
Customizing Case Feed with
Code

Version 34.0, Summer ’15

 @salesforcedocs
Last updated: June 30, 2015

https://twitter.com/salesforcedocs


© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1: Customizing the Layout and Appearance of Case Feed . . . . . . . . . . . . . . . 3

Chapter 2: Customizing the Email Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 3: Customizing the Portal Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 4: Customizing the Log a Call Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 5: Customizing the Articles Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 6: Replicating a Standard Case Feed Page . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 7: Create Custom Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 8: Creating Custom Console Components That Interact with Case Feed . . . . 26

Chapter 9: Learning More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32





INTRODUCTION

EDITIONS

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

Case Feed gives support agents a more streamlined way of creating, managing, and viewing cases.
It includes actions and a Chatter feed. The actions let agents create case notes, log calls, change
the status of cases, and communicate with customers. The feed displays important case events in
chronological order, so it’s easy to see the progress of each case.

The standard Case Feed page is designed for organizations that want to take advantage of feed-based
case management quickly and with minimal configuration. You can modify the Case Feed page in
a few ways, including specifying which actions and tools are available to users. Sometimes
organizations with complex or unusual case management needs need to customize the Case Feed
page more.

Case Feed Visualforce components enable you to create a customized page within the Salesforce console. In addition, the Case Feed-related
events that can be published through the publish  method on the Sfdc.canvas.publisher  object in the Publisher JavaScript
API let you create custom Salesforce console components that interact with Case Feed actions.

This guide is for developers who are responsible for customizing Case Feed according to their company’s needs. It includes several use
cases and examples to help you create a unique Case Feed page.

Requirements

Before customizing Case Feed in the Salesforce console, make sure:

• Case Feed, Chatter, and feed tracking on cases are enabled in your organization. Refer to Implementing Case Feed for detailed
information.

• Your organization has at least one Salesforce console app. For more information, see “Create a Salesforce Console App” in the
Salesforce Help.

• You’re familiar with developing with Visualforce. Check out the Visualforce Developer’s Guide for a comprehensive overview.

Limitations

Lookup field filters aren’t supported on any of the Case Feed Visualforce components.

Assigning Custom Pages to Users

Generally, when you create a custom Case Feed page using Visualforce, it’s not possible to assign that page only to certain users while
allowing other users to see the standard Case Feed page. However, with the support:CaseFeed  component, you can create a
page that replicates the standard Case Feed page, assign that page to certain users, and then create a custom page to assign to a different
set of users. See Replicating a Standard Case Feed Page on page 20 for more information.

Customization Overview

There are five Case Feed Visualforce components:

1

https://na1.salesforce.com/help/doc/en/salesforce_case_interaction_setup_cheatsheet.pdf
https://developer.salesforce.com/docs/atlas.en-us.pages.meta/pages/


Use It To...DescriptionComponent Name

Displays and controls the appearance and
functionality of the Case Feed Email action.

apex:emailPublisher • Create an Email action and place it anywhere
on a Salesforce console page.

• Change the appearance of the action by
specifying its dimensions and the fields it
includes.

• Customize certain aspects of the action’s
functionality, such as specifying a default
Subject for each outgoing email.

Displays and controls the appearance and
functionality of the Case Feed Log a Call action.

apex:logCallPublisher • Create a Log a Call action and place it
anywhere on a Salesforce console page.

• Change the appearance of the action by
specifying its dimensions and the fields it
includes.

Displays and controls the appearance and
functionality of the Articles tool for cases.

support:caseArticles • Create an Articles tool for cases and place it
anywhere on a Salesforce console page.

• Change the appearance of the tool by
specifying its dimensions.

• Customize certain aspects of the tool’s
functionality, such as how it searches for
articles.

Replicates the standard Case Feed page,
including all standard actions, links, and buttons.

support:CaseFeed • Create a version of the standard Case Feed
page that you can assign to certain users so
that you can also create a custom page and
assign it to other users.

Displays and controls the appearance and
functionality of the Case Feed Portal action.

support:portalPublisher • Create a Portal action and place it anywhere
on a Salesforce console page.

• Change the appearance of the action by
specifying its dimensions and the fields it
includes.

In addition, the chatter:feed component has two attributes related to Case Feed: feedItemType, which lets you specify how
feed items are filtered, and showPublisher, which lets you display the Chatter publisher on a page.

Finally, you can also create Visualforce pages to use as custom actions in Case Feed and can use the publisher.selectAction,
publisher.setActionInputValues, invokeAction, and customActionMessage  events to create interactions
between custom Salesforce console components and Case Feed actions.

The following chapters offer detailed information on each of these components and customization options.

2

Introduction



CHAPTER 1 Customizing the Layout and Appearance
of Case Feed

Creating a customized Case Feed page with Visualforce lets you control the overall layout and appearance, including which actions and
tools are shown and where they’re located on the page. You can also include other standard and custom console components to enhance
the functionality of the page.

In addition to the four case-specific Visualforce components detailed in this guide, you can also use the chatter:feed  component
to customize Case Feed. The table below lists its attributes.

chatter:feed Attributes

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0YesEntity ID of the record for which to display the feed; for
example, Contact.Id

identityId

25.0The feed item type on which the Entity or
UserProfileFeed is filtered. See the Type  field on the

StringfeedItemType

FeedItem object listing in the API Object Reference Guide
for accepted values.

global20.0An identifier that allows the component to be referenced
by other components on the page.

Stringid

25.0The Javascript function to call after a post or comment
is added to the feed

StringonComplete

global20.0A Boolean value that specifies whether the additional
fields defined in the action layout should be displayed.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the result of the action method returns to the

ObjectreRender

client. This value can be a single ID, a comma-separated
list of IDs, or a merge field expression for a list or
collection of IDs.

25.0Displays the Chatter publisher.BooleanshowPublisher

Use Case

Acme Entertainment creates online games used by more than a million people on multiple platforms. Acme’s 1500 support agents use
desktop computers, laptops, and tablets, and the company wanted to customize the Case Feed page to standardize its look and feel
across different devices. They also wanted to make it easier for agents to track case activities using filters.

Acme used these steps to create a customized Case Feed page:

3

https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/


1. Using the chatter:feed  component, they positioned the feed in the sidebar so the publisher and other Case Feed tools are
always in the center of the page.

2. They repositioned the feed filter and auto-selected default filters depending on case origin:

• If the case origin is email,. the default filter is Emails.

• If the case origin is phone, the default filter is Call Logs.

• If the case origin is Web, the default filter is Portal Answers.

3. In apex:emailPublisher, apex:logCallPublisher, and support:portalPublisher, they made the width
percentage-based so the publisher expands and contracts as the size of the page changes, making its appearance more consistent
across different screen sizes.

4. They changed the orientation of the publisher action tabs from their standard left-side vertical arrangement to a horizontal arrangement
at the top of the page.

Code Sample

This code sample shows a Visualforce page with custom Email, Portal, Log a Call, and Case Details tabs.

<apex:page standardController="Case">

<!-- Repositions publisher tabs to a horizontal arrangement on top of the page -->
<ul class="demoNav" style="list-style: none; overflow: hidden">

<li style="float:left">
<a id="custom_email_tab" class="selected" href="javascript:void(0);"

onclick="getDemoSidebarMenu().selectMenuItem('custom_email_tab');">
<span class="menuItem">Email Customer</span>

</a>
</li>
<li style="float:left">

<a id="custom_log_call_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_log_call_tab');">
<span class="menuItem">Log Call</span>

</a>

4

Customizing the Layout and Appearance of Case Feed



</li>
<li style="float:left">

<a id="custom_portal_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_portal_tab');">
<span class="menuItem">Portal Answer</span>

</a>
</li>
<li style="float:left">

<a id="custom_detail_tab" href="javascript:void(0);"
onclick="getDemoSidebarMenu().selectMenuItem('custom_detail_tab');">
<span class="menuItem">Case Details</span>

</a>
</li>

</ul>

<!-- Email action -->
<div id="custom_email_pub_vf">

<apex:emailPublisher entityId="{!case.id}"
width="80%"
emailBodyHeight="10em"
showAdditionalFields="false"
enableQuickText="true"
toAddresses="{!case.contact.email}"
toVisibility="readOnly"
fromAddresses="support@cirrus.com"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Log call action -->
<div id="custom_log_call_vf" style="display:none">

<apex:logCallPublisher entityId="{!case.id}"
width="80%"
logCallBodyHeight="10em"
reRender="demoFeed"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Portal action -->
<div id="custom_portal_vf" style="display:none">

<support:portalPublisher entityId="{!case.id}"
width="80%"
answerBodyHeight="10em"
reRender="demoFeed"
answerBody="Dear {!Case.Contact.FirstName},

\n\nHere is the solution to your case.\n\nBest regards,\n\nSupport"
onSubmitSuccess="refreshFeed();" />

</div>

<!-- Case detail page -->
<div id="custom_detail_vf" style="display:none">

<apex:detail inlineEdit="true" relatedList="true" rerender="demoFeed" />
</div>

<!-- Include library for using service desk console API -->

5

Customizing the Layout and Appearance of Case Feed



<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for switching publishers -->
<script type="text/javascript">

function DemoSidebarMenu() {
var menus = {"custom_email_tab" : "custom_email_pub_vf",

"custom_log_call_tab" : "custom_log_call_vf",
"custom_portal_tab" : "custom_portal_vf",
"custom_detail_tab" : "custom_detail_vf"};

this.selectMenuItem = function(tabId) {
for (var index in menus) {

var tabEl = document.getElementById(index);
var vfEl = document.getElementById(menus[index]);

if (index == tabId) {
tabEl.className = "selected";
vfEl.style.display = "block";

} else {
tabEl.className = "";
vfEl.style.display = "none";

}
}

};
}
var demoSidebarMenu;
var getDemoSidebarMenu = function() {

if (!demoSidebarMenu) {
demoSidebarMenu = new DemoSidebarMenu();

}
return demoSidebarMenu;

};
</script>

<!-- Javascript for firing event to refresh feed in the sidebar -->
<script type="text/javascript">

function refreshFeed() {
sforce.console.fireEvent

('Cirrus.samplePublisherVFPage.RefreshFeedEvent', null, null);
}

</script>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class MyCaseExtension {
private final Case mycase;
private String curFilter;

public MyCaseExtension(ApexPages.StandardController stdController) {
this.mycase = (Case)stdController.getRecord();

// initialize feed filter based on case origin
if (this.mycase.origin.equals('Email')) {

curFilter = 'EmailMessageEvent';

6

Customizing the Layout and Appearance of Case Feed



} else if (this.mycase.origin.equals('Phone')) {
curFilter = 'CallLogPost';

} else if (this.mycase.origin.equals('Web')) {
curFilter = 'CaseCommentPost';

}
}

public String getCurFilter() {
return curFilter;

}

public void setCurFilter(String c) {
if (c.equals('All')) {

curFilter = null;
} else {

curFilter = c;
}

}

public PageReference refreshFeed() {
return null;

}
}

This sample shows a Visualforce page with custom feed filters and Chatter feed for cases. You can use this page in the sidebar of a
Salesforce console.

<apex:page standardController="Case" extensions="MyCaseExtension">

<!-- Feed filter -->
<div>

<span>Feed Filters:</span>
<select onchange="changeFilter(this.options[selectedIndex].value);"

id="custom_filterSelect">
<option value="All" id="custom_all_option">All</option>
<option value="EmailMessageEvent"

id="custom_email_option">Emails</option>
<option value="CaseCommentPost"

id="custom_web_option">Portal Answers</option>
<option value="CallLogPost"

id="custom_phone_option">Call Logs</option>
</select>

</div>

<apex:form >
<!-- actionFunction for refreshing feed when the feed filter is updated -->
<apex:actionFunction action="{!refreshFeed}" name="changeFilter"

reRender="custom_demoFeed" immediate="true" >
<apex:param name="firstParam" assignTo="{!curFilter}" value="" />

</apex:actionFunction>

<!-- actionFunction for refreshing feed when there is an event fired for
updating the feed -->

<apex:actionFunction action="{!refreshFeed}" name="updateFeed"
reRender="custom_demoFeed" immediate="true" />

7

Customizing the Layout and Appearance of Case Feed



</apex:form>

<!-- Chatter feed -->
<chatter:feed entityId="{!case.id}" showPublisher="false"

feedItemType="{!curFilter}" id="custom_demoFeed" />

<!-- Include library for using service desk console API -->
<apex:includeScript value="/support/console/25.0/integration.js"/>

<!-- Javascript for adding event listener for refreshing feed -->
<script type="text/javascript">

var listener = function (result) {
updateFeed();

};

// add a listener for the 'Cirrus.samplePublisherVFPage.RefreshFeedEvent'
event type

sforce.console.addEventListener('Cirrus.samplePublisherVFPage.RefreshFeedEvent',
listener);

</script>

<!-- Javascript for initializing select option based on case origin -->
<script type="text/javascript">

window.onload = function() {
var caseOrigin = "{!case.origin}";
if (!caseOrigin) {

caseOrigin = "all";
} else {

caseOrigin = caseOrigin.toLowerCase();
}
var selectElem = document.getElementById('custom_' + caseOrigin + '_option');

if (selectElem) {
selectElem.selected = true;

}
}

</script>

</apex:page>

8

Customizing the Layout and Appearance of Case Feed



CHAPTER 2 Customizing the Email Action

The Email action in Case Feed lets support agents connect with customers via email. With the apex:emailPublisher  component,
you can:

• Customize the dimensions of the Email action.

• Define defaults and visibility for fields.

• Define the visibility and label of the send button.

• Define onSubmit functionality.

• Support email templates and attachments in the action.

apex:emailPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0A Boolean value that specifies whether the email body
will collapse to a small height when it is empty.

BooleanautoCollapseBody

25.0The visibility of the BCC field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringbccVisibility

25.0The visibility of the CC field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringccVisibility

25.0The default text value of the email body.StringemailBody

25.0The format of the email body can be 'text', 'HTML', or
'textAndHTML'.

StringemailBodyFormat

25.0The height of the email body in em.StringemailBodyHeight

25.0A Boolean value that specifies whether the Quick Text
autocomplete functionality is available in the action.

BooleanenableQuickText

25.0YesEntity ID of the record for which to display the Email
action. In the current version only Case record ids are
supported.

identityId

25.0A Boolean value that specifies whether the header is
expandable or fixed.

BooleanexpandableHeader

25.0A restricted set of from addresses.StringfromAddresses

25.0The visibility of the From field can be 'selectable' or
'hidden'.

StringfromVisibility

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

9



AccessAPI
Version

Required?DescriptionAttribute
Type

Attribute Name

25.0The JavaScript invoked if the email is not successfully
sent.

StringonSubmitFailure

25.0The JavaScript invoked if the email is successfully sent.StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the component
is rendered on the page. If not specified, this value
defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the email is successfully sent. This value can be

ObjectreRender

a single ID, a comma-separated list of IDs, or a merge
field expression for a list or collection of IDs.

25.0The name of the send button in the Email action.StringsendButtonName

25.0A Boolean value that specifies whether the additional
fields defined in the action layout should be displayed.

BooleanshowAdditionalFields

25.0A Boolean value that specifies whether the attachment
selector should be displayed.

BooleanshowAttachments

25.0A Boolean value that specifies whether the send button
should be displayed.

BooleanshowSendButton

25.0A Boolean value that specifies whether the template
selector should be displayed.

BooleanshowTemplates

25.0The default value of the Subject.Stringsubject

25.0The visibility of the Subject field can be 'editable',
'readOnly', or 'hidden'.

StringsubjectVisibility

25.0The name of a function that can be called from
JavaScript to send the email.

StringsubmitFunctionName

25.0The title displayed in the Email action header.Stringtitle

25.0The default value of the To field.StringtoAddresses

25.0The visibility of the To field can be 'editable',
'editableWithLookup', 'readOnly', or 'hidden'.

StringtoVisibility

25.0The width of the action in pixels (px) or percentage (%).Stringwidth

Use Case

Cirrus Computers, a multinational hardware company with technical support agents in ten support centers throughout the world, wanted
to customize the Email action to increase standardization in outgoing messages and to limit the fields agents could edit.

Cirrus used the apex:emailPublisher  component to create an Email action that:

1. Has read-only To and Subject fields.

10

Customizing the Email Action



2. Pre-populates those fields, ensuring consistency and increasing agents’ efficiency when writing email messages.

Code Sample

<apex:page standardController="Case" >
<apex:emailPublisher entityId="{!case.id}"

fromVisibility="selectable"
subjectVisibility="readOnly"
subject="Your Cirrus support request"
toVisibility="readOnly"
toAddresses="{!case.contact.email}"
emailBody=""/>

</apex:page>

11

Customizing the Email Action



CHAPTER 3 Customizing the Portal Action

The Portal action makes it easy for support agents to compose and post messages to customers on portals. With the
support:portalPublisher  component, you can:

• Customize the dimensions of the Portal action.

• Define a default value for the portal message text.

• Define the visibility and label of the submit button.

• Define onSubmit functionality.

support:portalPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The default text value of the answer body.StringanswerBody

25.0The height of the answer body in ems (em).StringanswerBodyHeight

25.0A Boolean value that specifies whether the answer
body is collapsed when it is empty.

BooleanautoCollapseBody

25.0YesEntity ID of the record for which to display the Portal
action. In the current version, only Case record ids are
supported.

identityId

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

25.0The JavaScript invoked if the answer failed to be
published to the portal.

StringonSubmitFailure

25.0The JavaScript invoked if the answer was successfully
published to the portal.

StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the component
is rendered on the page. If not specified, this value
defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the answer is successfully published. This value

ObjectreRender

can be a single ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.

25.0A Boolean value that specifies whether the option to
send email notification should be displayed.

BooleanshowSendEmailOption

25.0A Boolean value that specifies whether the submit
button should be displayed.

BooleanshowSubmitButton

12



AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The name of the submit button in the portal action.StringsubmitButtonName

25.0The name of a function that can be called from
JavaScript to publish the answer.

StringsubmitFunctionName

25.0The title displayed in the portal action header.Stringtitle

25.0The width of the action in pixels (px) or percentage
(%).

Stringwidth

Use Case

The Wellness Group is a healthcare company with 300 support agents in three tiers of support. Wellness wanted to customize the Portal
action to reduce the amount of standard text, such as greetings and closings, agents had to type when replying to customers, which
would help increase agents’ efficiency and improve the standardization of portal communications.

Wellness used the support:portalPublisher  component to create a Portal action that:

• Pre-populates the message body with a standard opening (“Hello {name}, and thanks for your question.”) and a standard closing
(“Please let me know if there’s anything else I can do to help.”).

• Lets agents edit the pre-populated text if needed.

Code Sample

<apex:page standardController="Case">
<support:portalPublisher entityId="{!case.id}" width="800px"

answerBody="Hello {!Case.Contact.FirstName}, and thanks for your question.
\n\nPlease let me know if there's anything else I can do to help.">

</support:portalPublisher>
</apex:page>

13

Customizing the Portal Action



CHAPTER 4 Customizing the Log a Call Action

The Log a Call action lets support agents record notes and information about customer calls. With the apex:logCallPublisher,
you can:

• Customize the appearance and dimensions of the Log a Call action.

• Specify which fields are displayed in the action.

• Define the visibility and label of the submit button.

• Define onSubmit functionality.

apex:logCallPublisher Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0A Boolean value that specifies whether the Log a
Call body is collapsed when it is empty.

BooleanautoCollapseBody

25.0YesEntity ID of the record for which to display the Log
a Call action. In the current version, only Case record
ids are supported.

identityId

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

25.0The initial text value of the Log a Call body when
the action is rendered.

StringlogCallBody

25.0The height of the Log a Call body in em.StringlogCallBodyHeight

25.0The JavaScript invoked if the call is not successfully
logged.

StringonSubmitFailure

25.0The JavaScript invoked if the call is successfully
logged.

StringonSubmitSuccess

Global25.0A Boolean value that specifies whether the
component is rendered on the page. If not specified,
this value defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the call is successfully logged. This value can

ObjectreRender

be a single ID, a comma-separated list of IDs, or a
merge field expression for a list or collection of IDs.

25.0A Boolean value that specifies whether the additional
fields defined in the action layout should be
displayed.

BooleanshowAdditionalFields

14



AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0A Boolean value that specifies whether the submit
button should be displayed.

BooleanshowSubmitButton

25.0The name of the submit button in the Log a Call
action.

StringsubmitButtonName

25.0The name of a function that can be called from
JavaScript to publish the call log.

StringsubmitFunctionName

25.0The title displayed in the Log a Call action header.Stringtitle

25.0The width of the action in pixels (px) or percentage
(%).

Stringwidth

Use Case

Stellar Wireless is a mobile phone provider with several high-volume call centers, where agents are rewarded both for solving customers’
issues quickly and for keeping detailed, accurate records of customer interactions. Stellar wanted to customize the Log a Call action so
it was open and available to agents at all times, even when they were working with another action, giving them a quick and easy way
of taking notes about incoming calls.

Stellar used the apex:logCallPublisher  component to create a Log a Call action that:

• Appears in the footer of the page, replacing the standard interaction log.

• Is open and available by default each time a support agent opens a case.

Code Sample

<apex:page standardController="Case">
<apex:logCallPublisher entityId="{!case.id}"

width="100%"

15

Customizing the Log a Call Action



title="Log a Call"
autoCollapseBody="false"
showAdditionalFields="false"
submitButtonName="Save Log" />

</apex:page>

After you create a Visualforce page with this code, follow these steps to use the Log a Call action you create as a replacement for the
standard interaction log:

1. From Setup, click Customize > Cases > Page Layouts.

2. Select the layout you’re using from the Page Layouts for Case Feed Users list, and then select Edit detail view.

3. Click the Custom Console Components link at the top of the page.

4. In the Subtab Components section, use the lookup to select the page you created as the component to use for the bottom sidebar.

5. Specify the height of the action.

6. Click Save.

7. In the page layout editor, click Layout Properties.

8. Uncheck Interaction Log.

9. Click OK.

10. Click Save.

16

Customizing the Log a Call Action



CHAPTER 5 Customizing the Articles Tool

The Articles tool lets support agents browse Salesforce Knowledge articles, see whether articles are attached to a case, and share relevant
articles with customers. With the support:caseArticles  component, you can:

• Customize the appearance and dimensions of the Articles tool.

• Define how the tool’s search function works, including which article types and keywords are used by default and whether advanced
search is available.

• Specify whether agents can attach articles to emails.

support:caseArticles Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0Article types to be used to filter the search. Multiple
article types can be defined, separated by commas.

StringarticleTypes

25.0A Boolean value that specifies whether articles can
be attached to emails.

BooleanattachToEmailEnabled

25.0The height of the body in pixels (px) or 'auto' to
automatically adjust to the height of the currently
displayed list of articles.

StringbodyHeight

25.0YesCase ID of the record for which to display the case
articles.

idcaseId

25.0Data categories to be used to filter the search. The
format of this value should be:

Stringcategories

'CatgeoryGroup1:Category1' where CategoryGroup1
and Category1 are the names of a Category Group
and a Category respectively. Multiple category filters
can be specified separated by commas but only one
per category group.

25.0The keywords to be used when the
defaultSearchType  attribute is 'keyword'. If

StringdefaultKeywords

no keywords are specified, the Case subject is used
as a default.

25.0Specifies the default query of the article search form
when it is first displayed. The value can be 'keyword',
'mostViewed', or 'lastPublished'.

StringdefaultSearchType

Global25.0An identifier that allows the component to be
referenced by other components on the page.

Stringid

17



AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

25.0The language used for filtering the search if
multilingual Salesforce Knowledge is enabled.

Stringlanguage

25.0A Boolean value that specifies whether keyword
searches should be logged.

BooleanlogSearch

25.0Specifies whether the component displays articles
currently attached to the case, an article search form,

Stringmode

or both. The value can be 'attached', 'search',
'attachedAndSearch', or 'searchAndAttached'.

25.0The JavaScript invoked after an article search has
completed.

StringonSearchComplete

Global25.0A Boolean value that specifies whether the
component is rendered on the page. If not specified,
this value defaults to true.

Booleanrendered

25.0The ID of one or more components that are redrawn
when the result of the action method returns to the

ObjectreRender

client. This value can be a single ID, a
comma-separated list of IDs, or a merge field
expression for a list or collection of IDs.

25.0The display name of the search button.StringsearchButtonName

25.0The width of the keyword search field in pixels (px).StringsearchFieldWidth

25.0The name of a function that can be called from
JavaScript to search for articles if the widget is
currently in search mode.

StringsearchFunctionName

25.0A Boolean value that specifies whether the advanced
search link should be displayed.

BooleanshowAdvancedSearch

25.0The title displayed in the component's header.Stringtitle

25.0The style of the title bar can be 'expanded',
'collapsed', 'fixed', or 'none'.

StringtitlebarStyle

25.0The width of the component in pixels (px) or
percentage (%).

Stringwidth

Use Case

Cirrus Computers wanted to customize the Case Feed articles tool so agents could more easily find articles to help resolve customers’
issues.

Cirrus used the support:caseArticles  component to create an articles tool that:

1. Appears in the right sidebar of the page and is open by default on all case pages.

18

Customizing the Articles Tool



2. Uses search-as-you-type functionality to show suggested articles quickly.

3. Lets agents attach articles to messages they write with the Email action.

4. Displays the most recently published articles when no articles are attached to a case.

Code Sample

<apex:page standardController="Case">
<div style="margin-left:-10px;margin-right:-10px;">

<div style="background-color: #99A3AC;color:#FFFFFF;font-size:1.1em;font-weight:
bold;padding:3px 6px 3px 6px;">Articles</div>

<support:caseArticles caseId="{!case.id}"
bodyHeight="auto"
titlebarStyle="none"
searchButtonName="Search"
searchFieldWidth="200px"
defaultSearchType="lastPublished"

/>
</div>

</apex:page>

19

Customizing the Articles Tool



CHAPTER 6 Replicating a Standard Case Feed Page

The support:CaseFeed  component includes all of the elements of the standard Case Feed page:

• Email, Portal, Log a Call, and Case Note actions

• Case activity feed

• Feed filters

• Highlights panel

• Case following icon

• Case followers list

• Layout, print, and help links

support:CaseFeed Attributes

AccessAPI
Version

Required?DescriptionAttribute TypeAttribute Name

26.0YesID of the case record to display in Case Feed.idcaseId

global26.0An identifier that allows the component to be referenced
by other components in the page.

Stringid

global26.0A Boolean value that specifies whether the component is
rendered on the page. If not specified, this value defaults to
true.

Booleanrendered

Use Case

National Foods is a food service company supplying restaurants and corporate cafeterias throughout the United States. National’s support
operations includes both call center agents who work primarily on desktop computers and field agents who work mainly on mobile
devices. The company wanted a simplified Case Feed page that would be easy for its field agents to use, and also wanted to give its call
center agents access to the full Case Feed functionality.

National used the support:CaseFeed  component to recreate the standard Case Feed page for its call center agents working on
desktops, and created a custom page for its field agents working on mobile devices.

20



Standard Case Feed page created with support:CaseFeed

Code Sample

<apex:page standardController="Case"
extensions="CasePageSelectorExtension" showHeader="true" sidebar="false">
<apex:dynamicComponent componentValue="{!casePage}"/>

</apex:page>

The following sample shows an Apex class containing a controller extension to be used with the Visualforce page above.

public class CasePageSelectorExtension {
boolean isFieldAgent;
String caseId;

public CasePageSelectorExtension(ApexPages.StandardController controller) {
List<UserRole> roles = [SELECT Id FROM UserRole WHERE Name = 'FieldAgent'];
isFieldAgent = !roles.isEmpty() && UserInfo.getUserRoleId() == roles[0].Id;
caseId = controller.getRecord().id;

}

public Component.Apex.OutputPanel getCasePage() {
Component.Apex.OutputPanel panel = new Component.Apex.OutputPanel();
if (isFieldAgent) {

Component.Apex.Detail detail = new Component.Apex.Detail();
detail.subject = caseId;
panel.childComponents.add(detail);

} else {
Component.Support.CaseFeed caseFeed = new Component.Support.CaseFeed();
caseFeed.caseId = caseId;
panel.childComponents.add(caseFeed);

}
return panel;

}
}

21

Replicating a Standard Case Feed Page



CHAPTER 7 Create Custom Actions

You can create Visualforce pages to use as custom actions in Case Feed. For example, you can create a Map and Local Search action that
lets agents look up the customer’s location and find nearby service centers.

You can use any Visualforce page that uses the standard case controller as a custom action.

Use Case

Viaggio Italiano is a boutique travel agency specializing in tours of Italy. The company tracks multiple details for each client, including
flights, ground transportation specifics, dietary preferences, and itineraries. Viaggio Italiano’s agents needed the ability to create long
case comments but were limited to 1000 characters for standard case notes. The company wanted a way to bypass this limit.

Viaggio Italiano used Visualforce to create a page that includes the ability to post a case comment, which can be up to 4000 characters
long. The company then added the page as a custom action by editing the Case Feed page layout.

Code Samples

The following code sample shows a custom Post Case Comment action for an organization that doesn’t have actions in the publisher
enabled, or that has actions in the publisher enabled but uses the Case Feed Settings page, not the page layout editor, to choose and
configure the actions in the Case Feed publisher.

<apex:page standardcontroller="Case"
extensions="CaseCommentExtension" showHeader="false">
<apex:includeScript value="/support/api/26.0/interaction.js"/>
<div>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page

that a elated list and the feed have been updated -->
<apex:actionFunction action="{!addComment}" name="addComment" rerender="out"

oncomplete="sforce.interaction.entityFeed.refreshObject('{!case.id}',
false, true, true);"/>
<apex:outputPanel id="out" >

<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />

22



</apex:outputPanel>
</apex:form><br />
<button type="button" onclick="addComment();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>

</div>
</apex:page>

This is the code to use for the custom Post Case Comment action if your organization has actions in the publisher enabled and you’ve
opted to use the page layout editor to choose and configure actions in the Case Feed publisher.

<apex:page standardcontroller="Case"
extensions="CaseCommentExtension" showHeader="false">
<!-- Uses publisher.js rather than interaction.js -->
<apex:includeScript value="/canvas/sdk/js/28.0/publisher.js"/>
<div>

<apex:form >
<!-- Creates a case comment and on complete notifies the Case Feed page

that a related list and the feed have been updated -->
<apex:actionFunction action="{!addComment}" name="addComment" rerender="out"

<!-- Different oncomplete function using publisher.js -->
oncomplete="Sfdc.canvas.publisher.publish(
{name : 'publisher.refresh', payload :
{feed: true, objectRelatedLists: {}}});"/>
<apex:outputPanel id="out" >

<apex:inputField value="{!comment.commentbody}" style="width:98%;
height:160px;" />

</apex:outputPanel>
</apex:form><br />
<button type="button" onclick="addComment();" style="position:fixed; bottom:0px;

right:2px; padding: 5px 10px; font-size:13px;" id="cpbutton" >Post Case Comment
</button>

</div>
</apex:page>

The following sample shows an Apex class containing a controller extension to be used with either version of the Visualforce page above.

public with sharing class CaseCommentExtension {
private final Case caseRec;
public CaseComment comment {get; set;}

public CaseCommentExtension(ApexPages.StandardController controller) {
caseRec = (Case)controller.getRecord();
comment = new CaseComment();
comment.parentid = caseRec.id;

}

public PageReference addComment() {
insert comment;
comment = new CaseComment();
comment.parentid = caseRec.id;
return null;

23

Create Custom Actions



}
}

Additional Steps

After creating a Visualforce page, make it available to users.

First, give profiles access to the page:

1. From Setup, click Develop > Pages.

2. Click Security next to the name of the page you created.

3. Choose the profiles you want to be able to access the page.

4. Click Save.

Then include the page as a custom action. If you’re using the Case Feed Settings page to choose and configure actions:

1. From Setup, click Customize > Cases > Page Layouts.

2. How you access the Case Feed Settings page depends on what kind of page layout you’re working with..

• For a layout in the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

• For a layout in the Page Layouts for Case Feed Users section, click  and choose Edit feed view. (This section appears
only for organizations created before Spring ’14.)

3. In Custom Actions, click + Add a Visualforce page.

4. Choose the page you want to add.

5. Specify the height of the action. For the best appearance, we recommend a height of 200 pixels.

6. In Select Actions, move the custom action from Available  to Selected.

7. Click Save.

If you’ve opted to use the page layout editor to choose and configure actions, you first need to create the custom action:

1. From Setup, click Customize > Cases > Buttons, Links, and Actions.

2. Click New Action.

3. Select Custom Visualforce.

4. Select the Visualforce page you created, then specify the height of the action window. (The width is fixed.)

5. Type a label for the action. This is the text users will see for the action in the publisher.

6. If necessary, change the name of the action.

7. Type a description for the action. The description appears on the detail page for the action and in the list on the Buttons, Links, and
Actions page; it’s not visible to your users.

8. Optionally, click Change Icon to select a different icon for the action. This icon appears only when you use the action through the
API.

Then add the action to a page layout:

1. From Setup, click Customize > Cases > Page Layouts.

2. How you access the page layout editor depends on what kind of page layout you’re working with.

• For a layout in the Case Page Layouts section, click Edit, and then click Feed View in the page layout editor.

24

Create Custom Actions



• For a layout in the Page Layouts for Case Feed Users section, click  and choose Edit detail view. (This section
appears only for organizations created before Spring ’14.)

3. Click Quick Actions in the palette.

4. Drag the action from the palette to the Quick Actions in the Publisher section.

5. Click Save.

25

Create Custom Actions



CHAPTER 8 Creating Custom Console Components
That Interact with Case Feed

EDITIONS

Available in:
• Enterprise
• Performance
• Unlimited
• Developer

Custom console components let you extend the functionality of the Salesforce console, and you
can create those components so they interact with any actions you’ve added to the Case Feed
publisher. For example, you could develop a component that generates customized, pre-written
text, adds that text to a new post in the Case Feed portal action, and submits the post to the portal,
all with one click.

These events can be published through the publish  method on the
Sfdc.canvas.publisher  object in the Publisher JavaScript API to allow console components
to interact with Case Feed quick actions.

publisher.selectAction

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action to select. Supported values are:Selects the specified action and
puts it in focus. • action_name–A create, log a call, or custom Visualforce quick

action. For example, action_name  for a create contact action
might be create_contact.

• Case.CaseComment—Case Feed portal action

• Case.ChangeStatus—Case Feed change status action

• Case.Email—Case Feed email action

• Case.LogACall—Case Feed log a call action

• FeedItem.TextPost—Standard Chatter post action
(Available in API versions 32.0 and later)

• SocialPostAPIName.SocialPost—Social post action
(Available in API versions 32.0 and later)

Code Sample

This code snippet selects the email action and puts it in focus.

Sfdc.canvas.publisher.publish({name:"publisher.selectAction",payload:{actionName:"Case.Email"}});

26



publisher.setActionInputValues

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action on which fields should be populated.

The available field values depend on which action you specify.

Specifies which fields on the action
should be populated with specific
values, and what those values are.

• emailFields–Available on Case.Email; the standard
available fields on the Case Feed email action:

– to

– cc

– bcc

– subject

– body

– template

• portalPostFields–Available on Case.CaseComment;
the standard available fields on the Case Feed portal action:

– body

– sendEmail (boolean)

• targetFields–Available on Case.ChangeStatus  ,
Case.LogACall, FeedItem.TextPost, and the Social
action; the standard available fields on those actions.

– On Case.ChangeStatus: commentBody

– On Case.LogACall: description

– On FeedItem.TextPost: body

Attributes on body  are value  and insertType
(optional). Valid values for insertType  are begin, end,
cursor, and replace. The default value is replace.
(Available in API versions 32.0 and later)

– On SocialPostAPIName.SocialPost: content
and insertType (optional). Valid values for
insertType  are begin, end, cursor, and
replace  . The default value is replace. (Available in
API versions 32.0 and later)

• parentFields—Available on Case.ChangeStatus,
Case.Email, and Case.LogACall; standard and custom
fields on case. Lookup fields aren’t supported.

Code Samples

27

Creating Custom Console Components That Interact with
Case Feed



This code snippet populates the fields on an email message with predefined values, and sets the status of the associated case to Closed.

Sfdc.canvas.publisher.publish({name:"publisher.setActionInputValues",
payload:{actionName:"Case.Email",parentFields: {Status:{value:"Closed"}},
emailFields: {to:{value:"customer@company.com"},cc:{value:"customer2@company.com"},
bcc:{value:"supervisor@company.com"},

subject:{value:"Your Issue Has Been Resolved"},
body:{value:"Thank you for working with our support department.

We've resolved your issue and have closed this ticket, but
please feel free to contact us at any time if you encounter this
problem again or need other assistance."}}}});

This code snippet inserts the phrase “Hello World” in the body of the Post action at the current cursor position.

Sfdc.canvas.publisher.publish({name:"publisher.setActionInputValues",
payload:{actionName:"FeedItem.TextPost", targetFields:{body:{value:"Hello World",
insertType:"cursor"}}}});

invokeAction

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The action on which to trigger the submit function.
Supported actions are:

Triggers the submit function (such
as sending an email or posting a
portal comment) on the specified
action.

• Case.Email

• Case.CaseComment

• Case.ChangeStatus

• Case.LogACall

• FeedItem.TextPost  (Available in API versions 32.0 and
later)

• SocialPostAPIName.SocialPost (Available in API
versions 32.0 and later)

Code Sample

This code snippet triggers the submit function on the email action, sending an email message and generating a related feed item.

Sfdc.canvas.publisher.publish({name:"publisher.invokeAction",
payload:{actionName:"Case.Email"}});

customActionMessage

Available VersionsPayload ValuesDescription

Available in API versions
29.0 and later.

actionName—The Visualforce custom action to pass the event to.

message–The event to pass to the custom action.

Passes a custom event to a custom
action. Supported for
Visualforce-based custom actions
only.

28

Creating Custom Console Components That Interact with
Case Feed



Code Sample

This code snippet passes the Hello world event to the action my_custom_action.

Sfdc.canvas.publisher.publish({name:"publisher.customActionMessage",
payload:{actionName:"my_custom_action", message:"Hello world"}});

This code snippet is what my_custom_action uses to listen to the Hello world event.

Sfdc.canvas.publisher.subscribe([{name : "publisher.customActionMessage", onData :
function(e) {alert(e.message);}}]);

Use Case

Universal Cable serves millions of phone and cable customers throughout the United States, with 4000 support agents in call centers of
varying sizes around the country. Universal wanted to make it easy for agents to access the company’s extensive collection of articles in
Salesforce Knowledge and share them with customers through email to help keep support costs in check.

Universal used the events on publish  to create a custom console component that:

• Displays a list of Knowledge articles, from most recently published to oldest.

• Lets agents view an article by clicking its title.

• Lets agents add the full, formatted text of an article to a message in the Case Feed email action by clicking the Email button in the
console component.

Code Sample

This code sample shows an Apex class containing a custom controller used by the Visualforce page below.

public with sharing class KBController {
public List<FAQ__kav> articles {get; set;}

public KBController() {
articles = [select knowledgearticleid, id, title, content__c from FAQ__kav where
publishstatus = 'Online' and language='en_US' order by lastpublisheddate];

29

Creating Custom Console Components That Interact with
Case Feed



}
}

This code sample shows the Visualforce page that’s used as the custom console component in the use case above.

<apex:page sidebar="false" controller="KBController">
<script type='text/javascript' src='/canvas/sdk/js/publisher.js'/>
<style>

.sampleTitle { background-color: #99A3AC;color:#FFFFFF;font-size:1.1em;
font-weight: bold;padding:3px 6px 3px 6px; }
.sampleHeader { }
.sampleArticleList { min-width: 250px; padding: 8px 0 5px 0;}
.sampleUl { padding: 0; margin: 0; list-style: none;}
.sampleLi { display: block; position: relative; margin: 0;}
.sampleRow { min-height: 16px; padding: 4px 10px;}
.emailBtn { margin: 1px 1px 1px 3px; padding: 3px 8px; color: #333;

border: 1px solid #b5b5b5; border-bottom-color: #7f7f7f; background: #e8e8e9;
font-weight: bold; font-size: .9em; -moz-border-radius: 3px;
-webkit-border-radius: 3px; order-radius: 3px; }

.emailBtn:active { background-position: right -60px; border-color: #585858;
border-bottom-color: #939393; }

.sampleArticle { padding-left: 4px; padding-bottom: 2px; font-weight: bold;
font-size: 1em; color: #222; }

.sampleLink { color: #015ba7; text-decoration: none; font-weight: bold;
font-size: .9em; }

</style>
<script>

function emailArticle(content) {
Sfdc.canvas.publisher.publish({name: 'publisher.selectAction',
payload: { actionName: 'Case.Email'}});
Sfdc.canvas.publisher.publish({name: 'publisher.setActionInputValues',
payload: {

actionName: 'Case.Email',
emailFields: { body: { value:content, format:'richtext', insert: true}}

}});
}

</script>
<div style="margin-left:-10px;margin-right:-10px;">

<div class="sampleTitle">Latest Articles</div>
<div class="sampleHeader" style=""></div>
<div class="sampleArticleList">

<apex:repeat value="{!articles}" var="article">
<ul class="sampleUl">

<li class="sampleLi">
<div class="sampleRow">
<div style="display:none;" id="content_{!article.id}">

<apex:outputText value="{!article.content__c}" escape="false"/>
</div>

<input type="button" title="Email" value="Email" class="emailBtn"
onclick="emailArticle(document.getElementById

('content_{!article.id}').innerHTML);"/>
<span class="sampleArticle">

<a href="/{!article.knowledgearticleid}"
title="{!article.title}" class="sampleLink">
{!article.title}</a>

30

Creating Custom Console Components That Interact with
Case Feed



</span>
</div>

</li>
</ul>

</apex:repeat>
</div>

</div>
</apex:page>

31

Creating Custom Console Components That Interact with
Case Feed



CHAPTER 9 Learning More

Use these resources to learn more about Case Feed and Visualforce:

• Implementing Case Feed

• Getting to Know Case Feed

• Visualforce Developer’s Guide

32

https://na1.salesforce.com/help/doc/en/salesforce_case_interaction_setup_cheatsheet.pdf
https://na1.salesforce.com/help/doc/en/salesforce_case_feed_cheatsheet.pdf
https://developer.salesforce.com/docs/atlas.en-us.pages.meta/pages/

	Introduction
	Customizing the Layout and Appearance of Case Feed
	Customizing the Email Action
	Customizing the Portal Action
	Customizing the Log a Call Action
	Customizing the Articles Tool
	Replicating a Standard Case Feed Page
	Create Custom Actions
	Creating Custom Console Components That Interact with Case Feed
	Learning More

