/API/twitter-accounts

"self": {
"href": "/api/v2/twitter_users/1",
"class": "twitter_user"

},
"customer": {

"href": "/api/v2/customers/1",
"class": "customer"

}
}

}

More Information
For more information on listing, showing, and creating Twitter users, visit
http://dev.desk.com/API/twitter-users/.

Users
Retrieve users or perform other actions, such as retrieving their preferences.

Retrieve a paginated list of all users.

GET https://yoursite.desk.com/api/v2/users

Retrieve a single user.

GET https://yoursite.desk.com/api/v2/users/:id

Example Curl Request
$ curl https://yoursite.desk.com/api/v2/users/:id \

-u email:password \
-H 'Accept: application/json'

Example Response
{
"name": "John Doe",
"public_name": "John Doe",
"email": "john@acme.com",
"level": "agent",

330

Chapter 24 Desk.com API

http://dev.desk.com/API/twitter-users/

"_links": {
"self": {
"href": "/api/v2/users/1",
"class": "user"

},
"preferences": {
"href": "/api/v2/users/1/preferences",
"class": "user_preference"

}
}

}

Calls for Users
The following list shows all other calls for your users.

ExampleAction

GET https://yoursite.desk.com/api/v2/users/:id
/preferences

Retrieve all preferences
for a given user

GET https://yoursite.desk.com/api/v2/users/:id
/preferences/:id

Retrieve a user’s
preference

PATCH https://yoursite.desk.com/api/v2/users
/:user_id/preferences/:id

Update a user’s
preference

See the Users reference for details on each of these actions, including roles and fields.

Resources

Use the following resources to get more information about the Desk.com API.

• Desk.com API Documentation: http://dev.desk.com/API/using-the-api/

• Desk.com Integration Guides: http://dev.desk.com/guides/

331

Chapter 24 Desk.com API

http://dev.desk.com/API/users
http://dev.desk.com/API/using-the-api/#general
http://dev.desk.com/guides/

CHAPTER 25 Live Agent API

Live Agent lets service organizations connect with customers or website visitors in real time through a
Web-based, text-only live chat. This guide provides several examples to customize chat windows and
other Live Agent components using the Deployment and Pre-Chat APIs.

With the Live Agent API, you can:

• Customize deployments with the Deployment API.

• Create pre-chat forms to gather information from customers before they begin a chat with an agent
with the Pre-Chat API.

Besides these APIs, you can customize the appearance of customer-facing chat windows and create
post-chat pages that appear to customers after a chat is complete using Visualforce pages and components.
Using Visualforce is not covered in this guide. See the Live Agent Developer’s Guide for more information.

You can also customize these and other Live Agent components through Salesforce settings. For more
information, see “Customize Your Live Agent Implementation” in the Salesforce Help.

Supported Salesforce Editions

EDITIONS

Live Agent is available in:
Performance Editions and
Developer Edition
organizations that were
created after June 14, 2012

Live Agent is available for an
additional cost in: Enterprise
and Unlimited Editions

If you’re an existing Salesforce customer and want to upgrade to any
of these editions, contact your account representative.

Prerequisites

Before you customize Live Agent, make sure:

• Live Agent is enabled in your organization.

• Your administrator has granted you a Live Agent feature license.
Although you can customize the product without a feature
license, having one will allow you to access and test your
customizations.

• You’ve created a Force.com site and uploaded images as static resources for your chat buttons and
windows. If you plan to customize Live Agent without using a Force.com site, skip this step.

333

http://www.salesforce.com/us/developer/docs/live_agent_dev/live_agent_dev_guide.pdf

API Versions

Different methods and parameters are available in different versions of Live Agent’s APIs. Before you begin
developing with the Deployment API or the Pre-Chat API, make sure you’re using the correct API version
number in your code.

Deployment API Versions
You can find out what version of the Deployment API your organization uses from the deployment code
that’s generated after you create a deployment.

Summer ’13 and earlier releases support version 28.0 of the Deployment API. The URL for API version 28.0
looks like this:
https://hostname.salesforceliveagent.com/content/g/deployment.js

Winter ’14 supports version 29.0 of the Deployment API. The URL for API version 29.0 contains the version
number:
https://hostname.salesforceliveagent.com/content/g/js/29.0/deployment.js

Note: To use new methods and parameters in your deployments, you must update the deployment
code on each of your Web pages to use the URL for version 29.0 of the Deployment API.

Pre-Chat Information API Versions
Winter ’14 supports version 29.0 of the Pre-Chat API. The URL for API version 29.0 contains the version
number:
https://hostname.salesforceliveagent.com/content/g/js/29.0/prechat.js

You can find your organization’s hostname by looking in the deployment code that’s generated after you
create a deployment.

Creating Deployments

Create a deployment to host Live Agent on your website. Each deployment includes a chat window, which
visitors use to chat with support agents.

Once you create a deployment, you can customize it using the Deployment API to meet your company’s
needs.

To create a deployment:

1. From Setup, click Customize > Live Agent > Deployments.

334

Chapter 25 Live Agent API

2. Click New.

3. Enter a name for the deployment. This name, or a version of it, automatically becomes the
Developer Name.

4. Enter a title for the chat window.

5. Select Allow Visitors to Save Transcripts to let visitors download a copy of
the chat session when it ends.

6. Select the site that you'll associate with the deployment.

7. In Chat Window Branding Image, select the graphic that will appear in the chat window.

8. In Mobile Chat Window Branding Image, select the graphic that visitors using mobile
devices will see in the chat window.

9. Click Save. Salesforce generates the deployment code.

10. Copy the deployment code and paste it on each Web page where you want to deploy Live Agent.
For best performance, paste the code right before the closing body tag.

Example: For more information on creating a deployment, see “Create Live Agent Deployments”
in the Salesforce online help.

Customize Deployments with the Deployment API

A deployment is a place on your company’s website that’s enabled for Live Agent. You can customize
deployments by using the Live Agent Deployment API.

A deployment consists of a few lines of JavaScript that you add to a Web page. Your organization can have
a single Live Agent deployment or multiple deployments. For example, if you have a single service center
that supports multiple websites, creating a separate deployment for each site enables you to present
multiple chat windows to your visitors. Each deployment includes a chat window, which visitors use to
chat with support agents.

The Deployment API is a JavaScript-based API that lets you customize your deployments to specify back-end
functionality.

Creating Deployments
Create a deployment to host Live Agent on your website. Each deployment includes a chat window, which
visitors use to chat with support agents.

Once you create a deployment, you can customize it using the Deployment API to meet your company’s
needs.

335

Chapter 25 Live Agent API

To create a deployment:

1. From Setup, click Customize > Live Agent > Deployments.

2. Click New.

3. Enter a name for the deployment. This name, or a version of it, automatically becomes the
Developer Name.

4. Enter a title for the chat window.

5. Select Allow Visitors to Save Transcripts to let visitors download a copy of
the chat session when it ends.

6. Select the site that you'll associate with the deployment.

7. In Chat Window Branding Image, select the graphic that will appear in the chat window.

8. In Mobile Chat Window Branding Image, select the graphic that visitors using mobile
devices will see in the chat window.

9. Click Save. Salesforce generates the deployment code.

10. Copy the deployment code and paste it on each Web page where you want to deploy Live Agent.
For best performance, paste the code right before the closing body tag.

Example: For more information on creating a deployment, see “Create Live Agent Deployments”
in the Salesforce online help.

Logging Deployment Activity with the Deployment API
Log the activity that occurs in a particular deployment using the Deployment API.

Use the following deployment methods to enable logging on a particular deployment. Logging lets you
store information about the activity that occurs within a customer’s Web browser as they chat with an
agent through a particular deployment. You can add these methods as an additional script within the
code that’s automatically generated when you create a deployment.

enableLogging

Use the enableLogging deployment method to enable logging on a particular deployment.

Usage
Enables logging for a particular deployment, allowing your Web browser’s JavaScript console to store
information about the activity that occurs within a deployment. Available in API versions 28.0 and later.

336

Chapter 25 Live Agent API

Syntax
liveagent.enableLogging();

Parameters
None

Customizing Your Chat Window with the Deployment API
Customize the dimensions of your customer-facing chat windows using the Deployment API.

Use the following deployment methods to customize the height and width of the chat window that
customers will see when they begin a chat with an agent. You can add either of these methods as additional
scripts within the code that’s automatically generated when you create a deployment.

setChatWindowHeight

Use the setChatWindowHeight method to customize the height of your chat window.

Usage
Sets the height in pixels of the chat window that appears to customers. Available in API versions 28.0 and
later.

Syntax
void setChatWindowHeight(Number height)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The height in pixels of your custom
chat window.

Numberheight

setChatWindowWidth

Use the setChatWindowWidth method to customize the width of your chat window.

337

Chapter 25 Live Agent API

Usage
Sets the width in pixels of the chat window that appears to customers. Available in API versions 28.0 and
later.

Syntax
void setChatWindowWidth(Number width)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The width in pixels of your custom
chat window.

Numberwidth

Launching a Chat Request with the Deployment API
Use the Deployment API to customize how chat requests are launched.

Use the following deployment methods to determine how to launch and route chats when a customer
clicks a chat button. You can add either of these methods as additional scripts within the code that’s
automatically generated when you create a deployment.

startChat

Use the startChat method to request a chat from a button in a new window.

Usage
Requests a chat from the provided button in a new window.

Optionally, you can route chats from a specific button directly to the agent with the userId you specify.
If the agent you specify is unavailable, you can specify whether to fall back to the button’s routing rules
(true) or not (false).

Syntax
void startChat(String buttonId, (optional) String userId, (optional)
Boolean fallback)

338

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to request a chat in a new window.

StringbuttonId

Available in API versions 29.0 and
later.

The Salesforce.com user ID of the
agent to whom to directly route
chats from the button.

String(Optional)
userId

Available in API versions 29.0 and
later.

Specifies whether to fall back to the
button’s routing rules (true) or not
(false) if the agent with the

Boolean(Optional)
fallback

specified sfdcUserId is
unavailable.

startChatWithWindow

Use the startChatWithWindow method to request a chat from a button using the name of a
window.

Usage
Requests a chat from the provided button using the provided window name. Available in API versions
28.0 and later.

Syntax
void startChatWithWindow(String buttonId, String windowName,
(optional) String userId, (optional) Boolean fallback)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to request a chat in a new window.

StringbuttonId

339

Chapter 25 Live Agent API

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The name of the window.StringwindowName

Available in API versions 29.0 and
later.

TheSalesforce user ID of the agent
to whom to directly route chats
from the button.

String(Optional)
userId

Available in API versions 29.0 and
later.

Specifies whether to fall back to the
button’s routing rules (true) or not
(false) if the agent with the

Boolean(Optional)
fallback

specified sfdcUserId is
unavailable.

Customizing Visitor Details with the Deployment API
Use the Deployment API to customize the visitor information of customers who request chats. This
information is visible to the agent before they begin their chat with the customer.

Use the following deployment methods to customize visitor information when customers request to chat
with an agent. You can add any of these methods as additional scripts within the code that’s automatically
generated when you create a deployment.

addCustomDetail

Use the addCustomDetail method to add custom details for each chat visitor.

Usage
Adds a new custom detail for the chat visitor in the Details chatlet in the Live Agent console. Available in
API versions 28.0 and later.

Syntax
addCustomDetail(String label, String value, (optional) Boolean
displayToAgent)

340

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The label for the custom
detail—for example, "Name".

Stringlabel

Available in API versions 28.0 and
later.

The value of the custom
detail—for example, "John
Doe".

Stringvalue

Available in API versions 29.0 and
later.

Specifies whether to display the
custom details that customers
provide in a pre-chat form to the
agent (true) or not (false).

Boolean(Optional)
displayToAgent

addCustomDetail.doKnowledgeSearch

Use the knowledgeSearch method to automatically search for Knowledge One articles based on
criteria in a pre-chat form.

Usage

Retrieves a custom detail value from a pre-chat form when a customer requests a chat with an agent. After
an agent accepts the chat request, this value is used as a search keyword to find articles in the Knowledge
One widget. The doKnowledgeSearch() method conducts a search by using the value parameter
in the addCustomDetail method. Available in API version 31.0 and later.

Syntax

liveagent.addCustomDetail(String label, String value, (optional)
Boolean displayToAgent).doKnowledgeSearch()

setName

Use the setName method to override the visitor name displayed in the Live Agent console or the
Salesforce console.

341

Chapter 25 Live Agent API

Usage
Overrides the visitor name displayed in the Live Agent console or the Salesforce console. Available in API
versions 28.0 and later.

Syntax
setName(String name)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The visitor name that appears in the
Live Agent console or the Salesforce
console.

Stringname

Creating Records Automatically with the Deployment API
Use the Deployment API to search for or create customer records automatically when an agent begins a
chat with a customer.

You can add any of these methods as additional scripts within the code that’s automatically generated
when you create a deployment.

findOrCreate

Use the findOrCreate method to find existing records or create new ones based on certain criteria.

Usage
Finds or creates a record of the specified type when an agent accepts a chat request.

Note: The findOrCreate method begins the API call that finds existing records or create new
records when an agent begins a chat with a customer. You must use this method before calling any
of the other findOrCreate sub-methods for finding or creating records with the Deployment
API.

Available in API versions 29.0 and later.

342

Chapter 25 Live Agent API

Syntax
liveagent.findOrCreate(String EntityName)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for or
create when an agent accepts a
chat with a customer—for example,
a contact record.

StringEntityName

findOrCreate.map

Use the findOrCreate.map method to search for or create records that contain specific customer
details.

Usage

Searches for or creates records that contain customer data specified by the addCustomDetail
Deployment API method. This method maps the value of the custom details to the fields on the specified
record in the Salesforce console.

You can call the findOrCreate.map method as many times as necessary to find the appropriate
records. Call the method once for every field and its corresponding custom detail value you want to search
for.

Available in API versions 29.0 and later.

Syntax

liveagent.findOrCreate(Object EntityName).map(String FieldName,
String DetailName, Boolean doFind, Boolean isExactMatch, Boolean
doCreate)

343

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The name of the field in the record
EntityNameto which to map the
corresponding custom detail
DetailName.

StringFieldName

Available in API versions 29.0 and
later.

The value of the custom detail to
map to the corresponding field
FieldName.

StringDetailName

Available in API versions 29.0 and
later.

Specifies whether to search for a
record that contains the custom
detail DetailName in the field

BooleandoFind

FieldName (true) or not
(false).

Available in API versions 29.0 and
later.

Specifies whether to search for a
record that contains the exact value
of the custom detail

BooleanisExactMatch

DetailName you specified in the
field FieldName (true) or not
(false).

Available in API versions 29.0 and
later.

Specifies whether to create a new
record with the custom detail
DetailName in the field

BooleandoCreate

FieldName if one isn’t found
(true) or not (false).

findOrCreate.saveToTranscript

Use the findOrCreate.saveToTranscript method to save the record you find or create to
the chat transcript associated with the chat.

Usage

Saves the record that you found or created using the findOrCreate and findOrCreate.map
Deployment API methods to the chat transcript associated with the chat.

344

Chapter 25 Live Agent API

Available in API versions 29.0 and later.

Syntax

liveagent.findOrCreate(String EntityName).saveToTranscript(String
TranscriptFieldName)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The name of the field on the chat
transcript record to which to save
the ID of the record you found or
created.

StringTranscriptFieldName

findOrCreate.showOnCreate

Use the findOrCreate.showOnCreate method to automatically open the record you create in
a subtab in the Salesforce console.

Usage

Opens the record you created using the findOrCreate and findOrCreate.map Deployment
API methods automatically in a subtab in the to the Salesforce console.

Available in API versions 29.0 and later.

Syntax

liveagent.findOrCreate(String EntityName).showOnCreate()

findOrCreate.linkToEntity

Use the findOrCreate.linkToEntity method to link the record you found or created to another
record type.

345

Chapter 25 Live Agent API

Usage

Links the record that you found or created using the findOrCreate and findOrCreate.map
Deployment API methods to another record of a different record type that you created using a separate
findOrCreate API call. For example, you can link a case record you found within your organization
to a contact record you create.

Note: You can only link records if the parent record is created with a findOrCreate API call.
You can’t link a child record to a record you found using the findOrCreate.linkToEntity
method.

Available in API versions 29.0 and later.

Syntax

liveagent.findOrCreate(String EntityName).linkToEntity(String
EntityName, String FieldName)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to which to link
the child record you found or
created.

StringEntityName

Available in API versions 29.0 and
later.

The name of the field in the record
EntityName to which to save
the ID of the child record you found
or created.

StringFieldName

Creating Records Deployment API Code Sample
Test and preview how automatically creating records can work with your Live Agent deployments using
this code sample.

The following code searches for and creates records when an agent begins a chat with a customer using
the following methods:

• findOrCreate

• findOrCreate.map

• findOrCreate.saveToTranscript

346

Chapter 25 Live Agent API

• findOrCreate.linkToEntity

• findOrCreate.showOnCreate

liveagent.addCustomDetail("First Name", "Ryan");
liveagent.addCustomDetail("Last Name", "Smith");
liveagent.addCustomDetail("Phone Number", "555-1212");
liveagent.addCustomDetail("Case Subject", "Problem with my iPhone");
liveagent.addCustomDetail("Case Status", "New", false);
liveagent.findOrCreate("Contact").map("FirstName", "First Name", true,
true, true).map("LastName", "Last Name", true, true, true).map("Phone",
"Phone Number", false,
false,true).saveToTranscript("contactId").showOnCreate().linkToEntity("Case",
"ContactId");
liveagent.findOrCreate("Case").map("Subject", "Case Subject", true,
false, true).map("Status", "Case Status", false, false,
true).showOnCreate();

Customizing Chat Buttons with the Deployment API
Customize the chat buttons that appear on your website using the Deployment API.

Use the following deployment methods to customize your chat buttons. You can add any of these methods
as additional scripts within the code that’s automatically generated when you create a deployment.

showWhenOnline

Use the showWhenOnline method to specify what customers see when a particular button is online.

Usage
Displays a particular element when the specified button is online. Available in API versions 28.0 and later.

Syntax
void showWhenOnline(String buttonId, Object element, (optional)
String userId)

347

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to display the specified element
object when agents that are

StringbuttonId

associated with the button are
available to chat.

Available in API versions 28.0 and
later.

The element to be displayed when
the specified button is online.

Objectelement

Available in API versions 29.0 and
later.

The ID of the agent to associate with
the button. The element object
is displayed when that agent is
available.

String(Optional)
userId

If you specify a button ID but not an agent ID in your parameters, the element will be displayed only if the
button is online.

If you specify an agent ID but not a button ID, the element will be displayed only if the agent is online. For
example, the syntax below tracks an agent’s online status and sets the button to online when that agent
is available; however, the button is set to offline if that agent isn’t available.

liveagent.showWhenOnline('005xx000001Sv1m',
document.getElementById('liveagent_button_toAgent_online')

If you specify a button ID and an agent ID, the element will be displayed if either the button or the agent
is online. For example, the following syntax tracks the status of an agent and a button and displays the
element if at least one is available.

liveagent.showWhenOnline('573xx0000000006',
document.getElementById('liveagent_button_online_573xx0000000006_USER1'),
'005xx000001Sv1m');

showWhenOffline

Use the showWhenOffline method to specify what customers see when a particular button is offline.

348

Chapter 25 Live Agent API

Usage
Displays a particular element when the specified button is offline. Available in API versions 28.0 and later.

Syntax
void showWhenOffline(String buttonId, Object element, (optional)
String userId)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to display the specified element
object when no agents are available
to chat.

StringbuttonId

Available in API versions 28.0 and
later.

The element to display when the
specified button is offline.

Objectelement

Available in API versions 29.0 and
later.

The ID of the agent to associate with
the button. The element object
is displayed when that agent is
unavailable.

String(Optional)
userId

If you specify a button ID but not an agent ID in your parameters, the element will be displayed only if the
button is offline.

If you specify an agent ID but not a button ID, the element will be displayed only if the agent is offline. For
example, the following syntax below tracks an agent’s online status and sets the button to offline when
that agent is unavailable.

liveagent.showWhenOffline('005xx000001Sv1m',
document.getElementById('liveagent_button_toAgent_offline')

349

Chapter 25 Live Agent API

If you specify a button ID and an agent ID, the element will display if neither the button or the agent is
available. For example, the syntax below tracks the status of an agent and a button and displays the element
if neither one is available.

liveagent.showWhenOffline('573xx0000000006',
document.getElementById('liveagent_button_offline_573xx0000000006_USER1'),
'005xx000001Sv1m');

addButtonEventHandler

Use the addButtonEventHandler method to define a chat button’s behavior when certain events
occur.

Usage
Defines the behavior for a chat button when the following events occur:

• An agent is available to chat.

• No agents are available to chat.

Available in API versions 28.0 and later.

Syntax
void addButtonEventHandler(String buttonId, Function callback)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to define the behavior when certain
events occur.

StringbuttonId

Available in API versions 28.0 and
later.

The function to call when a
particular event occurs. You must
specify the button’s behavior for

functioncallback

each of the required event types on
page 351.

350

Chapter 25 Live Agent API

Event Types
Incorporate the following event types into your callback function to customize the behavior of your
button when certain events occur. You must specify the button’s behavior for each of the following event
types.

DescriptionSyntaxEvent TypeFunction

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_AVAILABLEBUTTON_AVAILABLEcallback

the button
when the
criteria are
met for
customers to
be able to
chat with an
agent, such as
when an
agent with the
correct skills is
available to
chat.

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_UNAVAILABLEBUTTON_UNAVAILABLE

the button
when no
agents are
available to
chat.

Customizing Automated Chat Invitations with the
Deployment API
Use the Deployment API to customize automated chat invitations that appear to customers on your
website.

Use the following deployment methods to customize your automated chat invitations.

351

Chapter 25 Live Agent API

rejectChat

Use the rejectChat method to reject and retract an invitation that’s been sent to a customer.

Usage
Rejects an invitation and causes it to be retracted.

Available in API versions 28.0 and later.

Syntax
void rejectChat(String buttonId)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button for which
to reject chats.

StringbuttonId

addButtonEventHandler

Use the addButtonEventHandler method to define an automated invitation’s behavior when
certain events occur.

Usage
Defines the behavior for an invitation when the following events occur:

• The criteria are met for the invitation to appear on-screen.

• The criteria are not met for the invitation to appear on-screen.

• A customer accepts an invitation to chat.

• A customer rejects an invitation to chat.

Available in API versions 28.0 and later.

Syntax
void addButtonEventHandler(String buttonId, Function callback)

352

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The ID of the chat button associated
with the automated invitation for
which to define the behavior when
certain events occur.

StringbuttonId

Available in API versions 28.0 and
later.

The function to call when a
particular event occurs. You must
specify the invitation’s behavior for

functioncallback

each of the required event types on
page 353.

Event Types
Incorporate the following event types into your callback function to customize the behavior of your
invitation when certain events occur. You must specify the invitation’s behavior for each of the following
event types.

DescriptionSyntaxEvent TypeFunction

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_AVAILABLEBUTTON_AVAILABLEcallback

the
automated
invitation
when the
criteria are
met for the
invitation to
appear
on-screen.

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_UNAVAILABLEBUTTON_UNAVAILABLE

the
automated
invitation

353

Chapter 25 Live Agent API

DescriptionSyntaxEvent TypeFunction

when no
agents are
available to
chat.

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_ACCEPTEDBUTTON_ACCEPTED

the
automated
invitation
when a
customer
accepts the
invitation.

Specifies the
behavior of

liveagent.BUTTON_EVENT.BUTTON_REJECTEDBUTTON_REJECTED

the
automated
invitation
when a
customer
rejects the
invitation.

setCustomVariable

Use the setCustomVariable method to create customized criteria in your sending rules that must
be met in order for your automated invitation to be sent to customers.

Usage
Creates customized criteria in your sending rules that must be met in order for your automated invitation
to be sent to customers. Specifies the comparison values for custom variables used in criteria for your
sending rules. Available in API versions 28.0 and later.

354

Chapter 25 Live Agent API

Syntax
void setCustomVariable(String variableName, Object value)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 28.0 and
later.

The name of the customized criteria
for your custom sending rule.

StringvariableName

Available in API versions 28.0 and
later.

The comparison value for your
custom sending rule.

Objectvalue

Automated Chat Invitation Code Sample
Test and preview how automated chat invitations can work on your website using this code sample.

The following code is for an automated chat invitation that uses the addButtonEventHandler()
method to display a customized invitation on a website. This invitation allows customers to start a chat
with an agent when an agent with the correct skills is available to chat.

<apex:page>
<div id="liveagent_invite_button_573x0000000001O" style="display: none;

position: fixed; border: 2px solid darkblue; border-radius: 5px;
background-color: lightblue; height: 100px; width: 200px;">

<div style="cursor: pointer; padding: 5px; right: 0px;
position: absolute; color: darkred; font-weight: bold;"
onclick="liveagent.rejectChat('573x0000000001O')">X</div>

<div style="cursor: pointer; top: 42px; left: 65px; position: absolute;

font-weight: bold; font-size: 16px;"
onclick="liveagent.startChat('573x0000000001O')">Start Chat</div>

</div>

<script type='text/javascript'
src='https://c.la1s1.saleforceliveagent.com/content/g/deployment.js'>

</script>
<script type='text/javascript'>
function buttonCallback(e) {

355

Chapter 25 Live Agent API

if (e == liveagent.BUTTON_EVENT.BUTTON_AVAILABLE) {

document.getElementById('liveagent_invite_button_573x0000000001O').style.display

= '';

document.getElementById('liveagent_invite_button_573x0000000001O').style.left
=

'300px';

document.getElementById('liveagent_invite_button_573x0000000001O').style.top
=

'200px';
}
if (e == liveagent.BUTTON_EVENT.BUTTON_UNAVAILABLE) {

document.getElementById('liveagent_invite_button_573x0000000001O').style.display
=

'none';
}
if (e == liveagent.BUTTON_EVENT.BUTTON_ACCEPTED) {

document.getElementById('liveagent_invite_button_573x0000000001O').style.display
=

'none';
}
if (e == liveagent.BUTTON_EVENT.BUTTON_REJECTED) {

document.getElementById('liveagent_invite_button_573x0000000001O').style.display
=

'none';
}

}
liveagent.addButtonEventHandler('573x0000000001O', buttonCallback);
liveagent.init('https://d.la1s1.salesforceliveagent.com/chat',
'572x00000000001',
'00Dx00000001gEH');

</script>
</apex:page>

The code above results in an invitation that looks like this:

356

Chapter 25 Live Agent API

Deployment API Code Sample
Test and preview how the Deployment API can help you customize your deployments.

The following code sample shows a chat window that uses the following Deployment API methods:

• startChat

• showWhenOnline

• showWhenOffline

• addCustomDetail

• setName

• map

• setChatWindowWidth

• setChatWindowHeight

• doKnowledgeSearch

<apex:page >
<h1>Welcome!</h1>
Thank you for contacting customer support.

<!-- START Button code -->
<img id="liveagent_button_online_573D000000000Ar" style="display:

none;
border: 0px none; cursor: pointer"

onclick="liveagent.startChat('573D000000000Ar')"

src="https://na1.salesforce.com/resource/1319587702000/Chat_Online"

357

Chapter 25 Live Agent API

/>

<img id="liveagent_button_offline_573D000000000Ar" style="display:
none;

border: 0px none;

"src="https://na1.salesforce.com/resource/1319587748000/Chat_Offline"
/>

<script type="text/javascript">
if (!window._laq) { window._laq = []; }

window._laq.push(function(){liveagent.showWhenOnline('573D000000000Ar',

document.getElementById('liveagent_button_online_573D000000000Ar'));
liveagent.showWhenOffline('573D000000000Ar',

document.getElementById('liveagent_button_offline_573D000000000Ar'));

});</script>
<!-- END Button code -->

<!-- Deployment code -->
<script type='text/javascript'

src='https://c.la1s1.saleforceliveagent.com/content/g/deployment.js'></script>

<script type='text/javascript'>
// An auto query that searches contacts whose email field exactly

matches "john@acme.com"
liveagent.addCustomDetail('Contact E-mail', 'john@acme.com');
liveagent.findOrCreate('Contact').map('Email','Contact

E-mail',true,true,false);
// Conducts a Knowledge One search on the provided value; in this

case,
// searches Knowledge One articles for the term "Problems with my

iPhone"
liveagent.addCustomDetail('Case Subject', 'Problem with my

iPhone').doKnowledgeSearch();
// An auto query that searches contacts whose first name field

matches "John Doe"
liveagent.addCustomDetail('Contact Name', 'John Doe');
liveagent.findOrCreate('Contact').map('FirstName','Contact

358

Chapter 25 Live Agent API

Name',true,false,false);
// Saves the custom detail to a custom field on LiveChatTranscript

at the end of a chat
liveagent.addCustomDetail('Company',

'Acme').saveToTranscript('Company__c');
// Overrides the display name of the visitor in the agent console

when engaged in a chat
liveagent.setName('John Doe');
// Sets the width of the chat window to 500px
liveagent.setChatWindowWidth(500);
// Sets the height of the chat window to 500px
liveagent.setChatWindowHeight(500);
liveagent.init('https://d.la1s1.salesforceliveagent.com/chat',

'572D0000000002R',
'00DD0000000JXbY');
</script>
</apex:page>

This deployment code results in a page that looks like this:

Accessing Chat Details with the Pre-Chat API

Use the Pre-Chat API to access customer details from the Deployment API and incorporate them into a
pre-chat form.

preChatInit
Use the preChatInit method to access the custom details that have been passed into the chat
through the addCustomDetail Deployment API method.

Usage
Extracts the custom details that have been passed into the chat through the addCustomDetail
Deployment API method and integrates them into a pre-chat form.

Available in API versions 29.0 and later.

359

Chapter 25 Live Agent API

Syntax
liveagent.details.preChatInit(String chatUrl, function
detailCallback, (optional) String chatFormName)

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The URL of the chat to retrieve
custom details from.

StringchatUrl

Available in API versions 29.0 and
later.

Name of the JavaScript function
to call upon completion of the
method.

StringdetailCallback

Available in API versions 29.0 and
later.

The name of the HTML form tag
for the pre-chat form to which
to incorporate the custom
details.

String(Optional)
chatFormName

Responses

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

An object containing all of the
custom details that were included
in the pre-chat form using the
preChatInit method.

Objectdetails

The details object has a structure similar to the following example object:

{
"geoLocation":{

"countryCode":"US",
"countryName":"United States",
"longitude":-122.4294,
"organization":"SALESFORCE.COM",
"latitude":37.764496,

360

Chapter 25 Live Agent API

"region":"CA",
"city":"San Francisco"

},
"customDetails":[

{
"label":"Email",
"value":"sonic@sega.com",
"transcriptFields":["Email__c"],
"entityMaps":[
{

"fieldName":"Email",
"isAutoQueryable":true,
"entityName":"Contact",
"isExactMatchable":true,
"isFastFillable":false

}]
},
{

"label":"Name",
"value":"Sonic H.",
"transcriptFields":[],
"entityMaps":[]

}
],
"visitorId":"251a5956-bcbc-433d-b822-a87c062e681c"

}

detailCallback

The detailCallback method specifies the behavior that should occur after the preChatInit
method returns the details object.

Available VersionsDescriptionParametersSyntax

Available in API versions 29.0 and
later.

Specifies the actions to occur after
the custom details are retrieved
using the preChatInit
method.

details
function
myCallBack(details)
{

//
Customer
specific code

361

Chapter 25 Live Agent API

Available VersionsDescriptionParametersSyntax

}

Create Records Automatically with the Pre-Chat API

Use the Pre-Chat API to search for or create customer records automatically when a customer completes
a pre-chat form.

findOrCreate.map
Use the findOrCreate.map method to search for or create records that contain specific customer
details.

Usage
Searches for or creates records that contain the customer data that’s specified in the pre-chat form that
the customer completes. This method maps the value of the custom details to the fields on the specified
record in the Salesforce console.

You can call the findOrCreate.map method as many times as necessary to find the appropriate
records. You can list multiple fields and their corresponding details to map the detail values to the
appropriate fields within the record.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name= "liveagent.prechat.findorcreate.map:
String entityName" value= "String fieldName, String detailName;" />

362

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for or
create when an agent accepts a chat
with a customer, for example, a
contact record

StringentityName

Available in API versions 29.0 and
later.

The name of the field in the record
EntityName to which to map
the corresponding custom detail
value

StringfieldName

Available in API versions 29.0 and
later.

The value of the custom detail to
map to the corresponding field
fieldName

StringdetailName

findOrCreate.map.doFind

Use the findOrCreate.map.doFind method to specify which fields to use to search for existing
customer records when a customer completes a pre-chat form.

Usage
Specifies which fields in your findOrCreate.map method to use to search for an existing record.
You can search for one or more fields within records.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.map.doFind: String entityName" value=
"String fieldName, Boolean find;" />

363

Chapter 25 Live Agent API

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for or
create when an agent accepts a chat
with a customer—for example, a
contact record.

StringentityName

Available in API versions 29.0 and
later.

The name of the field to search for
in existing records.

StringfieldName

Available in API versions 29.0 and
later.

Specifies whether to search for
existing records that contain the
field fieldName (true) or not
(false).

Booleanfind

Note: You only need to
specify fields for which
find equals true. The
method will not search for
records containing fields for
which find equals
false.

findOrCreate.map.isExactMatch

Use the findOrCreate.map.isExactMatch method to specify whether a field value must exactly
match the field value in an existing record when you conduct a search with the findOrCreate.map
method.

Usage
Specifies which fields in your findOrCreate.map method require an exact field value match when
you search for existing records. You can specify this for one or more fields within records.

Available in API versions 29.0 and later.

364

Chapter 25 Live Agent API

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.map.isExactMatch: String entityName"
value= "String fieldName, Boolean exactMatch;" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for or
create when an agent accepts a chat
with a customer—for example, a
contact record.

StringentityName

Available in API versions 29.0 and
later.

The name of the field to search for
in existing records.

StringfieldName

Available in API versions 29.0 and
later.

Specifies whether to search for
existing records that contain an
exact match to the field

Booleanfind

fieldName (true) or not
(false).

Note: You only need to
specify fields for which
exactMatch equals
true. The method will not
search for records containing
fields for which
exactMatch equals
false.

findOrCreate.map.doCreate

Use the findOrCreate.map.doCreate method to specify which fields in findOrCreate.map
method to use to create a new record if an existing record isn’t found.

365

Chapter 25 Live Agent API

Usage
Specifies which fields in your findOrCreate.map method to use to create a new record if an existing
record isn’t found. You can specify one or more fields for creating new records.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.map.doCreate: String entityName"
value= "String fieldName, Boolean create;" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to create when
an agent accepts a chat with a
customer and an existing record

StringentityName

isn’t found—for example, a contact
record.

Available in API versions 29.0 and
later.

The name of the field to include in
new records.

StringfieldName

Available in API versions 29.0 and
later.

Specifies whether to create a new
record that contains the field
fieldName (true) or not
(false).

Booleancreate

Note: You only need to
specify fields for which
create equals true. The
method will not create
records containing fields for
which create equals
false.

366

Chapter 25 Live Agent API

findOrCreate.saveToTranscript
Use the findOrCreate.saveToTranscript method to save the record you find or create to
the chat transcript associated with the chat.

Usage
Saves the record that you found or created using the findOrCreate.map.doCreate or
findOrCreate.map.doFind Pre-Chat API methods to the chat transcript associated with the chat
when the chat ends.

Available in API versions 29.0 and later.

Syntax
<input type="hidden" name=
"liveagent.prechat.findorcreate.saveToTranscript: String entityName"
value= "String transcriptFieldName" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for
or create when an agent accepts
a chat with a customer—for
example, a contact record.

StringentityName

Available in API versions 29.0 and
later.

The name of the field on the chat
transcript record to which to save
the ID of the record you found or
created.

StringtranscriptFieldName

findOrCreate.showOnCreate
Use the findOrCreate.showOnCreate method to automatically open the record you create in
a subtab in the Salesforce console.

367

Chapter 25 Live Agent API

Usage
Opens the record you created using the findOrCreate.map.doCreate and
findOrCreate.map.doFind Pre-Chat API methods automatically in a subtab in the to the Salesforce
console.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.showOnCreate: String entityName"
value= "Boolean show" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to search for or
create when an agent accepts a chat
with a customer—for example, a
contact record.

StringentityName

Available in API versions 29.0 and
later.

Specifies whether to display the
record you created in a subtab in
the Salesforce console (true) or
not (false).

Booleanshow

findOrCreate.linkToEntity
Use the findOrCreate.linkToEntity method to link the record you found or created to another
record type.

Usage
Links the record that you found or created using the findOrCreate.map.doFind and
findOrCreate.map.doCreate Pre-Chat API methods to another record of a different record type
that you created using a separate findOrCreate.map API call. For example, you can link a case
record you found within your organization to a contact record you create.

368

Chapter 25 Live Agent API

The findOrCreate.linkToEntity method can’t be used to populate fields on records that you
create by using the findOrCreate API call. Instead, use the findOrCreate.map method to
update field values on records.

Note: You can only link records if the parent record is created with a findOrCreate API call.
You can’t link a child record to a record you found using the findOrCreate.linkToEntity
method.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.linkToEntity: String entityName"
value= "String parentEntityName, String fieldName" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The type of record to which to link
the child record you found or
created.

StringentityName

Available in API versions 29.0 and
later.

The type of parent record to link to
the child record you found or
created.

StringparentEntityName

Available in API versions 29.0 and
later.

The name of the field in the record
parentEntityName to which
to save the ID of the child record
you found or created.

StringfieldName

findOrCreate.displayToAgent
Use the findOrCreate.displayToAgent method to specify which pre-chat details will be
displayed to an agent in the Details tab when they receive a chat request.

369

Chapter 25 Live Agent API

Usage
Specifies which pre-chat details to display to an agent in the Details tab in Salesforce console when the
agent receives a chat request.

Available in API versions 29.0 and later.

Syntax
<input type= "hidden" name=
"liveagent.prechat.findorcreate.displayToAgent: String detailName"
value= "Boolean display" />

Parameters

Available VersionsDescriptionTypeName

Available in API versions 29.0 and
later.

The name of the detail to display to
an agent when they receive a chat
request.

StringdetailName

Available in API versions 29.0 and
later.

Specifies whether to display the
customer detail to an agent in the
Details tab in the Salesforce console
(true) or not (false).

Booleandisplay

Note: You only need to
specify details for which
display equals false.
The method will not display
details for which display
equals false. If you don’t
specify the value of the
display parameter, the
default value is set to true.

370

Chapter 25 Live Agent API

Creating Records Pre-Chat API Code Sample
Test and preview how to automatically create records when a customer completes a pre-chat form using
this code sample.

The following code searches for and creates records when a customer completes a pre-chat form using
the following methods:

• findOrCreate.map

• findOrCreate.map.doFind

• findOrCreate.map.isExactMatch

• findOrCreate.map.doCreate

• findOrCreate.saveToTranscript

• findOrCreate.showOnCreate

• findOrCreate.linkToEntity

<form method="post" action="#">
<label>First Name: </label> <input type='text'
name='liveagent.prechat:ContactFirstName' />

<label>Last Name: </label> <input type='text'
name='liveagent.prechat:ContactLastName' />

<label>Subject: </label> <input type='text'
name='liveagent.prechat:CaseSubject' />

<input type='hidden" name="liveagent.prechat:CaseStatus" value="New"
/>

<input type="hidden" name="liveagent.prechat.findorcreate.map:Contact"
value="FirstName,ContactFirstName;LastName,ContactLastName" />
<input type="hidden"
name="liveagent.prechat.findorcreate.map.doFind:Contact"
value="FirstName,true;LastName,true" />
<input type="hidden"
name="liveagent.prechat.findorcreate.map.isExactMatch:Contact"
value="FirstName,true;LastName,true" />
<input type="hidden"
name="liveagent.prechat.findorcreate.map.doCreate:Contact"
value="FirstName,true;LastName,true" />
<input type="hidden"
name="liveagent.prechat.findorcreate.saveToTranscript:Contact"
value="ContactId" />
<input type="hidden"
name="liveagent.prechat.findorcreate.showOnCreate:Contact" value="true"
/>

371

Chapter 25 Live Agent API

<input type="hidden"
name="liveagent.prechat.findorcreate.linkToEntity:Contact"
value="Case,ContactId" />
<input type="hidden" name="liveagent.prechat.findorcreate.map:Case"
value="Subject,CaseSubject;Status,CaseStatus" />
<input type="hidden"
name="liveagent.prechat.findorcreate.map.doCreate:Case"
value="Subject,true;Status,true" />
<input type="submit" value="Submit">
</form>

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on the Live Agent API.

• Live Agent Developer’s Guide

• Live Agent REST API Developer’s Guide

372

Chapter 25 Live Agent API

CHAPTER 26 Salesforce Console Integration Toolkit

The Salesforce console is designed for users in fast-paced environments who need to find, update, and
create records in Salesforce quickly.

The Salesforce Console Integration Toolkit provides you with programmatic access to the Salesforce console
so that you can extend it to meet your business needs. With the Salesforce Console Integration Toolkit,
you can open and close tabs in the console to streamline a business process. For example, the toolkit lets
you integrate third-party systems with the console, opening up an external application in the same window,
in a tab.

The Salesforce Console Integration Toolkit is a browser-based JavaScript API. It uses browsers as clients to
display pages as tabs in the console.

The Salesforce Console Integration Toolkit matches the API version for any given release. For example, if
the current version of SOAP API is 28.0, then there's also a version 28.0 of the Salesforce Console Integration
Toolkit.

This guide provides a high-level overview on the Salesforce Console Integration Toolkit and the available
API methods. For more information, see the Salesforce Console Integration Toolkit Developer’s Guide.

Supported Browsers

Salesforce Console Integration Toolkit supports the following browsers:

• Mozilla® Firefox® version 3.5 and later

• Google Chrome™, most recent stable version

• Microsoft® Internet Explorer® version 7 and later

URLs to Salesforce console pages might not work when pasted into browsers or selected from bookmarks.
For known issues, see “Salesforce Console Limitations” in the Salesforce Help.

Supported Salesforce Editions

Salesforce Console Integration Toolkit is available with these Salesforce Editions, with the Service Cloud:

• Developer Edition

• Enterprise Edition

373

http://www.salesforce.com/us/developer/docs/api_console/api_console.pdf

• Unlimited Edition

• Performance Edition

If you’re an existing Salesforce customer and want to upgrade to any of these editions, contact your account
representative.

Quick Start

Get started with the Salesforce Console Integration Toolkit by first connecting to the Toolkit using JavaScript.

Follow these steps to get started.

1. Connect to the toolkit.

2. Make asynchronous calls with the Toolkit.

3. Use Force.com Canvas to integrate the Salesforce Console with external applications that require
authentication methods.

Use the Salesforce Console Integration Toolkit to do the following in the Salesforce Console:

• Open a new primary tab or subtab that displays a specified URL

• Set the title of a primary tab or a subtab

• Return the ID of a primary tab or subtab

• Close a specified primary tab or subtab

Connecting to the Toolkit
The first portion of any JavaScript code that uses the Salesforce Console Integration Toolkit must make
the toolkit available to the JavaScript code. The syntax for this is different depending on whether you are
embedding JavaScript in a Visualforce page, or a third-party domain.

• For Visualforce pages or any source other than a custom onclick JavaScript button, specify a
<script> tag that points to the toolkit file:

<apex:page>
<script src="/support/console/34.0/integration.js"

type="text/javascript"></script>
...

</apex:page>

For Visualforce, a relative path is sufficient to include integration.js, and is recommended.

374

Chapter 26 Salesforce Console Integration Toolkit

• For a third-party domain:

<script
src="https://c.na1.visual.force.com/support/console/34.0/integration.js"
type="text/javascript"></script>

For third-party domains, it is necessary to specify an absolute URL to integration.js to use the
toolkit. The default instance at which you can access the toolkit library is:
c.na1.visual.force.com/support/console/34.0/integration.js. We
recommend that you use the default instance when the organization’s instance cannot be determined.

The version of the Salesforce Console Integration Toolkit is in the URL.

Asynchronous Calls with the Salesforce Console Integration
Toolkit
The Salesforce Console Integration Toolkit lets you issue asynchronous calls. Asynchronous calls allow the
client-side process to continue instead of waiting for a callback from the server. To issue an asynchronous
call, you must include an additional parameter with the API call, which is referred to as a callback function.
Once the result is ready, the server invokes the callback method with the result.

Asynchronous syntax:

method('arg1','arg2', ..., callback_method);

For example:

//Open a new primary tab with the Salesforce home page in it
sforce.console.openPrimaryTab(null, 'http://www.salesforce.com',

false, 'Salesforce', callback);

Working with Force.com Canvas
To integrate the Salesforce Console with external applications that require authentication methods, such
as signed requests or OAuth 2.0 protocols, Salesforce recommends you use Force.com Canvas.

Force.com Canvas and the Salesforce Console Integration Toolkit are similar—they’re a set of tools and
JavaScript APIs that developers can use to add third-party systems to Salesforce. However, one of the
benefits of Force.com Canvas, is the ability to choose authentication methods. For more information, see
the Force.com Canvas Developer’s Guide.

Note: For a canvas app to appear in a console, you must add it to the console as a custom console
component. See Add Console Components to Apps.

375

Chapter 26 Salesforce Console Integration Toolkit

http://www.salesforce.com/us/developer/docs/platform_connect/canvas_framework.pdf
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm

When developing a canvas app, and you want to include functionality from the Salesforce Console
Integration Toolkit, do the following:

1. Include the console integration toolkit API in index.jsp.

2. If your console has a whitelist for domains, add the domain of your canvas app to the whitelist.
See “Whitelist Domains for a Salesforce Console” in the Salesforce Help.

3. Call Sfdc.canvas.client.signedrequest() to store the signed request needed by
the console integration toolkit API. For example, if the Force.com Canvas method of authentication
is a signed request, do the following:

Sfdc.canvas.client.signedrequest('<%=signedRequest%>')

If the Force.com Canvas method of authentication is OAuth, do the following in the callback
function used to get the context as shown in “Getting Context in Your Canvas App” in the Force.com
Canvas Developer’s Guide:

Sfdc.canvas.client.signedrequest(msg)

Consider the following when working with the Salesforce Console Integration Toolkit and canvas apps:

• The console integration toolkit API script depends on the signed request and should be added after
the call to Sfdc.canvas.client.signedrequest() has executed. We recommend that
you load the scripts dynamically.

• To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the
following:

// Get signedRequest
var signedRequest = Sfdc.canvas.client.signedrequest();
var parsedRequest = JSON.parse(signedRequest);
// get the entity Id that is associated with this canvas sidebar
component.
var entityId = parsedRequest.context.environment.parameters.entityId;

• To retrieve the entityId for OAuth, do the following:

var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg.payload, see “Getting Context in Your Canvas App” in
the Force.com Canvas Developer’s Guide.

376

Chapter 26 Salesforce Console Integration Toolkit

Best Practices
Salesforce recommends you adhere to a few best practices as you use the Salesforce Console Integration
Toolkit.

• Since many of the methods in the Salesforce Console Integration Toolkit are asynchronous and return
their results using a callback method, we recommend that you refer to the documentation for each
method to understand the information for each response.

• Errors generated by the Salesforce Console Integration Toolkit are typically emitted in a way that doesn't
halt JavaScript processing. Therefore, we recommend you use a tool such as Firebug for Firefox to
monitor the JavaScript console and to help you debug your code.

• To display Visualforce pages properly in the Salesforce Console, we recommend you:

– Accpet the default setting showHeader="true" and set sidebar="false" on the
apex:page tag.

– Set Behavior on custom buttons and links that include methods from the toolkit to display in
an existing window without a sidebar or header. For more information, see Defining Custom
Buttons and Links” in the Salesforce online help.

• When using Firefox, we recommend that you don't call closeTab() on a tab with an active alert
box because the browser may not load properly.

• Duplicate tabs might open when users initiate methods with invalid URLs. We recommend you check
URLs for validity before you include them in methods.

• To prevent External Page from displaying as a tab name, we recommend you specify the
tabLabel argument on methods such as openPrimaryTab() and openSubtab().

• For information on how you can customize, extend, or integrate the sidebars of the Salesforce console
using Visualforce, we recommend you see “Console Components” in the Salesforce online help.

• To enable the toolkit for third-party domains, you must add the domains to the whitelist of the Salesforce
console. See “Whitelist Domains for a Salesforce Console” in the Salesforce online help.

• When working with the Salesforce Console Integration Toolkit, we recommend that you keep in mind
that it doesn’t support nested iframes.

Sample Visualforce Page Using the Salesforce Console
Integration Toolkit
This example shows how to change the Salesforce console user interface using the Salesforce Console
Integration Toolkit.

1. Create a Visualforce page. See the Visualforce Developer's Guide.

377

Chapter 26 Salesforce Console Integration Toolkit

https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=ss
http://www.salesforce.com/us/developer/docs/pages/index_Left.htm

2. Cut and paste the following sample code into your Visualforce page.

This code demonstrates various functions of the Salesforce Console Integration Toolkit:

<apex:page standardController="Case">

<apex:includeScript
value="/support/console/20.0/integration.js"/>

<script type="text/javascript">
function openPrimaryTab() {

sforce.console.openPrimaryTab(undefined,
'http://www.salesforce.com', true, 'salesforce');

}

//The callback function that openSubtab will call once
it's got the ID for its primary tab

var callOpenSubtab=function callOpenSubtab(result) {
sforce.console.openSubtab(result.id,

'http://www.yahoo.com', true, 'yahoo');
};

function openSubtab() {

sforce.console.getEnclosingPrimaryTabId(callOpenSubtab);
}

//Sets the title of the current tab to "SFDC"
function setTitle() {

sforce.console.setTabTitle('SFDC');
}

//The callback function that closeTab will call once it's
got the ID for its tab

var callCloseTab= function callCloseTab(result) {
sforce.console.closeTab(result.id);

}

function closeTab() {
sforce.console.getEnclosingTabId(callCloseTab);

}
</script>

Open A
Primary Tab

378

Chapter 26 Salesforce Console Integration Toolkit

<p/>Open A
Subtab

<p/>Set Title
to SFDC

<p/>Close This
Tab

</apex:page>

Note: This example is set to run by clicking a custom link on a case. For more information, see
“Defining Custom Buttons and Links” in the Salesforce online help.

After you create the above Visualforce page and add it as a custom link on cases, this page displays after
you navigate to a case and click the link:

Output of Sample Visualforce Page

Methods

Use these methods to customize your Salesforce Console experience.

This guide provides an overview of the methods available with the Salesforce Console Integration Toolkit.
See the Salesforce Console Integration Toolkit Developer’s Guide for more information on the calls and
responses.

Methods are available for the following elements:

• Primary Tabs and subtabs

• Computer-Telephony Integration (CTI)

• Application-Level Custom Console Components

379

Chapter 26 Salesforce Console Integration Toolkit

http://www.salesforce.com/us/developer/docs/api_console/api_console.pdf

• Push Notifications

• Live Agent

Methods for Primary Tabs and Subtabs
A Salesforce console displays Salesforce pages as primary tabs or subtabs. A primary tab displays the main
item to work on, such as an account. A subtab displays related items, such as an account’s contacts or
opportunities.

Methods for Computer-Telephony Integration (CTI)
Salesforce Call Center seamlessly integrates Salesforce with Computer-Telephony Integration systems.
Whether developers create a CTI system with Open CTI or the CTI Toolkit, console users access telephony
features through a SoftPhone, which is a call-control tool that appears in the footer of a console. For more
information, see “Salesforce Open CTI Overview” and “Call Center Overview” in the Salesforce Help.

Methods for Application-Level Custom Console
Components
Custom console components let you customize, extend, or integrate the footer, sidebars, highlights panels,
and interaction logs of a Salesforce console using Visualforce, canvas apps, lookup fields, or related lists.
Administrators can add components to either:

• Page layouts to display content on specific pages

• Salesforce console apps to display content across all pages and tabs

For more information, see “Console Components” in the Salesforce Help.

Methods for Push Notifications
Push notifications are visual indicators on lists and detail pages in a console that show when a record or
field has changed during a user’s session. For example, if two support agents are working on the same
case, and one agent changes the Priority, a push notification appears to the other agent so he or she
spots the change and doesn’t duplicate the effort.

When administrators set up a Salesforce console, they choose when push notifications display, and which
objects and fields trigger push notifications. Developers can use push notification methods to customize
push notifications beyond the default visual indicators supplied by Salesforce. For example, developers
can use the methods below to create personalized notifications about objects accessible to specific console

380

Chapter 26 Salesforce Console Integration Toolkit

users, thereby eliminating the need for email notifications. For more information, see “Configure Push
Notifications for a Salesforce Console” in the Salesforce Help.

Consider the following when using push notification methods:

• Push notification listener response is only available for the objects and fields selected to trigger push
notifications for a console.

• When a Visualforce page includes a listener added by the addPushNotificationListener()
method, the page receives notifications. The listener receives notifications when there is an update
by any user to the objects selected for triggering console push notifications and the current user has
access to the modified record. This functionality is slightly different from push notifications set up in
the Salesforce user interface in that:

– Listeners receive update notifications for changes made by all users.

– Listeners receive notifications when an object’s fields are updated or created, even if those fields
aren’t selected to trigger push notifications; and the notifications don’t include details about what
changed. For example, if Status on the Case object is set to trigger a push notification, but
Priority on the Case object changes, a listener receives a notification that the case changed
without specifying details.

– Listeners don’t obey the Choose How Lists Refresh and Choose How Detail
Pages Refresh push notifications settings in a Salesforce console.

– The only way to stop receiving notifications is to remove listeners using the
removePushNotificationListener() method.

Methods for Live Agent
Live Agent lets you connect with customers or website visitors in real time through Web-based chat. For
more information, see “Add Live Agent to the Salesforce Console” in the Salesforce Help.

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Salesforce Console Integration Toolkit.

• Salesforce Console Integration Toolkit Developer’s Guide

• “Salesforce Console” in the Salesforce Help

381

Chapter 26 Salesforce Console Integration Toolkit

CHAPTER 27 Open CTI

Open CTI helps advanced administrators and developers build and integrate third-party computer-telephony
integration (CTI) systems with Salesforce so that Salesforce users can use a SoftPhone without installing
CTI adapters on their machines.

Salesforce CRM Call Center seamlessly integrates Salesforce with third-party computer-telephony integration
(CTI) systems. Before the introduction of Open CTI, Salesforce users could only use the features of a CTI
system after they installed a CTI adapter program on their machines. Yet such programs often included
desktop software that required maintenance and didn’t offer the benefits of cloud architecture. Open CTI
lets developers:

• Build CTI systems that integrate with Salesforce without the use of CTI adapters.

• Create customizable SoftPhones (call-control tools) that function as fully integrated parts of Salesforce
and the Salesforce console.

• Provide users with CTI systems that are browser and platform agnostic, for example, CTI for Microsoft®

Internet Explorer®, Mozilla® Firefox®, Apple® Safari®, or Google Chrome™ on Mac, Linux, or Windows
machines.

Open CTI is a browser-based JavaScript API. It uses browsers as clients to display SoftPhones. It matches
the API version for any given release. For example, if the current version of SOAP API is 28.0, then there's
also a version 28.0 of Open CTI.

This guide provides a high-level overview on how to use Open CTI and the available API methods. For
more information, see the Open CTI Developer’s Guide.

Supported Browsers

Open CTI supports the following minimum browser requirements:

• Mozilla® Firefox® 3.6

• Google Chrome™ 7

• Microsoft® Internet Explorer® 8

• Apple® Safari® 4

383

http://www.salesforce.com/us/developer/docs/api_cti/api_cti.pdf

Supported Salesforce Editions

Open CTI is available with these Salesforce Editions:

• Developer Edition

• Professional Edition

• Enterprise Edition

• Unlimited Edition

• Performance Edition

If you’re an existing Salesforce customer and want to upgrade to any of these editions, contact your account
representative.

Quick Start

Get started with the Open CTI by first connecting to Open CTI using JavaScript.

Follow these steps to get started.

1. Connect to the toolkit.

2. Make asynchronous calls with Open CTI.

3. Use Force.com Canvas to integrate the Salesforce Console with external applications that require
authentication methods.

Use the Open CTI to do the following in Salesforce:

• Set the height or width of a SoftPhone

• Enable or disable click-to-dial

• Return a call center definition file’s settings

• Determine if a user is in the Salesforce console

• Show or hide a SoftPhone in the Salesforce console

• Return information about a page

• Execute an Apex method from an Apex class that’s exposed in Salesforce

• Save or update an object in Salesforce

• Search keywords in Salesforce and screen pop any matching records as defined in a SoftPhone layout

384

Chapter 27 Open CTI

Connecting to Open CTI
The first portion of any JavaScript code that uses the Open CTI must make the toolkit available to the
JavaScript code. The syntax for this is different depending on whether you are embedding JavaScript in a
Visualforce page, or a third-party domain.

• For Visualforce pages or any source other than a custom onclick JavaScript button, specify a
<script> tag that points to the Open CTI file:

<apex:page>
<script src="/support/api/34.0/interaction.js"

type="text/javascript"></script>
...

</apex:page>

For Visualforce, a relative path is sufficient to include integration.js, and is recommended.

• For a third-party domain:

<script
src="https://c.na1.visual.force.com/support/api/34.0/interaction.js"
type="text/javascript"></script>

For third-party domains, it is necessary to specify an absolute URL to interaction.js to use the
toolkit. The default instance at which you can access the toolkit library is:
https://c.na1.visual.force.com/support/api/34.0/interaction.js.
We recommend that you use the default instance when the organization’s instance cannot be
determined.

The version of Open CTI is in the URL.

Asynchronous Calls with Open CTI
Open CTI lets you issue asynchronous calls. Asynchronous calls allow the client-side process to continue
instead of waiting for a callback from the server. To issue an asynchronous call, you must include an
additional parameter with the API call, referred to as a callback function. Once the result is ready, the server
invokes the callback method with the result.

Asynchronous syntax:

method('arg1','arg2', ..., callback_method);

385

Chapter 27 Open CTI

For example:

//Set SoftPhone height
sforce.interaction.cti.setSoftphoneHeight(300, callback);

Note: The call result depends on the execution context. For example, calling
setSoftphoneWidth() in the standard Salesforce application has no effect, but calling
setSoftphoneWidth() in the Salesforce console resizes the width of the SoftPhone.

Working with Force.com Canvas
To integrate Open CTI with external applications that require authentication methods, such as signed
requests or OAuth 2.0 protocols, Salesforce recommends you use Force.com Canvas.

Force.com Canvas and Open CTI are similar—they’re a set of tools and JavaScript APIs that developers can
use to add third-party systems to Salesforce. However, one of the benefits of Force.com Canvas, is the
ability to choose authentication methods. For more information, see the Force.com Canvas Developer’s
Guide.

Note: For a canvas app to appear in a Salesforce console, you must add it to the console as a custom
console component. See Add Console Components to Apps.

When developing a canvas app, and you want to include functionality from Open CTI, do the following:

1. Include the Open CTI API in index.jsp.

2. Call Sfdc.canvas.client.signedrequest() to store the signed request needed by
the console integration toolkit API. For example, if the Force.com Canvas method of authentication
is a signed request, do the following:

Sfdc.canvas.client.signedrequest('<%=signedRequest%>')

If the Force.com Canvas method of authentication is OAuth, do the following in the callback
function used to get the context as shown in “Getting Context in Your Canvas App” in the Force.com
Canvas Developer’s Guide:

Sfdc.canvas.client.signedrequest(msg)

Consider the following when working with Open CTI and canvas apps:

• The Open CTI API script depends on the signed request and should be added after the call to
Sfdc.canvas.client.signedrequest() has executed. We recommend that you load
the scripts dynamically.

386

Chapter 27 Open CTI

http://www.salesforce.com/us/developer/docs/platform_connect/canvas_framework.pdf
http://www.salesforce.com/us/developer/docs/platform_connect/canvas_framework.pdf
https://help.salesforce.com/HTViewHelpDoc?id=console2_components_create_app.htm

• To retrieve the entity ID of the record that is associated with the canvas sidebar component, do the
following:

// Get signedRequest
var signedRequest = Sfdc.canvas.client.signedrequest();
var parsedRequest = JSON.parse(signedRequest);
// get the entity Id that is associated with this canvas sidebar
component.
var entityId = parsedRequest.context.environment.parameters.entityId;

• To retrieve the entityId for OAuth, do the following:

var entityId = msg.payload.environment.parameters.entityId;

To see an example on how to retrieve msg.payload, see “Getting Context in Your Canvas App” in
the Force.com Canvas Developer’s Guide.

Best Practices
• Since many of the methods in Open CTI are asynchronous and return their results using a callback

method, Salesforce recommends that you refer to the documentation for each method to understand
the information for each response.

• Errors generated by Open CTI are typically emitted in a way that doesn't halt JavaScript processing.
Therefore, Salesforce recommends you use a tool such as Firebug for Firefox to monitor the JavaScript
console and to help you debug your code.

• For information on customizing, extending, or integrating the sidebars of the Salesforce console using
Visualforce, see “Console Components” in the Salesforce online help.

Call Center Definition Files

A call center definition file specifies a set of fields and values that are used to define a call center in Salesforce
for a particular SoftPhone. Salesforce uses call center definition files in order to support the integration of
Salesforce CRM Call Center with multiple CTI system vendors.

A call center in Salesforce CRM Call Center must have a call center definition file that works specifically
with a SoftPhone. If you build a custom SoftPhone with Open CTI, you must write a call center definition
file to support it. The first instance of a call center for a particular SoftPhone must be defined by importing
the adapter's call center definition file into Salesforce. Subsequent call centers can be created by cloning
the original call center that was created with the import.

387

Chapter 27 Open CTI

https://addons.mozilla.org/en-US/firefox/addon/firebug/

If your organization modifies a SoftPhone or builds a new one, you must customize the SoftPhone’s call
center definition file so that it includes any additional call center information that is required. For example,
if you are building a SoftPhone for a system that supports a backup server, your call center definition file
should include fields for the backup server's IP address and port number. SoftPhones for systems that do
not make use of a backup server do not need those fields in their associated call center definition files.

Use a text or XML editor to define a call center definition file according to the guidelines in the following
topics.

Note: For more information on setting up Salesforce CRM Call Center or importing and cloning call
definition files, see “Setting Up Salesforce CRM Call Center” and “Creating a Call Center” in the
Salesforce online help.

Call Center Definition File XML Format
A call center definition file consists of three XML elements: callCenter, section, and item. The
following list provides details about the properties and attributes of each element:

callCenter
This element represents a definition for a single call center phone system. At least one
<callCenter> element must be included in every call center definition file. A <callCenter>
element consists of one or more <section> elements.

section
This element represents a grouping of related data fields, such as server information or dialing prefixes.
When a call center is edited in Salesforce, fields are organized by the section to which they are assigned.
A <section> element belongs to a single <callCenter> element, and consists of one or
more <item> elements.

Attributes:

DescriptionRequired?TypeName

The order in which the section should appear when
the call center is edited in Salesforce. For example,

RequiredPositive
Integer

sortOrder

a section with sortOrder="1" comes just
before a section with sortOrder="2".

The values for sortOrder must be non-negative
integers, and no numbers can be skipped within a
single call center definition. For example, if there
are three section elements in a call center definition
file, one <section> element must have

388

Chapter 27 Open CTI

DescriptionRequired?TypeName

sortOrder="0", one <section> element
must have sortOrder="1", and one
<section> element must have
sortOrder="2".

The internal name of the section as defined in the
Salesforce database. You can use this value to refer

RequiredStringname

to the section when writing custom adapter or
SoftPhone code.

Names must be composed of only alphanumeric
characters with no white space or other
punctuation. They are limited to 40 characters each.

Names beginning with req are reserved for
required Salesforce sections only (see “Required Call
Center Elements and Attributes” in the Salesforce
Help). Other reserved words that cannot be used
for the name attribute include label,
sortOrder, internalNameLabel, and
displayNameLabel.

The name of the section when viewed in Salesforce.
Labels can be composed of any string of UTF-8
characters. They are limited to 1000 characters each.

OptionalStringlabel

item
This element represents a single field in a call center definition, such as the IP address of a primary
server or the dialing prefix for international calls. When call centers are edited in Salesforce, each
<item> element is listed under the section to which it belongs. You can have multiple <item>
elements in a <section> element.

Attributes:

DescriptionRequired?TypeName

The order in which the item should appear when
the call center is edited in Salesforce. For example,

RequiredPositive
Integer

sortOrder

389

Chapter 27 Open CTI

DescriptionRequired?TypeName

an item with sortOrder="1" comes just before
an item with sortOrder="2".

The values for sortOrder must be non-negative
integers, and no numbers can be skipped within a
single call center definition. For example, if there
are three item elements in a call center definition
file, one <item> element must have
sortOrder="0", one <item> element must
have sortOrder="1", and one <item>
element must have sortOrder="2".

The internal name of the item as defined in the
Salesforce database. You can use this value to refer

RequiredStringname

to the item when writing custom adapter or
SoftPhone code.

Names must be composed of only alphanumeric
characters with no white space or other
punctuation. They are limited to 40 characters each.

Names beginning with req are reserved for
required Salesforce sections only (see “Required Call
Center Elements and Attributes” in the Salesforce
Help). Other reserved words that cannot be used
for the name attribute include label,
sortOrder, internalNameLabel, and
displayNameLabel.

The name of the item when viewed in Salesforce.
Labels can be composed of any string of UTF-8
characters. They are limited to 1,000 characters each.

OptionalStringlabel

Required Call Center Elements and Attributes
There must be one <section> that includes <item> elements with the following names in every
call definition file:

390

Chapter 27 Open CTI

Description<item> Name

Represents the unique identifier for the call center in the database. It must have
a sortOrder value of 0, and its value must be specified in the call center

reqInternalName

definition. A value for reqInternalName must be composed of no more
than 40 alphanumeric characters with no white space or other punctuation. It
must start with an alphabetic character and must be unique from the
reqInternalName of all other call centers defined in your organization.

Represents the name of the call center as displayed in Salesforce. It must have
a sortOrder value of 1. A value for reqDisplayName has a maximum
length of 1,000 UTF-8 characters.

reqDisplayName

Represents the location of where the CTI adapter or SoftPhone is hosted. For
example, http://localhost:11000. Note that relative URLs are allowed

reqAdapterUrl

for Visualforce pages, for example, : /apex/softphone. Also, if you add
Force.com Canvas applications to Open CTI, those apps can trump
reqAdapterUrl when specified.

Represents that the call center is using Open CTI (true) or not (false).reqUseApi

Represents the height of the SoftPhone in pixels as displayed in Salesforce.reqSoftphoneHeight

Represents the width of the SoftPhone in pixels as displayed in Salesforce.reqSoftphoneWidth

Represents the namespace associated with any Force.com Canvas applications
added to your call center. Required if you add canvas apps to Open CTI.

reqCanvasNamespace

Represents the API name associated with any Force.com Canvas applications
added to your call center. Required if you add canvas apps to Open CTI.

reqCanvasApiName

You can add additional <item> elements to this section if needed.

Optional Call Center Elements and Attributes
In addition to the required elements for a call definition file, you can add optional elements to configure
a SoftPhone.

391

Chapter 27 Open CTI

Description<item> Name

Represents the location that hosts the secondary SoftPhone. The
standby SoftPhone is used after the timeout period for the primary

reqStandbyUrl

SoftPhone has elapsed and the
notifyInitializationComplete() method hasn’t been
called within the required timeout period. When you specify a
standby URL, you must also specify the reqTimeout field.

Represents the time in milliseconds after which the standby URL is
used to host the SoftPhone. Before the timeout period has elapsed,

reqTimeout

the SoftPhone displays a loading icon indicating that the SoftPhone
is initializing. When you specify a required timeout, you must also
specify the reqStandbyUrl field.

Represents the width of the SoftPhone in pixels as displayed in
Salesforce.

reqSoftphoneWidth

Sample Call Center Definition File
The following XML code makes up a sample call center definition file:

<!--
All sections and items whose name value begins with "req" are
required in a valid call center definition file. The sortOrder
and label attributes can be changed for all required sections
and items except reqGeneralInfo, reqInternalName, and
reqDisplayName, in which only the label attribute can be altered.

Note that the value for the reqInternalName item is limited to
40 alphanumeric characters and must start with an alphabetic
character. reqInternalName must be unique for all call centers
that you define.

-->
<callCenter>

<section sortOrder="0" name="reqGeneralInfo" label="General
Information">

<item sortOrder="0" name="reqInternalName"
label="InternalNameAAA">DemoAdapter</item>

<item sortOrder="1" name="reqDisplayName" label="Display Name">Demo
Call Center Adapter</item>

392

Chapter 27 Open CTI

<item sortOrder="2" name="reqAdapterUrl" label="CTI Adapter
URL">https://c.force.com/softphone</item>

<item sortOrder="3" name="reqUseApi" label="Use CTI API">true</item>

<item sortOrder="4" name="reqSoftphoneHeight" label="Softphone
Height">300</item>

<item sortOrder="5" name="reqSoftphoneWidth" label="Softphone
Width">500</item>

<item sortOrder="6" name="reqCanvasNamespace" label="Canvas
Namespace">mm</item>

<item sortOrder="7" name="reqCanvasApiName" label="Canvas API
Name">Hello_World</item>

</section>
<section sortOrder="1" name="reqDialingOptions" label="Dialing

Options">
<item sortOrder="0" name="reqOutsidePrefix" label="Outside

Prefix">9</item>
<item sortOrder="1" name="reqLongDistPrefix" label="Long Distance

Prefix">1</item>
<item sortOrder="2" name="reqInternationalPrefix"

label="International Prefix">01</item>
</section>

</callCenter>

Methods

Use these methods to customize your CTI experience in Salesforce.

This guide provides an overview of the methods available with Open CTI. See the Open CTI Developer’s
Guide for more information on the calls and responses.

Methods are available for:

• Salesforce Application Interaction

• Computer-Telephony Integration (CTI)

Methods for Salesforce Application Interaction
Open CTI lets your CTI system interact with the Salesforce application.

You can use the following methods to set interactions between a CTI system and Salesforce, or between
elements on a Case Feed page:

393

Chapter 27 Open CTI

http://www.salesforce.com/us/developer/docs/api_cti/api_cti.pdf
http://www.salesforce.com/us/developer/docs/api_cti/api_cti.pdf

CTI Methods

DescriptionMethod

Returns information about the current page as a JSON string.getPageInfo()

Indicates if the SoftPhone is in the Salesforce console. For more
information, see “Salesforce Console” in the Salesforce online help.

isInConsole()

Returns true if the SoftPhone is visible or false if the SoftPhone
is hidden.

isVisible()

Notifies Salesforce that the SoftPhone initialization is complete and
that Salesforce should not switch to a standby URL. While the
SoftPhone initializes, a loading icon displays in the SoftPhone area.

notifyInitializationComplete()

Registers a function to call when the browser focus changes. In the
Salesforce console, the browser focus changes when a user navigates
between primary tabs or the navigation tab.

onFocus()

Returns true if page refresh is invoked, false otherwise. When
this method is called within the Salesforce console, it refreshes the
current active tab.

refreshPage()

Returns true if the related list with the given listName is
refreshed, false otherwise. When this method is called within

refreshRelatedList()

the Salesforce console, only the related list with the given list name
in the currently focused view will be refreshed.

Reloads the frame that contains the page making the call.reloadFrame()

Executes an Apex method from an Apex class that’s exposed in
Salesforce.

runApex()

Saves or updates an object in Salesforce.saveLog()

Pops to a target URL, which must be relative.screenPop()

Searches objects specified in the SoftPhone layout for a given string.
Returns search results and the relative URL to be screen popped.

searchAndGetScreenPopUrl()

Note that this method does not perform an actual screen pop. This
method respects screen pop settings defined in the SoftPhone
layout. For more information, see “Designing a Custom SoftPhone
Layout” in the Salesforce online help.

394

Chapter 27 Open CTI

CTI Methods

Searches objects specified in the SoftPhone layout for a given string.
Returns search results and screen pops any matching records. This

searchAndScreenPop()

method respects screen pop settings defined in the SoftPhone
layout.

Shows or hides the SoftPhone in the Salesforce console. For more
information, see “Salesforce Console” in the Salesforce online help.

setVisible()

Case Feed Methods

Registers a function to call when case fields, the case feed, or
case-related list data has changed on a Case Feed page.

onObjectUpdate()

Notifies the Case Feed page that case fields, the case feed, or
case-related list data has changed, and forces an update of these
on the page.

refreshObject()

Methods for Computer-Telephony Integration (CTI)
Open CTI lets you integrate your CTI system with Salesforce. For more information about CTI, see “Call
Center Overview” in the Salesforce online help.

Use the following methods to integrate a CTI system with Salesforce:

DescriptionMethod

Disables click-to-dial.disableClickToDial()

Enables click-to-dial.enableClickToDial()

Returns the call center settings in the call center definition file as a
JSON string.

getCallCenterSettings()

Returns the list of phone numbers from the call center’s directory.getDirectoryNumbers()

Returns the SoftPhone layout as a JSON string. For more information
on SoftPhone layouts, see “Designing a Custom SoftPhone Layout” in
the Salesforce online help.

getSoftphoneLayout()

Registers a function to call when a user clicks an enabled phone
number.

onClickToDial()

395

Chapter 27 Open CTI

DescriptionMethod

Sets the SoftPhone height in pixels.setSoftphoneHeight()

Sets the SoftPhone width in pixels for the Salesforce console. For more
information, see “Salesforce Console” in the Salesforce online help.

setSoftphoneWidth()

Resources

Search on the Salesforce Developer’s Network at http://developer.salesforce.com/docs
for the following resources on Open CTI.

• Open CTI Developer’s Guide

• “Salesforce Open CTI Overview” in the Salesforce Help

• “SoftPhone Overview” in the Salesforce Help

• “Call Center Overview” in the Salesforce Help

396

Chapter 27 Open CTI

INDEX

$Component global variable 170
$User global variable 154

A
About this book 1
action attribute 175
actionFunction tag 170
actionSupport tag 170
Add batch 105
Apex

Best practices 138
Resources 149
Supported editions and platforms 129
When to use 129

Asynchronous calls 375, 385
Attributes

for 170
id 170
rerender 170
status 170

Authentication
Additional resources 59
OAuth 40, 49, 53, 56
OAuth endpoints 40
Remote access applications 39

B
Batches

adding to a job 105
checking status 107
retrieving results 108

Best practices
controllers 175
improving performance 168
static resources 175

Browsers supported 120

Bulk API
Best practices 109
Resources 111
Supported editions and platforms 101
When to use 101

Business use cases 6

C
Call center definition files

required elements and attributes 390
Sample 392
XML format 388

Callouts
execution limits 139

Canvas
Best practices 183
Resources 185
Supported editions and platforms 179
When to use 179

Chatter API
Best practices 198
Resources 199
Supported editions and platforms 193
When to use 193

Checking batch status 107
Class

step by step walkthrough 130–131, 133–134,
136

Client
timeout 119

Clients for Streaming API 119
Close job 107
Cloud Development, Apex 138
Code sample

setting up organization 102

397

Collections
size limits 139

commandButton tag 159
commandLink tag 159
Communities

OAuth 197
company

purchase 125
Component reference

using 156
compound ID 170
Connecting to Open CTI 385
Connecting to the Toolkit 374
contact

purchase 125
Controllers

about 154
best practices 175
sharing rules 175

Create batch 105
Create job 104
cURL 67, 74, 103
Custom console components 377, 380
Custom help 175

D
Dashboard components, Visualforce

basic 166
Data.com API

introduction 123
Match API

125
introduction 125
Search API

124
introduction 124

Debugging Streaming API 120
Dependent picklists

adding 163

Desk.com
supported browsers 287
supported editions 287

Desk.com API
articles 297, 299
authentication 288
brands 300
cases 301–302
companies 306–307
custom fields 308
customers 309–310
ETags 311
Facebook Accounts 311
Facebook Feeds 311
Facebook Users 312
filters 312
getting started 288
groups 313–314
inbound mailboxes 314
insights 315
integration URLs 316–317
jobs 318
labels 319–320
macros 321–322
outbound mailboxes 322
requesting data 290, 293
resources 331
rules 323, 325
sample response 290, 293
services 297
site settings 324
topics 326–327
Twitter accounts 327–328
Twitter users 329
users 330–331

detail tag 157
DML operations

execution limits 139
DOM ID 170

398

Index

E
Events

monitoring 121
ExactTarget

AMPscript 223
build app 213
data extensions 223
introducing 33–34
quick start 205, 207–208
resources 37, 229
using the API directly 221

Execution governors
understanding 139

F
for attribute 170
Force.com

resources 18
Force.com APIs 17
Force.com canvas 375
Force.com Canvas 386
form tag 159, 161
Forms

accessibility 161
creating 159, 161
field label 161
input field 161
label 161

G
Getting started sample 101
Global variables

$Component 170
$User 154

Governors
execution 139

Guidelines
Compression in responses 111

H
Heap size

execution limits 139
Hello World example

creating a page 152
displaying field values 154
understanding 130–131, 133–134, 136

Help, custom 175
Heroku

best practices for consuming Salesforce1 APIs
30

introducing 19
key features 21
quick start 25, 31

HTTP requests 101, 103
HTTPS 120

I
id attribute 170
Improving performance 168
Input components 159, 161
inputCheckbox tag 159, 161
inputField tag 159, 161, 170
inputHidden tag 159
inputSecret tag 159, 161
inputText tag 159, 161
inputTextarea tag 159, 161
integration.js 374
interaction.js 385

J
JavaScript

using DOM ID 170
Jobs

closing 107
creating 104

JSON 67

399

Index

L
Library, component

See Component reference 156
Limits

code execution 139
Live Agent

supported editions 333
Live Agent API

resources 372
Lock contention 109
Login 103
Loops

execution limits 139

M
match

DUNSRight 125
social profile 126

Message order 121
Metadata API

Best practices 97
Resources 99
Supported editions and platforms 83
When to use 83

Methods
app-level custom console components 380
application interaction 393
call center 380
computer-telephony integration (CTI) 380,

395
custom console components 380
Live Agent 381
primary tabs 380
push notifications 380
Salesforce interaction 393
subtabs 380

Mobile SDK
Resources 203
Supported editions and platforms 201

Mobile SDK (continued)
When to use 201

O
OAuth

Additional resources 59
authentication 195
Refresh token 56
User-agent OAuth flow 49
Username-password OAuth flow 53
Web server OAuth flow 40

Open CTI
getting started 384
resources 396
supported browsers 383
supported editions 384

Ordering
notification messages 121

Organization 68, 194
outputLabel tag 170

P
Page editor 153
page tag 153, 175
pageBlock tag 156
Pardot

supported browsers 265
supported editions 265

Pardot API
authentication 266
emails 283–284
field mapping 270
getting started 266
lists 281
opportunities 274
prospect accounts 281
prospects 270
requests 267
resources 285
users 278

400

Index

Pardot API (continued)
visitor activities 277
visitors 276
visits 280

Prerequisites 84
purchase companies 125
purchase contacts 125
Purchasing Data.com Records

introduction 126
Push notifications

execution limits 139

Q
Queries

execution limits 139
Quick start

create the app 181
creating a page 152
cURL 102
displaying field values 154
Generate WSDLs 85
Import WSDLs 85
introduction 180
Java sample 86
prerequisites 180
Prerequisites 84
set the app location 182
setting up organization 102
setting up your client 102
specifying a controller 154
using workbench 114

Quick Start
create an object 115
creating a push topic 116
prerequisites 114
subscribe to a channel 117
testing the PushTopic 118

quickstart
prerequisites 67

Quickstart
access token 68, 194
Developer Edition 68, 194
OAuth 68, 194
prerequisites 194

Quickstart tutorial
understanding 130

R
Radian6

supported browsers 231
supported editions 231

Radian6 API
authenticate a user 258
authentication 232
blog 255, 258
calling a method 234–235
data 249, 254
getting started 232
insights 245
lookup 260, 263
posts 238, 240, 243
resources 264
services 238
topics 245, 248
user 243
users 241
XML response 234–235

Redirecting to a static resource 175
Reference, component

See Component reference 156
rerender attribute 170
Response compression 111
REST API

Best practices 81
Quick start 67
Resources 82
Supported editions and platforms 67
When to use 67

401

Index

REST resources
Describe Global Resource 74
Discovery Resource 74
PATCH 74
Query 74
SObject Basic Information 74
SObject Describe 74
SObject Row 74
Versions 74

Retrieving batch results 108

S
Salesforce Console Integration Toolkit

getting started 374
methods 379, 393
resources 381
supported browsers 373
supported editions 373

Salesforce1 7–9, 11, 13–15
Salesforce1 Platform

features 3
overview 3

Salesforce1 Reporting REST API
Best practices 190
Resources 191
Supported editions and platforms 189
When to use 189

Sample code 86
Sample for quick start 101
Sample page 377
selectCheckboxes tag 161
selectList tag 161
selectRadio tag 161
Sharing rules 175
SOAP 103
SOAP API

Best practices 62
Resources 66
Supported editions and platforms 61
When to use 61

SOQL
Resources 128
Supported editions and platforms 127
When to use 127

SOQL queries
execution limits 139

SOSL queries
execution limits 139

Statements
execution limits 139

Static resources
redirecting to 175

status attribute 170
Streaming API

Best practices 119
client 119
Resources 122
Supported editions and platforms 113
When to use 113

T
Tags

actionFunction 170
actionSupport 170
commandButton 159
commandLink 159
detail 157
form 159, 161
inputCheckbox 159, 161
inputField 159, 161, 170
inputHidden 159
inputSecret 159, 161
inputText 159, 161
inputTextarea 159, 161
outputLabel 170
page 153, 175
pageBlock 156
selectCheckboxes 161
selectList 161
selectRadio 161

402

Index

Timeouts 119
Tooling API

Resources 188
Supported editions and platforms 187
When to use 187

Trigger
step by step walkthrough 130–131, 133–134,

136
Troubleshooting

performance issues 168
Tutorial 130

U
URI

base URI 67, 74

V
Variables, global

See Global variables 154
Visualforce

Best practices 168
dashboard components, basic 166
Quick start 152
Resources 177
Supported editions and platforms 151
When to use 151

W
with sharing 175
WSC 85
WSDL 103
WSDL integration 85

403

Index

	Introduction
	Introducing the Salesforce1 Platform
	Features of Salesforce1
	Key Business Use Cases
	Customize Salesforce Apps and Make Them Mobile
	Orchestrate Targeted Multi-Channel Marketing Campaigns
	Create Interactions Between Customer- and Employee-Facing Apps
	Let Employees Access Corporate Data from Anywhere
	Analyze Real-Time Data from Connected Devices
	Create Mobile Apps that Drive Employee Productivity
	Evolve Identity and Data Security Beyond the Perimeter

	Overview of Force.com
	Resources

	Overview of Heroku
	Key Features of Heroku
	Heroku Quick Start
	Best Practices for Consuming Salesforce1 APIs from Heroku
	Resources

	Overview of ExactTarget
	Customer Touchpoints for Developers
	Resources

	Force.com
	Authentication
	Defining Connected Apps
	Understanding OAuth Endpoints
	Understanding the Web Server OAuth Authentication Flow
	Understanding the User-Agent OAuth Authentication Flow
	Understanding the Username-Password OAuth Authentication Flow
	Understanding the OAuth Refresh Token Process
	Finding Additional Resources

	SOAP API
	Quick Start
	Best Practices
	Resources

	REST API
	Quick Start
	Prerequisites
	Step One: Obtain a Salesforce Developer Edition Organization
	Step Two: Set Up Authorization
	Step Three: Send HTTP Requests with cURL
	Step Four: Walk Through the Sample Code

	Best Practices
	Resources

	Metadata API
	Quick Start
	Prerequisites
	Step 1: Generate or Obtain the Web Service WSDLs for Your Organization
	Step 2: Import the WSDL Files Into Your Development Platform
	Step 3: Walk through the Java Sample Code

	Best Practices
	Resources

	Bulk API
	Quick Start
	Setting Up a Salesforce Developer Edition Organization
	Setting Up Your Client Application
	Sending HTTP Requests with cURL
	Step 1: Logging In Using the SOAP API
	Step 2: Creating a Job
	Step 3: Adding a Batch to the Job
	Step 4: Closing the Job
	Step 5: Checking Batch Status
	Step 6: Retrieving Batch Results

	Best Practices
	General Guidelines for Data Loads
	Using Compression for Responses

	Resources

	Streaming API
	Quick Start Using Workbench
	Prerequisites
	Step 1: Create an Object
	Step 2: Create a PushTopic
	Step 3: Subscribe to the PushTopic Channel
	Step 4: Test the PushTopic Channel

	Best Practices
	Clients and Timeouts
	Clients and Cookies for Streaming API
	Supported Browsers
	HTTPS Recommended
	Debugging Streaming API Applications
	Monitoring Events Usage
	Notification Message Order

	Resources

	Data.com API
	Data.com Search API
	Data.com Match API
	Data.com Purchase API
	Data.com DUNSRight Match API
	Data.com Social Profile Match API
	Purchasing Data.com Records

	SOQL and SOSL
	Resources

	Apex
	Apex Quick Start
	Writing Your First Apex Class and Trigger
	Creating a Custom Object
	Adding an Apex Class
	Adding an Apex Trigger
	Adding a Test Class
	Deploying Components to Production

	Best Practices
	Developing Code in the Cloud
	Writing Tests
	Execution Governors and Limits

	Resources

	Visualforce
	Quick Start
	Creating Your First Page
	Displaying Field Values with Visualforce
	Using the Visualforce Component Library
	Using Input Components in a Page
	Adding and Customizing Input Field Labels
	Adding Dependent Fields to a Page
	Creating Visualforce Dashboard Components

	Best Practices
	Best Practices for Improving Visualforce Performance
	Best Practices for Accessing Component IDs
	Best Practices for Static Resources
	Best Practices for Controllers and Controller Extensions

	Resources

	Force.com Canvas
	Quick Start
	Prerequisites
	Create the App
	Set the App Location

	Best Practices
	Resources

	Tooling API
	Resources

	Salesforce1 Reporting REST API
	Best Practices
	Resources

	Collaboration
	Chatter REST API
	Chatter REST API Quick Start
	Prerequisites
	Step One: Obtain a Salesforce Developer Edition Organization
	Step Two: Set Up Authorization
	Step Three: Connect to Chatter REST API Using OAuth
	Connecting to Salesforce Communities

	Best Practices
	Resources

	Mobile
	Salesforce Mobile SDK
	Resources

	Marketing Cloud
	ExactTarget API
	Using Fuel to Send Email
	Fuel SDKs
	App Center
	Building the App
	Using the API Directly
	Using Data Extensions and AMPscript for Advanced Personalization
	Resources

	Radian6 API
	Supported Browsers
	Supported Salesforce Editions
	Quick Start
	Step One: Authenticate with the API
	Step Two: Issue a Call to a Method
	Step Three: Fetch Data

	Using the Services
	Post Service
	Resources for Post Service

	User Service
	Resources for User Service

	Insight Service
	Resources for Insight Service

	Topic Service
	Resources for Topic Service

	Data Service
	Resources for Data Service

	Blog Service
	Resources for Blog Service

	Authentication Service
	Lookup Service
	Resources for Lookup Service

	Resources

	Pardot API
	Supported Browsers
	Supported Salesforce Editions
	Quick Start
	Step One: Authenticate with the API
	Step Two: Issue Requests Using the Pardot API

	Using the API
	Using Prospects
	Using Opportunities
	Using Visitors
	Using Visitor Activities
	Using Users
	Using Visits
	Using Lists
	Using Prospect Accounts
	Reading Emails
	Sending One to One Emails
	Sending List Emails

	Resources

	Service Cloud
	Desk.com API
	Supported Browsers
	Supported Salesforce Editions
	Quick Start
	Step One: Authenticate with the API
	Step Two: Request for data

	Best Practices
	Using the API
	Articles
	Calls for Articles

	Brands
	Cases
	Calls for Cases

	Companies
	Calls for Companies

	Custom Fields
	Customers
	Calls for Customers

	ETags
	Facebook Accounts
	Facebook Feeds
	Facebook Users
	Filters
	Groups
	Calls for Groups

	Inbound Mailboxes
	Insights
	Integration URLs
	Calls for Integration URLs

	Jobs
	Labels
	Calls for Labels

	Macros
	Calls for Macros

	Outbound Mailboxes
	Rules
	Site Settings
	System Message
	Topics
	Calls for Topics

	Twitter Accounts
	Calls for Twitter Accounts

	Twitter Users
	Users
	Calls for Users

	Resources

	Live Agent API
	Supported Salesforce Editions
	Prerequisites
	API Versions
	Creating Deployments
	Customize Deployments with the Deployment API
	Creating Deployments
	Logging Deployment Activity with the Deployment API
	enableLogging

	Customizing Your Chat Window with the Deployment API
	setChatWindowHeight
	setChatWindowWidth

	Launching a Chat Request with the Deployment API
	startChat
	startChatWithWindow

	Customizing Visitor Details with the Deployment API
	addCustomDetail
	addCustomDetail.doKnowledgeSearch

	setName

	Creating Records Automatically with the Deployment API
	findOrCreate
	findOrCreate.map
	findOrCreate.saveToTranscript
	findOrCreate.showOnCreate
	findOrCreate.linkToEntity

	Creating Records Deployment API Code Sample

	Customizing Chat Buttons with the Deployment API
	showWhenOnline
	showWhenOffline
	addButtonEventHandler

	Customizing Automated Chat Invitations with the Deployment API
	rejectChat
	addButtonEventHandler
	setCustomVariable
	Automated Chat Invitation Code Sample

	Deployment API Code Sample

	Accessing Chat Details with the Pre-Chat API
	preChatInit

	Create Records Automatically with the Pre-Chat API
	findOrCreate.map
	findOrCreate.map.doFind
	findOrCreate.map.isExactMatch
	findOrCreate.map.doCreate

	findOrCreate.saveToTranscript
	findOrCreate.showOnCreate
	findOrCreate.linkToEntity
	findOrCreate.displayToAgent
	Creating Records Pre-Chat API Code Sample

	Resources

	Salesforce Console Integration Toolkit
	Supported Browsers
	Supported Salesforce Editions
	Quick Start
	Connecting to the Toolkit
	Asynchronous Calls with the Salesforce Console Integration Toolkit
	Working with Force.com Canvas
	Best Practices
	Sample Visualforce Page Using the Salesforce Console Integration Toolkit

	Methods
	Methods for Primary Tabs and Subtabs
	Methods for Computer-Telephony Integration (CTI)
	Methods for Application-Level Custom Console Components
	Methods for Push Notifications
	Methods for Live Agent

	Resources

	Open CTI
	Supported Browsers
	Supported Salesforce Editions
	Quick Start
	Connecting to Open CTI
	Asynchronous Calls with Open CTI
	Working with Force.com Canvas
	Best Practices

	Call Center Definition Files
	Call Center Definition File XML Format
	Required Call Center Elements and Attributes
	Optional Call Center Elements and Attributes
	Sample Call Center Definition File

	Methods
	Methods for Salesforce Application Interaction
	Methods for Computer-Telephony Integration (CTI)

	Resources

	Index

