
Version 30.0: Spring ’14

Database.com REST API Developer's
Guide

Last updated: May 5, 2014

© Copyright 2000–2014 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

GETTING STARTED WITH THE DATABASE.COM REST API...1

Chapter 1: Introducing Force.com REST API..1
Understanding Force.com REST Resources...2
Using Compression...3
Using cURL in the REST Examples..3
Understanding Authentication..4

Defining Connected Apps...4
Understanding OAuth Endpoints...5
Understanding the Web Server OAuth Authentication Flow...5
Understanding the User-Agent OAuth Authentication Flow...9
Understanding the Username-Password OAuth Authentication Flow...12
Understanding the OAuth Refresh Token Process...14
Finding Additional Resources...16

QUICK START..17

Chapter 2: Step 1: Obtain an Organization...17

Chapter 3: Step 2: Create Objects and Fields...18
Create Widget Object...18
Create Model Object...18
Relate the Objects..19

Chapter 4: Step 4: Create a Remote Access Application...20

Chapter 5: Step 5: Walk Through the Sample Code..21
Java Sample Code..21

USING REST RESOURCES..27

Chapter 6: Using REST API Resources..27
Getting Information About My Organization..28

List Available REST API Versions...28
List Organization Limits...29
List Available REST Resources...30
Get a List of Objects...30

Working with Object Metadata..31
Retrieve Metadata for an Object..31
Get Field and Other Metadata for an Object..32
Get Object Metadata Changes..33

Working with Records..34
Create a Record...34
Update a Record..34
Delete a Record...35

i

Table of Contents

Get Field Values from Records..36
Retrieve a Record Using an External ID...36
Insert or Update (Upsert) a Record Using an External ID..37
Get a List of Deleted Records Within a Given Timeframe..40
Get a List of Updated Records Within a Given Timeframe...41

Working with Searches and Queries...41
Execute a SOQL Query..42
Execute a SOQL Query that Includes Deleted Items...43
Get Feedback on Query Performance..44
Search for a String...45

Managing User Passwords...45
Manage User Passwords..46

Working with Approval Processes and Process Rules...47
Get a List of All Approval Processes...47
Submit a Record for Approval...48
Approve a Record..48
Reject a Record..49
Bulk Approvals..50
Get a List of Process Rules..51
Get a Particular Process Rule...51
Trigger Process Rules..52

REST API REFERENCE...53

Chapter 7: Reference...53
Versions...55
Resources by Version...55
Limits..56
Describe Global...56
SObject Basic Information..57
SObject Describe...57
SObject Get Deleted...58
SObject Get Updated..59
SObject Rows..60
SObject Rows by External ID...61
SObject ApprovalLayouts..62
SObject CompactLayouts..63
SObject Layouts..64
SObject Quick Actions..64
SObject User Password..65
AppMenu..66
FlexiPage...69
Process Approvals..71
Process Rules...72
Query...73

ii

Table of Contents

QueryAll..75
Quick Actions..76
Search..76
Headers..77

Limit Info Header...77
Status Codes and Error Responses..78

Index...80

iii

Table of Contents

GETTING STARTED WITH THE DATABASE.COM REST API

Chapter 1

Introducing Force.com REST API

REST API provides a powerful, convenient, and simple Web services API for
interacting with Force.com. Its advantages include ease of integration and

In this chapter ...

• Understanding Force.com REST
Resources

development, and it’s an excellent choice of technology for use with mobile
applications and Web 2.0 projects. However, if you have a large number of

• Using Compression records to process, you may wish to use Bulk API, which is based on REST
principles and optimized for large sets of data.• Using cURL in the REST Examples

• Understanding Authentication
REST API uses the same underlying data model and standard objects as those
in SOAP API. See the SOAP API Developer's Guide for details. REST API
also follows the same limits as SOAP API. See the Limits section in the SOAP
API Developer's Guide.

To use this document, you should have a basic familiarity with software
development, Web services, and the Database.com user interface.

Use this introduction to understand:

• The key characteristics and architecture of REST API. This will help you
understand how your applications can best use the Force.com REST
resources.

• How to set up your development environment so you can begin working
with REST API immediately.

• How to use REST API by following a quick start that leads you step by
step through a typical use case.

1

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api/index_Left.htm#StartTopic=Content/implementation_considerations.htm?SearchType=Stem

Understanding Force.com REST Resources
A REST resource is an abstraction of a piece of information, such as a single data record, a collection of records, or even
dynamic real-time information. Each resource in the Force.com REST API is identified by a named URI, and is accessed
using standard HTTP methods (HEAD, GET, POST, PATCH, DELETE). The Force.com REST API is based on the
usage of resources, their URIs, and the links between them. You use a resource to interact with your Database.com organization.
For example, you can:

• Retrieve summary information about the API versions available to you.

• Obtain detailed information about a custom object.

• Perform a query or search.

• Update or delete records.

Suppose you want to retrieve information about the Database.com version. To do this, submit a request for the Versions
resource (this example uses cURL on the na1 instance):

curl https://na1.salesforce.com/services/data/

The output from this request is as follows:

[
{

"version":"20.0",
"url":"/services/data/v20.0",
"label":"Winter '11"

}
...

]

Note: Database.com runs on multiple server instances. The examples in this guide use the na1 instance. The instance
your organization uses might be different.

Important characteristics of the Force.com REST API resources and architecture:

Stateless

Each request from client to server must contain all the information necessary to understand the request, and not use any
stored context on the server. However, the representations of the resources are interconnected using URLs, which allow
the client to progress between states.

Caching behavior

Responses are labeled as cacheable or non-cacheable.

Uniform interface

All resources are accessed with a generic interface over HTTP.

Named resources

All resources are named using a base URI that follows your Force.com URI.

Layered components

The Force.com REST API architecture allows for the existence of such intermediaries as proxy servers and gateways to
exist between the client and the resources.

2

Understanding Force.com REST ResourcesIntroducing Force.com REST API

Authentication

The Force.com REST API supports OAuth 2.0 (an open protocol to allow secure API authorization). See Understanding
Authentication for more details.

Support for JSON and XML

JSON is the default. You can use the HTTP ACCEPT header to select either JSON or XML, or append .json or .xml
to the URI (for example, /Widget__c/a01D000000INjVe.json).

The JavaScript Object Notation (JSON) format is supported with UTF-8. Date-time information is in ISO8601 format.

XML serialization is similar to SOAP API. XML requests are supported in UTF-8 and UTF-16, and XML responses
are provided in UTF-8.

Using Compression
The REST API allows the use of compression on the request and the response, using the standards defined by the HTTP
1.1 specification. Compression is automatically supported by some clients, and can be manually added to others. Visit Developer
Force for more information on particular clients.

Tip: For better performance, we suggest that clients accept and support compression as defined by the HTTP 1.1
specification.

To use compression, include the HTTP header Accept-Encoding: gzip or Accept-Encoding: deflate in a request.
The REST API compresses the response if the client properly specifies this header. The response includes the header
Content-Encoding: gzip or Accept-Encoding: deflate. You can also compress any request by including a
Content-Encoding: gzip or Content-Encoding: deflate header.

Response Compression
The REST API can optionally compress responses. Responses are compressed only if the client sends an Accept-Encoding
header. The REST API is not required to compress the response even if you have specified Accept-Encoding, but it normally
does. If the REST API compresses the response, it also specifies a Content-Encoding header.

Request Compression
Clients can also compress requests. The REST API decompresses any requests before processing. The client must send a
Content-Encoding HTTP header in the request with the name of the appropriate compression algorithm. For more
information, see:

• Content-Encoding at: www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
• Accept-Encoding at: www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
• Content Codings at: www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.5

Using cURL in the REST Examples
The examples in this guide use the cURL tool to send HTTP requests to access, create, and manipulate REST resources on
the Force.com platform. cURL is pre-installed on many Linux and Mac systems. Windows users can download a version at
curl.haxx.se/. When using HTTPS on Windows, ensure that your system meets the cURL requirements for SSL.

Note: cURL is an open source tool and is not supported by salesforce.com.

3

Using CompressionIntroducing Force.com REST API

http://www.iso.org/iso/catalogue_detail?csnumber=40874
https://wiki.developerforce.com/index.php/Web_Services_API
https://wiki.developerforce.com/index.php/Web_Services_API
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.11
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.5
http://curl.haxx.se/

Escaping the Session ID or Using Single Quotes on Mac and Linux Systems

When running the cURL examples for the REST resources, you may get an error on Mac and Linux systems due to the
presence of the exclamation mark special character in the session ID argument. To avoid getting this error, do one of
the following:
• Escape the exclamation mark (!) special character in the session ID by inserting a backslash before it (\!) when the

session ID is enclosed within double quotes. For example, the session ID string in this cURL command has the
exclamation mark (!) escaped:

curl https://instance_name.salesforce.com/services/data/v30.0/
-H "Authorization: Bearer
00D50000000IehZ\!AQcAQH0dMHZfz972Szmpkb58urFRkgeBGsxL_QJWwYMfAbUeeG7c1E6
LYUfiDUkWe6H34r1AAwOR8B8fLEz6n04NPGRrq0FM"

• Enclose the session ID within single quotes. For example:

curl https://instance_name.salesforce.com/services/data/v30.0/
-H 'Authorization: Bearer sessionID'

Understanding Authentication
Database.com uses authentication to allow users to securely access data without having to reveal username and password
credentials.

Before making REST API calls, you must authenticate the user using OAuth 2.0. To do so, you’ll need to:

• Set up a remote access application definition in Database.com.

• Determine the correct OAuth endpoint to use.

• Authenticate the user via one of several different OAuth 2.0 authentication flows. An OAuth authentication flow defines
a series of steps used to coordinate the authentication process between your application and Database.com. Supported
OAuth flows include:

◊ Web server flow, where the server can securely protect the consumer secret.

◊ User-agent flow, used by applications that cannot securely store the consumer secret.

◊ Username-password flow, where the application has direct access to user credentials.

After successfully authenticating the user, you’ll receive an access token which can be used to make authenticated REST API
calls.

Defining Connected Apps
To authenticate using OAuth, you must define a connected app in Database.com.

A remote access application is an application external to Database.com that uses the OAuth protocol to verify both the
Database.com user and the external application. A remote access application is implemented as a “connected app” in the
Salesforce Help. When you develop a new external application that needs to authenticate with Database.com, you need to
define a new connected app that informs Database.com of this new authentication entry point.

Use the following steps to create a new connected app.

1. From Setup, click Create > Apps and click New.
2. Enter the name of your application.
3. Enter the contact email information, as well as any other information appropriate for your application.

4

Understanding AuthenticationIntroducing Force.com REST API

4. Select Enable OAuth Settings.
5. Enter a Callback URL. Depending on which OAuth flow you use, this is typically the URL that a user’s browser is

redirected to after successful authentication. As this URL is used for some OAuth flows to pass an access token, the URL
must use secure HTTP (HTTPS) or a custom URI scheme.

6. Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions given by the user running
the connected app.

7. Enter a URL for Info URL. This is where the user can go for more information about your application.
8. Click Save. The Consumer Key is created and displayed, and the Consumer Secret is created (click the link to reveal

it).

Once you define a remote access application, you use the consumer key and consumer secret to authenticate your application.
See the Database.com online help for more information about connected apps.

Understanding OAuth Endpoints
OAuth endpoints are the URLs you use to make OAuth authentication requests to Database.com.

You need to use the correct Database.com OAuth endpoint when issuing authentication requests in your application. The
primary OAuth endpoints are:

• For authorization: https://login.database.com/services/oauth2/authorize

• For token requests: https://login.database.com/services/oauth2/token

• For revoking OAuth tokens: https://login.database.com/services/oauth2/revoke

All endpoints require secure HTTP (HTTPS). Each OAuth flow defines which endpoints you need to use and what request
data you need to provide.

If you’re verifying authentication on a test organization, use “test.database.com” instead of “login.database.com” in all the
OAuth endpoints listed above.

Understanding the Web Server OAuth Authentication Flow
The Web server authentication flow is used by applications that are hosted on a secure server. A critical aspect of the Web
server flow is that the server must be able to protect the consumer secret.

In this flow, the client application requests the authorization server to redirect the user to another web server or resource that
authorizes the user and sends the application an authorization code. The application uses the authorization code to request
an access token. The following shows the steps for this flow.

5

Understanding OAuth EndpointsIntroducing Force.com REST API

1. The application redirects the user to the appropriate Database.com authorization endpoint, such as
https://login.database.com/services/oauth2/authorize. The following parameters are required:

DescriptionParameter

Must be code for this authentication flow.response_type

The Consumer Key from the remote access application
definition.

client_id

The Callback URL from the remote access application
definition.

redirect_uri

The following parameters are optional:

DescriptionParameter

Changes the login page’s display type. Valid values are:display

• page—Full-page authorization screen. This is the default
value if none is specified.

• popup—Compact dialog optimized for modern Web
browser popup windows.

6

Understanding the Web Server OAuth Authentication FlowIntroducing Force.com REST API

DescriptionParameter

• touch—Mobile-optimized dialog designed for modern
smartphones such as Android and iPhone.

• mobile—Mobile optimized dialog designed for
smartphones such as BlackBerry OS 5 that don’t support
touch screens.

Determines whether the user should be prompted for login
and approval. Values are either true or false. Default is
false.

immediate

• If set to true, and if the user is currently logged in and
has previously approved the application, the approval
step is skipped.

• If set to true and the user is not logged in or has not
previously approved the application, the session is
immediately terminated with the
immediate_unsuccessful error code.

Specifies any additional URL-encoded state data to be
returned in the callback URL after approval.

state

Specifies what data your application can access. See “Scope
Parameter Values” in the online help for more information.

scope

An example authorization URL might look something like the following:

https://login.database.com/services/oauth2/authorize?response_type=code&client_id=
3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA
9GE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fcode_callback.jsp&state=mystate

2. The user logs into Database.com with their credentials. The user is interacting with the authorization endpoint directly,
so the application never sees the user’s credentials. After successfully logging in, the user is asked to authorize the application.
Note that if the user has already authorized the application, this step is skipped.

3. Once Database.com confirms that the client application is authorized, the end-user’s Web browser is redirected to the
callback URL specified by the redirect_uri parameter. Database.com appends authorization information to the redirect
URL with the following values:

DescriptionParameters

Authorization code the consumer must use to obtain the
access and refresh tokens.

code

The state value that was passed in as part of the initial
request, if applicable.

state

An example callback URL with authorization information might look something like:

https://www.mysite.com/authcode_callback?code=aWekysIEeqM9PiT
hEfm0Cnr6MoLIfwWyRJcqOqHdF8f9INokharAS09ia7UNP6RiVScerfhc4w%3D%3D

7

Understanding the Web Server OAuth Authentication FlowIntroducing Force.com REST API

4. The application extracts the authorization code and passes it in a request to Database.com for an access token. This request
is a POST request sent to the appropriate Database.com token request endpoint, such as
https://login.database.com/services/oauth2/token. The following parameters are required:

DescriptionParameter

Value must be authorization_code for this flow.grant_type

The Consumer Key from the remote access application
definition.

client_id

The Consumer Secret from the remote access application
definition.

client_secret

The Callback URL from the remote access application
definition.

redirect_uri

Authorization code the consumer must use to obtain the
access and refresh tokens.

code

The following parameter is optional:

DescriptionParameter

Expected return format. The default is json. Values are:format

• urlencoded

• json

• xml

The return format can also be specified in the header of the
request using one of the following:
• Accept: application/x-www-form-urlencoded

• Accept: application/json

• Accept: application/xml

An example access token POST request might look something like:

POST /services/oauth2/token HTTP/1.1
Host: login.database.com
grant_type=authorization_code&code=aPrxsmIEeqM9PiQroGEWx1UiMQd95_5JUZ
VEhsOFhS8EVvbfYBBJli2W5fn3zbo.8hojaNW_1g%3D%3D&client_id=3MVG9lKcPoNI
NVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCs
cA9GE&client_secret=1955279925675241571&
redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fcode_callback.jsp

5. If this request is successful, the server returns a response body that contains the following:

DescriptionParameters

Access token that acts as a session ID that the application
uses for making requests. This token should be protected as
though it were user credentials.

access_token

8

Understanding the Web Server OAuth Authentication FlowIntroducing Force.com REST API

DescriptionParameters

Token that can be used in the future to obtain new access
tokens.

refresh_token

Warning: This value is a secret. You should treat
it like the user's password and use appropriate
measures to protect it.

Identifies the Database.com instance to which API calls
should be sent.

instance_url

Identity URL that can be used to both identify the user as
well as query for more information about the user. Can be

id

used in an HTTP request to get more information about
the end user.

When the signature was created, represented as the number
of seconds since the Unix epoch (00:00:00 UTC on 1 January
1970).

issued_at

Base64-encoded HMAC-SHA256 signature signed with
the consumer's private key containing the concatenated ID

signature

and issued_at value. The signature can be used to
verify that the identity URL wasn’t modified because it was
sent by the server.

An example JSON response body might look something like:

{"id":"https://login.database.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448101416","refresh_token":"5Aep8614iLM.Dq661ePDmPEgaAW9
Oh_L3JKkDpB4xReb54_pZebnUG0h6Sb4KUVDpNtWEofWM39yg==","instance_url":
"https://na1.salesforce.com","signature":"CMJ4l+CCaPQiKjoOEwEig9H4wqhpuLSk
4J2urAe+fVg=","access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0R
NBaT1cyWk7TrqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4"}

6. The application uses the provided access token and refresh token to access protected user data.

Understanding the User-Agent OAuth Authentication Flow
The user-agent authentication flow is used by client applications (consumers) residing in the user’s device. This could be
implemented in a browser using a scripting language such as JavaScript, or from a mobile device or a desktop application.
These consumers cannot keep the client secret confidential.

In this flow, the client application requests the authorization server to redirect the user to another Web server or resource
which is capable of extracting the access token and passing it back to the application. The following shows the steps for this
flow.

9

Understanding the User-Agent OAuth Authentication FlowIntroducing Force.com REST API

1. The application redirects the user to the appropriate Database.com authorization endpoint, such as
https://login.database.com/services/oauth2/authorize. The following parameters are required:

DescriptionParameter

Must be token for this authentication flowresponse_type

The Consumer Key from the remote access application
definition.

client_id

The Callback URL from the remote access application
definition.

redirect_uri

The following parameters are optional:

DescriptionParameter

Changes the login page’s display type. Valid values are:display

• page—Full-page authorization screen. This is the default
value if none is specified.

• popup—Compact dialog optimized for modern Web
browser popup windows.

• touch—Mobile-optimized dialog designed for modern
smartphones such as Android and iPhone.

10

Understanding the User-Agent OAuth Authentication FlowIntroducing Force.com REST API

DescriptionParameter

• mobile—Mobile optimized dialog designed for
smartphones such as BlackBerry OS 5 that don’t support
touch screens.

Specifies what data your application can access. See “Scope
Parameter Values” in the online help for more information.

scope

Specifies any additional URL-encoded state data to be
returned in the callback URL after approval.

state

An example authorization URL might look something like the following:

https://login.database.com/services/oauth2/authorize?response_type=token&
client_id=3MVG9lKcPoNINVBIPJjdw1J9LLJbP_pqwoJYyuisjQhr_LLurNDv7AgQvDTZwCoZuD
ZrXcPCmBv4o.8ds.5iE&redirect_uri=https%3A%2F%2Fwww.mysite.com%2Fuser_callback.jsp&
state=mystate

2. The user logs into Database.com with their credentials. The user interacts with the authorization endpoint directly, so the
application never sees the user’s credentials.

3. Once authorization is granted, the authorization endpoint redirects the user to the redirect URL. This URL is defined in
the remote access application created for the application. Database.com appends access token information to the redirect
URL with the following values:

DescriptionParameters

Access token that acts as a session ID that the application
uses for making requests. This token should be protected as
though it were user credentials.

access_token

Amount of time the access token is valid, in seconds.expires_in

Token that can be used in the future to obtain new access
tokens.

refresh_token

Warning: This value is a secret. You should treat
it like the user's password and use appropriate
measures to protect it.

The refresh token is only returned if the redirect URI is
https://login.database.com/services/oauth2/success
or used with a custom protocol that is not HTTPS.

The state value that was passed in as part of the initial
request, if applicable.

state

Identifies the Database.com instance to which API calls
should be sent.

instance_url

Identity URL that can be used to both identify the user as
well as query for more information about the user. Can be

id

used in an HTTP request to get more information about
the end user.

11

Understanding the User-Agent OAuth Authentication FlowIntroducing Force.com REST API

DescriptionParameters

When the signature was created, represented as the number
of seconds since the Unix epoch (00:00:00 UTC on 1 January
1970).

issued_at

Base64-encoded HMAC-SHA256 signature signed with
the consumer's private key containing the concatenated ID

signature

and issued_at value. The signature can be used to
verify that the identity URL wasn’t modified because it was
sent by the server.

An example callback URL with access information appended after the hash sign (#) might look something like:

https://www.mysite.com/user_callback.jsp#access_token=00Dx0000000BV7z%21AR8
AQBM8J_xr9kLqmZIRyQxZgLcM4HVi41aGtW0qW3JCzf5xdTGGGSoVim8FfJkZEqxbjaFbberKGk
8v8AnYrvChG4qJbQo8&refresh_token=5Aep8614iLM.Dq661ePDmPEgaAW9Oh_L3JKkDpB4xR
eb54_pZfVti1dPEk8aimw4Hr9ne7VXXVSIQ%3D%3D&expires_in=7200&state=mystate

4. The application uses the provided access token and refresh token to access protected user data.

Keep the following considerations in mind when using the user-agent OAuth flow:

• Because the access token is encoded into the redirection URI, it might be exposed to the end-user and other applications
residing on the computer or device. If you’re authenticating using JavaScript, call window.location.replace(); to
remove the callback from the browser’s history.

Understanding the Username-Password OAuth Authentication Flow
The username-password authentication flow can be used to authenticate when the consumer already has the user’s credentials.

In this flow, the user’s credentials are used by the application to request an access token as shown in the following steps.

Warning: This OAuth authentication flow involves passing the user’s credentials back and forth. Use this
authentication flow only when necessary. No refresh token will be issued.

12

Understanding the Username-Password OAuth Authentication
Flow

Introducing Force.com REST API

1. The application uses the user’s username and password to request an access token. This is done via an out-of-band POST
request to the appropriate Database.com token request endpoint, such as
https://login.database.com/services/oauth2/token. The following request fields are required:

DescriptionParameter

Must be password for this authentication flow.grant_type

The Consumer Key from the remote access application
definition.

client_id

The Consumer Secret from the remote access application
definition.

client_secret

End-user’s username.username

End-user’s password.password

Note: You must append the user’s security token
to their password A security token is an
automatically-generated key from Database.com.
For example, if a user's password is mypassword,
and their security token is XXXXXXXXXX, then
the value provided for this parmeter must be
mypasswordXXXXXXXXXX. For more
information on security tokens see “Resetting Your
Security Token” in the online help.

13

Understanding the Username-Password OAuth Authentication
Flow

Introducing Force.com REST API

An example request body might look something like the following:

grant_type=password&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82Hn
FVVX19KY1uA5mu0QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=
1955279925675241571&username=testuser%40database.com&password=mypassword123456

2. Database.com verifies the user credentials, and if successful, sends a response to the application with the access token. This
response contains the following values:

DescriptionParameters

Access token that acts as a session ID that the application
uses for making requests. This token should be protected as
though it were user credentials.

access_token

Identifies the Database.com instance to which API calls
should be sent.

instance_url

Identity URL that can be used to both identify the user as
well as query for more information about the user. Can be

id

used in an HTTP request to get more information about
the end user.

When the signature was created, represented as the number
of seconds since the Unix epoch (00:00:00 UTC on 1 January
1970).

issued_at

Base64-encoded HMAC-SHA256 signature signed with
the consumer's private key containing the concatenated ID

signature

and issued_at value. The signature can be used to
verify that the identity URL wasn’t modified because it was
sent by the server.

An example response body might look something like:

{"id":"https://login.database.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448832702","instance_url":"https://na1.salesforce.com",
"signature":"0CmxinZir53Yex7nE0TD+zMpvIWYGb/bdJh6XfOH6EQ=","access_token":
"00Dx0000000BV7z!AR8AQAxo9UfVkh8AlV0Gomt9Czx9LjHnSSpwBMmbRcgKFmxOtvxjTrKW1
9ye6PE3Ds1eQz3z8jr3W7_VbWmEu4Q8TVGSTHxs"}

3. The application uses the provided access token to access protected user data.

Keep the following considerations in mind when using the user-agent OAuth flow:

• Since the user is never redirected to login at Database.com in this flow, the user can’t directly authorize the application,
so no refresh tokens can be used. If your application requires refresh tokens, you should consider using the Web server or
user-agent OAuth flow.

Understanding the OAuth Refresh Token Process
The Web server OAuth authentication flow and user-agent flow both provide a refresh token that can be used to obtain a
new access token.

14

Understanding the OAuth Refresh Token ProcessIntroducing Force.com REST API

Access tokens have a limited lifetime specified by the session timeout in Database.com. If an application uses an expired access
token, a “Session expired or invalid” error is returned. If the application is using the Web server or user-agent OAuth
authentication flows, a refresh token may be provided during authorization that can be used to get a new access token.

The client application obtains a new access token by sending a POST request to the token request endpoint with the following
request parameters:

DescriptionParameters

Value must be refresh_token.grant_type

The refresh token the client application already received.refresh_token

The Consumer Key from the remote access application
definition.

client_id

The Consumer Secret from the remote access application
definition. This parameter is optional.

client_secret

Expected return format. The default is json. Values are:format

• urlencoded

• json

• xml

The return format can also be specified in the header of the
request using one of the following:
• Accept: application/x-www-form-urlencoded

• Accept: application/json

• Accept: application/xml

This parameter is optional.

An example refresh token POST request might look something like:

POST /services/oauth2/token HTTP/1.1
Host: https://login.database.com/
grant_type=refresh_token&client_id=3MVG9lKcPoNINVBIPJjdw1J9LLM82HnFVVX19KY1uA5mu0
QqEWhqKpoW3svG3XHrXDiCQjK1mdgAvhCscA9GE&client_secret=1955279925675241571
&refresh_token=your token here

Once Database.com verifies the refresh token request, it sends a response to the application with the following response body
parameters:

DescriptionParameters

Access token that acts as a session ID that the application uses
for making requests. This token should be protected as though
it were user credentials.

access_token

Identifies the Database.com instance to which API calls should
be sent.

instance_url

Identity URL that can be used to both identify the user as
well as query for more information about the user. Can be

id

used in an HTTP request to get more information about the
end user.

15

Understanding the OAuth Refresh Token ProcessIntroducing Force.com REST API

DescriptionParameters

When the signature was created, represented as the number
of seconds since the Unix epoch (00:00:00 UTC on 1 January
1970).

issued_at

Base64-encoded HMAC-SHA256 signature signed with the
consumer's private key containing the concatenated ID and

signature

issued_at value. The signature can be used to verify that
the identity URL wasn’t modified because it was sent by the
server.

An example JSON response body might look something like:

{ "id":"https://login.database.com/id/00Dx0000000BV7z/005x00000012Q9P",
"issued_at":"1278448384422","instance_url":"https://na1.salesforce.com",
"signature":"SSSbLO/gBhmmyNUvN18ODBDFYHzakxOMgqYtu+hDPsc=",
"access_token":"00Dx0000000BV7z!AR8AQP0jITN80ESEsj5EbaZTFG0RNBaT1cyWk7T
rqoDjoNIWQ2ME_sTZzBjfmOE6zMHq6y8PIW4eWze9JksNEkWUl.Cju7m4"}

Keep in mind the following considerations when using the refresh token OAuth process:

• The session timeout for an access token can be configured in Database.com from Setup by clicking Security Controls >
Session Settings.

• If the application uses the username-password OAuth authentication flow, no refresh token is issued, as the user cannot
authorize the application in this flow. If the access token expires, the application using username-password OAuth flow
must re-authenticate the user.

Finding Additional Resources
The following resources provide additional information about using OAuth with Database.com:

• Digging Deeper into OAuth on Force.com

• Using OAuth to Authorize External Applications

The following resources are examples of third party client libraries that implement OAuth that you might find useful:

• For Ruby on Rails: OmniAuth

• For Java: Apache Amber

• Additional OAuth client libraries: OAuth.net

16

Finding Additional ResourcesIntroducing Force.com REST API

http://wiki.developerforce.com/index.php/Digging_Deeper_into_OAuth_2.0_on_Force.com
http://wiki.developerforce.com/index.php/Using_OAuth_to_Authorize_External_Applications
https://github.com/intridea/omniauth/wiki
https://cwiki.apache.org/confluence/display/AMBER/OAuth+2.0+Client
http://oauth.net/code/

QUICK START

Chapter 2

Step 1: Obtain an Organization

If you don't already have an account, go to www.database.com and follow the instructions for joining.

If you already have an organization, verify that you have the “API Enabled” permission. This permission is enabled by default,
but may have been changed by an administrator. For more information, see the Database.com online help.

17

http://www.database.com

Chapter 3

Step 2: Create Objects and Fields

In this step you'll create two objects, widget and model, each with a custom field. Then you'll relate the objects to each other
with a one-to-many-relationship.

Create Widget Object
Create Model Object
Relate the Objects

Create Widget Object
To create the widget object with a widget cost field:

1. Click Create > Objects.
2. Click New Custom Object.
3. Enter the information for the widget object:

• Label: Widget
• Plural label: Widgets
• Object name: Widget
• Record name: Widget Name

• Data type: Text

4. Leave all other settings as they are and click Save.
5. In the Custom Fields & Relationships related list, click New.
6. For Data Type, select Currency and click Next.
7. Enter the custom field details.

• Field Label: Widget Cost

• Length: 10
• Decimal places: 2
• Field Name: Widget_Cost

8. Leave the remaining settings as they are and click Next.
9. Click Save to accept the default field-level security settings.

Create Model Object
To create the model object with a model number field:

1. Click Create > Objects.

18

2. Click New Custom Object.
3. Enter the information for the model object:

• Label: Model
• Plural label: Models
• Object name: Model
• Record name: Model Name

• Data type: Text

4. Leave all other settings as they are and click Save.
5. In the Custom Fields & Relationships related list, click New.
6. For Data Type, select Text and click Next.
7. Enter the custom field details.

• Field Label: Model Number

• Length: 10
• Field Name: Model_Number

8. Leave the remaining settings as they are and click Next.
9. Click Save to accept the default field-level security settings.

Relate the Objects
1. If you aren't already in the Model detail page, click Create > Objects, then select the Model object.
2. In the Custom Fields & Relationships related list, click New.
3. In the New Custom Field page, select Master-Detail Relationship and click Next.
4. In the Related To field, select the Widget object and click Next.
5. Accept the defaults on the remaining screens by clicking Next and then Save.

19

Relate the ObjectsStep 2: Create Objects and Fields

Chapter 4

Step 4: Create a Remote Access Application

External applications use the OAuth protocol to verify both the Database.com user and the external application itself. To
provide this functionality to your application, create a remote access application for your organization:

1. Log in to your organization. Logins are checked to ensure they are from a known IP address.
2. Click Develop > Remote Access to display the Remote Access page.
3. Click New.
4. Enter the information for the remote access application:

• Application: MyRemoteAccessApplication
• Callback URL: https://no_redirect_uri
• Contact Email: your_email@domain.ext

5. Click Save.

20

Chapter 5

Step 5: Walk Through the Sample Code

Once you've created your remote application, you can begin building client applications that use the REST API. Use the
following samples to create a basic client application. Comments embedded in the sample explain each section of code.

Java Sample Code
This section walks through a sample Java client application that uses the REST API. The purpose of this sample application
is to show the required steps for logging into the login server and to demonstrate the invocation and subsequent handling of
several REST API calls. This sample application performs the following main tasks:

1. Prompts the user for

• API version
• login URL
• username
• password
• OAuth 2.0 consumer key
• OAuth 2.0 consumer secret

2. Uses the information friom the previous step to log in to the single login server and, if the login succeeds:
3. Sends an HTTP GET request to the server URL:

https://instance.salesforce.com/services/data/v24.0/sobjects/. This is equivalent to a calling
describeGlobal() to retrieve a list of all available objects for the organization’s data.

4. Sends an HTTP GET request to the server URL:
https://instance.salesforce.com/services/data/v24.0/sobjects/Merchandise__c/describe/.
This is equivalent to a calling describeSObject() to retrieve metadata (field list and object properties) for the specified
object.

5. Sends an HTTP POST request to the server URL:
https://instance.salesforce.com/services/data/v24.0/sobjects/Merchandise__c/ passing a JSON
object in the request body. This is equivalent to a calling create() to a record corresponding to the JSON object.

6. Sends an HTTP GET request to the server URL:
https://instance.salesforce.com/services/data/v24.0/query/?q=SELECT+Name+FROM+Merchandise__c.
This is equivalent to a calling query(), passing a simple query string (“SELECT Name FROM Merchandise__c“), and
iterating through the returned QueryResult.

Java Sample Code

Java Sample Code

package com.example.sample.rest;

import java.awt.Desktop;
import java.io.BufferedReader;

21

import java.io.FileNotFoundException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.net.URI;
import java.net.URISyntaxException;
import java.net.URLEncoder;

import org.apache.http.Header;
import org.apache.http.HttpResponse;
import org.apache.http.StatusLine;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.message.BasicHeader;
import org.apache.http.params.BasicHttpParams;
import org.apache.http.params.HttpParams;

import com.google.gson.Gson;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.google.gson.JsonParser;

public class RestClient extends Object {
private static BufferedReader reader =

new BufferedReader(new InputStreamReader(System.in));
private static String OAUTH_ENDPOINT = "/services/oauth2/token";
private static String REST_ENDPOINT = "/services/data";
UserCredentials userCredentials;
String restUri;
Header oauthHeader;
Header prettyPrintHeader = new BasicHeader("X-PrettyPrint", "1");
Gson gson;
OAuth2Response oauth2Response;

public static void main(String[] args) {
RestClient client = new RestClient();
client.oauth2Login(client.getUserCredentials());
client.testRestData();

}

public RestClient() {
gson = new Gson();

}

public HttpResponse oauth2Login(UserCredentials userCredentials) {
HttpResponse response = null;
this.userCredentials = userCredentials;
String loginHostUri = "https://" +

userCredentials.loginInstanceDomain + OAUTH_ENDPOINT;
try {
HttpClient httpClient = new DefaultHttpClient();
HttpPost httpPost = new HttpPost(loginHostUri);
StringBuffer requestBodyText =

new StringBuffer("grant_type=password");
requestBodyText.append("&username=");
requestBodyText.append(userCredentials.userName);
requestBodyText.append("&password=");
requestBodyText.append(userCredentials.password);
requestBodyText.append("&client_id=");
requestBodyText.append(userCredentials.consumerKey);
requestBodyText.append("&client_secret=");
requestBodyText.append(userCredentials.consumerSecret);
StringEntity requestBody =

new StringEntity(requestBodyText.toString());
requestBody.setContentType("application/x-www-form-urlencoded");
httpPost.setEntity(requestBody);

22

Java Sample CodeStep 5: Walk Through the Sample Code

httpPost.addHeader(prettyPrintHeader);
response = httpClient.execute(httpPost);
if (response.getStatusLine().getStatusCode() == 200) {
InputStreamReader inputStream = new InputStreamReader(

response.getEntity().getContent()
);
oauth2Response = gson.fromJson(inputStream,

OAuth2Response.class);
restUri = oauth2Response.instance_url + REST_ENDPOINT +

"/v" + this.userCredentials.apiVersion +".0";
System.out.println("\nSuccessfully logged in to instance: " +

restUri);
oauthHeader = new BasicHeader("Authorization", "OAuth " +

oauth2Response.access_token);
} else {
System.out.println("An error has occured.");
System.exit(-1);

}
} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (NullPointerException npe) {
npe.printStackTrace();

}
return response;

}

public void testRestData() {
String responseBody = restGet(restUri);
responseBody = restGet(restUri + "/sobjects/");
responseBody = restGet(restUri +

"/sobjects/Merchandise__c/describe/");
responseBody = restPost(restUri +

"/sobjects/Merchandise__c/", "{ \"Name\" : \"Wee Jet\" }\n\n");
System.out.println(responseBody);
JsonParser jsonParser = new JsonParser();
JsonElement jsonElement = jsonParser.parse(responseBody);
String id = jsonElement.getAsJsonObject().get("id").getAsString();
responseBody = restGet(restUri +

"/sobjects/Merchandise__c/" + id);
System.out.println(responseBody);
responseBody = restPost(restUri +

"/sobjects/Merchandise__c/", "{ \"Name\" : \"Zeppelin GmbH\" }\n\n");
System.out.println(responseBody);
responseBody = restGet(restUri +

"/query/?q=SELECT+Name+FROM+Merchandise__c");
System.out.println(responseBody);
responseBody = restPatch(restUri +

"/sobjects/Merchandise__c/" + id, "{ \"Name\" : \"Dry Twig.\" }\n\n");
System.out.println(responseBody);
responseBody = restGet(restUri +

"/sobjects/Merchandise__c/" + id);
System.out.println(responseBody);

}

public String restGet(String uri) {
String result = "";
printBanner("GET", uri);
try {
HttpClient httpClient = new DefaultHttpClient();
HttpGet httpGet = new HttpGet(uri);
httpGet.addHeader(oauthHeader);
httpGet.addHeader(prettyPrintHeader);
HttpResponse response = httpClient.execute(httpGet);
result = getBody(response.getEntity().getContent());

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (NullPointerException npe) {
npe.printStackTrace();

23

Java Sample CodeStep 5: Walk Through the Sample Code

}
return result;

}

public String restPatch(String uri, String requestBody) {
String result = "";
printBanner("PATCH", uri);
try {
HttpClient httpClient = new DefaultHttpClient();
HttpPatch httpPatch = new HttpPatch(uri);
httpPatch.addHeader(oauthHeader);
httpPatch.addHeader(prettyPrintHeader);
StringEntity body = new StringEntity(requestBody);
body.setContentType("application/json");
httpPatch.setEntity(body);
HttpResponse response = httpClient.execute(httpPatch);
result = response.getEntity() != null ?

getBody(response.getEntity().getContent()) : "";
} catch (IOException ioe) {
ioe.printStackTrace();

} catch (NullPointerException npe) {
npe.printStackTrace();

}
return result;

}

public String restPatchXml(String uri, String requestBody) {
String result = "";
printBanner("PATCH", uri);
try {
HttpClient httpClient = new DefaultHttpClient();
HttpPatch httpPatch = new HttpPatch(uri);
httpPatch.addHeader(oauthHeader);
httpPatch.addHeader(prettyPrintHeader);
httpPatch.addHeader(new BasicHeader("Accept", "application/xml"));
StringEntity body = new StringEntity(requestBody);
body.setContentType("application/xml");
httpPatch.setEntity(body);
HttpResponse response = httpClient.execute(httpPatch);
result = getBody(response.getEntity().getContent());

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (NullPointerException npe) {
npe.printStackTrace();

}
return result;

}

public String restPost(String uri, String requestBody) {
String result = null;
printBanner("POST", uri);
try {
HttpClient httpClient = new DefaultHttpClient();
HttpPost httpPost = new HttpPost(uri);
httpPost.addHeader(oauthHeader);
httpPost.addHeader(prettyPrintHeader);
StringEntity body = new StringEntity(requestBody);
body.setContentType("application/json");
httpPost.setEntity(body);
HttpResponse response = httpClient.execute(httpPost);
result = getBody(response.getEntity().getContent());

} catch (IOException ioe) {
ioe.printStackTrace();

} catch (NullPointerException npe) {
npe.printStackTrace();

}
return result;

}

/**

24

Java Sample CodeStep 5: Walk Through the Sample Code

* Extend the Apache HttpPost method to implement an HttpPost
* method.
*/
public static class HttpPatch extends HttpPost {
public HttpPatch(String uri) {
super(uri);

}

public String getMethod() {
return "PATCH";

}
}

static class OAuth2Response {
public OAuth2Response() {
}
String id;
String issued_at;
String instance_url;
String signature;
String access_token;

}

class UserCredentials {
String grantType;
String userName;
String password;
String consumerKey;
String consumerSecret;
String loginInstanceDomain;
String apiVersion;

}

// private methods

private String getUserInput(String prompt) {
String result = "";
try {
System.out.print(prompt);
result = reader.readLine();

} catch (IOException ioe) {
ioe.printStackTrace();

}
return result;

}

private void printBanner(String method, String uri) {

System.out.println("\n--\n");

System.out.println("HTTP Method: " + method);
System.out.println("REST URI: " + uri);

System.out.println("\n--\n");

}

private String getBody(InputStream inputStream) {
String result = "";
try {

BufferedReader in = new BufferedReader(
new InputStreamReader(inputStream)

);
String inputLine;
while ((inputLine = in.readLine()) != null) {
result += inputLine;
result += "\n";

}
in.close();

} catch (IOException ioe) {

25

Java Sample CodeStep 5: Walk Through the Sample Code

ioe.printStackTrace();
}
return result;

}

private UserCredentials getUserCredentials() {
UserCredentials userCredentials = new UserCredentials();
userCredentials.loginInstanceDomain =

getUserInput("Login Instance Domain: ");
userCredentials.apiVersion = getUserInput("API Version: ");
userCredentials.userName = getUserInput("UserName: ");
userCredentials.password = getUserInput("Password: ");
userCredentials.consumerKey = getUserInput("Consumer Key: ");
userCredentials.consumerSecret = g

etUserInput("Consumer Secret: ");
userCredentials.grantType = "password";
return userCredentials;

}
}

26

Java Sample CodeStep 5: Walk Through the Sample Code

USING REST RESOURCES

Chapter 6

Using REST API Resources

This section provides examples of using REST API resources to do a variety
of different tasks, including working with objects, organization information,
and queries.

In this chapter ...

• Getting Information About My
Organization

For complete reference information on REST API resources, see Reference on
page 53.

• Working with Object Metadata
• Working with Records
• Working with Searches and Queries
• Managing User Passwords
• Working with Approval Processes

and Process Rules

27

Getting Information About My Organization
You can use REST API to get information about your organization.

The examples in this section use REST API resources to retrieve organization-level information, such as a list of all objects
available in your organization.

List Available REST API Versions
Use the Versions resource to list summary information about each REST API version currently available, including the version,
label, and a link to each version's root. You do not need authentication to retrieve the list of versions.

Example usage

curl http://na1.salesforce.com/services/data/

Example request body

none required

Example JSON response body

[
{

"version" : "20.0",
"label" : "Winter '11",
"url" : "/services/data/v20.0"

},
{

"version" : "21.0",
"label" : "Spring '11",
"url" : "/services/data/v21.0"

},
...
{

"version" : "26.0",
"label" : "Winter '13",
"url" : "/services/data/v26.0"

}
]

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<Versions>

<Version>
<label>Winter '11</label>
<url>/services/data/v20.0</url>
<version>20.0</version>

</Version>
<Version>

<label>Spring '11</label>
<url>/services/data/v21.0</url>
<version>21.0</version>

</Version>
...
<Version>

<label>Winter '13</label>
<url>/services/data/v26.0</url>

28

Getting Information About My OrganizationUsing REST API Resources

<version>26.0</version>
</Version>

</Versions>

List Organization Limits
Note: This REST feature is currently available through a pilot program and is available in all Development Edition
organizations. For information on enabling it for your organization, contact salesforce.com.

Use the Limits resource to list limits information for your organization.

• Max is the limit total for the organization.

• Remaining is the total number of calls or events left for the organization.

Example usage

curl https://instance.salesforce.com/services/data/v29.0/limits/ -H "Authorization:
Bearer token "X-PrettyPrint:1"

Example request body

none required

Example response body

{
"DailyApiRequests":
{

"Remaining":"4980",
"Max":"5000"

},
"DailyAsyncApexExecutions":
{

"Remaining":"250000",
"Max":"250000"

},
"DailyBulkApiRequests":
{

"Remaining":"3000",
"Max":"3000"

},
"DailyStreamingApiEvents":
{

"Remaining":"1000",
"Max":"1000"

},
"StreamingApiConcurrentClients":
{

"Remaining":"10",
"Max":"10"

},
"DataStorageMB":
{

"Remaining":5,
"Max":5

},
"FileStorageMB":
{

"Remaining":20,
"Max":20

29

List Organization LimitsUsing REST API Resources

},
"MassEmail":
{

"Remaining":10,
"Max":10

},
"SingleEmail":
{

"Remaining":15,
"Max":15

}
}

List Available REST Resources
Use the Resources by Version resource to list the resources available for the specified API version. This provides the name
and URI of each additional resource.

Example

curl https://na1.salesforce.com/services/data/v26.0/ -H "Authorization: Bearer token"

Example request body

none required

Example JSON response body

{
"sobjects" : "/services/data/v26.0/sobjects",
"licensing" : "/services/data/v26.0/licensing",
"connect" : "/services/data/v26.0/connect",
"search" : "/services/data/v26.0/search",
"query" : "/services/data/v26.0/query",
"tooling" : "/services/data/v26.0/tooling",
"chatter" : "/services/data/v26.0/chatter",
"recent" : "/services/data/v26.0/recent"

}

Example XML response body

<?xml version="1.0" encoding="UTF-8"?>
<urls>

<sobjects>/services/data/v26.0/sobjects</sobjects>
<licensing>/services/data/v26.0/licensing</licensing>
<connect>/services/data/v26.0/connect</connect>
<search>/services/data/v26.0/search</search>
<query>/services/data/v26.0/query</query>
<tooling>/services/data/v26.0/tooling</tooling>
<chatter>/services/data/v26.0/chatter</chatter>
<recent>/services/data/v26.0/recent</recent>

</urls>

Get a List of Objects
Use the Describe Global resource to list the objects available in your organization and available to the logged-in user. This
resource also returns the organization encoding, as well as maximum batch size permitted in queries.

30

List Available REST ResourcesUsing REST API Resources

Example usage

curl https://na1.salesforce.com/services/data/v26.0/sobjects/ -H "Authorization: Bearer
token"

Example request body

none required

Example response body

{
"encoding" : "UTF-8",
"maxBatchSize" : 200,
"sobjects" : [{
"name" : "AggregateResult",
"label" : "Aggregate Result",
"keyPrefix" : null,
"labelPlural" : "Aggregate Result",
"custom" : false,
"layoutable" : false,
"activateable" : false,
"urls" : {
"sobject" : "/services/data/v26.0/sobjects/AggregateResult",
"describe" : "/services/data/v26.0/sobjects/AggregateResult/describe",
"rowTemplate" : "/services/data/v26.0/sobjects/AggregateResult/{ID}"

},
"searchable" : false,
"updateable" : false,
"createable" : false,
"deprecatedAndHidden" : false,
"customSetting" : false,
"deletable" : false,
"feedEnabled" : false,
"mergeable" : false,
"queryable" : false,
"replicateable" : false,
"retrieveable" : false,
"undeletable" : false,
"triggerable" : false

},
...
]

}

Working with Object Metadata
You can use REST API to get basic object metadata information.

The examples in this section use REST API resources to retrieve object metadata information. For modifying or creating
object metadata information, see the Metadata API Developer's Guide.

Retrieve Metadata for an Object
Use the SObject Basic Information resource to retrieve metadata for an object.

Example for retrieving Widget custom object metadata

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/ -H "Authorization:
Bearer token"

31

Working with Object MetadataUsing REST API Resources

http://www.salesforce.com/us/developer/docs/api_meta/index.htm

Example request body for retrieving Widget custom object metadata

none required

Example response body for retrieving Widget custom object metadata

{
"objectDescribe" :
{

"name" : "Widget__c",
"updateable" : true,
"label" : "Widget",
"keyPrefix" : "a01",
"custom" : true,

...

"replicateable" : true,
"retrieveable" : true,
"undeletable" : true,
"triggerable" : true

},
"recentItems" : []

}

To get a complete description of an object, including field names and their metadata, see Get a List of Objects.

Get Field and Other Metadata for an Object
Use the SObject Describe resource to retrieve all the metadata for an object, including information about each field, URLs,
and child relationships.

Example

https://na1.salesforce.com/services/data/v20.0/Widget__c/describe/ -H "Authorization:
Bearer token"

Example request body

none required

Example response body

{
"name" : "Widget__c",
"fields" :
[

{
"length" : 18,
"name" : "Id",
"type" : "id",
"defaultValue" : { "value" : null },
"updateable" : false,
"label" : "Record ID",
...

},

...

],

32

Get Field and Other Metadata for an ObjectUsing REST API Resources

"updateable" : true,
"label" : "Widget",
"keyPrefix" : "a01",
"custom" : true,

...

"urls" :
{

"uiEditTemplate" : "https://na1.salesforce.com/{ID}/e",
"sobject" : "/services/data/v20.0/sobjects/Widget__c",
"uiDetailTemplate" : "https://na1.salesforce.com/{ID}",
...

},

"childRelationships" :
[

{
"field" : "FirstPublishLocationId",
"deprecatedAndHidden" : false,
...

},

....

],

"createable" : true,
"customSetting" : false,
...

}

Get Object Metadata Changes
Use the SObject Describe resource and the If-Modified-Since HTTP header to determine if object metadata has changed.

If an If-Modified-Since header is provided, along with a date in EEE, dd MMM yyyy HH:mm:ss z format, in an
SObject Describe request, response metadata will only be returned if the object metadata has changed since the provided date.
If the metadata has not been modified since the provided date, a 304 Not Modified status code is returned, with no response
body.

The following example assumes that no changes, such as new custom fields, have been made to the Merchandise__c object
after July 3rd, 2013.

Example SObject Describe request

/services/data/v29.0/sobjects/Merchandise__c/describe

Example If-Modified-Since header used with request

If-Modified-Since: Wed, 3 Jul 2013 19:43:31 GMT

Example response body

No response body returned

Example response status code

HTTP/1.1 304 Not Modified
Date: Fri, 12 Jul 2013 05:03:24 GMT

33

Get Object Metadata ChangesUsing REST API Resources

If there were changes to Merchandise__c made after July 3rd, 2013, the response body would contain the metadata for
Merchandise__c. See Get Field and Other Metadata for an Object for an example.

Working with Records
You can use REST API to work with records in your organization.

The examples in this section use REST API resources to create, retrieve, update, and delete records, along with other
record-related operations.

Create a Record
Use the SObject Basic Information resource to create new records. You supply the required field values in the request data,
and then use the POST method of the resource. The response body will contain the ID of the created record if the call is
successful.

The following example creates a new Widget__c record, with the field values provided in newwidget.json.

Example for creating a new Widget

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/ -H "Authorization:
Bearer token -H "Content-Type: application/json" -d @newwidget.json"

Example request body newwidget.json file for creating a new Widget

{
"Name" : "test"

}

Example response body after successfully creating a new Widget

{
"id" : "a01D000000IqhSLIAZ",
"errors" : [],
"success" : true

}

Update a Record
You use the SObject Rows resource to update records. Provide the updated record information in your request data and use
the PATCH method of the resource with a specific record ID to update that record. Records in a single file must be of the
same object type.

In the following example, the Widget Cost within a Widget is updated. The updated record information is provided in
patchwidget.json.

Example for updating a Widget custom object

https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/a01D000000INjVe -H
"Authorization: Bearer token" -H "Content-Type: application/json" -d @patchwidget.json
-X PATCH

34

Working with RecordsUsing REST API Resources

Example request body patchwidget.json file for updating custom field in a Widget custom object

{
"Widget_Cost__c" : 5.75

}

Example response body for updating fields in a Widget custom object

none returned

Error response

See Status Codes and Error Responses on page 78.

The following example uses Java and HttpClient to update a record using REST API. Note that there is no PatchMethod in
HttpClient, so PostMethod is overridden to return “PATCH” as its method name. This example assumes the resource URL
has been passed in and contains the object name and record ID.

public static void patch(String url, String sid) throws IOException {
PostMethod m = new PostMethod(url) {
@Override public String getName() { return "PATCH"; }
};

m.setRequestHeader("Authorization", "OAuth " + sid);

Map<String, Object> accUpdate = new HashMap<String, Object>();
accUpdate.put("Name", "Patch test");
ObjectMapper mapper = new ObjectMapper();
m.setRequestEntity(new StringRequestEntity(mapper.writeValueAsString(accUpdate),

"application/json", "UTF-8"));

HttpClient c = new HttpClient();
int sc = c.executeMethod(m);
System.out.println("PATCH call returned a status code of " + sc);
if (sc > 299) {
// deserialize the returned error message
List<ApiError> errors = mapper.readValue(m.getResponseBodyAsStream(), new

TypeReference<List<ApiError>>() {});
for (ApiError e : errors)
System.out.println(e.errorCode + " " + e.message);

}
}

private static class ApiError {
public String errorCode;
public String message;
public String [] fields;
}

If you use an HTTP library that doesn't allow overriding or setting an arbitrary HTTP method name, you can send a POST
request and provide an override to the HTTP method via the query string parameter _HttpMethod. In the PATCH example,
you can replace the PostMethod line with one that doesn't use override:

PostMethod m = new PostMethod(url + "?_HttpMethod=PATCH");

Delete a Record
Use the SObject Rows resource to delete records. Specify the record ID and use the DELETE method of the resource to
delete a record.

35

Delete a RecordUsing REST API Resources

Example for deleting a Widget record

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/a01D000000INjVe
-H "Authorization: Bearer token" -X DELETE

Example request body

None needed

Example response body

None returned

Get Field Values from Records
You use the SObject Rows resource to retrieve field values from a record. Specify the fields you want to retrieve In the fields
parameter and use the GET method of the resource. In the following example, the Name and Widget_Cost__c values are
retrieved from a Widget custom object.

Example for retrieving values from fields on a Widget custom object

curl https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/a01D000000INjVe
?fields=Name,Widget_Cost__c -H "Authorization: Bearer token"

Example request body

None required

Example response body

{
"attributes" :
{

"type" : "Widget__c",
"url" : "/services/data/v20.0/sobjects/Widget__c/a01D000000INjVe"

}
"Name" : "Test",
"Widget_Cost__c" : 5.75,
"Id" : "a01D000000INjVe"

}

Retrieve a Record Using an External ID
You can use the GET method of the SObject Rows by External ID resource to retrieve records with a specific external ID.

The following example assumes there is a Merchandise__c custom object with a MerchandiseExtID__c external ID field.

Example usage for retrieving a Merchandise__c record using an external ID

curl
https://na1.salesforce.com/services/data/v20.0/sobjects/Merchandise__c/MerchandiseExtID__c/123
-H "Authorization: Bearer token"

Example request body

none required

36

Get Field Values from RecordsUsing REST API Resources

Example response body

{
"attributes" : {

"type" : "Merchandise__c",
"url" : "/services/data/v20.0/sobjects/Merchandise__c/a00D0000008oWP8IAM"

},
"Id" : "a00D0000008oWP8IAM",
"OwnerId" : "005D0000001KyEIIA0",
"IsDeleted" : false,
"Name" : "Example Merchandise",
"CreatedDate" : "2012-07-12T17:49:01.000+0000",
"CreatedById" : "005D0000001KyEIIA0",
"LastModifiedDate" : "2012-07-12T17:49:01.000+0000",
"LastModifiedById" : "005D0000001KyEIIA0",
"SystemModstamp" : "2012-07-12T17:49:01.000+0000",
"Description__c" : "Merch with external ID",
"Price__c" : 10.0,
"Total_Inventory__c" : 100.0,
"Distributor__c" : null,
"MerchandiseExtID__c" : 123.0

}

Insert or Update (Upsert) a Record Using an External ID
You can use the SObject Rows by External ID resource to create new records or update existing records (upsert) based on the
value of a specified external ID field.

• If the specified value doesn't exist, a new record is created.

• If a record does exist with that value, the field values specified in the request body are updated.

• If the value is not unique, REST API returns a 300 response with the list of matching records.

The following sections show you how to work with the external ID resource to retrieve records by external ID and upsert
records.

Upserting New Records

This example uses the PATCH method to insert a new record. It assumes that an external ID field, “customExtIdField__c,”
has been added to Widget__c. It also assumes that a Widget__c record with a customExtIdField value of 11999 does not
already exist.

Example for upserting a record that does not yet exist

curl
https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/customExtIdField__c/11999
-H "Authorization: Bearer token" -H "Content-Type: application/json" -d @newrecord.json
-X PATCH

Example JSON request body newrecord.json file

{

"Name" : "A New Widget",
"Widget_Cost__c" : 6.75

}

37

Insert or Update (Upsert) a Record Using an External IDUsing REST API Resources

Response
Successful response:

{
"id" : "a01D0000001pPvHAAU",
"errors" : [],
"success" : true

}

The response body is empty. HTTP status code 201 is returned if a new record is created.

Error responses
Incorrect external ID field:

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

For more information, see Status Codes and Error Responses on page 78.

Upserting Existing Records

This example uses the PATCH method to update an existing record. It assumes that an external ID field,
“customExtIdField__c,” has been added to Widget__c and a Widget__c record with a customExtIdField value of 11999 exists.
The request uses updates.json to specify the updated field values.

Example for upserting a record that already exists

curl
https://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/customExtIdField__c/11999
-H "Authorization: Bearer token" -H "Content-Type: application/json" -d @updates.json
-X PATCH

Example JSON request body updates.json file

{

"Widget_Cost__c" : 5.75

}

JSON example response
HTTP status code 204 is returned if an existing record is updated.

Error responses
If the external ID value isn't unique, an HTTP status code 300 is returned, plus a list of the records that matched the
query. For more information about errors, see Status Codes and Error Responses on page 78.

If the external ID field doesn't exist, an error message and code is returned:

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

38

Insert or Update (Upsert) a Record Using an External IDUsing REST API Resources

Upserting Records and Associating with an External ID

If you have an object that references another object using a relationship, you can use REST API to both insert or update a
new record, and also reference another object using an external ID.

The following example creates a new record and associates it with a parent record via external ID. It assumes the following:

• A Merchandise__c custom object that has an external ID field named MerchandiseExtID__c.
• A Line_Item__c custom object that has an external ID field named LineItemExtID__c, and a relationship to

Merchandise__c.
• A Merchandise__c record exists that has a MerchandiseExtID__c value of 123.
• A Line_Item__c record with a LineItemExtID__c value of 456 does not exist. This is the record that will get created and

associated to the Merchandise__c record.

Example for upserting a new record and referencing a related object

curl
https://na1.salesforce.com/services/data/v25.0/sobjects/Line_Item__c/LineItemExtID__c/456
-H "Authorization: Bearer token" -H "Content-Type: application/json" -d @new.json -X
PATCH

Example JSON request body new.json file
Notice that the related Merchandise__c record is referenced using the Merchandise__c’s external ID field.

{
"Name" : "LineItemCreatedViaExtID",
"Merchandise__r" :
{

"MerchandiseExtID__c" : 123
}

}

JSON example response
HTTP status code 201 is returned on successful create.

{
"id" : "a02D0000006YUHrIAO",
"errors" : [],
"success" : true

}

Error responses
If the external ID value isn't unique, an HTTP status code 300 is returned, plus a list of the records that matched the
query. For more information about errors, see Status Codes and Error Responses on page 78.

If the external ID field doesn't exist, an error message and code is returned:

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

You can also use this approach to update existing records. For example, if you created the Line_Item__c shown in the example
above, you can try to update the related Merchandise__c using another request.

39

Insert or Update (Upsert) a Record Using an External IDUsing REST API Resources

Example for updating a record

curl
https://na1.salesforce.com/services/data/v25.0/sobjects/Line_Item__c/LineItemExtID__c/456
-H "Authorization: Bearer token" -H "Content-Type: application/json" -d @updates.json
-X PATCH

Example JSON request body updates.json file
This assumes another Merchandise__c record exists with a MerchandiseExtID__c value of 333.

{
"Merchandise__r" :
{

"MerchandiseExtID__c" : 333
}

}

JSON example response
HTTP status code 204 is returned if an existing record is updated.

Note that if your relationship type is master-detail and the relationship is set to not allow reparenting, and you try to update
the parent external ID, you will get an HTTP status code 400 error with an error code of
INVALID_FIELD_FOR_INSERT_UPDATE.

Get a List of Deleted Records Within a Given Timeframe
Use the SObject Get Deleted resource to get a list of deleted records for the specified object. Specify the date and time range
within which the records for the given object were deleted. Deleted records are written to a delete log (that is periodically
purged), and will be filtered out of most operations, such as SObject Rows or Query (although QueryAll will include deleted
records in results).

Example usage for getting a list of Merchandise__c records that were deleted between May 5th, 2013 and May 10th,
2013

/services/data/v29.0/sobjects/Merchandise__c/deleted/
?start=2013-05-05T00%3A00%3A00%2B00%3A00&end=2013-05-10T00%3A00%3A00%2B00%3A00

Example request body

None required

JSON example response body

{
"deletedRecords" :
[

{
"id" : "a00D0000008pQRAIA2",
"deletedDate" : "2013-05-07T22:07:19.000+0000"

}
],
"earliestDateAvailable" : "2013-05-03T15:57:00.000+0000",
"latestDateCovered" : "2013-05-08T21:20:00.000+0000"

}

40

Get a List of Deleted Records Within a Given TimeframeUsing REST API Resources

XML example response body

<?xml version="1.0" encoding="UTF-8"?>
<Merchandise__c>

<deletedRecords>
<deletedDate>2013-05-07T22:07:19.000Z</deletedDate>
<id>a00D0000008pQRAIA2</id>

</deletedRecords>
<earliestDateAvailable>2013-05-03T15:57:00.000Z</earliestDateAvailable>
<latestDateCovered>2013-05-08T21:20:00.000Z</latestDateCovered>

</Merchandise__c>

Get a List of Updated Records Within a Given Timeframe
Use the SObject Get Updated resource to get a list of updated (modified or added) records for the specified object. Specify
the date and time range within which the records for the given object were updated.

Example usage for getting a list of Merchandise__c records that were updated between May 6th, 2013 and May 10th,
2013

/services/data/v29.0/sobjects/Merchandise__c/updated/
?start=2013-05-06T00%3A00%3A00%2B00%3A00&end=2013-05-10T00%3A00%3A00%2B00%3A00

Example request body

None required

JSON example response body

{
"ids" :
[

"a00D0000008pQR5IAM",
"a00D0000008pQRGIA2",
"a00D0000008pQRFIA2"

],
"latestDateCovered" : "2013-05-08T21:20:00.000+0000"

}

XML example response body

<?xml version="1.0" encoding="UTF-8"?>
<Merchandise__c>

<ids>a00D0000008pQR5IAM</ids>
<ids>a00D0000008pQRGIA2</ids>
<ids>a00D0000008pQRFIA2</ids>
<latestDateCovered>2013-05-08T21:20:00.000Z</latestDateCovered>

</Merchandise__c>

Working with Searches and Queries
You can use REST API to make complex searches and queries across your data.

41

Get a List of Updated Records Within a Given TimeframeUsing REST API Resources

The examples in this section use REST API resources to search and query records using Salesforce Object Search Language
(SOSL) and Salesforce Object Query Language (SOQL). For more information on SOSL and SOQL see the Database.com
SOQL and SOSL Reference.

Execute a SOQL Query
Use the Query resource to execute a SOQL query that returns all the results in a single response, or if needed, returns part of
the results and an identifier used to retrieve the remaining results.

The following query requests the value from name fields from all Widget records.

Example usage for executing a query

curl https://na1.salesforce.com/services/data/v20.0/query/?q=SELECT+name+from+Widget__c
-H "Authorization: Bearer token"

Example request body for executing a query

none required

Example response body for executing a query

{
"done" : true,
"totalSize" : 14,
"records" :
[

{
"attributes" :
{

"type" : "Widget__c",
"url" : "/services/data/v20.0/sobjects/Widget__c/a01D000000IRFmaIAH"

},
"Name" : "Test 1"

},
{

"attributes" :
{

"type" : "Widget__c",
"url" : "/services/data/v20.0/sobjects/Widget__c/a01D000000IomazIAB"

},
"Name" : "Test 2"

},

...

]
}

Retrieving the Remaining SOQL Query Results

If the initial query returns only part of the results, the end of the response will contain a field called nextRecordsUrl. For
example, you might find this attribute at the end of your query:

"nextRecordsUrl" : "/services/data/v20.0/query/01gD0000002HU6KIAW-2000"

42

Execute a SOQL QueryUsing REST API Resources

http://www.salesforce.com/us/developer/docs/soql_sosl/index.htm
http://www.salesforce.com/us/developer/docs/soql_sosl/index.htm

In such cases, request the next batch of records and repeat until all records have been retrieved. These requests use
nextRecordsUrl, and do not include any parameters.

Example usage for retrieving the remaining query results

curl https://na1.salesforce.com/services/data/v20.0/query/01gD0000002HU6KIAW-2000 -H
"Authorization: Bearer token"

Example request body for retrieving the remaining query results
none required

Example response body for retrieving the remaining query results

{
"done" : true,
"totalSize" : 3214,
"records" : [...]

}

Execute a SOQL Query that Includes Deleted Items
Use the QueryAll resource to execute a SOQL query that includes information about records that have been deleted because
of a merge or delete. Use QueryAll rather than Query, because the Query resource will automatically filter out items that have
been deleted.

The following query requests the value from the Name field from all deleted Merchandise__c records, in an organization that
has one deleted Merchandise__c record. The same query using Query instead of QueryAll would return no records, because
Query automatically filters out any deleted record from the result set.

Example usage for executing a query for deleted Merchandise__c records

/services/data/v29.0/queryAll/?q=SELECT+Name+from+Merchandise__c+WHERE+isDeleted+=+TRUE

Example request body for executing a query

none required

Example response body for executing a query

{
"done" : true,
"totalSize" : 1,
"records" :
[

{
"attributes" :
{

"type" : "Merchandise__c",
"url" : "/services/data/v29.0/sobjects/Merchandise__c/a00D0000008pQRAIX2"

},
"Name" : "Merchandise 1"

},
]

}

43

Execute a SOQL Query that Includes Deleted ItemsUsing REST API Resources

Retrieving the Remaining SOQL Query Results

If the initial query returns only part of the results, the end of the response will contain a field called nextRecordsUrl. For
example, you might find this attribute at the end of your query:

"nextRecordsUrl" : "/services/data/v29.0/query/01gD0000002HU6KIAW-2000"

In such cases, request the next batch of records and repeat until all records have been retrieved. These requests use
nextRecordsUrl, and do not include any parameters.

Note that even though nextRecordsUrl has query in the URL, it will still provide remaining results from the initial
QueryAll request. The remaining results will include deleted records that matched the initial query.

Example usage for retrieving the remaining results

/services/data/v29.0/query/01gD0000002HU6KIAW-2000

Example request body for retrieving the remaining results
none required

Example response body for retrieving the remaining results

{
"done" : true,
"totalSize" : 3214,
"records" : [...]

}

Get Feedback on Query Performance
Note: Using explain with the REST API query resource is a pilot feature. There is no support associated with this
pilot feature. For more information, contact salesforce.com, inc.

Use the Query resource along with the explain parameter to get feedback on how Database.com will execute your query.
Database.com analyzes each query to find the optimal approach to obtain the query results. Depending on the query and query
filters, an index or internal optimization might get used. You use the explain parameter to return details on how Database.com
will optimize your query, without actually running the query. Based on the response, you can decide whether to fine-tune the
performance of your query by making changes like adding filters to make the query more selective.

The response will contain one or more query execution plans that, sorted from most optimal to least optimal. The most optimal
plan is the plan that’s used when the query is executed.

See the explain parameter in Query for more details on the fields returned when using explain. See “More Efficient
SOQL Queries” in the Apex Code Developer’s Guide for more information on making your queries more selective.

Example usage for getting performance feedback on a query that uses Merchandise__c

/services/data/v30.0/query/?explain=
SELECT+Name+FROM+Merchandise__c+WHERE+CreatedDate+=+TODAY+AND+Price__c+>+10.0

Example response body for executing a performance feedback query

{
"plans" : [{

44

Get Feedback on Query PerformanceUsing REST API Resources

http://www.salesforce.com/us/developer/docs/apexcode/Content/langCon_apex_SOQL_VLSQ.htm

"cardinality" : 1,
"fields" : ["CreatedDate"],
"leadingOperationType" : "Index",
"relativeCost" : 0.0,
"sobjectCardinality" : 3,
"sobjectType" : "Merchandise__c"

}, {
"cardinality" : 1,
"fields" : [],
"leadingOperationType" : "TableScan",
"relativeCost" : 0.65,
"sobjectCardinality" : 3,
"sobjectType" : "Merchandise__c"

}]
}

This response indicates that Database.com found two possible execution plans for this query. The first plan uses the
CreatedDate index field to improve the performance of this query. The second plan scans all records without using an
index. The first plan will be used if the query is actually executed.

Search for a String
Use the Search resource to execute a SOSL search.

The following example executes a SOSL search for {test}. The search string in this example must be URL-encoded.

Example usage

curl https://na1.salesforce.com/services/data/v20.0/search/?q=FIND+%7Btest%7D -H
"Authorization: Bearer token"

Example request body

none required

Example response body

[
{

"attributes" :
{

"type" : "Widget__c",
"url" : "/services/data/v20.0/sobjects/Widget__c/a01D000000IqhSLIAZ"

},
"Id" : "a01D000000IqhSLIAZ"

},
{

"attributes" :
{

"type" : "Widget__c",
"url" : "/services/data/v20.0/sobjects/Widget__c/a01D000000IomazIAB"

},
"Id" : "a01D000000IomazIAB"

}
]

Managing User Passwords
You can use REST API to manage credentials for the users in your organization.

45

Search for a StringUsing REST API Resources

The examples in this section use REST API resources to manage user passwords, such as setting or resetting passwords.

Manage User Passwords
Use the SObject User Password resource to set, reset, or get information about a user password. Use the HTTP GET method
to get password expiration status, the HTTP POST method to set the password, and the HTTP DELETE method to reset
the password.

The associated session must have permission to access the given user password information. If the session does not have proper
permissions, an HTTP error 403 response is returned from these methods.

Here is an example of retrieving the current password expiration status for a user:

Example usage for getting current password expiration status

curl
https://na1.salesforce.com/services/data/v25.0/sobjects/User/005D0000001KyEIIA0/password
-H "Authorization: Bearer token"

Example request body for getting current password expiration status

None required

JSON example response body for getting current password expiration status

{
"isExpired" : false

}

XML example response body for getting current password expiration status

<Password>
<isExpired>false</isExpired>

</Password>

Example error response if session has insufficient privileges

{
"message" : "You do not have permission to view this record.",
"errorCode" : "INSUFFICIENT_ACCESS"

}

Here is an example of changing the password for a given user:

Example usage for changing a user password

curl
https://na1.salesforce.com/services/data/v25.0/sobjects/User/005D0000001KyEIIA0/password
-H "Authorization: Bearer token" —H "Content-Type: application/json" —d @newpwd.json
—X POST

46

Manage User PasswordsUsing REST API Resources

Contents for file newpwd.json

{
"NewPassword" : "myNewPassword1234"

}

Example response for changing a user password

No response body on successful password change, HTTP status code 204 returned.

Example error response if new password does not meet organization password requirements

{
"message" : "Your password must have a mix of letters and numbers.",
"errorCode" : "INVALID_NEW_PASSWORD"

}

And finally, here is an example of resetting a user password:

Example usage for resetting a user password

curl
https://na1.salesforce.com/services/data/v25.0/sobjects/User/005D0000001KyEIIA0/password
-H "Authorization: Bearer token" —X DELETE

Example request body for resetting a user password

None required

JSON example response body for resetting a user password

{
"NewPassword" : "2sv0xHAuM"

}

XML example response body for resetting a user password

<Result>
<NewPassword>2sv0xHAuM</NewPassword>

</Result>

Working with Approval Processes and Process Rules
The examples in this section use REST API resources to work with approval processes and process rules.

Get a List of All Approval Processes
Use the Process Approvals resource to get information about approvals.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/approvals/ -H "Authorization:
Bearer token"

47

Working with Approval Processes and Process RulesUsing REST API Resources

Example request body

none required

Example JSON response body

{
"approvals" : {
"Account" : [{
"description" : null,
"id" : "04aD00000008Py9",
"name" : "Account Approval Process",
"object" : "Account",
"sortOrder" : 1

}]
}

}

Submit a Record for Approval
Use the Process Approvals resource to submit a record or a collection of records for approval. Each call takes an array of
requests. The entity must support an approval process and an approval process must have already been defined.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/approvals/ -H "Authorization:
Bearer token" -H "Content-Type: application/json" -d @submit.json"

Example request body submit.json file

{
"requests" : [{
"actionType" : "Submit",
"contextId" : "001D000000I8mIm",
"nextApproverIds" : ["005D00000015rY9"],
"comments" : " this is a test"}]

}

Example JSON response body

[{
"actorIds" : ["005D00000015rY9IAI"],
"entityId" : "001D000000I8mImIAJ",
"errors" : null,
"instanceId" : "04gD0000000Cvm5IAC",
"instanceStatus" : "Pending",
"newWorkitemIds" : ["04iD0000000Cw6SIAS"],
"success" : true }]

Approve a Record
Use the Process Approvals resource to approve a record or a collection of records. Each call takes an array of requests. The
current user must be an assigned approver.

48

Submit a Record for ApprovalUsing REST API Resources

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/approvals/ -H "Authorization:
Bearer token" -H "Content-Type: application/json" -d @approve.json"

Example request body approve.json file

{
"requests" : [{
"actionType" : "Approve",
"contextId" : "04iD0000000Cw6SIAS",
"nextApproverIds" : ["005D00000015rY9"],
"comments" : "this record is approved"}]

}

Example JSON response body

[{
"actorIds" : null,
"entityId" : "001D000000I8mImIAJ",
"errors" : null,
"instanceId" : "04gD0000000CvmAIAS",
"instanceStatus" : "Approved",
"newWorkitemIds" : [],
"success" : true

}]

Reject a Record
Use the Process Approvals resource to reject a record or a collection of records. Each call takes an array of requests. The current
user must be an assigned approver.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/approvals/ -H "Authorization:
Bearer token" -H "Content-Type: application/json" -d @reject.json"

Example request body reject.json file

{
"requests" : [{
"actionType" : "Reject",
"contextId" : "04iD0000000Cw6cIAC",
"comments" : "This record is rejected."}]

}

Example JSON response body

[{
"actorIds" : null,
"entityId" : "001D000000I8mImIAJ",
"errors" : null,

49

Reject a RecordUsing REST API Resources

"instanceId" : "04gD0000000CvmFIAS",
"instanceStatus" : "Rejected",
"newWorkitemIds" : [],
"success" : true

}]

Bulk Approvals
Use the Process Approvals resource to do bulk approvals. You can specify a collection of different Process Approvals requests
to have them all executed in bulk.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/approvals/ -H "Authorization:
Bearer token" -H "Content-Type: application/json" -d @bulk.json"

Example request body bulk.json file

{
"requests" :
[{
"actionType" : "Approve",
"contextId" : "04iD0000000Cw6r",
"comments" : "approving an account"
},{
"actionType" : "Submit",
"contextId" : "001D000000JRWBd",
"nextApproverIds" : ["005D00000015rY9"],
"comments" : "submitting an account"
},{
"actionType" : "Submit",
"contextId" : "003D000000QBZ08",
"comments" : "submitting a contact"
}]

}

Example JSON response body

[{
"actorIds" : null,
"entityId" : "001D000000I8mImIAJ",
"errors" : null,
"instanceId" : "04gD0000000CvmZIAS",
"instanceStatus" : "Approved",
"newWorkitemIds" : [],
"success" : true
}, {
"actorIds" : null,
"entityId" : "003D000000QBZ08IAH",
"errors" : null,
"instanceId" : "04gD0000000CvmeIAC",
"instanceStatus" : "Approved",
"newWorkitemIds" : [],
"success" : true
}, {
"actorIds" : ["005D00000015rY9IAI"],
"entityId" : "001D000000JRWBdIAP",
"errors" : null,
"instanceId" : "04gD0000000CvmfIAC",

50

Bulk ApprovalsUsing REST API Resources

"instanceStatus" : "Pending",
"newWorkitemIds" : ["04iD0000000Cw6wIAC"],
"success" : true

}]

Get a List of Process Rules
Use the Process Rules resource to get information about process rules.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/rules/ -H "Authorization:
Bearer token"

Example request body

none required

Example JSON response body

{
"rules" : {
"Account" : [{
"actions" : [{
"id" : "01VD0000000D2w7",
"name" : "ApprovalProcessTask",
"type" : "Task"

}],
"description" : null,
"id" : "01QD0000000APli",
"name" : "My Rule",
"namespacePrefix" : null,
"object" : "Account"

}]
}

}

Get a Particular Process Rule
Use the Process Rules resource and specify theSObjectName and workflowRuleId of the rule you want to get the metadata
for.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/rules/Account/01QD0000000APli
-H "Authorization: Bearer token"

Example request body

none required

Example JSON response body

{

51

Get a List of Process RulesUsing REST API Resources

"actions" : [{
"id" : "01VD0000000D2w7",
"name" : "ApprovalProcessTask",
"type" : "Task"
}],
"description" : null,
"id" : "01QD0000000APli",
"name" : "My Rule",
"namespacePrefix" : null,
"object" : "Account"

}

Trigger Process Rules
Use the Process Rules resource to trigger process rules. All rules associated with the specified ID will be evaluated, regardless
of the evaluation criteria. All IDs must be for records on the same object.

Example usage

curl https://na1.salesforce.com/services/data/v30.0/process/rules/ -H "Authorization:
Bearer token" -H "Content-Type: application/json" -d @rules.json"

Example request body rules.json file

{
"contextIds" : [
"001D000000JRWBd",
"001D000000I8mIm",
"001D000000I8aaf"]

}

Example JSON response body

{
"errors" : null,
"success" : true

}

52

Trigger Process RulesUsing REST API Resources

REST API REFERENCE

Chapter 7

Reference

The following table lists supported REST resources in the API and provides a brief description for each. In each case, the
URI for the resource follows the base URI, which you retrieve from the authentication service:
http://domain/services/data. domain might be the Database.com instance you are using, or a custom domain.The
domain is returned as part of the Authentication response, or via the Console at Domain Management > My Domain. For
example, to retrieve basic information about a Widget custom object in version 20.0:
http://na1.salesforce.com/services/data/v20.0/sobjects/Widget__c/.

Click a call name to see syntax, usage, and more information for that call.

DescriptionURIResource Name

Lists summary information about each
Database.com version currently available,

/Versions

including the version, label, and a link to each
version's root.

Lists available resources for the specified API
version, including resource name and URI.

/vXX.X/Resources by
Version

Lists information about limits in your
organization.

/vXX.X/limits/Limits

Lists the available objects and their metadata for
your organization's data.

/vXX.X/sobjects/Describe Global

Describes the individual metadata for the
specified object. Can also be used to create a
new record for a given object.

/vXX.X/sobjects/SObject/SObject Basic
Information

Completely describes the individual metadata
at all levels for the specified object.

/vXX.X/sobjects/SObject/describe/SObject Describe

Retrieves the list of individual records that have
been deleted within the given timespan for the
specified object.

/vXX.X/sobjects/SObject/deleted/
?start=startDateAndTime&end=endDateAndTime

SObject Get
Deleted

Retrieves the list of individual records that have
been updated (added or changed) within the
given timespan for the specified object.

/vXX.X/sobjects/SObject/updated/
?start=startDateAndTime&end=endDateAndTime

SObject Get
Updated

53

http://developer.force.com/releases/release/Summer10/My+Domain

DescriptionURIResource Name

Accesses records based on the specified object
ID. Retrieves, updates, or deletes records. This
resource can also be used to retrieve field values.

/vXX.X/sobjects/SObject/id/SObject Rows

Creates new records or updates existing records
(upserts records) based on the value of a specified
external ID field.

/vXX.X/sobjects/SObject/fieldName/fieldValueSObject Rows by
External ID

Returns a list of approval layouts for a specified
object.

/vXX.X/sobjects/SObjectName/describe/approvalLayouts/SObject
ApprovalLayouts

Returns a list of compact layouts for a specific
object.

/vXX.X/sobjects/Object/describe/compactLayouts/SObject
CompactLayouts

Returns a list of layouts and descriptions,
including for publisher actions.

/vXX.X/sobjects/global/describe/layouts/

/vXX.X/sobjects/object/describe/layouts/

SObject Layouts

Returns a list of publisher actions and details./vXX.X/sobjects/object/quickActions/

/vXX.X/sobjects/object/quickActions/{action
name}

SObject Quick
Actions

/vXX.X/sobjects/object/quickActions/{action
name}/describe/

services/data/vXX.X/sobjects/object/quickActions/{action
name}/defaultValues/

vXX.X/sobjects/object/quickActions/{action
name}/defaultValues/{parent id}

Set, reset, or get information about a user
password.

/vXX.X/sobjects/User/user id/passwordSObject User
Password

Returns a list of all approval processes. Can also
be used to submit a particular record if that

/vXX.X/process/approvals/Process Approvals

entity supports an approval process and one has
already been defined. Records can be approved
and rejected if the current user is an assigned
approver.

Returns a list of all workflow rules. If a rule has
actions, the actions will be listed under the rule.

/vXX.X/process/rules/Process Rules

Can also be used to trigger all workflow rules
that are associated with a specified record. The
actions for a rule are only fired if the rule’s
criteria is met.

Executes the specified SOQL query./vXX.X/query/?q=soqlQuery

Executes the specified SOQL query. Results can
include deleted, merged and archived records.

/vXX.X/queryAll/?q=soqlQueryAll

Return a list of global publisher actions and their
types, as well as custom fields and objects that
appear in the Chatter feed.

/vXX.X/quickActions/Quick Actions

54

Reference

DescriptionURIResource Name

Executes the specified SOSL search. The search
string must be URL-encoded.

/vXX.X/search/?s=soslSearch

Versions
Lists summary information about each Database.com version currently available, including the version, label, and a link to
each version's root.

URI

/

Formats

JSON, XML

HTTP Method

GET

Authentication

none

Parameters

none

Example

See List Available REST API Versions on page 28.

Resources by Version
Lists available resources for the specified API version, including resource name and URI.

URI

/vXX.X/

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

Parameters

none

Example

See List Available REST Resources. on page 30

55

VersionsReference

Limits
Note: This REST feature is currently available through a pilot program and is available in all Development Edition
organizations. For information on enabling it for your organization, contact salesforce.com.

Lists information about limits in your organization. This resource is available in REST API version 29.0 and later for API
users with the “View Setup and Configuration” permission. The resource returns these limits:

• Daily API calls

• Daily Batch Apex and future method executions

• Daily Bulk API calls

• Daily Streaming API events

• Streaming API concurrent clients

• Daily number of single emails sent to external email addresses using Apex or Force.com APIs

• Daily number of mass emails sent to external email addresses using Apex or Force.com APIs

The resource also returns these limits if the API user has the “Manage Users” permission.

• Data storage (MB)

• File storage (MB)

URI

/vXX.X/limits/

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

Example

See List Organization Limits.

Describe Global
Lists the available objects and their metadata for your organization's data. In addition, it provides the organization encoding,
as well as maximum batch size permitted in queries. For more information on encoding, see Internationalization and Character
Sets.

URI

/vXX.X/sobjects/

Formats

JSON, XML

HTTP Method

GET

56

LimitsReference

http://www.salesforce.com/us/developer/docs/api/Content/implementation_considerations.htm#sforce_api_other_internationalization
http://www.salesforce.com/us/developer/docs/api/Content/implementation_considerations.htm#sforce_api_other_internationalization

Authentication

Authorization: Bearer token

Parameters

none required

Example

See Get a List of Objects on page 30.

Error responses

See Status Codes and Error Responses on page 78.

SObject Basic Information
Describes the individual metadata for the specified object. Can also be used to create a new record for a given object. For
example, this can be used to retrieve the metadata for a custom object using the GET method, or create a new custom object
using the POST method.

URI

/vXX.X/sobjects/SObjectName/

Formats

JSON, XML

HTTP Method

GET, POST

Authentication

Authorization: Bearer token

Parameters

none required

Examples

• For an example of retrieving metadata for an object, see Retrieve Metadata for an Object on page 31.

• For an example of creating a new record using POST, see Create a Record on page 34.

SObject Describe
Completely describes the individual metadata at all levels for the specified object. For example, this can be used to retrieve the
fields, URLs, and child relationships for a custom object.

The If-Modified-Since header can be used with this resource, with a date format of EEE, dd MMM yyyy HH:mm:ss
z. When this header is used, if the object metadata has not changed since the provided date, a 304 Not Modified status
code is returned, with no response body.

URI

/vXX.X/sobjects/SObjectName/describe/

Formats

JSON, XML

57

SObject Basic InformationReference

HTTP Method

GET

Authentication

Authorization: Bearer token

Parameters

none required

Example

See Get Field and Other Metadata for an Object on page 32. For an example that uses the If-Modified-Since
HTTP header, see Get Object Metadata Changes on page 33.

SObject Get Deleted
Retrieves the list of individual records that have been deleted within the given timespan for the specified object. SObject Get
Deleted is available in API version 29.0 and later.

This resource is commonly used in data replication applications. Note the following considerations:

• Deleted records are written to a delete log which this resource accesses. A background process that runs every two hours
purges records that have been in an organization's delete log for more than two hours if the number of records is above a
certain limit. Starting with the oldest records, the process purges delete log entries until the delete log is back below the
limit. This is done to protect Database.com from performance issues related to massive delete logs

• Information on deleted records are returned only if the current session user has access to them.

• Results are returned for no more than 15 days previous to the day the call is executed (or earlier if an administrator has
purged the Recycle Bin).

See “Data Replication” in the SOAP API Developer's Guide for additional details on data replication and data replication limits.

URI

/vXX.X/sobjects/SObjectName/deleted/?start=startDateAndTime&end=endDateAndTime

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

Parameters

DescriptionParameter

Starting date/time (Coordinated Universal Time (UTC)—not local— timezone)
of the timespan for which to retrieve the data. The API ignores the seconds

start

portion of the specified dateTime value (for example, 12:30:15 is interpreted
as 12:30:00 UTC). The date and time should be provided in ISO 8601 format:
YYYY-MM-DDThh:mm:ss+hh:mm. The date/time value for start must
chronologically precede end. This parameter should be URL-encoded.

58

SObject Get DeletedReference

http://www.salesforce.com/us/developer/docs/api/index.htm

DescriptionParameter

Ending date/time (Coordinated Universal Time (UTC)—not local— timezone)
of the timespan for which to retrieve the data. The API ignores the seconds

end

portion of the specified dateTime value (for example, 12:35:15 is interpreted
as 12:35:00 UTC). The date and time should be provided in ISO 8601 format:
YYYY-MM-DDThh:mm:ss+hh:mm. This parameter should be URL-encoded

Response format

DescriptionTypeProperty

Array of deleted records that satisfy the start and end dates specified
in the request. Each entry contains the record ID and the date and time

arraydeletedRecords

the record was deleted in ISO 8601 format, using Coordinated Universal
Time (UTC) timezone.

ISO 8601 format timestamp (Coordinated Universal Time (UTC)—not
local— timezone) of the last physically deleted object.

StringearliestDateAvailable

ISO 8601 format timestamp (Coordinated Universal Time (UTC)—not
local— time zone) of the last date covered in the request.

StringlatestDateCovered

Example

For an example of getting a list of deleted items, see Get a List of Deleted Records Within a Given Timeframe on page
40.

SObject Get Updated
Retrieves the list of individual records that have been updated (added or changed) within the given timespan for the specified
object. SObject Get Updated is available in API version 29.0 and later.

This resource is commonly used in data replication applications. Note the following considerations:

• Results are returned for no more than 30 days previous to the day the call is executed.

• Your client application can replicate any objects to which it has sufficient permissions. For example, to replicate all data
for your organization, your client application must be logged in with “View All Data” access rights to the specified object.
Similarly, the objects must be within your sharing rules.

• There is a limit of 200,000 IDs returned from this resource. If more than 200,000 IDs would be returned,
EXCEEDED_ID_LIMIT is returned. You can correct the error by choosing start and end dates that are closer together.

See “Data Replication” in the SOAP API Developer's Guide for additional details on data replication and data replication limits.

URI

/vXX.X/sobjects/SObjectName/updated/?start=startDateAndTime&end=endDateAndTime

Formats

JSON, XML

HTTP Method

GET

59

SObject Get UpdatedReference

http://www.salesforce.com/us/developer/docs/api/index.htm

Authentication

Authorization: Bearer token

Parameters

DescriptionParameter

Starting date/time (Coordinated Universal Time (UTC) time zone—not local—
timezone) of the timespan for which to retrieve the data. The API ignores the

start

seconds portion of the specified dateTime value (for example, 12:30:15 is
interpreted as 12:30:00 UTC). The date and time should be provided in ISO
8601 format: YYYY-MM-DDThh:mm:ss+hh:mm. The date/time value for start
must chronologically precede end. This parameter should be URL-encoded

Ending date/time (Coordinated Universal Time (UTC) time zone—not local—
timezone) of the timespan for which to retrieve the data. The API ignores the

end

seconds portion of the specified dateTime value (for example, 12:35:15 is
interpreted as 12:35:00 UTC). The date and time should be provided in ISO
8601 format: YYYY-MM-DDThh:mm:ss+hh:mm. This parameter should be
URL-encoded

Response format

DescriptionTypeProperty

Array of updated records that satisfy the start and end dates specified
in the request. Each entry contains the record ID.

arrayids

ISO 8601 format timestamp (Coordinated Universal Time (UTC)—not
local— time zone) of the last date covered in the request.

StringlatestDateCovered

Example

For an example of getting a list of updated deleted items, see Get a List of Updated Records Within a Given Timeframe
on page 41.

SObject Rows
Accesses records based on the specified object ID. Retrieves, updates, or deletes records. This resource can also be used to
retrieve field values. Use the GET method to retrieve records or fields, the DELETE method to delete records, and the
PATCH method to update records.

To create new records, use the SObject Basic Information resource.

URI

/vXX.X/sobjects/SObjectName/id/

Formats

JSON, XML

HTTP Method

GET, PATCH, DELETE

60

SObject RowsReference

Authentication

Authorization: Bearer token

Parameters

DescriptionParameter

Optional list of fields used to return values for.fields

Examples

• For an example of retrieving field values using GET, see Get Field Values from Records on page 36.

• For an example of updating a record using PATCH, see Update a Record on page 34.

• For an example of deleting a record using DELETE, see Delete a Record on page 35.

SObject Rows by External ID
Creates new records or updates existing records (upserts records) based on the value of a specified external ID field.

• If the specified value doesn't exist, a new record is created.

• If a record does exist with that value, the field values specified in the request body are updated.

• If the value is not unique, the REST API returns a 300 response with the list of matching records.

Note: Do not specify Id or an external ID field in the request body or an error is generated.

URI

/vXX.X/sobjects/SObjectName/fieldName/fieldValue

Formats

JSON, XML

HTTP Method

HEAD, GET, PATCH, DELETE

Authentication

Authorization: Bearer token

Parameters

None

Examples

• For an example of retrieving a record based on an external ID, see Retrieve a Record Using an External ID on page
36.

• For examples of creating and updating records based on external IDs, see Insert or Update (Upsert) a Record Using
an External ID on page 37.

61

SObject Rows by External IDReference

SObject ApprovalLayouts
Returns a list of approval layouts for a specified object. Specify a particular approval process name to limit the return value to
one specific approval layout. This resource is available in REST API version 30.0 and later.

Syntax
URI

To get an approval layout description for a specified object, use
/vXX.X/sobjects/SObjectName/describe/approvalLayouts/

To get an approval layout description for a particular approval process, use
/vXX.X/sobjects/SObjectName/describe/approvalLayouts/approvalProcessName

Formats
JSON, XML

HTTP methods
HEAD, GET

Authentication
Authorization: Bearer token

Request parameters
None required

Example
Getting all approval layouts for an sObject

curl
https://na1.salesforce.com/services/data/v30.0/sobjects/Account/describe/approvalLayouts/
-H "Authorization: Bearer token"

Example JSON Response body

{
"approvalLayouts" : [{
"id" : "04aD00000008Py9IAE",
"label" : "MyApprovalProcessName",
"layoutItems" : [...],
"name" : "MyApprovalProcessName"
}, {
"id" : "04aD00000008Q0KIAU",
"label" : "Process1",
"layoutItems" : [...],
"name" : "Process1"

}]
}

If you haven’t defined any approval layouts for an object, the response is {"approvalLayouts" : []}.

62

SObject ApprovalLayoutsReference

Getting the approval layout for a particular approval process

curl
https://na1.salesforce.com/services/data/v30.0/sobjects/Account/describe/approvalLayouts/MyApprovalProcessName
-H "Authorization: Bearer token"

Example JSON Response body

{
"approvalLayouts" : [{
"id" : "04aD00000008Py9IAE",
"label" : "MyApprovalProcessName",
"layoutItems" : [...],
"name" : "MyApprovalProcessName"

}]
}

SObject CompactLayouts
Returns a list of compact layouts for a specific object. This resource is available in REST API version 29.0 and later.

Syntax
URI

For a compact layout description for a specific object, use /vXX.X/sobjects/Object/describe/compactLayouts/

Formats
JSON, XML

HTTP methods
HEAD, GET

Authentication
Authorization: Bearer token

Request parameters
None required

Example
Getting compact layouts

curl
https://na1.salesforce.com/services/data/v29.0/sobjects/Object/describe/compactLayouts/
-H "Authorization: Bearer token"

Example JSON Response body

{
"compactLayouts" : [],
"defaultCompactLayoutId" : "0AH000000000000GAA",
"recordTypeCompactLayoutMappings" : [{
"recordTypeId" : "012000000000000AAA",
"compactLayoutId" : "Compact Layout ID"

63

SObject CompactLayoutsReference

}]
}

If you haven’t defined any compact layouts for an object, the compactLayoutId returns as Null.

SObject Layouts
Returns a list of layouts and descriptions, including for publisher actions. The list of fields and the layout name are returned.
This resource is available in REST API version 28.0 and later. When working with publisher actions, also refer to Quick
Actions.

Note: In the application, QuickActions are referred to as actions or publisher actions.

URI

To return descriptions of global publisher layouts, the URI is: /vXX.X/sobjects/Global/describe/layouts/

For a layout description for a specific object, use /vXX.X/sobjects/Object/describe/layouts/

Formats

JSON, XML

HTTP Method

HEAD, GET

Authentication

Authorization: Bearer token

Parameters

None required

SObject Quick Actions
Returns a list of publisher actions and details. This resource is available in REST API version 28.0 and later. When working
with publisher actions, also refer to Quick Actions.

Note: In the application, QuickActions are referred to as actions or publisher actions.

URI

To return a specific object’s actions as well as global actions, use: /vXX.X/sobjects/object/quickActions/

To return a specific action, use /vXX.X/sobjects/object/quickActions/{action name}

To return a specific action’s descriptive detail, use /vXX.X/sobjects/object/quickActions/{action
name}/describe/

To return a specific action’s default values, including default field values, use
services/data/vXX.X/sobjects/object/quickActions/{action name}/defaultValues/

In API version 28.0, to evaluate the default values for an action, use
vXX.X/sobjects/object/quickActions/{action name}/defaultValues/{parent id}

64

SObject LayoutsReference

In API version 29.0 and greater, to evaluate the default values for an action, use
vXX.X/sobjects/object/quickActions/{action name}/defaultValues/{context id}

This returns the default values specific to the {context id} object.

Formats

JSON, XML

HTTP Method

HEAD, GET, POST

Authentication

Authorization: Bearer token

Parameters

None required

Considerations

• The resources return all actions—both global and standard—in addition to the ones requested.

SObject User Password
Set, reset, or get information about a user password. This resource is available in REST API version 24.0 and later.

URI

/vXX.X/sobjects/User/user ID/password

Formats

JSON, XML

HTTP Method

HEAD, GET, POST, DELETE

Authentication

Authorization: Bearer token

Parameters

None required

Example

For examples of getting password information, setting a password, and resetting a password, see Manage User Passwords
on page 46.

Considerations

• If the session does not have permission to access the user information, an INSUFFICIENT_ACCESS error will be
returned.

• When using this resource to set a new password, the new password must conform to the password policies for the
organization, otherwise you will get an INVALID_NEW_PASSWORD error response.

• You can only set one password per request.

65

SObject User PasswordReference

• When you use the DELETE method of this resource, Database.com will reset the user password to an auto-generated
password, which will be returned in the response.

AppMenu
Returns a list of items in either the Salesforce app drop-down menu or the Salesforce1 navigation menu.

Syntax
URI

To return a list of the Salesforce app drop-down menu items, the URI is: /vXX.X/appMenu/AppSwitcher/

To return a list of the Salesforce1 navigation menu items, the URI is: /vXX.X/appMenu/Salesforce1/

Available since release
29.0

Formats
JSON, XML

HTTP methods
GET, HEAD

Authentication
Authorization: Bearer token

Request body
None

Request parameters
None required

Example
Getting appMenu types

curl https://na1.salesforce.com/services/data/v29.0/appMenu/ -H "Authorization: Bearer
token"

Example response body for /vXX.X/appMenu/AppSwitcher/

{
"appMenuItems" : [{
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Sales",
"url" : "/home/home.jsp?tsid=02uxx00000056Sq"

}, {
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Call Center",
"url" : "/home/home.jsp?tsid=02uxx00000056Sr"

66

AppMenuReference

}, {
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Marketing",
"url" : "/home/home.jsp?tsid=02uxx00000056St"

}, {
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Salesforce Chatter",
"url" : "/home/home.jsp?tsid=02uxx00000056Su"

}, {
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Community",
"url" : "/home/home.jsp?tsid=02uxx00000056Sw"

}, {
"type" : "Tabset",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "App Launcher",
"url" : "/app/mgmt/applauncher/appLauncher.apexp?tsid=02uxx00000056Sx"

}]
}

Example response body for /vXX.X/appMenu/Salesforce1/

{
"appMenuItems" : [{
"type" : "Standard.Search",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Smart Search Items",
"url" : "/search"

}, {
"type" : "Standard.MyDay",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Today",
"url" : "/myDay"

}, {
"type" : "Standard.Tasks",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Tasks",
"url" : "/tasks"

}, {
"type" : "Standard.Dashboards",
"content" : null,
"icons" : null,
"colors" : null,
"label" : "Dashboards",
"url" : "/dashboards"

}, {
"type" : "Tab.flexiPage",
"content" : "MySampleFlexiPage",
"icons" : [{
"contentType" : "image/png",

67

AppMenuReference

"width" : 32,
"height" : 32,
"theme" : "theme3",
"url" : "http://myorg.com/img/icon/custom51_100/bell32.png"

}, {
"contentType" : "image/png",
"width" : 16,
"height" : 16,
"theme" : "theme3",
"url" : "http://myorg.com/img/icon/custom51_100/bell16.png"

}, {
"contentType" : "image/svg+xml",
"width" : 0,
"height" : 0,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom53.svg"

}, {
"contentType" : "image/png",
"width" : 60,
"height" : 60,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom53_60.png"

}, {
"contentType" : "image/png",
"width" : 120,
"height" : 120,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom53_120.png"

}],
"colors" : [{
"context" : "primary",
"color" : "FC4F59",
"theme" : "theme4"

}, {
"context" : "primary",
"color" : "FC4F59",
"theme" : "theme3"

}],
"label" : "My App Home Page",
"url" : "/servlet/servlet.Integration?lid=01rxx0000000Vsd&ic=1"

}, {
"type" : "Tab.apexPage",
"content" : "/apex/myapexpage",
"icons" : [{
"contentType" : "image/png",
"width" : 32,
"height" : 32,
"theme" : "theme3",
"url" : "http://myorg.com/img/icon/cash32.png"

}, {
"contentType" : "image/png",
"width" : 16,
"height" : 16,
"theme" : "theme3",
"url" : "http://myorg.com/img/icon/cash16.png"

}, {
"contentType" : "image/svg+xml",
"width" : 0,
"height" : 0,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom41.svg"

}, {
"contentType" : "image/png",
"width" : 60,
"height" : 60,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom41_60.png"

}, {
"contentType" : "image/png",

68

AppMenuReference

"width" : 120,
"height" : 120,
"theme" : "theme4",
"url" : "http://myorg.com/img/icon/t4/custom/custom41_120.png"

}],
"colors" : [{
"context" : "primary",
"color" : "3D8D8D",
"theme" : "theme4"

}, {
"context" : "primary",
"color" : "3D8D8D",
"theme" : "theme3"

}],
"label" : "label",
"url" : "/servlet/servlet.Integration?lid=01rxx0000000Vyb&ic=1"

}]
}

FlexiPage
Returns a list of Flexible Pages and their details. Information returned includes Flexible Page regions, the components within
each region, and each component’s properties, as well as any associated QuickActions. This resource is available in API version
29.0 and later.

Syntax
URI

To return all the details of a Flexible Page, use /vXX.X/flexiPage/ID of Flexible page.

Formats
JSON, XML

HTTP methods
HEAD, GET

Authentication
Authorization: Bearer token

Parameters
None required

Example
Getting root Flexible Page resource

curl https://na1.salesforce.com/services/data/v29.0/flexiPage/ -H "Authorization: Bearer
token"

Getting a Flexible Page whose ID is 0M0xx0000000001CAA

curl https://na1.salesforce.com/services/data/v29.0/flexiPage/0M0xx0000000001CAA -H
"Authorization: Bearer token"

69

FlexiPageReference

Example request body for /vXX.X/flexiPage/
none required

Example response body for /vXX.X/flexiPage/

{
"urls" : {
"flexiPage" : "/services/data/v29.0/flexiPage",
"rowTemplate" : "/services/data/v29.0/flexiPage/{ID}"

}
}

Example request body for /vXX.X/flexiPage/{ID of FlexiPage}

none required

Example response body for /vXX.X/flexiPage/{ID of FlexiPage}

Note: This code example contains quickActionList information. To find out more about quick actions—also
known as publisher actions—in the REST API, see Quick Actions and SObject Quick Actions.

{
"name": "DeveloperNameOfFlexiPage",
"id": "0M0xx0000000001CAA",
"label": "FlexiPage Label",
"quickActionList": {

"quickActionListItems": [
{

"type": "Post",
"label": "Post",
"quickActionName": "FeedItem.TextPost",
"targetSobjectType": null,
"iconUrl": null,
"miniIconUrl": null

},
{

"type": "Create",
"label": "testFlexiQuickAction",
"quickActionName": "flexiAction",
"targetSobjectType": "Contact",

"iconUrl": "http://{SALESFORCE-APPSERVER-DOMAIN}/img/icon/contacts32.png",

"miniIconUrl":
"http://{SALESFORCE-APPSERVER-DOMAIN}/img/icon/contacts16.png"

}
]

},
"regions": [

{
"name": "main",
"components": [

{
"properties": [

{
"name": "entityName",
"value": "Account"

},
{

"name": "filterName",
"value": "MyAccounts"

}
],
"typeName": "filterList",
"typeNamespace": "force"

70

FlexiPageReference

}
]

}
]

}

In the code sample above:
• name—the name of the region
• components—an array of Aura components in the region
• properties—an array of properties for the component
• typeName—the name of the Aura component
• typeNamespace—the namespace of the Aura component

Process Approvals
Returns a list of all approval processes. Can also be used to submit a particular record if that entity supports an approval process
and one has already been defined. Records can be approved and rejected if the current user is an assigned approver. When
using a POST request to do bulk approvals, the requests that succeed are committed and the requests that don’t succeed send
back an error.

Syntax
URI

To return a list of the approvals, the URI is: /vXX.X/process/approvals/

Available since release
30.0

Formats
JSON, XML

HTTP methods
GET, HEAD, POST

Authentication
Authorization: Bearer token

Request parameters
None required

Request body
The request body contains an array of process requests that contain the following information:

DescriptionTypeName

Represents the kind of action to take: Submit, Approve, or Reject.stringactionType

The ID of the item that is being acted upon.IDcontextId

The comment to add to the history step associated with this request.stringcomments

If the process requires specification of the next approval, the ID of the
user to be assigned the next request.

ID[]nextApproverIds

71

Process ApprovalsReference

Response body
The response contains an array of process results that contain the following information:

DescriptionTypeName

IDs of the users who are currently assigned to this approval step.ID[]actorIds

The object being processed.IDentityId

The set of errors returned if the request failed.Error[]errors

The ID of the ProcessInstance associated with the object submitted for
processing.

IDinstanceId

The status of the current process instance (not an individual object but
the entire process instance). The valid values are “Approved,” “Rejected,”
“Removed,” or “Pending.”

stringinstanceStatus

Case-insensitive IDs that point to ProcessInstanceWorkitem items (the
set of pending approval requests)

ID[]newWorkItemIds

true if processing or approval completed successfully.booleansuccess

Examples

• See Get a List of All Approval Processes.
• See Submit a Record for Approval.
• See Approve a Record.
• See Reject a Record.
• See Bulk Approvals.

Process Rules
Returns a list of all workflow rules. If a rule has actions, the actions will be listed under the rule. Can also be used to trigger
all workflow rules that are associated with a specified record. The actions for a rule are only fired if the rule’s criteria is met.
When using a POST request, if anything fails, the whole transaction is rolled back.

Cross-object workflow rules cannot be invoked using the REST API. When doing POST method invocation, the contextID
in the request body must use the 15–character ID.

Syntax
URI

To get a list of the workflow rules or to trigger one or more workflow rules, the URI is: /vXX.X/process/rules/

To get the rules for a particular object: /vXX.X/process/rules/SObjectName

To get the metadata for a particular rule: /vXX.X/process/rules/SObjectName/workflowRuleId

Available since release
30.0

Formats
JSON, XML

72

Process RulesReference

HTTP methods
HEAD, GET, POST

Authentication
Authorization: Bearer token

Request parameters
None required

Request body
The request body contains an array of context IDs:

DescriptionTypeName

The ID of the item that is being acted upon.IDcontextId

Examples

• See Get a List of Process Rules.
• See Get a Particular Process Rule.
• See Trigger Process Rules.

Query
Executes the specified SOQL query.

If the query results are too large, the response contains the first batch of results and a query identifier in the nextRecordsUrl
field of the response. The identifier can be used in an additional request to retrieve the next batch.

URI

/vXX.X/query/?q=SOQL query

For retrieving query performance feedback without executing the query:

/vXX.X/query/?explain=SOQL query

For retrieving additional query results if the initial results are too large:

/vXX.X/query/query identifier

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

73

QueryReference

Parameters

DescriptionParameter

A SOQL query. Note that you will need to replace spaces with “+” characters
in your query string to create a valid URI. An example query parameter string
might look like: “SELECT+Name+FROM+MyObject”

q

A SOQL query to get performance feedback on. Use explain instead of q to
get a response that details how Database.com will process your query. You can
use this feedback to further optimize your queries.

explain

The explain parameter is available in API version 30.0 and later.

Note: Using explain with the REST API query resource is a pilot
feature. There is no support associated with this pilot feature. For more
information, contact salesforce.com, inc.

Response body

For a query using the q parameter, the response contains an array of query result records. For a query using the explain
parameter, the response contains one or more query plans that can be used to execute the query, sorted from most optimal
to least optimal. Each plan has the following information:

DescriptionTypeName

The estimated number of records the query would return, based on index
fields, if any.

numbercardinality

The index fields used for the query, if the leading operation type is Index,
otherwise null.

string[]fields

The primary operation type that will be used to optimize the query. This
can be one of these values:

stringleadingOperationType

• Index—The query will use an index on the query object.

• Other—The query will use optimizations internal to Database.com.

• Sharing—The query will use an index based on the user’s sharing
rules. If there are sharing rules that limit which records are visible to
the current user, those rules can be used to optimize the query.

• TableScan—The query will scan all records for the query object, and
won’t use an index.

The cost of this query compared to the SOQL selective query threshold.
A value greater than 1.0 means the query won’t be selective. See “More

numberrelativeCost

Efficient SOQL Queries” in the Apex Code Developer’s Guide for more
information on selective queries.

The approximate count of all records in your organization for the query
object.

numbersobjectCardinality

The name of the query object, such as Merchandise__c.stringsobjectType

74

QueryReference

http://www.salesforce.com/us/developer/docs/apexcode/Content/langCon_apex_SOQL_VLSQ.htm

Example

For an example of making a query and retrieving additional query results using the query identifier, see Execute a SOQL
Query on page 42.

For an example using the explain parameter to get feedback on a query, see Get Feedback on Query Performance on
page 44.

For more information on SOQL see the Database.com SOQL and SOSL Reference. For more information on query batch sizes,
see Changing the Batch Size in Queries in the SOAP API Developer's Guide.

QueryAll
Executes the specified SOQL query. Unlike the Query resource, QueryAll will return records that have been deleted because
of a merge or delete. QueryAll will also return information about archived Task and Event records. QueryAll is available in
API version 29.0 and later.

If the query results are too large, the response contains the first batch of results and a query identifier in the nextRecordsUrl
field of the response. The identifier can be used in an additional request to retrieve the next batch. Note that even though
nextRecordsUrl has query in the URL, it will still provide remaining results from the initial QueryAll request. The
remaining results will include deleted records that matched the initial query.

URI

/vXX.X/queryAll/?q=SOQL query

For retrieving additional query results if the initial results are too large:

/vXX.X/queryAll/query identifier

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

Parameters

DescriptionParameter

A SOQL query. Note that you will need to replace spaces with “+” characters
in your query string to create a valid URI. An example query parameter string
might look like: “SELECT+Name+FROM+MyObject”

q

Example

• For an example of making a query that includes deleted items, see Execute a SOQL Query that Includes Deleted
Items on page 43

• For an example of a query that retrieves additional results using the query identifier, see Retrieving the Remaining
SOQL Query Results on page 44

75

QueryAllReference

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_soql_changing_batch_size.htm

For more information on SOQL see the Database.com SOQL and SOSL Reference. For more information on query batch sizes,
see Changing the Batch Size in Queries in the SOAP API Developer's Guide.

Quick Actions
Returns a list of global publisher actions and standard actions. This resource is available in REST API version 28.0 and later.
When working with publisher actions, also refer to SObject Quick Actions.

Note: In the application, QuickActions are referred to as actions or publisher actions.

URI

/vXX.X/quickActions/

Formats

JSON, XML

HTTP Method

HEAD, GET, POST

Authentication

Authorization: Bearer token

Parameters

None required

Example usage for getting global quick actions

curl https://na1.salesforce.com/services/data/v28.0/quickActions/ -H "Authorization:
Bearer token"

Search
Executes the specified SOSL search. The search string must be URL-encoded.

URI

/vXX.X/search/?q=SOSL search string

Formats

JSON, XML

HTTP Method

GET

Authentication

Authorization: Bearer token

76

Quick ActionsReference

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm
http://www.salesforce.com/us/developer/docs/api/Content/sforce_api_calls_soql_changing_batch_size.htm

Parameters

DescriptionParameter

A SOSL statement that is properly URL-encoded.q

Example

See Search for a String on page 45.

For more information on SOSL see the Database.com SOQL and SOSL Reference.

Headers
This section lists custom HTTP request and response headers used for REST API.

• Limit Info Header

Limit Info Header

Header Field Name and Values

The Limit Info header is a response header that’s returned from each call to the REST API. This header returns limit
information for the organization. Use this header to monitor your API limits as you make calls against the organization.

Field name
Sforce-Limit-Info

Field values

• api-usage—Specifies the API usage for the organization against which the call was made in the format nn/nnnn.
The first number is the number of API calls used, and the second number is the API limit for the organization.

Example
Sforce-Limit-Info: api-usage=14/5000

This is an example of a response to a REST request for a Merchandise record.

HTTP/1.1 200 OK
Date: Mon, 20 May 2013 22:21:46 GMT
Sforce-Limit-Info: api-usage=18/5000
Last-Modified: Mon, 20 May 2013 20:49:32 GMT
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

{
"attributes" : {
"type" : "Merchandise__c",
"url" : "/services/data/v30.0/sobjects/Merchandise__c/a00D0000008pQSNIA2"

},
"Id" : "a00D0000008pQSNIA2",
"OwnerId" : "005D0000001QX8WIAW",
"IsDeleted" : false,
"Name" : "Phone Case - iPhone 4/4S",
"CreatedDate" : "2013-05-20T20:49:32.000+0000",
"CreatedById" : "005D0000001QX8WIAW",
"LastModifiedDate" : "2013-05-20T20:49:32.000+0000",
"LastModifiedById" : "005D0000001QX8WIAW",

77

HeadersReference

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm

"SystemModstamp" : "2013-05-20T20:49:32.000+0000",
"LastActivityDate" : null,
"LastViewedDate" : "2013-05-20T22:19:56.000+0000",
"LastReferencedDate" : "2013-05-20T22:19:56.000+0000",
"Description__c" : "Phone Case for iPhone 4/4S",
"Price__c" : 16.99,
"Stock_Price__c" : 12.99,
"Total_Inventory__c" : 108.0

}

Status Codes and Error Responses
Either when an error occurs or when a response is successful, the response header contains an HTTP code, and the response
body usually contains:

• The HTTP response code

• The message accompanying the HTTP response code

• The field or object where the error occurred (if the response returns information about an error)

DescriptionHTTP response
code

“OK” success code, for GET or HEAD request.200

“Created” success code, for POST request.201

“No Content” success code, for DELETE request.204

The value returned when an external ID exists in more than one record. The response body contains
the list of matching records.

300

The request content has not changed since a specified date and time. The date and time is provided
in a If-Modified-Since header. See Get Object Metadata Changes for an example.

304

The request couldn’t be understood, usually because the JSON or XML body contains an error.400

The session ID or OAuth token used has expired or is invalid. The response body contains the message
and errorCode.

401

The request has been refused. Verify that the logged-in user has appropriate permissions.403

The requested resource couldn’t be found. Check the URI for errors, and verify that there are no
sharing issues.

404

The method specified in the Request-Line isn’t allowed for the resource specified in the URI.405

The entity in the request is in a format that’s not supported by the specified method.415

An error has occurred within Force.com, so the request couldn’t be completed. Contact salesforce.com
Customer Support.

500

Incorrect ID example

Using a non-existent ID in a request using JSON or XML (request_body.json or request_body.xml)

{
"fields" : [],
"message" : "malformed id a01900K0001pPuOAAU",

78

Status Codes and Error ResponsesReference

"errorCode" : "MALFORMED_ID"
}

Resource does not exist

Requesting a resource that doesn’t exist, for example, if you try to create a record using a misspelled object name

{
"message" : "The requested resource does not exist",
"errorCode" : "NOT_FOUND"

}

79

Status Codes and Error ResponsesReference

Index

A

AppMenu 66
ApprovalLayouts 62
Approvals 71
Authentication

Additional resources 16
OAuth 4–5, 9, 12, 14
OAuth endpoints 5
Remote access applications 4

B

base URI 2
Bulk approval 50

C

CompactLayouts 63
Compression

deflate 3
gzip 3

Create 34
cURL 3

D

date-time 2
Delete record 35
Describe Global 30, 56

E

Error responses 78

F

Field values
retrieving values 36

FlexiPage 69

H

Headers
If-Modified-Since 33
Limit Info 77

I

If-Modified-Since Header 33

J

JSON 2

L

Layouts 64
Limit Info Header 77
Limits 29, 56
List REST resources 30

O

OAuth
Additional resources 16
OAuth 2.0 2
Refresh token 14
User-agent OAuth flow 9
Username-password OAuth flow 12
Web server OAuth flow 5

Object metadata retrieval 31

P

Password management 46, 65
PATCH

creating records with 34
Process 71–72
Process approvals 47–48
Process rule metadata 51
Process rules 51–52
Publisher Quick Actions

actions 64, 76
Layouts 64
QuickActions 64, 76

Q

Query
explain parameter 44

Query that includes deleted items 43
QueryAll 43, 75
QuickActions 64, 76

R

Reject approval 49
Resource list by version 55
Resources

SObject upsert 61
upsert 37

REST
architecture 2
cache 2
Examples for approval processes and process rules 47
Examples for getting object metadata 31
Examples for getting organization information 28
Examples for managing user passwords 45

80

Index

REST (continued)
Examples for searching and queries 41
Examples for working with records 34
Examples of using resources 27
gateway 2
proxy server 2
resources 2
stateless 2

REST API 1
REST resources

list of REST resources 53
REST resources list 30
Retrieve object metadata 31
Retrieving field values 36
Retrieving records using external IDs 36

S

Search 45, 76
SObject

ApprovalLayouts 62
CompactLayouts 63
QuickActions 64

SObject Basic Information 57
SObject Describe 32–33, 57

SObject Get Deleted 40, 58
SObject Get Updated 41, 59
SObject Row 34, 60
SObject upsert 61
SObject user

password 65
Status codes 78

U

Upsert 37
Upsert, sObject 61

V

Versions 28, 55

W

Workflow rules 72

X

XML 2

81

Index

	Getting Started with the Database.com REST API
	Introducing Force.com REST API
	Understanding Force.com REST Resources
	Using Compression
	Using cURL in the REST Examples
	Understanding Authentication
	Defining Connected Apps
	Understanding OAuth Endpoints
	Understanding the Web Server OAuth Authentication Flow
	Understanding the User-Agent OAuth Authentication Flow
	Understanding the Username-Password OAuth Authentication Flow
	Understanding the OAuth Refresh Token Process
	Finding Additional Resources

	Quick Start
	Step 1: Obtain an Organization
	Step 2: Create Objects and Fields
	Create Widget Object
	Create Model Object
	Relate the Objects

	Step 4: Create a Remote Access Application
	Step 5: Walk Through the Sample Code
	Java Sample Code

	Using REST Resources
	Using REST API Resources
	Getting Information About My Organization
	List Available REST API Versions
	List Organization Limits
	List Available REST Resources
	Get a List of Objects

	Working with Object Metadata
	Retrieve Metadata for an Object
	Get Field and Other Metadata for an Object
	Get Object Metadata Changes

	Working with Records
	Create a Record
	Update a Record
	Delete a Record
	Get Field Values from Records
	Retrieve a Record Using an External ID
	Insert or Update (Upsert) a Record Using an External ID
	Get a List of Deleted Records Within a Given Timeframe
	Get a List of Updated Records Within a Given Timeframe

	Working with Searches and Queries
	Execute a SOQL Query
	Execute a SOQL Query that Includes Deleted Items
	Get Feedback on Query Performance
	Search for a String

	Managing User Passwords
	Manage User Passwords

	Working with Approval Processes and Process Rules
	Get a List of All Approval Processes
	Submit a Record for Approval
	Approve a Record
	Reject a Record
	Bulk Approvals
	Get a List of Process Rules
	Get a Particular Process Rule
	Trigger Process Rules

	REST API Reference
	Reference
	Versions
	Resources by Version
	Limits
	Describe Global
	SObject Basic Information
	SObject Describe
	SObject Get Deleted
	SObject Get Updated
	SObject Rows
	SObject Rows by External ID
	SObject ApprovalLayouts
	SObject CompactLayouts
	SObject Layouts
	SObject Quick Actions
	SObject User Password
	AppMenu
	FlexiPage
	Process Approvals
	Process Rules
	Query
	QueryAll
	Quick Actions
	Search
	Headers
	Limit Info Header

	Status Codes and Error Responses

	Index

