
Version 30.0: Spring ’14

Database.com SOQL and SOSL Reference

Last updated: June 2, 2014

© Copyright 2000–2014 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Chapter 1: Salesforce Object Query Language (SOQL)...1
SOQL Typographical Conventions..2

Alias Notation...2
Quoted String Escape Sequences..2
Reserved Characters..3
SOQL SELECT Syntax...3

Condition Expression Syntax (WHERE Clause)...5
null in SOQL Queries...6
Filtering on Boolean Fields..6
Querying Multi-Select Picklists...6
Filtering on Polymorphic Relationship Fields...7

fieldExpression Syntax...8
Comparison Operators..8
Logical Operators..13
Date Formats and Date Literals..14

ORDER BY..18
LIMIT...19
OFFSET...19
UPDATE VIEWSTAT...21
GROUP BY..21

Considerations When Using GROUP BY..22
Using Aliases with GROUP BY..23

HAVING..23
Considerations When Using HAVING..24

TYPEOF...24
Aggregate Functions..26

COUNT() and COUNT(fieldName)...28
Support for Field Types in Aggregate Functions...29

Date Functions..31
Converting Time Zones in Date Functions...33

Querying Currency Fields in Multicurrency Organizations..33
Example SELECT Clauses...34

Relationship Queries...35
Understanding Relationship Names..36
Using Relationship Queries...37
Understanding Relationship Names, Custom Objects, and Custom Fields..38
Understanding Query Results..39
Lookup Relationships and Outer Joins..41
Identifying Parent and Child Relationships..42
Understanding Polymorphic Keys and Relationships..42
Understanding Relationship Query Limitations..45
Using Relationship Queries with History Objects...45

i

Table of Contents

Using Relationship Queries with the Partner WSDL...45
Changing the Batch Size in Queries...46
Syndication Feed SOQL and Mapping Syntax...46
Location-Based SOQL Queries—Beta...46

Chapter 2: Salesforce Object Search Language (SOSL)..50
About SOSL...51
SOSL Typographical Conventions...52
SOSL Syntax...52
FIND {SearchQuery}..53
IN SearchGroup..57
RETURNING FieldSpec...57
WHERE conditionExpression...60
ORDER BY clause...63
UPDATE TRACKING...64
UPDATE VIEWSTAT...64
LIMIT n...64
OFFSET n..65
Querying Currency Fields in Multicurrency Organizations..66
Example Text Searches...66
Text Searches in CJK Languages..67

Index...68

ii

Table of Contents

Chapter 1

Salesforce Object Query Language (SOQL)

Use the Salesforce Object Query Language (SOQL) to construct simple but
powerful query strings in the following environments:

In this chapter ...

• SOQL Typographical Conventions
• In the queryString parameter in the query() call• Quoted String Escape Sequences
• In Apex statements• Reserved Characters
• In the Schema Explorer of the Force.com IDE• SOQL SELECT Syntax

• Relationship Queries Similar to the SELECT command in Structured Query Language (SQL),
SOQL allows you to specify the source object (such as Account), a list of fields
to retrieve, and conditions for selecting rows in the source object.

• Changing the Batch Size in Queries
• Syndication Feed SOQL and

Mapping Syntax
Note: SOQL does not support all advanced features of the SQL
SELECT command. For example, you cannot use SOQL to perform

• Location-Based SOQL
Queries—Beta

arbitrary join operations, use wildcards in field lists, or use calculation
expressions.

SOQL uses the SELECT statement combined with filtering statements to
return sets of data, which may optionally be ordered:

SELECT one or more fields
FROM an object
WHERE filter statements and, optionally, results are
ordered

For example, the following SOQL query returns the value of the Id and Name
field for all Widget__c records if the value of Name is Ring:

SELECT Id, Name
FROM Widget__c
WHERE Name = 'Ring'

Note: Apex requires that you surround SOQL and SOSL statements
with square brackets in order to use them on the fly. Additionally,
Apex script variables and expressions can be used if preceded by a colon
(:).

For a complete description of the syntax, see SOQL SELECT Syntax.

1

SOQL Typographical Conventions
Topics about SOQL use the following typographical conventions:

DescriptionConvention

In an example, Courier font indicates items that you should type as shown. In
a syntax statement, Courier font also indicates items that you should type as
shown, except for question marks and square brackets.

SELECT Name FROM Widget__c

In an example or syntax statement, italics represent variables. You supply the
actual value.

SELECT fieldname FROM objectname

In a syntax statement, the question mark indicates the element preceding it is
optional. You may omit the element or include one.

?

In a syntax statement, square brackets surround an element that may be repeated
up to the limits for that element. You may omit the element, or include one or
more of them.

WHERE [conditionexpression]

In some examples, particular elements are highlighted with bold if they are of
particular interest in the text before or after the example.

SELECT Name FROM Widget__c

Alias Notation
You can use alias notation in SELECT queries:

SELECT count()
FROM Model__c m, m.Widget__r w
WHERE w.Name = 'Ring'

To establish the alias, first identify the object, in this example a contact, and then specify the alias, in this case “c.” For the
rest of the SELECT statement, you can use the alias in place of the object or field name.

The following are SOQL keywords that can’t be used as alias names: AND, ASC, DESC, EXCLUDES, FIRST, FROM,
GROUP, HAVING, IN, INCLUDES, LAST, LIKE, LIMIT, NOT, NULL, NULLS, OR, SELECT, WHERE, WITH

Quoted String Escape Sequences
You can use the following escape sequences with SOQL:

MeaningSequence

New line\n or \N

Carriage return\r or \R

Tab\t or \T

Bell\b or \B

Form feed\f or \F

One double-quote character\"

2

SOQL Typographical ConventionsSalesforce Object Query Language (SOQL)

MeaningSequence

One single-quote character\'

Backslash\\

Matches a single underscore character (_)LIKE expression only: _

Matches a single percent sign character (%)LIKE expression only:\%

If you use a backslash character in any other context, an error occurs.

Escaped Character Examples
SELECT Id FROM Widget__C WHERE Name LIKE R%'

Select all widgets whose name begins with the letter 'R'.

SELECT Id FROM Widget__c WHERE Name LIKE 'R\%'

Select all widgets whose name exactly matches the two character sequence 'R%'.

SELECT Id FROM Widget__c WHERE Name LIKE 'R\%%'

Select all widgets whose name begins with the two character sequence 'R%'

Reserved Characters
Reserved characters, if specified in a SELECT clause as a literal string (between single quotes), must be escaped (preceded by
the backslash \ character) in order to be properly interpreted. An error occurs if you do not precede reserved characters with
a backslash.

The following characters are reserved:

' (single quote)
\ (backslash)

For example, to query the Widget__c Name field for “Wally’s grommet,” use the following SELECT statement:

SELECT Id
FROM Widget__c
WHERE Name LIKE 'Wally\'s grommet'

SOQL SELECT Syntax
The SOQL SELECT statement uses the following syntax:

SELECT fieldList
[TYPEOF typeOfField whenExpression elseExpression END]
FROM objectType
[WHERE conditionExpression]
[GROUP BY fieldGroupByList]]
[HAVING havingConditionExpression]
[ORDER BY fieldOrderByList ASC | DESC ? NULLS FIRST | LAST ?]
[LIMIT ?]
[OFFSET ?]
[UPDATE VIEWSTAT ?]

3

Reserved CharactersSalesforce Object Query Language (SOQL)

Note: TYPEOF is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more
information on enabling TYPEOF for your organization, contact salesforce.com.

DescriptionSyntax

Specifies a list of one or more fields, separated by commas, that you want to retrieve
from the specified object. The bold elements in the following examples are
fieldlists:

fieldList subquery ?

• SELECT Id, Name, Widget_Cost__c FROM Widget__c

• SELECT count() FROM Model__c

• SELECT Model__c.Name, Model__c.Widget__r.Name FROM Model__c

You must specify valid field names and must have read-level permissions to each
specified field. The fieldList defines the ordering of fields in the query results.

fieldList can include a subquery if the query traverses a relationship. For example:

SELECT Widget__c.Name, (SELECT Model__c.Name FROM
Widget__c.Models__r)
FROM Widget__c

The fieldlist can also be an aggregate function, such as COUNT() and
COUNT(fieldName).

A polymorphic relationship field in objectType or a polymorphic field in a parent
of objectType that can reference multiple object types. For example, the Owner

typeOfField

relationship field of a Merchandise__c custom object could be a User or a Group.
typeOfField cannot reference a relationship field that is also referenced in
fieldList. See TYPEOF for more information.

A clause of the form WHEN whenObjectType THEN whenFieldList. You can
have one or more whenExpression clauses inside a TYPEOF expression. See TYPEOF
for more information.

whenExpression

A clause of the form ELSE elseFieldList. This clause is optional inside a TYPEOF
expression. See TYPEOF for more information.

elseExpression

Specifies the type of object that you want to query(). You must specify a valid object,
such as Widget__c, and must have read-level permissions to that object.

objectType

If WHERE is specified, determines which rows and values in the specified object
(objectType) to filter against. If unspecified, the query() retrieves all the rows in
the object that are visible to the user.

conditionExpression

Available in API version 18.0 and later. Specifies a list of one or more fields, separated
by commas, that are used to group the query results. A GROUP BY clause is used

fieldGroupByList

with aggregate functions to summarize the data and enable you to roll up query results
rather than having to process the individual records in your code. See GROUP BY.

Available in API version 18.0 and later. If the query includes a GROUP BY clause, this
conditional expression filters the records that the GROUP BY returns. See HAVING.

havingConditionExpression

4

SOQL SELECT SyntaxSalesforce Object Query Language (SOQL)

DescriptionSyntax

Specifies a list of one or more fields, separated by commas, that are used to order the
query results. For example, you can query for contacts and order the results by last
name, and then by first name:
SELECT Id, Name
FROM Model__c
ORDER BY Name, Id

fieldOrderByList

Note the following implementation tips:

• Statement Character Limit—By default, SOQL statements cannot exceed 20,000 characters in length. For SOQL
statements that exceed this maximum length, the API returns a MALFORMED_QUERY exception code; no result rows are
returned.

Note: Long, complex SOQL statements, such as statements that contain a large number of formula fields, can
sometimes result in a QUERY_TOO_COMPLICATED error. This occurs because the statement is expanded internally
when processed by Database.com, even though the original SOQL statement is under the 20,000 character limit.
To avoid this, reduce the complexity of your SOQL statement.

• Localized Results—SELECT statements can include the convertCurrency() functions in support of localized fields.

• Dynamic SOQL in Apex—Apex requires that you surround SOQL and SOSL statements with square brackets in order
to use them on the fly. Additionally, Apex script variables and expressions can be used if preceded by a colon (:).

• Ordered Results—There is no guarantee of the order of results unless you use an ORDER BY clause in a query.

Condition Expression Syntax (WHERE Clause)
The conditionExpression in the WHERE clause in a SOQL statement uses the following syntax:

fieldExpression [logicalOperator fieldExpression2 ...]

You can add multiple field expressions to a condition expression by using logical operators.

The condition expressions in SOQL SELECT statements appear in bold in these examples:

• SELECT Name FROM Widget__c WHERE Name like 'R%'

• SELECT Id FROM Model__c WHERE Name like 'G%' AND Model_Number__c = 'XL-5'

• SELECT Name FROM Widget__c WHERE CreatedDate > 2011-04-26T10:00:00-08:00

You can use date or datetime values, or date literals. The format for date and dateTime fields are different.

• SELECT Widget_Cost__c FROM Widget__c WHERE CALENDAR_YEAR(CreatedDate) = 2011

For more information on date functions, such as CALENDAR_YEAR(), see Date Functions.

• You can use parentheses to define the order in which fieldExpressions are evaluated. For example, the following
expression is true if fieldExpression1 is true and either fieldExpression2 or fieldExpression3 are true:

fieldExpression1 AND (fieldExpression2 OR fieldExpression3)

5

Condition Expression Syntax (WHERE Clause)Salesforce Object Query Language (SOQL)

• However, the following expression is true if either fieldExpression3 is true or both fieldExpression1 and
fieldExpression2 are true.

(fieldExpression1 AND fieldExpression2) OR fieldExpression3

• Client applications must specify parentheses when nesting operators. However, multiple operators of the same type do not
need to be nested.

Note: The WHERE clause behaves in two different ways, depending on the version, when handling null values in a
parent field for a relationship query. In a WHERE clause that checks for a value in a parent field, if the parent does
not exist, the record is returned in version 13.0 and later, but not returned in versions before 13.0.

SELECT Id
FROM Model__c
WHERE Widget__r.name = null

null in SOQL Queries
Use the value null to represent null values in SOQL queries.

For example, the following statement would return the account IDs of all events with a non-null activity date:

SELECT Id
FROM Widget__c
WHERE Name != null

Filtering on Boolean Fields
To filter on a Boolean field, use the following syntax:

WHERE BooleanField = TRUE

WHERE BooleanField = FALSE

Querying Multi-Select Picklists
Client applications use a specific syntax for querying multi-select picklists (in which multiple items can be selected).

The following operators are supported for querying multi-select picklists:

DescriptionOperator

Equals the specified string.=

Does not equal the specified string.!=

Includes (contains) the specified string.includes

Excludes (does not contain) the specified string.excludes

6

null in SOQL QueriesSalesforce Object Query Language (SOQL)

DescriptionOperator

Specifies AND for two or more strings. Use ; for multi-select picklists when two or
more items must be selected. For example:

'AAA;BBB'

;

Examples

The following query filters on values in the MSP1__c field that are equal to AAA and BBB selected (exact match):

SELECT Id, MSP1__c FROM CustObj__c WHERE MSP1__c = 'AAA;BBB'

In the following query:

SELECT Id, MSP1__c from CustObj__c WHERE MSP1__c includes ('AAA;BBB','CCC')

the query filters on values in the MSP1__c field that contains either of these values:

• AAA and BBB selected.
• CCC selected.

A match will result on any field value that contains 'AAA' and 'BBB' or any field that contains 'CCC'. For example, the
following will be matched:

• matches with ' AAA;BBB':

'AAA;BBB'
'AAA;BBB;DDD'

• matches with ' CCC':

'CCC'
'CCC;EEE'

'AAA;CCC'

Filtering on Polymorphic Relationship Fields
To filter on a polymorphic relationship field, use the Type qualifier.

WHERE polymorphicRelationship.Type comparisonExpression

DescriptionSyntax

A polymorphic relationship field in object being queried that can reference multiple
object types. For example, the Owner relationship field of a Merchandise__c custom
object could be a User or a Group.

polymorphicRelationship

The comparison being made against the object type in the polymorphic relationship.
For more information, see fieldExpression Syntax. Note that the type names
returned by Type are string values, like ‘User’.

comparisonExpression

7

Filtering on Polymorphic Relationship FieldsSalesforce Object Query Language (SOQL)

The following example only returns records where the Owner field of Merchandise__c is referencing a User or Group.

SELECT Description
FROM Merchandise__c
WHERE Owner.Type IN ('User', 'Group')

See Understanding Polymorphic Keys and Relationships for more details on polymorphic relationships, and additional filtering
examples.

fieldExpression Syntax
fieldExpression uses the following syntax:

fieldName comparisonOperator value

where:

DescriptionSyntax

The name of a field in the specified object. Use of single or double quotes around the name will
result in an error. You must have at least read-level permissions to the field. It can be any field except

fieldName

a long text area field, encrypted data field, or base64-encoded field. It does not need to be a field
in the fieldList.

Case-insensitive operators that compare values.comparisonOperator

A value used to compare with the value in fieldName. You must supply a value whose data type
matches the field type of the specified field. You must supply a native value—other field names or

value

calculations are not permitted. If quotes are required (for example, they are not for dates and
numbers), use single quotes. Double quotes result in an error.

Comparison Operators
The following table lists the comparisonOperator values that are used in fieldExpression syntax. Note that comparisons
on strings are case-insensitive.

DescriptionNameOperator

Expression is true if the value in the specified fieldName equals the specified
value in the expression. String comparisons using the equals operator are
case-insensitive.

Equals=

Expression is true if the value in the specified fieldName does not equal the
specified value.

Not equals!=

Expression is true if the value in the specified fieldName is less than the specified
value.

Less than<

Expression is true if the value in the specified fieldName is less than, or equals,
the specified value.

Less or equal<=

Expression is true if the value in the specified fieldName is greater than the
specified value.

Greater than>

8

fieldExpression SyntaxSalesforce Object Query Language (SOQL)

DescriptionNameOperator

Expression is true if the value in the specified fieldName is greater than or equal
to the specified value.

Greater or
equal

>=

Expression is true if the value in the specified fieldName matches the characters
of the text string in the specified value. The LIKE operator in SOQL and SOSL

LikeLIKE

is similar to the LIKE operator in SQL; it provides a mechanism for matching
partial text strings and includes support for wildcards.
• The % and _ wildcards are supported for the LIKE operator.

• The % wildcard matches zero or more characters.

• The _ wildcard matches exactly one character.

• The text string in the specified value must be enclosed in single quotes.

• The LIKE operator is supported for string fields only.

• The LIKE operator performs a case-insensitive match, unlike the case-sensitive
matching in SQL.

• The LIKE operator in SOQL and SOSL supports escaping of special characters
% or _.

• Do not use the backslash character in a search except to escape a special
character.

For example, the following query matches Appleton, Apple, and Appl, but not
Bappl:

SELECT Id, Name
FROM Widget__c
WHERE Name LIKE 'appl%'

If the value equals any one of the specified values in a WHERE clause. For example:

SELECT Name FROM Widget__c
WHERE Name IN ('Ring', 'Flange')

ININ

Note that the values for IN must be in parentheses. String values must be
surrounded by single quotes.

IN and NOT IN can also be used for semi-joins and anti-joins when querying on
ID (primary key) or reference (foreign key) fields.

If the value does not equal any of the specified values in a WHERE clause. For
example:

SELECT Name FROM Widget__c
WHERE Name NOT IN ('Ring', 'Flange')

NOT INNOT IN

Note that the values for NOT IN must be in parentheses, and string values must
be surrounded by single quotes.

There is also a logical operator NOT, which is unrelated to this comparison operator.

Applies only to multi-select picklists.INCLUDES
EXCLUDES

9

Comparison OperatorsSalesforce Object Query Language (SOQL)

Semi-Joins with IN and Anti-Joins with NOT IN

You can query values in a field where another field on the same object has a specified set of values, using IN. For example:

SELECT Name FROM Widget__c
WHERE Name IN ('Ring', 'Flange')

In addition, you can create more complex queries by replacing the list of values in the IN or NOT IN clause with a subquery.
The subquery can filter by ID (primary key) or reference (foreign key) fields. A semi-join is a subquery on another object in
an IN clause to restrict the records returned. An anti-join is a subquery on another object in a NOT IN clause to restrict the
records returned.

If you filter by an ID field, you can create parent-to-child semi- or anti-joins, such as Widget to Model. If you filter by a
reference field, you can also create child-to-child semi- or anti-joins, such as Widget to Model, or child-to-parent semi- or
anti-joins, such as Model to Widget.

ID field Semi-Join
You can include a semi-join in a WHERE clause. For example, the following query returns account IDs if an associated
opportunity is lost:

SELECT Id, Name
FROM User
WHERE Id IN
(
SELECT OwnerId
FROM Widget__c
WHERE Name = 'Ring'

)

This is a parent-to-child semi-join from User to Widget. Notice that the left operand, OwnerId, of the IN clause is an
ID field. The subquery returns a single field of the same type as the field to which it is compared. A full list of restrictions
that prevent unnecessary processing is provided at the end of this section.

Reference Field Semi-Join
The following query returns task IDs for all contacts in Twin Falls:

SELECT Id, Name
FROM Widget__c
WHERE OwnerId IN
(
SELECT Id
FROM User
WHERE FirstName= 'Sydney'

)

Notice that the left operand, OwnerId, of the IN clause is a reference field. An interesting aspect of this query is that
OwnerId is a polymorphic reference field as it can point to a contact or a lead. The subquery restricts the results to
contacts.

ID field Anti-Join
The following query returns user IDs for all users who do not have any widgets called'Ring':

SELECT Id
FROM User
WHERE Id NOT IN
(
SELECT OwnerId
FROM Widget__c
WHERE Name = 'Ring'

)

10

Comparison OperatorsSalesforce Object Query Language (SOQL)

Reference Field Anti-Join
The following query returns user IDs for all widgets whose first name is not 'Sydney':

SELECT Id
FROM Widget__c
WHERE OwnerId NOT IN
(
SELECT Id
FROM User
WHERE FirstName= 'Sydney'

)

This is a child-to-parent anti-join from Widget to User.

Multiple Semi-Joins or Anti-Joins
You can combine semi-join or anti-join clauses in a query. For example, the following query returns Widget IDs that
have Parts with Part Numbers that begin with 'X' and Models with Names that begin with 'G'.

SELECT Id, Name
FROM Widget__c
WHERE Id IN
(
SELECT Widget__c
FROM Part__c
WHERE Part_Number__c LIKE 'X%')
AND Id IN

(
SELECT Widget__c
FROM Model__c
WHERE Name LIKE 'G%'

)

You can use at most two subqueries in a single semi-join or anti-join query. Multiple semi-joins and anti-join queries
are also subject to existing limits on subqueries per query.

Semi-Joins or Anti-Joins Evaluating Relationship Queries
You can create a semi-join or anti-join that evaluates a relationship query in a SELECT clause. For example, the following
query returns Widget IDs and their related Models if the Widget's Model has a Name that begins with 'G':

SELECT Id, (SELECT Id from Models__r)
FROM Widget__c
WHERE Id IN
(
SELECT Widget__c
FROM Model__c
WHERE Name LIKE 'G%'

)

Because a great deal of processing work is required for semi-join and anti-join queries, Database.com imposes the following
restrictions to maintain the best possible performance:

• Basic limits:

◊ No more than two IN or NOT IN statements per WHERE clause.
◊ You cannot use the NOT operator as a conjunction with semi-joins and anti-joins. Using them converts a semi-join to

an anti-join, and vice versa. Instead of using the NOT operator, write the query in the appropriate semi-join or anti-join
form.

• Main query limits:

The following restrictions apply to the main WHERE clause of a semi-join or anti-join query:

11

Comparison OperatorsSalesforce Object Query Language (SOQL)

◊ The left operand must query a single ID (primary key) or reference (foreign key) field. The selected field in a subquery
can be a reference field. For example:

SELECT Id
FROM Idea
WHERE (Id IN (SELECT ParentId FROM Vote WHERE CreatedDate > LAST_WEEK AND
Parent.Type='Idea'))

◊ The left operand can't use relationships. For example, the following semi-join query is invalid due to the Account.Id
relationship field:

SELECT Id
FROM Model__c
WHERE Widget__c.Id IN
(
SELECT ...
)

• Subquery limits:

◊ A subquery must query a field referencing the same object type as the main query.
◊ There is no limit on the number of records matched in a subquery. Standard SOQL query limits apply to the main

query.
◊ The selected column in a subquery must be a foreign key field, and cannot traverse relationships. This means that you

cannot use dot notation in a selected field of a subquery. For example, the following query is valid:

SELECT Id, Name
FROM Widget__c
WHERE Id IN
(
SELECT Widget__c
FROM Model__c
WHERE Name LIKE 'G%'

)

Using Owner.Id (dot notation) instead of OwnerId is not supported.

◊ You cannot query on the same object in a subquery as in the main query. You can write such self semi-join queries without
using semi-joins or anti-joins. For example, the following self semi-join query is invalid:

SELECT Id, Name
FROM Model__c
WHERE Id IN
(
SELECT Widget__c.Id
FROM Widget__c
WHERE Name = 'Ring'

)

However, it is very simple to rewrite the query in a valid form, for example:

SELECT Id, Name
FROM Model__c
WHERE Widget__r.Name = 'Ring'

◊ You cannot nest a semi-join or anti-join statement in another semi-join or anti-join statement.

12

Comparison OperatorsSalesforce Object Query Language (SOQL)

◊ You can use semi-joins and anti-joins in the main WHERE statement, but not in a subquery WHERE statement. For
example, the following query is valid:

SELECT Id
FROM Idea
WHERE (Idea.Title LIKE 'Vacation%')
AND (Idea.LastCommentDate > YESTERDAY)
AND (Id IN (SELECT ParentId FROM Vote

WHERE CreatedById = '005x0000000sMgYAAU'
AND Parent.Type='Idea'))

SELECT Id
FROM Idea
WHERE (Idea.Title LIKE 'Vacation%')
AND (Idea.LastCommentDate > YESTERDAY)
AND (Id IN (SELECT ParentId FROM Vote

WHERE CreatedById = '005x0000000sMgYAAU'
AND Parent.Type='Idea'))

The following query is invalid since the nested query is an additional level deep:

SELECT Id
FROM Idea
WHERE
((Idea.Title LIKE 'Vacation%')
AND (CreatedDate > YESTERDAY)
AND (Id IN (SELECT ParentId FROM Vote

WHERE CreatedById = '005x0000000sMgYAAU'
AND Parent.Type='Idea')

)
OR (Idea.Title like 'ExcellentIdea%'))

◊ You cannot use subqueries in conjunction with OR.
◊ COUNT, FOR UPDATE, ORDER BY, and LIMIT are not supported in subqueries.
◊ The following objects are not currently supported in subqueries:

- ActivityHistory
- Attachments
- Event
- EventAttendee
- Note
- OpenActivity
- Tags (AccountTag, ContactTag, and all other tag objects)
- Task

Logical Operators
The following table lists the logical operator values that are used in fieldExpression syntax:

DescriptionSyntaxOperator

true if both fieldExpressionX and fieldExpressionY are true.fieldExpressionX AND
fieldExpressionY

AND

13

Logical OperatorsSalesforce Object Query Language (SOQL)

DescriptionSyntaxOperator

true if either fieldExpressionX or fieldExpressionY is true.

Relationship queries with foreign key values in an OR clause behave
differently depending on the version of the API. In a WHERE clause

fieldExpressionX OR
fieldExpressionY

OR

using OR, if the foreign key value in a record is null, the record is returned
in version 13.0 and later, but not returned in versions before 13.0.

SELECT Id FROM Model__c WHERE Name = 'Wallace' OR
Widget__r.Name = 'Ring'

The Model with no parent Widget has a name that meets the criteria, so
it is returned in version 13.0 and later.

true if fieldExpressionX is false.

There is also a comparison operator NOT IN, which is different from this
logical operator.

not fieldExpressionXNOT

Date Formats and Date Literals
When you specify a date in a SOQL query, it can be a specific date, or a date literal, which is a fixed expression representing
a relative range of time such as last month or next year. Remember that dateTime field values are stored as Coordinated
Universal Time (UTC). When one of these values is returned in Database.com, it is automatically adjusted for the time zone
specified in your organization preferences. SOQL queries return dateTime field values as UTC values. Your application may
need to handle the conversion if you want to process these values in different time zones.

Date Formats

A fieldExpression uses different date formats for date or dateTime fields. If you specify a dateTime format in a query,
you can filter on dateTime fields only. Similarly, if you specify a date format value, you can filter on date fields only:

ExampleFormat SyntaxFormat

1999-01-01YYYY-MM-DDDate only

Date, time, and time
zone offset

• 1999-01-01T23:01:01+01:00• YYYY-MM-DDThh:mm:ss+hh:mm

• •YYYY-MM-DDThh:mm:ss-hh:mm 1999-01-01T23:01:01-08:00

•• 1999-01-01T23:01:01ZYYYY-MM-DDThh:mm:ssZ

The zone offset is always from UTC. For more information, see:

• http://www.w3.org/TR/xmlschema-2/#isoformats

• http://www.w3.org/TR/NOTE-datetime

Note: For a fieldExpression that uses date formats, the date is not enclosed in single quotes. No quotes should
be used around the date. For example:

SELECT Id
FROM Widget__c
WHERE CreatedDate > 2010-10-08T01:02:03Z

14

Date Formats and Date LiteralsSalesforce Object Query Language (SOQL)

http://www.w3.org/TR/xmlschema-2/#isoformats
http://www.w3.org/TR/NOTE-datetime

Date Literals

A fieldExpression can use a date literal to compare a range of values to the value in a date or dateTime field. Each
literal is a range of time beginning with midnight (12:00:00). To find a value within the range, use =. To find values on either
side of the range, use > or <. The following table shows the available list of date literals, the ranges they represent, and examples:

ExampleRangeDate Literal

SELECT Id FROM Widget__c WHERE
CreatedDate = YESTERDAY

Starts 12:00:00 the day before and continues
for 24 hours.

YESTERDAY

SELECT Id FROM Widget__c WHERE
CreatedDate > TODAY

Starts 12:00:00 of the current day and
continues for 24 hours.

TODAY

SELECT Id FROM Model__c WHERE
LastModifiedDate = TOMORROW

Starts 12:00:00 after the current day and
continues for 24 hours.

TOMORROW

SELECT Id FROM Widget__c WHERE
CreatedDate > LAST_WEEK

Starts 12:00:00 on the first day of the week
before the most recent first day of the week
and continues for seven full days. First day of
the week is determined by your locale.

LAST_WEEK

SELECT Id FROM Widget__c WHERE
CreatedDate < THIS_WEEK

Starts 12:00:00 on the most recent first day of
the week before the current day and continues
for seven full days. First day of the week is
determined by your locale.

THIS_WEEK

SELECT Id FROM Model__c WHERE
LastModifiedDate = NEXT_WEEK

Starts 12:00:00 on the most recent first day of
the week after the current day and continues
for seven full days. First day of the week is
determined by your locale.

NEXT_WEEK

SELECT Id FROM Model__c WHERE
LastModifiedDate > LAST_MONTH

Starts 12:00:00 on the first day of the month
before the current day and continues for all the
days of that month.

LAST_MONTH

SELECT Id FROM Widget__c WHERE
CreatedDate < THIS_MONTH

Starts 12:00:00 on the first day of the month
that the current day is in and continues for all
the days of that month.

THIS_MONTH

SELECT Id FROM Model__c WHERE
LastModifiedDate = NEXT_MONTH

Starts 12:00:00 on the first day of the month
after the month that the current day is in and
continues for all the days of that month.

NEXT_MONTH

SELECT Id FROM Widget__c WHERE
LastModifiedDate = LAST_90_DAYS

Starts 12:00:00 of the current day and
continues for the last 90 days.

LAST_90_DAYS

SELECT Id FROM Model__c WHERE
LastModifiedDate > NEXT_90_DAYS

Starts 12:00:00 of the current day and
continues for the next 90 days.

NEXT_90_DAYS

SELECT Id FROM Widget__c WHERE
CreatedDate = LAST_N_DAYS:365

For the number n provided, starts 12:00:00 of
the current day and continues for the last n
days.

LAST_N_DAYS:n

SELECT Id FROM Model__c WHERE
LastModifiedDate > NEXT_N_DAYS:15

For the number n provided, starts 12:00:00 of
the current day and continues for the next n
days.

NEXT_N_DAYS:n

SELECT Id FROM Merchandise__c
WHERE LastModifiedDate >
NEXT_N_WEEKS:4

For the number n provided, starts 12:00:00 of
the first day of the next week and continues for
the next n weeks.

NEXT_N_WEEKS:n

15

Date Formats and Date LiteralsSalesforce Object Query Language (SOQL)

ExampleRangeDate Literal

SELECT Id FROM Merchandise__c
WHERE CreatedDate =
LAST_N_WEEKS:52

For the number n provided, starts 12:00:00 of
the last day of the previous week and continues
for the last n weeks.

LAST_N_WEEKS:n

SELECT Id FROM Merchandise__c
WHERE LastModifiedDate >
NEXT_N_MONTHS:2

For the number n provided, starts 12:00:00 of
the first day of the next month and continues
for the next n months.

NEXT_N_MONTHS:n

SELECT Id FROM Merchandise__c
WHERE CreatedDate =
LAST_N_MONTHS:12

For the number n provided, starts 12:00:00 of
the last day of the previous month and
continues for the last n months.

LAST_N_MONTHS:n

SELECT Id FROM Widget__c WHERE
CreatedDate = THIS_QUARTER

Starts 12:00:00 of the current quarter and
continues to the end of the current quarter.

THIS_QUARTER

SELECT Id FROM Widget__c WHERE
CreatedDate > LAST_QUARTER

Starts 12:00:00 of the previous quarter and
continues to the end of that quarter.

LAST_QUARTER

SELECT Id FROM Widget__c WHERE
CreatedDate < NEXT_QUARTER

Starts 12:00:00 of the next quarter and
continues to the end of that quarter.

NEXT_QUARTER

SELECT Id FROM Widget__c WHERE
CreatedDate < NEXT_N_QUARTERS:2

Starts 12:00:00 of the next quarter and
continues to the end of the nth quarter.

NEXT_N_QUARTERS:n

SELECT Id FROM Widget__c WHERE
CreatedDate > LAST_N_QUARTERS:2

Starts 12:00:00 of the previous quarter and
continues to the end of the previous nth
quarter.

LAST_N_QUARTERS:n

SELECT Id FROM Model__c WHERE
LastModifiedDate = THIS_YEAR

Starts 12:00:00 on January 1 of the current year
and continues through the end of December
31 of the current year.

THIS_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate > LAST_YEAR

Starts 12:00:00 on January 1 of the previous
year and continues through the end of
December 31 of that year.

LAST_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate < NEXT_YEAR

Starts 12:00:00 on January 1 of the following
year and continues through the end of
December 31 of that year.

NEXT_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate < NEXT_N_YEARS:5

Starts 12:00:00 on January 1 of the following
year and continues through the end of
December 31 of the nth year.

NEXT_N_YEARS:n

SELECT Id FROM Model__c WHERE
LastModifiedDate > LAST_N_YEARS:5

Starts 12:00:00 on January 1 of the previous
year and continues through the end of
December 31 of the previous nth year.

LAST_N_YEARS:n

SELECT Id FROM Widget__c WHERE
CreatedDate = THIS_FISCAL_QUARTER

Starts 12:00:00 on the first day of the current
fiscal quarter and continues through the end
of the last day of the fiscal quarter. The fiscal

THIS_FISCAL_QUARTER

year is defined in the company profile under
Setup at Company Profile > Fiscal Year.

SELECT Id FROM Widget__c WHERE
CreatedDate > LAST_FISCAL_QUARTER

Starts 12:00:00 on the first day of the last fiscal
quarter and continues through the end of the
last day of that fiscal quarter. The fiscal year is

LAST_FISCAL_QUARTER

defined in the company profile under Setup at
Company Profile > Fiscal Year.

16

Date Formats and Date LiteralsSalesforce Object Query Language (SOQL)

ExampleRangeDate Literal

SELECT Id FROM Widget__c WHERE
CreatedDate < NEXT_FISCAL_QUARTER

Starts 12:00:00 on the first day of the next fiscal
quarter and continues through the end of the
last day of that fiscal quarter. The fiscal year is

NEXT_FISCAL_QUARTER

defined in the company profile under Setup at
Company Profile > Fiscal Year.

SELECT Id FROM Widget__c WHERE
CreatedDate <
NEXT_N_FISCAL_QUARTERS:6

Starts 12:00:00 on the first day of the next fiscal
quarter and continues through the end of the
last day of the nth fiscal quarter. The fiscal year
is defined in the company profile under Setup
atCompany Profile > Fiscal Year.

NEXT_N_FISCAL_
QUARTERS:n

SELECT Id FROM Widget__c WHERE
CreatedDate >
LAST_N_FISCAL_QUARTERS:6

Starts 12:00:00 on the first day of the last fiscal
quarter and continues through the end of the
last day of the previous nth fiscal quarter. The
fiscal year is defined in the company profile
under Setup at Company Profile > Fiscal Year.

LAST_N_FISCAL_
QUARTERS:n

SELECT Id FROM Model__c WHERE
LastModifiedDate =
THIS_FISCAL_YEAR

Starts 12:00:00 on the first day of the current
fiscal year and continues through the end of
the last day of the fiscal year. The fiscal year is
defined in the company profile under Setup at
Company Profile > Fiscal Year.

THIS_FISCAL_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate >
LAST_FISCAL_YEAR

Starts 12:00:00 on the first day of the last fiscal
year and continues through the end of the last
day of that fiscal year. The fiscal year is defined
in the company profile under Setup at
Company Profile > Fiscal Year.

LAST_FISCAL_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate <
NEXT_FISCAL_YEAR

Starts 12:00:00 on the first day of the next fiscal
year and continues through the end of the last
day of that fiscal year. The fiscal year is defined
in the company profile under Setup at
Company Profile > Fiscal Year.

NEXT_FISCAL_YEAR

SELECT Id FROM Model__c WHERE
LastModifiedDate <
NEXT_N_FISCAL_YEARS:3

Starts 12:00:00 on the first day of the next fiscal
year and continues through the end of the last
day of the nth fiscal year. The fiscal year is
defined in the company profile under Setup at
Company Profile > Fiscal Year.

NEXT_N_FISCAL_YEARS:n

SELECT Id FROM Model__c WHERE
LastModifiedDate >
LAST_N_FISCAL_YEARS:3

Starts 12:00:00 on the first day of the last fiscal
year and continues through the end of the last
day of the previous nth fiscal year. The fiscal
year is defined in the company profile under
Setup at Company Profile > Fiscal Year.

LAST_N_FISCAL_YEARS:n

Note: If you have defined Custom Fiscal Years in the Database.com user interface, and in any of the FISCAL date
literals you specify a range that is outside the years you've defined, an invalid date error is returned.

Minimum and Maximum Dates

Only dates within a certain range are valid. The earliest valid date is 1700-01-01T00:00:00Z GMT, or just after midnight on
January 1, 1700. The latest valid date is 4000-12-31T00:00:00Z GMT, or just after midnight on December 31, 4000. These

17

Date Formats and Date LiteralsSalesforce Object Query Language (SOQL)

values are offset by your time zone. For example, in the Pacific time zone, the earliest valid date is 1699-12-31T16:00:00, or
4:00 PM on December 31, 1699.

ORDER BY
You can use ORDER BY in a SELECT statement to control the order of the query results. There is no guarantee of the order
of results unless you use an ORDER BY clause in a query. The syntax is:

[ORDER BY fieldExpression ASC | DESC ? NULLS FIRST | LAST ?]

DescriptionSyntax

Specifies whether the results are ordered in ascending (ASC) or descending (DESC) order.
Default order is ascending.

ASC or DESC

Orders null records at the beginning (NULLS FIRST) or end (NULLS LAST) of the results.
By default, null values are sorted first.

NULLS FIRST or NULLS
LAST

For example, the following query returns a query result with Widget__c records in alphabetical order by name, sorted in
descending order, with Widget__c records that have null names appearing last:

SELECT Name
FROM Widget__c
ORDER BY Name DESC NULLS LAST

The following factors affect results returned with ORDER BY:

• Sorting is case insensitive.

• ORDER BY is compatible with relationship query syntax.

• Multiple column sorting is supported, by listing more than one fieldExpression clause.

• Relationship queries with foreign key values in an ORDER BY clause behave differently depending on the version of the
Force.com API. In an ORDER BY clause, if the foreign key value in a record is null, the record is returned in version 13.0
and later, but not returned in versions before 13.0.

SELECT Id, Name, Widget__r.Id, Widget__r.Name
FROM Model__c
ORDER BY Widget__r.Name

Any Model record for which Widget__c is empty is returned in version 13.0 and later.
• Sort order is determined by current user locale. For English locales, Database.com uses a sorting mechanism based on the

UTF-8 values of the character data. For Asian locales, Database.com uses a linguistic sorting mechanism based on the
ISO 14651 and Unicode 3.2 standards.

The following limitations apply to data types when using ORDER BY:

• These data types are not supported: multi-select picklist, rich text area, long text area, and encrypted (if enabled).

• All other data types are supported, with the following caveats:

◊ convertCurrency() always sorts using corporate currency value, if available.

◊ phone data does not include any special formatting when sorting, for example, non-numeric characters such as dash
or parentheses are included in the sorting.

◊ picklist sorting is defined by the picklist sort determined during setup.

18

ORDER BYSalesforce Object Query Language (SOQL)

You can use ORDER BY with the optional LIMIT qualifier, in a SELECT statement:

SELECT Name
FROM Model__c
WHERE Name= 'Ring'
ORDER BY Model_Number__c ASC NULLS LAST LIMIT 125

You are limited to 32 fields in an ORDER BY query. If you exceed the limit, a malformed query fault is returned.

LIMIT
Use LIMIT to specify the maximum number of rows to return:

SELECT fieldList
FROM objectType
[WHERE conditionExpression]
LIMIT number_of_rows

For example:

SELECT Name
FROM Widget__c
WHERE Name = 'Ring' LIMIT 125

This query returns the first 125 Widget records whose Name is Ring.

You can use LIMIT with count() as the fieldList to count up to the maximum specified.

You can't use a LIMIT clause in a query that uses an aggregate function, but does not use a GROUP BY clause. For example,
the following query is invalid:

SELECT MAX(CreatedDate)
FROM Wdiget__c LIMIT 1

OFFSET
Use OFFSET to specify the starting row offset into the result set returned by your query. Using OFFSET is helpful for paging
into large result sets, in scenarios where you need to quickly jump to a particular subset of the entire results. As the offset
calculation is done on the server and only the result subset is returned, using OFFSET is more efficient than retrieving the full
result set and then filtering the results locally. OFFSET is available in API version 24.0 and later.

SELECT fieldList
FROM objectType
[WHERE conditionExpression]
ORDER BY fieldOrderByList
LIMIT number_of_rows_to_return
OFFSET number_of_rows_to_skip

As an example, if a SOQL query normally returned 50 rows, you could use OFFSET 10 in your query to skip the first 10 rows:

SELECT Name
FROM Merchandise__c
WHERE Price__c > 5.0
ORDER BY Name
LIMIT 100
OFFSET 10

19

LIMITSalesforce Object Query Language (SOQL)

The result set for the preceding example would be a subset of the full result set, returning rows 11 through 50 of the full set.

Considerations When Using OFFSET
Here are a few points to consider when using OFFSET in your queries:

• The maximum offset is 2,000 rows. Requesting an offset greater than 2,000 will result in a
NUMBER_OUTSIDE_VALID_RANGE error.

• OFFSET is intended to be used in a top-level query, and is not allowed in most sub-queries, so the following query is invalid
and will return a MALFORMED_QUERY error:

SELECT Name, Id
FROM Merchandise__c
WHERE Id IN

(
SELECT Id
FROM Discontinued_Merchandise__c
LIMIT 100
OFFSET 20

)
ORDER BY Name

A sub-query can use OFFSET only if the parent query has a LIMIT 1 clause. The following query is a valid use of OFFSET
in a sub-query:

SELECT Name, Id
(

SELECT Name FROM Line_Items__r LIMIT 10 OFFSET 2
)

FROM Merchandise__c
ORDER BY Name
LIMIT 1

OFFSET cannot be used as a sub-query in the WHERE clause, even if the parent query uses LIMIT 1.

Note: Using OFFSET in sub-queries is a pilot feature that is subject to change in future releases, and is not intended
for use in a production setting. There is no support associated with this pilot feature. For more information,
contact salesforce.com, inc.

• We recommend using an ORDER BY clause when you use OFFSET to ensure that the result set ordering is consistent. The
row order of a result set that does not have an ORDER BY clause will have a stable ordering, however the ordering key is
subject to change and should not be relied on.

• Similarly, we recommend using a LIMIT clause in combination with OFFSET if you need to retrieve subsequent subsets
of the same result set. For example, you could retrieve the first 100 rows of a query using the following:

SELECT Name, Id
FROM Merchandise__c
ORDER BY Name
LIMIT 100
OFFSET 0

You could then retrieve the next 100 rows, 101 through 201, using the following query:

SELECT Name, Id
FROM Merchandise__c
ORDER BY Name
LIMIT 100
OFFSET 100

20

OFFSETSalesforce Object Query Language (SOQL)

• OFFSET is applied to the result set returned at the time of the query. No server-side cursor is created to cache the full result
set for future OFFSET queries. The page results may change if the underlying data is modified during multiple queries
using OFFSET into the same result set. As an example, suppose the following query normally returns a full result set of 50
rows, and the first 10 rows are skipped using an OFFSET clause:

SELECT Name
FROM Merchandise__c
ORDER BY Name
OFFSET 10

After the query is run, 10 new rows are then inserted into Merchandise__c with Name values that come early in the sort
order. If the query is run again, with the same OFFSET value, a different set of rows is skipped. If you need to query multiple
pages of records with a consistent server-side cursor, use the queryMore() in SOAP API.

• Offsets are not intended to be used as a replacement for using queryMore(), given the maximum offset size and lack of
a server-side cursor. Multiple queries with offsets into a large result set will have a higher performance impact than using
queryMore() against a server-side cursor.

• When using OFFSET, only the first batch of records will be returned for a given query. If you want to retrieve the next
batch you’ll need to re-execute the query with a higher offset value.

• The OFFSET clause is allowed in SOQL used in SOAP API, REST API, and Apex. It’s not allowed in SOQL used within
Bulk API or Streaming API.

UPDATE VIEWSTAT
The UPDATE VIEWSTAT clause is used in a SELECT statement to report on Salesforce Knowledge article searches and views.
It allows developers to update an article’s view statistics.

You can use this syntax to increase the view count for every article you have access to online:

SELECT Title FROM FAQ__kav
WHERE PublishStatus='online' and
Language = 'en_US' and
KnowledgeArticleVersion = 'ka230000000PCiy'
UPDATE VIEWSTAT

GROUP BY
With API version 18.0 and later, you can use GROUP BY with aggregate functions, such as SUM() or MAX(), to summarize
the data and enable you to roll up query results rather than having to process the individual records in your code. The syntax
is:

[GROUP BY fieldGroupByList]

fieldGroupByList specifies a list of one or more fields, separated by commas, that you want to group by. If the list of fields
in a SELECT clause includes an aggregate function, you must include all non-aggregated fields in the GROUP BY clause.

For example, to determine how many Models are associated with each Widget value without using GROUP BY, you could run
the following query:

SELECT Widget__c FROM Model__c

21

UPDATE VIEWSTATSalesforce Object Query Language (SOQL)

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_querymore.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_querymore.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_querymore.htm

You would then write some code to iterate through the query results and increment counters for each Widget value. You can
use GROUP BY to get the same results without the need to write any extra code. For example:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget__c

For a list of aggregate functions supported by SOQL, see Aggregate Functions.

You can use a GROUP BY clause without an aggregated function to query all the distinct values, including null, for an object.
The following query returns the distinct set of values stored in the Widget field.

SELECT Widget__c
FROM Model__c
GROUP BY Widget__c

Note that the COUNT_DISTINCT() function returns the number of distinct non-null field values matching the query criteria.

Considerations When Using GROUP BY

Note the following when you are creating queries with a GROUP BY clause:

• Some object fields have a field type that does not support grouping. You can't include fields with these field types in a
GROUP BY clause. The Field object associated with DescribeSObjectResult has a groupable field that defines whether
you can include the field in a GROUP BY clause.

• You must use a GROUP BY clause if your query uses a LIMIT clause and an aggregated function. For example, the following
query is valid:

SELECT Name, Max(CreatedDate)
FROM Widget__c
GROUP BY Name
LIMIT 5

The following query is invalid as there is no GROUP BY clause:

SELECT MAX(CreatedDate)
FROM Wdiget__c LIMIT 1

• You can't use child relationship expressions that use the __r syntax in a query that uses a GROUP BY clause. For more
information, see Understanding Relationship Names, Custom Objects, and Custom Fields.

GROUP BY and queryMore()

For queries that don't include a GROUP BY clause, the query result object contains up to 500 rows of data by default. If the
query results exceed 500 rows, then your client application can use the queryMore() call and a server-side cursor to retrieve
additional rows in 500-row chunks.

However, if a query includes a GROUP BY clause, you can't use queryMore(). You can increase the default size up to 2,000
in the QueryOptions header. If your query results exceed 2,000 rows, you must change the filtering conditions to query data
in smaller chunks. There is no guarantee that the requested batch size will be the actual batch size. This is done to maximize
performance. See Changing the Batch Size in Queries for more details.

22

Considerations When Using GROUP BYSalesforce Object Query Language (SOQL)

http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_describesobjects_describesobjectresult.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_querymore.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_querymore.htm

Using Aliases with GROUP BY

You can use an alias for any field or aggregated field in a SELECT list in a query. Specify the alias directly after the associated
field. For example, the following query contains two aliases: n for the Name field, and max for the MAX(Widget_Cost__c)
aggregated field.

SELECT Name n, MAX(Widget_Cost__c) max
FROM Widget__c
GROUP BY Name

You can use a field alias to identify the field when you are processing the query results in your code.

Any aggregated field in a SELECT list that does not have an alias automatically gets an implied alias with a format expri,
where i denotes the order of the aggregated fields with no explicit aliases. The value of i starts at 0 and increments for every
aggregated field with no explicit alias.

In the following example, MAX(Widget_Cost__c) has an implied alias of expr0, and MIN(Widget_Cost__c) has an
implied alias of expr1.

SELECT Name, MAX(Widget_Cost__c), MIN(Widget_Cost__c)
FROM Widget__c
GROUP BY Name

In the next query, MIN(Widget_Cost__c) has an explicit alias of min. MAX(Widget_Cost__c) has an implied alias of
expr0, and SUM(Widget_Cost__c) has an implied alias of expr1.

SELECT Name, MAX(Widget_Cost__c), MIN(Widget_Cost__c) min, SUM(Widget_Cost__c)
FROM Widget__c
GROUP BY Name

HAVING
With API version 18.0 and later, you can use a HAVING clause with a GROUP BY clause to filter the results returned by aggregate
functions, such as SUM(). A HAVING clause is similar to a WHERE clause. The difference is that you can include aggregate
functions in a HAVING clause, but not in a WHERE clause. The syntax is:

[HAVING havingConditionExpression]

havingConditionExpression specifies one or more conditional expressions using aggregate functions to filter the query
results.

For example, you can use a GROUP BY clause to determine how many leads are associated with each LeadSource value with
the following query:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget__c

However, if you are only interested in Widgets that have more than 10 Models, you can filter the results by using a HAVING
clause. For example:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget__c
HAVING COUNT(Name) > 10

23

Using Aliases with GROUP BYSalesforce Object Query Language (SOQL)

The next query returns Widgets with duplicate names:

SELECT Name, Count(Id)
FROM Widget__C
GROUP BY Name
HAVING Count(Id) > 1

For a list of aggregate functions supported by SOQL, see Aggregate Functions.

Considerations When Using HAVING
Note the following when you are creating queries with a HAVING clause:

• A HAVING clause can filter by aggregated values. It can also contain filter by any fields included in the GROUP BY clause.
To filter by any other field values, add the filtering condition to the WHERE clause. For example, the following query is
valid:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget
HAVING COUNT(Name) > 10

The following query is invalid as Model_Number__c is not included in the GROUP BY clause:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget__c
HAVING COUNT(Name) > 10 and Model_Number__c LIKE 'Sirius%'

• Similar to a WHERE clause, a HAVING clause supports all the comparison operators, such as =, in conditional expressions,
which can contain multiple conditions using the logical AND, OR, and NOT operators.

• A HAVING clause can't contain any semi- or anti-joins. A semi-join is a subquery on another object in an IN clause to
restrict the records returned. An anti-join is a subquery on another object in a NOT IN clause to restrict the records returned.

TYPEOF
Note: TYPEOF is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more
information on enabling TYPEOF for your organization, contact salesforce.com.

Use TYPEOF in SELECT clauses when querying data that contains polymorphic relationships. A TYPEOF expression specifies
a set of fields to select that depend on the runtime type of the polymorphic reference. TYPEOF is available in API version 26.0
and later.

SELECT [fieldList,]
TYPEOF typeOfField

WHEN whenObjectType THEN whenFieldList
[ELSE elseFieldList]

END
FROM objectType

You can use more than one TYPEOF expression in a single SELECT statement, if you need to query multiple polymorphic
relationship fields.

24

Considerations When Using HAVINGSalesforce Object Query Language (SOQL)

You can provide as many WHEN clauses as needed, one per object type. The ELSE clause is optional and used if the object type
for the polymorphic relationship field in the current record doesn’t match any of the object types in the provided WHEN clauses.
The syntax specific to TYPEOF is as follows.

DescriptionSyntax

Specifies a list of one or more fields, separated by commas, that you want to retrieve
from the specified objectType. This is the standard list of fields used in a SELECT

fieldList

statement and used regardless of polymorphic relationship object types. If you’re only
interested in fields from objects referenced by polymorphic relationships, you can omit
this list from your SELECT statement. This list of fields cannot reference relationship
fields that are also referenced in any typeOfField fields used in the same query.

A polymorphic relationship field in objectType or a polymorphic field in a parent
of objectType that can reference multiple object types. For example, the Owner

typeOfField

relationship field of a Merchandise__c custom object could be a User or a Group.
typeOfField cannot reference a relationship field that is also referenced in
fieldList.

An object type for the given WHEN clause. When the SELECT statement runs, each
object type associated with the polymorphic relationship field specified in the
typeOfField expression is checked for a matching object type in a WHEN clause.

whenObjectType

A list of one or more fields, separated by commas, that you want to retrieve from the
specified whenObjectType. These are fields in the referenced object type or paths to
related object fields, not fields in the primary object type for the SELECT statement.

whenFieldList

A list of one or more fields, separated by commas, that you want to retrieve if none of
the WHEN clauses match the object type associated with the polymorphic relationship

elseFieldList

field specified in typeOfField. This list may only contain fields valid for the Name
object type, or paths to related object fields in Name.

Specifies the type of object you want to query. This is the standard object type required
in a SELECT statement.

objectType

Note the following considerations for using TYPEOF:

• TYPEOF is only allowed in the SELECT clause of a query. You can filter on the object type of a polymorphic relationship
using the Type qualifier in a WHERE clause, see Filtering on Polymorphic Relationship Fields for more details.

• TYPEOF isn’t allowed in queries that don’t return objects, such as COUNT() and aggregate queries.
• TYPEOF can’t be used in SOQL queries that are the basis of Streaming API PushTopics.
• TYPEOF can’t be used in SOQL used in Bulk API.
• TYPEOF expressions can’t be nested. For example, you can’t use TYPEOF inside the WHEN clause of another TYPEOF

expression.
• TYPEOF isn’t allowed in the SELECT clause of a semi-join query. You can use TYPEOF in the SELECT clause of an outer

query that contains semi-join queries. The following example is not valid:

SELECT Name From Line_Item__c
WHERE CreatedById IN

(
SELECT

TYPEOF Owner
WHEN User THEN Id
WHEN Group THEN CreatedById

END
FROM Merchandise__c
)

25

TYPEOFSalesforce Object Query Language (SOQL)

The following semi-join clause is valid because TYPEOF is only used in the outer SELECT clause:

SELECT
TYPEOF Owner

WHEN User THEN FirstName
WHEN Group THEN Name

END
FROM Line_Item__c
WHERE CreatedById IN

(
SELECT CreatedById
FROM Merchandise__c
)

• GROUP BY and HAVING aren’t allowed in queries that use TYPEOF.

The following example selects specific fields depending on whether the Owner field of a Merchandise__c record references a
User or Group.

SELECT
TYPEOF Owner
WHEN User THEN FirstName, LastName
WHEN Group THEN Name, Email
ELSE Name

END
FROM Merchandise__c

See Understanding Polymorphic Keys and Relationships for more details on polymorphic relationships, and additional examples
of TYPEOF.

Aggregate Functions
Aggregate functions allow you to roll up and summarize your data for analysis. You can use these functions without using a
GROUP BY clause. For example, you could use the AVG() aggregate function to find the average Amount for all your
opportunities.

SELECT AVG(Widget_Cost__c)
FROM Widget__c

However, these functions become a more powerful tool to generate reports when you use them with a GROUP BY clause. For
example, you could find the average Amount for all your opportunities by campaign.

SELECT Id, AVG(Widget_Cost__c)
FROM Widget__c
GROUP BY Id

This table lists all the aggregate functions supported by SOQL.

DescriptionAggregate Function

Returns the average value of a numeric field. For example:

SELECT Id, AVG(Widget_Cost__c)
FROM Widget__c
GROUP BY Id

AVG()

Available in API version 18.0 and later.

26

Aggregate FunctionsSalesforce Object Query Language (SOQL)

DescriptionAggregate Function

Returns the number of rows matching the query criteria. For example using COUNT():

SELECT COUNT()
FROM Widget__c
WHERE Name LIKE 'Ring%'

COUNT() and
COUNT(fieldName)

For example using COUNT(fieldName):

SELECT COUNT(Id)
FROM Widget__c
WHERE Name LIKE 'Ring%'

Note: COUNT(Id) in SOQL is equivalent to COUNT(*) in SQL.

The COUNT(fieldName) syntax is available in API version 18.0 and later. If you are using
a GROUP BY clause, use COUNT(fieldName) instead of COUNT(). For more information,
see COUNT() and COUNT(fieldName).

Returns the number of distinct non-null field values matching the query criteria. For example:

SELECT COUNT_DISTINCT(Name)
FROM Widget__c

COUNT_DISTINCT()

Note: COUNT_DISTINCT(fieldName) in SOQL is equivalent to
COUNT(DISTINCT fieldName) in SQL. To query for all the distinct values,
including null, for an object, see GROUP BY.

Available in API version 18.0 and later.

Returns the minimum value of a field. For example:

SELECT MIN(CreatedDate), Name
FROM Widget__c
GROUP BY Name

MIN()

If you use the MIN() or MAX() functions on a picklist field, the function uses the sort order
of the picklist values instead of alphabetical order.

Available in API version 18.0 and later.

Returns the maximum value of a field. For example:

SELECT Name, MAX(Widget_Cost__c)
FROM Widget__c
GROUP BY Name

MAX()

Available in API version 18.0 and later.

Returns the total sum of a numeric field. For example:

SELECT SUM(Widget_Cost__c)
FROM Widget__c

SUM()

27

Aggregate FunctionsSalesforce Object Query Language (SOQL)

DescriptionAggregate Function

Available in API version 18.0 and later.

You can't use a LIMIT clause in a query that uses an aggregate function, but does not use a GROUP BY clause. For example,
the following query is invalid:

SELECT MAX(CreatedDate)
FROM Wdiget__c LIMIT 1

COUNT() and COUNT(fieldName)
To discover the number of rows that are returned by a query, use COUNT() in a SELECT clause. There are two versions of
syntax for COUNT():

• COUNT()

• COUNT(fieldName)

If you are using a GROUP BY clause, use COUNT(fieldName) instead of COUNT().

COUNT()

COUNT() returns the number of rows that match the filtering conditions.

For example:

SELECT COUNT()
FROM Widget__c
WHERE Name LIKE 'Ring%'

SELECT COUNT()
FROM Model__c, Model__c.Widget__r
WHERE Widget__r.Name = 'Ring'

For COUNT(), the query result size field returns the number of rows. The records field returns null.

Note the following when using COUNT():

• COUNT() must be the only element in the SELECT list.
• You can use COUNT() with a LIMIT clause.
• You can't use COUNT() with an ORDER BY clause. Use COUNT(fieldName) instead.
• You can't use COUNT() with a GROUP BY clause for API version 19.0 and later. Use COUNT(fieldName) instead.

COUNT(fieldName)

COUNT(fieldName) returns the number of rows that match the filtering conditions and have a non-null value for fieldName.
This syntax is newer than COUNT() and is available in API version 18.0 and later.

For example:

SELECT COUNT(Id)
FROM Widget__c
WHERE Name LIKE 'Ring%'

28

COUNT() and COUNT(fieldName)Salesforce Object Query Language (SOQL)

COUNT(Id) returns the same count as COUNT(), so the previous and next queries are equivalent:

SELECT COUNT()
FROM Widget__c
WHERE Name LIKE 'Ring%'

Note: COUNT(Id) in SOQL is equivalent to COUNT(*) in SQL.

For COUNT(fieldName), the AggregateResult object in the records field returns the number of rows. The size field does
not reflect the count. For example:

SELECT COUNT(Id)
FROM Widget__c
WHERE Name LIKE 'Ring%'

For this query, the count is returned in the expr0 field of the AggregateResult object. For more information, see Using Aliases
with GROUP BY.

There are advantages to using COUNT(fieldName) instead of COUNT(). You can include multiple COUNT(fieldName)
items in a clause. For example, the following query returns the number of opportunities, as well as the number of opportunities
associated with a campaign.

SELECT COUNT(Id), COUNT(CampaignId)
FROM Opportunity

SELECT COUNT(Id), COUNT(Widget__r.Id)
FROM Model__c

Unlike COUNT(), you can use a GROUP BY clause with COUNT(fieldName) in API version 18.0 and later. This allows you
to analyze your records and return summary reporting information. For example, the following query returns the number of
leads for each LeadSource value:

SELECT Widget__c, COUNT(Name)
FROM Model__c
GROUP BY Widget__c

Support for Field Types in Aggregate Functions
Aggregate functions provide a powerful means to analyze your records, but they are not relevant for all field types. For example,
using an aggregate function on a base64 field type would not return meaningful data, so base64 fields do not support any of
the aggregate functions. The following table lists support by the aggregate functions for the primitive data types.

SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

NoNoNoNoNoNobase64

NoNoNoNoNoNoboolean

NoNoNoNoNoNobyte

NoYesYesYesYesNodate

NoYesYesYesYesNodateTime

YesYesYesYesYesYesdouble

29

Support for Field Types in Aggregate FunctionsSalesforce Object Query Language (SOQL)

http://www.salesforce.com/us/developer/docs/api/Content/primitive_data_types.htm

SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

YesYesYesYesYesYesint

NoYesYesYesYesNostring

NoNoNoNoNoNotime

In addition to the primitive data types, the API uses an extended set of field types for object fields. The following table lists
support by the aggregate functions for these field types.

SUM()MAX()MIN()COUNT_DISTINCT()COUNT()AVG()Data Type

NoNoNoNoNoNoanyType

Depends on
data type*

Depends on
data type*

Depends on
data type*

Depends on data
type*

Depends on
data type*

Depends on
data type*

calculated

NoYesYesYesYesNocombobox

YesYesYesYesYesYescurrency**

NoYesYesYesYesNoemail

NoNoNoNoNoNoencryptedstring

NoYesYesYesYesNoID

NoYesYesYesYesNomasterrecord

NoNoNoNoNoNomultipicklist

YesYesYesYesYesYespercent

NoYesYesYesYesNophone

NoYesYesYesYesNopicklist

NoYesYesYesYesNoreference

NoYesYesYesYesNotextarea

NoYesYesYesYesNourl

* Calculated fields are custom fields defined by a formula, which is an algorithm that derives its value from other fields,
expressions, or values. Therefore, support for aggregate functions depends on the type of the calculated field.
** Aggregate function results on currency fields default to the system currency.

Tip: Some object fields have a field type that does not support grouping. You can't include fields with these field
types in a GROUP BY clause. The Field object associated with DescribeSObjectResult has a groupable field that
defines whether you can include the field in a GROUP BY clause.

30

Support for Field Types in Aggregate FunctionsSalesforce Object Query Language (SOQL)

http://www.salesforce.com/us/developer/docs/api/Content/field_types.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_describesobjects_describesobjectresult.htm

Date Functions
Date functions allow you to group or filter your data by various date periods. For example, you could use the CALENDAR_YEAR()
function to find the sum of the Amount values for all your opportunities for each calendar year.

SELECT CALENDAR_YEAR(CreatedDate), SUM(Widget_Cost__c)
FROM Widget__c
GROUP BY CALENDAR_YEAR(CreatedDate)

Date functions are available in API version 18.0 and later.

Note: SOQL queries in a client application return dateTime field values as Coordinated Universal Time (UTC)
values. To convert dateTime field values to your default time zone, see Converting Time Zones in Date Functions.

This table lists all the date functions supported by SOQL.

ExamplesDescriptionDate Function

Returns a number representing the calendar month
of a date field.

CALENDAR_MONTH() • 1 for January

• 12 for December

Returns a number representing the calendar quarter
of a date field.

CALENDAR_QUARTER() • 1 for January 1 through March 31

• 2 for April 1 through June 30

• 3 for July 1 through September 30

• 4 for October 1 through December 31

2009Returns a number representing the calendar year of a
date field.

CALENDAR_YEAR()

20 for February 20Returns a number representing the day in the month
of a date field.

DAY_IN_MONTH()

Returns a number representing the day of the week
for a date field.

DAY_IN_WEEK() • 1 for Sunday

• 7 for Saturday

32 for February 1Returns a number representing the day in the year for
a date field.

DAY_IN_YEAR()

2009-09-22 for September 22, 2009

You can only use DAY_ONLY() with
dateTime fields.

Returns a date representing the day portion of a
dateTime field.

DAY_ONLY()

If your fiscal year starts in March:Returns a number representing the fiscal month of a
date field. This differs from CALENDAR_MONTH() if

FISCAL_MONTH()

• 1 for March
your organization uses a fiscal year that does not match
the Gregorian calendar.

• 12 for February

See “Setting the Fiscal Year” in the
Database.com online help.Note: This function is not supported if your

organization has custom fiscal years enabled.
See "About Fiscal Years" in the
Database.com online help.

31

Date FunctionsSalesforce Object Query Language (SOQL)

ExamplesDescriptionDate Function

If your fiscal year starts in July:Returns a number representing the fiscal quarter of a
date field. This differs from CALENDAR_QUARTER()

FISCAL_QUARTER()

• 1 for July 15
if your organization uses a fiscal year that does not
match the Gregorian calendar.

• 4 for June 6

Note: This function is not supported if your
organization has custom fiscal years enabled.
See "About Fiscal Years" in the
Database.com online help.

2009Returns a number representing the fiscal year of a date
field. This differs from CALENDAR_YEAR() if your

FISCAL_YEAR()

organization uses a fiscal year that does not match the
Gregorian calendar.

Note: This function is not supported if your
organization has custom fiscal years enabled.
See "About Fiscal Years" in the
Database.com online help.

18 for a time of 18:23:10

You can only use HOUR_IN_DAY() with
dateTime fields.

Returns a number representing the hour in the day
for a dateTime field.

HOUR_IN_DAY()

2 for April 10

The first week is from the first through the
seventh day of the month.

Returns a number representing the week in the month
for a date field.

WEEK_IN_MONTH()

1 for January 3

The first week is from January 1 through
January 7.

Returns a number representing the week in the year
for a date field.

WEEK_IN_YEAR()

Note the following when you use date functions:

• You can use a date function in a WHERE clause to filter your results even if your query doesn't include a GROUP BY clause.
The following query returns data for 2009:

SELECT CreatedDate, Widget_Cost__c
FROM Widget__c
WHERE CALENDAR_YEAR(CreatedDate) = 2011

• You can't compare the result of a date function with a date literal in a WHERE clause. The following query doesn't work:

SELECT CreatedDate, Widget_Cost__c
FROM Widget__c
WHERE CALENDAR_YEAR(CreatedDate) = THIS_YEAR

• You can't use a date function in a SELECT clause unless you also include it in the GROUP BY clause. There is an exception
if the field used in the date function is a date field. You can use the date field instead of the date function in the GROUP

32

Date FunctionsSalesforce Object Query Language (SOQL)

BY clause. This doesn't work for dateTime fields. The following query doesn't work because
CALENDAR_YEAR(CreatedDate) is not in a GROUP BY clause:

SELECT CALENDAR_YEAR(CreatedDate), Widget_Cost__c
FROM Widget__c

The following query works because the date field, CloseDate, is in the GROUP BY clause. This wouldn't work for a
dateTime field, such as CreatedDate.

SELECT CALENDAR_YEAR(CreateDate)
FROM Widget__c
GROUP BY CALENDAR_YEAR(CreateDate)

Converting Time Zones in Date Functions
SOQL queries in a client application return dateTime field values as Coordinated Universal Time (UTC) values. You can use
convertTimezone() in a date function to convert dateTime fields to the user's time zone.

For example, you could use the convertTimezone(dateTimeField) function to find the sum of the Amount values for
all your opportunities for each hour of the day, where the hour is converted to the user's time zone.

SELECT HOUR_IN_DAY(convertTimezone(CreatedDate)), SUM(Widget_Cost__c)
FROM Widget__c
GROUP BY HOUR_IN_DAY(convertTimezone(CreatedDate))

Note that you can only use convertTimezone() in a date function. The following query doesn't work because there is no
date function.

SELECT ConvertTimezone(CreatedDate)
FROM Widget__c

Querying Currency Fields in Multicurrency Organizations
If an organization is multicurrency enabled, you can use convertCurrency() in the SELECT clause to convert currency
fields to the user's currency.

Use this syntax for the SELECT clause:

convertCurrency(field)

For example:

SELECT Id, convertCurrency(Widget_Cost__c)
FROM Widget__c

If an organization has enabled advanced currency management, dated exchange rates will be used when converting currency
fields on opportunities, opportunity line items, and opportunity history.

You cannot use the convertCurrency() function in a WHERE clause. If you do, an error is returned. Use the following
syntax to convert a numeric value to the user's currency, from any active currency in your organization:

WHERE Object_name Operator ISO_CODEvalue

33

Converting Time Zones in Date FunctionsSalesforce Object Query Language (SOQL)

For example:

SELECT Id, Name
FROM Widget__c
WHERE Widget_Cost__c > USD5

In this example, Widget records will be returned if the record's currency Widget_Cost__c value is greater than the equivalent
of USD5. For example, a Widget with an amount of USD6 would be returned, but not JPY100.

Use an ISO code that your organization has enabled and is active. If you do not put in an ISO code, then the numeric value
is used instead of comparative amounts. Using the example above, opportunity records with JPY5001, EUR5001, and USD5001
would be returned. Note that if you use IN in a WHERE clause, you cannot mix ISO code and non-ISO code values.

Note: Ordering is always based on the converted currency value, just like in reports. Thus, convertCurrency()
cannot be used with ORDER BY.

If a query includes a GROUP BY or HAVING clause, any currency data returned by using an aggregate function, such as SUM()
or MAX(), is in the organization's default currency. You cannot convert the result of an aggregate function into the user's
currency by calling theconvertCurrency() function.

For example:

SELECT Name, MAX(Widget_Cost__c)
FROM Widget__c
GROUP BY Name
HAVING MAX(Widget_Cost__c) > 10

You can't use ISO_CODEvalue to represent a value in a particular currency, such as USD, when you use an aggregate function.
For example, the following query does not work:

SELECT Name, MAX(Widget_Cost__c)
FROM Widget__c
GROUP BY Name
HAVING MAX(Widget_Cost__c) > USD10

Example SELECT Clauses

Example(s)Type of Search

SELECT Id, Name FROM Widget__cSimple query

SELECT Id FROM Model__c WHERE Name LIKE 'W%'WHERE

SELECT Name FROM Widget__c ORDER BY Name DESC NULLS LASTORDER BY

SELECT Name FROM Model__c WHERE Widget__r.Name = 'Ring'
LIMIT 12

LIMIT

SELECT Name FROM Model__c WHERE Widget__r.Name = 'Ring'
ORDER BY CreatedDate ASC NULLS LAST LIMIT 12

ORDER BY with LIMIT

SELECT COUNT() FROM Model__ccount()

SELECT Widget__r.Name, COUNT(Name) FROM Model__c GROUP BY
Widget__r.Name

GROUP BY

34

Example SELECT ClausesSalesforce Object Query Language (SOQL)

Example(s)Type of Search

SELECT Name, COUNT(Id) FROM Widget__c GROUP BY Name HAVING
COUNT(Id) > 1

HAVING

SELECT Name, Id FROM Merchandise__c ORDER BY Name OFFSET
100

OFFSET with ORDER BY

SELECT Name, Id FROM Merchandise__c ORDER BY Name LIMIT 20
OFFSET 100

OFFSET with ORDER BY and LIMIT

SELECT Model__c.Name, Model__c.Widget__r.Name FROM Model__c

SELECT Id, Name, Widget__r.Name FROM Model__c WHERE
Widget__r.Widget_Cost__c > 2.00

Relationship queries: child-to-parent

SELECT Name, (SELECT Name FROM Models__r) FROM Widget__c

SELECT Widget__c.Name, (SELECT Model__c.Name FROM
Widget__c.Models__r) FROM Widget__c

Relationship queries: parent-to-child

SELECT Name, (SELECT Name FROM Models__r WHERE
CreatedBy.Alias = 'x') FROM Widget__c WHERE Name = 'Ring'

Relationship query with WHERE

SELECT TYPEOF Owner WHEN User THEN FirstName, LastName WHEN
Group THEN Name, Email ELSE Name END FROM Merchandise__c

Polymorphic relationship queries using
TYPEOF

Note: TYPEOF is currently available as a Developer Preview as part of
the SOQL Polymorphism feature. For more information on enabling
TYPEOF for your organization, contact salesforce.com.

SELECT Name, (SELECT CreatedBy.Name FROM Models__r) FROM
Widget__c

Relationship queries with aggregate

SELECT UserId, LoginTime from LoginHistorySimple query: the UserId and LoginTime
for each user

SELECT UserId, COUNT(Id) from LoginHistory WHERE LoginTime
> 2010-09-20T22:16:30.000Z AND LoginTime <
2010-09-21T22:16:30.000Z GROUP BY UserId

Relationship queries with number of
logins per user in a specific time range

Note: Apex requires that you surround SOQL and SOSL statements with square brackets in order to use them on
the fly. Additionally, Apex script variables and expressions can be used if preceded by a colon (:).

Relationship Queries
Client applications need to be able to query for more than a single type of object at a time. SOQL provides syntax to support
these types of queries, called relationship queries, against both standard objects and custom objects.

Relationship queries traverse parent-to-child and child-to-parent relationships between objects to filter and return results.
They are similar to SQL joins. However, you cannot perform arbitrary SQL joins. The relationship queries in SOQL must
traverse a valid relationship path as defined in the rest of this section.

You can use relationship queries to return objects of one type based on criteria that applies to objects of another type, for
example, “return all accounts created by Bob Jones and the contacts associated with those accounts.” There must be a

35

Relationship QueriesSalesforce Object Query Language (SOQL)

parent-to-child or child-to-parent relationship connecting the objects. You can’t write arbitrary queries such as “return all
accounts and users created by Bob Jones.”

Use the following topics to understand and use relationship queries in SOQL:

• Understanding Relationship Names

• Using Relationship Queries

• Understanding Relationship Names, Custom Objects, and Custom Fields

• Understanding Query Results

• Lookup Relationships and Outer Joins

• Identifying Parent and Child Relationships

• Understanding Polymorphic Keys and Relationships

• Understanding Relationship Query Limitations

• Using Relationship Queries with History Objects

• Using Relationship Queries with the Partner WSDL

Understanding Relationship Names
Parent-to-child and child-to-parent relationships exist between many types of objects, for example, Account is a parent of
Contact.

To be able to traverse these relationships for standard objects, a relationship name is given to each relationship. The form of
the name is different, depending on the direction of the relationship:

• For child-to-parent relationships, the relationship name to the parent is the name of the foreign key, and there is a
relationshipName property that holds the reference to the parent object. For example, the Model child object has a
child-to-parent relationship to the Widget object, so the value of relationshipName in Contact is Widget__r. These
relationships are traversed by specifying the parent using dot notation in the query, for example:

SELECT Model__c.Name, Model__c.Widget__r.Name from Model__c

This query returns the names of all the Models in the organization, and for each Model, the Widget name associated with
(parent of) that Model.

• For parent-to-child relationships, the parent object has a name for the child relationship that is unique to the parent, the
plural of the child object name. For example, Widget has a child relationship to Models and has a relationshipName
for them called Models. These relationships can be traversed only in the SELECT clause, using a nested SOQL query. For
example:

SELECT Widget__c.Name, (SELECT Model__c.Name FROM Widget__c.Models__r) FROM Widget__c

36

Understanding Relationship NamesSalesforce Object Query Language (SOQL)

This query returns all Widgets, and for each Widget, the name of each Model associated with (the child of) that Widget.

Warning: You must use the correct naming convention and SELECT syntax for the direction of the relationship. For
information about how to discover relationship names via your organization's WSDL or describeSObjects(),
see Identifying Parent and Child Relationships. There are limitations on relationship queries depending on the
direction of the relationship. See Understanding Relationship Query Limitations for more information.

Relationship names are somewhat different for custom objects, though the SELECT syntax is the same. See Understanding
Relationship Names, Custom Objects, and Custom Fields for more information.

Using Relationship Queries
You can query the following relationships using SOQL:

• Query child-to-parent relationships, which are often many-to-one. Specify these relationships directly in the SELECT,
FROM, or WHERE clauses using the dot (.) operator.

For example:

SELECT Id, Name, Widget__r.Name
FROM Model__c
WHERE Widget__r.CreatedBy.LastName LIKE 'Smi%'

This query returns the ID and name for only the contacts whose related account industry is media, and for each contact
returned, the account name.

• Query parent-to-child, which are almost always one-to-many. Specify these relationships using a subquery (enclosed in
parentheses), where the initial member of the FROM clause in the subquery is related to the initial member of the outer
query FROM clause. Note that for subqueries, you should specify the plural name of the object as that is the name of the
relationship for each object.

For example:

SELECT Name,
(
SELECT Name
FROM Models__r

)
FROM Widget__c

The query returns the name for all the Widgets, and for each Widget, the name of each Model.

• Traverse the parent-to-child relationship as a foreign key in an aggregate query:

For example:

SELECT Name,
(
SELECT CreatedBy.Name
FROM Models__r

)
FROM Widget__c

This query returns Widget__c records, and for each widget, the name of the widget, the Model__c records for those widgets
(which can be an empty result set if there were no Model__c records on any widget) with the name of the user who created
each Model__c (if the result set is not empty).

37

Using Relationship QueriesSalesforce Object Query Language (SOQL)

• Any query (including subqueries) can include a WHERE clause, which applies to the object in the FROM clause of the current
query. These clauses can filter on any object in the current scope (reachable from the root element of the query), via the
parent relationships.

For example:

SELECT Name,
(
SELECT Name
FROM Models__r
WHERE CreatedBy.Alias = 'x'

)
FROM Widget__c WHERE Name = 'Ring'

This query returns the name for all Widgets whose name is 'Ring', and for each Widget returned, returns the name of
every Model whose created-by alias is 'x.'

Understanding Relationship Names, Custom Objects, and Custom Fields
Custom objects can participate in relationship queries. Database.com ensures that your custom object names, custom field
names, and the relationship names associated with them remain unique, even if a standard object with the same name is
available now or in the future. This is important in relationship queries, where the query traverses relationships using the
object, field, and relationship names.

This section explains how relationship names for custom objects and custom fields are created and used.

When you create a new custom relationship in the Database.com user interface, you are asked to specify the plural version of
the object name, which you use for relationship queries:

Notice that the Child Relationship Name (parent to child) is the plural form of the child object name, in this case
Daughters.

Once the relationship is created, notice that it has an API Name, which is the name of the custom field you created, appended
by __c (underscore-underscore-c):

38

Understanding Relationship Names, Custom Objects, and
Custom Fields

Salesforce Object Query Language (SOQL)

When you refer to this field via the API, you must use this special form of the name. This prevents ambiguity in the case
where Database.com can create a standard object with the same name as your custom field. The same process applies to custom
objects—when they are created, they have an API Name, the object named appended by __c, which must be used.

When you use a relationship name in a query, you must use the relationship names without the __c. Instead, append an __r
(underscore underscore r).

For example:

• When you use a child-to-parent relationship, you can use dot notation:

SELECT Id, FirstName__c, Mother_of_Child__r.FirstName__c
FROM Daughter__c
WHERE Mother_of_Child__r.LastName__c LIKE 'C%'

This query returns the ID and first name of daughter objects, and the first name of the daughter's mother if the mother's
last name begins with 'C.'

• Parent-to-child relationship queries do not use dot notation:

SELECT LastName__c,
(
SELECT LastName__c
FROM Daughters__r

)
FROM Mother__c

The example above returns the last name of all mothers, and for each mother returned, the last name of the mother's
daughters.

Understanding Query Results
Query results are returned as nested objects. The primary or “driving” object of the main SELECT query contains query results
of subqueries.

39

Understanding Query ResultsSalesforce Object Query Language (SOQL)

For example, you can construct a query using either parent-to-child or child-to-parent syntax:

• Child-to-parent:

SELECT Id, Name, Widget__r.Id, Widget__r.Name
FROM Model__c
WHERE Widget__r.Name LIKE 'Ring%'

This query returns one query result (assuming there were not too many returned records), with a row for every contact that
met the WHERE clause criteria.

• Parent-to-child:

SELECT Id, Name,
(
SELECT Id, Name
FROM Models__r

)
FROM Widget__c
WHERE Name like 'Ring%'

This query returns a set of Widgets, and within each Widget, a query result set of Model fields containing the Model
information from the subquery.

Subquery results are like regular query results in that you might need to use queryMore() to retrieve all the records if there
are many children. For example, if you issue a query on Widget__c records that includes a subquery, your client application
must handle results from the subquery as well:

1. Perform the query on Widget__c.
2. Iterate over the Widget__c QueryResult with queryMore().
3. For each Widget__c object, retrieve the Model__c QueryResult.
4. Iterate over the child models, using queryMore() on each model’s QueryResult.

The following sample illustrates how to process subquery results:

private void querySample() {
QueryResult qr = null;
try {
qr = connection.query("SELECT w.Id, w.Name, " +
"(SELECT m.Id, m.Name FROM a.Models__r m) +
"FROM Widget__c w");

boolean done = false;
if (qr.getSize() > 0) {
while (!done) {
for (int i = 0; i < qr.getRecords().length; i++) {
Widget__c widget = (Widget__c) qr.getRecords()[i];
String name = widget.getName();
System.out.println("Widget " + (i + 1) + ": " + name);
printModels(widget.getModels__r());
}
if (qr.isDone()) {
done = true;

} else {
qr = connection.queryMore(qr.getQueryLocator());

}
}

} else {
System.out.println("No records found.");

}
System.out.println("\nQuery succesfully executed.");

} catch (ConnectionException ce) {
System.out.println("\nFailed to execute query successfully, error message " +
"was: \n" + ce.getMessage());

40

Understanding Query ResultsSalesforce Object Query Language (SOQL)

}
}

private void printModels(QueryResult qr) throws ConnectionException {
boolean done = false;
if (qr.getSize() > 0) {
while (!done) {
for (int i = 0; i < qr.getRecords().length; i++) {
Model__c model = (Model__c) qr.getRecords()[i];
String name = model.getName();
System.out.println("Child model " + (i + 1) + ": " + name);

}
if (qr.isDone()) {
done = true;

} else {
qr = connection.queryMore(qr.getQueryLocator());

}
}

} else {
System.out.println("No child records found.");

}
}

Lookup Relationships and Outer Joins
Beginning with version 13.0 of the API, relationship queries return records even if the relevant foreign key field has a null
value, as you would expect with an outer join. The change in behavior applies to the following types of relationship queries:

• In an ORDER BY clause, if the foreign key value in a record is null, the record is returned in version 13.0 and later, but not
returned in versions before 13.0. For example:

SELECT Id, Name, Widget__r.Id, Widget__r.Name
FROM Model__c
ORDER BY Widget__r.Name

Any Model record for which Widget__c is empty is returned in version 13.0 and later.

• In a WHERE clause using OR, if the foreign key value in a record is null, the record is returned in version 13.0 and later,
but not returned in versions before 13.0. For example, if your organization has one Model with the value of its Name field
equal to Wallace and the value of its Widget__r field equal to null, and another Model with a different name and a
parent Widget named Ring, the following query returns only the Model with the name equal to Ring:

SELECT Id FROM Model__c WHERE Name = 'Wallace' OR Widget__r.Name = 'Ring'

The Model with no parent Widget has a name that meets the criteria, so it is returned in version 13.0 and later.
• In a WHERE clause that checks for a value in a parent field, if the parent does not exist, the record is returned in version

13.0 and later, but not returned in versions before 13.0.. For example:

SELECT Id
FROM Model__c
WHERE Widget__r.name = null

Model record Id values are returned in version 13.0 and later, but are not returned in versions before 13.0.

41

Lookup Relationships and Outer JoinsSalesforce Object Query Language (SOQL)

Identifying Parent and Child Relationships
You can identify parent-child relationships by viewing the ERD diagrams in the Data Model section of the Database.com
Object Reference at www.salesforce.com/us/developer/docs/object_reference/index.htm. However, not all
parent-child relationships are exposed in SOQL, so to be sure you can query on a parent-child relationship by issuing the
appropriate describe call. The results contain parent-child relationship information.

You can also examine the enterprise WSDL for your organization:

• To find the names of child relationships, look for entries that contain the plural form of a child object and end with
type="tns:QueryResult". For example, from Widget__c:

<complexType name="Widget__c">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Models__r" nillable="true" minOccurs="0"

type="tns:QueryResult"/>
...
</sequence>

</extension>
</complexContent>

</complexType>

In the example above, the child relationship name Models is in the entry for its parent Widget.

• For the parent of an object, look for a pair of entries, such as Widget__c and Widget__r, where the ID field represents
the parent object referenced by the ID, and the other represents the contents of the record.

<complexType name="Model__c">
<complexContent>
<extension base="ens:sObject">
<sequence>
...
<element name="Widget__c" nillable="true" minOccurs="0"

type="tns:ID"/>
<element name="Widget__r" nillable="true" minOccurs="0"

type="ens:Widget__c"/>
</sequence>

</extension>
</complexContent>

</complexType>

Note: Not all relationships are exposed in the API. The most reliable method for identifying relationships is to
execute a describeSObjects() call. You can use the AJAX Toolkit to quickly execute test calls.

Understanding Polymorphic Keys and Relationships
In a polymorphic relationship, the referenced object of the relationship can be one of several different objects. For example,
the Owner relationship field of a Merchandise__c custom object could be a User or a Group. When making queries or updating
records with polymorphic relationships, you need to check the actual object type set for the relationship, and act accordingly.
You can access polymorphic relationships several ways.

• You can use the polymorphic key for the relationship.

• You can use a TYPEOF clause in a query.

42

Identifying Parent and Child RelationshipsSalesforce Object Query Language (SOQL)

http://www.salesforce.com/us/developer/docs/object_reference/index.htm
http://www.salesforce.com/us/developer/docs/ajax/index.htm

• You can use the Type qualifier on a polymorphic field.

You can also combine these techniques for complex queries. Each of these techniques are described below.

Note: TYPEOF is currently available as a Developer Preview as part of the SOQL Polymorphism feature. For more
information on enabling TYPEOF for your organization, contact salesforce.com.

Using Polymorphic Keys
A polymorphic key is an ID that can refer to more than one type of object as a parent. For example, either a User or a Group
can be the owner of a custom object. In other words, the OwnerId field of a custom object can contain the ID of either a User
or a Group. If an object can have more than one type of object as a parent, the polymorphic key points to a Name object instead
of a single object type.

Executing a describeSObjects() call returns the Name object, whose field Type contains a list of the possible object
types that can parent the queried object. The namePointing field in the DescribeSObjectResult indicates that the relationship
points to the Name object, needed because the relationship is polymorphic. For example, the value in the OwnerId field in a
Merchandise__c record can be a User or Group.

Note: If your organization has the SOQL Polymorphism feature enabled, polymorphic relationship fields reference
sObjects, and not Names.

In order to traverse relationships where the object type of the parent is not known, you can use these fields to construct a query:

• owner: This field represents the object of a parent who owns the child object, regardless of the parent's object type. For
example:

SELECT Id, Owner.Name
FROM Merchandise__c
WHERE Owner.Name like 'R%'

This example query works for Merchandise__c records whose owners are either Users or Groups.

You can also use describeSObjects() to obtain information about the parents and children of objects. For more information,
see describeSObjects() and especially namePointing, which, if set to true, indicates the field points to a name.

Using TYPEOF
SOQL supports polymorphic relationships using the TYPEOF expression in a SELECT statement. TYPEOF is available in API
version 26.0 and later.

Use TYPEOF in a SELECT statement to control which fields to query for each object type in a polymorphic relationship. The
following SELECT statement returns a different set of fields depending on the object type associated with the Owner polymorphic
relationship field in a Merchandise__c record.

SELECT
TYPEOF Owner
WHEN User THEN FirstName, LastName
WHEN Group THEN Name, Email
ELSE Name

END
FROM Merchandise__c

At run time this SELECT statement checks the object type referenced by the Owner field in a Merchandise__c. If the object
type is User, the referenced User’s FirstName and LastName fields are returned. If the object type is Group, the referenced
Group’s Name and Email fields are returned. If the object type is any other type, the Name field is returned. Note that if an
ELSE clause isn’t provided and the object type isn’t User or Group,then null is returned for that Merchandise__c record.

Note the following considerations for TYPEOF.

43

Understanding Polymorphic Keys and RelationshipsSalesforce Object Query Language (SOQL)

• TYPEOF is only allowed in the SELECT clause of a query. You can filter on the object type of a polymorphic relationship
using the Type qualifier in a WHERE clause, see Filtering on Polymorphic Relationship Fields for more details.

• TYPEOF isn’t allowed in queries that don’t return objects, such as COUNT() and aggregate queries.
• TYPEOF can’t be used in SOQL queries that are the basis of Streaming API PushTopics.
• TYPEOF can’t be used in SOQL used in Bulk API.
• TYPEOF expressions can’t be nested. For example, you can’t use TYPEOF inside the WHEN clause of another TYPEOF

expression.
• TYPEOF isn’t allowed in the SELECT clause of a semi-join query. You can use TYPEOF in the SELECT clause of an outer

query that contains semi-join queries. The following example is not valid:

SELECT Name From Line_Item__c
WHERE CreatedById IN

(
SELECT

TYPEOF Owner
WHEN User THEN Id
WHEN Group THEN CreatedById

END
FROM Merchandise__c
)

The following semi-join clause is valid because TYPEOF is only used in the outer SELECT clause:

SELECT
TYPEOF Owner

WHEN User THEN FirstName
WHEN Group THEN Name

END
FROM Line_Item__c
WHERE CreatedById IN

(
SELECT CreatedById
FROM Merchandise__c
)

• GROUP BY and HAVING aren’t allowed in queries that use TYPEOF.

Using the Type qualifier
You can use the Type qualifier on a field to determine the object type that’s referenced in a polymorphic relationship. Use the
Type qualifier in the WHERE clause of a SELECT statement to conditionally control what’s returned from the query depending
on the referenced object type. The following SELECT statement uses Type to filter the query based on the Owner field in
Merchandise__c.

SELECT Description
FROM Merchandise__c
WHERE Owner.Type IN ('User', 'Group')

At run time this SELECT statement returns the descriptions for Merchandise__c records that reference Users or Groups in
the Owner field. If a Merchandise__c references something other than a User or Group in the Owner field, it wouldn’t be
returned as part of this SELECT. Unlike the TYPEOF expression, object types are returned as strings from Type. You can apply
any WHERE comparison operator to the object type strings, such as = (Equals) or LIKE.

44

Understanding Polymorphic Keys and RelationshipsSalesforce Object Query Language (SOQL)

Combining TYPEOF and Type
You can combine TYPEOF and Type in a SELECT statement. The following SELECT statement uses both TYPEOF and Type
to filter the query and refine the set of returned fields based on the Owner field in Merchandise__c.

SELECT Id,
TYPEOF Owner
WHEN User THEN FirstName
WHEN Group THEN Email

END
FROM Merchandise__c
WHERE Owner.Type IN ('User', 'Group')

At run time this SELECT statement always returns the ID for a Merchandise__c, and then either User.FirstName, or
Group.Email, depending on the object type referenced by the Merchandise__c record’s Owner field. Note that no ELSE clause
has been provided. Since the statement filters based on the Owner field in the WHERE clause, only Merchandise__c records
that reference either a User or Group are returned, so the ELSE clause is not needed. If an ELSE clause was included in this
case, it would be ignored at run time.

Understanding Relationship Query Limitations
When designing relationship queries, consider these limitations:

• Relationship queries are not the same as SQL joins. You must have a relationship between objects to create a join in SOQL.

• No more than 35 child-to-parent relationships can be specified in a query. A custom object allows up to 25 relationships,
so you can reference all the child-to-parent relationships for a custom object in one query.

• No more than 20 parent-to-child relationships can be specified in a query.

• In each specified relationship, no more than five levels can be specified in a child-to-parent relationship. For example,
Contact.Account.Owner.FirstName (three levels).

• In each specified relationship, only one level of parent-to-child relationship can be specified in a query. For example, if
the FROM clause specifies Account, the SELECT clause can only specify the Contact or other objects at that level. It could
not specify a child object of Contact.

Using Relationship Queries with History Objects
Custom objects and some standard objects have an associated history object that tracks changes to an object record. You can
use relationship queries to traverse a history object to its parent object. For example, the following query returns every history
row for Foo__c and displays the name and custom fields of Foo:

SELECT OldValue, NewValue, Parent.Id, Parent.name, Parent.customfield__c
FROM foo__history

This example query returns every Foo object row together with the corresponding history rows in nested subqueries:

SELECT Name, customfield__c, (SELECT OldValue, NewValue FROM foo__history)
FROM foo__c

Using Relationship Queries with the Partner WSDL
The partner WSDL does not contain the detailed type information available in the enterprise WSDL to get the information
you need for a relationship query. You must first execute a describeSObjects() call, and from the results, gather the
information you need to create your relationship query:

45

Understanding Relationship Query LimitationsSalesforce Object Query Language (SOQL)

• The relationshipName value for one-to-many relationships, for example, in a Widget object, the relationship name
for the Model child is Models__r.

• The reference fields available for the relevant object.

For an example of using the partner WSDL with relationship queries, see the examples on developer.force.com (requires
login).

Changing the Batch Size in Queries
By default, the number of rows returned in the query result object (batch size) returned in a query() or queryMore() call
is set to 500. WSC clients can set the batch size by calling setQueryOptions() on the connection object. C# client
applications can change this setting by specifying the batch size in the call QueryOptions portion of the SOAP header before
invoking the query() call. The maximum batch size is 2,000 records. However this setting is only a suggestion. There is no
guarantee that the requested batch size will be the actual batch size. This is done to maximize performance.

Note: The batch size will be no more than 200 if the SOQL statement selects two or more custom fields of type
long text. This is to prevent large SOAP messages from being returned.

The following sample Java (WSC) code demonstrates setting the batch size to two hundred and fifty (250) records.

public void queryOptionsSample() {
connection.setQueryOptions(250);

}

The following sample C# (.NET) code demonstrates setting the batch size to two hundred and fifty (250) records.

private void queryOptionsSample()
{

binding.QueryOptionsValue = new QueryOptions();

binding.QueryOptionsValue.batchSize = 250;
binding.QueryOptionsValue.batchSizeSpecified = true;

}

Syndication Feed SOQL and Mapping Syntax
Syndication feed services use a SOQL query and mapping specification that allows applications to point to sets of objects and
individual objects, as well as to traverse relationships between objects. Several options can also be added as query string
parameters to filter and control how the data is presented. Syndication feeds can be defined for public sites.

For full information about the limitations on SOQL in query feed definitions, see the Database.com online help for syndication
feeds.

Location-Based SOQL Queries—Beta
Location-based SOQL queries let you compare and query location values stored in Database.com. You can calculate the
distance between two location values (such as between a warehouse and a store), or between a location value and any fixed
latitude-longitude coordinates (such as between a warehouse and 37.775°, -122.418°, also known as San Francisco).

The geolocation custom field type allows you to create a field to store location values. Geolocation fields identify a location
by its latitude and longitude. Additionally, standard addresses on Database.com objects include a geolocation field and, once
populated, can be used in similar ways (with a few restrictions). Locations of both types can be compared and queried, for
example, to find the 10 closest accounts.

46

Changing the Batch Size in QueriesSalesforce Object Query Language (SOQL)

http://wiki.developerforce.com/index.php/RelationshipQuery

See “Compound Fields—Beta” in the SOAP API Developer’s Guide for additional details of using address and geolocation
compound fields, including a few limitations of the beta.

Field Types that Support Location-Based SOQL Queries
SOQL supports using simple numeric values for latitude and longitude using the GEOLOCATION function. These values
can come from standard numeric fields, user input, calculations, and so on. They can also come from the individual components
of a geolocation field, which stores both latitude and longitude in a single logical field. And, if the geolocation field of a
standard address has been populated by a geocoding service, latitude and longitude values can be used directly from an address.

SOQL queries made using the SOAP and REST APIs also support using geolocation fields, including address fields that
have a geolocation component, directly in SOQL statements. This often results in simpler SOQL statements. Compound
fields can only be used in SOQL queries made through the SOAP and REST APIs.

SELECT Clause
Retrieve records with locations saved in geolocation or address fields as individual latitude and longitude values by appending
“__latitude__s” or “__longitude__s” to the field name, instead of the usual “__c”. For example:

SELECT Name, Location__latitude__s, Location__longitude__s
FROM Warehouse__c

This query finds all of the warehouses that are stored in the custom object Warehouse. The results include each warehouse’s
latitude and longitude values individually. Note the use of the separate field components for Location__c, to select the
latitude and longitude components individually.

SOQL executed using the SOAP or REST APIs can SELECT the compound field, instead of the individual elements.
Compound fields are returned as structured data, rather than primitive values. For example:

SELECT Name, Location__c
FROM Warehouse__c

This query retrieves the same data as the previous query, but the Location__c field is a compound geolocation field, and
the results combine the two primitive values. Results from a REST API request might look something like this.

{
"totalSize" : 10,
"done" : true,
"records" : [{
"attributes" : {
"type" : "Warehouse__c",
"url" : "/services/data/v30.0/sobjects/Warehouse__c/a06D00000017O4nIAE"

},
"Name" : "Ferry Building Depot",
"Location__c" : {
"latitude" : 37.79302,
"longitude" : -122.394507

}
}, {
"attributes" : {
"type" : "Warehouse__c",
"url" : "/services/data/v30.0/sobjects/Warehouse__c/a06D00000017O4oIAE"

},
"Name" : "Aloha Warehouse",
"Location__c" : {
"latitude" : 37.786108,
"longitude" : -122.430152

}
},
...
]

}

47

Location-Based SOQL Queries—BetaSalesforce Object Query Language (SOQL)

WHERE Clause
Retrieve records with locations within or outside of a certain radius with distance conditions in the WHERE clause of the query.
Use the following functions to construct an appropriate distance condition.

DISTANCE
Calculates the distance between two locations in miles or kilometers.

Usage: DISTANCE(mylocation1, mylocation2, 'unit') and replace mylocation1 and mylocation2 with
two location fields, or or a location field and a value returned by the GEOLOCATION function. Replace unit with
mi (miles) or km (kilometers).

GEOLOCATION
Returns a geolocation based on the provided latitude and longitude. Must be used with the DISTANCE function.

Usage: GEOLOCATION(latitude, longitude) and replace latitude and longitude with the corresponding
geolocation, numerical code values.

Compare two field values, or a field value with a fixed location. For example:

SELECT Name, Location__c
FROM Warehouse__c
WHERE DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi') < 20

ORDER BY Clause
Sort records by distance using a distance condition in the ORDER BY clause. For example:

SELECT Name, StreetAddress__c
FROM Warehouse__c
WHERE DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi') < 20
ORDER BY DISTANCE(Location__c, GEOLOCATION(37.775,-122.418), 'mi')
LIMIT 10

This query finds up to 10 of the warehouses in the custom object Warehouse that are within 20 miles of the geolocation
37.775°, –122.418°, which is San Francisco. The results include the name and address of each warehouse, but not its
geocoordinates. The nearest warehouse will be first in the list; the farthest location will be last.

How SOQL Treats Null Location Values
Geolocation fields are compound fields that combine latitude and longitude values to describe a specific point on Earth. Null
values are valid only if both latitude and longitude are null.

Records that have invalid geolocation field values, that is, geolocations where either latitude or longitude is null, but not both,
are treated as though both values are null when used in SOQL WHERE DISTANCE() and ORDER BY clauses. In other words,
as though the field has not been set.

When a compound geolocation field is used in a SELECT clause, invalid geolocation values return null. For example:

SELECT Name, Location__c
FROM Warehouse__c
LIMIT 5

The values returned from an API call might look something like these values.

Location__cName

nullFerry Building Depot

(37.786108,-122.430152)Aloha Warehouse

48

Location-Based SOQL Queries—BetaSalesforce Object Query Language (SOQL)

Location__cName

nullBig Tech Warehouse

nullS H Frank & Company

(37.77587,-122.399902)San Francisco Tech Mart

These results include three null geolocation values. It’s not possible to tell which values are genuinely null, and which are
invalid data.

When the individual field components of that same geolocation field are used in a SELECT clause, the saved values are returned
as before. In other words, non-null values will be returned as that value, and null values return as null. For example:

SELECT Name, Location__latitude__s, Location__longitude__s
FROM Warehouse__c
LIMIT 5

In this example, the results might look like these values.

location__longitude__slocation__latitude__sName

-122.394507nullFerry Building Depot

-122.43015237.786108Aloha Warehouse

nullnullBig Tech Warehouse

null37.763662S H Frank & Company

-122.39990237.77587San Francisco Tech Mart

In these results, only one geolocation field is genuinely null. The other two, with partial nulls, are invalid.

Limitations on Location-Based SOQL Queries
As a beta-release feature, location-based queries are supported in SOQL in Apex and in the SOAP and REST APIs with the
following limitations:

• Outside of the SOAP and REST APIs, geolocation fields are supported in the SELECT clause of SOQL queries only at
the component level. In other words, you have to query the latitude or longitude; you can’t query the compound location
field. Specify geolocation field components by appending “__latitude__s” or “__longitude__s” to the field name, instead
of the usual “__c”.

• DISTANCE and GEOLOCATION are supported in WHERE and ORDER BY clauses in SOQL, but not in GROUP
BY or SELECT.

• DISTANCE only supports the logical operators > and <, returning values within (<) or beyond (>) a specified radius.
• Syntax is restricted when running SOQL queries: When using the GEOLOCATION function, the geolocation field

must precede the latitude and longitude coordinates. For example, DISTANCE(warehouse_location__c,
GEOLOCATION(37.775,-122.418), 'km') works but DISTANCE(GEOLOCATION(37.775,-122.418),
warehouse_location__c, "km") doesn’t work.

See “Compound Field Considerations and Limitations” in the SOAP API Developer’s Guide for additional details.

49

Location-Based SOQL Queries—BetaSalesforce Object Query Language (SOQL)

Chapter 2

Salesforce Object Search Language (SOSL)

Use the Salesforce Object Search Language (SOSL) to construct text searches
in the following environments:

In this chapter ...

• About SOSL
• the search() call• SOSL Typographical Conventions
• Apex statements• SOSL Syntax
• the Schema Explorer of the Eclipse Toolkit• FIND {SearchQuery}

• IN SearchGroup Unlike SOQL, which can only query one object at a time, SOSL enables you
to search text, email, and phone fields for multiple objects simultaneously.• RETURNING FieldSpec

• WHERE conditionExpression
• ORDER BY clause
• UPDATE TRACKING
• UPDATE VIEWSTAT
• LIMIT n
• OFFSET n
• Querying Currency Fields in

Multicurrency Organizations
• Example Text Searches
• Text Searches in CJK Languages

50

About SOSL
SOSL allows you to specify the following for source objects:

• text expression

• scope of fields to search

• list of objects and fields to retrieve

• conditions for selecting rows in the source objects

Pass the entire SOSL expression in the search parameter of the search() call.

Note: If your organization has relationship queries enabled, SOSL supports SOQL relationship queries.

Comparing SOSL and SOQL
Like Salesforce Object Query Language (SOQL), SOSL allows you to search your organization’s Database.com data for
specific information. Unlike SOQL, which can only query one object at a time, a single SOSL query can search all
objects—including custom objects—to which you have access. The API executes the search within the specified scope and
returns to you only the information that is available to you based on the user permissions under which your application has
logged in.

• Use SOQL with the query() call to select records for a single object.
• Use SOSL with the search() call to find records for one or more objects. The search() call searches most text fields

on an object. See Search Scope for information on the fields searched.

Designing Efficient Text Searches
If your searches are too general, they will be slow and return too many results. Use the following to write more efficient searches:

• IN clause—for limiting the types of columns to search
• RETURNING clause—for limiting the objects to search
• LIMIT clause—for restricting the search results
• OFFSET clause—for paging the search results

Search Scope
The search() call searches most objects (including custom objects) and text fields to which you have access. It does not
search the following objects and fields:

• Any elements such as picklists that are defined as not searchable (searchable is false). To determine whether a given
object is searchable, your application can invoke the describeSObjects() call on the object and inspect the searchable
property in the DescribeSObjectResult.

• Number, date, or checkbox fields. To search for such information, use the query() call instead.
• Textarea fields, unless you use the ALL FIELDS search group.

Note the following implementation tips:

• In most cases, the search() call does not provide specialized search features such as synonym matching or stop words.
• Apex requires that you surround SOQL and SOSL statements with square brackets in order to use them on the fly.

Additionally, Apex script variables and expressions can be used if preceded by a colon (:).

51

About SOSLSalesforce Object Search Language (SOSL)

SOSL Typographical Conventions
Topics about SOSL use the following typographical conventions:

DescriptionConvention

In an example, Courier font indicates items that you should type as shown. In
a syntax statement, Courier font also indicates items that you should type as
shown, except for question marks and square brackets.

FIND Name IN Widget__c

In an example or syntax statement, italics represent variables. You supply the
actual value.

FIND fieldname IN objectname

In a syntax statement, the comma inside square brackets indicates that the
element containing it may be repeated up to the limits for that element.

,

In a syntax statement, square brackets surround an element that is optional.
You may omit the element, or include one, or if a comma is present, more than
one of them.

[ORDER BY conditionexpression]

SOSL Syntax
The SOSL query syntax consists of a required FIND clause followed by one or more optional clauses in the following order:

FIND {SearchQuery} [IN SearchGroup [convertCurrency(Amount)]]
[RETURNING FieldSpec]
[LIMIT n]
[UPDATE TRACKING]
[UPDATE VIEWSTAT]

where:

DescriptionSyntax

Required. Specifies the text (words or phrases) to search for.
The search query must be delimited with curly braces.

If the SearchQuery string is longer than 10,000 characters,
no result rows are returned. If SearchQuery is longer than

FIND {SearchQuery}

4,000 characters, any logical operators are removed. For
example, the AND operator in a statement with a
SearchQuery that’s 4,001 characters will default to the OR
operator, which could return more results than expected.

Optional. Scope of fields to search. One of the following
values:

IN SearchGroup

• ALL FIELDS

• NAME FIELDS

• EMAIL FIELDS

• PHONE FIELDS

52

SOSL Typographical ConventionsSalesforce Object Search Language (SOSL)

DescriptionSyntax

If unspecified, then the default is ALL FIELDS. You can
specify the list of objects to search in the RETURNING
FieldSpec clause.

Note: This clause doesn't apply to feed comments,
feed items, and files. If any of these objects are
specified in the RETURNING clause, the search is
not limited to specific fields; all fields are returned.

Optional. If an organization is multicurrency enabled, converts
currency fields to the user's currency.

convertCurrency(Amount)

Optional. Information to return in the search result. List of
one or more objects and, within each object, list of one or

RETURNING FieldSpec

more fields, with optional values to filter against. If
unspecified, then the search results contain the IDs of all
objects found.

Optional. Specifies the maximum number of rows returned
in the text query, up to 2,000. If unspecified, the default is

LIMIT n

2,000, the largest number of rows that can be returned. These
limits apply to API version 28.0 and later. Previous versions
support a maximum of 200 rows returned.

Optional. If an organization uses Salesforce Knowledge, tracks
keywords used in Salesforce Knowledge article search.

UPDATE TRACKING

Optional. If an organization uses Salesforce Knowledge,
updates an article’s view statistics.

UPDATE VIEWSTAT

Note: The SOSL statement character limit is tied to the SOQL statement character limit defined for your organization.
By default, SOQL and SOSL queries cannot exceed 20,000 characters. For SOSL statements that exceed this
maximum length, the API returns a MALFORMED_SEARCH exception code; no result rows are returned.

FIND {SearchQuery}
The required FIND clause allows you to specify the word or phrase to search for. A search query includes:

• The literal text (single word or a phrase) to search for

• Optionally, Wildcards

• Optionally, logical Operators, including grouping parentheses

Searches are evaluated from left to right and use Unicode (UTF-8) encoding. Text searches are case-insensitive. For example,
searching for Customer, customer, or CUSTOMER all return the same results.

Note that special types of text expressions (such as macros, functions, or regular expressions) that are evaluated at run time are
not allowed in the FIND clause.

Note: The SearchQuery must be delimited with curly braces. This is needed to unambiguously distinguish the
search expression from other clauses in the text search.

53

FIND {SearchQuery}Salesforce Object Search Language (SOSL)

Single Words and Phrases
A SearchQuery contains two types of text:

• Single Word— single word, such as test or hello. Words in the SearchQuery are delimited by spaces, punctuation,
and changes from letters to digits (and vice-versa). Words are always case insensitive. In Chinese, Japanese, and Korean
(CJK), words are also delimited by pairs of CJK-type characters.

• Phrase— collection of words and spaces surrounded by double quotes such as "john smith". Multiple words can be
combined together with logical and grouping Operators to form a more complex query. Certain keywords (“and,” “or,”
and “and not”) must be surrounded in double quotes if you want to search for those words, otherwise they are interpreted
as the corresponding operator.

Wildcards
You can specify the following wildcard characters to match text patterns in your search:

DescriptionWildcard

Asterisks match zero or more characters at the middle or end (not the beginning) of your search term. For
example, a search for john* finds items that start with john, such as, john, johnson, or johnny. A search for

*

mi* meyers finds items with mike meyers or michael meyers. If you are searching for a literal asterisk in a
word or phrase, then escape the asterisk (precede it with the \ character).

Question marks match only one character in the middle or end (not the beginning) of your search term.
For example, a search for jo?n finds items with the term john or joan but not jon or johan.

?

When using wildcards, consider the following issues:

• Wildcards take on the type of the preceding character. For example, aa*a matches aaaa and aabcda, but not aa2a or aa.!//a,
and p?n matches pin and pan, but not p1n or p!n. Likewise, 1?3 matches 123 and 143, but not 1a3 or 1b3.

• A wildcard (*) is appended at the end of single characters in Chinese, Japanese, Korean, and Thai (CJKT) searches, except
in exact phrase searches.

• The more focused your wildcard search, the faster the search results are returned, and the more likely the results will reflect
your intention. For example, to search for all occurrences of the word prospect (or prospects, the plural form), it is
more efficient to specify prospect* in the search string than to specify a less restrictive wildcard search (such as prosp*)
that could return extraneous matches (such as prosperity).

• Tailor your searches to find all variations of a word. For example, to find property and properties, you would specify
propert*.

• Punctuation is indexed. To find * or ? inside a phrase, you must enclose your search string in quotation marks and you
must escape the special character. For example, "where are you\?" finds the phrase where are you?. The escape
character (\) is required in order for this search to work correctly.

Operators
You can use the following special operators to focus your text search. Operator support is case-insensitive.

DescriptionOperator

Use quotation marks around search terms to find an exact phrase match. This can be especially
useful when searching for text with punctuation. For example, "acme.com" finds items that contain

" "

the exact text acme.com. A search for "monday meeting" finds items that contain the exact
phrase monday meeting.

Finds items that match all of the search terms. For example, john AND smith finds items with
both the word john and the word smith. In most cases if an operator isn't specified, AND is the
default operator. Case-insensitive.

AND

54

FIND {SearchQuery}Salesforce Object Search Language (SOSL)

DescriptionOperator

Finds items with at least one of the search terms. For example, john OR smith finds items with
either john or smith, or both words. Case-insensitive.

OR

Finds items that do not contain the search term. For example, john AND NOT smith finds items
that have the word john but not the word smith. Case-insensitive.

AND NOT

Use parentheses around search terms in conjunction with logical operators to group search terms.
For example, you can search for:

()

• ("Bob" and "Jones") OR ("Sally" and "Smith")—searches for either Bob Jones or
Sally Smith.

• ("Bob") and ("Jones" OR "Thomas") and Sally Smith—searches for documents
that contain Bob Jones and Sally Smith or Bob Thomas and Sally Smith.

SearchQuery Character Limits
If the SearchQuery string is longer than 10,000 characters, no result rows are returned. If SearchQuery is longer than
4,000 characters, any logical operators are removed. For example, the AND operator in a statement with a SearchQuery that’s
4,001 characters will default to the OR operator, which could return more results than expected.

Search Order
When you combine multiple operators in a search string, they are evaluated in this order:

1. () (parentheses)
2. AND and AND NOT (evaluated from right to left)
3. OR

These examples show how search strings are evaluated:

Finds items with the words...Is the same as...Searching for...

acme and california but not meetingacme AND (california AND NOT
meeting)

acme AND california AND NOT
meeting

acme but not with both california and
meeting

acme AND NOT (california AND
meeting)

acme AND NOT california AND
meeting

acme and california and items with the
word meeting

(acme AND california) OR
meeting

acme AND california OR
meeting

acme and california and items with the
words acme and meeting

acme AND (california OR
meeting)

acme AND (california OR
meeting)

Reserved Characters
The following characters are reserved:

? & | ! { } [] () ^ ~ * : \ " ' + -

Reserved characters, if specified in a text search, must be escaped (preceded by the backslash \ character) in order to be properly
interpreted. An error occurs if you do not precede reserved characters with a backslash. This is true even if the SearchQuery
is enclosed in double quotes.

For example, to search for the following text:

{1+1}:2

55

FIND {SearchQuery}Salesforce Object Search Language (SOSL)

insert a backslash before each reserved character:

\{1\+1\}\:2

Example FIND Clauses

Example(s)Type of Search

FIND {MyProspect}

FIND {mylogin@mycompany.com}

Single term examples

FIND {FIND}

FIND {IN}

FIND {RETURNING}

FIND {LIMIT}

FIND {John Smith}Single phrase

FIND {MyProspect OR MyCompany}Term OR Term

FIND {MyProspect AND MyCompany}Term AND Term

FIND {MyProspect AND "John Smith"}Term AND Phrase

FIND {MyProspect OR "John Smith"}Term OR Phrase

FIND {MyProspect AND "John Smith" OR MyCompany}

FIND {MyProspect AND ("John Smith" OR MyCompany)}

Complex query using AND/OR

FIND {MyProspect AND NOT MyCompany}Complex query using AND NOT

FIND {My*}Wildcard search

FIND {Why not\?}Escape sequences

FIND {"John Smith}Invalid or incomplete phrase (will
not succeed)

FIND Clauses in Apex
The syntax of the FIND clause in Apex differs from the syntax of the FIND clause in the SOAP API:

• In Apex, the value of the FIND clause is demarcated with single quotes. For example:

FIND 'map*' IN ALL FIELDS RETURNING Merchandise__c (Id, Name), Invoice_Statement__c,
Line_Item__c

• In the Force.com API, the value of the FIND clause is demarcated with braces. For example:

FIND {map*} IN ALL FIELDS RETURNING Merchandise__c (Id, Name), Invoice_Statement__c,
Line_Item__c

The Database.com Apex Code Developer's Guide has more information about using SOSL and SOQL with Apex.

56

FIND {SearchQuery}Salesforce Object Search Language (SOSL)

IN SearchGroup
The optional IN clause allows you to define the types of fields to search. You can specify one of the following values (note that
numeric fields are not searchable). If unspecified, the default behavior is to search all text fields in searchable objects.

Note: This clause doesn't apply to feed comments, feed items, and files. If any of these objects are specified in the
RETURNING clause, the search is not limited to specific fields; all fields are returned.

Valid SearchGroup Settings

DescriptionScope

Search all searchable fields. If the IN clause is unspecified, then this is the default setting.ALL FIELDS

Search only email fields.EMAIL FIELDS

Search only name fields. In custom objects, fields that are defined as “Name Field” are searched.
In custom objects, name fields have the nameField property set to true. (See the Field
array of the fields parameter of the DescribeSObjectResult for more information.)

NAME FIELDS

Search only phone number fields.PHONE FIELDS

While the IN clause is optional, it is recommended that you specify the search scope unless you need to search all fields. For
example, if you’re searching only for an email address, you should specify IN EMAIL FIELDS in order to design the most
efficient search.

Example IN Clauses

Example(s)Search Type

FIND {MyProspect}No search group

FIND {MyProspect} IN ALL FIELDSALL FIELDS

FIND {mylogin@mycompany.com} IN EMAIL FIELDSEMAIL FIELDS

FIND {MyProspect} IN NAME FIELDSNAME FIELDS

FIND {MyProspect} IN PHONE FIELDSPHONE FIELDS

FIND {MyProspect} IN Widget__cInvalid search (will not succeed)

RETURNING FieldSpec
The optional RETURNING clause allows you to specify the information that is returned in the text search result. If unspecified,
then the default behavior is to return the IDs of all objects that are searchable up to the maximum specified in the LIMIT n
clause or 2,000 (API version 28.0 and later), whichever is smaller. In the results, objects are listed in the order specified in the
clause. API version 27.0 and earlier support a maximum of 200 results.

Note: Feed comments, feed items, and files must be specified explicitly in a RETURNING clause to be returned in
search results. For example:

FIND {MyProspect} RETURNING FeedComment, FeedItem, ContentVersion

57

IN SearchGroupSalesforce Object Search Language (SOSL)

Use the RETURNING clause to restrict the results data that is returned from the search() call. For information on IDs, see
ID Field Type.

Syntax
In the following syntax statement, square brackets [] represent optional elements that may be omitted. A comma indicates
that the indicated segment can appear more than one time.

RETURNING ObjectTypeName
[(FieldList [WHERE conditionExpression] [ORDER BY clause] [LIMIT n] [OFFSET n])]
[, ObjectTypeName [(FieldList) [WHERE conditionExpression] [ORDER BY clause] [LIMIT n]
[OFFSET n])]]

RETURNING can contain the following elements:

DescriptionName

Object to return. If specified, then the search() call returns the IDs of all found objects
matching the specified object. Must be a valid sObject type. You can specify multiple objects,

ObjectTypeName

separated by commas. Objects not specified in the RETURNING clause are not returned by the
search() call.

Optional list of one or more fields to return for a given object, separated by commas. If you
specify one or more fields, the fields are returned for all found objects.

FieldList

Optional description of how search results for the given object should be filtered, based on
individual field values. If unspecified, the search retrieves all the rows in the object that are
visible to the user.

Note that if you want to specify a WHERE clause, you must include a FieldList with at least
one specified field. For example, this is not legal syntax:

RETURNING Widget__c (WHERE name like 'test')

WHERE
conditionExpression

But this is:

RETURNING Widget__c (Name, Widget_Cost__c WHERE Name like 'test')

See conditionExpression for more information.

Optional description of how to order the returned result, including ascending and descending
order, and how nulls are ordered. You can supply more than one ORDER BY clause.

Note that if you want to specify an ORDER BY clause, you must include a FieldList with
at least one specified field. For example, this is not legal syntax:

RETURNING Widget__c (ORDER BY id)

ORDER BY clause

But this is:

RETURNING Widget__c (Name, Widget_Cost__c ORDER BY Name)

58

RETURNING FieldSpecSalesforce Object Search Language (SOSL)

DescriptionName

Optional clause that sets the maximum number of records returned for the given object. If
unspecified, all matching records are returned, up to the limit set for the query as a whole.

Note that if you want to specify a LIMIT clause, you must include a FieldList with at least
one specified field. For example, this is not legal syntax:

RETURNING Widget__c (LIMIT 10)

LIMIT n

But this is:

RETURNING Widget__c (Name, Widget_Cost__c LIMIT 10)

Optional clause used to specify the starting row offset into the result set returned by your
query. OFFSET can be used only when querying a single object. OFFSET must be the last
clause specified in a query.

Note that if you want to specify an OFFSET clause, you must include a FieldList with at
least one specified field. For example, this is not legal syntax:

RETURNING Widget__c (OFFSET 25)

OFFSET n

But this is:

RETURNING Widget__c (Name, Widget_Cost__c OFFSET 25)

Note: The RETURNING clause affects what data is returned, not what data is searched. The IN clause affects what
data is searched.

Example RETURNING Clauses

Example(s)Search Type

FIND {MyProspect}No Field Spec

FIND {MyProspect} RETURNING Model__cOne object, no fields

FIND {MyProspect} RETURNING Model__c, Part__cMultiple objects, no fields

FIND {MyProspect} RETURNING Widget__c(Name)One object, one or more fields

FIND {MyProspect} RETURNING Model__c(Name, Id)

FIND {MyProspect} RETURNING Model__c(Name, Id LIMIT 10),
Widget__c(Name, Widget_Cost__c)

Multiple objects, one or more fields,
limits

FIND {MyProspect} RETURNING Model__c(Name, Id), Widget__c,
Part__c(Name)

Multiple objects, mixed number of
fields

FIND {MyProspect} RETURNING Model__c(Name, Id LIMIT 10)Single object limit

FIND {MyProspect} RETURNING Model__c(Name, Id LIMIT 20),
Widget__c(Name, Widget_Cost__c LIMIT 10), Part__c LIMIT 50

Multiple object limits and a query
limit

FIND {MyProspect} RETURNING Model__c(Name, Id OFFSET 10)Single object offset

59

RETURNING FieldSpecSalesforce Object Search Language (SOSL)

Note: Apex requires that you surround SOQL and SOSL statements with square brackets in order to use them on
the fly. Additionally, Apex script variables and expressions can be used if preceded by a colon (:).

WHERE conditionExpression
The optional WHERE clause allows you to filter search results for a given object based on individual field values. If unspecified,
the search retrieves all the rows in the object that are visible to the user.

conditionExpression

The conditionExpression of the WHERE clause uses the following syntax:

fieldExpression [logicalOperator fieldExpression2 ...]

You can add multiple field expressions to a condition expression by using logical operators.

The condition expressions in SOSL FIND statements appear in bold in these examples:

• FIND {test} RETURNING Widget__c (id WHERE createddate = THIS_FISCAL_QUARTER)

• FIND {test} RETURNING Widget__c (id WHERE cf__c includes('AAA'))

• You can use parentheses to define the order in which fieldExpressions are evaluated. For example, the following
expression is true if fieldExpression1 is true and either fieldExpression2 or fieldExpression3 are true:

fieldExpression1 AND (fieldExpression2 OR fieldExpression3)

• However, the following expression is true if either fieldExpression3 is true or both fieldExpression1 and
fieldExpression2 are true.

(fieldExpression1 AND fieldExpression2) OR fieldExpression3

• Client applications must specify parentheses when nesting operators. However, multiple operators of the same type do not
need to be nested.

fieldExpression

A fieldExpression uses the following syntax:

fieldName comparisonOperator value

where:

DescriptionSyntax

The name of a field in the specified object. Use of single or double quotes around the name will result
in an error. You must have at least read-level permissions to the field. It can be any field except a long

fieldName

text area field, encrypted data field, or base64-encoded field. It does not need to be a field in the
fieldList.

Case-insensitive operators that compare values.comparisonOperator

A value used to compare with the value in fieldName. You must supply a value whose data type matches
the field type of the specified field. You must supply a native value—other field names or calculations

value

are not permitted. If quotes are required (for example, they are not for dates and numbers), use single
quotes. Double quotes result in an error.

60

WHERE conditionExpressionSalesforce Object Search Language (SOSL)

Comparison Operators
The following table lists the comparisonOperator values that are used in fieldExpression syntax. Note that comparisons on
strings are case-insensitive.

DescriptionNameOperator

Expression is true if the value in the specified fieldName equals the specified
value in the expression. String comparisons using the equals operator are
case-insensitive.

Equals=

Expression is true if the value in the specified fieldName does not equal the
specified value.

Not equals!=

Expression is true if the value in the specified fieldName is less than the specified
value.

Less than<

Expression is true if the value in the specified fieldName is less than, or equals,
the specified value.

Less or equal<=

Expression is true if the value in the specified fieldName is greater than the
specified value.

Greater than>

Expression is true if the value in the specified fieldName is greater than or equal
to the specified value.

Greater or
equal

>=

Expression is true if the value in the specified fieldName matches the characters
of the text string in the specified value. The LIKE operator in SOQL and SOSL

LikeLIKE

is similar to the LIKE operator in SQL; it provides a mechanism for matching
partial text strings and includes support for wildcards.
• The % and _ wildcards are supported for the LIKE operator.
• The % wildcard matches zero or more characters.
• The _ wildcard matches exactly one character.
• The text string in the specified value must be enclosed in single quotes.
• The LIKE operator is supported for string fields only.
• The LIKE operator performs a case-insensitive match, unlike the case-sensitive

matching in SQL.
• The LIKE operator in SOQL and SOSL supports escaping of special characters

% or _.
• Do not use the backslash character in a search except to escape a special

character.

For example, the following query matches Appleton, Apple, and Appl, but not
Bappl:

SELECT Id, Name
FROM Widget__c
WHERE Name LIKE 'appl%'

If the value equals any one of the specified values in a WHERE clause. For example:

SELECT Name FROM Widget__c
WHERE Name IN ('Ring', 'Flange')

ININ

Note that the values for IN must be in parentheses. String values must be
surrounded by single quotes.

61

WHERE conditionExpressionSalesforce Object Search Language (SOSL)

DescriptionNameOperator

IN and NOT IN can also be used for semi-joins and anti-joins when querying on
ID (primary key) or reference (foreign key) fields.

If the value does not equal any of the specified values in a WHERE clause. For
example:

SELECT Name FROM Widget__c
WHERE Name NOT IN ('Ring', 'Flange')

NOT INNOT IN

Note that the values for NOT IN must be in parentheses, and string values must
be surrounded by single quotes.

There is also a logical operator NOT, which is unrelated to this comparison operator.

Applies only to multi-select picklists.INCLUDES
EXCLUDES

Logical Operators
The following table lists the logical operator values that are used in fieldExpression syntax:

DescriptionSyntaxOperator

true if both fieldExpressionX and fieldExpressionY are true.fieldExpressionX AND
fieldExpressionY

AND

true if either fieldExpressionX or fieldExpressionY is true.

Relationship queries with foreign key values in an OR clause behave
differently depending on the version of the API. In a WHERE clause

fieldExpressionX OR
fieldExpressionY

OR

using OR, if the foreign key value in a record is null, the record is returned
in version 13.0 and later, but not returned in versions before 13.0.

SELECT Id FROM Model__c WHERE Name = 'Wallace' OR
Widget__r.Name = 'Ring'

The Model with no parent Widget has a name that meets the criteria, so
it is returned in version 13.0 and later.

true if fieldExpressionX is false.

There is also a comparison operator NOT IN, which is different from this
logical operator.

not fieldExpressionXNOT

Quoted String Escape Sequences
You can use the following escape sequences with SOSL:

MeaningSequence

New line\n or \N

Carriage return\r or \R

Tab\t or \T

Bell\b or \B

62

WHERE conditionExpressionSalesforce Object Search Language (SOSL)

MeaningSequence

Form feed\f or \F

One double-quote character\"

One single-quote character\'

Backslash\\

Matches a single underscore character (_)LIKE expression only: _

Matches a single percent sign character (%)LIKE expression only:\%

If you use a backslash character in any other context, an error occurs.

Example WHERE Clauses

Example(s)

FIND {test}
RETURNING Widget__c (id WHERE createddate = THIS_FISCAL_QUARTER)

FIND {test}
RETURNING Widget__c (id WHERE cf__c includes('AAA'))

FIND {test}
RETURNING Widget__c (id), Model__c(Field1,Field2 WHERE Field1 = 'test' order by id

ASC, Name DESC)

FIND {test} IN ALL FIELDS
RETURNING Widget__c(Name, Widget_Cost__c, id WHERE Name = 'test'),

Model__c(Name, id),
Part__c(id WHERE Part_Loc__c IN ('California', 'New York'))

FIND {test}
RETURNING Widget__c (id WHERE (Name = 'New Widget')

or (Id = '00Xz00000008Vq7'
and Name = 'Widget Insert Test')
or (Widget_Cost__c < 100 or Widget_Cost__c = null)
ORDER BY Widget_Cost__c)

ORDER BY clause
You can use one or more ORDER BY clauses in a SOSL statement.

Syntax

ORDER BY fieldname [ASC | DESC] [NULLS [first | last]]

DescriptionSyntax

Ascending (ASC) or descending (DESC) order of the results. Default order is ascending.ASC or DESC

63

ORDER BY clauseSalesforce Object Search Language (SOSL)

DescriptionSyntax

Order null records at the beginning (first) or end (last) of the results. By default, NULL values
are sorted last in ascending order and first in descending order.

NULLS

Examples
The following example shows a single ORDER BY clause:

FIND {MyWidgetName} RETURNING Widget__c(Name, Id ORDER BY Id)

The following example shows multiple ORDER BY clauses:

FIND {MyModelName} RETURNING Model__c(Name, Id ORDER BY Name), Widget__c(Widget_Cost__c,
Id ORDER BY Widget_Cost__c)

The following search returns a result with widget records in alphabetical order by name, sorted in descending order, with
widgets that have null names appearing last:

FIND {MyWidgetName} IN NAME FIELDS RETURNING Widget__c(Name, Id ORDER BY Name DESC NULLS
last)

UPDATE TRACKING
The UPDATE TRACKING clause is used to report on Salesforce Knowledge article searches and views. It allows developers to
track the keywords used in the Salesforce Knowledge article search.

You can use this syntax to track a keyword used in Salesforce Knowledge article search:

FIND {Keyword}
RETURNING KnowledgeArticleVersion (Title WHERE PublishStatus="Online" and language="en_US")
UPDATE TRACKING

UPDATE VIEWSTAT
The optional UPDATE VIEWSTAT clause is used to report on Salesforce Knowledge article searches and views. It allows
developers to update an article’s view statistics.

You can use this syntax to increase the view count for every article you have access to online in US English:

FIND {Title}
RETURNING FAQ__kav (Title WHERE PublishStatus="Online" and
language="en_US" and
KnowledgeArticleVersion = 'ka230000000PCiy')
UPDATE VIEWSTAT

LIMIT n
The optional LIMIT clause allows you to specify the maximum number of rows returned in the text query, up to 2,000 results.
If unspecified, then the default is 2,000 results , which is the largest number of rows that can be returned for API version 28.0
and later. Previous versions return up to 200 results.

64

UPDATE TRACKINGSalesforce Object Search Language (SOSL)

You can set limits on individual objects, or on an entire query. Setting individual object limits allows you to prevent results
from a single object using up the maximum query limit before other objects are returned. For example, if you issue the following
query, at most 20 widget records can be returned, and the remaining number of records can be models.

FIND {test} RETURNING Widget__c(id LIMIT 20), Model__c LIMIT 100

Object limits are evaluated in the order they are included in the query, and the maximum query limit is adjusted after each
object is processed. For example, if only seven widgets match the query string above, then at most 93 model records can be
returned. Likewise, if the following query returns 15 widgets and 30 models, then only 55 parts can be returned, regardless of
the part object's limit of 75:

FIND {test} RETURNING Widget__c(id LIMIT 20), Model__c, Part__c(id LIMIT 75) LIMIT 100

If you specify a limit of 0, no records are returned for that object.

OFFSET n
Use the optional OFFSET to specify the starting row offset into the result set returned by your query. Using OFFSET is helpful
for paging into large result sets, in scenarios where you need to quickly jump to a particular subset of the entire results. As the
offset calculation is done on the server and only the result subset is returned, using OFFSET is more efficient than retrieving
the full result set and then filtering the results locally. OFFSET can be used only when querying a single object. OFFSET must
be the last clause specified in a query. OFFSET is available in API version 30.0 and later.

FIND {conditionExpression} RETURNING objectType(fieldList ORDER BY fieldOrderByList
LIMIT number_of_rows_to_return
OFFSET number_of_rows_to_skip)

As an example, if a query normally returned 50 rows, you could use OFFSET 10 in your query to skip the first 10 rows:

FIND {test} RETURNING Widget__c(id LIMIT 10 OFFSET 10)

The result set for the preceding example would be a subset of the full result set, returning rows 11 through 20 of the full set.

Considerations When Using OFFSET
Consider these points when using OFFSET in your queries:

• The maximum offset is 2,000 rows. Requesting an offset greater than 2,000 will result in a MALFORMED_SEARCH: SOSL
offset should be between 0 to 2000 error.

• We recommend using a LIMIT clause in combination with OFFSET if you need to retrieve subsequent subsets of the same
result set. For example, you could retrieve the first 100 rows of a query using the following:

FIND {test} RETURNING Widget__c(Name, Id ORDER BY Name LIMIT 100)

You could then retrieve the next 100 rows, 101 through 200, using the following query:

FIND {test} RETURNING Widget__c(Name, Id ORDER BY Name LIMIT 100 OFFSET 100)

• When using OFFSET, only the first batch of records will be returned for a given query. If you want to retrieve the next
batch, you’ll need to re-execute the query with a higher offset value.

• Consecutive SOSL requests for the same search term but with a different OFFSET aren’t guaranteed to return a different
subset of the same data if the data being searched has been updated since the previous request.

• The OFFSET clause is allowed in SOSL used in SOAP API, REST API, and Apex.

65

OFFSET nSalesforce Object Search Language (SOSL)

Querying Currency Fields in Multicurrency Organizations
If an organization is multicurrency enabled, you can use convertCurrency() in the FieldList of the RETURNING clause to
convert currency fields to the user's currency.

Use this syntax for the RETURNING clause:

convertCurrency(Amount)

For example,

FIND {test} RETURNING Part__c(Name, convertCurrency(Amount))

You cannot use the convertCurrency() function in a WHERE clause. If you do, an error is returned. Use the following
syntax to convert a numeric value to the user's currency, from any active currency in your organization:

WHERE Object_name Operator ISO_CODEvalue

For example:

FIND {test} IN ALL FIELDS RETURNING Part__c(Name WHERE Amount>USD5000)

In this example, part records will be returned if the record's currency Amount value is greater than the equivalent of USD5000.
For example, a part with an amount of USD5001 would be returned, but not JPY7000.

Use an ISO code that your organization has enabled and is active. If you do not put in an ISO code, then the numeric value
is used instead of comparative amounts. Using the example above, part records with JPY5001, EUR5001, and USD5001 would
be returned. Note that if you use IN in a WHERE clause, you cannot mix ISO code and non-ISO code values.

Note: Ordering is always based on the converted currency value, just like in reports. Thus, convertCurrency()
cannot be used with the ORDER BY clause.

Example Text Searches
Look for joe anywhere in the system. Return the IDs of the records where joe is found.

FIND {joe}

Look for the name Joe Smith anywhere in the system, in a case-insensitive search. Return the IDs of the records where Joe
Smith is found.

FIND {Joe Smith}

Look for Widget Smith in the name field of a widget, return the ID field of the records.

FIND {Widget Smith}
IN Name Fields
RETURNING Widget__c

66

Querying Currency Fields in Multicurrency OrganizationsSalesforce Object Search Language (SOSL)

Look for Widget Smith in the name field of a widget and return the name of any matching record that was also created in
the current fiscal quarter.

FIND {Widget Smith}
IN Name Fields
RETURNING Widget__c (name Where createddate = THIS_FISCAL_QUARTER)

Look for Widget Smith or Widget Smythe in the name field of a widget or model and return the name. If a part record
is called Widget Smith or Widget Smythe, the part record should not be returned.

FIND {"Widget Smith" OR "Widget Smythe"}
IN Name Fields
RETURNING Widget__c(name), Model__c(name)

Wildcards:

FIND {Joe Sm*}
FIND {Joe Sm?th*}

Delimiting “and” and “or” as literals when used alone:

FIND {"and" or "or"}
FIND {"joe and mary"}
FIND {in}
FIND {returning}
FIND {find}

Escaping special characters & | ! () { } [] ^ “ ~ * ? : \ '

FIND {right brace \}}
FIND {asterisk *}
FIND {question \?}
FIND {single quote \'}
FIND {double quote \"}

Note: Apex requires that you surround SOQL and SOSL statements with square brackets in order to use them on
the fly. Additionally, Apex script variables and expressions can be used if preceded by a colon (:).

Text Searches in CJK Languages
In Chinese, Japanese, and Korean (CJK), words are delimited by pairs of CJK-type characters.

67

Text Searches in CJK LanguagesSalesforce Object Search Language (SOSL)

Index

A

Aggregate functions
field types, support 29
SOQL SELECT 26

Alias 23
Anti-join 10
Apex and SOSL 56

B

Batch size manipulation for query() 46
Boolean fields

filtering 6

C

Characters reserved in SOQL SELECT 3
Characters reserved in SOSL FIND 55
Child relationships

identifying 42
Comparison operators 8
Condition expression (WHERE clause) 5
Conventions

SOQL 2
SOSL 52

COUNT() 28
Currency fields, querying with SOSL 66

D

Date formats 14
Date functions

SOQL SELECT 31
time zones 33

Date literals 14
Duplicates 23

E

Escape sequences for SOQL 2
Example SELECT clauses 34

F

Feed service API URL Syntax 46
Field expression 8
Field types 29
Filtering on polymorphic relationship fields 7
FIND and Apex 56
FIND clause, SOSL 53
Foreign key null value and relationship query 41

G

GROUP BY
alias 23
considerations 22
SOQL SELECT 21
using 22

H

HAVING
considerations 24
SOQL SELECT 23
using 24

I

IN clause, SOSL 57

L

LIMIT 19
LIMIT clause, SOSL 64
Logical operators 13

M

Multicurrency organizations, querying currency fields with SOSL 66

N

Null value in SOQL 6
Null values in foreign key with relationship query 41

O

OFFSET 19, 65
Operators

comparison 8
logical 13

ORDER BY
SOQL SELECT 18

ORDER BY clause
SOSL FIND 63

P

Parent relationships
identifying 42

Polymorphic relationships
Filtering in WHERE clause 7
TYPEOF 24

68

Index

Q

query() call
batch size manipulation 46
SOQL overview 1

R

Relationship names
for custom objects and custom fields 38

Relationship queries
and foreign key with null values 41
history object 45
identifying parent and child relationships 42
limitations 45
overview 37
partner WSDL 45
polymorphic keys 42
polymorphic relationships 42
understanding results 39

Reserved characters in SOQL SELECT 3
Reserved characters in SOSL FIND 55
RETURNING

OFFSET 65
RETURNING clause, SOSL 57

S

search() call
SOSL overview 50

SearchQuery character limit 55
SELECT

aggregate functions 26
condition expression (WHERE clause 5
COUNT() 28
date formats 5
date formats and date literals 14
example clauses 34
field expression 8
GROUP BY 21–22
HAVING 23–24
LIMIT 19
OFFSET 19
ORDER BY 18
SOQL 3
TYPEOF 24
UPDATE 21

Semi-join 10
SOQ-R, see relationship queries 35
SOQL

alias 23

SOQL (continued)
compared with SOSL 51
date functions 31
duplicates 23
Escape sequences for quoted string 2
geolocation queries (beta) 46
null value 6
overview 1
Quoted string escape sequences 2
reserved characters 3
time zones 33
typographical conventions 2

SOQL relationship queries 35
SOSL

about 51
Apex syntax 56
compared with SOQL 51
examples 66
FIND clause 53
IN clause 57
LIMIT clause 64
ORDER BY clause 63
overview 50
querying currency fields 66
RETURNING clause 57
syntax 52
test search in CJK languages 67
typographical conventions 52
WHERE clause 60

SOSL character limit 55

T

Time zones 33
TYPEOF 24, 42
Typographical conventions

SOQL 2
SOSL 52

U

UPDATE TRACKING 64
UPDATE VIEWSTAT 21, 64
URL syntax for syndication feed service API 46

W

WHERE clause
filtering on Boolean fields 6
Filtering on polymorphic relationship fields 7

WHERE clause, SOSL 60

69

Index

	Salesforce Object Query Language (SOQL)
	SOQL Typographical Conventions
	Alias Notation

	Quoted String Escape Sequences
	Reserved Characters
	SOQL SELECT Syntax
	Condition Expression Syntax (WHERE Clause)
	null in SOQL Queries
	Filtering on Boolean Fields
	Querying Multi-Select Picklists
	Filtering on Polymorphic Relationship Fields

	fieldExpression Syntax
	Comparison Operators
	Logical Operators
	Date Formats and Date Literals

	ORDER BY
	LIMIT
	OFFSET
	UPDATE VIEWSTAT
	GROUP BY
	Considerations When Using GROUP BY
	Using Aliases with GROUP BY

	HAVING
	Considerations When Using HAVING

	TYPEOF
	Aggregate Functions
	COUNT() and COUNT(fieldName)
	Support for Field Types in Aggregate Functions

	Date Functions
	Converting Time Zones in Date Functions

	Querying Currency Fields in Multicurrency Organizations
	Example SELECT Clauses

	Relationship Queries
	Understanding Relationship Names
	Using Relationship Queries
	Understanding Relationship Names, Custom Objects, and Custom Fields
	Understanding Query Results
	Lookup Relationships and Outer Joins
	Identifying Parent and Child Relationships
	Understanding Polymorphic Keys and Relationships
	Understanding Relationship Query Limitations
	Using Relationship Queries with History Objects
	Using Relationship Queries with the Partner WSDL

	Changing the Batch Size in Queries
	Syndication Feed SOQL and Mapping Syntax
	Location-Based SOQL Queries—Beta

	Salesforce Object Search Language (SOSL)
	About SOSL
	SOSL Typographical Conventions
	SOSL Syntax
	FIND {SearchQuery}
	IN SearchGroup
	RETURNING FieldSpec
	WHERE conditionExpression
	ORDER BY clause
	UPDATE TRACKING
	UPDATE VIEWSTAT
	LIMIT n
	OFFSET n
	Querying Currency Fields in Multicurrency Organizations
	Example Text Searches
	Text Searches in CJK Languages

	Index

