
Analytics Cloud Dashboard
JSON Reference

Salesforce, Summer ’15

 @salesforcedocs
Last updated: July 6, 2015

https://twitter.com/salesforcedocs

© Copyright 2000–2015 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Analytics Cloud Dashboard JSON Overview . 1

View or Modify a Dashboard JSON File . 2

Dashboard JSON File Example . 3

Steps . 5

Static Steps . 5

Widgets . 8

Widget Parameters Property Reference . 9

Query . 23

Query Example . 26

Bindings . 30

Selection Binding in a Static Step . 31
Bind a Static Filter and Group Selector to a Query . 36
Relative Dates in a Static Filter Selector . 39
Binding Operations . 41

Layouts . 45

Use a Grid Layout for Your Dashboard . 47
Understanding Column, Row, and Cell Sizing in Grid Layouts . 48
Layouts Specification . 50
Layouts Attribute Reference . 55

ANALYTICS CLOUD DASHBOARD JSON OVERVIEW

To create advanced dashboards in Analytics Cloud, typically you directly modify the JSON that defines a dashboard.

The easiest way to design dashboards is to use the designer. However, to complete the following tasks, you must modify the dashboard’s
JSON file.

• Specify a SAQL query, and specify relationships between the query and other steps.

• Populate a selector with a specified list of values instead of from a query.

• Use manual bindings to override the default faceting and manually specify the relationships between the steps.

• Set query limits.

• Specify columns for a values table.

• Change the layout of your dashboard from absolute to grid.

1

VIEW OR MODIFY A DASHBOARD JSON FILE

EDITIONS

Available for an extra cost
in: Enterprise, Performance,
and Unlimited Editions

USER PERMISSIONS

To modify the JSON file that
defines a dashboard:
• “Create and Edit

Analytics Cloud
Dashboards”

To create advanced dashboards, you typically modify the JSON file that defines a dashboard.

1. In your browser’s address bar, type the URL of the Create Lens page. For example, if your
Salesforce instance is na3.salesforce.com, type
https://na3.salesforce.com/insights/web/lens.apexp in your browser’s
address bar.

2. In the list of lenses, click the lens to modify it.
The JSON that defines that lens is displayed in the Lens text box. To increase the size of the text
box, click and drag the resizing handle in its bottom right corner.

3. Modify the JSON in the Lens text box. Optionally, cut and paste the text into a text editor or
JSON editor, make your changes, and then paste it back into the text box.

4. Click Update Lens.
The changes are saved.

2

DASHBOARD JSON FILE EXAMPLE

A dashboard JSON file defines the components that a dashboard contains and describes how they’re connected.

This sample JSON file defines a simple dashboard that uses a number widget to display the count of rows in a dataset. This sample JSON
file defines one lens, called "step_1", and one widget, called "number_1". The "edgemarts" section lists the datasets that
the dashboard uses. The "layouts" section specifies a grid layout with one page, one row, and one column.

{
"name_lc": "simple example dashboard",
"state": {

"widgets": {
"number_1": {

"params": {
"title": "",
"textColor": "#000",
"measureField": "count",
"fontSize": 36,
"step": "step_1"

},
"type": "NumberWidget",
"pos": {

"w": 300,
"y": 40,
"h": "auto",
"x": 40

}
}

},
"steps": {

"step_1": {
"isFacet": true,
"start": null,
"query": {

"values": [],
"order": [],
"pigql": null,
"dimensions": [],
"measures": [

[
"count",
"*"

]
],
"aggregateFilters": [],
"groups": [],
"filters": [],
"formula": null

},
"extra": {

"chartType": "hbar"

3

},
"selectMode": "single",
"useGlobal": true,
"em": "0Fb400000004CH2CAM",
"type": "aggregate",
"isGlobal": false

}
},
"layouts": {

"default": {
"page:0”: [

"number_1”
]

}
},
"cards": {}

},
"_uid": "0FK400000004CGOGA2",
"_createdBy": {

"_type": "user",
"profilePhotoUrl": "https://myorg/profilephoto/005/T",
"name": "Insights DashEditor",
"_uid": "00540000000Hew7AAC"

},
"folder": {

"_type": "folder",
"_uid": "00540000000Hew7AAC"

},
"_container": {

"_container": "0FK400000004CGOGA2",
"_type": "container"

},
"_type": "dashboard",
"edgemarts": {

"emName": {
"_type": "edgemart",
"_uid": "0Fb400000004CH2CAM"

}
},
"_createdDateTime": 1406060540,
"_permissions": {

"modify": true,
"view": true

},
"description": "",
"_url": "/insights/internal_api/v1.0/esObject/lens/0FK400000004CGOGA2/json",
"name": "Simple example dashboard",
"_lastAccessed": 1406060541,
"_files": {}

}

4

Dashboard JSON File Example

STEPS

The steps section contains the queries that you’ve clipped from the explorer.

Each step has a name that’s used to link it to a widget that’s defined elsewhere in the JSON file.

The properties of the steps section of a dashboard JSON file are:

DescriptionField Name

The alias of the dataset that this step uses.em

Extra information about the step.extra

Indicates that the step is connected to all other steps that are used in the dashboard and reference the
same dataset (true), or not (false).

isFacet

Note: Faceting works only for compact form queries (not SAQL).

Indicates whether the filter that’s specified in the query is used as a global filter (true) or not (false).
A global filter filters all other steps in the dashboard that have their useGlobal property set to true
and that reference the same dataset.

isGlobal

Note: isGlobal works only for compact form queries (not SAQL).

The query that the step uses. It can be in SAQL or compact form.query

Determines the selection interaction. The options for charts are: none, single, and
single_required. The options for list and toggle selectors are: single, single_required,
multi, and multi_required.

selectMode isn’t available for number, raw data, compare, range, date, and global filter widgets.

selectMode

The default start value or values for a step. This value is used when a dashboard is initialized or refreshed.start

The type can be set to grain, aggregate, multi, or static.type

Indicates whether the step uses the dashboard’s global filter (true) or not (false).useGlobal

Note: useGlobal works only for compact form queries (not SAQL).

IN THIS SECTION:

Static Steps

You can also populate a selector from a specified list of static values, instead of from a query.

Static Steps

You can also populate a selector from a specified list of static values, instead of from a query.

5

A static step is shown in this example. This static step is used for filtering, but static steps can also be created for groups, measures, sort
order, and limits.

"steps": {
"step_static_00null": {
"type": "static",
"dim": "Stages",
"em": "opp",
"values": [
{
"display": "1",
"value": "1",
"measure": 100000

}, {
"display": "2",
"value": "2",
"measure": 200000

}, {
"display": "3",
"value": "3",
"measure": 300000

}, {
"display": "4",
"value": "4",
"measure": 400000

}, {
"display": "5",
"value": "5",
"measure": 500000

}

6

Static StepsSteps

],
"selectMode": "single"

},

For more information, see Selection Binding in a Static Step.

7

Static StepsSteps

WIDGETS

The widgets section defines the widgets that appear in the dashboard. Each widget has a name.

The properties of the widgets section of a dashboard JSON file are:

DescriptionField Name

Widget parameters vary depending on the type of widget. The step that a widget is attached to is defined
by its step element. For detailed information about different parameters, see Widget Parameters Property
Reference.

params

The top left corner of the widget is specified by x and y. Width is w, and height is h. Measurements are in
pixels.

pos

The widget type specifies one of the other supported widget types.type

• NumberWidget

• ChartWidget

• ValuesTable

• CompareTable

• PillBox

• ListSelector

• TextWidget

• BoxWidget

• YoutubeWidget

• LinkWidget

• GlobalFiltersWidget

• RangeSelector

• DateSelector

IN THIS SECTION:

Widget Parameters Property Reference

The params property of the widgets section defines the attributes of a widget in a dashboard. Each widget has its own params
property.

SEE ALSO:

Widget Parameters Property Reference

8

Widget Parameters Property Reference

The params property of the widgets section defines the attributes of a widget in a dashboard. Each widget has its own params
property.

The parameters available for each widget depend on the widget’s type property. For example, a ChartWidget can have the
legend parameter, but a TextWidget can’t.

Some parameters are exposed and editable in the dashboard designer’s user interface as widget properties. Others are only editable via
JSON.

This example excerpt from a dashboard JSON file describes a dashboard with a single ChartWidget. The ChartWidget has four
parameters set: miniBars, chartType, sqrt, and step.

"widgets": {
"chart_1": {
"params": {
“miniBars”: 14,
“chartType”: “vbar”,
“sqrt”: true,
"step": "Customer_Name_1"

},
"type": "ChartWidget",
"pos": {
"w": 1000,
"zIndex": 0,
"y": 20,
"h": 500,
"x": 20

}
}

}

The widget properties set by the params property are:

DetailsProperty Name

Type
string

backgroundColor

Available for This Widget

• BoxWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the background.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

9

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

The default value is rgba(0, 140, 201, 0.35).

Type
string

borderColor

Available for This Widget

• BoxWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The color of the border.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

The default value is rgba(0,0,0,0.25).

Type
boolean

compact

Available for These Widgets

• ListSelector

• NumberWidget

• PillBox

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether displayed numbers are abbreviated (true) or not (false).

10

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

For example, if true, the number 48,081 appears as 48k. Although the number appears to be rounded,
it is not. The value 48,081 is preserved when performing mathematics and in charts. If false, then
48,081 appears as 48,081.

The default value is false.

Type
ConnectWaveChartTypeEnum

chartType

Available for These Widgets

• ChartWidget

• LinkWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The type of chart used to show data. Possible values are:

• calheatmap — calendar heat map

• hbar — horizontal bar

• hdot — horizontal dot plot

• heatmap — heat map

• matrix — matrix

• parallelcoords — parallel coordinates

• pie — donut

• pivottable — pivot table

• scatter — scatter plot

• stackhbar — stacked horizontal bar

• stackvbar — stacked vertical bar

• time — time line

• hdot — vertical dot plot

• vbar — vertical bar

Type
ConnectWaveLinkWidgetDestTypeEnum

destType

Available for This Widget

• LinkWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The destination type of a link. Possible values are:

• dashboard — a saved dashboard

• explore — an unsaved, active exploration session of the lens

11

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• lens — a saved lens

The default value is lens.

Type
string

destination

Available for This Widget

• LinkWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The ID of the dashboard or lens.

The default value is null.

Type
boolean

expanded

Available for These Widgets

• DateSelector

• ListSelector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether items in a list are displayed (true) or hidden (false).

If hidden (false), dashboard viewers can click the list widget to view and change list items.

The default value is true.

Type
boolean

exploreLink

Available for These Widgets

• ChartWidget

• CompareTable

• ListSelector

• PillBox

• ValuesTable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether dashboard viewers can click a link to start exploring the widget as a lens (true) or
not (false).

The default values are:

12

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• ChartWidget: true for charts that are associated with compact form lenses; false if SAQL

• CompareTable: true for charts that are associated with compact form lenses; false if SAQL

Type
boolean

fit

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether the axis of a chart is in the center of the data (true) or at (0, 0) (false).

Only applicable when chartType is set to hdot (horizontal dot plot), vdot (vertical dot plot),
parallelcoords (coordinates chart), or scatter (scatter plot).

The default value is false.

Type
integer

fontSize

Available for These Widgets

• NumberWidget

• TextWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The font size of a number or of text.

The default values are:

• NumberWidget: 36

• TextWidget: 26

Type
boolean

hideHeaderColumn

Available for These Widgets

• ChartWidget

• ValuesTable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the first column in a raw data table—which is simply a count of rows—is hidden
(true) or not (false).

The default value is false.

13

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
ConnectUri

imgUrl

Available for This Widget

• BoxWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The document Id of the displayed image file. To ensure security, the image file must be uploaded to
Salesforce as a document. If the document is not an image, or if there is no corresponding document,
then nothing is displayed.

The default value is null.

Type
boolean

includeState

Available for This Widget

• LinkWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether selections applied by a dashboard viewer are preserved in the destination after
the viewer clicks the link (true) or not (false). If a selection is incompatible with the destination
or is null, then it isn’t preserved.

The default value is false.

Type
boolean

instant

Available for These Widgets

• DateSelector

• ListSelector

• RangeSelector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
When a dashboard viewer interacts with a widget, indicates whether other faceted widgets immediately
update (true) or not (false).

When false, dashboard viewers must click Update for their changes to cascade to faceted widgets.
When true, the Update button is hidden.

The default values are:

• DateSelector: false

• ListSelector: true

14

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• RangeSelector: false

Type
boolean

legend

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to display a legend (true), or not (false).

The default value is false for all chart types except pivot table.

Type
boolean

legendHideHeader

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
Indicates whether the legend has a title (true) or not (false). The title is always the name of the
dimension that the legend describes.

The default value is false for all chart types except pivot table.

Type
integer

legendWidth

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The width of the legend area in pixels.

The default value is 145 for all chart types except pivot table.

Type
integer

maxColumnWidth

Available for These Widgets

• ChartWidget (only when chartType is hbar, heatmap, pivottable, scatter,
stackhbar, stackvbar, or vbar)

• CompareTable

• ValuesTable

15

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The maximum display size of a dimension field in pixels.

The default value is 200.

Type
string

measureField

Available for These Widgets

• ListSelector

• NumberWidget

• PillBox

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The mathematical function performed on data.

Specify the measureField in this format: <formula>_<field>.

<formula> must match one of the formulas specified in the measures step property. Possible
values for <formula> are:

• avg — calculate the mathematical average (mean)

• max — the maximum value

• min — the minimum value

• sum — add all the values

• unique — count the number of unique values

<field> must match the name of the dimension that is paired with the <formula> specified in
measures.

For example, if the measures step property is:

"measures”: [
[
"sum”,
"Profit”

],
[
"avg”,
"Discount”

]
]

Then measureField must be sum_Profit or avg_Discount. The measureField can’t
be avg_Profit because avg and Profit aren’t paired together in the measures step
property.

16

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

The default value is null.

Type
integer

minColumnWidth

Available for This Widget

• ChartWidget (only when chartType is hbar, heatmap, pivottable, scatter,
stackhbar, stackvbar, or vbar)

• CompareTable

• ValuesTable

Exposed in the Dashboard Designer’s User Interface
No. Only editable via JSON.

Description
The minimum display size of a dimension field in pixels.

The default value is 30.

Type
integer

miniBars

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The display size in pixels of bars in bar charts.

The default value is 0 (available only for bar charts and column charts).

Type
boolean

multiMetrics

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether two or more measures are displayed as adjacent bars under each grouping (true)
or as individual, adjacent graphs (false).

The default value is false (available only for bar charts and column charts).

Type
boolean

normalize

Available for This Widget

• ChartWidget

17

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear scale (false).

The default value is false (available only for stackhbar and stackvbar).

Type
boolean

splitAxis

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether each dimension in a chart is measured on its own axis (true) or a shared axis (false).

Only applicable when multiMetrics is true.

The default value is false (available only for bar charts and column charts).

Type
boolean

sqrt

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether charts are displayed using a logarithmic scale (true) or a linear scale (false).

The default value is false (available only for bar charts, column charts, line charts, and time series).

Type
string

step

Available for These Widgets

• CompareTable

• DateSelector

• GlobalFiltersWidget

• ListSelector

• NumberWidget

• PillBox

• RangeSelector

• ValuesTable

18

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The name of the lens that supplies data for the widget.

The default value is null.

Type
boolean

stretch

Available for This Widget

• BoxWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether an image’s width and height are set to the same values of the widget’s width and
height (true) or not (false).

The default value is false.

Type
string

text

Available for This Widget

• TextWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The message rendered in a text widget. For example, if text is assigned the value “Hello,
World!”, then “Hello, World!” appears in the text widget.

The default value is null.

Type
string

textAlignment

Available for This Widget

• NumberWidget

• TextWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The alignment of text. Possible values include left, center, and right. If no value is specified, text
alignment defaults to center.

The default values are:

19

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• NumberWidget: right

• TextWidget: center

Type
string

textColor

Available for These Widgets

• NumberWidget

• TextWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description

The font color of text.

Specify the color in this format: rgb(a, b, c, d).

Using a number between zero and 255, a indicates how much red is in the color, b how much green,
and c how much blue. A value of 0 indicates the absence of a color, and a value of 255 indicates the full
expression of a color.

Using a number between zero and one, d indicates the level of transparency. A value of 0 is invisible
and 1 is opaque.

For example, rgb(0, 0, 0, 0.93) sets the color to a nearly opaque black. rgb(255, 0,
0, 0.14) sets the color to a nearly invisible red.

Alternatively, the color can be set using hexadecimal notation. When using hexadecimal notation,
transparency can’t be set. All hexadecimal colors default to opaque. #000000 indicates black in
hexadecimal. #ff0000 indicates red.

The default value is #000.

Type
string

title

Available for These Widgets

• DateSelector

• ListSelector

• NumberWidget

• PillBox

• RangeSelector

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The title of a widget.

The default value is null.

20

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

Type
boolean

totals

Available for These Widgets

• ChartWidget

• CompareTable

• ValuesTable

Exposed in the Dashboard Designer’s User Interface
Yes

Description
Indicates whether to include a row that displays the sum of all the values in each measure column (true)
or not (false).

Always applicable to CompareTable and ValuesTable. Only applicable to ChartWidget
when ChartWidget is set to pivottable.

The default value for ChartWidget is false (available only for pivot table).

Type
boolean

trellis

Available for This Widget

• ChartWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
When a lens has two or more groups and one measure, indicates whether the last grouping applied is
displayed on its own axis (true) or on the same axis as the other groupings (false).

The default value for ChartWidget is false (available only for bar charts and column charts).

Type
string

videoSize

Available for This Widget

• YoutubeWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The dimensions of a YouTube video. Possible values are:

• (4/3) 240 x 180

• (4/3) 420 x 315

• (4/3) 480 x 360

• (4/3) 640 x 480

• (4/3) 960 x 720

21

Widget Parameters Property ReferenceWidgets

DetailsProperty Name

• (16/9) 320 x 180

• (16/9) 560 x 315

• (16/9) 640 x 360

• (16/9) 853 x 480

• (16/9) 1280 x 720

The default value is (4/3) 240 x 180.

Type
ConnectUri

youtubeUrl

Available for This Widget

• YoutubeWidget

Exposed in the Dashboard Designer’s User Interface
Yes

Description
The URL of a YouTube video.

The default value is null.

SEE ALSO:

Widgets

22

Widget Parameters Property ReferenceWidgets

QUERY

The query section defines the query for that step.

The properties of the query section of a dashboard JSON file are:

DescriptionField Name

The SAQL query to use. The SAQL language is a real-time query language that uses data flow to align results.
It enables on-demand analysis of data that’s stored in datasets.

pigql

The dimensions to use are specified this way:

"dimensions": ["Department"]

dimensions

The measures to use are specified this way:

"count", "*", null, {
"display": "% of total flights"

}

measures

Specify for both compact and SAQL query formats. Specify for SAQL queries so that the associated chart
widget can render the correct projections. You can change the UI label of a measure by setting the display
option.

Values are used with the grain step type in a step for a raw data table widget. Values list the columns to
include in a grain or raw data table. For example:

"step_grain": {
"type": "grain",

values

"em": "opp",
"query": {
"values": ["Amount", "Owner-Name", "Name", "Account-Name",

"StageName", "ForecastCategory", "Current Age", "Time to Win"],
}

}

Specify values for both compact and SAQL query formats.

The filter conditions to apply to the data. Here’s an example of a simple filter condition to include only rows
that have the destination "SFO", "LAX", "ORD", or "DFW":

"filters": [["dest", ["SFO", "LAX", "ORD", "DFW"]]]

filters

The dimension to group by. For example, "groups": ["carrier"]. Specify groups for both compact
and SAQL query formats.

groups

The sort order is specified this way:

"order": [[-1, { "ascending": false }]]

order

The value –1 indicates that the ordering is done for the first measure. To order the results in ascending order,
set ascending to true. To order the results in descending order, set ascending to false. If you

23

DescriptionField Name

don’t want to impose a specific order, specify empty brackets this way: "order": []. Can be specified
for both compact and SAQL query formats.

The number of results to return. For example, "limit": 10. The results that the limit statement returns
aren’t automatically ordered, so use this statement only with data that has been ordered.

limit

Formula is used with the multi step type in a step for a compare table. A multi type step includes
multiple subqueries. You can use the basic mathematical operators *, /, -, +, (, and) to create a formula

formula

to reference other subqueries in the step. To reference other subqueries, use the automatically assigned
names: “A” is the first query, “B” is the second query, and so on.

"step_comptable": {
"type": "multi",
"em": "opp",
"isFacet": true,
"useGlobal": true,
"query": {
"columns": [
{
"header": "Opptys Won",
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Won"]], ["Close

Date", [[["year", -1], ["year", 0]]]]],
"measures": [["count", "*"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Won ($)",
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Won"]]],
"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"sort": {
"asc": false,
"inner": false

},
"header": "Opptys Won ($)",
"showBars": true,
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Won"]]],
"measures": [["sum", "Amount"]],

24

Query

DescriptionField Name

"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Lost"]]],
"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Opptys Lost ($)",
"showBars": true,
"query": {
"pigql": null,
"filters": [["StageName", ["5 - Closed-Lost"]]],
"measures": [["sum", "Amount"]],
"values": [],
"groups": ["Owner-Name"],
"formula": null,
"order": []

}
}, {
"header": "Win-Loss (%)",
"query": {
"groups": ["Owner-Name"],
"filters": [["StageName", ["5 - Closed-Lost"]]],
"measures": [["sum", "Amount"]],
"values": [],
"pigql": null,
"formula": "B/(B+D)*100",
"order": []

}
}

]
}

}
},

Automatically generated. Don’t modify.aggregateFilters

Automatically generated. Don’t modify.facet_filters

25

Query

Within the query section of a step, you can manually insert bindings. To do so, use templates—expressions that are embedded in double
braces ({{ }}) and that get replaced with the current state of the step that they’re attached to—as in the following example:

"filters": [["carrier", "{{ selection(step1) }}"], ["dest", "{{ filter(step1, 'dest') }}"],
["origin", "{{ filter(step1, 'origin') }}"]]

IN THIS SECTION:

Query Example

This example shows a dashboard that contains two queries.

Query Example

This example shows a dashboard that contains two queries.

The first bar chart is connected to a step ("step3") that contains a query that uses SAQL. The second bar chart is connected to a step
("step2") that contains a compact form query. Both the compact and the SAQL steps have selection filters that are bound to "step1".
Clicking one chart filters the others.

In "step3", the full SAQL query is placed within the "piqgl": reference. The SAQL query is used instead of the compact query
references. However, the compact form elements of "groups" and "measures" still need to be specified, so that the associated
chart widget can render the correct projections. (For a "grain" type query, "values" is always specified.) In this example, the
'sum_miles' and 'count' projections in the SAQL query are then referenced in measures as [["sum", "miles"],
["count", "*"]]. Measure projections in the SAQL always include the aggregation underscore (_) and the name of the measure
('sum_miles') so that they can be referenced in the compact form "measures": [["sum", "miles"].

For more information about SAQL, see the Explorer SAQL Reference.

26

Query ExampleQuery

{
"steps": {
"step1": {
"type": "aggregate",
"em": "airline",
"query": {
"groups": ["carrier"],
"filters": [["dest", ["SFO", "LAX", "ORD", "DFW"]]],
"measures": [["count", "*"]],
"order": [
[
-1, {
"ascending": false

}
]

],
"limit": 3

}
},
"step2": {
"type": "aggregate",
"em": "airline",

27

Query ExampleQuery

"query": {
"groups": ["dest"],
"filters": [["carrier", "{{ selection(step1) }}"], ["dest", "{{ filter(step1,

'dest') }}"], ["origin", "{{ filter(step1, 'origin') }}"]],
"measures": [["sum", "miles"], ["count", "*"]],
"order": [
[
-1, {
"ascending": false

}
]

]
}

},
"step3": {
"type": "aggregate",
"em": "airline",
"query": {
"pigql": "q = load \"airline\";\nq = filter q by 'carrier' in {{ selection(step1)

}};\nq = filter q by 'dest' in {{ filter(step1, 'dest') }};\nq = filter q by 'origin' in
{{ filter(step1, 'origin') }};\nq = group q by 'dest';\nq = foreach q generate 'dest' as
'dest', sum('miles') as 'sum_miles', count() as 'count';\nq = order q by 'count' desc;",

"groups": ["dest"],
"measures": [["sum", "miles"], ["count", "*"]]

}
}

},
"widgets": {
"barchart1": {
"type": "ListSelector",
"pos": {
"x": 10,
"y": 10,
"w": 270,
"h": 180

},
"params": {
"step": "step1"

}
},
"text2": {
"type": "TextWidget",
"pos": {
"x": 310,
"y": 10

},
"params": {
"text": "chart with pigql step:",
"textColor": "#f00"

}
},
"barchart2": {
"type": "ChartWidget",

28

Query ExampleQuery

"pos": {
"x": 310,
"y": 30,
"w": 400,
"h": 280

},
"params": {
"step": "step2",
"chartType": "hbar"

}
},
"text3": {
"type": "TextWidget",
"pos": {
"x": 310,
"y": 280

},
"params": {
"text": "chart with compact form step:",
"textColor": "#f00"

}
},
"barchart3": {
"type": "ChartWidget",
"pos": {
"x": 310,
"y": 300,
"w": 400,
"h": 280

},
"params": {
"step": "step3",
"chartType": "hbar"

}
}

}
}

29

Query ExampleQuery

BINDINGS

After you define steps, you bind them to the widgets.

The kinds of bindings are:

• Selection binding

• Results binding

Selection Binding

When a user makes a selection on a widget in a dashboard, that selection value can be used to update other steps and widgets to make
the dashboard interactive. This action is referred to as faceting.

When you build a dashboard with the dashboard builder UI, by default, everything is faceted. The “isFaceted” option for each step takes
care of bidirectional selection bindings between steps of the same dataset. However, you can modify a dashboard JSON file directly to
manually specify the relationships between the various steps to achieve the following.

• Selection bindings between steps of different datasets

• Unidirectional selection binding

• Selection binding for a static step

Results Binding

Results binding is used to filter a step by using the values that result from another step. This type of binding is typically used across
multiple datasets. An example of when results binding is useful is when you want to filter opportunities by top-selling products.

step_all_salesreps:
type: "aggregate"
em: "opp"
query:
groups: ["Owner-Name"]
filters: [
["StageName", ["5 - Closed-Won"]]
["Products", "{{ results(step_top5_products) }}"]
]
measures: [["sum", "Amount"]]

In the following example, the resulting sum of miles from the first step ("all_miles") is used in the second step to calculate the
average.

"steps": {
"all_miles": {
"type": "aggregate",
"em": "airline",
"query": {
"measures": [["sum", "miles"], ["count", "*"]]

}
},

30

"step_percent": {
"type": "aggregate",
"em": "airline",
"query": {
"pigql": "q = load \"airline\";\nq = group q by 'carrier';\nq =

foreach q generate 'carrier' as 'carrier', sum('miles')/{{
value(results(all_miles, 'sum_miles')) }} * 100 as 'sum_miles',
count()/{{ value(results(all_miles, 'count')) }} * 100 as 'count';\nq =
order q by 'sum_miles' desc;",

"groups": ["carrier"],
"order": [
[
["sum", "miles"], {
"ascending": false

}
]

],
"measures": [
[
"sum", "miles", null, {
"display": "% of total miles"

}
], [
"count", "*", null, {
"display": "% of total flights"

}
]

]
}

}

IN THIS SECTION:

Selection Binding in a Static Step

Almost all parts of a step can include a selection binding to the results of a prior query.

Bind a Static Filter and Group Selector to a Query

Static filters or group selectors can be bound to a query that’s written in SAQL.

Relative Dates in a Static Filter Selector

Static steps can use relative dates to filter queries.

Binding Operations

You can use several additional operations with results and selection bindings to extract the correct results.

Selection Binding in a Static Step

Almost all parts of a step can include a selection binding to the results of a prior query.

In an aggregate query, the fields that can be included in a selection binding are:

• Group

• Measure

31

Selection Binding in a Static StepBindings

• Filters

• Sort

• Limit

Use Static Steps for Binding Any Part of a Query
This example shows a dashboard with static steps and selection bindings in multiple parts of a query.

In the following example:

• The static step step_filter_dim populates the "List of Products" list selector. It includes options that have multiple
values.

• The static step step_group populates the group toggle selector. "Product" is the default value when the dashboard is
initialized, because the start value is "Product". The display values change the display name in the user interface.

• The static step step_measure populates the measure toggle selector.

• The static step step_order populates the order toggle selector.

• The static step step_limit populates the limit toggle selector.

• The aggregate step query step_quarterly_bookings is grouped by close-date year and quarter.

• The aggregate step query step_top_10 has groupings that are dependent on the selection option from the static step_group.
The start value will be the "Product" grouping (based on step_group).

{
"steps": {
"step_filter_dim": {
"type": "static",
"dim": "Product",
"em": "opp",
"selectMode": "single",

32

Selection Binding in a Static StepBindings

"values": [
{
"value": ["EKG Machine"]

}, {
"value": ["Energist FRx"]

}, {
"value": ["GE Mammography Machine", "GE HiSpeed DXi", "GE Stress System"]

}, {
"value": ["HP MRI Machine", "HP Cardiac 64D"]

}, {
"value": ["Hyfrecator"]

}, {
"value": ["Siemens Dental System", "Siemens CR950"]

}, {
"value": ["VolMED Ultrasound"]

}
],
"isFacet": true

},
"step_group": {
"type": "static",
"values": [
{
"display": "Owner",
"value": ["Owner-Name"]

}, {
"display": "Product/Stage",
"value": ["Product", "StageName"]

}, {
"display": "Product",
"value": ["Product"]

}, {
"display": "Stage",
"value": ["StageName"]

}
],
"start": [["Product"]],
"selectMode": "single"

},
"step_measure": {
"type": "static",
"values": [
{
"display": "$",
"value": [["sum", "Amount"]]

}, {
"display": "#",
"value": [["count", "*"]]

}
],
"start": [[["sum", "Amount"]]],
"selectMode": "single_required"

},
"step_order": {

33

Selection Binding in a Static StepBindings

"type": "static",
"values": [
{
"display": "desc",
"value": false

}, {
"display": "asc",
"value": true

}
],
"selectMode": "single_required"

},
"step_limit": {
"type": "static",
"values": [
{
"display": "top 5",
"value": 5

}, {
"display": "top 10",
"value": 10

}, {
"display": "top 100",
"value": 100

}
],
"start": [100],
"selectMode": "single_required"

},
"step_quarterly_bookings": {
"type": "aggregate",
"em": "opp",
"query": {
"groups": [["CloseDate_Year", "CloseDate_Quarter"]],
"measures": [["sum", "Amount"]]

},
"isFacet": true,
"useGlobal": true

},
"step_top_10": {
"type": "aggregate",
"em": "opp",
"query": {
"groups": "{{ selection(step_group) }}",
"measures": "{{ selection(step_measure) }}",
"order": [
[
-1, {
"ascending": "{{ value(selection(step_order)) }}"

}
]

],
"limit": "{{ value(selection(step_limit)) }}"

},

34

Selection Binding in a Static StepBindings

"isFacet": true
}

},
"widgets": {
"sel_list_filter_dim": {
"type": "ListSelector",
"pos": {
"x": 860,
"y": 90,
"w": 290,
"h": 288

},
"params": {
"step": "step_filter_dim",
"title": "List of Products",
"expanded": true,
"instant": true

}
},
"sel_list_filter_compound_dim": {
"type": "ListSelector",
"pos": {
"x": 860,
"y": 390,
"w": 290,
"h": 288

},
"params": {
"step": "step_quarterly_bookings",
"title": "List of Quarters",
"expanded": true,
"instant": true

}
},
"sel_group": {
"type": "PillBox",
"pos": {
"x": 10,
"y": 10

},
"params": {
"title": "group",
"step": "step_group"

}
},
"sel_measure": {
"type": "PillBox",
"pos": {
"x": 380,
"y": 10

},
"params": {
"title": "mea",
"step": "step_measure"

35

Selection Binding in a Static StepBindings

}
},
"sel_order": {
"type": "PillBox",
"pos": {
"x": 480,
"y": 10

},
"params": {
"title": "order",
"step": "step_order",
"start": true

}
},
"sel_limit": {
"type": "PillBox",
"pos": {
"x": 620,
"y": 10

},
"params": {
"title": "limit",
"step": "step_limit"

}
},
"widget1": {
"type": "ChartWidget",
"pos": {
"x": 10,
"y": 110,
"w": 830,
"h": 330

},
"params": {
"chartType": "hbar",
"step": "step_top_10"

}
}

}
}

Bind a Static Filter and Group Selector to a Query

Static filters or group selectors can be bound to a query that’s written in SAQL.

Templates are expressions, embedded in double braces ({{ }}), that get replaced with the current state of the step that they’re attached
to.

36

Bind a Static Filter and Group Selector to a QueryBindings

For example, this dashboard contains a static filter widget that contains a list of accounts. The dashboard also contains a group selector
widget that lets users indicate whether to group by account or product. When a user makes a selection, the chart is updated accordingly.
The part of the query that controls the filtering is:

q = filter q by 'Account-Name' in {{ selection(step_Account_Owner_Name_2) }};

The step that’s named step_Account_Owner_Name_2 is configured as a selection binding so that it picks up the current selection
state. Because it’s within the double braces, the value of that selection is substituted and used in the query.

The part of the query that controls the grouping is:

q = group q by {{ single_quote(value(selection(step_StageName_3))) }};
q = foreach q generate {{ single_quote(value(selection(step_StageName_3))) }} as {{
value(selection(step_StageName_3)) }}, sum('Amount') as 'sum_Amount', count() as 'count'";

If a user selects Product in the group selector widget, the actual query that’s passed to the query engine contains:

q = group q by 'Product';
q = foreach q generate 'Product' as "Product", sum('Amount') as 'sum_Amount', count() as
'count';

Note: To view the query that’s used to update the chart, open your browser’s JavaScript console and type
edge.log.query=true. On the dashboard, select a different group. The new query appears in the console unless the query
is cached.

"steps": {
"step_Account_Name_1": {
"isFacet": false,
"query": {
"pigql": "q = load \"opp\";\nq = filter q by 'Account-Name' in {{

selection(step_Account_Owner_Name_2) }};\nq = group q by {{
single_quote(value(selection(step_StageName_3))) }};\nq = foreach q generate {{
single_quote(value(selection(step_StageName_3))) }} as {{ value(selection(step_StageName_3))
}}, sum('Amount') as 'sum_Amount', count() as 'count'",

"groups": "{{ selection(step_StageName_3) }}",
"measures": [["sum", "Amount"]]

37

Bind a Static Filter and Group Selector to a QueryBindings

},
"extra": {
"chartType": "hbar"

},
"selectMode": "none",
"useGlobal": true,
"em": "opp",
"type": "aggregate",
"isGlobal": false

},
"step_Account_Owner_Name_2": {
"dim": "Account-Name",
"isFacet": false,
"values": [
{
"value": ["Lakeside Med", "Hospital at Gulfport", "Hospital at Carbondale"],
"display": "Arbuckle Laboratories, Arbuckle Laboratories - Austria, Arbuckle

Laboratories - France"
}, {
"value": ["Health University Med"],
"display": "Health University Med"

}, {
"value": ["Canson"],
"display": "Canson"

}, {
"value": ["ComputeWise"],
"display": "ComputeWise"

}, {
"value": ["Dixon Chemical", "Dixon Chemical - Spain"],
"display": "Dixon Chemical, Dixon Chemical - Spain"

}, {
"value": ["EarthNet"],
"display": "EarthNet"

}, {
"value": ["Ecotech - Germany", "Ecotech - HQ"],
"display": "Ecotech - Germany, Ecotech - HQ"

}
],
"selectMode": "multi",
"useGlobal": true,
"em": "opp",
"type": "static",
"isGlobal": false

},
"step_StageName_3": {
"isFacet": false,
"values": [
{
"value": ["Account-Name"],
"display": "Account"

}, {
"value": ["Product"],
"display": "Product"

}

38

Bind a Static Filter and Group Selector to a QueryBindings

],
"useGlobal": true,
"em": "opp",
"type": "static",
"selectMode": "single_required",
"isGlobal": false

}
}

Relative Dates in a Static Filter Selector

Static steps can use relative dates to filter queries.

This example demonstrates how to create a static step that uses relative dates to filter another query.

{
"step_date_static": {

"type": "static",
"dim": [

[
"CreatedDate_Year",
"CreatedDate_Month"

]
],
"values": [

{
"display": "last 6 years",
"value": [

[
[

"year",
-6

],
[

"year",
0

]
]

]
},
{

"display": "last 5 years",
"value": [

[
[

"year",
-5

],
[

"year",
0

]
]

39

Relative Dates in a Static Filter SelectorBindings

]
}

],
"selectMode": "single_required"

},
"compact_step_faceted_by_static": {

"type": "aggregate",
"em": "opp",
"query": {

"groups": [
"Product"

],
"filters": [

[
"CreatedDate",
"{{selection(step_date_static)}}"

]
],
"measures": [

[
"sum",
"Amount"

]
],
"limit": 2000

},
"isFacet": false

},
"pigql_step_faceted_by_static": {

"type": "aggregate",
"em": "opp",
"query": {

"pigql": "q = load \"opp\";\nq = filter q by date('CreatedDate_Year',
'CreatedDate_Month', 'CreatedDate_Day') in
{{selection(step_date_static)}};\nq = group q by 'Product';\nq =
foreach q generate 'Product' as 'Product', sum('Amount') as
'sum_Amount', count() as 'count';\nq = limit q 2000;",

"groups": [
"Product"

],
"measures": [

[
"sum",
"Amount"

]
]

},
"isFacet": false,
"useGlobal": true

}
}

40

Relative Dates in a Static Filter SelectorBindings

Binding Operations

You can use several additional operations with results and selection bindings to extract the correct results.

value()
The value() operation is used to get a selector array value and convert it to a single value (or null if the array is empty).

single_quote()
The single_quote() operation is typically used in selection bindings in a SAQL step to correctly format the "group" and "foreach
generate" lines in the query. The single_quote() operation takes an array of values and converts double quotes into single
quotes and square brackets into parentheses. For example: "Owner-Name" converts to 'Owner-Name', and ["Owner-Name",
"Owner-Region"] converts to ('Owner-Name', 'Owner-Region').

Consider the following static selector, with the array values ["Account-Name"] and ["Product"]:

{
"step_StageName_3": {

"isFacet": false,
"values": [

{
"value": [

"Account-Name"
],
"display": "Account"

},
{

"value": [
"Product"

],
"display": "Product"

}
],
"useGlobal": true,
"em": "opp",
"type": "static",
"selectMode": "single_required",
"isGlobal": false

}
}

The following example binds the array values to a SAQL query that requires the "group by" and "foreach generate" values
to use single quotes. Therefore single_quote() converts ["Account-Name"] to 'Account-Name'.

{
"step_Account_Name_1": {

"isFacet": false,
"query": {

"pigql": "q = load \"opp\";\nq = group q by
{{ single_quote(value(selection(step_StageName_3))) }};\nq =
foreach q generate {{ single_quote(value(selection(step_StageName_3)))
}} as {{ single_quote(value(selection(step_StageName_3)) }},

41

Binding OperationsBindings

sum('Amount') as 'sum_Amount', count() as 'count'",
"groups": "{{ selection(step_StageName_3) }}",
"measures": [

[
"sum",
"Amount"

]
]

},
"extra": {

"chartType": "hbar"
},
"selectMode": "none",
"useGlobal": true,
"em": "opp",
"type": "aggregate",
"isGlobal": false

}
}

The resulting query is:

q = load "opp";\nq = group q by 'Account-Name';\nq =
foreach q generate 'Account-Name' as 'Account-Name', sum('Amount') as
'sum_Amount', count() as 'count'

no_quote()
The no_quote()operation is typically used in selection bindings in a SAQL step to correctly format the "order" line in a query.
The no_quote() operation takes an array of values and converts double quotes and square brackets into no quotes. For example,
["desc"] converts to desc.

Consider the ["desc"] and ["asc"] array values that are specified in the following static step:

{
"step_order": {

"type": "static",
"values": [

{
"display": "desc",
"value": [

"desc"
]

},
{

"display": "asc",
"value": [

"asc"
]

}
],
"selectMode": "single_required"

}
}

42

Binding OperationsBindings

The following example binds the array values into a SAQL step:

q = order q by 'Amount' {{ no_quote(value(selection(step_order))) }}

The desc or asc value is inserted without any quotes:

q = order q by 'Amount' desc

field()
The field() operation creates a field for each object in an array.

Three field values are assigned to the "$" and "#" options in this static step (step_measure): "compact", "alias", and
"proj":

{
"step_measure": {

"type": "static",
"values": [

{
"display": "$",
"value": [

{
"compact": [["sum", "Amount"]],
"alias": "sum_Amount",
"proj": "sum('Amount')"

}
],
"display": "#",
"value": [

{
"compact": [["count", "*"]],
"alias": "count",
"proj": "count()"

}
]

}
],
"selectMode": "single_required"

}
}

After being assigned, each field value can be referenced in other step selection bindings by using the field() operation.

For example, when a dashboard user clicks # in the toggle selector that uses step_measure, the SAQL query in this aggregate step
(step_top_10) references the "proj" field to insert a count() function, the "alias" field to insert "count" as a string,
and the "compact" field to insert [["count", "*"]].

{
"step_top_10": {
"type": "aggregate",
"em": "opp",
"query": {
"pigql":
"q = load 'edgemarts/Opportunity/OpportunityEM';
q = group q by 'Account_Name';

43

Binding OperationsBindings

q = foreach q generate
'Account_Name' as 'Account_Name',
{{ no_quote(value(field(selection(step_measure),'proj'))) }}
as {{ single_quote(value(field(selection(step_measure), 'alias'))) }};

q = order q by {{ single_quote(value(field(selection(step_measure), 'alias'))) }}
{{ no_quote(value(field(selection(step_order), 'pigql'))) }};

q = limit q {{ value(selection(step_limit)) }};",
"groups": ["Account_Name"],
"measures": "{{ value(field(selection(step_measure), 'compact')) }}",
"order":
[[-1, { "ascending": "{{ value(field(selection(step_order), 'compact')) }}" }]]

},
"isFacet": true
}

}

44

Binding OperationsBindings

LAYOUTS

Add a layouts section to your dashboard’s JSON definition to customize its appearance on mobile devices.

There are two types of dashboard layouts:

Absolute (default layout)
If no layouts section is defined in your dashboard’s JSON, then the dashboard’s layout is absolute.

The absolute layout is optimized for display in a Web browser on a desktop or laptop computer.

Grid
If a layouts section is present in your dashboard’s JSON, then the dashboard’s layout is grid.

The grid layout lets you optimize the position, order, and size of the widgets in your dashboard for display on mobile devices. The
grid layout is made up of rows, columns, and cells, as well as pages. Each cell in the grid can contain zero or more widgets. The
number of rows, columns, and cells in your grid layout depend on the number of widgets and the number of pages.

A dashboard with an absolute layout looks great in a Web browser:

The same dashboard with an absolute layout may not render well on a smart phone:

45

By using a grid layout with two pages, the dashboard renders perfectly on a smart phone:

IN THIS SECTION:

Use a Grid Layout for Your Dashboard

Use a grid layout to customize your dashboard’s appearance on mobile devices.

46

Layouts

Understanding Column, Row, and Cell Sizing in Grid Layouts

Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

Layouts Specification

The “layouts” section is used to customize how dashboards display on mobile devices.

Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, padding, and more.

Use a Grid Layout for Your Dashboard

Use a grid layout to customize your dashboard’s appearance on mobile devices.

1. Find your dashboard’s JSON by following the instructions in View or Modify a Dashboard JSON File.

2. Add a layouts section to your dashboard’s JSON.

For example, this layouts section defines a grid layout with two pages, two rows of widgets on each page. The first page has
one widget on each row. The second page has two widgets on the first row, and one widget on the second row.

"layouts": {
"default": {
"page:0": [
"buttongroup_2",
"chart_1"
],
"page:1": [
"dimfilter_1 | dimfilter_3",
"chart_1"
]
}
}

3. Optionally, customize the layout of your dashboard by setting attributes for each widget and row.

For example, the layouts from step two can be updated to include widget and row attributes. The first row on the first page has
a row height of 300 pixels. The chart widget on the second page has a width of two columns.

"layouts": {
"default": {
"page:0": [
"buttongroup_2" | row:{height=300}”,
"chart_1"
],
"page:1": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"
]
}
}

4. Optionally, set device-specific and orientation-specific layouts for your dashboard.

47

Use a Grid Layout for Your DashboardLayouts

For example, the layouts from step three can be updated to use only one page when viewed on an iPad in landscape mode:

"layouts": {
"default": {
"page:0": [
"buttongroup_2",
"chart_1"
],
"page:1": [
"dimfilter_1 | dimfilter_3",
"chart_1 {colspan=2}"
]
},
“device:ipad, orientation:landscape”:{
“page:0”: [
“dimfilter_1 | dimfilter_3 | buttongroup_2”,
“chart_1 {colspan=3}”
]
}
}

5. From the dashboard JSON page, click update lens to save your dashboard’s edited JSON.

6. Test your dashboard’s new grid layout by viewing the dashboard on a mobile device.

SEE ALSO:

Layouts Specification

Layouts Attribute Reference

Layouts Specification

Understanding Column, Row, and Cell Sizing in Grid Layouts

Widgets size, row size, and the number of columns are determined dynamically, but can also be specified in the JSON.

How Column Number and Size Are Set
The number of columns in your grid layout is equivalent to the number of widgets in your rows. If there are three widgets in each row,
then the dashboard has three columns. If your grid layout has two rows with four widgets in row one and five widgets in row two, then
the dashboard has five columns. If the colspan attribute specifies a number of columns greater than the number of widgets in any
row, then the dashboard adds columns to accommodate the colspan attribute.

For example, a dashboard with this layouts section has three columns on the first page and two columns on the second page:

"layouts": {
"default": {
"page:0": [
"buttongroup_2",
"chart_1 {colspan=3}"
],
"page:1": [
"dimfilter_1 | dimfilter_3",
"chart_1"

48

Understanding Column, Row, and Cell Sizing in Grid LayoutsLayouts

]
}
}

Remember these tips when determining how many columns are in your grid layout:

• All columns have the same width. If your dashboard has four columns, then each column is half the width of a dashboard with two
columns.

• Each page of a dashboard independently determines how many columns appear. For example, a dashboard can have three columns
on page one, and four columns and page two.

• Every dashboard has at least one column.

• There is no limit to the number of columns that a dashboard can have. If you add too many columns, then column width could
become impracticably small. Remember to test your layout for usability!

How Row Number and Height Are Set
For each row, here’s how height is calculated:

• If a row height is set using the height attribute, then the row’s height is equal to the specified value.

• If one or more widgets in the row has a preferred height, then the row’s height is equal to that of whichever preferred height is
tallest.

• If there is no height attribute and none of the row’s widgets have a preferred height, then the row’s height dynamically grows
to occupy the available space. If multiple rows grow dynamically, then their heights are equal to one another. For example, if there
are 200 pixels of available space, and two rows with dynamically set heights, then each row has a height of 100 pixels.

How Widgets Are Sized
Some widgets have absolute sizes, and some scale dynamically.

Height Scaling
Behavior

Width Scaling
Behavior

Has a Fixed Height?Has a Fixed Width?Widget

Don’t scaleDon’t scaleYesYesLink

Scale to fit textScale to fit textIf one line long, yes.

If more than one line
long, no.

NoText

Don’t scaleScaleYesNoPillButton

ScaleScaleNoNoBox

ScaleScaleNoNoChart

Don’t scaleScaleYesNoList

Don’t scaleScaleYesNoRange

Don’t scaleScaleYesNoNumber

49

Understanding Column, Row, and Cell Sizing in Grid LayoutsLayouts

Layouts Specification

The “layouts” section is used to customize how dashboards display on mobile devices.

In a dashboard’s JSON file, the “layouts” section is a child of the “state” section and a sister of the “widgets” and “steps”
sections. Here is an example of a typical “layouts” section:

"layouts": {
"default": {
"page:0": [
"widget_name_1",
"widget_name_2"
],
"page:1": [
"widget_name_3 | widget_name_4",
"widget_name_2 {attribute=2}"
]
},
“device:ipad, orientation:landscape”:{
“page:0”: [
“widget_name_1 | widget_name_3 | widget_name_4 | row: {attribute=300}”,
“widget_name_2 {widget_name=3}”
]
}
}

In the prior example, widget_name refers to a specific widget named in the “widgets” section of the JSON file. Attribute
refers to one of the attributes listed in the Layouts Attribute Reference. Cells are delimited by the pipe character (|) with a space on
either side of the pipe (|). Rows are delimited by a comma (,).

Here’s a simple “layouts” section that has four widgets on four rows in a single column on a single page:

"layouts": {
"default": {
"page:0": [
"buttongroup_1",
"dimfilter_1",
“dimfilter_2”,
“chart_1”
]
}
}

A more complex “layouts” section can be used to set device-specific and orientation-specific display rules. The following
“layouts” section lays out the dashboard’s widgets on two pages. The first page’s first row has a height of 300 pixels. The second
page has two rows and two columns. One of the cells in the first row contains two widgets. One of the box widgets has three attributes
set. The chart widget spans two columns. If the dashboard is viewed on an iPad in landscape mode, then only one page with two rows
is shown. The first row has three widgets and the second row has one widget that spans three columns.

"layouts": {
"default": {
"page:0": [
"buttongroup_2 | row: {height=300}",
"chart_1"
],

50

Layouts SpecificationLayouts

"page:1": [
"dimfilter_1 | dimfilter_2, box_1 {zIndex=-1, vpad=5, hpad=5}”,
"chart_1 {colspan=2}"
]
},
“device:ipad, orientation:landscape”:{
“page:0”: [
“dimfilter_1 | dimfilter_2, box_1 {zIndex=-1, vpad=5, hpad=5} | buttongroup_2”,
“chart_1 {colspan=3}”
]
}
}

Here’s an example dashboard JSON file that includes a “layouts” section:

{
"name_lc": "purchases by customer",
"state": {
"widgets": {
"buttongroup_1": {
"params": {
"measureField": "count",
"step": "Region_3"
},
"type": "PillBox",
"pos": {
"w": 280,
"zIndex": 1,
"y": 30,
"x": 540
}
},
"chart_1": {
"params": {
"chartType": "vbar",
"step": "Customer_Name_1"
},
"type": "ChartWidget",
"pos": {
"w": 810,
"zIndex": 0,
"y": 150,
"h": 470,
"x": 10
}
},
"dimfilter_1": {
"params": {
"measureField": "count",
"expanded": false,
"step": "Customer_Name_1"
},
"type": "ListSelector",
"pos": {
"w": 250,

51

Layouts SpecificationLayouts

"zIndex": 100001,
"y": 50,
"h": 50,
"x": 10
}
},
"dimfilter_2": {
"params": {
"measureField": "count",
"expanded": false,
"step": "Product_Name_2"
},
"type": "ListSelector",
"pos": {
"w": 250,
"zIndex": 100002,
"y": 50,
"h": 50,
"x": 280
}
}
},
"steps": {
"Region_3": {
"isFacet": true,
"start": null,
"query": {
"measures": [
[
"count",
"*"
]
],
"groups": [
"Region"
]
},
"extra": {
"chartType": "hbar"
},
"selectMode": "single",
"useGlobal": true,
"em": "SuperStoreSales",
"type": "aggregate",
"isGlobal": false
},
"Product_Name_2": {
"isFacet": true,
"start": null,
"query": {
"measures": [
[
"count",
"*"

52

Layouts SpecificationLayouts

]
],
"groups": [
"Product_Name"
]
},
"extra": {
"chartType": "hbar"
},
"selectMode": "single",
"useGlobal": true,
"em": "SuperStoreSales",
"type": "aggregate",
"isGlobal": false
},
"Customer_Name_1": {
"isFacet": true,
"start": null,
"query": {
"measures": [
[
"count",
"*"
]
],
"groups": [
"Customer_Name"
]
},
"extra": {
"chartType": "hbar"
},
"selectMode": "single",
"useGlobal": true,
"em": "SuperStoreSales",
"type": "aggregate",
"isGlobal": false
}
},
"layouts": {
"default": {
"page:0": [
"buttongroup_1 | row: {height=300}" ,
"chart_1"
],
"page:1": [
"dimfilter_1 | dimfilter_2",
"chart_1 {colspan=2}"
]
},
“device:ipad, orientation:landscape”:{
“page:0”: [
“dimfilter_1 | dimfilter_3 | buttongroup_2”,
“chart_1 {colspan=3}”

53

Layouts SpecificationLayouts

]
}
}
},
"lastRefresh": 1425493084,
"_uid": "0FKD000000000BUOAY",
"_createdBy": {
"_type": "user",
"profilePhotoUrl": "https://c. <myorg>/profilephoto/005/T",
"name": "Admin User",
"_uid": "005D0000001V97kIAC"
},
"folder": {
"_type": "folder",
"_uid": "00lD00000013RRvIAM"
},
"edgemarts": {
"emName": {
"_type": "edgemart",
"_uid": "0FbD00000004CjcKAE"
}
},
"_type": "dashboard",
"_container": {
"_container": "0FKD000000000BUOAY",
"_type": "container"
},
"_createdDateTime": 1426201221,
"assetSharingUrl": "https://
<myorg>/analytics/wave/dashboard?assetId=0FKD000000000BUOAY&orgId=00DD00000007hUM&loginHost=
<myorg>.com&urlType=sharing",
"_permissions": {
"modify": true,
"view": true
},
"description": "",
"_url": "/insights/internal_api/v1.0/esObject/lens/0FKD000000000BUOAY/json",
"name": "Purchases by Customer",
"_files": {
"assetPreviewThumb": {
"fileSize": 8666,
"_type": "lensfile",
"lastModified": 1426202487,
"_url":

"/insights/internal_api/v1.0/esObject/lens/0FKD000000000BUOAY/lensfile/0FJD0000000008VOAQ/data?lastModified=1426202487",

"lensId": "0FKD000000000BUOAY",
"fileName": "assetPreviewThumb",
"contentType": "image/png",
"_uid": "0FJD0000000008VOAQ"
}

54

Layouts SpecificationLayouts

}
}

SEE ALSO:

Use a Grid Layout for Your Dashboard

Use a Grid Layout for Your Dashboard

Layouts Attribute Reference

Layouts Attribute Reference

Set attributes on widgets, rows, and cells to customize their height, width, padding, and more.

Widget Attributes
These attributes can be set on widgets. Each widget can have zero or more attributes.

DetailsProperty Name

Type
integer

colspan

Available for These Widgets

• all widgets

Description
The width of the widget in columns. When setting a colspan attribute on a widget, the cell that
contains the widget spans across columns. If there aren’t enough columns in the dashboard to
accommodate the width specified by colspan, then columns are added to the dashboard.

Example
In this example, the widget named “chart_1” spans three columns:

"layouts": {
"default": {
"page:0": [
“dimfilter_1 | dimfilter_2 | dimfilter_3”,
"chart_1 {colspan=3}"
]
}
}

Type
integer

rowspan

Available for These Widgets

• all widgets

55

Layouts Attribute ReferenceLayouts

DetailsProperty Name

Description
The number of rows that a widget spans. When setting a rowspan attribute on a widget, the cell
containing the widget spans across rows. If there aren’t enough rows in the dashboard, then rows are
added.

Example
In this example, the widget named “dimfilter1_1” spans two rows:

"layouts": {
"default": {
"page:0": [
“dimfilter_1 {rowspan=2} | dimfilter_2”,
"chart_1"
]
}
}

Type
integer

zIndex

Available for These Widgets

• all widgets

Description
The position of a widget relative to other widgets in the dashboard. zIndex specifies whether a widget
is in front of or behind another widget. A smaller zIndex means that a widget appears further behind
other widgets with larger zIndex values.

The default value of zIndex is 0.

Example
In this example, the widget named “box_1” appears behind the widget named “number_1”:

"layouts": {
"default": {
"page:0": [
“box_1 {zIndex=1}, number_1 {zIndex=2} | chart_1”
]
}
}

Type
integer

vpad

Available for These Widgets

• all widgets

Description
The padding added to the top and bottom sides of the widget’s cell in pixels. If vpad equals 10, then
10 pixels are added to the top of the cell and 10 pixels are added to the bottom.

The default value of vpad is 0.

56

Layouts Attribute ReferenceLayouts

DetailsProperty Name

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": {
"default": {
"page:0": [
“dimfilter_1 {vpad=5}”
]
}
}

Type
integer

hpad

Available for These Widgets

• all widgets

Description
The padding added to the left and right sides of the widget’s cell in pixels. If hpad equals 10, then 10
pixels are added to the left side of the cell and 10 pixels are added to the right side. A negative value can
be assigned to

The default value of hpad is 0.

Example
In this example, the cell containing widget named “dimfilter_1” has 5 pixels of padding on its
top and bottom sides:

"layouts": {
"default": {
"page:0": [
“dimfilter_1 {hpad=5}”
]
}
}

Type
integer

yAxisWidth

Available for These Widgets

• Chart Widget (ChartWidget)

Description
The size of a chart widget’s x-axis in pixels. Use yAxisWidth to align multiple chart widgets.

Example
In this example, the widget named “chart_1” has an x-axis that is 250 pixels wide:

"layouts": {
"default": {
"page:0": [

57

Layouts Attribute ReferenceLayouts

DetailsProperty Name

“chart_1 {yAxisWidth=250}”
]
}
}

Type
integer

hAxisHeight

Available for These Widgets

• Chart Widget (ChartWidget)

Description
The size of a chart widget’s y-axis in pixels. Use hAxisHeight to align multiple chart widgets.

Example
In this example, the widget named “chart_1” has a y-axis that is 250 pixels tall:

"layouts": {
"default": {
"page:0": [
“chart_1 {hAxisHeight=250}”
]
}
}

Row Attributes
These attributes can be set on rows.

DetailsProperty Name

Description
If height is set to a number, then height is the height of a row in pixels.

If height is set to preferred, then the row’s height is equal to the largest height

height

Example
In this example, the first row’s height is 300 pixels. The second row’s height is equal to the height of its
tallest widget:

"layouts": {
"default": {
“page:0”: [
“chart_1 {colspan=3} | row:{height=300}”,
“dimfilter_1 | buttongroup_1 | number_1 | row:{height=preferred}”
]

58

Layouts Attribute ReferenceLayouts

DetailsProperty Name

}
}

SEE ALSO:

Use a Grid Layout for Your Dashboard

Layouts Specification

59

Layouts Attribute ReferenceLayouts

	Analytics Cloud Dashboard JSON Overview
	View or Modify a Dashboard JSON File
	Dashboard JSON File Example
	Steps
	Static Steps

	Widgets
	Widget Parameters Property Reference

	Query
	Query Example

	Bindings
	Selection Binding in a Static Step
	Bind a Static Filter and Group Selector to a Query
	Relative Dates in a Static Filter Selector
	Binding Operations

	Layouts
	Use a Grid Layout for Your Dashboard
	Understanding Column, Row, and Cell Sizing in Grid Layouts
	Layouts Specification
	Layouts Attribute Reference

