
Version 1: 1

Mobile App Developer Guide

Last updated: July 4, 2014

© Copyright 2000–2014 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Preface..1
Salesforce Platform Mobile Services...2

Mobile Services in Force.com..2
Salesforce Mobile SDK...3
Identity..3

Salesforce1 Platform..3
When to Use Salesforce1 Platform vs. Creating a Custom App...4
About This Book..4

Version..5
Sending Feedback..5

Chapter 1: Introduction to Mobile Development...6
About Native, HTML5, and Hybrid Development...7
Multi-Device Strategy...9
Developer Edition or Sandbox Environment?..12
Development Prerequisites..13

Sign Up for Force.com..14
Supported Browsers...14
Enough Talk; I’m Ready...16

Chapter 2: Getting Started..17
Creating a Connected App...18

Create a Connected App...18
Installing Mobile SDK..20

Mobile SDK npm Packages..20
Do This First: Install Node.js and npm...20
iOS Installation...21
Android Installation..21
Uninstalling Mobile SDK npm Packages..22

Mobile SDK GitHub Repository..23
Mobile SDK Sample Apps..23

Installing the Sample Apps...24
Installing Sample Apps for Android..24
Installing Sample Apps for iOS...25

What's New...26
What's New in Mobile SDK 2.0...27
What's New in Mobile SDK 2.1...28
HTML5 Improvements in Visualforce (Winter ’14 Release)..28

Chapter 3: HTML5 and Hybrid Development...30
Getting Started..31

Using HTML5 and JavaScript..31
HTML5 Development Requirements...31

i

Table of Contents

HTML5 Development Tools...31
Mobile Design Templates...31

HTML5 Mobile Templates Sample App...32
Using Mobile Design Templates in Visualforce..33
Data Binding with Mobile Templates...34
Using JavaScript Remoting to Query Contact Records...34
Using Underscore to Generate the Template Markup..35
Customizing Look and Feel..36
List View Templates..37
Detail View Templates..45
Data Input Templates...49
Map View Templates..56
Calendar View Templates...58
Report and Dashboard Templates...61
Miscellaneous Templates...64

Mobile Packs...66
jQuery Quick Start..67
Angular.js Quick Start...68
Backbone.js Quick Start..70
Knockout Quick Start..71

Mobile UI Elements..72
Using the Camera in HTML5: Mobile UI Elements Sample App...75

Delivering HTML5 Content With Visualforce..80
Accessing Salesforce Data: Controllers vs. APIs...80
Introduction to Hybrid Development...82

iOS Hybrid Development...83
Android Hybrid Development..83
JavaScript Files for Hybrid Applications...83

Hybrid Apps Quick Start..84
Running the Sample Hybrid App...85

How the Sample App Works..89
Create a Mobile Page to List Information..90
Create a Mobile Page for Detailed Information..93

Guidelines and Tips for Hybrid Apps...95
Versioning and Javascript Library Compatibility..95
Example: Serving the Appropriate Javascript Libraries...97
Managing Sessions in Hybrid Applications..98

Chapter 4: Native iOS Development...101
iOS Native Quick Start...102
Native iOS Requirements...102
Creating an iOS Project..102

Running the Xcode Project Template App...104
Developing a Native iOS App...104

About Login and Passcodes..105

ii

Table of Contents

About Memory Management..105
Overview of Application Flow...105
AppDelegate Class..106
About View Controllers..107
RootViewController Class..108
About Salesforce REST APIs...109

Supported Operations..109
SFRestAPI Interface...111
SFRestDelegate Protocol...111
Creating REST Requests..113
Sending a REST Request..113
SFRestRequest Class...114
Using SFRestRequest Methods...114
SFRestAPI (Blocks) Category...115
SFRestAPI (QueryBuilder) Category..116
SFRestAPI (Files) Category..118

Tutorial: Creating a Native iOS Warehouse App...119
Create a Native iOS App..120

Step 1: Create a Connected App...120
Step 2: Create a Native iOS Project..121
Step 3: Run the New iOS App..122
Step 4: Explore How the iOS App Works..123

Customize the List Screen...125
Step 1: Modify the Root View Controller...125
Step 2: Create the App's Root View ...126
Step 3:Try Out the App..126

Create the Detail Screen..127
Step 1: Create the App's Detail View Controller..127
Step 2: Set Up DetailViewController..129
Step 3: Create the Designated Initializer...131
Step 4: Establish Communication Between the View Controllers..133
Step 5: Try Out the App...139

iOS Native Sample Applications...139

Chapter 5: Native Android Development...140
Android Native Quick Start..141
Native Android Requirements..141
Creating an Android Project...141
Setting Up Sample Projects in Eclipse..144

Android Project Files..144
Developing a Native Android App..145

The create_native Script..145
Android Application Structure..145
Native API Packages...147
Overview of Native Classes...148

iii

Table of Contents

SalesforceSDKManager Class...148
KeyInterface Interface..149
AccountWatcher Class..149
PasscodeManager Class...150
Encryptor class...151
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes...........................151
UI Classes..151
ClientManager Class...151
RestClient Class..152
RestRequest Class..152
FileRequests Class...153
WrappedRestRequest Class...155
LoginActivity Class...155
Other UI Classes...155
UpgradeManager Class..155
Utility Classes..155
ForcePlugin Class..156

Using Passcodes...156
Resource Handling..157
Using REST APIs...159
Android Template App: Deep Dive..162

TemplateApp Class...162
MainActivity Class..163
TemplateApp Manifest...164

Tutorial: Creating a Native Android Warehouse Application..164
Prerequisites..164
Create a Native Android App...166

Step 1: Create a Connected App...166
Step 2: Create a Native Android Project...166
Step 3: Run the New Android App...167
Step 4: Explore How the Android App Works...167

Customize the List Screen...168
Step 1: Remove Existing Controls...168
Step 2: Update the SOQL Query..169
Step 3:Try Out the App..171

Create the Detail Screen..171
Step 1: Create the Detail Screen..171
Step 2: Create the DetailActivity Class...173
Step 3: Customize the DetailActivity Class...173
Step 4: Link the Two Activities, Part 1: Create a Data Class...174
Step 5: Link the Two Activities, Part 2: Implement a List Item Click Handler...175
Step 6: Implement the Update Button..177
Step 7: Try Out the App...179

Android Native Sample Applications..179

iv

Table of Contents

Chapter 6: Files and Networking...180
Architecture...181
Downloading Files and Managing Sharing...181
Uploading Files...181
Encryption and Caching...182
Using Files in Android Apps...182

Managing the Request Queue...182
Using Files in iOS Native Apps..183

Managing Requests...184
Using Files in Hybrid Apps...185

Chapter 7: Offline Management...186
Securely Storing Data Offline...187

About SmartStore..187
SmartStore Soups..187
SmartStore Data Types...187

Enabling SmartStore in Hybrid Apps...188
Adding SmartStore to Existing Android Apps...188
Registering a Soup...189
Retrieving Data From a Soup..190
Smart SQL Queries...193
Working With Cursors...194
Manipulating Data..195
Using the Mock SmartStore..197
NativeSqlAggregator Sample App: Using SmartStore in Native Apps...198

Using SmartSync to Access Salesforce Objects...200
About Backbone Technology..200
Models and Model Collections...201

Models...201
Model Collections...202

Using the SmartSync Data Framework in JavaScript..203
Offline Caching...204

Implementing Offline Caching...206
Using StoreCache For Offline Caching..207

Conflict Detection...210
Mini-Tutorial: Conflict Detection..212

Accessing Custom API Endpoints..214
Force.RemoteObject Class..214
Force.RemoteObjectCollection Class..214
Using Apex REST Resources..216
Using External Objects (Beta)...219

Tutorial: Creating a SmartSync Application...220
Set Up Your Project...220
Edit the Application HTML File...221

v

Table of Contents

Create a SmartSync Model and a Collection...223
Create a Template...224
Add the Search View...225
Add the Search Result List View...226
Add the Search Result List Item View..227
Router..228

SmartSync Sample Apps...232
User and Group Search Sample...235
User Search Sample...237
Account Editor Sample...240

Chapter 8: Push Notifications and Mobile SDK...248
About Push Notifications..249
Using Push Notifications in Android..249

Configure a Connected App For GCM (Android)...249
Code Modifications (Android)..250

Using Push Notifications in iOS...251
Configure a Connected App for APNS (iOS)..251
Code Modifications (iOS)...252

Chapter 9: Using Communities With Mobile SDK Apps..255
Communities and Mobile SDK Apps...256
Set Up an API-Enabled Profile..256
Set Up a Permission Set..257
Grant API Access to Users...258
Configure the Login Endpoint...258
Branding Your Community..259
Customizing Communities Login...260
Using External Authentication With Communities...262

About External Authentication Providers...262
Using the Community URL Parameter..263
Using the Scope Parameter..264
Configuring a Facebook Authentication Provider...265
Configuring a Salesforce Authentication Provider..267
Configuring an OpenID Connect Authentication Provider...269

Example: Configure a Community For Mobile SDK App Access...271
Add Permissions to a Profile...271
Create a Community...272
Add the API User Profile To Your Community...272
Create a New Contact and User..272
Test Your New Community Login...273

Example: Configure a Community For Facebook Authentication...274
Create a Facebook App...274
Define a Salesforce Auth. Provider...274
Configure Your Facebook App...275

vi

Table of Contents

Customize the Auth. Provider Apex Class..276
Configure Your Salesforce Community..276

Chapter 10: Authentication, Security, and Identity in Mobile Apps..278
OAuth Terminology...279
OAuth2 Authentication Flow...279

OAuth 2.0 User-Agent Flow..280
OAuth 2.0 Refresh Token Flow..281
Scope Parameter Values..281
Using Identity URLs...282
Setting a Custom Login Server...287
Revoking OAuth Tokens..288
Handling Refresh Token Revocation in Android Native Apps...288

Token Revocation Events..288
Token Revocation: Passive Handling..289
Token Revocation: Active Handling...289

Connected Apps..290
About PIN Security...290

Portal Authentication Using OAuth 2.0 and Force.com Sites..291

Chapter 11: Distributing Mobile AppExchange Apps...292
AppExchange for Mobile: Enterprise Mobile Apps...293
Joining the AppExchange Partner Program..293
Get a Publishing Org..294
Create a Provider Profile...294
The AppExchange Security Review..294

Index...296

vii

Table of Contents

Preface

Mobile devices have radically changed the way we work and play. People consume, create, and share data on a wide range of
connected devices. Workers use smart phones and tablets to stay in touch, connect with customers and peers, and engage on
social networks and apps.

However, many companies continue to run their businesses on enterprise applications that don’t work in the mobile world.
These legacy applications remain locked away on corporate intranets and aren’t available in employees’ hands when they’re
needed. They don’t provide a modern user experience, and they aren’t wired into social graphs like consumer apps.

Yesterday’s platforms were not designed to meet the demands of the mobile world. Big, monolithic stacks and rigid integration
patterns lack the scalability and flexibility required by mobile technology. Techniques that evolved since the 1990s for web
applications on PCs don’t apply in mobile apps. Mobile applications require new architectures and software designs, and they
need to run on platforms built for mobile application development and wireless connectivity. Today, outdated corporate
applications are rapidly being replaced by mobile-ready cloud apps.

Table 1: Comparison of PC/Web applications and a modern mobile application

Mobile / modern applicationTypical PC / Web applicationCategory

Connection and
Availability

• Varying connection• Fast, reliable LAN

• •Low latency High latency

• Low bandwidth• High bandwidth

• •Connectivity assumed Offline operation required

User Interactions • Touch screen• Keyboard and mouse

• •Long desktop interactions Quick, focused actions

Perimeter Security • Cumbersome to require VPN from mobile devices• Corporate VPN or LAN access to
applications • IP restrictions ineffective with public mobile

networks

Device
Standardization

• Often Bring Your Own Device (BYOD)• Typically purchased and controlled by IT

• Multiple platforms

Form Factor •• Apps must support phone, tablet, and desktopLarge (PC) screen

Social • Native user collaboration• Typically siloed applications

• •Email-based collaboration Intuitively share and collaborate

Multi-device • Instant sharing between devices• Client-server architectures with data stored
on server (Web) • Data propagation between devices

1

Mobile / modern applicationTypical PC / Web applicationCategory

Device Interaction •• Native use of mobile device’s camera, contacts,
calendar, and location

Applications rarely leverage telephony,
camera, and other media devices

Location •• Commonly used both to associate data with a
location and to filter data and services based on
location

Rarely used in Web applications

Salesforce provides a state–of–the–art cloud–based platform for building CRM mobile apps. The Salesforce Mobile SDK
gives you advanced control over mobile device features, offline support, data synchronization, and mobile software design.

Salesforce Platform Mobile Services
Enterprise IT departments now face the daunting task of connecting their enterprise data and services with a mobile workforce.
Salesforce faced this problem itself as it moved its enterprise CRM and service applications to the mobile world. This
transformation required fundamental changes in the underlying technology and implementation to support Salesforce’s
applications across multiple platforms (iOS, Android) and multiple form factors (phone, tablet, and PC) with enterprise-grade
reliability, availability, and security. The lessons learned and technology built to transform Salesforce’s applications for mobile
are now available for any company that uses the Salesforce cloud.

Salesforce Platform Mobile Services are designed to meet the challenges of mobile applications.

Salesforce Platform Mobile Services is the next-generation platform that powers Salesforce mobile applications, enabling
enterprises to build their own Android, iPhone, and iPad applications. These services leverage the power of the Salesforce
platform and its proven security, reliability, and scale for enterprise applications.

Salesforce Platform Mobile Services comprises three core components.

• Mobile Services in Force.com

• Salesforce Mobile SDK 2.1

• Identity

Mobile Services in Force.com
Mobile services in Force.com focus on developing and administering enterprise mobile applications.

• Mobile REST APIs provide access to enterprise data and services, leveraging standard Web protocols. Developers can
quickly access their business data through REST APIs and leverage that data across phone, tablet, and web user interfaces.
The REST APIs provide a single place to enforce access, security, common policy across all device types.

• Social (Chatter) REST APIs enable developers to quickly transform their applications with social networks and collaboration
features. The Chatter REST API provides access to the feed, as well as the social graph of user connections. Mobile
applications can easily consume or post items to a user or group, or leverage the social graph to enable instant collaboration
between connected users.

• Mobile policy management enables administrators to enforce their enterprise security policy on mobile applications in a
world without perimeter security. Administrators can enable security features such as two-factor authentication, device
PIN protection, and password rotation. They can also enable and disable user access to mobile applications.

• Geolocation provides location-based information to enhance your online business processes with geospatial data. All objects
in Salesforce include a compound geolocation field. The entire platform is location-ready, allowing radius-based searching
and other spatial queries.

2

Salesforce Platform Mobile ServicesPreface

Salesforce Mobile SDK
Salesforce Mobile SDK lets you develop native Objective-C apps for iOS and Java apps for Android. You can also use it to
provide a native container for hybrid apps written in HTML5 and JavaScript. Npm scripts for iOS and Android help you get
started building native and hybrid apps. Salesforce Mobile SDK provides:

• Native device services. You can access device features such as the camera, GPS, and contacts across a broad range of iOS
and Android devices.

• Secure offline storage and data synchronization. You can build applications which continue to function with limited or no
network connectivity. The data stored on the device is securely encrypted and safe, even if the device is lost or stolen.

• Client OAuth authentication support. You’re free from having to rebuild login pages and general authentication in mobile
apps. Mobile SDK apps quickly and easily integrate with enterprise security management.

Identity
Identity provides a single enterprise identity and sign-on service to connect mobile devices with enterprise data and services.
Identity provides the following advantages.

• Single sign-on across applications and devices, so users aren’t forced to create multiple usernames and passwords.

• A trusted identity provider that you can leverage for any enterprise platform or application.

• A Cloud Directory that enables enterprises to white label identity services and use company-specific appearance and
branding.

• The ability to utilize consumer identity providers, such as Facebook. This feature allows customer-facing applications to
quickly engage with customer social data.

Salesforce1 Platform
If you attended Dreamforce ’13 or have browsed developer.salesforce.com/docs, you’ve probably heard about the Salesforce1
Platform. Salesforce Mobile SDK is part of this platform, but Salesforce1 Platform also provides other alternatives for developing
mobile apps. You might be asking yourself, “What exactly is Salesforce1 Platform?”

The Salesforce1 Platform is designed to deliver a customer benefit behind every app. It’s API- and mobile-first, where every
aspect can be extended and customized by every user, regardless of whether they work within lines of business, in IT, or are
looking to build an entire company and product. And every app is instantly mobile.

Salesforce1 as an engineering philosophy means:

• Every new feature must be designed for mobile first and have an API for developers.

• User interfaces should be responsive and change dynamically depending on whether the app is running on a smartphone,
tablet, or laptop.

• The user experience should change depending on device features.

• Address fields should leverage geolocation and provide maps, nearby information, and context. You should be able to click
on a phone number to make a call.

• Apps should be personal. Your identity should drive the user interface by interacting with calendars, personal preferences,
and usage history.

• The entire platform should grow with your needs, constantly delivering customer benefit for every app and every action.

Salesforce1 is a transformation, not a reinvention. If you’re an existing customer with data, applications, custom logic, or user
interfaces built on Salesforce, this investment is now instantly mobile-aware.

3

Salesforce Mobile SDKPreface

http://developer.salesforce.com/docs

A full discussion of Salesforce1 Platform development is beyond the scope of this book, but you can learn more at
developer.salesforce.com/docs.

When to Use Salesforce1 Platform vs. Creating a Custom App
When it comes to developing functionality for your Salesforce mobile users, you have options. Although this book deals only
with Mobile SDK development, Salesforce also provides the Salesforce1 Platform for mobile app development.

Here are some differences between extending Salesforce1 and creating custom apps using the Mobile SDK. For more information
on Salesforce1, see developer.salesforce.com/docs.

Salesforce1 Platform
• Has a defined user interface.
• Has full access to Salesforce data.
• You can create an integrated experience with functionality developed in the Salesforce1 Platform.
• Publisher actions give you a way to include your own apps/functionality.
• You can customize Salesforce1 with point-and-click or programmatic customizations.
• Functionality can be added programmatically through Visualforce pages or Force.com Canvas apps.
• Salesforce1 customizations or apps adhere to the Salesforce1 navigation. So, for example, a Visualforce page can be called

from the navigation menu or from the publisher.
• You can leverage existing Salesforce development experience, both point-and-click and programmatic.
• Included in all Salesforce editions and supported by salesforce.com.

Custom Apps
Custom apps can be either free-standing apps you create with Salesforce Mobile SDK or browser apps using plain HTML5
and JQuery Mobile/Ajax. With custom apps, you can:

• Define a custom user experience.
• Access Salesforce data using REST APIs in native and hybrid local apps, or with Visualforce in hybrid apps using JavaScript

Remoting. In HTML5 apps, do the same using JQueryMobile and Ajax.
• Brand your user interface for customer-facing exposure.
• Create standalone mobile apps, either with native APIs using Java for Android or Objective-C for iOS, or through a hybrid

container using JavaScript and HTML5 (Mobile SDK only).
• Distribute apps through mobile industry channels, such as the Apple App Store or Google Play (Mobile SDK only).
• Configure and control complex offline behavior (Mobile SDK only).
• Use push notifications (Developer Preview in Winter ’14; available for Mobile SDK native apps only).
• Design a custom security container using your own OAuth module (Mobile SDK only).
• Other important Mobile SDK considerations:

◊ Open-source SDK, downloadable for free through npm installers as well as from GitHub. No licensing required.
◊ Requires you to develop and compile your apps in an external development environment (Xcode for iOS, Eclipse or

similar for Android).
◊ Development costs range from $0 to $1M or more, plus maintenance costs.

About This Book
This book introduces you to Salesforce Platform Mobile Services and teaches you how to design, develop, and manage mobile
applications for the cloud. The chapters cover a wide range of development techniques for various skill sets, beginning with
HTML5 and JavaScript, continuing through hybrid apps, and culminating in native iOS and Android development.

4

When to Use Salesforce1 Platform vs. Creating a Custom AppPreface

http://developer.salesforce.com/docs
developer.salesforce.com/docs

Each development paradigm is represented by a quick start tutorial. Most of these tutorials take you through the steps of
creating a simple master-detail application that accesses Salesforce through REST APIs. Tutorials include:

• HTML5 Mobile Design Templates on page 31

• Hybrid Apps Quick Start on page 84

• Tutorial: Creating a Native Android Warehouse Application on page 164

• Tutorial: Creating a Native iOS Warehouse App on page 119

• Tutorial: Creating a SmartSync Application on page 220

You’ll also find pointers to Mobile SDK sample apps, tips and techniques for working with communities and managing hybrid
apps, and descriptions of Mobile SDK "feature" APIs such as:

• Files and Networking on page 180

• Securely Storing Data Offline on page 187

• Using SmartSync to Access Salesforce Objects on page 200

• Push Notifications and Mobile SDK on page 248

Enjoy your journey through Salesforce Platform Mobile Services!

Note: An online version of this book is available at developer.salesforce.com/docs.

Version
This book was last revised on October 24th, 2013, and was verified to work with the Salesforce Winter ’14 release and Mobile
SDK version 2.1.

Sending Feedback
Questions or comments about anything you see in this book? Suggestions for topics that you'd like to see covered in future
versions? Go to the Force.com discussion boards at http://boards.developerforce.com and let us know what you
think! Or email us directly at developerforce@salesforce.com.

5

VersionPreface

http://developer.salesforce.com/docs
mailto:developerforce@salesforce.com

Chapter 1

Introduction to Mobile Development

Force.com has proven itself as an easy and highly productive platform for cloud
computing. Developers can define application components, such as custom

In this chapter ...

• About Native, HTML5, and Hybrid
Development

objects and fields, workflow rules, Visualforce pages, and Apex classes and
triggers, and assemble them into killer apps.

• Multi-Device Strategy
The Mobile SDK seamlessly integrates with the Force.com cloud architecture
and provides:

• Developer Edition or Sandbox
Environment?

• Development Prerequisites • SmartSync Data Framework for accessing Salesforce data through JavaScript
• Supported Browsers • Secure offline storage
• Enough Talk; I’m Ready • Data syncing for hybrid apps

• Implementation of Force.com Connected App policy that works out of the
box

• OAuth credentials management, including persistence and refresh
capabilities

• Wrappers for Salesforce REST APIs

• Libraries for building native iOS and Android applications

• Containers for building hybrid applications

Note:

Be sure to visit Salesforce Platform Mobile Services website regularly
for tutorials, blog postings, and other updates.

6

http://www2.developerforce.com/mobile/

About Native, HTML5, and Hybrid Development
Salesforce Mobile SDK gives you options for how you’ll develop your app. The option you choose depends on your development
skills, device and technology requirements, goals, and schedule.

The Mobile SDK offers three ways to create mobile apps:

• Native apps are specific to a given mobile platform (iOS or Android) and use the development tools and language that
the respective platform supports (for example, Xcode and Objective-C with iOS, Eclipse and Java with Android). Native
apps look and perform best but require the most development effort.

• HTML5 apps use standard web technologies—typically HTML5, JavaScript and CSS—to deliver apps through a mobile
Web browser. This “write once, run anywhere” approach to mobile development creates cross-platform mobile applications
that work on multiple devices. While developers can create sophisticated apps with HTML5 and JavaScript alone, some
challenges remain, such as session management, secure offline storage, and access to native device functionality (such as
camera, calendar, notifications, and so on).

• Hybrid apps combine the ease of HTML5 Web app development with the power of the native platform by wrapping a
Web app inside the Salesforce container. This combined approach produces an application that can leverage the device’s
native capabilities and be delivered through the app store. You can also create hybrid apps using Visualforce pages delivered
through the Salesforce hybrid container.

Native Apps
Native apps provide the best usability, the best features, and the best overall mobile experience. There are some things you get
only with native apps:

• Fast graphics API—the native platform gives you the fastest graphics, which might not be a big deal if you’re showing a
static screen with only a few elements, or a very big deal if you’re using a lot of data and require a fast refresh.

• Fluid animation—related to the fast graphics API is the ability to have fluid animation. This is especially important in
gaming, highly interactive reporting, or intensely computational algorithms for transforming photos and sounds.

• Built-in components—The camera, address book, geolocation, and other features native to the device can be seamlessly
integrated into mobile apps. Another important built-in component is encrypted storage, but more about that later.

7

About Native, HTML5, and Hybrid DevelopmentIntroduction to Mobile Development

• Ease of use—The native platform is what people are accustomed to. When you add that familiarity to the native features
they expect, your app becomes that much easier to use.

Native apps are usually developed using an integrated development environment (IDE). IDEs provide tools for building,
debugging, project management, version control, and other tools professional developers need. You need these tools because
native apps are more difficult to develop. Likewise, the level of experience required is higher than in other development
scenarios. If you’re a professional developer, you don’t have to be sold on proven APIs and frameworks, painless special effects
through established components, or the benefits of having all your code in one place.

HTML5 Apps
An HTML5 mobile app is basically a web page, or series of web pages, that are designed to work on a small mobile device
screen. As such, HTML5 apps are device agnostic and can be opened with any modern mobile browser. Because your content
is on the web, it’s searchable, which can be a huge benefit for certain types of apps (shopping, for example).

If you’re new to mobile development, the technological bar is lower for Web apps; it’s easier to get started here than in native
or hybrid development. Unfortunately, every mobile device seems to have its own idea of what constitutes usable screen size
and resolution. This diversity imposes an additional burden of testing on different devices. Browser incompatibility is especially
common on Android devices, for example.

An important part of the "write once, run anywhere" HTML5 methodology is that distribution and support is much easier
than for native apps. Need to make a bug fix or add features? Done and deployed for all users. For a native app, there are
longer development and testing cycles, after which the consumer typically must log into a store and download a new version
to get the latest fix.

If HTML5 apps are easier to develop, easier to support, and can reach the widest range of devices, where do these apps lose
out?

• Secure offline storage—HTML5 browsers support offline databases and caching, but with no out-of-the-box encryption
support. You get all three features in Mobile SDK native applications.

• Security—In general, implementing even trivial security measures on a native platform can be complex tasks for a mobile
Web developer. It can also be painful for users. For example, a web app with authentication requires users to enter their
credentials every time the app restarts or returns from a background state.

• Native features—The camera, address book, and other native features are accessible on limited, if any, browser platforms.
• Native look and feel—HTML5 can only emulate the native look, while customers won’t be able to use familiar compound

gestures.

Hybrid Apps
Hybrid apps are built using HTML5 and JavaScript wrapped inside a thin container that provides access to native platform
features. For the most part, hybrid apps provide the best of both worlds, being almost as easy to develop as HTML5 apps with
all the functionality of native. In addition, hybrid apps can use the SmartSync Data Framework in JavaScript to

• Model, query, search, and edit Salesforce data
• Securely cache Salesforce data for offline use
• Synchronize locally cached data with the Salesforce server.

You know that native apps are installed on the device, while HTML5 apps reside on a Web server, so you might be wondering
whether hybrid apps store their files on the device or on a server? You can implement a hybrid app locally or remotely.

Locally
You can package HTML and JavaScript code inside the mobile application binary, in a structure similar to a native
application. In this scenario you use REST APIs and Ajax to move data back and forth between the device and the
cloud.

Remotely
Alternatively, you can implement the full web application from the server (with optional caching for better performance).
Your container app retrieves the full application from the server and displays it in a browser window.

8

About Native, HTML5, and Hybrid DevelopmentIntroduction to Mobile Development

Both types of hybrid development are covered in this guide.

Native, HTML5, and Hybrid Summary
The following table sums up how the three mobile development scenarios stack up.

HybridHTML5Native

HTML, Canvas, SVGHTML, Canvas, SVGNative APIsGraphics

FastFastFastestPerformance

EmulatedEmulatedNativeLook and feel

App storeWebApp storeDistribution

YesBrowser dependentYesCamera

YesNoYesNotifications

YesNoYesContacts, calendar

Secure file system; shared SQLNot secure; shared SQL,
Key-Value stores

Secure file systemOffline storage

YesYesYesGeolocation

YesYesYesSwipe

YesYesYesPinch, spread

Online, offlineMostly onlineOnline, offlineConnectivity

HTML5, CSS, JavaScriptHTML5, CSS, JavaScriptObjective C, JavaDevelopment skills

Multi-Device Strategy
With the proliferation of mobile devices in this post-PC era, applications now have to support a variety of platforms, form
factors, and device capabilities. Some of the key considerations and design options for Force.com developers looking to develop
such device-independent applications are:

• Which devices and form factors should your app support?

• How does your app detect various types of devices?

• How should you design a Force.com application to best support multiple device types?

Which Devices and Form Factors Should Your App Support?
The answer to this question is dependent on your specific use case and end-user requirements. It is, however, important to
spend some time thinking about exactly which devices, platforms, and form factors you do need to support. Where you end
up in the spectrum of ‘Support all platforms/devices/form factors’ to ‘Support only desktop and iPhone’ (as an example) will
play a major role in how you answer the subsequent two questions.

As can be expected, important trade-offs have to be made when making this decision. Supporting multiple form factors
obviously increases the reach for your application. But, it comes at the cost of additional complexity both in terms of initially
developing the application, and maintaining it over the long-term.

Developing true cross-device applications is not simply a question of making your web page look (and perform) optimally
across different form factors and devices (desktop vs phone vs tablet). You really need to rethink and customize the user
experience for each specific device/form factor. The phone or tablet version of your application very often does not need all

9

Multi-Device StrategyIntroduction to Mobile Development

the bells and whistles supported by your existing desktop-optimized Web page (e.g., uploading files or supporting a use case
that requires many distinct clicks).

Conversely, the phone/tablet version of your application can support features like geolocation and taking pictures that are not
possible in a desktop environment. There are even significant differences between the phone and tablet versions of the better
designed applications like LinkedIn and Flipboard (e.g,. horizontal navigation in a tablet version vs single hand vertical scrolling
for a phone version). touch.salesforce.com is another example of a user experience that is customized for a specific form factor.
Think of all these consideration and the associated time and cost it will take you to support them when deciding which devices
and form factors to support for your application.

Once you’ve decided which devices to support, you then have to detect which device a particular user is accessing your Web
application from.

Client-Side Detection
The client-side detection approach uses JavaScript (or CSS media queries) running on the client browser to determine the
device type. Specifically, you can detect the device type in two different ways.

• Client-Side Device Detection with the User-Agent Header — This approach uses JavaScript to parse out the User-Agent
HTTP header and determine the device type based on this information. You could of course write your own JavaScript to
do this. A better option is to reuse an existing JavaScript. A cursory search of the Internet will result in many reusable
JavaScript snippets that can detect the device type based on the User-Agent header. The same cursory search, however,
will also expose you to some of the perils of using this approach. The list of all possible User-Agents is huge and ever
growing and this is generally considered to be a relatively unreliable method of device detection.

• Client-Side Device Detection with Screen Size and/or Device Features — A better alternative to sniffing User-Agent
strings in JavaScript is to determine the device type based on the device screen size and or features (e.g., touch enabled).
One example of this approach can be found in the open-source Contact Viewer HTML5 mobile app that is built entirely
in Visualforce. Specifically, the MobileAppTemplate.page includes a simple JavaScript snippet at the top of the page to
distinguish between phone and tablet clients based on the screen size of the device. Another option is to use a library
like Device.js or Modernizr to detect the device type. These libraries use some combination of CSS media queries and
feature detection (e.g., touch enabled) and are therefore a more reliable option for detecting device type. A simple example
that uses the Modernizr library to accomplish this can be found at
http://www.html5rocks.com/static/demos/cross-device/feature/index.html. A more complete example
that uses the Device.js library and integrates with Visualforce can be found in this GitHub repo:
https://github.com/sbhanot-sfdc/Visualforce-Device.js. Here is a snippet from the DesktopVersion.page in
that repo.

<apex:page docType="html-5.0" sidebar="false" showHeader="false" standardStylesheets="false"
cache="false" >

<head>
<!-- Every version of your webapp should include a list of all
versions. -->
<link rel="alternate" href="/apex/DesktopVersion" id="desktop" media="only screen and

(touch-enabled: 0)"/>
<link rel="alternate" href="/apex/PhoneVersion" id="phone" media="only screen and

(max-device-width: 640px)"/>
<link rel="alternate" href="/apex/TabletVersion" id="tablet" media="only screen and

(min-device-width: 641px)"/>

<meta name="viewport" content="width=device-width, user-scalable=no"/>
<script src="{!URLFOR($Resource.Device_js)}"/>

</head>

<body>

Phone Version
Tablet Version

<h1> This is the Desktop Version</h1>

10

Multi-Device StrategyIntroduction to Mobile Development

http://blogs.salesforce.com/company/2011/08/introducing-touchsalesforcecom-touch-success.html

</body>
</apex:page>

The snippet above shows how you can simply include a <link> tag for each device type that your application supports and the
Device.js library will take care of automatically redirecting users to the appropriate Visualforce page based on device type
detected. There is also a way to override the default Device.js redirect by using the ‘?device=xxx’ format shown above.

Server-Side Device Detection
Another option is to detect the device type on the server (i.e., in your Apex controller/extension class). Server-side device
detection is based on parsing the User-Agent HTTP header and here is a small code snippet of how you can detect if a
Visualforce page is being viewed from an iPhone client.

<apex:page docType="html-5.0" sidebar="false" showHeader="false" cache="false"
standardStylesheets="false" controller="ServerSideDeviceDetection"
action="{!detectDevice}">

<h1> This is the Desktop Version</h1>
</apex:page>

public with sharing class ServerSideDeviceDetection {
public boolean isIPhone {get;set;}

public ServerSideDeviceDetection() {
String userAgent =

System.currentPageReference().getHeaders().get('User-Agent');
isIPhone = userAgent.contains('iPhone');

}

public PageReference detectDevice(){
if (isIPhone)

return Page.PhoneVersion.setRedirect(true);
else

return null;
}

}

Note that User-Agent parsing in the code snippet above is far from comprehensive and you should implement something
more robust that detects all the devices that you need to support based on regular expression matching. A good place to start
is to look at the RegEx included in the detectmobilebrowsers.com code snippets.

How Should You Design a Force.com Application to Best Support Multiple Device Types?
Finally, once you know which devices you need to support and how to distinguish between them, what is the optimal application
design for delivering a customized user experiences for each device/form factor? Again, a couple of options to consider.

For simple applications where all you need is for the same Visualforce page to display well across different form factors, a
responsive design approach is an attractive option. In a nutshell, Responsive design uses CCS3 media queries to dynamically
reformat a page to fit the form factor of the client browser. You could even use a responsive design framework like Twitter
Bootstrap to achieve this.

Another option is to design multiple Visualforce pages, each optimized for a specific form factor and then redirect users to
the appropriate page using one of the strategies described in the previous section. Note that having separate Visualforce pages
does not, and should not, imply code/functionality duplication. A well architected solution can maximize code reuse both on
the client-side (by using Visualforce strategies like Components, Templates etc.) as well as the server-side (e.g., encapsulating
common business logic in an Apex class that gets called by multiple page controllers). An excellent example of such a design
can be found in the same open-source Contact Viewer application referenced before. Though the application has separate
pages for its phone and tablet version (ContactsAppMobile.page and ContactsApp.page respectively), they both share
a common template (MobileAppTemplate.page), thus maximizing code and artifact reuse. The figure below is a conceptual
representation of the design for the Contact Viewer application.

11

Multi-Device StrategyIntroduction to Mobile Development

Lastly, it is also possible to service multiple form factors from a single Visualforce page by doing server-side device detection
and making use of the ‘rendered’ attribute available in most Visualforce components (or more directly, the CSS
‘display:none/block’ property on a <div> tag) to selectively show/hide page elements. This approach however can result in
bloated and hard-to-maintain code and should be used sparingly.

Developer Edition or Sandbox Environment?
Salesforce offers a range of environments for developers. The environment that’s best for you depends on many factors,
including:

• The type of application you’re building

• Your audience

• Your company’s resources

Development environments are used strictly for developing and testing apps. These environments contain test data that are
not business critical. Development can be done inside your browser or with the Force.com IDE, which is based on the Eclipse
development tool. There are two types of development environments: Developer Edition and Sandbox.

Types of Developer Environments
A Developer Edition (DE) environment is a free, fully-featured copy of the Enterprise Edition environment, with less storage
and users. DE is a logically separate environment, ideal as your initial development environment. You can sign-up for as many
DE organizations as you need. This allows you to build an application designed for any of the Salesforce production
environments.

A Partner Developer Edition is a licensed version of the free DE that includes more storage, features, and licenses. Partner
Developer Editions are free to enrolled Salesforce partners.

12

Developer Edition or Sandbox Environment?Introduction to Mobile Development

Sandbox is a nearly identical copy of your production environment available to Enterprise or Unlimited Edition customers.
The sandbox copy can include data, configurations, or both. It is possible to create multiple sandboxes in your production
environments for a variety of purposes without compromising the data and applications in your production environment.

Choosing an Environment
In this book, all exercises assume you’re using a Developer Edition (DE) organization. However, in reality a sandbox environment
can also host your development efforts. Here’s some information that can help you decide which environment is best for you.

Developer Edition is ideal if:

• You are a partner who intends to build a commercially available Force.com app by creating a managed package for distribution
through AppExchange and/or Trialforce.

Note: Only Developer Edition or Partner Developer Edition environments can create managed packages.

• You are a salesforce.com customer with a Professional, Group, or Personal Edition, and you do not have access to Sandbox.

• You are a developer looking to explore the Force.com platform for FREE!

Partner Developer Edition is ideal if:

• You are developing in a team and you require a master environment to manage all the source code - in this case each
developer would have a Developer Edition environment and check their code in and out of this master repository
environment.

• You expect more than 2 developers to log in to develop and test.

• You require a larger environment that allows more users to run robust tests against larger data sets.

Sandbox is ideal if:

• You are a salesforce.com customer with Enterprise, Unlimited, or Force.com Edition, which includes Sandbox.

• You are developing a Force.com application specifically for your production environment.

• You are not planning to build a Force.com application that will be distributed commercially.

• You have no intent to list on the AppExchange or distribute through Trialforce.

Development Prerequisites
We recommend some background knowledge and system setup before you begin building Mobile SDK apps.

It’s helpful to have some experience with Force.com. You’ll need a Force.com Developer Edition organization.

Familiarity with OAuth, login and passcode flows, and Salesforce connected apps is essential to designing and debugging
Mobile SDK apps. See Authentication, Security, and Identity in Mobile Apps.

The following requirements apply to specific platforms and technologies:

• To build iOS applications (hybrid or native), see Native iOS Requirements.

• To build Android applications (hybrid or native), see Native Android Requirements.

• To build remote hybrid applications, you’ll need an organization that has Visualforce.

13

Development PrerequisitesIntroduction to Mobile Development

Sign Up for Force.com
To access a wealth of tutorials, blogs, and support forums for all Salesforce developer programs, join Force.com.

1. In your browser go to https://developer.salesforce.com/signup.
2. Fill in the fields about you and your company.
3. In the Email Address field, make sure to use a public address you can easily check from a Web browser.
4. Enter a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same

as your email address, and in fact, it's usually better if they aren't the same. Your username is your login and your identity
on developer.salesforce.com, and so you're often better served by choosing a username that describes the work
you're doing, such as develop@workbook.org, or that describes you, such as firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement.
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you'll receive an email with a login link. Click the link and change your password.

Supported Browsers
Learn about the browsers we support for the full Salesforce site.

Important: Beginning Summer ’15, we’ll discontinue support for Microsoft® Internet Explorer® versions 7 and 8.
For these versions, this means that some functions may no longer work after this date. Salesforce.com Customer
Support will not investigate issues related to Internet Explorer 7 and 8 after this date.

To see the mobile browsers that are supported for the Salesforce1 app, check out “Requirements for Using the
Salesforce1 App” in the Salesforce Help.

CommentsBrowser

If you use Internet Explorer, we recommend using the latest version that
Salesforce supports. Apply all Microsoft software updates. Note these
restrictions.

Microsoft® Internet Explorer® versions 7, 8,
9, 10, and 11

• The full Salesforce site is not supported in Internet Explorer on
touch-enabled devices for Windows. Use the Salesforce1 mobile browser
app instead.

• The HTML solution editor in Internet Explorer 11 is not supported in
Salesforce Knowledge.

• The Compatibility View feature in Internet Explorer isn’t supported.

• The Metro version of Internet Explorer 10 isn’t supported.

• Internet Explorer 6 and 7 aren’t supported for login hints for multiple
accounts.

• Internet Explorer 7 and 8 aren’t supported for the Developer Console or
the Data Import Wizard.

• Internet Explorer 7 isn’t supported for Open CTI.

• Internet Explorer 7 and 11 aren’t supported for Salesforce CRM Call
Center built with CTI Toolkit version 4.0 or higher.

• Internet Explorer 7 isn’t supported for Force.com Canvas.

14

Sign Up for Force.comIntroduction to Mobile Development

https://developer.salesforce.com/signup

CommentsBrowser

• Internet Explorer 7 isn’t supported for Salesforce console features that
require more advanced browser performance and recent Web technologies.
The console features not available in Internet Explorer 7 include:

◊ The Most Recent Tabs component

◊ Multiple custom console components on sidebars

◊ Multi-monitor components

◊ The resizable highlights panel

◊ The full-width feed option on feed-based page layouts

• Internet Explorer 7 and 8 aren’t supported for Community Templates for
Self-Service.

• Community Templates for Self-Service supports Internet Explorer 9 and
above for desktop users and Internet Explorer 11 and above for mobile
users.

For configuration recommendations, see “Configuring Internet Explorer” in
the Salesforce Help.

Salesforce.com makes every effort to test and support the most recent version
of Firefox.

Mozilla® Firefox®, most recent stable version

• Mozilla Firefox is supported for desktop users only for Community
Templates for Self-Service.

For configuration recommendations, see “Configuring Firefox” in the
Salesforce Help.

Google Chrome applies updates automatically; salesforce.com makes every
effort to test and support the most recent version. There are no configuration

Google Chrome™, most recent stable version

recommendations for Chrome. Chrome isn’t supported for the Console tab
or the Add Google Doc to Salesforce browser button.

There are no configuration recommendations for Safari. Apple Safari on iOS
isn’t supported for the full Salesforce site.

Apple® Safari® versions 5.x and 6.x on Mac
OS X

• Safari isn’t supported for the Salesforce console.

• Safari isn’t supported for Salesforce CRM Call Center built with CTI
Toolkit versions below 4.0.

Recommendations and Requirements for All Browsers
• For all browsers, you must enable JavaScript, cookies, and SSL 3.0.

• Salesforce.com recommends a minimum screen resolution of 1024 x 768 for the best possible user experience. Screen
resolutions smaller than 1024 x 768 may not display Salesforce features such as Report Builder and Page Layout Editor
properly.

• For Mac OS users on Apple Safari or Google Chrome, make sure the system setting Show scroll bars is set to Always.
• Some third-party Web browser plug-ins and extensions can interfere with the functionality of Chatter. If you experience

malfunctions or inconsistent behavior with Chatter, disable all of the Web browser's plug-ins and extensions and try again.

Certain features in Salesforce—as well as some desktop clients, toolkits, and adapters—have their own browser requirements.
For example:

• Internet Explorer is the only supported browser for:

15

Supported BrowsersIntroduction to Mobile Development

Standard mail merge◊
◊ Installing Salesforce Classic on a Windows Mobile device
◊ Connect Offline

• Firefox is recommended for the enhanced page layout editor.
• Browser requirements also apply for uploading multiple files on Chatter.

Discontinued or Limited Browser Support
As of Summer ’12, salesforce.com discontinued support for Microsoft® Internet Explorer® 6. Existing features that have
previously worked in this browser may continue to work through 2014. Note these support restrictions.

• Internet Explorer 6 isn’t supported for:

◊ Chatter
◊ Global search
◊ Answers
◊ Cloud Scheduler
◊ The new user interface theme
◊ Quote Template Editor
◊ Salesforce console
◊ Salesforce Knowledge
◊ Live Agent
◊ Forecasts
◊ Chatter Answers
◊ Enhanced profile user interface
◊ Site.com
◊ Schema Builder
◊ Joined reports
◊ Enhanced dashboard charting options

Internet Explorer 7 isn’t supported for Site.com and Chatter Messenger. For systems running Microsoft Windows XP, Internet
Explorer versions 7 and 8 with the latest security patches are supported for Chatter Answers.

Enough Talk; I’m Ready
If you’d rather read about the details later, there are Quick Start topics in this guide for each native development scenario.

• Hybrid Apps Quick Start on page 84

• iOS Native Quick Start on page 102

• Android Native Quick Start on page 141

16

Enough Talk; I’m ReadyIntroduction to Mobile Development

Chapter 2

Getting Started

Let’s get started creating custom mobile apps! You need a Connected App
definition regardless of which development options you choose. For every

In this chapter ...

• Creating a Connected App development path except plain HTML5 browser apps, install the Salesforce
• Installing Mobile SDK Mobile SDK. If you plan to convert a plain HTML5 browser app into a

standalone hybrid app, you’ll also need Salesforce Mobile SDK.• Mobile SDK Sample Apps
• What's New

17

Creating a Connected App
To enable your mobile app to connect to the Salesforce service, you need to create a connected app. The connected app includes
a consumer key, a prerequisite to all development scenarios in this guide.

Create a Connected App
To create a connected app, you use the Salesforce app.

1. Log into your Force.com instance.
2. In Setup, navigate to Create > Apps.
3. Under Connected Apps, click New.
4. Perform steps for Basic Information.
5. Perform steps for API (Enable OAuth Settings).
6. Click Save.

Note:

• The Callback URL provided for OAuth does not have to be a valid URL; it only has to match what the app
expects in this field. You can use any custom prefix, such as sfdc://.

• The detail page for your connected app displays a consumer key. It’s a good idea to copy this key, as you’ll need
it later.

• After you create a new connected app, wait a few minutes for the token to propagate before running your app.

See also Scope Parameter Values.

Basic Information
Specify basic information about your app in this section, including the app name, logo, and contact information.

1. Enter the Connected App Name. This name is displayed in the list of connected apps.

Note: The name must be unique for the current connected apps in your organization. You can reuse the name
of a deleted connected app if the connected app was created using the Spring ’14 release or later. You cannot reuse
the name of a deleted connected app if the connected app was created using an earlier release.

2. Enter the API Name, used when referring to your app from a program. It defaults to a version of the name without spaces.
Only letters, numbers, and underscores are allowed, so you’ll need to edit the default name if the original app name contained
any other characters.

3. Provide the Contact Email that salesforce.com should use for contacting you or your support team. This address is not
provided to administrators installing the app.

4. Provide the Contact Phone for salesforce.com to use in case we need to contact you. This number is not provided to
administrators installing the app.

5. Enter a Logo Image URL to display your logo in the list of connected apps and on the consent page that users see when
authenticating. The URL must use HTTPS. The logo image can’t be larger than 125 pixels high or 200 pixels wide, and
must be in the GIF, JPG, or PNG file format with a 100 KB maximum file size. The default logo is a cloud. You have
several ways to add a custom logo.

• You can upload your own logo image by clicking Upload logo image. Select an image from your local file system that
meets the size requirements for the logo. When your upload is successful, the URL to the logo appears in the Logo
Image URL field. Otherwise, make sure the logo meets the size requirements.

18

Creating a Connected AppGetting Started

https://help.salesforce.com/HTViewHelpDoc?id=remoteaccess_oauth_scopes.htm&language=en_US

• You can also select a logo from the samples provided by clicking Choose one of our sample logos. The logos available
include ones for Salesforce apps, third-party apps, and standards bodies. Click the logo you want, and then copy and
paste the displayed URL into the Logo Image URL field.

• You can use a logo hosted publicly on Salesforce servers by uploading an image that meets the logo file requirements
(125 pixels high or 200 pixels wide, maximum, and in the GIF, JPG, or PNG file format with a 100 KB maximum
file size) as a document using the Documents tab. Then, view the image to get the URL, and enter the URL into the
Logo Image URL field.

6. Enter an Icon URL to display a logo on the OAuth approval page that users see when they first use your app. The logo
should be 16 pixels high and wide, on a white background. Sample logos are also available for icons.

You can select an icon from the samples provided by clicking Choose one of our sample logos. Click the icon you want,
and then copy and paste the displayed URL into the Icon URL field.

7. If there is a a Web page with more information about your app, provide a Info URL.
8. Enter a Description to be displayed in the list of connected apps.

Prior to Winter ’14, the Start URL and Mobile Start URL were defined in this section. These fields can now be found
under Web App Settings and Mobile App Settings below.

API (Enable OAuth Settings)
This section controls how your app communicates with Salesforce. Select Enable OAuth Settings to configure
authentication settings.

1. Enter the Callback URL (endpoint) that Salesforce calls back to your application during OAuth; it’s the OAuth
redirect_uri. Depending on which OAuth flow you use, this is typically the URL that a user’s browser is redirected
to after successful authentication. As this URL is used for some OAuth flows to pass an access token, the URL must use
secure HTTP (HTTPS) or a custom URI scheme.

2. If you’re using the JWT OAuth flow, select Use Digital Signatures. If the app uses a certificate, click Choose File
and select the certificate file.

3. Add all supported OAuth scopes to Selected OAuth Scopes. These scopes refer to permissions given by the user
running the connected app, and are followed by their OAuth token name in parentheses:

Access and manage your Chatter feed (chatter_api)
Allows access to Chatter REST API resources only.

Access and manage your data (api)
Allows access to the logged-in user’s account using APIs, such as REST API and Bulk API. This value also includes
chatter_api, which allows access to Chatter REST API resources.

Access your basic information (id, profile, email, address, phone)
Allows access to the Identity URL service.

Access custom permissions (custom_permissions)
Allows access to the custom permissions in an organization associated with the connected app, and shows whether
the current user has each permission enabled.

Note: Custom permissions are currently available as a Developer Preview.

Allow access to your unique identifier (openid)
Allows access to the logged in user’s unique identifier for OpenID Connect apps.

19

Create a Connected AppGetting Started

Full access (full)
Allows access to all data accessible by the logged-in user, and encompasses all other scopes. full does not return a
refresh token. You must explicitly request the refresh_token scope to get a refresh token.

Perform requests on your behalf at any time (refresh_token, offline_access)
Allows a refresh token to be returned if you are eligible to receive one. This lets the app interact with the user’s data
while the user is offline. The refresh_token scope is synonymous with offline_access.

Provide access to custom applications (visualforce)
Allows access to Visualforce pages.

Provide access to your data via the Web (web)
Allows the ability to use the access_token on the Web. This also includes visualforce, allowing access to
Visualforce pages.

If your organization had the No user approval required for users in this organization option selected on
your remote access prior to the Spring ’12 release, users in the same organization as the one the app was created in still have
automatic approval for the app. The read-only No user approval required for users in this organization
checkbox is selected to show this condition. For connected apps, the recommended procedure after you’ve created an app is
for administrators to install the app and then set Permitted Users to Admin-approved users. If the remote access
option was not checked originally, the checkbox doesn’t display.

Installing Mobile SDK
Salesforce Mobile SDK provides two installation paths.

• (Recommended) You can install the SDK in a ready-made development setup using a Node Packaged Module (npm) script.

• You can download the Mobile SDK open source code from GitHub and set up your own development environment.

Mobile SDK npm Packages
Most mobile developers want to use Mobile SDK as a “black box” and begin creating apps as quickly as possible. For this use
case Salesforce provides two npm packages: forceios for iOS, and forcedroid for Android.

Mobile SDK npm packages provide a static snapshot of an SDK release. For iOS, the npm package installs binary modules
rather than uncompiled source code. For Android, the npm package installs a snapshot of the SDK source code rather than
binaries. You use the npm scripts not only to install Mobile SDK, but also to create new template projects and install the SDK
samples.

Npm packages for the Salesforce Mobile SDK reside at https://www.npmjs.org.

Note: Npm packages do not support source control, so you can’t update your installation dynamically for new releases.
Instead, you install each release separately. To upgrade to new versions of the SDK, go to the npmjs.org website and
download the new package.

Do This First: Install Node.js and npm
To use the Mobile SDK npm installers, install Node.js. The Node.js installer automatically installs npm.

1. Download Node.js from www.nodejs.org/download.
2. Run the downloaded installer to install Node.js and npm. Accept all prompts that ask for permission to install.

20

Installing Mobile SDKGetting Started

https://www.npmjs.org
https://www.npmjs.org
http://www.nodejs.org/download

3. Test your installation at a command prompt by typing npm, then pressing ENTER or RETURN. If you don’t see a page of
command usage information, revisit Step 2 to find out what’s missing.

Now you’re ready to download the npm scripts and install Salesforce Mobile SDK for Android and iOS.

iOS Installation
For the fastest, easiest route to iOS development, use the forceios npm package to install Salesforce Mobile SDK.

1. At a command prompt, use the forceios package to install the Mobile SDK either globally (recommended) or locally.

a. For global installation: Use the sudo command and append the “global” option, -g:

sudo npm install forceios -g

With the -g option, you can run npm install from any directory. The npm utility installs the package under
/usr/local/lib/node_modules, and links binary modules in /usr/local/bin. Most users need the sudo
option because they lack read-write permissions in /usr/local.

b. For local installation: Change directories to your preferred installation folder and use the npm command without
sudo or –g:

npm install forceios

This command installs Salesforce Mobile SDK in a node_modules folder under your current folder. It links binary
modules in ./node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a local
folder where you already have read-write permissions.

Android Installation
For the fastest, easiest route to Android development, use the forcedroid npm package to install Salesforce Mobile SDK.

1. Use the forcedroid package to install the Mobile SDK either globally (recommended) or locally.

a. For global installation: Append the “global” option, -g, to the end of the command. For non-Windows environments,
use the sudo command:

sudo npm install forcedroid -g

On Windows:

npm install forcedroid -g

With the -g option, you run npm install from any directory. In non-Windows environments, the npm utility
installs the package under /usr/local/lib/node_modules, and links binary modules in /usr/local/bin. Most
users need the sudo option because they lack read-write permissions in /usr/local. In Windows environments,
global packages are installed in %APPDATA%\npm\node_modules, and binaries are linked in %APPDATA%\npm.

21

iOS InstallationGetting Started

b. For local installation: Change directories to your preferred installation folder and use the npm command without
sudo or the –g option:

npm install forcedroid

This command installs Salesforce Mobile SDK in a node_modules directory under your current directory. It links
binary modules in ./node_modules/.bin/. In this scenario, you rarely use sudo because you typically install in a
local folder where you already have read-write permissions.

Uninstalling Mobile SDK npm Packages
If you need to uninstall an npm package, use the npm script.

Uninstalling the Forcedroid Package

The instructions for uninstalling the forcedroid package vary with whether you installed the package globally or locally.

If you installed the package globally, you can run the uninstall command from any folder. Be sure to use the –g option.
On a Unix-based platform such as Mac OS X, use sudo as well.

$ pwd
/Users/joeuser
$ sudo npm uninstall forcedroid -g
$

If you installed the package locally, run the uninstall command from the folder where you installed the package. For
example:

cd <my_projects/my_sdk_folder>
npm uninstall forcedroid

If you try to uninstall a local installation from the wrong directory, you’ll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node_modules:
"my_projects/my_sdk_folder/node_modules/forcedroid"

Uninstalling the Forceios Package

Instructions for uninstalling the forceios package vary with whether you installed the package globally or locally. If you installed
the package globally, you can run the uninstall command from any folder. Be sure to use sudo and the –g option.

$ pwd
/Users/joeuser
$ sudo npm uninstall forceios -g
$

To uninstall a package that you installed locally, run the uninstall command from the folder where you installed the package.
For example:

$ pwd
/Users/joeuser
cd <my_projects/my_sdk_folder>
npm uninstall forceios

22

Uninstalling Mobile SDK npm PackagesGetting Started

If you try to uninstall a local installation from the wrong directory, you’ll get an error message similar to this:

npm WARN uninstall not installed in /Users/joeuser/node_modules:
"my_projects/my_sdk_folder/node_modules/forceios"

Mobile SDK GitHub Repository
More adventurous developers can delve into the SDK, keep up with the latest changes, and possibly contribute to SDK
development by cloning the open source repository from GitHub. Using GitHub allows you to monitor source code in public
pre-release development branches. In this scenario, both iOS and Android apps include the SDK source code, which is built
along with your app.

You don’t need to sign up for GitHub to access the Mobile SDK, but we think it’s a good idea to be part of this social coding
community. https://github.com/forcedotcom

You can always find the latest Mobile SDK releases in our public repositories:

• https://github.com/forcedotcom/SalesforceMobileSDK-iOS

• https://github.com/forcedotcom/SalesforceMobileSDK-Android

iOS: Cloning the Mobile SDK GitHub Repository (Optional)
1. Clone the Mobile SDK iOS repository to your local file system by issuing the following command at the OS X Terminal

app: git clone git://github.com/forcedotcom/SalesforceMobileSDK-iOS.git

Note: If you have the GitHub app for Mac OS X, click Clone in Mac. In your browser, navigate to the Mobile
SDK iOS GitHub repository: https://github.com/forcedotcom/SalesforceMobileSDK-iOS.

2. In the OS X Terminal app, change to the directory where you installed the cloned repository. By default, this is the
SalesforceMobileSDK-iOS directory.

3. Run the install script from the command line: ./install.sh

Android: Cloning the Mobile SDK GitHub Repository (Optional)
1. In your browser, navigate to the Mobile SDK Android GitHub repository:

https://github.com/forcedotcom/SalesforceMobileSDK-Android.
2. Clone the repository to your local file system by issuing the following command: git clone

git://github.com/forcedotcom/SalesforceMobileSDK-Android.git

3. Open a command prompt in the directory where you installed the cloned repository, and run the install script from the
command line: ./install.sh

Note: Windows users: Run cscript install.vbs.

Mobile SDK Sample Apps
Salesforce Mobile SDK includes a wealth of sample applications that demonstrate its major features. Use the hybrid and native
samples for iOS and Android as the basis for your own applications, or just study them for reference.

23

Mobile SDK GitHub RepositoryGetting Started

https://github.com/forcedotcom
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android
https://github.com/forcedotcom/SalesforceMobileSDK-iOS
https://github.com/forcedotcom/SalesforceMobileSDK-Android

Installing the Sample Apps
In GitHub, sample apps live in the Mobile SDK repository for the target platform. You can access them there directly, or you
can use an npm command to install them.

Accessing the Samples from GitHub
If you clone Mobile SDK directly from GitHub, all sample files are placed in the correct locations. You can then build the
Android samples by including the SalesforceSDK project, SmartStore project, and the sample projects in your Eclipse
workspace. For iOS, remember to run ./install.sh in the repository root folder after cloning the repository. Run the
iOS sample projects by opening SalesforceMobileSDK-iOS/SalesforceMobileSDK.xcworkspace.

Installing Sample Apps for Android
If you installed the SDK using npm, use the forcedroid command line utility to install the sample apps. You can either:

• Configure your target directory interactively as prompted by the forcedroid app, or

• Specify your target directory directly at the command line.

Specifying the Target Directory Interactively

To enter the target directory interactively, do one of the following:

• If you installed Mobile SDK globally, type forcedroid samples.
• If you installed Mobile SDK locally, type <forcedroid_path>/node_modules/.bin/ forcedroid samples.

The forcedroid utility prompts you for the target directory name.

Note: For best results, specify a target directory that doesn’t already exist. If the target directory doesn’t exist, forcedroid
creates it. If it exists but doesn’t contain the sample directories, forcedroid installs the samples in it. If it exists and
already contains one or more of the sample directories, forcedroid exits upon finding an existing directory and doesn’t
install the rest of the samples.

24

Installing the Sample AppsGetting Started

Android Sample Apps

Native

RestExplorer demonstrates the OAuth and REST API functions of the SalesforceSDK. It’s also useful for investigating
REST API actions from a Honeycomb tablet.

1. To run the application from your Eclipse workspace, right-click the RestExplorer project and choose Run As > Android
Application.

2. To run the tests, right-click the RestExplorerTest project and choose Run As > Android JUnit Test.

NativeSqlAggregator demonstrates SQL aggregation with SmartSQL. As such, it also demonstrates a native implementation
of SmartStore. To run the application from your Eclipse workspace, right-click the NativeSqlAggregator project and choose
Run As > Android Application.

FileExplorer demonstrates the Files API as well as the underlying Google Volley networking enhancements. To run the
application from your Eclipse workspace, right-click the FileExplorer project and choose Run As > Android Application.

Hybrid

• AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.
• SampleApps/HybridFileExplorer: Demonstrates the Files API.
• SampleApps/ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve

local device contacts. It also uses the forcetk.mobilesdk.js toolkit to implement REST transactions with the Salesforce
REST API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those
credentials to forcetk.mobilesdk.js by sending a javascript event.

• SampleApps/test/ContactExplorerTest: Tests for the ContactExplorer sample app.
• SampleApps/VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native

container. This example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth
login credentials using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies
for accessing Visualforce pages.

• SampleApps/test/VFConnectorTest: Test for the VFConnector sample app.
• SampleApps/SmartStoreExplorer: Lets you explore SmartStore APIs.
• SampleApps/test/SmartStoreExplorerTest: Tests for the SmartStoreExplorer sample app.

Installing Sample Apps for iOS
If you installed the SDK using npm, use the forceios command line utility to install the sample apps. You can either:

• Configure your target directory interactively as prompted by the forceios app, or

• Specify your target directory directly at the command line.

Specifying the Target Directory Interactively

To enter the target directory interactively, do one of the following:

• If you installed Mobile SDK globally, type forceios samples.
• If you installed Mobile SDK locally, type <forceios_path>/node_modules/.bin/ forceios samples.

The forceios utility prompts you for the target directory name.

25

Installing Sample Apps for iOSGetting Started

Note: For best results, specify a target directory that doesn’t already exist. If the target directory doesn’t exist, forceios
creates it. If it exists but doesn’t contain the sample directories, forceios installs the samples in it. If it exists and already
contains one or more of the sample directories, forceios exits upon finding an existing sample directory and doesn’t
install the samples.

iOS Sample Apps

Native

• RestAPIExplorer exercises all of the native REST API wrappers. It resides in the Mobile SDK for iOS under
native/SampleApps/RestAPIExplorer.

• NativeSqlAggregator shows SQL aggregation examples as well as a native SmartStore implementation. It resides in the
Mobile SDK for iOS under native/SampleApps/NativeSqlAggregator.

• FileExplorer demonstrates the Files API as well as the underlying MKNetwork network enhancements. It resides in the
Mobile SDK for iOS under native/SampleApps/FileExplorer.

Hybrid

• AccountEditor: Demonstrates how to use the SmartSync Data Framework to access Salesforce data.
• HybridFileExplorer: Demonstrates the Files API.
• ContactExplorer: The ContactExplorer sample app uses PhoneGap (also known as Cordova) to retrieve local device

contacts. It also uses the forcetk.mobilesdk.js toolkit to implement REST transactions with the Salesforce REST
API. The app uses the OAuth2 support in Salesforce SDK to obtain OAuth credentials, then propagates those credentials
to forcetk.mobilesdk.js by sending a JavaScript event.

• VFConnector: The VFConnector sample app demonstrates how to wrap a Visualforce page in a native container. This
example assumes that your org has a Visualforce page called BasicVFTest. The app first obtains OAuth login credentials
using the Salesforce SDK OAuth2 support, then uses those credentials to set appropriate webview cookies for accessing
Visualforce pages.

• SmartStoreExplorer: Lets you explore SmartStore APIs.

What's New
Salesforce developer tools have made significant strides since Dreamforce ’12. Changes to Salesforce Mobile SDK as well as
Visualforce make Salesforce mobile development easier and accessible to all levels of developers.

26

What's NewGetting Started

What's New in Mobile SDK 2.0
Top new features in Mobile SDK 2.0 include:

• Highly flexible mobile architecture

◊ OAuth2 Authentication can now be handled on-demand, enabling mobile apps to start un-authenticated.

◊ Mobile apps can now authenticate against standard force.com and community licenses.

• SmartSync data framework allow developers to work with real objects by encapsulating REST APIs.

◊ Write substantially less code for CRUD operations.

◊ SmartSync can also seamlessly integrate into the SmartStore offline storage database for storing data offline without
additional code

• Node Packaged Module (NPM) installers.

◊ Salesforce provides two packages: forceios for the iOS Mobile SDK, and forcedroid for the Android Mobile SDK.
These packages provide a static snapshot of an SDK release.

Create new native and hybrid apps directly from the command line with a simple script.

General SDK Improvements
• Refresh tokens are now explicitly revoked from the server upon logout.

• Added support for community users to login.

• Consolidated our Cordova JS plugins and utility code into one file (cordova.force.js).

• Updated forcetk.js and renamed to forcetk.mobilesdk.js, to pull in the latest functionality from ForceTK and
enhance its ability to work with the Mobile SDK authentication process.

• Fixed session state rehydration for Visualforce apps, in the event of session timeouts during JavaScript Remoting calls in
Visualforce.

• SmartStore now supports ‘Smart SQL’ queries, such as complex aggregate functions, JOINs, and any other SQL-type
queries.

• NativeSqlAggregator is a new sample app to demonstrate usage of SmartStore within a native app to run Smart SQL
queries, such as aggregate queries.

• SmartStore now supports three data types for index fields – ‘string’, ‘integer’, and ‘floating’.

iOS
• All projects and template apps have been converted to use ARC.

• All Xcode projects are now managed under a single workspace (SalesforceMobileSDK.xcworkspace). This allows
for a few benefits:

◊ During development of the SDK, any changes to underlying libraries/projects will automatically be reflected
in their consuming projects/applications.

◊ You can now debug all the way through the stack of dependencies, from a sample app down through authentication
and other core functionality.

27

What's New in Mobile SDK 2.0Getting Started

◊ No more “staging” of binary artifacts as a prerequisite to working with the projects. install.sh now simply syncs
the sub-modules of the repository, after which you’re free to start working in the workspace.

• Native and mobile template apps no longer rely on parent app delegate classes to successfully leverage OAuth authentication.
This means that you the developer are free to form up your AppDelegate app flow however you choose, leveraging the
updated SFAuthenticationManager component wherever it’s practical to do so in your app.

• All hybrid dependencies are now decoupled from SalesforceHybridSDK.framework (which has been retired). This means
you can now mix and match your own versions of Cordova, openssl, etc., in your app. The core functionality of the
framework itself has now been converted into a static library.

Android
• Extending ForceApp or ForceAppWithSmartStore is no longer a requirement.

• Added SalesforceListActivity and SalesforceExpandableListActivity, that provides Salesforce wrappers
around the standard ListActivity and ExpandableListActivityclasses, respectively.

• rest.xml has been removed and replaced with bootconfig.xml. Login options do not have to be supplied through
code anymore, they can be specified in bootconfig.xml.

• Bootstrap flow for hybrid apps now occurs on the native side, thereby enabling faster initial load times (bootstrap.html is
no longer required or used).

• Changed the package name of the SmartStore library, so that it can coexist with other library projects.

What's New in Mobile SDK 2.1
Salesforce Mobile SDK 2.1 builds on the substantial advances of 2.0. As of this printing, the full list of new features was not
finalized, but here are some highlights:

• Files API—Wraps the file requests in Salesforce REST API. Available in iOS native, Android native, and hybrid SDKs.

• Push notifications—Limited support for the push notification Developer Preview feature in the Winter ’14 release.

• Flexible SmartSync endpoints—SmartSync now supports custom REST API endpoints as well as Apex REST objects.

• Networking enhancements—As a result of the Files API development, networking libraries have changed. In iOS, Mobile
SDK now uses the MKNetworkSDK for REST request network operations. Android now uses the Google Volley library.
These libraries give apps a performance boost and developers extra control over the request queue.

• npm Samples Installer—You can now use the forceios and forcedroid apps to install the sample applications.

You can find the official What’s New for Mobile SDK 2.1 at http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes.

HTML5 Improvements in Visualforce (Winter ’14 Release)
Visualforce features a number of improvements in Winter ’14 that are intended to make HTML5 development easier. See
the Winter ‘14 Release Notes for full details.

New <apex:input> Component
<apex:input> is a new, HTML5-friendly, general purpose input component that adapts to the data expected by a form
field. It uses the HTML type attribute, particularly values new in HTML5, to allow client browsers to display type-appropriate
user input widgets, such as a date picker or range slider, or use a type-specific keyboard on touch devices, or to perform
client-side formatting or validation, such as with a numeric range or a telephone number.

28

What's New in Mobile SDK 2.1Getting Started

http://wiki.developerforce.com/page/Mobile_SDK_Release_Notes

type Attribute for <apex:input> and <apex:inputField>
Use the new type attribute with <apex:input> and <apex:inputField> to display input user interface elements using
HTML5 browser features or JavaScript user interface widgets, to supplement or replace the default Salesforce input elements.

HTML5 <datalist> Element for Input Components
The HTML5 <datalist> element specifies a list of values to associate with an <input> element, which can be used to
show a list of completion options filtered by input. Use the new list attribute for the <apex:input>, <apex:inputField>,
and <apex:inputText> components to generate a <datalist> block for the associated input field.

Additional Components with Support for Pass-Through HTML Attributes
You can add arbitrary attributes to many Visualforce components that will be “passed through” to the rendered HTML. This
is useful, for example, when using Visualforce with JavaScript frameworks, such as jQuery Mobile, AngularJS, and Knockout,
which use data-* or other attributes as hooks to activate framework functions. It can also be used to improve usability with
HTML5 features such as placeholder “ghost” text, pattern client-side validation, and title help text attributes.

Accessibility Improvements to Visualforce Components
The accessibility of Visualforce pages has been improved, by improving the semantics and completeness of the HTML generated
by a number of Visualforce components.

Deferred Loading of JavaScript Resources via <apex:includeScript>
The <apex:includeScript> component has a new attribute, loadOnReady, which controls whether a JavaScript resource
loaded by the component is loaded immediately (existing behavior), or is delayed until the document model (DOM) for the
page is constructed.

29

HTML5 Improvements in Visualforce (Winter ’14 Release)Getting Started

Chapter 3

HTML5 and Hybrid Development

HTML5 lets you create lightweight mobile interfaces without installing software
on the target device. Any mobile, touch or desktop device can access these

In this chapter ...

• Getting Started mobile interfaces. HTML5 now supports advanced mobile functionality such
• HTML5 Development Tools as camera and GPS, making it simple to use these popular device features in

your Salesforce mobile app.• Delivering HTML5 Content With
Visualforce

You can create an HTML5 application that leverages the Force.com platform
by:

• Accessing Salesforce Data: Controllers
vs. APIs

• Introduction to Hybrid Development • Using Visualforce to deliver the HTML content
• Hybrid Apps Quick Start • Using JavaScript remoting to invoke Apex controllers for fetching records

from Force.com• Guidelines and Tips for Hybrid Apps

In addition, you can repurpose HTML5 code in a standalone Mobile SDK
hybrid app, and then distribute it through an app store. Converting to hybrid
involves creating a Mobile SDK project to get the native container, then
importing your HTML5 files into the project.

30

Getting Started
If you're already a web developer, you're set up to write HTML5 apps that access Salesforce. HTML5 apps can run in a
browser and don't require the Salesforce Mobile SDK. You simply call Salesforce APIs, capture the return values, and plug
them into your logic and UI. The same advantages and challenges of running any app in a mobile browser apply. However,
Salesforce and its partners provide tools that help streamline mobile web design and coding.

If you want to build your HTML5 app as standalone in a native mobile container and distribute it in the Apple® AppStore®

or an Android marketplace, you’ll need to create a hybrid app using the Mobile SDK.

Using HTML5 and JavaScript
You don't need a professional development environment such as Xcode or Microsoft® Visual Studio® to write HTML5 and
JavaScript code. Most modern browsers include sophisticated developer features including HTML and JavaScript debuggers.
You can literally write your application in a text editor and test it in a browser. However, you do need a good knowledge of
currently available industry libraries that you can leverage to minimize your coding effort.

The recent growth in mobile development has led to an explosion of new web technology toolkits. Often, these JavaScript
libraries are open-source and don't require licensing. Most of the tools provided by Salesforce for HTML5 development are
built on these third-party technologies.

HTML5 Development Requirements
If you’re planning to write a browser-based HTML5 Salesforce application, you don’t need Salesforce Mobile SDK.

• You’ll need a Force.com organization.

• Some knowledge of Apex and Visualforce is necessary.

Note: This type of development uses Visualforce. You can’t use Database.com.

HTML5 Development Tools
Salesforce provides a suite of tools that makes HTML5 development surprisingly simple. Some of these tools are built on
popular open source JavaScript frameworks, while others are home-grown solutions. Also, a group of third-party, open source
Mobile Packs brings the power of industry-standard architectures to Salesforce app development.

Mobile Design Templates
Mobile design templates are an open-source library of 22 visually striking, mobile-optimized HTML5 and CSS3 markup for
common mobile use cases for interacting with Salesforce data.

• The templates are modular, customizable, open-source CSS3 and HTML5 markup that can be modified at will to meet
the specific UI/UX requirements of a mobile app.

• You can combine these static templates with a JavaScript library like ForceTk or one of the Mobile Packs for Backbone,
Angular or Knockout to provide live data bindings with any Salesforce backend.

• The templates provide cross-platform (iOS, Android etc.) support, courtesy of the use of standard Web technologies like
HTML5, CSS3 and JavaScript.

31

Getting StartedHTML5 and Hybrid Development

• All templates are optimized for the phone form factor.

• The base HTML5/CSS3 can be modified to work with any Salesforce object (standard or custom) in the context of any
mobile use case.

There are templates to view and edit customer data, view backend reports, find nearby records, and much more. These starting
points for UI and UX design should dramatically shorten the time it takes to develop a great looking Web or hybrid app on
the Salesforce Platform. Thereafter, you can customize and reuse these templates at will to meet the specific requirements of
your mobile app.

Mobile templates cover the following popular use cases:

• List View Templates List View—Provides different visual representations for showing a list of standard or custom Salesforce
records.

• Detail View Templates Detail View—Provides various read-only views of a standard or custom data record. Typically,
users will navigate to one of these detail views by clicking a record in a List View.

• Data Input Templates Data Input—Used to capture user input from a phone. The different form elements included in
these templates (phone, date, number, text, etc.) can be used in any mobile app that requires users to add or update Salesforce
data

• Map View Templates Map View—Provides Google Map-based designs for implementing the common ‘Find Nearby’
functionality on a mobile device. These templates can be combined with the Geolocation custom field in Salesforce, and
its corresponding SOQL companion, to add geolocation functionality to any Web or hybrid mobile app.

• Calendar View Templates Calendar—Provides mobile optimized views of a user’s Salesforce calendar (Tasks and Events).

• Report and Dashboard Templates Report and Dashboard—Provides mobile optimized report views of Salesforce data.
These templates are developed using the open-Source D3 charting library and developers can combine them with the
Salesforce Analytics API to add reporting capabilities to their mobile apps.

• Miscellaneous Templates Miscellaneous—Use these templates as a starting point to add a Settings, Splash or About screen
to your mobile app.

HTML5 Mobile Templates Sample App
The mobile templates are described in the context of a simple mobile Web app created in Visualforce using the Picture List
View template to view contact records in Salesforce. List View templates provide different visual representations for showing
a list of standard or custom Salesforce records and the Picture List View template in particular can be used to display any data
that has a picture associated with it (contact, user, product, etc.).

The template also has an optional feature whereby a swipe-right on any image in the list reveals some Quick Action icons.
The user can then perform these quick actions (like emailing or calling the contact) directly from this view (versus from a
drill-down detail view).

32

HTML5 Mobile Templates Sample AppHTML5 and Hybrid Development

You can also peruse the entire codebase for this sample app in the Sample Apps directory of the GitHub repo. Throughout
this section, you can follow along as this app is built into a fully featured mobile app.

Note: While the Picture List View template and this sample app use contacts as an example, every mobile design
template is use-case agnostic and can be modified and reused with any Salesforce object (standard or custom) in the
context of any mobile use case.

Using Mobile Design Templates in Visualforce
1. Download the templates project from GitHub. You can do so by executing the following from the command line.

git clone https://github.com/developerforce/Mobile-Design-Templates.git

Note: If you don’t have Git installed, you can also click the Download ZIP icon on the right of the repo home
page and download the project as a zip file.

2. Upload the templates zip file as a Static Resource in your DE Org.
3. Import the necessary JavaScript and CSS from the templates Static Resource zip file using the following Visualforce page

skeleton.

<apex:page docType="html-5.0"
showHeader="false"
sidebar="false"
standardStylesheets="false"
standardController="Contact"
extensions="Contacts_Ext">

<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width,

initial-scale=1, minimum-scale=1, maximum-scale=1,
user-scalable=no"/>

<apex:stylesheet value=
"{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/css/app.min.css')}"/>

<apex:includeScript value=
"{!URLFOR($Resource.Mobile_Design_Templates,

33

Using Mobile Design Templates in VisualforceHTML5 and Hybrid Development

https://github.com/developerforce/Mobile-Design-Templates

'Mobile-Design-Templates-master/common/js/jQuery2.0.2.min.js')}"/>
<apex:includeScript value=

"{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/jquery.touchwipe.min.js')}"/>

<apex:includeScript value=
"{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/js/main.min.js')}"/>

</head>
<body>

<div id="mainContainer"/>
</body>

</apex:page>

The two most important imports for using the mobile templates in a Web page are app.min.css and main.min.js (note that
the GitHub project also has the uncompressed versions of these files for easier review). These two files, respectively, define
the CSS and minimal JavaScript required to render the templates. In addition to these two files, the templates also require
jQuery 2.0.2 (for basic DOM manipulation in main.min.js). The Picture List View Template used in this sample also requires
a small JavaScript library (jquery.touchwipe.min.js) to enable touch gestures in the List View. In addition to the JavaScript
and CSS imports, note the use of the HTML5 doctype and the disabling of the standard stylesheets, header, and sidebar in
the Visualforce page. This is a way to optimize the page to load faster on a mobile device.

Data Binding with Mobile Templates
All Mobile Design Templates in the GitHub repo use static, hard-coded data for illustrative purposes. This helps a new
developer quickly review the overall UI/UX offered by a template and determine if it’s a good starting point for their own
mobile use case or app. However, in order to use a template in an actual mobile app, the HTML5/CSS3 markup has to be
populated with live data from Salesforce. In the case of this sample app, we need to query a list of contact records from Salesforce
and then build out the appropriate page markup. There are several options for a developer to bind these mobile Web templates
to Salesforce data.

• JavaScript Remoting, when the templates are used in a Visualforce page.

• JavaScript wrapper for the REST API (or ForceTK) to perform CRUD access to Salesforce data from a template Visualforce
or Web page.

• Mobile Packs for Backbone, Angular or Knockout, when the templates are used in an app built using one of those MV*
frameworks.

In the interest of keeping things simple, we’ve used JavaScript Remoting in this sample to query the list of contact records.
Before we dive deeper into the data binding code, let’s quickly review how we store the contact pictures in Salesforce. Since
the contact standard object does not have a native picture field, we created a rich text custom field (Contact_Pic__c) and
used it to upload thumbnail images to contact records. You can also upload images as attachments or Chatter files, then use
a combination of formula fields and trigger or API logic to store and display the images.

Next, review how to query and display a dynamic list of contact records using the Picture List View Template.

Using JavaScript Remoting to Query Contact Records
The following markup shows how to use JavaScript Remoting to provide the data binding for the page.

var contactRecs = new Array();
var compiledListViewTempl = _.template($("#listView").html());

$(document).ready(function() {
getAllContacts();

});

34

Data Binding with Mobile TemplatesHTML5 and Hybrid Development

function getAllContacts(){
Visualforce.remoting.Manager.invokeAction(
'{!$RemoteAction.Contacts_Ext.getContactRecs}',
function(records, e) {

showContacts(records);},
{escape:false});

}

function showContacts(records) {
contactRecs.length = 0;
for(var i = 0; i < records.length; i++) {

records[i].Pic = '{!URLFOR($Resource.BlankAvatar)}';
if (typeof records[i].Contact_Pic__c != "undefined"){

records[i].Pic = $(records[i].Contact_Pic__c).attr('src');
}
contactRecs[records[i].Id] = records[i];

}

$('#mainContainer').empty();
$('#mainContainer').append(compiledListViewTempl({contacts : records}));
$(document).trigger('onTemplateReady');

}

The getAllContacts JavaScript method invokes the getContactRecs function on the Contacts_Ext Extension class
via JavaScript Remoting. The method returns a list of contact records that are then processed in the showContacts callback
method. There, we iterate the contact records and assign a default ‘blank avatar’ image to any contact record that doesn’t have
an associated image in the Contact_Pic__c rich text custom field (lines 18-24). Finally, we insert the list of contacts into
the page DOM (lines 2, 27) using the Underscore utility library (more on this later). Note the triggering of the
onTemplateReady custom JavaScript event on line 28. As mentioned earlier, the templates use a minimal amount of JavaScript
(main.min.js) to enable basic user interactivity. The main.min.js script listens for the onTemplateReady event before executing
some initialization logic and you’re therefore required to fire that event once the template markup has been inserted into the
page DOM.

Using Underscore to Generate the Template Markup
The real action in the Visualforce page happens in the Underscore template that generates the dynamic list of contacts using
markup from the Picture List View Template.

<script type="text/html" id='listView'>
<div class="app-wrapper">

<nav class="main-menu">
Accounts
Opportunities

</nav>

<header>
<div class="main-menu-button main-menu-button-left"> </div>

<h1>Contacts</h1>
</header>

<div class="app-content">
<ul id="cList" class="list-view with-swipe left-thumbs right-one-icons">

<% for(var i = 0; i < contacts.length; i++){ %>

<div class="thumbs">
<% if (typeof(contacts[i].Phone) != "undefined") { %>

<a href="tel:<%= contacts[i].Phone %>" class="thumb thumb-1">
<img class="thumb" src=
"{!URLFOR($Resource.Mobile_Design_Templates,
Mobile-Design-Templates-master/common/images/icons/tile-phone.png'

35

Using Underscore to Generate the Template MarkupHTML5 and Hybrid Development

)}"/>

<% } %>

<% if (typeof(contacts[i].Email) != "undefined") {%>
<a href="mailto:<%= contacts[i].Email %>" class="thumb thumb-2">

<img class="thumb" src=
"{!URLFOR($Resource.Mobile_Design_Templates,
'Mobile-Design-Templates-master/common/images/icons/tile-email.png'

)}"/>

<% } %>
<img class="thumb thumb-3" src="<%= contacts[i].Pic %>"/>

</div>
<a href="#/contact/<%= contacts[i].Id %>" class="content">

<h2><%= contacts[i].Name %></h2>
<%= contacts[i].Title %>
<div class="list-view-icons">

</div>

<% } %>

</div>
</div>

</script>

HTML5 and CSS3 markup is used in this template. This is our first glimpse of the Mobile Design Templates in action. Just
copy and paste this markup from the Picture List View Template in GitHub (minus the dynamic binding part), and make a
couple of minor tweaks to the markup to suit your specific use case. For example, removing the gear icon from the header and
updating the menu list (under the <nav class=”main-menu”> section).

As is evident from the above markup, all templates use basic HTML5 with CSS3 styling to generate a mobile-optimized view.
They have no dependency on external frameworks like jQuery Mobile, Twitter Bootstrap, etc. The template markup and CSS
is also very modular and composable. Adding a list item in the Picture List View Template is as simple as adding a tag
with the list-view, swipe-left thumbs, and right-one-icons CSS styles applied to it (line 15). Adding a Quick Action icon
(revealed when the user does a swipe-right on the thumbnail) is simply a matter of applying the thumb CSS style to the
tag (lines 21, 28). And so on. For a more detailed breakdown of the different components of the Picture List View and other
templates, simply scroll down through the interactive home page and see the templates come to life.

Remember also that the templates are not an all-or-nothing monolith. You can and should pick and choose components of a
particular template that fit your specific use case and requirements. Don’t want the contact title to show in your list view? Just
drop the respective markup from the page. Don’t need the Quick Action on-swipe component? Simply drop the entire <div
class=”thumbs”> tag.

Customizing Look and Feel
In addition to being modular and composable, the look and feel of the templates are also completely customizable. Simply
modify app.css to implement your unique styling and UX requirements. Let’s take a look at a very simple example to see this
in action. For example, we wanted to display a red border around the contact image when the user does a swipe-right to reveal
the Quick Action icons. All we have to do is to change the respective style class in app.css.

ul.list-view li.swiped .thumb-3 {
left: 115px;
border:2px solid red;

}

36

Customizing Look and FeelHTML5 and Hybrid Development

https://github.com/developerforce/Mobile-Design-Templates/blob/master/common/css/app.css

And voila, the list view looks a little different. The CSS used in the templates was generated from the cloud, so if you’re more
comfortable in a tool like Compass, you can modify the cloud files instead.

List View Templates
List view templates provide different visual representations for showing a list of standard or custom Salesforce records. The
following views are supported:

• Picture

• Collapsible

• Standard

• Tabbed

• Carousel

• Timeline

Picture

The Picture List View template can be used to display any data that has a picture associated with it (contact, user, product,
etc.). The MyContacts Visualforce page of the Mobile Templates Jumpstarter sample app shows an example of this template
in action.

Note: The template shows a list of contact records as an example. Since the contact standard object does not have a
native picture field, this example assumes that pictures are stored as attachment records or Content/Chatter Files.

This template is composed of a Header and List Elements component.

37

List View TemplatesHTML5 and Hybrid Development

Header

This is a common, shared component used in all of the Mobile Design Templates.

<nav id="main-menu" class="main-menu">
Something
Something
Something

</nav>

<header>
<div id="main-menu-button-left"
class="main-menu-button main-menu-button-left">

</div>
<div id="main-menu-button-right"
class="main-menu-button main-menu-button-right">

</div>
<h1>Contacts</h1>

</header>

The <nav> element should contain all the items to be displayed in the sliding Menu panel (click the menu icon on the right
to see it in action). Icons can be displayed left (main-menu-button-left) or right (main-menu-button-right) aligned
by applying the respective CSS class to the <div> tag. The templates have a small set of basic icons defined for this header
component (Menu, Gear, Left Arrow, Right Arrow). However, developers are free to create their own custom icons and add
them to the header component.

List Elements

Each list element in this template can be added with the following markup.

<ul class="list-view left-thumbs right-one-icons">

<div class="thumbs">

</div>

<h2>Rachel Aarons</h2>
Project Manager
<div class="list-view-icons">

</div>

Adding Quick Action Icons with a Swipe Gesture

An optional feature of this Picture List View template is the ability to display some Quick Action icons when the user swipes
any picture in the list. The user can then perform these quick actions (like emailing or calling the contact) directly from this
view (versus from a drill-down detail view).

This optional functionality can be enabled by adding the with-swipe CSS style to the element, and adding the
appropriate quick action links and icons to the <div class="thumbs"> section.

<ul class="list-view left-thumbs right-one-icons">

<div class="thumbs">

</div>

38

List View TemplatesHTML5 and Hybrid Development

<h2>Rachel Aarons</h2>
Project Manager
<div class="list-view-icons">

</div>

Note: This swipe gesture support is enabled by a small amount of JavaScript. Look for the setupSwipeList
function in main.js for more details.

Collapsible

The Collapsible List View template can be used to display grouped and summarized list data. Users can use an accordion-style
control to collapse and expand each group of data. The sample template shows an example of contact records grouped by
account, but the template can be used for any use case that requires a grouped view of list data.

This template is composed of the following components.

Collapsible Section

Use the following markup to display a collapsible section with a thumbnail image.

<ul class="list-view collapsable left-thumbs right-one-icons">

<div class="thumbs">

</div>
<div class="content">

<h1>Acme Inc</h1>
<div class="list-view-icons">

</div>

</div>

39

List View TemplatesHTML5 and Hybrid Development

List Elements

In order to add list items to a collapsible section, add the following markup to the parent tag.

<ul class="list-view right-one-icons">

<div class="content">
<h2>John Broker</h2>
Retail Sales
<div class="list-view-icons">

</div>

</div>

<div class="content">
<h2>Allison Amin</h2>
Executive Assistant
<div class="list-view-icons">

</div>

</div>

Note: The accordion control uses a small amount of JavaScript. Look for the setupCollapsableMenus function
in main.js for more details.

Standard

The Standard List View template shows a simple list of data. Each list element can display one or more lines of data, depending
on the specific use case. This template is composed of the following components.

List Elements

Each list element (with the right arrow indicating a clickable item) can be added via the following markup.

<ul class="list-view right-one-icons">

<h2>Acme 1,200 Widgets</h2>
<div class="list-view-icons">

</div>

40

List View TemplatesHTML5 and Hybrid Development

<h2>100 Servers</h2>
<div class="list-view-icons">

</div>

Add additional markup to the element to display additional information for each list element. For example, the following
markup adds the opportunity amount and stage to the list view.

<h2>Acme 1,200 Widgets</h2>

<p>
$24,000

Value Proposition

</p>
<div class="list-view-icons">

</div>

Tabbed

The Tabbed List View template shows list data organized under two or more tabs. Users can quickly navigate across the
different tabs by clicking them. For example, this template can be used to show a list of open and closed cases in a single list
view.

In addition to the common Header component, this template is composed of the following components.

Tab

The following markup adds tabs to the view.

<div id="tabbed-list-view-nav" class="tabbed-list-view-nav">
Red Fish
Blue Fish

41

List View TemplatesHTML5 and Hybrid Development

<div id="tabbed-list-view-nav-arrow" class="tabbed-list-view-nav-arrow"> </div>
</div>

Users can navigate across the tabs by clicking them (try it on the right). This interactivity requires a small amount of JavaScript
(see the setupTabbedLists function in main.js for details).

Note: The appropriate CSS style element has to be applied to each <a> tag, depending on the number of tabs to be
displayed (up to a max of four tabs). For example, span-50 should be used when displaying two tabs, span-33
should be used when displaying three tabs, and span-25 should be used when displaying four tabs.

List Elements

In order to add list items to a tab, create an unordered list element (with the tabbed-list-view CSS class), and insert a
list-item element () for each tab you want to create. You can also nest an unordered list within each tab
element to display a list of data corresponding to each respective tab.

<ul id="tabbed-list-view" class="tabbed-list-view">

<ul class="list-view left-thumbs right-one-icons">

<div class="thumbs">

</div><!-- .thumbs -->

<h2>Rachel Aarons</h2>
Project Manager
<div class="list-view-icons">

</div>

<div class="thumbs">

</div><!-- .thumbs -->

<h2>Nathan An</h2>
Public Relations
<div class="list-view-icons">

</div>

Carousel

The Carousel List View template provides a touch-optimized carousel view of images. Users can cycle through the images by
using swipe gestures on their mobile phone. For example, this template can be used to allow users to browse through a set of
products stored in Salesforce. The product images can be stored in Salesforce as either attachment records or Content/Chatter
files.

42

List View TemplatesHTML5 and Hybrid Development

This template uses the open-source SwipeView library to implement the carousel control. In addition to the common Header
component, this template is composed of the following components.

Carousel

Most of the work in this template is done in JavaScript by the SwipeView library. The page markup simply needs a parent
<div> tag to host the carousel control.

<div id="app-content">
<div id="carousel-wrapper"></div>

</div>

The SwipeView library can then be initialized in JavaScript with the set of images (including width and height) to display in
the carousel. Here’s a small JavaScript snippet showing how to initialize the carousel:

<script type="text/javascript">
$(document).ready(function() {

var slides = [
{

img: 'images/placeholders/gallery/pic01.png',
width: 1017,
height: 699,
desc: '<h3>A Product</h3>$341.12'

}
];

carouselObj.init({
container: "#carousel-wrapper",
slides: slides

});
});
</script>

In a real-world app, the images will typically be retrieved from Salesforce using an API call or JavaScript remoting.

Timeline

The Timeline List View template can be used to show a timeline view of data in Salesforce. For example, this template can
be used to show a set of Milestones associated with a Project, shipping status for an order or opportunity stage history. The
ProjectMilestones Visualforce page in the Mobile Templates Jumpstarter sample app shows an example of this template in
action.

43

List View TemplatesHTML5 and Hybrid Development

All time points are added as elements to the following element.

<ul class="list-view list-view-milestones">

In addition to the common Header component, this template is composed of the following components.

Completed

Add the complete CSS style class to the child element to display a completed/past time-point in the timeline.

<li class="complete">
<div class="content">

<div class="date"07/13/2013</div>
<div class="objective">Milestone Objective Text</div>

</div>

As shown above, the date and objective CSS classes can be used to display the date and text associated with the time-point.

Current

Add the current CSS style class to the child element to display the current time-point.

<li class="current">
<div class="content">

<div class="date"07/13/2013</div>
<div class="objective">Milestone Objective Text</div>

</div>

Future

Add the future CSS style class to the child element to display future time-points.

<li class="future">
<div class="content">

<div class="date">07/13/2013</div>
<div class="objective">Milestone Objective Text</div>

</div>

44

List View TemplatesHTML5 and Hybrid Development

Detail View Templates
Detail view templates provide various read-only views of a standard or custom data record. Typically, users will navigate to
one of these detail views by clicking a record in a list view. There are three detail view templates provided.

Detail View 1

In addition to the common Header component, this template is composed of the following components.

Banner Section

This component should be used to display the most important information related to the record. For example, it shows the
icon and name associated with an account record. It’s assumed the Icon is stored as an attachment related to the account record.

<div class="detail-view-header left-thumb">
<div class="content">

<h1>Acme</h1>

</div>
</div>

Quick Action Menu

This optional component provides a limited set of Quick Actions that a user can perform on a specific record type. The specific
set of Quick Actions depend on the sObject and mobile use case and is therefore left to the developer. For example, since this
template shows an account record, it includes Quick Action icons for taking a note and showing the account address on the
mobile map application (a common mobile use case for account data).

Quick Action links can be added to the banner section with the following markup.

<div class="detail-view-header left-thumb with-action-panel">
<div class="content">

<h1>Acme</h1>
<div class="detail-view-action-panel">

</div>
</div>

</div>

45

Detail View TemplatesHTML5 and Hybrid Development

By default, clicking any Quick Action icon shows a simple modal dialog box. (Click any of the icons on the right for an
example.) Developers should customize the actual action that occurs with each Quick Action, depending on the specific mobile
app and use case.

Chatter Publisher Actions are a perfect complement to this concept of Quick Actions. You can define an object-specific or
Global Publisher Action in Salesforce (for example, quick create of an opportunity record), and then invoke that Publisher
Action via the Salesforce REST API when a user clicks the corresponding Quick Action on the detail view.

Data Section

This component can be used to display selected fields from its respective sObject. For example, the following markup shows
the Billing Address for an account record.

<section class="border-bottom">
<div class="content">

<h3>Billing Address</h3>
<p>

1 Main Street

San Francisco, CA 94105

USA

</p>
</div>

</section>

Summary Section

This component can be used to display important roll-up summary data from one or more related child objects. For example,
it shows the total number of open cases related to an account. A summary section can be made clickable via an <a> link and
developers can navigate users to a list of related child records (using one of the list view templates) on click.

<ul class="list-view right-one-icons large-padding">

<h3>Cases</h3>
<h1 class="inline">12</h1> open cases
<div class="list-view-icons">

</div>

Related List Section

This component can be used to display related child records. For example, it shows a list of contact records related to an
account.

<section class="border-top">
<div class="content">

<h3>Key Contacts</h3>
<p>

John Stamos

IT Man

</p>
<p class="no-bottom-padding">

Jennifer Lopez

Diva

</p>
</div>

</section>

46

Detail View TemplatesHTML5 and Hybrid Development

http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#CSHID=resources_sobject_quickactions.htm%7CStartTopic=Content%2Fresources_sobject_quickactions.htm%7CSkinName=webhelp
http://www.salesforce.com/us/developer/docs/api_rest/index_Left.htm#CSHID=resources_sobject_quickactions.htm%7CStartTopic=Content%2Fresources_sobject_quickactions.htm%7CSkinName=webhelp

Each related child record can be made clickable via a <a> link and the user can be directed to the respective detail view for
that child record on click.

Action Buttons

This component can be used to display one or more action buttons (like Edit, Delete, etc.).

<section class="data-capture-buttons one-buttons">
<div class="content">

edit
</div>

</section>

Similarly, the two-buttons style can be used to display two buttons in this section.

Detail View 2

In addition to the common Header component, this template is composed of the following components.

Banner Section

Similar to the Banner Section in Detail View 1, this component is used to display the most important information related to
the record. For example, this template shows the opportunity name and account associated with an opportunity record.

Quick Action Menu

Similar to the Quick Action panel in Detail View 1, this component allows a limited set of Quick Actions that a user is likely
to perform from a mobile device. For example, since this template shows an opportunity record, it includes Quick Action icons
for taking a note, updating opportunity stage, and marking an opportunity as Closed Won or Closed Lost.

Data Section

Similar to the Data Section in Detail View 1, this component is used to display the selected fields from the respective sObject.
For example, this template shows the opportunity name and account associated with an opportunity record.

<section class="opportunity-overview">
<div class="content">

<h1>$34,100</h1>
Close date 07/11/2013

</div>
</section>

47

Detail View TemplatesHTML5 and Hybrid Development

Additionally, this template also includes two unique visual elements for displaying a picklist field that implies a progression
(such as opportunity stage) and a percentage field (probability). These elements can be used in any detail view that displays
those two field types.

<section>
<div class="content">

<div class="progress-dotted" data-completed="4/10">
<div class="progress-dotted-label">Some Milestone</div>
</div>

<div class="progress-bar" data-completed="27"> </div>
<h1 class="inline">27%</h1> probability

</div>
</section>

The template uses some JavaScript and the data-completed attribute to display the progression and percentage values.

Related List Section

Similar to the Related List Section in Detail View 1, this component can be used to display related child records. For example,
this template shows the activity history for the opportunity record.

Each related child record can be made clickable via a <a> link and the user can be directed to the respective detail view for
that child record on click

Action Buttons

Similar to the action buttons in Detail View 1, this component can be used to display one or more action buttons (like Edit,
Delete, etc.).

Detail View 3

In addition to the common Header component, this template is composed of the following components.

Banner Section

Similar to the banner section in Detail View 1, this component is used to display the most important information related to
the record. For example, this template shows the order number and status associated with a custom order record.

<div class="detail-view-header with-action-panel">
<div class="content">

<h1>#310129123</h1>
<div class="status status-red"> Processing</div>

48

Detail View TemplatesHTML5 and Hybrid Development

</div>
</div>

Quick Action Menu

Similar to the Quick Action panel in Detail View 1, this component allows a limited set of Quick Actions that a user is likely
to perform from a mobile device. For example, since this template shows an order record, it includes Quick Action icons for
showing the order status history (which can be implemented using the Timeline List View), canceling an order, and contacting
support.

Data Section

Similar to the Data Section in Detail View 1, this component is used to display selected fields from the respective sObject.
For example, this template shows the order amount and delivery date associated with the order record, the account name, and
billing address.

Related List Section

Similar to the Related List Section in Detail View 1, this component can be used to display related child records. For example,
it shows the products related to the order record.

Action Buttons

Similar to the Action Buttons in Detail View 1, this component can be used to display one or more action buttons (like Edit,
Delete, etc.).

Data Input Templates
Data input templates use basic HTML5 form elements to capture user input from a phone. The different form elements
included in these templates (phone, date, number, text, etc.) can be used in any mobile app that requires users to add or update
Salesforce data.

Standard Data Template

The Standard Data Input template includes all the basic HTML5 form elements to capture user input. The InspectionReport
Visualforce page of the Mobile Templates Jumpstarter sample app shows an example of this template in action.

In addition to the common Header component, this template is composed of the following components.

49

Data Input TemplatesHTML5 and Hybrid Development

Text

Add the following markup to accept text input.

<section class="border-bottom">
<div class="content">

<h3>Hotel Name</h3>
<div class="form-control-group">

<div class="form-control form-control-text">
<input type="text" name="text">

</div>
</div>

</div>
</section>

Date

Add the following markup to accept date input.

<section class="border-bottom">
<div class="content">

<h3>Inspection Date</h3>
<div class="form-control-group">

<div class="form-control form-control-date">
<input type="date" name="date">

</div>
</div>

50

Data Input TemplatesHTML5 and Hybrid Development

</div>
</section>

Toggle

Add the following markup to accept a toggle (checkbox) input. Use the data-on-label and data-off-label attributes
to control the text that appears for the on/off positions of the toggle.

<section class="border-bottom">
<div class="content">

<h3>Passed</h3>
<div class="form-control-group">

<div class="form-control form-control-toggle" data-on-label="yes"
data-off-label="no">

<input type="checkbox" name="toggle">
</div>

</div>
</div>

</section>

Textarea

Add the following markup to accept long textarea input.

<section class="border-bottom">
<div class="content">

51

Data Input TemplatesHTML5 and Hybrid Development

<h3>Remarks</h3>
<div class="form-control-group">

<div class="form-control form-control-textarea">
<textarea></textarea>

</div>
</div>

</div>
</section>

Multi-select

Add the following markup to accept a multi-select picklist value.

<section class="border-bottom">
<div class="content">

<h3>Room Types</h3>
<div class="span-50 form-control-group">

<div class="form-control form-control-checkbox">
<input type="checkbox"><label>Single</label>

</div>
<div class="form-control form-control-checkbox">

<input type="checkbox"><label>Double</label>
</div>

</div>
<div class="span-50 form-control-group">

<div class="form-control form-control-checkbox">
<input type="checkbox"><label>Suite</label>

</div>
</div>

</div>
</section>

52

Data Input TemplatesHTML5 and Hybrid Development

Picklist/Select

Add the following markup to accept a picklist value.

<section class="border-bottom">
<div class="content">

<h3>Hotel Type</h3>
<div class="form-control-group">

<div class="form-control form-control-select">
<select>

<option>Owner Operated</option>
<option>Co-op</option>
<option>Pure Anarchy</option>

</select>
</div>

</div>
</div>

</section>

Number

Add the following markup to accept a number value.

<section >
<div class="content">

<h3>Number of Rooms</h3>
<div class="form-control-group">

<div class="form-control form-control-number">

53

Data Input TemplatesHTML5 and Hybrid Development

<input type="number" >
</div>

</div>
</div>

</section>

Action Buttons

Add the following markup to display one or more action buttons (like Submit, Edit, Delete, etc.).

<section class="data-capture-buttons one-buttons">
<div class="content">

submit
</div>

</section>

Similarly, the two-buttons style can be used to display two buttons in this section.

Survey Data Template

The Survey Data Input template provides a sample design for capturing simple survey responses from a mobile device. The
Take_Survey Visualforce page of the Mobile Templates Jumpstarter sample app shows an example of this template in action.

All the form elements used in this template are common to the previous Standard Data Input template, except for the following
two components.

54

Data Input TemplatesHTML5 and Hybrid Development

Toggle

Similar to the toggle control used in the Standard Data Input template, the following markup allows users to provide yes/no
type binary input:

<section>
<div class="content">

<form>
<div class="form-header-survey">Question 1<span

class="color-menu-blue">/4</div>
<p>Morbi id urna in diam dignissim feugiat?</p>
<div class="form-control-group">

<div class="form-control form-control-radio form-control-radio-thumbs
span-50">

<input type="radio" name="name" value="yes"><label class="thumbs
thumbs-up"> </label>

</div>
<div class="form-control form-control-radio form-control-radio-thumbs

span-50">
<input type="radio" name="name" value="no"><label class="thumbs

thumbs-down"> </label>
</div>

</div>
</form>

</div>
</section>

Navigation Buttons

55

Data Input TemplatesHTML5 and Hybrid Development

The Previous and Next navigation buttons provide an alternative styling to the action buttons used in the Standard Data Input
template.

<section class="form-navigation-buttons">
<div class="content">

previous
next

</div>
</section>

In addition to the Previous and Next navigation buttons, a finish style class can be used to display a Finish button in the
Survey template.

Map View Templates
Map view templates provide Google Map-based designs for implementing the common ‘Find Nearby’ functionality on a
mobile device. These templates can be combined with the Geolocation custom field in Salesforce and its corresponding
SOQL companion to add geolocation functionality to any Web or hybrid mobile app.

Map View 1

This template displays a list of data records (contacts in this example) on the top half of the page, and the location of any
selected data record on the bottom half of the page. Developers can use the HTML5 geolocation feature and a SOQL distance
query to find nearby data to display on the top half of the page. When a user selects any record from the list, the corresponding
latitude and longitude coordinates are displayed in the Google Map on the bottom half of the page. A user can also click the
selected address in the Google Map to launch the native Map application (iOS or Android) on the device.

In addition to the common Header component, this template is composed of the following components.

List

The list section displays the data set that is typically queried from Salesforce.

<ul class="list-view left-thumbs right-one-icons">

<div class="thumbs">

</div>

56

Map View TemplatesHTML5 and Hybrid Development

<h2>Rachel Aarons</h2>
Project Manager
<div class="list-view-icons">

</div>

Map

Clicking any record in the list section shows a marker on the Google Map for the corresponding latitude and longitude
coordinates.

<div id="map-canvas-wrapper" class="map-canvas-wrapper map-canvas-wrapper-list-view">
</div>

This Google Map interaction is implemented in the main.js script file. Some minor JavaScript initialization code is required
in order to pass the latitude and longitude coordinates for each of the records displayed in the list section to the mapObj object
in main.js.

var markers = [
{

id: 0,
lat: 47.604789,
lng: -122.335682,
contentString: "<div class='infowindow-container'><p

class='span-50'>Address
555 Madison Ave
Seattle,
WA
98105</p><p class='span-50'>Phone
555.123.4321</p></div>"

}];

mapObj.init({
view: "listView",
markers: markers

});

Note the maps.apple.com link passed to the contentString variable. If viewed on an iPhone, this will launch the native
iOS Map application when the user clicks the corresponding address on the Google Map (for directions, etc.). A different
URL can be used to achieve the equivalent functionality on an Android device.

Map View 2

This template provides an alternative implementation for the ‘Find Nearby’ use case. The page shows the current location of
the device on a Google Map (using the HTML5 geolocation feature), as well as a set of nearby data points. As with the
previous template, these nearby data records will typically be retrieved via a SOQL distance query. A user can also click any
marker on the Google Map to launch the native Map application (iOS or Android) on the device.

In addition to the common Header component, this template is composed of the following components.

Map

A simple container <div> tag is required to host the Google Map on the page.

<div id="map-canvas-wrapper"> </div>

57

Map View TemplatesHTML5 and Hybrid Development

This Google Map interaction is implemented in the main.js script file. Some minor JavaScript initialization code is required
in order to pass the latitude and longitude coordinates for each of the records displayed in the list section to the mapObj object
in main.js.

var markers = [
{

id: 0,
lat: 47.604789,
lng: -122.335682,
contentString: "<div class='infowindow-container'><p

class='span-50'>Address
555 Madison Ave
Seattle,
WA
98105</p><p class='span-50'>Phone
555.123.4321</p></div>"

}];

mapObj.init({
view: "listView",
markers: markers

});

Calendar View Templates
Calendar View templates provide mobile optimized views of a user’s Salesforce calendar (tasks and events).

Day Calendar

This template provides a mobile-optimized view of a user’s scheduled tasks and events in Salesforce.

In addition to the common Header component, this template is composed of the following components.

58

Calendar View TemplatesHTML5 and Hybrid Development

Week View

This component displays the current week on the left half of the page. Each scheduled task is displayed as a dark brown dot,
and each event as a light brown dot for any given day of the week.

<div class="span-50 padding-right-gutter-half">
<h1 class="padding-bottom-gutter">My Week</h1>
<ul class="week-planner">

<li data-date="06-20">
<div class="date">06/20</div>
<ul class="week-planner-items">

<li class="event">
<li class="event">
<li class="task">
<li class="task">

</div>

Note the use of the week-planner-items, event, and task style classes in the and tags to display the list of
tasks and events as dots.

Calendar Entries

This component displays the detailed list of tasks and events on the right half of the page when a user selects a particular date
in the week view.

<div class="span-50 padding-left-gutter-half">
<div class="date-content" id="date-content-06-20">

<h1 class="event">Events</h1>
<div class="events">

<h3>Weekly Sales meeting</h3>
<p>

10:00AM - 11:00AM

John Doe

Opportunity #1232213

</p>
</div>
<h1 class="task">Tasks</h1>
<div class="tasks">

<h3>Weekly Sales meeting</h3>
<p>

John Doe

Opportunity #1232213

</p>

59

Calendar View TemplatesHTML5 and Hybrid Development

</div>
</div>

</div>

Note the use of the tasks and events style classes to display the tasks and events in different colors on the page. The <a>
links included in this section can be used to navigate a user to the detail view of the respective task or event record.

The logic to display the correct set of tasks and events to display for a given day is encapsulated in the main.js file.

To-do Tasks

This template provides a mobile optimized view of a user’s scheduled tasks and events in Salesforce.

In addition to the common Header component, this template is composed of the following components.

Tab

Tab is used to group a user's pending tasks by Today, This Week, and This Month.

<div id="tabbed-list-view-nav" class="tabbed-list-view-nav">
Today
This Week
This Month
<div id="tabbed-list-view-nav-arrow" class="tabbed-list-view-nav-arrow"> </div>

</div>

Note: Note that this is the same tab component used in the Tabbed List View template.

Tasks

Tasks displays a list of pending tasks. Each task can be added to the list using the following markup.

<ul class="list-view list-view-tasks">

<div class="content">
<div class="task-complete-checkbox">

<input type="checkbox" name="checkbox" />
</div>
<div class="date">07/14</div>
<h2>Call Mathew</h2>
<p>Matthew Smith</p>

60

Calendar View TemplatesHTML5 and Hybrid Development

<p>Re: System Updates</p>
</div>

Overdue Tasks

To mark a task as overdue, add the overdue style class to the tag.

<li class="overdue">

Completing a Task

This template uses some JavaScript in the main.js file to achieve the strikeout effect when a user clicks the checkbox to complete
a task.

Report and Dashboard Templates
Dashboard templates provide mobile optimized report views of Salesforce data. These templates are developed using the
open-source D3 charting library and developers can combine them with the Salesforce Analytics API to add reporting
capabilities to their mobile apps. The InventoryReport Visualforce page of the Mobile Templates Jumpstarter sample app
shows an example of using these templates to display mobile optimized reports.

Gauge

The Gauge template uses the D3 Gauge Chart to provide a gauge view of a Salesforce report.

<section>
<div class="content">

<div id="graph" class="graph"></div>
</div>

</section>

The Gauge chart is currently initialized with some hard-coded data:

$(document).ready(function() {
reportObj.init({

graphType: "gauge",
width: 300,
gauge: {

61

Report and Dashboard TemplatesHTML5 and Hybrid Development

max: 5000,
value: 1202

}
});

});

You should replace this hard-coded data with live Salesforce reporting data using a call to the Analytics API. You can also
peruse the main.js script for the JavaScript logic used to render the D3 Gauge chart.

Donut

The Donut template uses the D3 Donut Chart to provide a distribution view of Salesforce data.

<section>
<div class="content">

<div id="graph" class="graph"></div>
</div>

</section>

The donut chart is currently initialized with some hard-coded JSON data.

$(document).ready(function() {
reportObj.init({

graphType: "donut",
jsonURL: "json/survey.json"

});
});

Replace this hard-coded data with live Salesforce reporting data via a call to the Analytics API. Developers can also peruse
the main.js script for the JavaScript logic used to render the D3 Donut chart.

62

Report and Dashboard TemplatesHTML5 and Hybrid Development

Bar Chart

The Bar Chart template is based on the D3 Bar Chart.

<section>
<div class="content">

<div id="graph" class="graph"></div>
</div>

</section>

The bar chart is currently initialized with some hard-coded JSON data.

$(document).ready(function() {
reportObj.init({

graphType: "bar",
jsonURL: "json/produts.json",
axis : {

xAxisIndex: "name",
yAxisIndex: "inventory"

}
});

});

Replace this hard-coded-data with live Salesforce reporting data via a call to the Analytics API. You can also peruse the
main.js script for the JavaScript logic used to render the D3 Bar Chart.

63

Report and Dashboard TemplatesHTML5 and Hybrid Development

Line Chart

The Line Chart template is based on the D3 Line Chart.

<section>
<div class="content">

<div id="graph" class="graph"></div>
</div>

</section>

The line chart is currently initialized with some hard-coded JSON data.

$(document).ready(function() {
reportObj.init({

graphType: "line",
jsonURL: "json/sales.json",
line: {

periods : [10, 30]
},
axis: {

xAxisIndex: "date",
yAxisIndex: "total"

}
});

});

Replace this hard-coded data with live Salesforce reporting data via a call to the Analytics API. Developers can also peruse
the main.js script for the JavaScript logic used to render the D3 Line Chart.

Miscellaneous Templates
This category of templates provides simple designs for functionality common to most mobile apps. Developers can take these
templates as a starting point to add a settings, splash or about screen to their mobile app.

64

Miscellaneous TemplatesHTML5 and Hybrid Development

Settings Screen

Use this template to allow a user to view and update the settings associated with your mobile app.

<div class="list-view-header">Screen Security</div>
<section>

<div class="content">
<div class="span-66 settings settings-left">

<h3>Screen Lock</h3>
</div>
<div class="span-33 settings settings-right">

<div class="form-control-group">
<div class="form-control form-control-toggle" data-on-label="on"

data-off-label="off">
<input type="checkbox" name="toggle">

</div>
</div>

</div>
</div>

</section>

Note: The form elements used in this template are the same as those in the Standard Data Input template.

Splash Screen

65

Miscellaneous TemplatesHTML5 and Hybrid Development

Use this template to show an initial custom, branded splash screen when a user first launches the mobile app.

<div class="splash-screen-wrapper">
<div class="content">

<div class="logo">

</div>
<div class="tagline">

Acme Inc Mobile App
</div>

</div>
</div>

About Screen

Use this template to show an about screen with credits for the mobile app.

<div class="detail-view-header detail-view-header-about">
<div class="content">

<div class="version">App Version 2.13</div>

<div class="description">Some Description</div>
</div>

</div>

<ul class="list-view right-one-icons padding-top-gutter">

<h2>Rate this App</h2>
<div class="list-view-icons">

</div>

Mobile Packs
Salesforce Mobile Packs let you build web and hybrid apps that integrate with the Salesforce1 Platform using industry-standard
web technologies like HTML5, CSS3 and JavaScript. The number of supported Mobile Packs is continually growing. The
following are currently available:

• JavaScript/HTML5 coding frameworks:

66

Mobile PacksHTML5 and Hybrid Development

Backbone.js is a JavaScript framework that provides models with key-value binding and custom events, collections with
a rich API of enumerable functions, and views with declarative event handling.

◊

◊ Google's AngularJS lets you reap the benefits of a Model-View-Control architecture in your JavaScript code and utilize
advanced features like reusable components and dependency injection.

◊ jQuery Mobile is a touch-optimized web framework that lets you develop mobile web applications using HTML5,
JavaScript and CSS3 for a wide variety of smart phones and tablet computers.

◊ Knockout adds dependency tracking that refreshes your UI whenever your data changes and lets you create new reusable
custom behaviors and responsive designs.

◊ Sencha leverages HTML5 components with built-in state management and fluid animations to display customer data
in visually dynamic ways.

• Powerful cross-platform build and development utilities:

◊ Appery.io helps you build apps using a cloud-based, visual drag-and-drop editor that easily connects to any Salesforce
APIs. Includes Contacts and OAuth sample apps that you can reuse.

◊ Codiqa helps you rapidly prototype mobile apps that connect to Salesforce using pure HTML5. Leverage open-source
HTML5 components to go from idea to deployment and use Salesforce Mobile Services to securely connect to trusted
cloud data.

◊ Xamarin accesses Salesforce1 Platform features like security and identity, and uses declarative bindings to invoke
third-party Java, Objective-C, and C++ libraries and call them directly from C#. Can be used to create a bridge between
.NET apps and Salesforce.

For the most current information on mobile packs, see http://www2.developerforce.com/mobile/services/mobile-packs.

jQuery Quick Start
jQuery Mobile is a touch-optimized Web framework that lets you develop mobile Web applications using HTML5, JavaScript,
and CSS3 for a wide variety of smart phones and tablet computers. In this quick-start tutorial, you’ll learn how to combine
jQuery Mobile with the Salesforce Web framework, Visualforce, natively on Force.com.

This quick start creates a contact management app that provides basic CRUD access to the contact standard object. Using
this app, users can view, update, add, and delete contact records from any mobile device with a modern browser. Here’s the
completed application.

67

jQuery Quick StartHTML5 and Hybrid Development

http://www2.developerforce.com/mobile/services/mobile-packs

Install the jQuery Mobile Pack

To install the Mobile Pack for jQuery Mobile into your DE Org:

1. Log into your DE org.
2. Paste this install URL into the address bar (or click the link) to start installing the package:

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000JEkf
3. Follow the package installation instructions.

What’s In the Mobile Pack?

• MobileSample_jQueryMobile.page / jQuery Moble Tab—This Visualforce page forms the heart of the application and
contains both the list view and the update/add/delete view shown above. You can navigate to your page by manually
redirecting in the URL or by using the included jQuery Mobile tab.

• MobileSample_Resources_jQueryMobile (Static Resource zipfile)—This package contains all the CSS files, images,
and JS libraries used in the quick start.

• RemoteTK VF component, Apex class, test class—Unlike the other mobile packs, this mobile pack uses RemoteTK
which provides an abstraction very similar to the REST API, implemented via @RemoteAction methods in the controller.
However, it doesn’t consume any API calls. Check out the Force.com JavaScript REST Toolkit README to learn more
about how the custom component works.

Test the App

1. Navigate to the MobileSample_jQueryMobile Visualforce page by appending the page name to the end of your instance
URL—https://login.salesforce.com/apex/MobileSample_jQueryMobile.

2. You should see the application working.
3. Test the page from a mobile device (after logging in with your Salesforce credentials).
4. To modify the page or view the code, in Setup, click Develop > Pages.

Next Steps

• The source files and latest updates are on Github—https://github.com/developerforce/MobilePack-jQueryMobile

• Salesforce Mobile Packs are evolving quickly, so you’ll want to check back frequently for the latest enhancements and
sample apps: http://www2.developerforce.com/en/mobile/getting-started/html5/#jquery

Angular.js Quick Start
Angular.js is a JavaScript framework that dramatically improves the Web app authoring experience. This sample app uses
Angular.js to create a cross-platform Web app to access your Salesforce data using the REST API. It also uses Twitter Bootstrap
responsive design, all while running inside a Visualforce page. Here’s the completed application.

68

Angular.js Quick StartHTML5 and Hybrid Development

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000JEkf
http://www2.developerforce.com/en/mobile/getting-started/html5/#jquery

Install the Mobile Pack

To install the Mobile Pack into your DE Org:

1. Log into your DE org.
2. Paste this install URL into the address bar (or click the link) to start installing the package:

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Vc60
3. Follow the package installation instructions.

What’s In the Mobile Pack?

• MobileSample_ngIndex.page—This Visualforce page is the starting point for the sample app. The sample app has a total
of six Visualforce pages with functionality pertaining to viewing the list of contacts, adding a contact, and
viewing/editing/deleting an individual contact.

• MobileSample_Resources_Angular (Static Resource zipfile)—This package contains all the CSS files, images, and
JavaScript libraries used in the quick start. The application uses angular-force.js to serve dynamic content through two-way
data-binding that allows for the automatic synchronization of models and views.

Test the App

1. Navigate to the MobileSample_Angular Visualforce page by appending the page name to the end of your instance
URL - https://login.salesforce.com/apex/MobileSample_Angular.

2. You should see the application working.
3. Test the page from a mobile device (after logging in with your Salesforce credentials).
4. To modify the page or view the code, in Setup, click Develop > Pages.

Next Steps

• The source files and latest updates are on Github—https://github.com/developerforce/MobilePack-AngularJS

• Salesforce Mobile Packs are evolving quickly, so you’ll want to check back frequently for the latest enhancements and
sample apps: https://github.com/developerforce/MobilePack-AngularJS

69

Angular.js Quick StartHTML5 and Hybrid Development

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Vc60
https://github.com/developerforce/MobilePack-AngularJS
https://github.com/developerforce/MobilePack-AngularJS

Backbone.js Quick Start
Backbone.js provides a structure for JavaScript-heavy applications by providing models with key-value binding and custom
events, collections with a rich API of enumerable functions, and views with declarative event handling, while connecting it
all to your existing application over a RESTful JSON interface. In this quick start tutorial, you’ll learn how to combine
Backbone.js with the Salesforce Web framework, Visualforce, natively on Force.com.

This quick start creates a contact management app that provides basic CRUD access to the contact standard object. Using
this app, users can view, update, add, and delete contact records from any mobile device with a modern browser. Here’s the
completed application.

Install the Mobile Pack

To install the Mobile Pack into your DE Org:

1. Log into your DE org.
2. Paste this install URL into the address bar (or click the link) to start installing the package:

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000W78j
3. Follow the package installation instructions.

What’s In the Mobile Pack?

• MobileSample_Backbone.page—This Visualforce page forms the heart of the application and contains both the list view
and the update/add/delete view shown above.

• MobileSample_Resources_Backbone (Static Resource zipfile)—This package contains all the CSS files, images and JS
libraries used in the quick start. The application uses backbone.js for the MVC logic, and forcetk.js (a JavaScript wrapper
for the Force.com REST API) to grab the data from Salesforce. It also uses uses jQuery Mobile 1.3.0 and jQuery 1.9.1
for the front-end UI.

Test the App

1. Navigate to the MobileSample_Backbone Visualforce page by appending the page name to the end of your instance
URL - https://login.salesforce.com/apex/MobileSample_ngIndex.Backbone

2. You should see the application working.
3. Test the page from a mobile device (after logging in with your Salesforce credentials).

70

Backbone.js Quick StartHTML5 and Hybrid Development

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000W78j

4. To modify the page or view the code, in Setup, click Develop > Pages.

Next Steps

• The source files and latest updates are on Github—https://github.com/developerforce/MobilePack-BackboneJS

• Salesforce Mobile Packs are evolving quickly, so you’ll want to check back frequently for the latest enhancements and
sample apps: http://www2.developerforce.com/en/mobile/getting-started/html5/#backbone

Knockout Quick Start
Knockout is a JavaScript framework that dramatically improves the Web app authoring experience. This quick start creates a
contact management app that provides basic CRUD access to the contact standard object. Using this app, users can view,
update, add, and delete contact records from any mobile device with a modern browser. This sample app uses Knockout and
Twitter Bootstrap responsive design. Here’s the completed application.

Install the Mobile Pack

To install the Mobile Pack into your DE Org:

1. Log into your DE org.
2. Paste this install URL into the address bar (or click the link) to start installing the package:

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Vrcj
3. Follow the package installation instructions.

What’s In the Mobile Pack?

• MobileSample_koIndex.page—This Visualforce page is the starting point for the sample app. The app has a total of six
Visualforce pages with functionality pertaining to viewing the list of contacts, adding a contact, and viewing/editing/deleting
an individual contact.

• MobileSample_Resources_Knockout (Static Resource zipfile)—This package contains all the CSS files, images, and
JS libraries used in the quick start. The application uses knockout-force.js to serve dynamic content through two-way
data-binding that allows for the automatic synchronization of models and views. It also uses uses jQuery Mobile 1.3.0 and
jQuery 1.9.1 for the front-end UI.

71

Knockout Quick StartHTML5 and Hybrid Development

https://github.com/developerforce/MobilePack-BackboneJS
http://www2.developerforce.com/en/mobile/getting-started/html5/#backbone
https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Vrcj

Test the App

1. Navigate to the MobileSample_koIndex Visualforce page by appending the page name to the end of your instance
URL - https://login.salesforce.com/apex/MobileSample_koIndex

2. You should see the application working.
3. Test the page from a mobile device (after logging in with your Salesforce credentials).
4. To modify the page or view the code, in Setup, click Develop > Pages.

Next Steps

• The source files and latest updates are on Github—https://github.com/developerforce/MobilePack-KnockoutJS

• Salesforce Mobile Packs are evolving quickly, so you’ll want to check back frequently for the latest enhancements and
sample apps: http://www2.developerforce.com/en/mobile/getting-started/html5/#knockout

Mobile UI Elements
Mobile apps should be small, fun, and engaging. Mobile app developers should spend their time creating innovative functionality,
rather than re-creating yet another list view or detail page bound to a set of APIs. With Salesforce Mobile UI Elements,
HTML and JavaScript developers can build amazing apps with technologies they already know—using a set of pre-built
components that are flexible and surprisingly easy to learn.

You can deploy a Mobile UI Elements app several ways.

• In a Visualforce page

• Hosted as a multi-dimensional publisher (MDP) action

• As a stand-alone app, using the hybrid container provided by Salesforce Mobile SDK

Mobile UI Elements is an open-source framework based on Google’s Polymer framework. It provides fundamental building
blocks that you can combine to create fairly complex mobile apps. The component library enables any HTML developer to
quickly and easily build mobile applications without having to dig into complex mobile frameworks and design patterns.

You can find the source code for Mobile UI Elements on Github at http://bit.ly/mobile-ui-elements.

Available UI Elements
force-ui-app

A top-level UI element that provides the basic styling and structure to the application. This element also brings in all
the common JavaScript libraries required for other UI elements. This element is also responsible for managing the session
ID, via accesstoken attribute, for all the API calls. Supported attributes include:

• accesstoken

• instanceurl

• multipage

• startpage

• hideheader

For example, to use force-ui-app inside Visualforce:

<force-ui-app accesstoken="{!$Api.Session_ID}"></force-ui-app>

72

Mobile UI ElementsHTML5 and Hybrid Development

https://github.com/developerforce/MobilePack-KnockoutJS
http://www2.developerforce.com/en/mobile/getting-started/html5/#knockout
https://github.com/ForceDotComLabs/mobile-ui-elements

force-ui-list

Enables rendering of a list of records for any standard object. You configure this element’s attributes to show a specific
set of records. Supported attributes include:

• sobject

• query

• querytype

This element is intended to be a child of the force-ui-app element. For example:

<force-ui-app accesstoken="{!$Api.Session_ID}">
<force-ui-list sobject="Account" querytype="mru"></force-ui-list>

</force-ui-app>

73

Mobile UI ElementsHTML5 and Hybrid Development

force-ui-detail

Provides a quick and easy way to render a full view of a Salesforce record. This element auto-detects the record's relevant
page layout and renders the details appropriately. The element can be configured by using the various attributes, such
as sobject, recordid etc, to render layout of a particular record. This element should always be a child of
force-ui-app element. Supported attributes include:

• sobject

• recordid

• hasrecordtypes

• recordtypeid

For example:

<force-ui-app accesstoken="{!$Api.Session_ID}">
<force-ui-detail sobject="Account" recordid="001000000000AAA"></force-ui-detail>

</force-ui-app

74

Mobile UI ElementsHTML5 and Hybrid Development

Third-Party Code
The Mobile UI Elements library makes use of these third-party components:

• Polymer, a JavaScript library for adding new extensions and features to modern HTML5 browsers. It's built on Web
Components and is designed to leverage the evolving Web platform on modern browsers.

• jQuery, the JavaScript library that makes it easy to write JavaScript.
• Backbone.js, a JavaScript library providing the model–view–presenter (MVP) application design paradigm.
• Underscore.js, a “utility belt” library for JavaScript.
• Ratchet, prototype iPhone apps with simple HTML, CSS, and JavaScript components.

Using the Camera in HTML5: Mobile UI Elements Sample App
The Mobile UI Elements sample application shows how to use the force-ui-app, force-ui-list and force-ui-detail
elements in an Apex page to render a list of account records. From the list, the user can navigate to another page to view the
full details of a selected account. This application also demonstrates how to use an HTML5 <input> element with the
SmartSync API to launch the device camera application, take a picture, and attach it to the account record. You can install
the sample Visualforce page in your Developer Edition org from http://bit.ly/mobile-vf-package.

This simple app performs three basic tasks.

• Loads the necessary stylesheet and libraries:

◊ ratchet.css—For flexible styling.

◊ polymer.min.js—The Polymer framework from Google is the underlying technology for Mobile UI Elements.

◊ mobile-ui-elements.html—The Mobile UI Elements library.

• Defines a Polymer element named mobile-app that comprises two parts:

75

Using the Camera in HTML5: Mobile UI Elements Sample
App

HTML5 and Hybrid Development

http://www.polymer-project.org/
http://jquery.com/
http://backbonejs.org/
http://underscorejs.org/
http://maker.github.io/ratchet
http://bit.ly/mobile-vf-package

A layout template that defines the UI design. This is where the Mobile UI Elements come into play.◊
◊ Defines a Polymer script for the mobile-app element. The script consists of a JSON object with event listeners that

handle navigation to the detail screen and camera input.

• Instantiates a mobile-app instance within the HTML page.

Let’s examine the code for each of these steps. First, there’s a <head> element for the libraries and CSS imports:

<apex:page docType="html-5.0" showHeader="false"
sidebar="false" standardStylesheets="false">

<html>
<head>

<!-- viewport meta tag to set the width of the page as
the width of the device screen -->

<meta name="viewport" content="width=device-width"/>
<!-- Importing the ratchet stylesheet

for styling the app -->
<link rel="stylesheet"

href="{!URLFOR($Resource.MobileUIElements,
'mobile-ui-elements/css/ratchet.css')}"/>

<!-- Importing the polymer javascript library -->
<script src="{!URLFOR($Resource.MobileUIElements,

'dependencies/polymer/polymer.min.js')}"></script>

<!-- Importing all the force.com Mobile UI Elements
using HTML imports -->

<link rel="import"
href="{!URLFOR($Resource.MobileUIElements,
'mobile-ui-elements/mobile-ui-elements.html')}"/>

</head>

This part is very straightforward. Let’s move on to the Polymer element definition.

The mobile-app element definition occurs within the HTML <body> element. Within the <polymer-element> node
lies the definition of the entire application. Defining the application as a custom Polymer element helps you create custom
templates and also allows dynamic data binding between different elements.

<body>
<polymer-element name="mobile-app">

<template>
<force-ui-app id="force_ui_app" multipage="true"

accesstoken="{!$Api.Session_ID}">
<force-ui-list id="force_ui_list"
sobject="Account" class="page content"
on-polymer-activate="showDetail">

</force-ui-list>
<force-ui-detail id="force_ui_detail"

recordid="{{$.force_ui_list.selected}}"
class="page content">

<div id="attachments"
style="margin:10px"></div>

Attach Photo
<input type="file" on-change="attach"

style="opacity: 0;
position: absolute; top: 0;
left: 0;"/>

</force-ui-detail>

</force-ui-app>
</template>
...

76

Using the Camera in HTML5: Mobile UI Elements Sample
App

HTML5 and Hybrid Development

This template uses three Mobile UI Elements:

force-ui-app

Provides a multipage structure to the application. Also sets up the access token for API calls. Uses the following attributes:

id

The unique ID assigned to this element (in this case, force_ui_app.) This ID allows other elements to reference
this element using the following syntax: $.force_ui_app.

multipage

If true, Polymer distributes each child element to an individual page for full view. Also allows navigation between
these pages.

accesstoken

The token that allows UI elements to call APIs on the user’s behalf. In this case, {!$Api.Session_ID} is the
Visualforce API to get the session token of the current user.

force-ui-list

Embedding the force-ui-list component to render the list of most recently used account records. Uses the following
attributes:

id

The unique ID assigned to this element (in this case, force_ui_list.) This ID allows other elements to reference
this element using the following syntax: $.force_ui_list

sobject

Salesforce object from which records are fetched (in this case, accounts.)

class

Name of class that determines how the app renders this element (in this case, “page”.) This sample uses the following
style classes:
• "page"—Tells force-ui-app to show this list element as a full page view

• "content"—Adds Ratchet styling to allow scrolling on the list

force-ui-detail

Embedding the force-ui-detail component to render the detail of an account record. Uses the following attributes:

id

The unique ID assigned to this element (in this case, force_ui_detail.) This ID allows other elements to
reference this element using the following syntax: $.force_ui_detail

recordid

ID of the account record whose details are displayed (in this case, {{$.force_ui_list.selected}}.) "{{}}"
syntax allows dynamic assignment of values between different elements. In this case, $.force_ui_list.selected
returns the ID of the selected record in the list view. That ID is transparently assigned to the force-ui-detail
element to fetch the full record details.

class

Name of class that determines how the app renders this element (in this case, “page”.) This sample uses the following
style classes:
• "page"—Tells force-ui-app to show this list element as a full page view

77

Using the Camera in HTML5: Mobile UI Elements Sample
App

HTML5 and Hybrid Development

• "content"—Adds Ratchet styling to allow scrolling on the list

Of these three components, force-ui-detail is most interesting because it contains the HTML code that launches the
camera:

<input type="file" on-change="attach" style="opacity: 0;
position: absolute; top: 0; left: 0;"/>

The HTML5 <input> node, when used on a mobile device with the type attribute set to file, searches for a device camera.
If it finds one, it launches the camera application. If no camera is available, it prompts the user to choose an image file instead.
This element also specifies a function named attach as the handler for the <input> node’s on-change event (meaning
that the user has clicked the camera shutter or chosen a file).

The script that defines the mobile-app functionality lives in a script tag in the <body> element. It begins by defining a
Polymer symbol named mobile-app and assigning to that symbol a JSON string that implements the app’s functionality.
There are two methods:

• showDetail(e)—Listener for the on-polymer-activate event of the force-ui-list element.

• attach(e)—Listener for the on-change event of the HTML5 <input> element.

The showDetail() method is responsible for asking Polymer to navigate to the force-ui-detail screen when the user
clicks on an item in the force-ui-list screen. Mobile UI Elements handles the transfer of the selected record ID to the
detail screen transparently, without any need for special coding in the app.

The attach() method responds to the camera click (or the user’s file selection if the user doesn’t take a picture) by posting
the file to the account record on the server. This is handled in the saveFileToSFDC() function. The attach() method
creates a standard FileReader JavaScript object and calls the saveFileToSFDC() function from that object’s onloadend
event listener. To save the file to the Salesforce server, saveFileToSFDC() uses an object of the SmartSync Force.SObject
class.

<script type="text/javascript">
// Defining the new element with name "mobile-app"
// and a JSON object with Javascript methods
// "showDetail" and "attach" that will listen
// to events "polymer-activate" and
// "change" respectively.
Polymer('mobile-app', {
// This method is assigned on force-ui-list
// element as the listener to
// "polymer-activate" event.
// @params:
// e: Event object for the "polymer-activate"
// event.
showDetail: function(e) {

// Check if a record is selected and not
// de-selected. Then use the "navigateTo"
// method on "force-ui-app" element
// (id: force_ui_app) to slide to
// "force-ui-detail" element
// (id: force_ui_detail).
this.$.force_ui_app.navigateTo(

'#force_ui_detail');
},
// This method is assigned on input[type=file]
// element as the listener to "change" event.
// @params:
// e: Event object for the "change" event.
attach: function(e) {

var that = this;

78

Using the Camera in HTML5: Mobile UI Elements Sample
App

HTML5 and Hybrid Development

// Defining the method "saveFileToSFDC" to
// save base64 encoded file contents to
// Salesforce as an attachment to an Account.
// @param:
// blob: base64 encoded string of file
// contents.
var saveFileToSFDC = function(blob) {

// Create an instance of Force.SObject
//provided by Smartsync.
// Smartsync comes packaged as part of
// Mobile UI Elements.
var attachment = new Force.SObject();
// Setting the sobjectType property as
// "Attachment", the API name of Attachment
// sobject.
attachment.sobjectType = 'Attachment';
// Setting the fieldlist property with the
// array of field names that should be saved
// to Salesforce.
attachment.fieldlist =

['ParentId','Name','Body'];
// Setting the values of ParentId, Name and
// Body fields on the sobject.
attachment.set('ParentId',

that.$.force_ui_detail.model.id);
attachment.set('Name', 'camera.png');
attachment.set('Body', blob);
// Saving the attachment record to Salesforce.
attachment.save();

}

// Instanting the FileReader JS API to read the
// contents of image file provided by the user.
var reader = new FileReader();
// Assigning the listener to the "loadend" event on
// FileReader. This event is thrown once the
// contents of the file are fully read into the
// memory.
reader.onloadend = function () {

// Once the file contents are read, the
// reader.result property returns the data url
// of the content with the base64 encoded
// contents. Using the reader.result property to
// add that image to the view.
$(that.$.attachments).append(

'<img style="max-height:200px" src="' +
reader.result + '"/>');

// Now using the saveFileToSFDC method to save
// the base64 string as attachment to
// Salesforce.
saveFileToSFDC(reader.result.split(',')[1]);

}
// Initiate the reading of file contents of the
// selected image. e.srcElement returns the input
// element on which the "change" event was fired.
reader.readAsDataURL(e.srcElement.files[0]);

}
});

</script>
</polymer-element>

After the mobile-app definition is complete, the app instantiates the Polymer object the app by simply adding a mobile-app
node to the end of the body element.

<body>
<!-- Define the Polymer element -->
...

79

Using the Camera in HTML5: Mobile UI Elements Sample
App

HTML5 and Hybrid Development

<!-- Add the newly defined "mobile-app" element to the
page. This triggers polymer to enable the rendering
of the "mobile-app" element based on the definition
above. -->

<mobile-app></mobile-app>
</body>

Doing this triggers Polymer to begin rendering the mobile-app element as HTML.

Delivering HTML5 Content With Visualforce
Traditionally, you use Visualforce to create custom websites for the desktop environment. When combined with HTML5,
however, Visualforce becomes a viable delivery mechanism for mobile web apps. These apps can leverage third-party UI widget
libraries such as Sencha, or templating frameworks such as AngularJS and Backbone.js, that bind to data inside Salesforce.

To set up an HTML5 Apex page, change the docType attribute to “html-5.0”, and use other settings similar to these:

<apex:page docType="html-5.0" sidebar="false" showHeader="false" standardStylesheets="false"
cache="true" >

</apex:page>

This code sets up an Apex page that can contain HTML5 content, but, of course, it produces an empty page. With the use
of static resources and third-party libraries, you can add HTML and JavaScript code to build a fully interactive mobile app.

Accessing Salesforce Data: Controllers vs. APIs
In an HTML5 app, you can access Salesforce data two ways:

• By using JavaScript remoting to invoke your Apex controller

• By accessing the Salesforce API with forcetk.js

Using JavaScript Remoting to Invoke Your Apex Controller
Like apex:actionFunction, JavaScript remoting lets you invoke methods in your Apex controller through JavaScript code
hosted on your Visualforce page.

JavaScript remoting offers several advantages.

• It offers greater flexilibity and better performance than apex:actionFunction.
• It supports parameters and return types in the Apex controller method, with automatic mapping between Apex and

JavaScript types.
• It uses an asynchronous processing model with callbacks.
• Unlike apex:actionFunction, the AJAX request does not include the view state for the Visualforce page. This results

in a faster round trip.

Compared to apex:actionFunction, however, JavaScript remoting requires you to write more code.

The following example inserts JavaScript code in a <script> tag on the Visualforce page. This code calls the invokeAction()
method on the Visualforce remoting manager object. It passes invokeAction() the metadata needed to call a function
named getItemId() on the Apex controller object objName. Because invokeAction() runs asynchronously, the code

80

Delivering HTML5 Content With VisualforceHTML5 and Hybrid Development

http://www.salesforce.com/us/developer/docs/pages/Content/pages_compref_actionFunction.htm
http://www.salesforce.com/us/developer/docs/pages/Content/pages_js_remoting.htm

also defines a callback function to process the value returned from getItemId(). In the Apex controller, the @RemoteAction
annotation exposes the getItemId() function to external JavaScript code.

//Visualforce page code
<script type="text/javascript">

Visualforce.remoting.Manager.invokeAction(
'{!$RemoteAction.MyController.getItemId}',
objName,
function(result, event){

//process response here
},
{escape: true}

);
<script>

//Apex Controller code

@RemoteAction
global static String getItemId(String objectName) { ... }

See this Dreamforce 2012 session for a more detailed comparison between the JavaScript remoting and actionFunction.
See http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm to read
more about @RemoteAction annotations.

Accessing the Salesforce API with ForceTK and JQuery
When you call Salesforce REST APIs from Visualforce, you’re calling to a different domain. This separation violates same-origin
browser policy, which causes the browser to refuse the connection. The ForceTK JavaScript library works around same-origin
policy restrictions by using the AJAX Proxy to give full access to the REST API. Since the AJAX proxy is present on all
Visualforce hosts with an endpoint of the form https://<abc>.na1.visual.force.com/services/proxy, your Visualforce-hosted
JavaScript can invoke it by passing the desired resource URL in an HTTP header.

To use the proxy service:

1. Send your request to https://<domain>/services/proxy, where <domain> is the domain of your current Visualforce
page.

2. Use the following HTTP headers:

SalesforceProxy-Endpoint
URL of the request endpoint

SalesforceProxy-SID
Current user session ID

For tips on accessing this proxy through JavaScript, see AJAX Proxy.

The following code sample uses the jQuery Mobile library for the user interface. To run this code, your Visualforce page must
include jQuery and the ForceTK library. To add these resources:

1. Create an archive file, such as a ZIP file, that contains app.js, forcetk.js, jquery.js, and any other static resources
your project requires.

2. In Salesforce, upload the archive file via Your Name > App Setup > Develop > Static Resources.

After obtaining an instance of the jQuery Mobile library, the sample code creates a ForceTK client object and initializes it
with a session ID. It then calls the asynchronous ForceTK query() method to process a SOQL query. The query callback

81

Accessing Salesforce Data: Controllers vs. APIsHTML5 and Hybrid Development

http://www.youtube.com/watch?feature=player_embedded&v=ckkChgcM9VQ
http://www.salesforce.com/us/developer/docs/apexcode/Content/apex_classes_annotation_RemoteAction.htm
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy
https://abc.na1.visual.force.com/services/proxy
http://www.salesforce.com/us/developer/docs/ajax/Content/sforce_api_ajax_queryresultiterator.htm#ajax_proxy

function uses jQuery Mobile to display the first Name field returned by the query as HTML in an object with ID “accountname.”
At the end of the Apex page, the HTML5 content defines the accountname element as a simple tag.

<apex:page>
<apex:includeScript value="{!URLFOR($Resource.static, 'jquery.js')}" />
<apex:includeScript value="{!URLFOR($Resource.static, 'forcetk.js')}" />
<script type="text/javascript">

// Get a reference to jQuery that we can work with
$j = jQuery.noConflict();

// Get an instance of the REST API client and set the session ID
var client = new forcetk.Client();
client.setSessionToken('{!$Api.Session_ID}');

client.query("SELECT Name FROM Account LIMIT 1", function(response){
$j('#accountname').html(response.records[0].Name);

});
</script>
<p>The first account I see is .</p>
</apex:page>

Note:

• Using the REST API—even from a Visualforce page—consumes API calls.
• SalesforceAPI calls made through a Mobile SDK container or through a Cordova webview do not require proxy

services. Cordova webviews disable same-origin policy, so you can make API calls directly. This exemption applies
to all Mobile SDK hybrid and native apps.

Additional Options
You can use the SmartSync Data Framework in HTML5 apps. Just include the required JavaScript libraries as static resources.
Take advantage of the model and routing features. Offline access is disabled for this use case. See Using SmartSync to Access
Salesforce Objects on page 200.

Salesforce Developer Marketing provides developer mobile packs that can help you get a quick start with HTML5 apps.

Offline Limitations
Read these articles for tips on using HTML5 with Force.com in offline situations.

• http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
• http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

Introduction to Hybrid Development
Hybrid apps combine the ease of HTML5 Web app development with the power and features of the native platform. They
run within the Salesforce Mobile Container, a native layer that translates the app into device-specific code.

Hybrid apps depend on HTML and JavaScript files. These files can be stored on the device or on the server.

• Device—Hybrid apps developed with the forcetk.mobilesdk.js library wrap a Web app inside the Salesforce Mobile
Container. In this scenario, the JavaScript and HTML files are stored on the device.

• Server — Hybrid apps developed using Visualforce technology store their HTML and JavaScript files on the Salesforce
server and are delivered through the Salesforce Mobile Container.

82

Introduction to Hybrid DevelopmentHTML5 and Hybrid Development

http://www2.developerforce.com/mobile/services/mobile-packs
http://blogs.developerforce.com/developer-relations/2011/06/using-html5-offline-with-forcecom.html
http://blogs.developerforce.com/developer-relations/2013/03/using-javascript-with-force-com.html

If you’re creating libraries or sample apps for use by other developers, we recommend posting your public modules in a
version-controlled online repository such as GitHub (https://github.com). For smaller examples such as snippets, GitHub
provides gist, a low-overhead code sharing forum (https://gist.github.com).

iOS Hybrid Development
In order to develop hybrid applications, you’ll need to meet some of the prerequisites for both the iOS native and the vanilla
HTML5 scenarios.

1. Make sure you meet the requirements for HTML5 and Hybrid Development.
2. Follow the installation instructions for iOS.
3. After installing Mobile SDK for iOS, create a new hybrid app as described in Creating an iOS Project. For the apptype

parameter:

• Use -—apptype=”hybrid_local” for a hybrid app with all code in the local project. Put your HTML and JavaScript
files in ${target.dir}/assets/www/.

• Use -—apptype=”hybrid_remote” for a hybrid app with code in a Visualforce app on the server

Android Hybrid Development
To develop hybrid applications, you’ll need to meet some of the prerequisites for both the Android native and the plain
HTML5 scenarios.

1. Make sure you meet the requirements for HTML5 and Hybrid Development.
2. Follow the installation instructions for Android Native.
3. After installing Mobile SDK for Android, create a new hybrid app as described in Creating an Android Project. For the

apptype parameter:

• Use -—apptype=”hybrid_local” for a hybrid app with all code in the local project. Put your HTML and JavaScript
files in ${target.dir}/assets/www/.

• Use -—apptype=”hybrid_remote” for a hybrid app with code in a Visualforce app on the server

JavaScript Files for Hybrid Applications
In Salesforce Mobile SDK 2.0, we’ve refactored some JavaScript files and added new ones to support SmartSync. JavaScript
files reside in the forcedotcom/SalesforceMobileSDK-Shared repository on GitHub.

Refactored JavaScript Files
These files are now collected in the cordova.force.js file.

• SFHybridApp.js

• SalesforceOAuthPlugin.js

• SmartStorePlugin.js

New JavaScript Files
These files are new in Mobile SDK 2.0.

83

iOS Hybrid DevelopmentHTML5 and Hybrid Development

https://github.com/
https://gist.github.com/

DescriptionJavaScript File

Contains plugins for hybrid apps using the Cordova librariescordova.force.js

The SmartSync Data Framework librarySmartSync.js

New External Dependencies
Mobile SDK 2.0 introduces new external dependencies.

DescriptionExternal JavaScript File

Popular HTML utility libraryjquery.js

SmartSync supportunderscore.js

SmartSync supportbackbone.js

Which JavaScript Files Do I Include?
Files that you include depend on the type of hybrid project. For each type described here, include all files in the list.

For basic hybrid apps:

• cordova.js

• cordova.force.js

To make REST API calls from a basic hybrid app:

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

To use SmartSync in a hybrid app:

• jquery.js

• underscore.js

• backbone.js

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

• SmartSync.js

Hybrid Apps Quick Start
Use the following procedure to get started quickly.

1. To develop apps for Android, you need:

• Java JDK 6 or higher—http://www.oracle.com/downloads.
• Apache Ant 1.8 or later—http://ant.apache.org.
• Android SDK Tools, version 21 or later—http://developer.android.com/sdk/installing.html.

Note: For best results, install all previous versions of the Android SDK as well as your target version.

84

Hybrid Apps Quick StartHTML5 and Hybrid Development

http://www.oracle.com/downloads/
http://ant.apache.org
http://developer.android.com/sdk/installing.html

• Eclipse—https://www.eclipse.org. Check the Android Development Tools website for the minimum supported
Eclipse version.

• Android ADT (Android Development Tools) plugin for Eclipse, version 21 or
later—http://developer.android.com/sdk.

• In order to run the application in the Emulator, you need to set up at least one Android Virtual Device (AVD) that
targets Platform 2.2 or above (we recommend 4.0 or above). To learn how to set up an AVD in Eclipse, follow the
instructions at http://developer.android.com/guide/developing/devices/managing-avds.html.

2. To develop apps for iOS, you need:

• Xcode—Version 5.0 is the minimum, but we recommend the latest version.
• iOS 6.0 or higher.
• Mac OS X 10.8 (“Mountain Lion”) or higher.
• A Salesforce Developer Edition organization with a connected app.

3. Install the Mobile SDK.

• Android Installation on page 21
• iOS Installation on page 21

4. Create a Connected App on page 18.

Note: When specifying the Callback URL, there’s no need to use a real address. Use any value that looks like a
URL, such as myapp:///mobilesdk/oauth/done.

5. Create a hybrid app.

• Follow the steps at Creating an Android Project on page 141. Use hybrid_remote for the application type.
• Follow the steps at Creating an iOS Project on page 102. Use hybrid_remote for the application type.

6. Run the Sample App on page 85.

When you’re done with the sample app you can add more functionality.

1. Create a Mobile Page to List Information on page 90
2. Create a Mobile Page for Detailed Information on page 93

Running the Sample Hybrid App
You should now be able to compile and run the sample project, either on the simulator or a physical device. In both environments,
you can select either a connected physical device or a simulator on which to run the app. If you’re using an iOS device, you
must configure a profile as described in the Xcode User Guide at developer.apple.com/library. Similarly, Android devices must
be set up developer.android.com/tools.

Whichever way you run the app, after showing an initial 'splash screen', you should see the Salesforce login screen.

85

Running the Sample Hybrid AppHTML5 and Hybrid Development

https://www.eclipse.org
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/developing/devices/managing-avds.html
http://developer.apple.com/library
http://developer.android.com/tools

Log in with your DE username and password, and you will be prompted to allow your app access to your data in Salesforce.

86

Running the Sample Hybrid AppHTML5 and Hybrid Development

Tap Allow and you should be able to retrieve lists of contacts and accounts from your DE account.

87

Running the Sample Hybrid AppHTML5 and Hybrid Development

Tap to retrieve Contact and Account records from your DE account.

88

Running the Sample Hybrid AppHTML5 and Hybrid Development

Notice the app can also retrieve contacts from the device - something that an equivalent web app would be unable to do. Let's
take a closer look at how the app can do this.

How the Sample App Works
After completing the login process, the sample app displays index.html (located in the www folder). When the page has
completed loading and the mobile framework is ready, the onDeviceReady() function calls regLinkClickHandlers()
(in inline.js). regLinkClickHandlers() sets up five click handlers for the various functions in the sample app.

$j('#link_fetch_device_contacts').click(function() {
SFHybridApp.logToConsole("link_fetch_device_contacts clicked");
var options = new ContactFindOptions();
options.filter = ""; // empty search string returns all contacts
options.multiple = true;
var fields = ["name"];
navigator.contacts.find(fields, onSuccessDevice,

onErrorDevice, options);
});

This handler calls find() on the navigator.contacts object to retrieve the contact list from the device. The
onSuccessDevice() function renders the contact list into the index.html page.

$j('#link_fetch_sfdc_contacts').click(function() {
SFHybridApp.logToConsole("link_fetch_sfdc_contacts clicked");
forcetkClient.query("SELECT Name FROM Contact",

89

How the Sample App WorksHTML5 and Hybrid Development

onSuccessSfdcContacts, onErrorSfdc);
});

The #link_fetch_sfdc_contacts handler runs a query using the forcetkClient object. This object is set up during
the initial OAuth 2.0 interaction, and gives access to the Force.com REST API in the context of the authenticated user. Here
we retrieve the names of all the contacts in the DE account and onSuccessSfdcContacts() renders them as a list on
the index.html page.

$j('#link_fetch_sfdc_accounts').click(function() {
SFHybridApp.logToConsole("link_fetch_sfdc_accounts clicked");
forcetkClient.query("SELECT Name FROM Account",

onSuccessSfdcAccounts, onErrorSfdc);
});

The #link_fetch_sfdc_accounts handler is very similar to the previous one, fetching Account records via the Force.com
REST API. The remaining handlers, #link_reset and#link_logout, clear the displayed lists and log out the user
respectively.

Create a Mobile Page to List Information
The sample hybrid app is useful in many respects, and serves as a good starting point to learn hybrid mobile app development.
In this tutorial, you modify the sample hybrid mobile app to display Merchandise records in the custom Warehouse app
schema.

You can build the Warehouse schema quickly using the getting started content online:
http://wiki.developerforce.com/page/Developing_Cloud_Apps_—_Coding_Optional. You can also install
it as a package in your Developer Edition org: https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pj8s.

Modify the App's Initialization Block (index.html)
In this section, you modify the view file (index.html) and the controller (inline.js) to make the app specific to the
Warehouse schema and display all records in the Merchandise custom object.

In your app, you want a list of Merchandise records to appear on the default Home page of the mobile app. Consequently,
the first thing to do is to modify what happens automatically when the app calls the onDeviceReady function. Add the
following code to the tail end of the sample salesforceSessionRefreshed function in index.html.

// log message
SFHybridApp.logToConsole("Calling out for records");
// register click event handlers -- see inline.js
regLinkClickHandlers();
// retrieve Merchandise records, including the Id for links
forcetkClient.query("SELECT Id, Name, Price__c, Quantity__c

FROM Merchandise__c", onSuccessSfdcMerchandise, onErrorSfdc);

Notice that this JavaScript code leverages the ForceTK library to query the Force.com database with a basic SOQL statement
and retrieve all records from the Merchandise custom object. On success, the function calls the JavaScript
function onSuccessSfdcMerchandise (which you build in a moment).

90

Create a Mobile Page to List InformationHTML5 and Hybrid Development

http://wiki.developerforce.com/page/Developing_Cloud_Apps_%E2%80%94_Coding_Optional
https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000Pj8s

Create the App's mainpage View (index.html)
To display the Merchandise records in a standard mobile, touch-oriented user interface, scroll down in index.html and
replace the entire <body> tag with the following HTML.

<!-- Main page, to display list of Merchandise once app starts -->
<div data-role="page" data-theme="b" id="mainpage">

<!-- page header -->
<div data-role="header">

<!-- button for logging out -->
<a href='#' id="link_logout" data-role="button"

data-icon='delete'>
Log Out

<!-- page title -->
<h2>List</h2>

</div>
<!-- page content -->
<div id="#content" data-role="content">

<!-- page title -->
<h2>Mobile Inventory</h2>
<!-- list of merchandise, links to detail pages -->
<div id="div_merchandise_list">
<!-- built dynamically by function onSuccessSfdcMerchandise -->
</div>

</div>
</div>

Overall, notice that the updated view uses standard HTML tags and jQuery Mobile markup (e.g., data-role, data-theme,
data-icon) to format an attractive touch interface for your app. Developing hybrid-based mobile apps is straightforward if you
already know some basic standard Web development technology, such as HTML, CSS, JavaScript, and jQuery.

Modify the App's Controller (inline.js)
In the previous section, the initialization block in the view defers to the onSuccessSfdcMerchandise function of the
controller to dynamically generate the HTML that renders Merchandise list items in the encompassing div,
div_merchandise_list. In this step, you build the onSuccessSfdcMerchandise function.

Load the inline.js file and add the following controller action, which is somewhat similar to the sample functions.

// handle successful retrieval of Merchandise records
function onSuccessSfdcMerchandise(response) {

// avoid jQuery conflicts
var $j = jQuery.noConflict();

// debug info to console
SFHybridApp.logToConsole("onSuccessSfdcMerchandise: received " +

response.totalSize + " merchandise records");

// clear div_merchandise_list HTML
$j("#div_merchandise_list").html("");

// set the ul string var to a new UL
var ul = $j('<ul data-role="listview" data-inset="true"

data-theme="a" data-dividertheme="a">');

// update div_merchandise_list with the UL
$j("#div_merchandise_list").append(ul);

// set the first li to display the number of records found
// formatted using list-divider
ul.append($j('<li data-role="list-divider">Merchandise records: '

+ response.totalSize + ''));

// add an li for the merchandise being passed into the function

91

Create a Mobile Page to List InformationHTML5 and Hybrid Development

// create array to store record information for click listener
inventory = new Array();
// loop through each record, using vars i and merchandise
$j.each(response.records, function(i, merchandise) {

// create an array element for each merchandise record
inventory[merchandise.Id] = merchandise;
// create a new li with the record's Name
var newLi = $j("<li class='detailLink' data-id='" + merchandise.Id

+ "'>" + merchandise.Name + "");
ul.append(newLi);

});

// render (create) the list of Merchandise records
$j("#div_merchandise_list").trigger("create");
// send the rendered HTML to the log for debugging
SFHybridApp.logToConsole($j("#div_merchandise_list").html());

// set up listeners for detailLink clicks
$j(".detailLink").click(function() {

// get the unique data-id of the record just clicked
var id = $j(this).attr('data-id');
// using the id, get the record from the array created above
var record = inventory[id];

// use this info to set up various detail page information
$j("#name").html(record.Name);
$j("#quantity").val(record.Quantity__c);
$j("#price").val(record.Price__c);
$j("#detailpage").attr("data-id",record.Id);

// change the view to the detailpage
$j.mobile.changePage('#detailpage', {changeHash: true});

});

}

The comments in the code explain each line. Notice the call to SFHybridApp.logToConsole(); the JavaScript outputs
rendered HTML to the console log so that you can see what the code creates. Here's an excerpt of some sample output.

<ul data-role="listview" data-inset="true" data-theme="a"
data-dividertheme="a" class="ui-listview ui-listview-inset
ui-corner-all ui-shadow">

<li data-role="list-divider" role="heading"
class="ui-li ui-li-divider ui-btn ui-bar-a ui-corner-top">Merchandise records: 6

<li class="detailLink ui-btn ui-btn-up-a ui-btn-icon-right ui-li"

data-id="a00E0000003BzSfIAK" data-theme="a">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">
Tablet

</div>
</div>

<li class="detailLink ui-btn ui-btn-up-a ui-btn-icon-right ui-li"

data-id="a00E0000003BuUpIAK" data-theme="a">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">
Laptop

</div>
</div>

...

92

Create a Mobile Page to List InformationHTML5 and Hybrid Development

In particular, notice how the code:

• creates a list of Merchandise records for display on the app's primary page
• creates each list item to display the Name of the Merchandise record
• creates each list item with unique link information that determines what the target detail page displays

Test the New App
Restart the simulator for your mobile app. When you do, the initial page should look similar to the following screen.

If you click any particular Merchandise record, nothing happens yet. The list functionality is useful, but even better when
paired with the detail view. The next section helps you build the detailpage that displays when a user clicks a specific Merchandise
record.

Create a Mobile Page for Detailed Information
In the previous topic, you modified the sample hybrid app so that, after it starts, it lists all Merchandise records and provides
links to detail pages. In this topic, you finish the job by creating a detailpage view and updating the app's controller.

93

Create a Mobile Page for Detailed InformationHTML5 and Hybrid Development

Create the App's detailpage View (index.html)
When a user clicks on a Merchandise record in the app's mainpage view, click listeners are in place to generate record-specific
information and then load a view named detailpage that displays this information. To create the detailpage view, add the
following div tag after the mainpage div tag.

<!-- Detail page, to display details when user clicks specific Merchandise record -->

<div data-role="page" data-theme="b" id="detailpage">
<!-- page header -->
<div data-role="header">

<!-- button for going back to mainpage -->
<a href='#mainpage' id="backInventory"

class='ui-btn-left' data-icon='home'>
Home

<!-- page title -->
<h1>Edit</h1>

</div>
<!-- page content -->
<div id="#content" data-role="content">

<h2 id="name"></h2>
<label for="price" class="ui-hidden-accessible">

Price ($):</label>
<input type="text" id="price" readonly="readonly"></input>

<label for="quantity" class="ui-hidden-accessible">

Quantity:</label>
<!-- note that number is not universally supported -->
<input type="number" id="quantity"></input>

<a href="#" data-role="button" id="updateButton"

data-theme="b">Update
</div>

</div>

The comments explain each part of the HTML. Basically, the view is a form that lets the user see a Merchandise record's
Price and Quantity fields, and optionally update the record's Quantity.

Recall, the jQuery calls in the last part of the onSuccessSfdcMerchandise function (in inline.js) and updates the
detail page elements with values from the target Merchandise record. Review that code, if necessary.

Modify the App's Controller (inline.js)
What happens when a user clicks the Update button in the new detailpage view? Nothing, yet. You need to modify the app's
controller (inline.js) to handle clicks on that button.

In inline.js, add the following JavaScript to the tail end of the regLinkClickHandlers function.

// handle clicks to Update on detailpage
$j("#updateButton").click(function() {

// update local information in the inventory array
inventory[$j("#detailpage").attr("data-id")].Quantity__c = $j("#quantity").val();
currentRecord = inventory[$j("#detailpage").attr("data-id")];

// strip out ID before updating the database
var data = new Object();
data.Quantity__c = $j("#quantity").val();
// update the database
forcetkClient.update("Merchandise__c", currentRecord.Id,

data,updateSuccess,onErrorSfdc);
});

94

Create a Mobile Page for Detailed InformationHTML5 and Hybrid Development

The comments in the code explain each line. On success, the new handler calls the updateSuccess function, which is not
currently in place. Add the following simple function to inline.js.

function updateSuccess(message) {
alert("Item Updated");

}

Test the App
Restart the simulator for your mobile app. When you do, a detail page should appear when you click a specific Merchandise
record and look similar to the following screen.

Feel free to update a record's quantity, and then check that you see the same quantity when you log into your DE org and
view the record using the Force.com app UI (see above).

Guidelines and Tips for Hybrid Apps
When you create and deploy a hybrid Mobile SDK app, give special consideration to how you mix and distribute JavaScript
libraries. Also, you can take steps in your code to reactively manage session expiration.

Versioning and Javascript Library Compatibility
In hybrid applications, client Javascript code interacts with native code through Cordova (formerly PhoneGap) and
SalesforceSDK plugins. When you package your Javascript code with your mobile application, your testing assures that the
code works with native code. However, when the Javascript code comes from the server—for example, when the application
is written with VisualForce—harmful conflicts can occur. In such cases you must be careful to use Javascript libraries from the
version of PhoneGap or Cordova that matches the Mobile SDK version you’re using.

For example, suppose you shipped an application with Mobile SDK 1.2, which uses PhoneGap 1.2. Later, you ship an update
that uses Mobile SDK 1.3. The 1.3 version of the Mobile SDK uses Cordova 1.8.1 rather than PhoneGap 1.2. You must
make sure that the Javascript code in your updated application accesses native components only through the Cordova 1.8.1
and Mobile SDK 1.3 versions of the Javascript libraries. Using mismatched Javascript libraries can crash your application.

You can’t force your customers to upgrade their clients, so how can you prevent crashes? First, identify the version of the client.
Then, you can either deny access to the application if the client is outdated (for example, with a "Please update to the latest
version" warning), or, preferably, serve compatible Javascript libraries.

95

Guidelines and Tips for Hybrid AppsHTML5 and Hybrid Development

The following table correlates Cordova and PhoneGap versions to Mobile SDK versions.

Cordova or PhoneGap versionMobile SDK version

PhoneGap 1.21.2

Cordova 1.8.11.3

Cordova 2.21.4

Cordova 2.31.5

Cordova 2.32.0

Cordova 2.32.1

Cordova 2.32.2

Using the User Agent to Find the Mobile SDK Version
Fortunately, you can look up the Mobile SDK version in the user agent. The user agent starts with
SalesforceMobileSDK/<version>. Once you obtain the user agent, you can parse the returned string to find the Mobile
SDK version.

You can obtain the user agent on the server with the following Apex code:

userAgent = ApexPages.currentPage().getHeaders().get('User-Agent');

On the client, you can do the same in Javascript using the navigator object:

userAgent = navigator.userAgent;

Detecting the Mobile SDK Version with the sdkinfo Plugin
In Javascript, you can also retrieve the Mobile SDK version and other information by using the sdkinfo plugin. This plugin,
which is defined in the cordova.force.js file, offers one method:

getInfo(callback)

This method returns an associative array that provides the following information:

DescriptionMember name

Version of the Salesforce Mobile SDK used to build to the
container. For example: “1.4”.

sdkVersion

Name of the hybrid application.appName

Version of the hybrid application.appVersion

Array containing the names of Salesforce plugins installed in
the container. For example: "com.salesforce.oauth",
"com.salesforce.smartstore", and so on.

forcePluginsAvailable

The following code retrieves the information stored in the sdkinfo plugin and displays it in alert boxes.

var sdkinfo = cordova.require("salesforce/plugin/sdkinfo");
sdkinfo.getInfo(new function(info) {

96

Versioning and Javascript Library CompatibilityHTML5 and Hybrid Development

alert("sdkVersion->" + info.sdkVersion);
alert("appName->" + info.appName);
alert("appVersion->" + info.appVersion);
alert("forcePluginsAvailable->" + JSON.stringify(info.forcePluginsAvailable));

});

Example: Serving the Appropriate Javascript Libraries
To provide the correct version of Javascript libraries, create a separate bundle for each Salesforce Mobile SDK version you use.
Then, provide Apex code on the server that downloads the required version.

1. For each Salesforce Mobile SDK version that your application supports, do the following.

a. Create a ZIP file containing the Javascript libraries from the intended SDK version.
b. Upload the ZIP file to your org as a static resource.

For example, if you ship a client that uses Salesforce Mobile SDK v. 1.3, add these files to your ZIP file:

• cordova.force.js

• SalesforceOAuthPlugin.js

• bootconfig.js

• cordova-1.8.1.js, which you should rename as cordova.js

Note: In your bundle, it’s permissible to rename the Cordova Javascript library as cordova.js (or PhoneGap.js
if you’re packaging a version that uses a PhoneGap-x.x.js library.)

2. Create an Apex controller that determines which bundle to use. In your controller code, parse the user agent string to find
which version the client is using.

a. In your org, from Setup, click Develop > Apex Class.
b. Create a new Apex controller named SDKLibController with the following definition.

public class SDKLibController {
public String getSDKLib() {

String userAgent = ApexPages.currentPage().getHeaders().get('User-Agent');

if (userAgent.contains('SalesforceMobileSDK/1.3')) {
return 'sdklib13';

}
// Add additional if statements for other SalesforceSDK versions
// for which you provide library bundles.

}
}

3. Create a Visualforce page for each library in the bundle, and use that page to redirect the client to that library.
For example, for the SalesforceOAuthPlugin library:

a. In your org, from Setup, click Develop > Pages.
b. Create a new page called “SalesforceOAuthPlugin” with the following definition.

<apex:page controller="SDKLibController" action="{!URLFor($Resource[SDKLib],
'SalesforceOAuthPlugin.js')}">
</apex:page>

97

Example: Serving the Appropriate Javascript LibrariesHTML5 and Hybrid Development

c. Reference the VisualForce page in a <script> tag in your HTML code. Be sure to point to the page you created in
step 3b. For example:

<script type="text/javascript" src="/apex/SalesforceOAuthPlugin" />

Note: Provide a separate <script> tag for each library in your bundle.

Managing Sessions in Hybrid Applications
Mobile users expect their apps to just work. To help iron out common difficulties that plague many mobile apps, the Mobile
SDK uses native containers for hybrid applications. These containers provide seamless authentication and session management
by abstracting the complexity of web session management. However, as popular mobile app architectures evolve, this “one size
fits all” approach proves to be too limiting in some cases. For example, if a mobile app uses JavaScript remoting in Visualforce,
Salesforce cookies can be lost if the user lets the session expire. These cookies can be retrieved only when the user manually
logs back in.

Mobile SDK 1.4 begins to transition hybrid apps away from predefined, proactive session management to more flexible,
reactive session management. Rather than letting the hybrid container automatically control the session, developers can
participate in the management by responding to session events. This change gives developers more control over managing
sessions in the Salesforce Touch Platform.

To switch to reactive management, adjust your session management settings according to your app’s architecture. This table
summarizes the behaviors and recommended approaches for common architectures.

Steps for Upgrading CodeReactive Behavior in SDK
1.4

Proactive Behavior in SDK
1.3 and Earlier

App Architecture

No change for
forcetk.mobilesdk.js. For other
frameworks, add refresh code.

Refresh from JavaScriptBackground session refreshREST API

Catch timeout, then either
reload page or load a new
iFrame.

Refresh session and CSRF
token from JavaScript

Restart appJavaScript Remoting in
Visualforce

Catch timeout, then reload
page.

Reload pageRestart appJQuery Mobile

These sections provide detailed coding steps for each architecture.

REST APIs (Including Apex2REST)
If you’re writing or upgrading a hybrid app that leverages REST APIs, detect an expired session and request a new access
token at the time the REST call is made. We encourage authors of apps based on this framework to leverage API wrapping
libraries, such as forcetk.mobilesdk.js, to manage session retention.

The following code, from index.html in the ContactExplorer sample application, demonstrates the recommended technique.
When the application first loads, call getAuthCredentials() on the Salesforce OAuth plugin, passing the handle to your
refresh function (in this case, salesforceSessionRefreshed.) The OAuth plugin function calls your refresh function,
passing it the session and refresh tokens. Use these returned values to initialize forcetk.mobilesdk.

98

Managing Sessions in Hybrid ApplicationsHTML5 and Hybrid Development

• From the onDeviceReady() function:

cordova.require("salesforce/plugin/oauth").getAuthCredentials(salesforceSessionRefreshed,
getAuthCredentialsError);

• salesforceSessionRefreshed() function:

function salesforceSessionRefreshed(credsData) {
forcetkClient = new forcetk.Client(credsData.clientId, credsData.loginUrl);
forcetkClient.setSessionToken(credsData.accessToken, apiVersion,

credsData.instanceUrl);
forcetkClient.setRefreshToken(credsData.refreshToken);
forcetkClient.setUserAgentString(credsData.userAgent);

}

For the complete code, see the ContactExplorer sample application
(SalesforceMobileSDK-Android\hybrid\SampleApps\ContactExplorer).

JavaScript Remoting in Visualforce
For mobile apps that use JavaScript remoting to access Visualforce pages, incorporate the session refresh code into the method
parameter list. In JavaScript, use the Visualforce remote call to check the session state and adjust accordingly.

<Controller>.<Method>(
<params>,
function(result, event) {
if (hasSessionExpired(event)) {
// Reload will try to redirect to login page, container will intercept
// the redirect and refresh the session before reloading the origin page
window.location.reload();

} else {
// Everything is OK. You can go ahead and use the result.

},
{escape: true}

);

This example defines hasSessionExpired() as:

function hasSessionExpired(event) {
return (event.type == "exception" && event.message.indexOf("Logged in?") != -1);

}

Advanced developers: Reloading the entire page might not provide the optimal user experience. If you want to avoid reloading
the entire page, you’ll need to:

1. Refresh the access token
2. Refresh the Visualforce domain cookies
3. Finally, refresh the CSRF token

In hasSessionExpired(), instead of fully reloading the page as follows:

window.location.reload();

Do something like this:

// Refresh oauth token
cordova.require("salesforce/plugin/oauth").authenticate(

99

Managing Sessions in Hybrid ApplicationsHTML5 and Hybrid Development

function(creds) {
// Reload hidden iframe that points to a blank page to
// to refresh Visualforce domain cookies
var iframe = document.getElementById("blankIframeId");
iframe.src = src;

// Refresh CSRF cookie
<provider>.refresh(function() {
<Retry call for a seamless user experience>;

});

},
function(error) {
console.log("Refresh failed");

}
);

JQuery Mobile
JQueryMobile makes Ajax calls to transfer data for rendering a page. If a session expires, a 302 error is masked by the framework.
To recover, incorporate the following code to force a page refresh.

$(document).on('pageloadfailed', function(e, data) {
console.log('page load failed');
if (data.xhr.status == 0) {
// reloading the VF page to initiate authentication
window.location.reload();

}
});

100

Managing Sessions in Hybrid ApplicationsHTML5 and Hybrid Development

Chapter 4

Native iOS Development

Salesforce Mobile SDK delivers libraries and sample Xcode projects for
developing mobile apps on iOS.

In this chapter ...

• iOS Native Quick Start
Two main things that the iOS native SDK provides are:• Native iOS Requirements

• Creating an iOS Project • Automation of the OAuth2 login process, making it easy to integrate OAuth
with your app.• Developing a Native iOS App

• Tutorial: Creating a Native iOS
Warehouse App

• Access to the REST API with infrastructure classes (including third-party
libraries such as RestKit) to make that access as easy as possible.

• iOS Native Sample Applications
When you create a native app using the forceios application, your project starts
as a fully functioning native sample app. This simple app allows you to connect
to a Salesforce organization and run a simple query. It doesn’t do much, but it
lets you know things are working as designed.

101

iOS Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native iOS requirements.
2. Install the Mobile SDK for iOS. If you prefer, you can install the Mobile SDK for iOS from GitHub instead.
3. Run the template app.

Native iOS Requirements
iOS development with Mobile SDK 2.2 requires the following software.

• Xcode—Version 5.0 is the minimum, but we recommend the latest version.

• iOS 6.0 or higher.

• Mac OS X 10.8 (“Mountain Lion”) or higher.

On the Salesforce side, you’ll also need:

• Salesforce Mobile SDK 2.2 for iOS. See Install the Mobile SDK.

• A Salesforce Developer Edition organization with a connected app.

Creating an iOS Project
To create a new app, use forceios again on the command line. You have two options for configuring your app.

• Configure your application options interactively as prompted by the forceios app.

• Specify your application options directly at the command line.

Specifying Application Options Interactively
To enter application options interactively, do one of the following:

• If you installed Mobile SDK globally, type forceios create.
• If you installed Mobile SDK locally, type <forceios_path>/node_modules/.bin/forceios create.

The forceios utility prompts you for each configuration value.

Specifying Application Options Directly
You can also specify your configuration directly by typing the full forceios command string. To see usage information, type
forceios without arguments. The list of available options displays:

$ forceios
Usage:
forceios create

102

iOS Native Quick StartNative iOS Development

--apptype=<Application Type> (native, hybrid_remote, hybrid_local)
--appname=<Application Name>
--companyid=<Company Identifier> (com.myCompany.myApp)
--organization=<Organization Name> (Your company's/organization's name)
--startpage=<App Start Page> (The start page of your remote app.
Only required for hybrid_remote)

[--outputdir=<Output directory> (Defaults to the current working directory)]
[--appid=<Salesforce App Identifier> (The Consumer Key for your app.

Defaults to the sample app.)]
[--callbackuri=<Salesforce App Callback URL (The Callback URL for your app.

Defaults to the sample app.)]

Using this information, type forceios create, followed by your options and values. For example:

$ forceios create --apptype="native" --appname="package-test"
--companyid="com.acme.mobile_apps" --organization="Acme Widgets, Inc."
--outputdir="PackageTest" --packagename="com.test.my_new_app"

Running the New Project in XCode
Apps created with the forceios template are ready to run “right out of the box”. After the app creation script finishes, you can
open and run the project in Xcode.

1. In Xcode, select File > Open.
2. Navigate to the output folder you specified.
3. Open your app’s xcodeproj file.
4. Click the Run button in the upper left corner to see your new app in action.

 .

forceios Command Parameters
These are the descriptions of the forceios command parameters:

DescriptionParameter Name

One of the following:--apptype

• “native”

• “hybrid_remote” (server-side hybrid app using VisualForce)

• “hybrid_local” (client-side hybrid app that doesn’t use
VisualForce)

Name of your application--appname

A unique identifier for your company. This value is
concatenated with the app name to create a unique app

--companyid

identifier for publishing your app to the App Store. For
example, “com.myCompany.apps”.

The formal name of your company. For example, “Acme
Widgets, Inc.”.

--organization

Package identifier for your application. For example,
“com.acme.app”.

--packagename

(hybrid remote apps only) Server path to the remote start page.
 For example: /apex/MyAppStartPage.

--startpage

103

Creating an iOS ProjectNative iOS Development

DescriptionParameter Name

(Optional) Folder in which you want your project to be
created. If the folder doesn’t exist, the script creates it. Defaults
to the current working directory.

--outputdir

(Optional) Your connected app’s Consumer Key. Defaults to
the consumer key of the sample app.

--appid

Note: If you don’t specify your own value here, you’re
required to change it in the app before you publish
to the App Store.

(Optional) Your connected app’s Callback URL. Defaults to
the callback URL of the sample app.

--callbackuri

Note:

• If you don’t specify your own value here, you’re
required to change it in the app before you publish
to the App Store.

• If you accept the default value for --appid, be
sure to also accept the default value for
--callbackuri.

(Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

--usesmartstore=true

Running the Xcode Project Template App
The Xcode project template includes a sample application you can run right away.

1. Press Command-R and the default template app runs in the iOS simulator.
2. On startup, the application starts the OAuth authentication flow, which results in an authentication page. Enter your

credentials, and click Login.
3. Tap Allow when asked for permission

You should now be able to compile and run the sample project. It’s a simple app that logs you into an org via OAuth2, issues
a select Name from Account SOQL query, and displays the result in a UITableView instance.

Developing a Native iOS App
The Salesforce Mobile SDK for native iOS provides the tools you need to build apps for Apple mobile devices. Features of
the SDK include:

• Classes and interfaces that make it easy to call the Salesforce REST API

• Fully implemented OAuth login and passcode protocols

• SmartStore library for securely managing user data offline

The native iOS SDK requires you to be proficient in Objective-C coding. You also need to be familiar with iOS application
development principles and frameworks. If you’re a newbie, Start Developing iOS Apps Today is a good place to begin learning.
See Native iOS Requirements for additional prerequisites.

104

Running the Xcode Project Template AppNative iOS Development

http://developer.apple.com/library/ios/#referencelibrary/GettingStarted/RoadMapiOS/chapters/Introduction.html

In a few Mobile SDK interfaces, you’re required to override some methods and properties. SDK header (.h) files include
comments that indicate mandatory and optional overrides.

About Login and Passcodes
To access Salesforce objects from a Mobile SDK app, the user logs into an organization on a Salesforce server. When the login
flow begins, your app sends its connected app configuration to Salesforce. Salesforce responds by posting a login screen to the
mobile device.

Optionally, a Salesforce administrator can set the connected app to require a passcode after login. The Mobile SDK handles
presentation of the login and passcode screens, as well as authentication handshakes. Your app doesn’t have to do anything to
display these screens. However, you do need to understand the login flow and how OAuth tokens are handled. See About
PIN Security and OAuth2 Authentication Flow.

About Memory Management
Beginning in Mobile SDK 2.0, native iOS apps use Automatic Reference Counting (ARC) to manage object memory. You
don’t have to allocate and then remember to deallocate your objects. See the Mac Developer Library at
https://developer.apple.com for ARC syntax, guidelines, and best practices.

Overview of Application Flow
When you create a project with the forceios application, your new app defines three classes: AppDelegate,
InitialViewController, and RootViewController. The AppDelegate object loads InitialViewController
as the first view to show. After the authentication process completes, the AppDelegate object displays the view associated
with RootViewController as the entry point to your app.

The workflow demonstrated by the template app is merely an example. You can tailor your AppDelegate and supporting
classes to achieve your desired workflow. You can retrieve data through REST API calls and display it, launch other views,
perform services, and so on. Your app remains alive in memory until the user quits it, or until the device is rebooted.

Native iOS apps built with the Mobile SDK follow the same design as other iOS apps. The main.m source file creates a
UIApplicationMain object that is the root object for the rest of the application. The UIApplicationMain constructor
creates an AppDelegate object that manages the application lifecycle.

105

About Login and PasscodesNative iOS Development

https://developer.apple.com
https://developer.apple.com

AppDelegate Class
The AppDelegate class is the true entry point for an iOS app. In Mobile SDK apps, AppDelegate implements the standard
iOS UIApplicationDelegate interface. The Mobile SDK template application for creating native iOS apps implements
most of the Salesforce-specific startup functionality for you.

To customize the AppDelegate template, populate the following static variables with information from your Force.com
Connected Application:

• RemoteAccessConsumerKey

static NSString * const RemoteAccessConsumerKey =
@"3MVG9Iu66FKeHhINkB1l7xt7kR8...YFDUpqRWcoQ2.dBv_a1Dyu5xa";

• OAuthRedirectURI

static NSString * const OAuthRedirectURI = @"testsfdc:///mobilesdk/detect/oauth/done";

OAuth functionality resides in an independent module. This separation makes it possible for you to use Salesforce authentication
on demand. You can start the login process from within your AppDelegate implementation, or you can postpone login until
it’s actually required—for example, you can call OAuth from a sub-view.

Initialization
The following high-level overview shows how the AppDelegate initializes the template app. Keep in mind that you can
change any of these details to suit your needs.

1. When the [AppDelegate init] message runs, it:

• Initializes configuration items, such as Connected App identifiers, OAuth scopes, and so on.
• Adds notification observers that listen to SFAuthenticationManager, logoutInitiated, and loginHostChanged

notifications.

The logoutInitiated notification lets the app respond when a user logs out voluntarily or is logged out involuntarily
due to invalid credentials. The loginHostChanged notification lets the app respond when the user changes the login

106

AppDelegate ClassNative iOS Development

host (for example, from Production to Sandbox). See the logoutInitiated: and loginHostChanged: handler
methods in the sample app.

• Initializes authentication "success" and "failure" blocks for the [SFAuthenticationManager
loginWithCompletion:failure:] message. These blocks determine what happens when the authentication
process completes.

2. application:didFinishLaunchingWithOptions:, a UIApplicationDelegate method, is called at app
startup. The template app uses this method to initialize the UIWindow property, display the initial view (see
initializeAppViewState), and initiate authentication. If authentication succeeds, the SFAuthenticationManager
executes initialLoginSuccessBlock (the “success” block).

3. initialLoginSuccessBlock calls setupRootViewController, which creates and displays the app’s
RootViewController.

You can customize any part of this process. At a minimum, change setupRootViewController to display your own
controller after authentication. You can also customize initializeAppViewState to display your own launch page, or the
InitialViewController to suit your needs. You can also move the authentication details to where they make the most
sense for your app. The Mobile SDK does not stipulate when—or if—actions must occur, but standard iOS conventions apply.
For example, self.window must have a rootViewController by the time
application:didFinishLaunchingWithOptions: completes.

UIApplication Event Handlers
You can also use the application delegate class to implement UIApplication event handlers. Important event handlers that
you might consider implementing or customizing include:

application:didFinishLaunchingWithOptions:

First entry point when your app launches. Called only when the process first starts (not after a
backgrounding/foregrounding cycle).

applicationDidBecomeActive

Called every time the application is foregrounded. The iOS SDK provides no default parent behavior; if you use it, you
must implement it from the ground up.

For a list of all UIApplication event handlers, see “UIApplicationDelegate Protocol Reference” in the iOS Developer
Library.

About View Controllers
In addition to the views and view controllers discussed with the AppDelegate class, Mobile SDK exposes the
SFAuthorizingViewController class. This controller displays the login screen when necessary.

To customize the login screen display:

1. Override the SFAuthorizingViewController class to implement your custom display logic.
2. Set the [SFAuthenticationManager sharedManager].authViewController property to an instance of your

customized class.

The most important view controller in your app is the one that manages the first view that displays, after login or—if login is
postponed—after launch. This controller is called your root view controller because it controls everything else that happens
in your app. The Mobile SDK for iOS project template provides a skeletal class named RootViewController that
demonstrates the minimal required implementation.

If your app needs additional view controllers, you’re free to create them as you wish. The view controllers used in Mobile SDK
projects reveal some possible options. For example, the Mobile SDK iOS template project bases its root view class on the

107

About View ControllersNative iOS Development

http://developer.apple.com/library/ios
http://developer.apple.com/library/ios

UITableViewController interface, while the RestAPIExplorer sample project uses the UIViewController interface.
Your only technical limits are those imposed by iOS itself and the Objective-C language.

RootViewController Class
The RootViewController class exists only as part of the template project and projects generated from it. It implements
the SFRestDelegate protocol to set up a framework for your app’s interactions with the Salesforce REST API. Regardless
of how you define your root view controller, it must implement SFRestDelegate if you intend to use it to access Salesforce
data through the REST APIs.

RootViewController Design
As an element of a very basic app built with the Mobile SDK, the RootViewController class covers only the bare essentials.
Its two primary tasks are:

• Use Salesforce REST APIs to query Salesforce data
• Display the Salesforce data in a table

To do these things, the class inherits UITableViewController and implements the SFRestDelegate protocol. The
action begins with an override of the UIViewController:viewDidLoad method:

- (void)viewDidLoad
{

[super viewDidLoad];
self.title = @"Mobile SDK Sample App";

//Here we use a query that should work on either Force.com or Database.com
SFRestRequest *request =

[[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name FROM User LIMIT 10"];
[[SFRestAPI sharedInstance] send:request delegate:self];

}

The iOS runtime calls viewDidLoad only once in the view’s life cycle, when the view is first loaded into memory. The
intention in this skeletal app is to load only one set of data into the app’s only defined view. If you plan to create other views,
you might need to perform the query somewhere else. For example, if you add a detail view that lets the user edit data shown
in the root view, you’ll want to refresh the values shown in the root view when it reappears. In this case, you can perform the
query in a more appropriate method, such as viewWillAppear.

After calling the superclass method, this code sets the title of the view, then issues a REST request in the form of an
asynchronous SOQL query. The query in this case is a simple SELECT statement that gets the Name property from each
User object and limits the number of rows returned to ten. Notice that the requestForQuery and send:delegate:
messages are sent to a singleton shared instance of the SFRestAPI class. Use this singleton object for all REST requests. This
object uses authenticated credentials from the singleton SFAccountManager object to form and send authenticated requests.

The Salesforce REST API responds by passing status messages and, hopefully, data to the delegate listed in the send message.
In this case, the delegate is the RootViewController object itself:

[[SFRestAPI sharedInstance] send:request delegate:self];

The RootViewController object can act as an SFRestAPI delegate because it implements the SFRestDelegate protocol.
This protocol declares four possible response callbacks:

• request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

• request:didFailLoadWithError: — Your request couldn’t be processed. The delegate receives an error message.
• requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a

network glitch, or another unexpected event. The delegate receives no return value.

108

RootViewController ClassNative iOS Development

• requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in one of the callbacks you’ve implemented in RootViewController. Place your code for handling
Salesforce data in the request:didLoadResponse: callback. For example:

- (void)request:(SFRestRequest *)request
didLoadResponse:(id)jsonResponse {

NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

As the use of the id data type suggests, this code handles JSON responses in generic Objective-C terms. It addresses the
jsonResponse object as an instance of NSDictionary and treats its records as an NSArray object. Because
RootViewController implements UITableViewController, it’s simple to populate the table in the view with extracted
records.

A call to request:didFailLoadWithError: results from one of the following conditions:

• If you use invalid request parameters, you get a kSFRestErrorDomain error code. For example, if you pass nil to
requestForQuery:, or you try to update a non-existent object.

• If an OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, if the
access token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

• If the low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, if a Salesforce server
becomes temporarily inaccessible.

The other callbacks are self-describing, and don’t return an error code. You can choose to handle the result however you want:
display an error message, write to the log, retry the request, and so on.

About Salesforce REST APIs
Native app development with the Salesforce Mobile SDK centers around the use of Salesforce REST APIs. Salesforce makes
a wide range of object-based tasks available through URIs with REST parameters. Mobile SDK wraps these HTTP calls in
interfaces that handle most of the low-level work in formatting a request.

In Mobile SDK for iOS, all REST requests are performed asynchronously. You can choose between delegate and block versions
of the REST wrapper classes to adapt your requests to various scenarios. REST responses are formatted as NSArray or
NSDictionary objects for a successful request, or NSError if the request fails.

See the Force.com REST API Developer’s Guide for information on Salesforce REST response formats.

Supported Operations
The iOS REST APIs support the standard object operations offered by Salesforce REST and SOAP APIs. Salesforce Mobile
SDK offers delegate and block versions of its REST request APIs. Delegate request methods are defined in the SFRestAPI
class, while block request methods are defined in the SFRestAPI (Blocks) category. File requests are defined in the
SFRestAPI (Files) category and are documented in SFRestAPI (Files) Category.

Supported operations are:

109

About Salesforce REST APIsNative iOS Development

http://www.salesforce.com/us/developer/docs/api_rest/index.htm

Block methodDelegate methodOperation

sendRESTRequest:
failBlock:

completeBlock:

send:delegate:Manual REST request

Executes a request that
you’ve built

performSOQLQuery:
failBlock:

completeBlock:

requestForQuery:SOQL query

Executes the given
SOQL string and
returns the resulting
data set

performSOSLSearch:
failBlock:

completeBlock:

requestForSearch:SOSL search

Executes the given
SOSL string and
returns the resulting
data set

performMetadataWithObjectType:
failBlock:

completeBlock:

requestForMetadataWithObjectType:Metadata

Returns the object’s
metadata

performDescribeGlobalWithFailBlock:
completeBlock:

requestForDescribeGlobalDescribe global

Returns a list of all
available objects in your
org and their metadata

performDescribeWithObjectType:
failBlock:

completeBlock:

requestForDescribeWithObjectType:Describe with object
type

Returns a description
of a single object type

performRetrieveWithObjectType:
objectId:

requestForRetrieveWithObjectType:Retrieve

Retrieves a single
record by object ID

fieldList:
failBlock:completeBlock:objectId:

fieldList:

performUpdateWithObjectType:
objectId:

requestForUpdateWithObjectType:Update

Updates an object with
the given map

fields:
failBlock:

completeBlock:

objectId:

fields:

performUpsertWithObjectType:
externalIdField:

requestForUpsertWithObjectType:Upsert

Updates or inserts an
object from external

externalId:
fields:

failBlock:
completeBlock:

externalIdField:

externalId:

110

Supported OperationsNative iOS Development

Block methodDelegate methodOperation

fields:
data, based on whether
the external ID
currently exists in the
external ID field

performCreateWithObjectType:
fields:

requestForCreateWithObjectType:

fields:

Create

Creates a new record in
the specified object

failBlock:
completeBlock:

performDeleteWithObjectType:
objectId:

requestForDeleteWithObjectType:

objectId:

Delete

Deletes the object of
the given type with the
given ID

failBlock:
completeBlock:

performRequestForVersionsWithFailBlock:

completeBlock:

requestForVersionsVersions

Returns Salesforce
version metadata

performRequestForResourcesWithFailBlock:requestForResourcesResources

Returns available
resources for the completeBlock:

specified API version,
including resource
name and URI

SFRestAPI Interface
SFRestAPI defines the native interface for creating and formatting Salesforce REST requests. It works by formatting and
sending your requests to the Salesforce service, then relaying asynchronous responses to your implementation of the
SFRestDelegate protocol.

SFRestAPI serves as a factory for SFRestRequest instances. It defines a group of methods that represent the request types
supported by the Salesforce REST API. Each SFRestAPI method corresponds to a single request type. Each of these methods
returns your request in the form of an SFRestRequest instance. You then use that return value to send your request to the
Salesforce server. The HTTP coding layer is encapsulated, so you don’t have to worry about REST API syntax.

For a list of supported query factory methods, see Supported Operations

SFRestDelegate Protocol
When a class adopts the SFRestDelegate protocol, it intends to be a target for REST responses sent from the Salesforce
server. When you send a REST request to the server, you tell the shared SFRestAPI instance which object receives the
response. When the server sends the response, Mobile SDK routes the response to the appropriate protocol method on the
given object.

The SFRestDelegate protocol declares four possible responses:

111

SFRestAPI InterfaceNative iOS Development

• request:didLoadResponse: — Your request was processed. The delegate receives the response in JSON format. This
is the only callback that indicates success.

• request:didFailLoadWithError: — Your request couldn’t be processed. The delegate receives an error message.

• requestDidCancelLoad — Your request was canceled by some external factor, such as administrator intervention, a
network glitch, or another unexpected event. The delegate receives no return value.

• requestDidTimeout — The Salesforce server failed to respond in time. The delegate receives no return value.

The response arrives in your implementation of one of these delegate methods. Because you don’t know which type of response
to expect, you must implement all of the methods.

request:didLoadResponse: Method

The request:didLoadResponse: method is the only protocol method that handles a success condition, so place your
code for handling Salesforce data in that method. For example:

- (void)request:(SFRestRequest *)request
didLoadResponse:(id)jsonResponse {

NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

At the server, all responses originate as JSON strings. Mobile SDK receives these raw responses and reformats them as iOS
SDK objects before passing them to the request:didLoadResponse: method. Thus, the jsonResponse payload arrives
as either an NSDictionary object or an NSArray object. The object type depends on the type of JSON data returned. If
the top level of the server response represents a JSON object, jsonResponse is an NSDictionary object. If the top level
represents a JSON array of other data, jsonResponse is an NSArray object.

If your method cannot infer the data type from the request, use [NSObject isKindOfClass:] to determine the data type.
For example:

if ([jsonResponse isKindOfClass:[NSArray class]]) {
// Handle an NSArray here.

} else {
// Handle an NSDictionary here.

}

You can address the response as an NSDictionary object and extract its records into an NSArray object. To do so, send the
NSDictionary:objectForKey: message using the key “records”.

request:didFailLoadWithError: Method

A call to the request:didFailLoadWithError: callback results from one of the following conditions:

• If you use invalid request parameters, you get a kSFRestErrorDomain error code. For example, you pass nil to
requestForQuery:, or you try to update a non-existent object.

• If an OAuth access token expires, the framework tries to obtain a new access token and, if successful, retries the query. If
a request for a new access token or session ID fails, you get a kSFOAuthErrorDomain error code. For example, the access
token expires, and the OAuth refresh token is invalid. This scenario rarely occurs.

• If the low-level HTTP request fails, you get an RKRestKitErrorDomain error code. For example, a Salesforce server
becomes temporarily inaccessible.

112

SFRestDelegate ProtocolNative iOS Development

requestDidCancelLoad and requestDidTimeout Methods

The requestDidCancelLoad and requestDidTimeout delegate methods are self-describing and don’t return an error
code. You can choose to handle the result however you want: display an error message, write to the log, retry the request, and
so on.

Creating REST Requests
Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. The SFRestAPI class
provides factory methods that handle most of the syntactical details for you. Mobile SDK also offers considerable flexibility
for how you create REST requests.

• For standard SOQL queries and SOSL searches, SFRestAPI methods create query strings based on minimal data input
and package them in an SFRestRequest object that can be sent to the Salesforce server.

• If you are using a Salesforce REST API that isn’t based on SOQL or SOSL, SFRestRequest methods let you configure
the request itself to match the API format.

• The SFRestAPI (QueryBuilder) category provides methods that create free-form SOQL queries and SOSL search
strings so you don’t have to manually format the query or search string.

• Request methods in the SFRestAPI (Blocks) category let you pass callback code as block methods, instead of using a
delegate object.

Sending a REST Request
Salesforce Mobile SDK for iOS natively supports many types of SOQL and SOSL REST requests. Luckily, the SFRestAPI
provides factory methods that handle most of the syntactical details for you.

At runtime, Mobile SDK creates a singleton instance of SFRestAPI. You use this instance to obtain an SFRestRequest
object and to send that object to the Salesforce server.

To send a REST request to the Salesforce server from an SFRestAPI delegate:

1. Build a SOQL, SOSL, or other REST request string.

For standard SOQL and SOSL queries, it’s most convenient and reliable to use the factory methods in the SFRestAPI
class. See Supported Operations.

2. Create an SFRestRequest object with your request string.

Message the SFRestAPI singleton with the request factory method that suits your needs. For example, this code uses
theSFRestAPI:requestForQuery: method, which prepares a SOQL query.

// Send a request factory message to the singleton SFRestAPI instance
SFRestRequest *request = [[SFRestAPI sharedInstance]

requestForQuery:@"SELECT Name FROM User LIMIT 10"];

3. Send the send:delegate: message to the shared SFRestAPI instance. Use your new SFRestRequest object as the
send: parameter. The second parameter designates an SFRestDelegate object to receive the server’s response. In the
following example, the class itself implements the SFRestDelegate protocol, so it sets delegate: to self.

// Use the singleton SFRestAPI instance to send the
// request, specifying this class as the delegate.
[[SFRestAPI sharedInstance] send:request delegate:self];

113

Creating REST RequestsNative iOS Development

SFRestRequest Class
Salesforce Mobile SDK provides the SFRestRequest interface as a convenience class for apps. SFRestAPI provides request
methods that use your input to form a request. This request is packaged as an SFRestRequest instance and returned to your
app. In most cases you don’t manipulate the SFRestRequest object. Typically, you simply pass it unchanged to the
SFRestAPI:send:delegate: method.

If you’re sending a REST request that isn’t directly supported by the Mobile SDK—for example, if you want to use the Chatter
REST API—you can manually create and configure an SFRestRequest object.

Using SFRestRequest Methods
SFRestAPI tools support SOQL and SOSL statements natively: they understand the grammar and can format valid requests
based on minimal input from your app. However, Salesforce provides some product-specific REST APIs that have no
relationship to SOQL queries or SOSL searches. You can still use Mobile SDK resources to configure and send these requests.
This process is similar to sending a SOQL query request. The main difference is that you create and populate your
SFRestRequest object directly, instead of relying on SFRestAPI methods.

To send a non-SOQL and non-SOSL REST request using the Mobile SDK:

1. Create an instance of SFRestRequest.
2. Set the properties you need on the SFRestRequest object.
3. Call send:delegate: on the singleton SFRestAPI instance, passing in the SFRestRequest object you created as the

first parameter.

The following example performs a GET operation to obtain all items in a specific Chatter feed.

SFRestRequest *request = [[SFRestRequest alloc] init];
[request setDelegate:self];
[request setEndpoint:kSFDefaultRestEndpoint];
[request setMethod:SFRestMethodGET];
[request setPath:

[NSString stringWithFormat:@"/v26.0/chatter/feeds/record/%@/feed-items",
recordId]];

[[SFRestAPI sharedInstance] send:request delegate:self];

4. Alternatively, you can create the same request using the requestWithMethod:path:queryParams class method.

SFRestRequest *request =
[SFRestRequest

requestWithMethod:SFRestMethodGET
path:

[NSString
stringWithFormat:
@"/v26.0/chatter/feeds/
record/%@/feed-items",

recordId]
queryParams:nil];

[[SFRestAPI sharedInstance] send:request delegate:self];

5. To perform a request with parameters, create a parameter string, and then use the SFJsonUtils:objectFromJSONString
static method to wrap it in an NSDictionary object. (If you prefer, you can create your NSDictionary object directly,
before the method call, instead of creating it inline.)

114

SFRestRequest ClassNative iOS Development

The following example performs a POST operation that adds a comment to a Chatter feed.

NSString *body =
[NSString stringWithFormat:

@"{ \"body\" :
{\"messageSegments\" :

[{ \"type\" : \"Text\",
\"text\" : \"%@\"}]

}
}",

comment];

SFRestRequest *request =
[SFRestRequest
requestWithMethod:SFRestMethodPOST

path:[NSString
stringWithFormat:
@"/v26.0/chatter/feeds/
record/%@/feed-items",

recordId]
queryParams:

(NSDictionary *)
[SFJsonUtils objectFromJSONString:body]];

[[SFRestAPI sharedInstance] send:request delegate:self];

6. To set an HTTP header for your request, use the setHeaderValue:forHeaderName method. This method can help
you when you’re displaying Chatter feeds, which come pre-encoded for HTML display. If you find that your native app
displays unwanted escape sequences in Chatter comments, set the X-Chatter-Entity-Encoding header to “false”
before sending your request, as follows:

...
[request setHeaderValue:@"false" forHeaderName:@"X-Chatter-Entity-Encoding"];
[[SFRestAPI sharedInstance] send:request delegate:self];

SFRestAPI (Blocks) Category
If you prefer, you can use blocks instead of a delegate to execute callback code. Salesforce Mobile SDK for native iOS provides
a block corollary for each SFRestAPI request method. These methods are defined in the SFRestAPI (Blocks) category.

Block request methods look a lot like delegate request methods. They all return a pointer to SFRestRequest, and they require
the same parameters. Block request methods differ from their delegate siblings in these ways:

1. In addition to copying the REST API parameters, each method requires two blocks: a fail block of type SFRestFailBlock,
and a complete block of type SFRestDictionaryResponseBlock or type SFRestArrayResponseBlock, depending
on the expected response data.

2. Block-based methods send your request for you, so you don’t need to call a separate send method. If your request fails, you
can use the SFRestRequest * return value to retry the request. To do this, use the
SFRestAPI:sendRESTRequest:failBlock:completeBlock: method.

Judicious use of blocks and delegates can help fine-tune your app’s readability and ease of maintenance. Prime conditions for
using blocks often correspond to those that mandate inline functions in C++ or anonymous functions in Java. However, this
observation is just a general suggestion. Ultimately, you need to make a judgement call based on research into your app’s
real-world behavior.

115

SFRestAPI (Blocks) CategoryNative iOS Development

SFRestAPI (QueryBuilder) Category
If you’re unsure of the correct syntax for a SOQL query or a SOSL search, you can get help from the SFRestAPI
(QueryBuilder) category methods. These methods build query strings from basic conditions that you specify, and return
the formatted string. You can pass the returned value to one of the following SFRestAPI methods.

• – (SFRestRequest *)requestForQuery:(NSString *)soql;

• – (SFRestRequest *)requestForSearch:(NSString *)sosl;

SFRestAPI (QueryBuilder) provides two static methods each for SOQL queries and SOSL searches: one takes minimal
parameters, while the other accepts a full list of options.

SOSL Methods

SOSL query builder methods are:

+ (NSString *) SOSLSearchWithSearchTerm:(NSString *)term
objectScope:(NSDictionary *)objectScope;

+ (NSString *) SOSLSearchWithSearchTerm:(NSString *)term
fieldScope:(NSString *)fieldScope
objectScope:(NSDictionary *)objectScope

limit:(NSInteger)limit;

Parameters for the SOSL search methods are:

• term is the search string. This string can be any arbitrary value. The method escapes any SOSL reserved characters before
processing the search.

• fieldScope indicates which fields to search. It’s either nil or one of the IN search group expressions: “IN ALL FIELDS”,
“IN EMAIL FIELDS”, “IN NAME FIELDS”, “IN PHONE FIELDS”, or “IN SIDEBAR FIELDS”. A nil value
defaults to “IN NAME FIELDS”. See Salesforce Object Search Language (SOSL).

• objectScope specifies the objects to search. Acceptable values are:

◊ nil—No scope restrictions. Searches all searchable objects.
◊ An NSDictionary object pointer—Corresponds to the SOSL RETURNING fieldspec. Each key is an sObject

name; each value is a string that contains a field list as well as optional WHERE, ORDER BY, and LIMIT clauses
for the key object.

If you use an NSDictionary object, each value must contain at least a field list. For example, to represent the following
SOSL statement in a dictionary entry:

FIND {Widget Smith}
IN Name Fields
RETURNING Widget__c (name Where createddate = THIS_FISCAL_QUARTER)

set the key to “Widget__c” and its value to “name WHERE createddate = “THIS_FISCAL_QUARTER”. For
example:

[SFRestAPI
SOSLSearchWithSearchTerm:@"all of these will be escaped:~{]"

objectScope:[NSDictionary
dictionaryWithObject:@"name WHERE

createddate="THIS_FISCAL_QUARTER"
forKey:@"Widget__c"]];

116

SFRestAPI (QueryBuilder) CategoryNative iOS Development

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_sosl_in.htm

◊ NSNull—No scope specified.

• limit—If you want to limit the number of results returned, set this parameter to the maximum number of results you
want to receive.

SOQL Methods

SOQL QueryBuilder methods that construct SOQL strings are:

+ (NSString *) SOQLQueryWithFields:(NSArray *)fields
sObject:(NSString *)sObject
where:(NSString *)where
limit:(NSInteger)limit;

+ (NSString *) SOQLQueryWithFields:(NSArray *)fields
sObject:(NSString *)sObject
where:(NSString *)where

groupBy:(NSArray *)groupBy
having:(NSString *)having
orderBy:(NSArray *)orderBy
limit:(NSInteger)limit;

Parameters for the SOQL methods correspond to SOQL query syntax. All parameters except fields and sObject can be
set to nil.

DescriptionParameter name

An array of field names to be queried.fields

Name of the object to query.sObject

An expression specifying one or more query conditions.where

An array of field names to use for grouping the resulting
records.

groupBy

An expression, usually using an aggregate function, for filtering
the grouped results. Used only with groupBy.

having

An array of fields name to use for ordering the resulting
records.

orderBy

Maximum number of records you want returned.limit

See SOQL SELECT Syntax.

SOSL Sanitizing

The QueryBuilder category also provides a class method for cleaning SOSL search terms:

+ (NSString *) sanitizeSOSLSearchTerm:(NSString *)searchTerm;

This method escapes every SOSL reserved character in the input string, and returns the escaped version. For example:

NSString *soslClean = [SFRestAPI sanitizeSOSLSearchTerm:@"FIND {MyProspect}"];

This call returns “FIND \{MyProspect\}”.

117

SFRestAPI (QueryBuilder) CategoryNative iOS Development

http://www.salesforce.com/us/developer/docs/dbcom_soql_sosl/index_Left.htm#StartTopic=Content/sforce_api_calls_soql_select.htm

The sanitizeSOSLSearchTerm: method is called in the implementation of the SOSL and SOQL QueryBuilder methods,
so you don’t need to call it on strings that you’re passing to those methods. However, you can use it if, for instance, you’re
building your own queries manually. SOSL reserved characters include:

\ ? & | ! { } [] () ^ ~ * : " ' + -

SFRestAPI (Files) Category
The SFRestAPI (Files) category provides methods that create file operation requests. Each method returns a new
SFRestRequest object. Applications send this object to the Salesforce service to process the request. For example, the
following code snippet calls the requestForOwnedFilesList:page: method to retrieve a SFRestRequest object. It
then sends the request object to the server, specifying its owning object as the delegate that receives the response.

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForOwnedFilesList:nil page:0];
[[SFRestAPI sharedInstance] send:request delegate:self];

Note: This example passes nil to the first parameter (userId). This value tells the
requestForOwnedFilesList:page: method to use the ID of the context, or logged in, user. Passing 0 to the
pageNum parameter tells the method to fetch the first page.

See Files and Networking for a full description of the Files feature and networking functionality.

Methods

SFRestAPI (Files) category supports the following operations. For a full reference of this category, see SFRestAPI (Files)
Category—Request Methods (iOS). For a full description of the REST request and response bodies, go to Chatter REST
API Resources > FilesResources at http://www.salesforce.com/us/developer/docs/chatterapi.

DescriptionMethod

Builds a request that fetches a page from the list of files owned
by the specified user.

- (SFRestRequest *)
requestForOwnedFilesList:(NSString *)
userId page:(NSUInteger)page

Builds a request that fetches a page from the list of files owned
by the user’s groups.

- (SFRestRequest *)
requestForFilesInUsersGroups:(NSString
*)userId
page:(NSUInteger)page

Builds a request that fetches a page from the list of files that
have been shared with the user.

- (SFRestRequest *)
requestForFilesSharedWithUser:(NSString
*)userId
page:(NSUInteger)page

Builds a request that fetches the file details of a particular
version of a file.

- (SFRestRequest *)
requestForFileDetails:(NSString *)sfdcId
forVersion:(NSString *)version

Builds a request that fetches the latest file details of one or
more files in a single request.

- (SFRestRequest *)
requestForBatchFileDetails:(NSArray
*)sfdcIds

Builds a request that fetches the a preview/rendition of a
particular page of the file (and version).

- (SFRestRequest *)
requestForFileRendition:(NSString *)sfdcId

118

SFRestAPI (Files) CategoryNative iOS Development

http://www.salesforce.com/us/developer/docs/chatterapi/index_Left.htm#StartTopic=Content/connect_resources_files.htm

DescriptionMethod

version:(NSString *)version
renditionType:(NSString *)renditionType
page:(NSUInteger)page

Builds a request that fetches the actual binary file contents of
this particular file.

- (SFRestRequest *)
requestForFileContents:(NSString *)
sfdcId version:(NSString*) version

Builds a request that fetches a page from the list of entities
that share this file.

- (SFRestRequest *)
requestForFileShares:(NSString *)sfdcId
page:(NSUInteger)page

Builds a request that add a file share for the specified file ID
to the specified entity ID.

- (SFRestRequest *)
requestForAddFileShare:(NSString *)fileId
entityId:(NSString *)entityId
shareType:(NSString*)shareType

Builds a request that deletes the specified file share.- (SFRestRequest *)
requestForDeleteFileShare:(NSString
*)shareId;

Builds a request that uploads a new file to the server. Creates
a new file with version set to 1.

- (SFRestRequest *)
requestForUploadFile:(NSData *)data
name:(NSString *)name
description:(NSString *)description
mimeType:(NSString *)mimeType

Tutorial: Creating a Native iOS Warehouse App

Prerequisites
• This tutorial uses a Warehouse app that contains a basic inventory database. You’ll need to install this app in a DE org. If

you install it in an existing DE org, be sure to delete any existing Warehouse components you’ve made before you install.

1. Click the installation URL link: https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000MMMT
2. If you aren’t logged in already, enter the username and password of your DE org.
3. On the Package Installation Details page, click Continue.
4. Click Next, and on the Security Level page click Next.
5. Click Install.
6. Click Deploy Now and then Deploy.
7. Once the installation completes, you can select the Warehouse app from the app picker in the upper right corner.

119

Tutorial: Creating a Native iOS Warehouse AppNative iOS Development

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000MMMT

8. To create data, click the Data tab.
9. Click the Create Data button.

• Install the latest versions of Xcode and the iOS SDK.
• Install the Salesforce Mobile SDK using npm:

1. If you’ve already successfully installed Node.js and npm, skip to step 4.
2. Install Node.js on your system. The Node.js installer automatically installs npm.

i. Download Node.js from www.nodejs.org/download.

ii. Run the downloaded installer to install Node.js and npm. Accept all prompts asking for permission to install.

3. At the Terminal window, type npm and press Return to make sure your installation was successful. If you don’t see
a page of usage information, revisit Step 2 to find out what’s missing.

4. At the Terminal window, type sudo npm install forceios -g

This command uses the forceios package to install the Mobile SDK globally. With the -g option, you can run npm
install from any directory. The npm utility installs the package under /usr/local/lib/node_modules, and
links binary modules in /usr/local/bin. Most users need the sudo option because they lack read-write permissions
in /usr/local.

Create a Native iOS App
In this tutorial, you learn how to get started with the Salesforce Mobile SDK, including how to install the SDK and a quick
tour of the native project template using your DE org. Subsequent tutorials show you how to modify the template app and
make it work with the Warehouse schema.

Step 1: Create a Connected App
In this step, you learn how to configure a Connected App in Force.com. Doing so authorizes the mobile app you will soon
build to communicate securely with Force.com and access Force.com APIs on behalf of users via the industry-standard OAuth
2.0 protocol.

1. In your DE org, click Your Name > Setup and under App Setup, click Create > Apps.
2. Under Connected Apps, click New to bring up the New Connected App page.
3. Under Basic Information, fill out the form as follows:

• Connected App Name: My Native iOS App

• API Name: accept the suggested value
• Contact Email: enter your email address

4. Under OAuth Settings, check the Enable OAuth Settings checkbox.

120

Create a Native iOS AppNative iOS Development

http://www.nodejs.org/download

5. Set Callback URL to mysampleapp://auth/success.
6. Under Available OAuth Scopes, check “Access and manage your data (api)” and “Perform requests on your behalf at any

time (refresh_token)”, then click Add.
7. Click Save.

After you save the configuration, notice the details of the Connected App you just created.

• Note the Callback URL and Consumer Key; you will use these when you set up your native app in the next step.

• Mobile apps do not use the Consumer Secret, so you can ignore this value.

Step 2: Create a Native iOS Project
To create a new Mobile SDK project, use the forceios utility again in the Terminal window.

1. Change to the directory in which you want to create your project.
2. To create an iOS project, type forceios create.

The forceios utility prompts you for each configuration value.

3. For application type, enter native.
4. For application name, enter MyNativeiOSApp.
5. For company identifier, enter com.acme.goodapps.
6. For organization name, enter GoodApps, Inc..
7. For output directory, enter tutorial/iOSNative.
8. For the Connected App ID, copy and paste the Consumer Key from your Connected App definition.
9. For the Connected App Callback URI, copy and paste the Callback URL from your Connected App definition.

The input screen should look similar to this:

121

Step 2: Create a Native iOS ProjectNative iOS Development

Step 3: Run the New iOS App
1. In Xcode, select File > Open.
2. Navigate to the output folder you specified.
3. Open your app’s xcodeproj file.
4. Click the Run button in the upper left corner to see your new app in the iOS simulator. Make sure that you’ve selected

Product > Destination > iPhone 6.0 Simulator in the Xcode menu.
5. When you start the app, after showing an initial splash screen, you should see the Salesforce login screen. Login with your

DE username and password.

6. When prompted, click Allow to let the app access your data in Salesforce. You should see a table listing the names of users
defined in your DE org.

122

Step 3: Run the New iOS AppNative iOS Development

Step 4: Explore How the iOS App Works
The native iOS app uses a straightforward Model View Controller (MVC) architecture.

• The model is the Force.com database schema

• The views come from the nib and implementation files in your project

• The controller functionality represents a joint effort between the iOS SDK classes, the Salesforce Mobile SDK, and your
app

AppDelegate Class and the Root View Controller

When the app is launched, the AppDelegate class initially controls the execution flow. After the login process completes,
the AppDelegate instance passes control to the root view. In the template app, the root view controller class is named
RootViewController. This class becomes the root view for the app in the AppDelegate.m file, where it’s subsumed by
a UINavigationController instance that controls navigation between views:

- (void)setupRootViewController
{

RootViewController *rootVC = [[RootViewController alloc] initWithNibName:nil bundle:nil];

UINavigationController *navVC = [[UINavigationController alloc]
initWithRootViewController:rootVC];

self.window.rootViewController = navVC;
}

123

Step 4: Explore How the iOS App WorksNative iOS Development

Before it’s customized, though, the app doesn’t include other views or touch event handlers. It simply logs into Salesforce,
issues a request using Salesforce Mobile SDK REST APIs, and displays the response in the root view.

UITableViewController Class

RootViewController inherits the UITableViewController class. Because it doesn’t customize the table in its inherited
view, there’s no need for a nib or xib file. The controller class simply loads data into the tableView property and lets the
super class handle most of the display tasks. However, RootViewController does add some basic cell formatting by calling
the tableView:cellForRowAtIndexPath: method. It creates a new cell, assigns it a generic ID (@”CellIdentifier”),
puts an icon at the left side of the cell, and adds an arrow to the right side. Most importantly, it sets the cell’s label to assume
the Name value of the current row from the REST response object. Here’s the code:

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView_ cellForRowAtIndexPath:(NSIndexPath
*)indexPath {
static NSString *CellIdentifier = @"CellIdentifier";

// Dequeue or create a cell of the appropriate type.
UITableViewCell *cell = [tableView_ dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue1

reuseIdentifier:CellIdentifier] autorelease];

}
//if you want to add an image to your cell, here's how
UIImage *image = [UIImage imageNamed:@"icon.png"];
cell.imageView.image = image;

// Configure the cell to show the data.
NSDictionary *obj = [self.dataRows objectAtIndex:indexPath.row];
cell.textLabel.text = [obj objectForKey:@"Name"];

//this adds the arrow to the right hand side.
cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

return cell;

}

SFRestAPI Shared Object and SFRestRequest Class

You can learn how the app creates and sends the REST request by browsing the RootViewController.viewDidLoad
method. The app defines a literal SOQL query string and passes it to the SFRestAPI:requestForQuery: instance method.
To call this method, the app sends a message to the shared singleton SFRestAPI instance. The method creates and returns
an appropriate, pre-formatted SFRestRequest object that wraps the SOQL query. The app then forwards this object to the
server by sending the send:delegate: message to the shared SFRestAPI object:

//Here we use a query that should work on either Force.com or Database.com
SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name FROM

User LIMIT 10"];
[[SFRestAPI sharedInstance] send:request delegate:self];

The SFRestAPI class serves as a factory for SFRestRequest instances. It defines a series of request methods that you can
call to easily create request objects. If you want, you can also build SFRestRequest instances directly, but, for most cases,
manual construction isn’t necessary.

Notice that the app specifies self for the delegate argument. This tells the server to send the response to a delegate method
implemented in the RootViewController class.

124

Step 4: Explore How the iOS App WorksNative iOS Development

SFRestDelegate Interface

To be able to accept REST responses, RootViewController implements the SFRestDelegate interface. This interface
declares four methods—one for each possible response type. The request:didLoadResponse: delegate method executes
when the request succeeds. When RootViewController receives a request:didLoadResponse: callback, it copies the
returned records into its data rows and reloads the data displayed in the Warehouse view. Here’s the code that implements
the SFRestDelegate interface in the RootViewController class:

#pragma mark - SFRestAPIDelegate

- (void)request:(SFRestRequest *)request didLoadResponse:(id)jsonResponse {
NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

- (void)request:(SFRestRequest*)request didFailLoadWithError:(NSError*)error {
NSLog(@"request:didFailLoadWithError: %@", error);
//add your failed error handling here

}

- (void)requestDidCancelLoad:(SFRestRequest *)request {
NSLog(@"requestDidCancelLoad: %@", request);
//add your failed error handling here

}

- (void)requestDidTimeout:(SFRestRequest *)request {
NSLog(@"requestDidTimeout: %@", request);
//add your failed error handling here

}

As the comments indicate, this code fully implements only the request:didLoadResponse: success delegate method.
For responses other than success, this template app simply logs a message.

Customize the List Screen
In this tutorial, you modify the root view controller to make the app specific to the Warehouse schema. You also adapt the
existing SOQL query to obtain all the information we need from the Merchandise custom object.

Step 1: Modify the Root View Controller
To adapt the template project to our Warehouse design, let’s rename the RootViewController class.

1. In the Project Navigator, choose the RootViewController.h file.
2. In the Editor, click the name “RootViewController” on this line:

@interface RootViewController : UITableViewController <SFRestDelegate>{

3. Using the Control-Click menu, choose Refactor > Rename. Be sure that Rename Related Files is checked.
4. Change “RootViewController” to “WarehouseViewController”. Click Preview.

Xcode presents a new window that lists all project files that contain the name “RootViewController” on the left. The central
pane shows a diff between the existing version and the proposed new version of each changed file.

5. Click Save.
6. Click Enable when Xcode asks you if you’d like it to take automatic snapshots before refactoring.

125

Customize the List ScreenNative iOS Development

After the snapshot is complete, the Refactoring window goes away, and you’re back in your refactored project. Notice that the
file names RootViewController.h and RootViewController.m are now WarehouseViewController.h and
WarehouseViewController.m. Every instance of RootViewController in your project code has also been changed to
WarehouseViewController.

Step 2: Create the App's Root View
The native iOS template app creates a SOQL query that extracts Name fields from the standard User object. For this tutorial,
though, you use records from a custom object. Later, you create a detail screen that displays Name, Quantity, and Price fields.
You also need the record ID.

Let’s update the SOQL query to operate on the custom Merchandise__c object and to retrieve the fields needed by the detail
screen.

1. In the Project Navigator, select WarehouseViewController.m.
2. Scroll to the viewDidLoad method.
3. Update the view’s display name to “Warehouse App”. Change:

self.title = @"Mobile SDK Sample App"

to

self.title = @"Warehouse App"

4. Change the SOQL query in the following line:

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name
FROM User LIMIT 10"];

to:

SELECT Name, Id, Quantity__c, Price__c FROM Merchandise__c LIMIT 10

Step 3:Try Out the App
Build and run the app. When prompted, log into your DE org. The initial page should look similar to the following screen.

126

Step 2: Create the App's Root ViewNative iOS Development

At this point, if you click a Merchandise record, nothing happens. You'll fix that in the next tutorial.

Create the Detail Screen
In the previous tutorial, you modified the template app so that, after it starts, it lists up to ten Merchandise records. In this
tutorial, you finish the job by creating a detail view and controller. You also establish communication between list view and
detail view controllers.

Step 1: Create the App's Detail View Controller
When a user taps a Merchandise record in the Warehouse view, an IBAction generates record-specific information and then
loads a view from DetailViewController that displays this information. However, this view doesn’t yet exist, so let’s
create it.

1. Click File > New > File... > Cocoa Touch > Objective-C class.
2. Create a new Objective-C class named DetailViewController that subclasses UIViewController. Make sure that

With XIB for user interface is checked.
3. Click Next.
4. Place the new class in the Classes group under Mobile Warehouse App in the Groups drop-down menu.

Xcode creates three new files in the Classes folder: DetailViewController.h, DetailViewController.m, and
DetailViewController.xib.

127

Create the Detail ScreenNative iOS Development

5. Select DetailViewController.m in the Project Navigator, and delete the following method declaration:

- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil{
self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNil];
if (self) {

// Custom initialization
}
return self;

}

In this app, you don’t need this initialization method because you’re not specifying a NIB file or bundle.

6. Select DetailViewController.xib in the Project Navigator to open the Interface Builder.

7. From the Utilities view , drag three labels, two text fields, and one button onto the view layout. Arrange
and resize the controls so that the screen looks like this:

We’ll refer to topmost label as the Name label. This label is dynamic. In the next tutorial, you’ll add controller code that
resets it at runtime to a meaningful value.

8. In the Attributes inspector, set the display text for the static Price and Quantity labels to the values shown. Select each
label individually in the Interface Builder and specify display text in the unnamed entry field below the Text drop-down
menu.

128

Step 1: Create the App's Detail View ControllerNative iOS Development

Note: Adjust the width of the labels as necessary to see the full display text.

9. In the Attributes inspector, set the display text for the Update button to the value shown. Select the button in the Interface
Builder and specify its display text in the unnamed entry field below the Title drop-down menu.

10. Build and run to check for errors. You won’t yet see your changes.

The detail view design shows Price and Quantity fields, and provides a button for updating the record's Quantity. However,
nothing currently works. In the next step, you learn how to connect this design to Warehouse records.

Step 2: Set Up DetailViewController
To establish connections between view elements and their view controller, you can use the Xcode Interface Builder to connect
UI elements with code elements.

Add Instance Properties

1. Create properties in DetailViewController.h to contain the values passed in by the WarehouseViewController:
Name, Quantity, Price, and Id. Place these properties within the @interface block. Declare each nonatomic and
strong, using these names:

@interface DetailViewController : UIViewController

@property (nonatomic, strong) NSNumber *quantityData;
@property (nonatomic, strong) NSNumber *priceData;
@property (nonatomic, strong) NSString *nameData;
@property (nonatomic, strong) NSString *idData;

@end

2. In DetailViewController.m, just after the @implementation tag, synthesize each of the properties.

@implementation DetailViewController

@synthesize nameData;
@synthesize quantityData;
@synthesize priceData;
@synthesize idData;

129

Step 2: Set Up DetailViewControllerNative iOS Development

Add IBOutlet Variables

IBOutlet member variables let the controller manage each non-static control. Instead of coding these manually, you can use
the Interface Builder to create them. Interface Builder provides an Assistant Editor that gives you the convenience of side-by-side
editing windows. To make room for the Assistant Editor, you’ll usually want to reclaim screen area by hiding unused controls.

1. In the Project Navigator, click the DetailViewController.xib file.

The DetailViewController.xib file opens in the Standard Editor.

2. Hide the Navigator by clicking Hide or Show Navigator on the View toolbar . Alternatively, you can choose
View > Navigators > Hide Navigators in the Xcode menu.

3. Open the Assistant Editor by clicking Show the Assistant editor in the Editor toolbar . Alternatively, you
can choose View > Assistant Editor > Show Assistant Editor in the Xcode menu.

Because you opened DetailViewController.xib in the Standard Editor, the Assistant Editor shows the
DetailViewController.h file. The Assistant Editor guesses which files are most likely to be used together. If you
need to open a different file, click the Related Files control in the upper left hand corner of the Assistant Editor

.

4. At the top of the interface block in DetailViewController.h, add a pair of empty curly braces:

@interface DetailViewController : UiViewController <SFRestDelegate>
{

}

5. In the Standard Editor, control-click the Price text field control and drag it into the new curly brace block in the
DetailViewController.h file.

130

Step 2: Set Up DetailViewControllerNative iOS Development

6. In the popup dialog box, name the new outlet _priceField, and click Connect.

7. Repeat steps 2 and 3 for the Quantity text field, naming its outlet _quantityField.

8. Repeat steps 2 and 3 for the Name label, naming its outlet _nameLabel.

Your interface code now includes this block:

@interface DetailViewController : UIViewController
{

__weak IBOutlet UITextField *_priceField;
__weak IBOutlet UITextField *_quantityField;
__weak IBOutlet UILabel *_nameLabel;

}

Add an Update Button Event

1. In the Interface Builder, select the Update button and open the Connections Inspector

.

2. In the Connections Inspector, select the circle next to Touch Up Inside and drag it into the DetailViewController.h
file. Be sure to drop it below the closing curly brace. Name it updateTouchUpInside, and click Connect.

The Touch Up Inside event tells you that the user raised the finger touching the Update button without first leaving the
button. You’ll perform a record update every time this notification arrives.

Step 3: Create the Designated Initializer
Now, let’s get down to some coding. Start by adding a new initializer method to DetailViewController that takes the
name, ID, quantity, and price. The method name, by convention, must begin with “init”.

1. Click Show the Standard Editor and open the Navigator.
2. Add this declaration to the DetailViewController.h file just above the @end marker:

- (id) initWithName:(NSString *)recordName
sobjectId:(NSString *)salesforceId
quantity:(NSNumber *)recordQuantity

price:(NSNumber *)recordPrice;

Later, we’ll code WarehouseViewController to use this method for passing data to the DetailViewController.

3. Open the DetailViewController.m file, and copy the signature you created in the previous step to the end of the file,
just above the @end marker.

4. Replace the terminating semi-colon with a pair of curly braces for your implementation block.

- (id) initWithName:(NSString *)recordName
sobjectId:(NSString *)salesforceId
quantity:(NSNumber *)recordQuantity

price:(NSNumber *)recordPrice {
}

5. In the method body, send an init message to the super class. Assign the return value to self:

self = [super init];

131

Step 3: Create the Designated InitializerNative iOS Development

This init message gives you a functional object with base implementation which will serve as your return value.

6. Add code to verify that the super class initialization succeeded, and, if so, assign the method arguments to the corresponding
instance variables. Finally, return self.

if (self) {
self.nameData = recordName;
self.idData = salesforceId;
self.quantityData = recordQuantity;
self.priceData = recordPrice;

}
return self;

Here’s the completed method:

- (id) initWithName:(NSString *)recordName
sobjectId:(NSString *)salesforceId
quantity:(NSNumber *)recordQuantity

price:(NSNumber *)recordPrice {
self = [super init];
if (self) {

self.nameData = recordName;
self.idData = salesforceId;
self.quantityData = recordQuantity;
self.priceData = recordPrice;

}
return self;

}

7. To make sure the controls are updated each time the view appears, add a new viewWillAppear: event handler after the
viewDidLoad method implementation. Begin by calling the super class method.

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];

}

8. Copy the values of the property variables to the corresponding dynamic controls.

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
[_nameLabel setText:self.nameData];
[_quantityField setText:[self.quantityData stringValue]];
[_priceField setText:[self.priceData stringValue]];

}

9. Build and run your project to make sure you’ve coded everything without compilation errors. The app will look the same
as it did at first, because you haven’t yet added the code to launch the Detail view.

Note: The [super init] message used in the initWithName: method calls [super
initWithNibName:bundle:] internally. We use [super init] here because we’re not passing a NIB name or
a bundle. If you are specifying these resources in your own projects, you’ll need to call [super
initWithNibName:bundle:] explicitly.

132

Step 3: Create the Designated InitializerNative iOS Development

Step 4: Establish Communication Between the View Controllers
Any view that consumes Salesforce content relies on a SFRestAPI delegate to obtain that content. You can designate a single
view to be the central delegate for all views in the app, which requires precise communication between the view controllers.
For this exercise, let’s take a slightly simpler route: Make WarehouseViewController and DetailViewController
each serve as its own SFRestAPI delegate.

Update WarehouseViewController

First, let’s equip WarehouseViewController to pass the quantity and price values for the selected record to the detail view,
and then display that view.

1. In WarehouseViewController.m, above the @implementation block, add the following line:

#import "DetailViewController.h"

2. On a new line after the #pragma mark – Table view data source marker, type the following starter text to bring
up a list of UITableView delegate methods:

- (void)tableView

3. From the list, select the tableView:didSelectRowAtIndexPath: method.

4. Change the tableView parameter name to itemTableView.

- (void)tableView:(UITableView *)itemTableView didSelectRowAtIndexPath:(NSIndexPath
*)indexPath

5. At the end of the signature, type an opening curly brace ({) and press return to stub in the method implementation block.

6. At the top of the method body, per standard iOS coding practices, add the following call to deselect the row.

[itemTableView deselectRowAtIndexPath:indexPath animated:NO];

7. Next, retrieve a pointer to the NSDictionary object associated with the selected data row.

NSDictionary *obj = [self.dataRows objectAtIndex:indexPath.row];

8. At the end of the method body, create a local instance of DetailViewController by calling the
DetailViewController.initWithName:salesforceId:quantity:price: method. Use the data stored in the
NSDictionary object to set the name, Salesforce ID, quantity, and price arguments. The finished call looks like this:

DetailViewController *detailController =
[[DetailViewController alloc] initWithName:[obj objectForKey:@"Name"]

salesforceId:[obj objectForKey:@"Id"]
quantity:[obj objectForKey:@"Quantity__c"]

price:[obj objectForKey:@"Price__c"]];

9. To display the Detail view, add code that pushes the initialized DetailViewController onto the
UINavigationController stack:

[[self navigationController] pushViewController:detailController animated:YES];

133

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

Great! Now you’re using a UINavigationController stack to handle a set of two views. The root view controller is
always at the bottom of the stack. To activate any other view, you just push its controller onto the stack. When the view
is dismissed, you pop its controller, which brings the view below it back into the display.

10. Build and run your app. Click on any Warehouse item to display its details.

Add Update Functionality

Now that the WarehouseViewController is set up, we need to modify the DetailViewController class to send the
user’s updates to Salesforce via a REST request.

1. In the DetailViewController.h file, add an instance method to DetailViewController that lets a user update
the price and quantity fields. This method needs to send a record ID, the names of the fields to be updated, the new
quantity and price values, and the name of the object to be updated. Add this declaration after the interface block and just
above the @end marker.

- (void)updateWithObjectType:(NSString *)objectType
objectId:(NSString *)objectId
quantity:(NSString *)quantity
price:(NSString *)price;

To implement the method, you create an SFRestRequest object using the input values, then send the request object to
the shared instance of the SFRestAPI.

2. In the DetailViewController.m file, add the following line above the @implementation block.

#import "SFRestAPI.h"

3. At the end of the file, just above the @end marker, copy the updateWithObjectType:objectId:quantity:price:
signature, followed by a pair of curly braces:

- (void)updateWithObjectType:(NSString *)objectType
objectId:(NSString *)objectId
quantity:(NSString *)quantity
price:(NSString *)price {

}

4. In the implementation block, create a new NSDictionary object to contain the Quantity and Price fields. To allocate
this object, use the dictionaryWithObjectsAndKeys: ... NSDictionary class method with the desired list of
fields.

- (void)updateWithObjectType:(NSString *)objectType
objectId:(NSString *)objectId
quantity:(NSString *)quantity
price:(NSString *)price {

NSDictionary *fields = [NSDictionary dictionaryWithObjectsAndKeys:
quantity, @"Quantity__c",
price, @"Price__c",
nil];

}

134

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

5. Create a SFRestRequest object. To allocate this object, use the
requestForUpdateWithObjectType:objectId:fields: instance method on the SFRestAPI shared instance.

- (void)updateWithObjectType:(NSString *)objectType
objectId:(NSString *)objectId
quantity:(NSString *)quantity
price:(NSString *)price {

NSDictionary *fields = [NSDictionary dictionaryWithObjectsAndKeys:
quantity, @"Quantity__c",
price, @"Price__c",
nil];

SFRestRequest *request =
[[SFRestAPI sharedInstance]

requestForUpdateWithObjectType:objectType
objectId:objectId
fields:fields];

}

6. Finally, send the new SFRestRequest object to the service by calling send:delegate: on the SFRestAPI shared
instance. For the delegate argument, be sure to specify self, since DetailViewController is the SFRestDelegate
in this case.

- (void)updateWithObjectType:(NSString *)objectType
objectId:(NSString *)objectId
quantity:(NSString *)quantity
price:(NSString *)price {

NSDictionary *fields = [NSDictionary dictionaryWithObjectsAndKeys:
quantity, @"Quantity__c",
price, @"Price__c",
nil];

SFRestRequest *request =
[[SFRestAPI sharedInstance]

requestForUpdateWithObjectType:objectType
objectId:objectId
fields:fields];

[[SFRestAPI sharedInstance] send:request delegate:self];
}

7. Edit the updateTouchUpInside: action method to call the updateWithObjectType:objectId:quantity:price:
method when the user taps the Update button.

- (IBAction)updateTouchUpInside:(id)sender {
// For Update button
[self updateWithObjectType:@"Merchandise__c"

objectId:self.idData
quantity:[_quantityField text]

price:[_priceField text]];}

Note:

• Extra credit: Improve your app’s efficiency by performing updates only when the user has actually changed
the quantity value.

135

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

Add SFRestDelegate to DetailViewController

We’re almost there! We’ve issued the REST request, but still need to provide code to handle the response.

1. Open the DetailViewController.h file and change the DetailViewController interface declaration to include
<SFRestDelegate>

@interface DetailViewController : UIViewController <SFRestDelegate>

2. Open the WarehouseViewController.m file.

3. Find the pragma that marks the SFRestAPIDelegate section.

#pragma mark - SFRestAPIDelegate

4. Copy the four methods under this pragma into the DetailViewController.m file.

- (void)request:(SFRestRequest *)request didLoadResponse:(id)jsonResponse {
NSArray *records = [jsonResponse objectForKey:@"records"];
NSLog(@"request:didLoadResponse: #records: %d", records.count);
self.dataRows = records;
[self.tableView reloadData];

}

- (void)request:(SFRestRequest*)request didFailLoadWithError:(NSError*)error {
NSLog(@"request:didFailLoadWithError: %@", error);
//add your failed error handling here

}

- (void)requestDidCancelLoad:(SFRestRequest *)request {
NSLog(@"requestDidCancelLoad: %@", request);
//add your failed error handling here

}

- (void)requestDidTimeout:(SFRestRequest *)request {
NSLog(@"requestDidTimeout: %@", request);
//add your failed error handling here

}

These methods are all we need to implement the SFRestAPI interface. For this tutorial, we can retain the simplistic
handling of error, cancel, and timeout conditions. However, we need to change the request:didLoadResponse:
method to suit the detail view purposes. Let’s use the UINavigationController stack to return to the list view after
an update occurs.

5. In the DetailViewController.m file, delete the existing code in the request:didLoadResponse: delegate method.
In its place, add code that logs a success message and then pops back to the root view controller. The revised method looks
like this.

- (void)request:(SFRestRequest *)request didLoadResponse:(id)jsonResponse {
NSLog(@"1 record updated");
[self.navigationController popViewControllerAnimated:YES];

}

6. Build and run your app. In the Warehouse view, click one of the items. You’re now able to access the Detail view and edit
its quantity, but there’s a problem: the keyboard won’t go away when you want it to. You need to add a little finesse to
make the app truly functional.

136

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

Hide the Keyboard

The iOS keyboard remains visible as long as any text input control on the screen is responding to touch events. This is where
the “First Responder” setting, which you might have noticed in the Interface Builder, comes into play. We didn’t set a first
responder because our simple app just uses the default UIKit behavior. As a result, iOS can consider any input control in the
view to be the first responder. If none of the controls explicity tell iOS to hide the keyboard, it remains active.

You can resolve this issue by making every touch-enabled edit control resign as first responder.

1. In DetailViewController.h, below the curly brace block, add a new instance method named hideKeyboard that
takes no arguments and returns void.

- (void)hideKeyboard;

2. In the implementation file, implement this method to send a resignFirstResponder message to each touch-enabled
edit control in the view.

- (void)hideKeyboard {
[_quantityField resignFirstResponder];
[_priceField resignFirstResponder];

}

The only remaining question is where to call the hideKeyboard method. We want the keyboard to go away when the
user taps outside of the text input controls. There are many likely events that we could try, but the only one that is sure to
catch the background touch under all circumstances is [UIResponder touchesEnded:withEvent:].

3. Since the event is already declared in a class that DetailViewController inherits, there’s no need to re-declare it in
the DetailViewController.h file. Rather, in the DetailViewController.m file, type the following incomplete
code on a new line outside of any method body:

- (void)t

A popup menu displays with a list of matching instance methods from the DetailViewController class hierarchy.

Note: If the popup menu doesn’t appear, just type the code described next.

4. In the popup menu, highlight the touchesEnded:withEvent: method and press Return. The editor types the full
method signature into your file for you. Just type an opening brace, press Return, and your stub method is completed by
the editor. Within this stub, send a hideKeyboard message to self.

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event{
[self hideKeyboard];

}

Normally, in an event handler, you’d be expected to call the super class version before adding your own code. As documented
in the iOS Developer Library, however, leaving out the super call in this case is a common usage pattern. The only “gotcha”
is that you also have to implement the other touches event handlers, which include:

– touchesBegan:withEvent:
– touchesMoved:withEvent:
– touchesCancelled:withEvent:

The good news is that you only need to provide empty stub implementations.

137

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

5. Use the Xcode editor to add these stubs the same way you added the touchesEnded: stub. Make sure your final code
looks like this:

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event{
[self hideKeyboard];

}

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event{

}

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event{

}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{

}

Refreshing the Query with viewWillAppear

The viewDidLoad method lets you configure the view when it first loads. In the WarehouseViewController
implementation, this method contains the REST API query that populates both the list view and the detail view. However,
since WarehouseViewController represents the root view, the viewDidLoad notification is called only once—when the
view is initialized. What does this mean? When a user updates a quantity in the detail view and returns to the list view, the
query is not refreshed. Thus, if the user returns to the same record in the detail view, the updated value does not display, and
the user is not happy.

You need a different method to handle the query. The viewWillAppear method is called each time its view is displayed.
Let’s add this method to WarehouseViewController and move the SOQL query into it.

1. In the WarehouseViewController.m file, add the following code after the viewDidLoad implementation.

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];

}

2. Cut the following lines from the viewDidLoad method and paste them into the viewWillAppear: method, after the
call to super:

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name,
ID,

Price__c, Quantity__c FROM Merchandise__c LIMIT 10"];
[[SFRestAPI sharedInstance] send:request delegate:self];

The final viewDidLoad and viewWillAppear: methods look like this.

- (void)viewDidLoad{
[super viewDidLoad];
self.title = @"Warehouse App";

}

- (void)viewWillAppear:(BOOL)animated {
[super viewWillAppear:animated];
//Here we use a query that should work on either Force.com or Database.com
SFRestRequest *request = [[SFRestAPI sharedInstance] requestForQuery:@"SELECT Name,

ID,
Price__c, Quantity__c FROM Merchandise__c LIMIT 10"];

138

Step 4: Establish Communication Between the View
Controllers

Native iOS Development

[[SFRestAPI sharedInstance] send:request delegate:self];
}

The viewWillAppear: method refreshes the query each time the user navigates back to the list view. Later, when the user
revisits the detail view, the list view controller updates the detail view with the refreshed data.

Step 5: Try Out the App
1. Build your app and run it in the iPhone emulator. If you did everything correctly, a detail page appears when you click a

Merchandise record in the Warehouse screen.

2. Update a record's quantity and price. Be sure to click the Update button in the detail view after you edit the values. When
you navigate back to the detail view, the updated values display.

3. Log into your DE org and view the record using the browser UI to see the updated values.

iOS Native Sample Applications
The app you created in Running the Xcode Project Template App is itself a sample application, but it only does one thing:
issue a SOQL query and return a result. The native iOS sample apps demonstrate more functionality you can examine and
work into your own apps.

• RestAPIExplorer exercises all of the native REST API wrappers. It resides in the Mobile SDK for iOS under
native/SampleApps/RestAPIExplorer.

• NativeSqlAggregator shows SQL aggregation examples as well as a native SmartStore implementation. It resides in the
Mobile SDK for iOS under native/SampleApps/NativeSqlAggregator.

• FileExplorer demonstrates the Files API as well as the underlying MKNetwork network enhancements. It resides in the
Mobile SDK for iOS under native/SampleApps/FileExplorer.

139

Step 5: Try Out the AppNative iOS Development

Chapter 5

Native Android Development

Salesforce Mobile SDK delivers libraries and sample projects for developing
native mobile apps on Android.

In this chapter ...

• Android Native Quick Start
The Android native SDK provides two main features:• Native Android Requirements

• Creating an Android Project • Automation of the OAuth2 login process, making it easy to integrate the
process with your app.• Setting Up Sample Projects in Eclipse

• Developing a Native Android App • Access to the Salesforce REST API, with utility classes that simplify that
access.• Tutorial: Creating a Native Android

Warehouse Application
The Android Salesforce Mobile SDK includes several sample native applications.
It also provides an ant target for quickly creating a new application.

• Android Native Sample Applications

140

Android Native Quick Start
Use the following procedure to get started quickly.

1. Make sure you meet all of the native Android requirements.
2. Install the Mobile SDK for Android.
3. At the command line, run the forcedroid application to create a new Android project, and then run that app in Eclipse or

from the command line.
4. Set up sample projects in Eclipse.

Native Android Requirements
Mobile SDK 2.2 Android development requires the following software.

• Java JDK 6 or higher—http://www.oracle.com/downloads.

• Apache Ant 1.8 or later—http://ant.apache.org.

• Android SDK Tools, version 21 or later—http://developer.android.com/sdk/installing.html.

Note: For best results, install all previous versions of the Android SDK as well as your target version.

• Eclipse—https://www.eclipse.org. Check the Android Development Tools website for the minimum supported
Eclipse version.

• Android ADT (Android Development Tools) plugin for Eclipse, version 21 or
later—http://developer.android.com/sdk.

• In order to run the application in the Emulator, you need to set up at least one Android Virtual Device (AVD) that targets
Platform 2.2 or above (we recommend 4.0 or above). To learn how to set up an AVD in Eclipse, follow the instructions
at http://developer.android.com/guide/developing/devices/managing-avds.html.

On the Salesforce side, you’ll also need:

• Salesforce Mobile SDK 2.2 for Android. See Install the Mobile SDK.

• A Salesforce Developer Edition organization with a connected app.

The SalesforceSDK project is built with the Android 3.0 (Honeycomb) library. The primary reason for this is that we want
to be able to make a conditional check at runtime for file system encryption capabilities. This check is bypassed on earlier
Android platforms; thus, you can still use the salesforcesdk.jar in earlier Android application versions, down to the
minimum-supported Android 2.2.

Creating an Android Project
To create a new app, use forcedroid again on the command line. You have two options for configuring your app.

• Configure your application options interactively as prompted by the forcedroid app.

• Specify your application options directly at the command line.

Specifying Application Options Interactively
To enter application options interactively, do one of the following:

141

Android Native Quick StartNative Android Development

http://www.oracle.com/downloads/
http://ant.apache.org
http://developer.android.com/sdk/installing.html
https://www.eclipse.org
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/developing/devices/managing-avds.html

• If you installed Mobile SDK globally, type forcedroid create.
• If you installed Mobile SDK locally, type <forcedroid_path>/node_modules/.bin/forcedroid create.

The forcedroid utility prompts you for each configuration option.

Specifying Application Options Directly
You can also specify your configuration directly by typing the full forcedroid command string. To see usage information, type
forcedroid without arguments. The list of available options displays:

$ node_modules/.bin/forcedroid
Usage:
forcedroid create

--apptype=<Application Type> (native, hybrid_remote, hybrid_local)
--appname=<Application Name>
--targetdir=<Target App Folder>
--packagename=<App Package Identifier> (com.my_company.my_app)
--startpage=<Path to the remote start page> (/apex/MyPage — Only required/used for

'hybrid_remote')
[--usesmartstore=<Whether or not to use SmartStore> ('true' or 'false', false by

default)]

Using this information, type forcedroid create, followed by your options and values. For example:

$ node_modules/.bin/forcedroid create --apptype="native" --appname="packagetest"
--targetdir="PackageTest" --packagename="com.test.my_new_app"

Importing and Building Your App in Eclipse
Use the following instructions to build and run your new app in the Eclipse editor.

1. Launch Eclipse and select your target directory as the workspace directory.

2. Select Eclipse > Preferences, choose the Android section, and enter the Android SDK location.

3. Click OK.

4. Select File > Import and select General > Existing Projects into Workspace.

5. Click Next.

6. Specify the forcedroid/native directory as your root directory. Next to the list that displays, click Deselect All, then
browse the list and check the SalesforceSDK project.

7. If you set –use_smartstore=true, check the SmartStore project as well.

8. Click Import.

9. Repeat Steps 4–8. In Step 6, choose your target directory as the root, then select only your new project.

142

Creating an Android ProjectNative Android Development

When you’ve finished importing the projects, Eclipse automatically builds your workspace. This process can take several
minutes. When the status bar reports zero errors, you’re ready to run the project.

1. In your Eclipse workspace, Control-click or right-click your project.
2. From the popup menu, choose Run As > Android Application.

Eclipse launches your app in the emulator or on your connected Android device.

Building and Running Your App From the Command Line
After the command line returns to the command prompt, the forcedroid script prints instructions for running Android utilities
to configure and clean your project. Follow these instructions only if you want to build and run your app from the command
line.

1. Before building the new application, build the SalesforceSDK project by running the following commands at the command
prompt:

cd $SALESFORCE_SDK_DIR/native/SalesforceSDK
$ANDROID_SDK_DIR/tools/android update project -p . -t <id>
ant clean debug

where SALESFORCE_SDK_DIR points to your Salesforce SDK installation directory, and ANDROID_SDK_DIR points to
your Android SDK directory.

Note: The -t <id> parameter specifies API level of the target Android version. Use android.bat list
targets to see the IDs for API versions installed on your system. See Native Android Requirements for supported
API levels.

2. Build the SmartStore project by running the following commands at the command prompt:

cd $SALESFORCE_SDK_DIR/hybrid/SmartStore
$ANDROID_SDK_DIR/tools/android update project -p . -t <id>
ant clean debug

where SALESFORCE_SDK_DIR points to your Salesforce SDK installation directory, and ANDROID_SDK_DIR points to
your Android SDK directory.

3. To build the new application, run the following commands at the command prompt:

cd <your_project_directory>
$ANDROID_SDK_DIR/tools/android update project -p . -t <id>
ant clean debug

where ANDROID_SDK_DIR points to your Android SDK directory.

4. If your emulator is not running, use the Android AVD Manager to start it. If you’re using a device, connect it.
5. Type the following command at the command prompt:

ant installd

Note: You can safely ignore the following warning:

It seems that there are sub-projects. If you want to update them please use the
--subprojects parameter.

143

Creating an Android ProjectNative Android Development

The Android project you created contains a simple application you can build and run.

forcedroid Command Parameters
The following table describes the forcedroid command parameters.

DescriptionParameter Name

One of the following:--apptype

• “native”
• “hybrid_remote” (server-side hybrid app using VisualForce)
• “hybrid_local” (client-side hybrid app that doesn’t use

VisualForce)

Name of your application--appname

Folder in which you want your project to be created. If the
folder doesn’t exist, the script creates it.

--targetdir

Package identifier for your application (for example,
“com.acme.app”).

--packagename

(hybrid remote apps only) Server path to the Apex start page.
 For example: /apex/MyAppStartPage.

--apexpage

(Optional) Include only if you want to use SmartStore for
offline data. Defaults to false if not specified.

--usesmartstore=true

Setting Up Sample Projects in Eclipse
The repository you cloned has other sample apps you can run. To import those into Eclipse:

1. Launch Eclipse and select —target_dir as your workspace directory.
2. If you haven’t done so already, select Window > Preferences, choose the Android section, and enter the Android SDK

location. Click OK.
3. Select File > Import and select General > Existing Projects into Workspace.
4. Click Next.
5. Select forcedroid/native as your root directory and import the projects listed in Android Project Files.

Android Project Files
Inside the $NATIVE_DIR, you will find several projects:

• SalesforceSDK—Salesforce Mobile SDK project. Provides support for OAuth2 and REST API calls

• test/SalesforceSDKTest—App for testing the SalesforceSDK project

• TemplateApp—App used as a template when creating new native applications using Mobile SDK

• test/TemplateAppTest—App for testing the TemplateApp project

• SampleApps/RestExplorer—Sample app using SalesforceSDK to explore the REST API calls

• SampleApps/FileExplorer—Sample app that demonstrates the Files API

• SampleApps/NativeSqlAggregator —Sample native app that uses SmartStore

144

Setting Up Sample Projects in EclipseNative Android Development

Developing a Native Android App
The native Android version of the Salesforce Mobile SDK empowers you to create rich mobile apps that directly use the
Android operating system on the host device. To create these apps, you need to understand Java and Android development
well enough to write code that uses Mobile SDK native classes.

The create_native Script
If you manually installed Mobile SDK from GitHub, use the create_native script, instead of forcedroid, to create a new
native project. The create_native script creates the app folder you specify, then populates it with a project file, build file,
manifest file and resource files. Next, it copies the entire TemplateApp project to the new folder. It then updates the project
properties, file names, class names, and directory paths to match the new app’s configuration. As a result, your new project
replicates all the settings and components used by the TemplateApp project.

If your new app supports SmartStore, the script also:

• Adds the SmartStore support library to the app directory.

• References the SmartStore library in the new project’s properties.

• Changes the application class to extend SalesforceSDKManagerWithSmartStore rather than
SalesforceSDKManager.

Finally, the script posts an important message:

“Before you ship, make sure to plug in your oauth client id and callback url in:

${target.dir}/res/values/bootconfig.xml”

If you’re wondering where to get the OAuth client ID and callback URL, look in your connected app definition in your
Salesforce organization. The OAuth client ID is the connected app’s Consumer Key. The callback URL is the one you specified
when you created your connected app. You enter these keys in the res/values/bootconfig.xml file of your project,
which contains a few clearly named <string> nodes. Here’s an example bootconfig.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>
<string name="remoteAccessConsumerKey">3MVG92.uWdyphVj4bnolD7yuIpCQsNgddW

tqRND3faxrv9uKnbj47H4RkwheHA2lKY4cBusvDVp0M6gdGE8hp</string>
<string name="oauthRedirectURI">sfdc:///axm/detect/oauth/done</string>
<string-array name="oauthScopes">

<item>api</item>
</string-array>

</resources>

The create_native script pre-populates oauthRedirectURI and remoteAccessConsumerKey strings with dummy
values. Replace those values with the strings from your connected app definition.

Android Application Structure
Typically, native Android apps that use the Mobile SDK require:

• An application entry point class that extends android.app.Application.

• At least one activity that extends android.app.Activity.

With the Mobile SDK, you:

145

Developing a Native Android AppNative Android Development

• Create a stub class that extends android.app.Application.

• Implement onCreate() in your Application stub class to call SalesforceSDKManager.initNative().

• Extend SalesforceActivity, SalesforceListActivity, or SalesforceExpandableListActivity. This
extension is optional but recommended.

The top-level SalesforceSDKManager class implements passcode functionality for apps that use passcodes, and fills in the
blanks for those that don’t. It also sets the stage for login, cleans up after logout, and provides a special event watcher that
informs your app when a system-level account is deleted. OAuth protocols are handled automatically with internal classes.

The SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity classes offer
free handling of application pause and resume events and related passcode management. We recommend that you extend one
of these classes for all activities in your app—not just the main activity. If you use a different base class for an activity, you’re
responsible for replicating the pause and resume protocols found in SalesforceActivity.

Within your activities, you interact with Salesforce objects by calling Salesforce REST APIs. The Mobile SDK provides the
com.salesforce.androidsdk.rest package to simplify the REST request and response flow.

You define and customize user interface layouts, image sizes, strings, and other resources in XML files. Internally, the SDK
uses an R class instance to retrieve and manipulate your resources. However, the Mobile SDK makes its resources directly
accessible to client apps, so you don’t need to write code to manage these features.

146

Android Application StructureNative Android Development

Native API Packages
Salesforce Mobile SDK groups native Android APIs into Java packages. For a quick overview of these packages and points
of interest within them, see Android Packages and Classes.

147

Native API PackagesNative Android Development

Overview of Native Classes
This overview of the Mobile SDK native classes give you a look at pertinent details of each class and a sense of where to find
what you need.

SalesforceSDKManager Class
The SalesforceSDKManager class is the entry point for all native Android applications that use the Salesforce Mobile
SDK. It provides mechanisms for:

• Login and logout

• Passcodes

• Encryption and decryption of user data

• String conversions

• User agent access

• Application termination

• Application cleanup

initNative() Method

During startup, you initialize the singleton SalesforceSDKManager object by calling its static initNative() method.
This method takes four arguments:

DescriptionParameter Name

An instance of Context that describes your application’s
context. In an Application extension class, you can satisfy

applicationContext

this parameter by passing a call to
getApplicationContext().

An instance of your implementation of theKeyInterface
Mobile SDK interface. You are required to implement this
interface.

keyImplementation

The descriptor of the class that displays your main activity.
The main activity is the first activity that displays after login.

mainActivity

(Optional) The class descriptor of your custom
LoginActivity class.

loginActivity

Here’s an example from the TemplateApp:

SalesforceSDKManager.initNative(getApplicationContext(), new KeyImpl(), MainActivity.class);

In this example, KeyImpl is the app’s implementation of KeyInterface. MainActivity subclasses SalesforceActivity
and is designated here as the first activity to be called after login.

logout() Method

The SalesforceSDKManager.logout() method clears user data. For example, if you’ve introduced your own resources
that are user-specific, you don’t want them to persist into the next user session. SmartStore destroys user data and account
information automatically at logout.

148

Overview of Native ClassesNative Android Development

Always call the superclass method somewhere in your method override, preferably after doing your own cleanup. Here’s a
pseudo-code example.

@Override
public void logout(Activity frontActivity) {

// Clean up all persistent and non-persistent app artifacts
// Call superclass after doing your own cleanup
super.logout(frontActivity);

}

getLoginActivityClass() Method

This method returns the descriptor for the login activity. The login activity defines the WebView through which the Salesforce
server delivers the login dialog.

getUserAgent() Methods

The Mobile SDK builds a user agent string to publish the app’s versioning information at runtime. This user agent takes the
following form.

SalesforceMobileSDK/<salesforceSDK version> android/<android OS version> appName/appVersion
<Native|Hybrid>

Here’s a real-world example.

SalesforceMobileSDK/2.0 android mobile/4.2 RestExplorer/1.0 Native

To retrieve the user agent at runtime, call the SalesforceSDKManager.getUserAgent() method.

isHybrid() Method

Imagine that your Mobile SDK app creates libraries that are designed to serve both native and hybrid clients. Internally, the
library code switches on the type of app that calls it, but you need some way to determine the app type at runtime. To determine
the type of the calling app in code, call the boolean SalesforceSDKManager.isHybrid() method. True means hybrid,
and false means native.

KeyInterface Interface
KeyInterface is a required interface that you implement and pass into the SalesforceSDKManager.initNative() method.

getKey() Method

You are required to return a Base64-encoded encryption key from the getKey() abstract method. Use the Encryptor.hash()
and Encryptor.isBase64Encoded() helper methods to generate suitable keys. The Mobile SDK uses your key to encrypt
app data and account information.

AccountWatcher Class
AccountWatcher informs your app when the user’s account is removed through Settings. Without AccountWatcher, the
application gets no notification of these changes. It’s important to know when an account is removed so that its passcode and
data can be disposed of properly, and logout can begin.

AccountWatcher defines an internal interface, AccountRemoved, that each app must implement. SalesforceSDKManager
implements this interface to terminate the app’s current (front) activity and reset the passcode, if used, and encryption key.

149

KeyInterface InterfaceNative Android Development

PasscodeManager Class
The PasscodeManager class manages passcode encryption and displays the passcode page as required. It also reads mobile
policies and caches them locally. This class is used internally to handle all passcode-related activities with minimal coding on
your part. As a rule, apps call only these three PasscodeManager methods:

• public void onPause(Activity ctx)

• public boolean onResume(Activity ctx)

• public void recordUserInteraction()

These methods must be called in any native activity class that

• Is in an app that requires a passcode, and

• Does not extend SalesforceActivity, SalesforceListActivity, or SalesforceExpandableListActivity.

You get this implementation for free in any activity that extends SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity.

onPause() and onResume()

These methods handle the passcode dialog box when a user pauses and resumes the app. Call each of these methods in the
matching methods of your activity class. For example, SalesforceActivity.onPause() calls
PasscodeManager.onPause(), passing in its own class descriptor as the argument, before calling the superclass.

@Override
public void onPause() {

passcodeManager.onPause(this);
super.onPause();

}

Use the boolean return value of PasscodeManager.onResume() method as a condition for resuming other actions. In your
app’s onResume() implementation, be sure to call the superclass method before calling the PasscodeManager version. For
example:

@Override
public void onResume() {

super.onResume();
// Bring up passcode screen if needed
passcodeManager.onResume(this);

}

recordUserInteraction()

This method saves the time stamp of the most recent user interaction. Call PasscodeManager.recordUserInteraction()
in the activity's onUserInteraction() method. For example:

@Override
public void onUserInteraction() {

passcodeManager.recordUserInteraction();
}

150

PasscodeManager ClassNative Android Development

Encryptor class
The Encryptor helper class provides static helper methods for encrypting and decrypting strings using the hashes required
by the SDK. It’s important for native apps to remember that all keys used by the Mobile SDK must be Base64-encoded. No
other encryption patterns are accepted. Use the Encryptor class when creating hashes to ensure that you use the correct
encoding.

Most Encryptor methods are for internal use, but apps are free to use this utility as needed. For example, if an app implements
its own database, it can use Encryptor as a free encryption and decryption tool.

SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity
Classes
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity are the skeletal
base classes for native SDK activities. They extend android.app.Activity, android.app.ListActivity, and
android.app.ExpandableListActivity, respectively.

Each of these classes provides a free implementation of PasscodeManager calls. When possible, it’s a good idea to extend
one of these classes for all of your app’s activities, even if your app doesn’t currently use passcodes.

For passcode-protected apps: If any of your activities don’t extend SalesforceActivity, SalesforceListActivity,
or SalesforceExpandableListActivity, you’ll need to add a bit of passcode protocol to each of those activities. See
Using Passcodes

Each of these activity classes contain a single abstract method:

public abstract void onResume(RestClient client);

This method overloads the Activity.onResume() method, which is implemented by the class. The class method calls
your overload after it instantiates a RestClient instance. Use this method to cache the client that’s passed in, and then use
that client to perform your REST requests.

UI Classes
Activities in the com.salesforce.androidsdk.ui package represent the UI resources that are common to all Mobile
SDK apps. You can style, skin, theme, or otherwise customize these resources through XML. With the exceptions of
SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity, do not override
these activity classes with intentions of replacing the resources at runtime.

ClientManager Class
ClientManager works with the Android AccountManager class to manage user accounts. More importantly for apps, it
provides access to RestClient instances through two methods:

• getRestClient()

• peekRestClient()

The getRestClient() method asynchronously creates a RestClient instance for querying Salesforce data. Asynchronous
in this case means that this method is intended for use on UI threads. The peekRestClient() method creates a RestClient
instance synchronously, for use in non-UI contexts.

Once you get the RestClient instance, you can use it to send REST API calls to Salesforce.

151

Encryptor classNative Android Development

RestClient Class
As its name implies, the RestClient class is an Android app’s liaison to the Salesforce REST API.

You don’t explicitly create new instances of the RestClient class. Instead, you use the ClientManager factory class to
obtain a RestClient instance. Once you get the RestClient instance, you can use it to send REST API calls to Salesforce.
The method you call depends on whether you’re calling from a UI context. See ClientManager Class.

Use the following RestClient methods to send REST requests:

• sendAsync()—Call this method if you obtained your RestClient instance by calling
ClientManager.getRestClient().

• sendSync()—Call this method if you obtained your RestClient instance by calling
ClientManager.peekRestClient().

sendSync() Method

You can choose from three overloads of RestClient.sendSync(), depending on the degree of information you can provide
for the request.

sendAsync() Method

The RestClient.sendAsync() method wraps your RestRequest object in a new instance of WrappedRestRequest.
It then adds the WrappedRestRequest object to the request queue and returns that object. If you wish to cancel the request
while it’s pending, call cancel() on the WrappedRestRequest object.

getRequestQueue() Method

You can access the underlying RequestQueue object by calling restClient.getRequestQueue() on your RestClient
instance. With the RequestQueue object you can directly cancel and otherwise manipulate pending requests. For example,
you can cancel an entire pending request queue by calling restClient.getRequestQueue().cancelAll(). See a code
example at Managing the Request Queue.

RestRequest Class
The RestRequest class creates and formats REST API requests from the data your app provides. It is implemented by
Mobile SDK and serves as a factory for instances of itself.

Don’t directly create instances of RestRequest. Instead, call an appropriate RestRequest static factory method such as
RestRequest.getRequestForCreate(). To send the request, pass the returned RestRequest object to
RestClient.sendAsync() or RestClient.sendSync(). See Using REST APIs.

The RestRequest class natively handles the standard Salesforce data operations offered by the Salesforce REST API and
SOAP API. Supported operations are:

DescriptionParametersOperation

Returns Salesforce version metadataNoneVersions

Returns available resources for the
specified API version, including resource
name and URI

API versionResources

Returns the object’s complete metadata
collection

API version, object typeMetadata

152

RestClient ClassNative Android Development

DescriptionParametersOperation

Returns a list of all available objects in
your org and their metadata

API versionDescribeGlobal

Returns a description of a single object
type

API version, object typeDescribe

Creates a new record in the specified
object

API version, object type, map of field
names to value objects

Create

Retrieves a record by object IDAPI version, object type, object ID, list
of fields

Retrieve

Updates an object with the given mapAPI version, object type, object ID, map
of field names to value objects

Update

Updates or inserts an object from external
data, based on whether the external ID
currently exists in the external ID field

API version, object type, external ID
field, external ID, map of field names to
value objects

Upsert

Deletes the object of the given type with
the given ID

API version, object type, object IDDelete

To obtain an appropriate RestRequest instance, call the RestRequest static method that matches the operation you want
to perform. Here are the RestRequest static methods.

• getRequestForCreate()

• getRequestForDelete()

• getRequestForDescribe()

• getRequestForDescribeGlobal()

• getRequestForMetadata()

• getRequestForQuery()

• getRequestForResources()

• getRequestForRetrieve()

• getRequestForSearch()

• getRequestForUpdate()

• getRequestForUpsert()

• getRequestForVersions()

These methods return a RestRequest object which you pass to an instance of RestClient. The RestClient class provides
synchronous and asynchronous methods for sending requests: sendSync() and sendAsync(). UsesendAsync() when
you’re sending a request from a UI thread. Use sendSync() only on non-UI threads, such as a service or a worker thread
spawned by an activity.

FileRequests Class
The FileRequests class provides methods that create file operation requests. Each method returns a new RestRequest
object. Applications send this object to the Salesforce service to process the request. For example, the following code snippet

153

FileRequests ClassNative Android Development

calls the ownedFilesList() method to retrieve a RestRequest object. It then sends the RestRequest object to the
server using RestClient.sendAsync():

RestRequest ownedFilesRequest = FileRequests.ownedFilesList(null, null);
RestClient client = this.client;
client.sendAsync(ownedFilesRequest, new AsyncRequestCallback() {

// Do something with the response
});

Note: This example passes null to the first parameter (userId). This value tells the ownedFilesList() method
to use the ID of the context, or logged in, user. The second null, for the pageNum parameter, tells the method to
fetch the first page of results.

See Files and Networking for a full description of FileRequests methods.

Methods

For a full reference of FileRequests methods, see FileRequests Methods (Android). For a full description of the REST
request and response bodies, go to Chatter REST API Resources > Files Resources at
http://www.salesforce.com/us/developer/docs/chatterapi.

DescriptionMethod Name

Builds a request that fetches a page from the list of files owned
by the specified user.

ownedFilesList

Builds a request that fetches a page from the list of files owned
by the user’s groups.

filesInUsersGroups

Builds a request that fetches a page from the list of files that have
been shared with the user.

filesSharedWithUser

Builds a request that fetches the file details of a particular version
of a file.

fileDetails

Builds a request that fetches the latest file details of one or more
files in a single request.

batchFileDetails

Builds a request that fetches the a preview/rendition of a particular
page of the file (and version).

fileRendition

Builds a request that fetches the actual binary file contents of this
particular file.

fileContents

Builds a request that fetches a page from the list of entities that
this file is shared to.

fileShares

Builds a request that add a file share for the specified file ID to
the specified entity ID.

addFileShare

Builds a request that deletes the specified file share.deleteFileShare

Builds a request that uploads a new file to the server. Creates a
new file.

uploadFile

154

FileRequests ClassNative Android Development

http://www.salesforce.com/us/developer/docs/chatterapi/index_Left.htm#StartTopic=Content/connect_resources_files.htm

WrappedRestRequest Class
The WrappedRestRequest class subclasses the Volley Request class. You don’t create WrappedRestRequest objects.
The RestClient.sendAsync() method uses this class to wrap the RestRequest object that you passed in and returns
it to the caller. You can use this returned object to cancel the request “in flight” by calling the cancel() method.

LoginActivity Class
LoginActivity defines the login screen. The login workflow is worth describing because it explains two other classes in the
activity package. In the login activity, if you press the Menu button, you get three options: Clear Cookies, Reload, and Pick
Server. Pick Server launches an instance of the ServerPickerActivity class, which displays Production, Sandbox, and
Custom Server options. When a user chooses Custom Server, ServerPickerActivity launches an instance of the
CustomServerURLEditor class. This class displays a popover dialog that lets you type in the name of the custom server.

Other UI Classes
Several other classes in the ui package are worth mentioning, although they don’t affect your native API development efforts.

The PasscodeActivity class provides the UI for the passcode screen. It runs in one of three modes: Create, CreateConfirm,
and Check. Create mode is presented the first time a user attempts to log in. It prompts the user to create a passcode. After
the user submits the passcode, the screen returns in CreateConfirm mode, asking the user to confirm the new passcode.
Thereafter, that user sees the screen in Check mode, which simply requires the user to enter the passcode.

SalesforceR is a deprecated class. This class was required when the Mobile SDK was delivered in JAR format, to allow
developers to edit resources in the binary file. Now that the Mobile SDK is available as a library project, SalesforceR is not
needed. Instead, you can override resources in the SDK with your own.

SalesforceDroidGapActivity and SalesforceGapViewClient are used only in hybrid apps.

UpgradeManager Class
UpgradeManager provides a mechanism for silently upgrading the SDK version installed on a device. This class stores the
SDK version information in a shared preferences file on the device. To perform an upgrade, UpgradeManager queries the
current SalesforceSDKManager instance for its SDK version and compares its version to the device’s version information.
If an upgrade is necessary—for example, if there are changes to a database schema or to encryption patterns—UpgradeManager
can take the necessary steps to upgrade SDK components on the device. This class is intended for future use. Its implementation
in Mobile SDK 2.0 simply stores and compares the version string.

Utility Classes
Though most of the classes in the util package are for internal use, several of them can also benefit third-party developers.

DescriptionClass

See the source code for a list of all events that the Mobile SDK
for Android propagates.

EventsObservable

Implement this interface to eavesdrop on any event. This
functionality is useful if you’re doing something special when
certain types of events occur.

EventsObserver

155

WrappedRestRequest ClassNative Android Development

DescriptionClass

This class handles what happens when an administrator
revokes a user’s refresh token. See Handling Refresh Token
Revocation in Android Native Apps.

TokenRevocationReceiver

You can directly call this static helper class. It parses a given
URI, breaks its parameters into a series of key/value pairs, and
returns them in a map.

UriFragmentParser

ForcePlugin Class
All classes in thecom.salesforce.androidsdk.phonegap package are intended for hybrid app support. Most of these
classes implement Javascript plugins that access native code. The base class for these Mobile SDK plugins is ForcePlugin.
If you want to implement your own Javascript plugin in a Mobile SDK app, extend ForcePlugin, and implement the abstract
execute() function.

ForcePlugin extends CordovaPlugin, which works with the Javascript framework to let you create a Javascript module
that can call into native functions. PhoneGap provides the bridge on both sides: you create a native plugin with CordovaPlugin,
then you create a Javascript file that mirrors it. Cordova calls the plugin’s execute() function when a script calls one of the
plugin’s Javascript functions.

Using Passcodes
User data in Mobile SDK apps is secured by encryption. The administrator of your Salesforce org has the option of requiring
the user to enter a passcode for connected apps. In this case, your app uses that passcode as an encryption hash key. If the
Salesforce administrator doesn’t require a passcode, you’re responsible for providing your own key.

Salesforce Mobile SDK does all the work of implementing the passcode workflow. It calls the passcode manager to obtain the
user input, and then combines the passcode with prefix and suffix strings into a hash for encrypting the user's data. It also
handles decrypting and re-encrypting data when the passcode changes. If an organization changes its passcode requirement,
the Mobile SDK detects the change at the next login and reacts accordingly. If you choose to use a passcode, your only
responsibility is to implement the SalesforceSDKManager.getKey() method. All your implementation has to do in this
case is return a Base64-encoded string that can be used as an encryption key.

Internally, passcodes are stored as Base64-encoded strings. The SDK uses the Encryptor class for creating hashes from
passcodes. You should also use this class to generate a hash when you provide a key instead of a passcode. Passcodes and keys
are used to encrypt and decrypt SmartStore data as well as oAuth tokens, user identification strings, and related security
information. To see exactly what security data is encrypted with passcodes, browse the ClientManager.changePasscode()
method.

Mobile policy defines certain passcode attributes, such as the length of the passcode and the timing of the passcode dialog.
Mobile policy files for connected apps live on the Salesforce server. If a user enters an incorrect passcode more than ten
consecutive times, the user is logged out. The Mobile SDK provides feedback when the user enters an incorrect passcode,
apprising the user of how many more attempts are allowed. Before the screen is locked, the PasscodeManager class stores
a reference to the front activity so that the same activity can be resumed if the screen is unlocked.

If you define activities that don’t extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity in a passcode-protected app, be sure to call these three PasscodeManager
methods from each of those activity classes:

• PasscodeManager.onPause()

• PasscodeManager.onResume(Activity)

156

ForcePlugin ClassNative Android Development

• PasscodeManager.recordUserInteraction()

Call onPause() and onResume() from your activity's methods of the same name. Call recordUserInteraction()
from your activity’s onUserInteraction() method. Pass your activity class descriptor to onResume(). These calls ensure
that your app enforces passcode security during these events. See PasscodeManager Class.

Note: The SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity
classes implement these mandatory methods for you for free. Whenever possible, base your activity classes on one of
these classes.

Resource Handling
Salesforce Mobile SDK resources are configured in XML files that reside in the native/SalesforceSDK/res folder. You
can customize many of these resources by making changes in this folder.

Resources in the /res folder are grouped into categories, including:

• Drawables—Backgrounds, drop shadows, image resources such as PNG files

• Layouts—Screen configuration for any visible component, such as the passcode screen

• Values—Strings, colors, and dimensions that are used by the SDK

Two additional resource types are mostly for internal use:

• Menus

• XML

Drawable, layout, and value resources are subcategorized into folders that correspond to a variety of form factors. These
categories handle different device types and screen resolutions. Each category is defined in its folder name, which allows the
resource file name to remain the same for all versions. For example, if the developer provides various sizes of an icon named
icon1.png, for example, the smart phone version goes in one folder, the low-end phone version goes in another folder, while
the tablet icon goes into a third folder. In each folder, the file name is icon1.png. The folder names use the same root but
with different suffixes.

The following table describes the folder names and suffixes.

UsageFolder name

Generic versions of drawable resourcesdrawable

High resolution; for most smart phonesdrawable-hdpi

Low resolution; for low-end feature phonesdrawable-ldpi

Medium resolution; for low-end smart phonesdrawable-mdpi

Resources for extra high-density screens (~320dpidrawable-xhdpi

For tablet screens in landscape orientationdrawable-xlarge

For tablet screens in portrait orientationdrawable-xlarge-port

Resources for extra-extra high density screens (~480 dpi)drawable-xxhdpi-port

Generic versions of layoutslayout

For landscape orientationlayout-land

For tablet screenslayout-xlarge

157

Resource HandlingNative Android Development

UsageFolder name

Add Connection dialog and login menu for phonesmenus

Generic styles and valuesvalues

For tablet screensvalues-xlarge

General app configurationxml

The compiler looks for a resource in the folder whose name matches the target device configuration. If the requested resource
isn’t in the expected folder (for example, if the target device is a tablet, but the compiler can’t find the requested icon in the
drawables-xlarge or drawables-xlarge-port folder) the compiler looks for the icon file in the generic drawable
folder.

Layouts
Layouts in the Mobile SDK describe the screen resources that all apps use. For example, layouts configure dialog boxes that
handle logins and passcodes.

The name of an XML node in a layout indicates the type of control it describes. For example, the following EditText node
from res/layout/sf__passcode.xml describes a text edit control:

<EditText android:id="@+id/sf__passcode_text"
style="@style/SalesforceSDK.Passcode.Text.Entry"
android:inputType="textPassword" />

In this case, the EditText control uses an android:inputType attribute. Its value, “textPassword”, tells the operating
system to obfuscate the typed input.

The style attribute references a global style defined elsewhere in the resources. Instead of specifying style attributes in place,
you define styles defined in a central file, and then reference the attribute anywhere it’s needed. The value
@style/SalesforceSDK.Passcode.Text.Entry refers to an SDK-owned style defined in
res/values/sf__styles.xml. Here’s the style definition.

<style name="SalesforceSDK.Passcode.Text.Entry">
<item name="android:layout_width">wrap_content</item>
<item name="android:lines">1</item>
<item name="android:maxLength">10</item>
<item name="android:minWidth">@dimen/sf__passcode_text_min_width</item>
<item name="android:imeOptions">actionGo</item>

</style>

You can override any style attribute with a reference to one of your own styles. Rather than changing sf__styles.xml,
define your styles in a different file, such as xyzcorp__styles.xml. Place your file in the res/values for generic device
styles, or the res/values-xlarge folder for tablet devices.

Values
The res/values and res/values-xlarge folders contain definitions of style components, such as dimens and colors, string resources,
and custom styles. File names in this folder indicate the type of resource or style component. To provide your own values,
create new files in the same folders using a file name prefix that reflects your own company or project. For example, if your
developer prefix is XYZ, you can override sf__styles.xml in a new file named XYZ__styles.xml.

ContainsFile name

Colors referenced by Mobile SDK stylessf__colors.xml

158

Resource HandlingNative Android Development

ContainsFile name

Dimensions referenced by Mobile SDK stylessf__dimens.xml

Strings referenced by Mobile SDK styles; error messages can be overriddensf__strings.xml

Visual styles used by the Mobile SDKsf__styles.xml

App-defined stringsstrings.xml

You can override the values in strings.xml. However, if you used the create_native script to create your app, strings
in strings.xml already reflect appropriate values.

Other Resources
Two other folders contain Mobile SDK resources.

• res/menu defines menus used internally. If your app defines new menus, add them as resources here in new files.

• res/xml includes one file that you must edit: servers.xml. In this file, change the default Production and Sandbox
servers to the login servers for your org. The other files in this folder are for internal use. The authenticator.xml file
configures the account authentication resource, and the config.xml file defines PhoneGap plugins for hybrid apps.

Using REST APIs
To query, describe, create, or update data from a Salesforce org, native apps call Salesforce REST APIs. Salesforce REST
APIs honor SOQL strings and can accept and return data in either JSON or XML format. REST APIs are fully documented
at REST API Developer’s Guide. You can find links to related Salesforce development documentation at the Force.com
developer documentation website..

With Android native apps, you do only minimal coding to access Salesforce data through REST calls. The classes in the
com.salesforce.androidsdk.rest package initialize the communication channels and encapsulate low-level HTTP
plumbing. These classes include:

• ClientManager—Serves as a factory for RestClient instances. It also handles account logins and handshakes with the
Salesforce server. Implemented by the Mobile SDK.

• RestClient—Handles protocol for sending REST API requests to the Salesforce server. Don’t directly create instances
of RestClient. Instead, call the ClientManager.getRestClient() method. Implemented by the Mobile SDK.

• RestRequest—Formats REST API requests from the data your app provides. Also serves as a factory for instances of
itself. Don’t directly create instances of RestRequest. Instead, call an appropriate RestRequest static getter function
such as RestRequest.getRequestForCreate(). Implemented by the SDK.

• RestResponse—Formats the response content in the requested format, returns the formatted response to your app, and
closes the content stream. The RestRequest class creates instances of RestResponse and returns them to your app
through your implementation of the RestClient.AsyncRequestCallback interface. Implemented by the SDK.

The RestRequest class natively handles the standard Salesforce data operations offered by the Salesforce REST and SOAP
APIs. Supported operations are:

DescriptionParametersOperation

Returns Salesforce version metadataNoneVersions

159

Using REST APIsNative Android Development

http://www.salesforce.com/us/developer/docs/api_rest/api_rest.pdf
http://wiki.developerforce.com/page/Documentation
http://wiki.developerforce.com/page/Documentation

DescriptionParametersOperation

Returns available resources for the
specified API version, including resource
name and URI

API versionResources

API version, object typeMetadata

Returns a list of all available objects in
your org and their metadata

API versionDescribeGlobal

Returns a description of a single object
type

API version, object typeDescribe

Creates a new record in the specified
object

API version, object type, map of field
names to value objects

Create

Retrieves a record by object IDAPI version, object type, object ID, list
of fields

Retrieve

Updates an object with the given mapAPI version, object type, object ID, map
of field names to value objects

Update

Updates or inserts an object from external
data, based on whether the external ID
currently exists in the external ID field

API version, object type, external ID
field, external ID, map of field names to
value objects

Upsert

Deletes the object of the given type with
the given ID

API version, object type, object IDDelete

To obtain an appropriate RestRequest instance, call the RestRequest static method that matches the operation you want
to perform. Here are the RestRequest static methods.

• getRequestForCreate()

• getRequestForDelete()

• getRequestForDescribe()

• getRequestForDescribeGlobal()

• getRequestForMetadata()

• getRequestForQuery()

• getRequestForResources()

• getRequestForRetrieve()

• getRequestForSearch()

• getRequestForUpdate()

• getRequestForUpsert()

• getRequestForVersions()

These methods return a RestRequest object which you pass to an instance of RestClient. The RestClient class provides
synchronous and asynchronous methods for sending requests: sendSync() and sendAsync(). UsesendAsync() when
you’re sending a request from a UI thread. Use sendSync() only on non-UI threads, such as a service or a worker thread
spawned by an activity.

Here’s the basic procedure for using the REST classes on a UI thread:

1. Create an instance of ClientManager.

160

Using REST APIsNative Android Development

a. Use the SalesforceSDKManager.getInstance().getAccountType() method to obtain the value to pass as
the second argument of the ClientManager constructor.

b. For the LoginOptions parameter of the ClientManager constructor, call
SalesforceSDKManager.GetInstance().getLoginOptions().

2. Implement the ClientManager.RestClientCallback interface.

3. Call ClientManager.getRestClient() to obtain a RestClient instance, passing it an instance of your
RestClientCallback implementation. This code from the native/SampleApps/RestExplorer sample app
implements and instantiates RestClientCallback inline:

String accountType = SalesforceSDKManager.getInstance().getAccountType();

LoginOptions loginOptions = SalesforceSDKManager.getInstance().getLoginOptions();
// Get a rest client
new ClientManager(this, accountType, loginOptions,
SalesforceSDKManager.getInstance().shouldLogoutWhenTokenRevoked()).getRestClient(this,
new RestClientCallback() {
@Override
public void authenticatedRestClient(RestClient client) {
if (client == null) {
SalesforceSDKManager.getInstance().logout(ExplorerActivity.this);
return;
}
// Cache the returned client
ExplorerActivity.this.client = client;
}
});

4. Call a static RestRequest() getter method to obtain the appropriate RestRequest object for your needs. For example,
to get a description of a Salesforce object:

request = RestRequest.getRequestForDescribe(apiVersion, objectType);

5. Pass the RestRequest object you obtained in the previous step to RestClient.sendAsync() or
RestClient.sendSync(). If you’re on a UI thread and therefore calling sendAsync():

a. Implement the ClientManager.AsyncRequestCallback interface.
b. Pass an instance of your implementation to the sendAsync() method.
c. Receive the formatted response through your ASyncRequestCallback.onSuccess() method.

The following code implements and instantiates ASyncRequestCallback inline:

private void sendFromUIThread(RestRequest restRequest) {
client.sendAsync(restRequest, new AsyncRequestCallback() {
private long start = System.nanoTime();
@Override
public void onSuccess(RestRequest request, RestResponse result) {
try
{
// Do something with the result
}
catch (Exception e) {
printException(e);
}
EventsObservable.get().notifyEvent(EventType.RenditionComplete);
}
@Override

161

Using REST APIsNative Android Development

public void onError(Exception exception)
{
printException(exception);
EventsObservable.get().notifyEvent(EventType.RenditionComplete);
}
});

If you’re calling the sendSync() method from a service, use the same procedure with the following changes:

1. To obtain a RestClient instance call ClientManager.peekRestClient() instead of
ClientManager.getRestClient().

2. Retrieve your formatted REST response from the sendSync() method’s return value.

Android Template App: Deep Dive
The TemplateApp sample project implements everything you need to create a basic Android app. Because it’s a “bare bones”
example, it also serves as the template that the Mobile SDK’s create_native ant script uses to set up new native Android
projects. You can gain a quick understanding of the native Android SDK by studying this project.

The TemplateApp project defines two classes, TemplateApp and MainActivity. The TemplateApp class extends
Application and calls SalesforceSDKManager.initNative() in its onCreate() override. The MainActivity
class subclasses the SalesforceActivity class. These two classes are all you need to create a running mobile app that
displays a login screen and a home screen.

Despite containing only about 200 lines of code, TemplateApp is more than just a “Hello World” example. In its main activity,
it retrieves Salesforce data through REST requests and displays the results on a mobile page. You can extend TemplateApp
by adding more activities, calling other components, and doing anything else that the Android operating system, the device,
and security restraints allow.

TemplateApp Class
Every native Android app requires an instance of android.app.Application. Here’s the entire class:

package com.salesforce.samples.templateapp;

import android.app.Application;

import com.salesforce.androidsdk.app.SalesforceSDKManager;

/**
* Application class for our application.
*/
public class TemplateApp extends Application {

@Override
public void onCreate() {
super.onCreate();
SalesforceSDKManager.initNative(getApplicationContext(), new KeyImpl(),

MainActivity.class);
}
}

The TemplateApp class accomplishes two main tasks:

• Calls initNative() to initialize the app

• Passes in the app’s implementation of KeyInterface

162

Android Template App: Deep DiveNative Android Development

Most native Android apps can use similar code. For this small amount of work, your app gets free implementations of passcode
and login/logout mechanisms, plus a few other benefits. See SalesforceActivity, SalesforceListActivity, and
SalesforceExpandableListActivity Classes.

MainActivity Class
In Mobile SDK apps, the main activity begins immediately after the user logs in. Once the main activity is running, it can
launch other activities, which in turn can launch sub-activities. When the application exits, it does so by terminating the main
activity. All other activities terminate in a cascade from within the main activity.

The MainActivity class for the Template app extends
com.salesforce.androidsdk.ui.sfnative.SalesforceActivity. This superclass is the Mobile SDK's basic
abstract activity class.SalesforceActivity, gives you free implementations of mandatory passcode and login protocols. If
you use another base activity class instead, you’re responsible for implementing those protocols. MainActivity initializes
the app's UI and implements its UI buttons. The UI includes a list view that can show the user's Salesforce Contacts or
Accounts. When the user clicks one of these buttons, the MainActivity object performs a couple of basic queries to populate
the view. For example, to fetch the user's Contacts from Salesforce, the onFetchContactsClick() message handler sends
a simple SOQL query:

public void onFetchContactsClick(View v) throws UnsupportedEncodingException {
sendRequest("SELECT Name FROM Contact");

}

Internally, the private sendRequest() method formulates a server request using the RestRequest class and the given
SOQL string:

private void sendRequest(String soql) throws UnsupportedEncodingException
{
RestRequest restRequest = RestRequest.getRequestForQuery(getString(R.string.api_version),

soql);
client.sendAsync(restRequest, new AsyncRequestCallback()
{
@Override
public void onSuccess(RestRequest request,
RestResponse result) {
try {
listAdapter.clear();
JSONArray records = result.asJSONObject().getJSONArray("records");
for (int i = 0; i < records.length(); i++) {
listAdapter.add(records.getJSONObject(i).getString("Name"));
}

} catch (Exception e) {
onError(e);
}
}
@Override
public void onError(Exception exception)
{
Toast.makeText(MainActivity.this,
MainActivity.this.getString(
SalesforceSDKManager.getInstance().getSalesforceR().stringGenericError(),
exception.toString()),
Toast.LENGTH_LONG).show();

}
});
}

163

MainActivity ClassNative Android Development

This method uses an instance of the com.salesforce.androidsdk.rest.RestClient class, client, to process its
SOQL query. The RestClient class relies on two helper classes—RestRequest and RestResponse—to send the query
and process its result. The sendRequest() method calls RestClient.sendAsync() to process the SOQL query
asynchronously.

To support the sendAsync() call, the sendRequest() method constructs an instance of
com.salesforce.androidsdk.rest.RestRequest, passing it the API version and the SOQL query string. The resulting
object is the first argument for sendAsync(). The second argument is a callback object. When sendAsync() has finished
running the query, it sends the results to this callback object. If the query is successful, the callback object uses the query
results to populate a UI list control. If the query fails, the callback object displays a toast popup to display the error message.

Java Note:

In the call toRestClient.sendAsync() the code instantiates a new AsyncRequestCallback object as its second
argument. However, the AsyncRequestCallbackconstructor is followed by a code block that overrides a couple of
methods: onSuccess() and onError(). If that code looks strange to you, take a moment to see what's happening.
ASyncRequestCallback is defined as an interface, so it has no implementation. In order to instantiate it, the code implements
the two ASyncRequestCallback methods inline to create an anonymous class object. This technique gives TemplateApp
an sendAsync() implementation of its own that can never be called from another object and doesn't litter the API landscape
with a group of specialized class names.

TemplateApp Manifest
A look at the AndroidManifest.xml file in the TemplateApp project reveals the components required for Mobile SDK
native Android apps. The only required component is:

DescriptionTypeName

The first activity to be
called after login. The

ActivityMainActivity

name and the class are
defined in the project.

Because any app created by the create_native script is based on the TemplateApp project, the MainActivity component
is already included in its manifest. As with any Android app, you can add other components, such as custom activities or
services, using the Android Manifest editor in Eclipse.

Tutorial: Creating a Native Android Warehouse Application
Apply your knowledge of the native Android SDK by building a mobile inventory management app. This tutorial demonstrates
a simple master-detail architecture that defines two activities. It demonstrates Mobile SDK application setup, use of REST
API wrapper classes, and Android SDK integration.

Prerequisites
This tutorial requires the following tools and packages.

• This tutorial uses a Warehouse app that contains a basic inventory database. You’ll need to install this app in a DE org. If
you install it in an existing DE org, be sure to delete any existing Warehouse components you’ve made before you install.

1. Click the installation URL link: https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000MMMT

164

TemplateApp ManifestNative Android Development

https://login.salesforce.com/packaging/installPackage.apexp?p0=04ti0000000MMMT

2. If you aren’t logged in already, enter the username and password of your DE org.
3. On the Package Installation Details page, click Continue.
4. Click Next, and on the Security Level page click Next.
5. Click Install.
6. Click Deploy Now and then Deploy.
7. Once the installation completes, you can select the Warehouse app from the app picker in the upper right corner.

8. To create data, click the Data tab.
9. Click the Create Data button.

• Install the latest versions of:

◊ Java JDK 6 or higher—http://www.oracle.com/downloads.

◊ Apache Ant 1.8 or later—http://ant.apache.org.

◊ Android SDK Tools, version 21 or later—http://developer.android.com/sdk/installing.html.

Note: For best results, install all previous versions of the Android SDK as well as your target version.

◊ Eclipse—https://www.eclipse.org. Check the Android Development Tools website for the minimum supported
Eclipse version.

◊ Android ADT (Android Development Tools) plugin for Eclipse, version 21 or
later—http://developer.android.com/sdk.

◊ In order to run the application in the Emulator, you need to set up at least one Android Virtual Device (AVD) that
targets Platform 2.2 or above (we recommend 4.0 or above). To learn how to set up an AVD in Eclipse, follow the
instructions at http://developer.android.com/guide/developing/devices/managing-avds.html.

• Install the Salesforce Mobile SDK using npm:

1. If you’ve already successfully installed Node.js and npm, skip to step 4.
2. Install Node.js on your system. The Node.js installer automatically installs npm.

i. Download Node.js from www.nodejs.org/download.

ii. Run the downloaded installer to install Node.js and npm. Accept all prompts asking for permission to install.

3. At the Terminal window, type npm and press Return to make sure your installation was successful. If you don’t see
a page of usage information, revisit Step 2 to find out what’s missing.

4. At the Terminal window, type sudo npm install forcedroid -g

This command uses the forcedroid package to install the Mobile SDK globally. With the -g option, you can run npm
install from any directory. The npm utility installs the package under /usr/local/lib/node_modules, and
links binary modules in /usr/local/bin. Most users need the sudo option because they lack read-write permissions
in /usr/local.

165

PrerequisitesNative Android Development

http://www.oracle.com/downloads/
http://ant.apache.org
http://developer.android.com/sdk/installing.html
https://www.eclipse.org
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/developing/devices/managing-avds.html
http://www.nodejs.org/download

Create a Native Android App
In this tutorial, you learn how to get started with the Salesforce Mobile SDK, including how to install the SDK and a quick
tour of the native project template using your DE org. Subsequent tutorials show you how to modify the template app and
make it work with the Warehouse schema.

Step 1: Create a Connected App
In this step, you learn how to configure a Connected App in Force.com. Doing so authorizes the mobile app you will soon
build to communicate securely with Force.com and access Force.com APIs on behalf of users via the industry-standard OAuth
2.0 protocol.

1. In your DE org, click Your Name > Setup then click Create > Apps.
2. Under Connected Apps, click New to bring up the New Connected App page.
3. Under Basic Information, fill out the form as follows:

• Connected App Name: My Native Android App

• API Name: accept the suggested value
• Contact Email: enter your email address

4. Under OAuth Settings, check the Enable OAuth Settings checkbox.
5. Set Callback URL to mysampleapp://auth/success.
6. Under Available OAuth Scopes, check “Access and manage your data (api)” and “Perform requests on your behalf at any

time (refresh_token)”, then click Add.
7. Click Save.

After you save the configuration, notice the details of the Connected App you just created.

• Note the Callback URL and Consumer Key; you will use these when you set up your native app in the next step.

• Mobile apps do not use the Consumer Secret, so you can ignore this value.

Step 2: Create a Native Android Project
To create a new Mobile SDK project, use the forcedroid utility again in the Terminal window.

1. Change to the directory in which you want to create your project.

166

Create a Native Android AppNative Android Development

2. To create an Android project, type forcedroid create.

The forcedroid utility prompts you for each configuration value.

3. For application type, enter native.
4. For application name, enter Warehouse.
5. For target directory, enter tutorial/AndroidNative.
6. For package name, enter com.samples.warehouse.
7. When asked if you want to use SmartStore, press Return to accept the default.

Step 3: Run the New Android App
Now that you’ve successfully created a new Android app, build and run it in Eclipse to make sure that your environment is
properly configured.

Note: If you run into problems, first check the Android SDK Manager to make sure that you’ve got the latest Android
SDK, build tools, and development tools. You can find the Android SDK Manager under Window > Android SDK
Manager in Eclipse. After you’ve installed anything that’s missing, close and restart Android SDK Manager to make
sure you’re up-to-date.

Importing and Building Your App in Eclipse

The forcedroid script prints instructions for running the new app in the Eclipse editor.

1. Launch Eclipse and select tutorial/AndroidNative as your workspace directory.

2. Select Eclipse > Preferences, choose the Android section, and enter the Android SDK location.

3. Click OK.

4. Select File > Import and select General > Existing Projects into Workspace.

5. Click Next.

6. Specify the forcedroid/native directory as your root directory. Next to the list that displays, click Deselect All, then
browse the list and check the SalesforceSDK project.

7. Click Finish.

8. Repeat Steps 4–8. In Step 6, choose tutorial/AndroidNative as the root, then select only your new Warehouse
project.

When you’ve finished importing the projects, Eclipse automatically builds your workspace. This process can take several
minutes. When the status bar reports zero errors, you’re ready to run the project.

1. In your Eclipse workspace, Control-click or right-click your project.
2. From the popup menu, choose Run As > Android Application.

Note: If the Run As menu doesn’t include Android Application, you need to configure an Android emulator
or device.

Eclipse launches your app in the emulator or on your connected Android device.

Step 4: Explore How the Android App Works
The native Android app uses a straightforward Model View Controller (MVC) architecture.

167

Step 3: Run the New Android AppNative Android Development

• The model is the Warehouse database schema

• The views come from the activities defined in your project

• The controller functionality represents a joint effort between the Android SDK classes, the Salesforce Mobile SDK, and
your app

Within the view, the finished tutorial app defines two Android activities in a master-detail relationship. MainActivity lists
records from the Merchandise custom objects. DetailActivity, which you access by clicking on an item in MainActivity, lets
you view and edit the fields in the selected record.

MainActivity Class

When the app is launched, the WarehouseApp class initially controls the execution flow. After the login process completes,
the WarehouseApp instance passes control to the main activity class, via the SalesforceSDKManager singleton.

In the template app that serves as the basis for your new app, and also in the finished tutorial, the main activity class is named
MainActivity. This class subclasses SalesforceActivity, which is the Mobile SDK base class for all activities.

Before it’s customized, though, the app doesn’t include other activities or touch event handlers. It simply logs into Salesforce,
issues a request using Salesforce Mobile SDK REST APIs, and displays the response in the main activity. In this tutorial you
replace the template app controls and repurpose the SOQL REST request to work with the Merchandise custom object from
the Warehouse schema.

DetailActivity Class

The DetailActivity class also subclasses SalesforceActivity, but it demonstrates more interesting customizations.
DetailActivity implements text editing using standard Android SDK classes and XML templates. It also demonstrates
how to update a database object in Salesforce using the RestClient and RestRequest classes from the Mobile SDK.

RestClient and RestRequest Classes

Mobile SDK apps interact with Salesforce data through REST APIs. However, you don’t have to construct your own REST
requests or work directly at the HTTP level. You can process SOQL queries, do SOSL searches, and perform CRUD operations
with minimal coding by using static convenience methods on the RestRequest class. Each RestRequest convenience
method returns a RestRequest object that wraps the formatted REST request.

To send the request to the server, you simply pass the RestRequest object to the sendAsync() or sendSync() method
on your RestClient instance. You don’t create RestClient objects. If your activity inherits a Mobile SDK activity class
such as SaleforceActivity, Mobile SDK passes an instance of RestClient to the onResume() method. Otherwise,
you can call ClientManager.getRestClient(). Your app uses the connected app information from your bootconfig.xml
file so that the RestClient object can send REST requests on your behalf.

Customize the List Screen
In this tutorial, you modify the main activity and its layout to make the app specific to the Warehouse schema. You also adapt
the existing SOQL query to obtain all the information we need from the Merchandise custom object.

Step 1: Remove Existing Controls
The template code provides a main activity screen that doesn’t suit our purposes. Let’s gut it to make room for our code.

1. From the Package Explorer in Eclipse, open the res/layout/main.xml file. Make sure to set the view to text mode.
This XML file contains a <LinearLayout> root node, which contains three child nodes: an <include> node, a nested
<LinearLayout> node, and a <ListView> node.

168

Customize the List ScreenNative Android Development

2. Delete the nested <LinearLayout> node that contains the three <Button> nodes. The edited file looks like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent" android:background="#454545"
android:id="@+id/root">

<include layout="@layout/header" />

<ListView android:id="@+id/contacts_list" android:layout_width="fill_parent"
android:layout_height="fill_parent" />

</LinearLayout>

3. Save the file, then open the src/com.samples.warehouse/MainActivity.java file.
4. Delete the onClearClick(), onFetchAccountsClick(), and onFetchContactsClick() methods. If the compiler

warns you that the sendRequest() method is never used locally, that’s OK. You just deleted all calls to that method,
but you’ll fix that in the next step.

Step 2: Update the SOQL Query
The sendRequest() method provides code for sending a SOQL query as a REST request. You can reuse some of this code
while customizing the rest to suit your new app.

1. Rename sendRequest() to fetchDataForList(). Replace

private void sendRequest(String soql) throws UnsupportedEncodingException

with

private void fetchDataForList()

Note that you’ve removed the throw declaration. You’ll reinstate it within the method body to keep the exception handling
local. You’ll add a try...catch block around the call to RestRequest.getRequestForQuery(), rather than throwing
exceptions to the fetchDataForList() caller.

2. Add a hard-coded SOQL query that returns up to 10 records from the Merchandise__c custom object:

private void fetchDataForList() {
String soql = "SELECT Name, Id, Price__c, Quantity__c

FROM Merchandise__c LIMIT 10";

3. Wrap a try...catch block around the call to RestRequest.getRequestForQuery(). Replace this:

RestRequest restRequest = RestRequest.getRequestForQuery(getString(R.string.api_version),
soql);

with this:

RestRequest restRequest = null;
try {

restRequest =
RestRequest.getRequestForQuery(getString(R.string.api_version), soql);

} catch (UnsupportedEncodingException e) {

169

Step 2: Update the SOQL QueryNative Android Development

showError(MainActivity.this, e);
return;

}

Here’s the completed version of what was formerly the sendRequest() method:

private void fetchDataForList() {
String soql = "SELECT Name, Id, Price__c, Quantity__c FROM

Merchandise__c LIMIT 10";
RestRequest restRequest = null;
try {

restRequest =
RestRequest.getRequestForQuery(

getString(R.string.api_version), soql);
} catch (UnsupportedEncodingException e){

showError(MainActivity.this, e);
return;

}

client.sendAsync(restRequest, new AsyncRequestCallback() {
@Override
public void onSuccess(RestRequest request,

RestResponse result) {
try {

listAdapter.clear();
JSONArray records =

result.asJSONObject().getJSONArray("records");
for (int i = 0; i < records.length(); i++) {

listAdapter.add(records.
getJSONObject(i).getString("Name"));

}
} catch (Exception e) {

onError(e);
}

}

@Override
public void onError(Exception exception) {

Toast.makeText(MainActivity.this,
MainActivity.this.getString(

SalesforceSDKManager.getInstance().
getSalesforceR().stringGenericError(),
exception.toString()),

Toast.LENGTH_LONG).show();
}

});
}

We’ll call fetchDataForList() when the screen loads, after authentication completes.

4. In the onResume(RestClient client) method, add the following line at the end of the method body:

@Override
public void onResume(RestClient client) {

// Keeping reference to rest client
this.client = client;

// Show everything
findViewById(R.id.root).setVisibility(View.VISIBLE);
// Fetch data for list
fetchDataForList();

}

170

Step 2: Update the SOQL QueryNative Android Development

5. Finally, implement the showError() method to report errors through a given activity context. At the top of the file, add
the following line to the end of the list of imports:

import android.content.Context;

6. At the end of the MainActivity class definition add the following code:

public static void showError(Context context, Exception e) {
Toast toast = Toast.makeText(context,

context.getString(
SalesforceSDKManager.getInstance().getSalesforceR().stringGenericError(),

e.toString()),
Toast.LENGTH_LONG);

toast.show();
}

7. Save the MainActivity.java file.

Step 3:Try Out the App
To test the app, Control-Click the app in Package Explorer and select Run As > Android Application. When the Android
emulator displays, wait a few minutes as it loads. Unlock the screen and wait a while longer for the Salesforce login screen to
appear. After you log into Salesforce successfully, click Allow to give the app the permissions it requires.

At this point, if you click a Merchandise record, nothing happens. You'll fix that in the next tutorial.

Create the Detail Screen
In the previous step, you modified the template app so that the main activity presents a list of up to ten Merchandise records.
In this step, you finish the job by creating a detail activity and layout. You then link the main activity and the detail activity.

Step 1: Create the Detail Screen
To start, design the layout of the detail activity by creating an XML file named res/layout/detail.xml.

1. In Package Explorer, expand res/layout.
2. Control-click the layout folder and select New > Android XML File.
3. In the File field, type detail.xml.
4. Under Root Element, select LinearLayout.
5. Click Finish.

In the new file, define layouts and resources to be used in the detail screen. Start by adding fields and labels for name,
price, and quantity.

6. Replace the contents of the new file with the following XML code.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/root"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="#454545"
android:orientation="vertical" >

171

Step 3:Try Out the AppNative Android Development

<include layout="@layout/header" />

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/name_label"
android:width="100dp" />

<EditText
android:id="@+id/name_field"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="text" />

</LinearLayout>

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/price_label"
android:width="100dp" />

<EditText
android:id="@+id/price_field"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="numberDecimal" />

</LinearLayout>

<LinearLayout
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:orientation="horizontal" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/quantity_label"
android:width="100dp" />

<EditText
android:id="@+id/quantity_field"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:inputType="number" />

</LinearLayout>

</LinearLayout>

7. Save the file.
8. To finish the layout, define the display names for the three labels (name_label, price_label, and quantity_label)

referenced in the TextView elements.

172

Step 1: Create the Detail ScreenNative Android Development

Add the following to res/values/strings.xml just before the close of the <resources> node:

<!-- Detail screen -->
<string name="name_label">Name</string>
<string name="price_label">Price</string>
<string name="quantity_label">Quantity</string>

9. Save the file, then open the AndroidManifest.xml file in text view. If you don’t get the text view, click the
AndroidManifest.xml tab at the bottom of the editor screen.

10. Declare the new activity in AndroidManifest.xml by adding the following in the <application> section:

<!-- Merchandise detail screen -->
<activity android:name="com.samples.warehouse.DetailActivity"

android:theme="@android:style/Theme.NoTitleBar.Fullscreen">
</activity>

Except for a button that we’ll add later, you’ve finished designing the layout and the string resources for the detail screen. To
implement the screen’s behavior, you define a new activity.

Step 2: Create the DetailActivity Class
In this module we’ll create a new class file named DetailActivity.java in the com.samples.warehouse package.

1. In Package Explorer, expand the WarehouseApp > src > com.samples.warehouse node.
2. Control-click the com.samples.warehouse folder and select New > Class.
3. In the Name field, enter DetailActivity.
4. In the Superclass field, enter or browse for com.salesforce.androidsdk.ui.sfnative.SalesforceActivity.
5. Click Finish.

The compiler provides a stub implementation of the required onResume() method. Mobile SDK passes an instance of
RestClient to this method. Since you need this instance to create REST API requests, it’s a good idea to cache a reference
to it.

6. Add the following declaration to the list of member variables at the top of the new class:

private RestClient client;

7. In the onResume() method body, add the following code:

@Override
public void onResume(RestClient client) {

// Keeping reference to rest client
this.client = client;

}

Step 3: Customize the DetailActivity Class
To complete the activity setup, customize the DetailActivity class to handle editing of Merchandise field values.

173

Step 2: Create the DetailActivity ClassNative Android Development

1. Add the following imports to the list of imports at the top of DetailActivity.java:

import android.widget.EditText;
import android.os.Bundle;

2. At the top of the class body, add private EditText members for the three input fields.

private EditText nameField;
private EditText priceField;
private EditText quantityField;

3. Add a variable to contain a record ID from the Merchandise custom object. You’ll add code to populate it later when you
link the main activity and the detail activity.

private String merchandiseId;

4. Add an onCreate() method that configures the view to use the detail.xml layout you just created. Place this method
just before the end of the class definition.

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Setup view
setContentView(R.layout.detail);
nameField = (EditText) findViewById(R.id.name_field);
priceField = (EditText) findViewById(R.id.price_field);
quantityField = (EditText)

findViewById(R.id.quantity_field);
}

Step 4: Link the Two Activities, Part 1: Create a Data Class
Next, you need to hook up MainActivity and DetailActivity classes so they can share the fields of a selected Merchandise
record. When the user clicks an item in the inventory list, MainActivity needs to launch DetailActivity with the data
it needs to display the record’s fields.

Right now, the list adapter in MainActivity.java is given only the names of the Merchandise fields. Let’s store the values
of the standard fields (id and name) and the custom fields (quantity, and price) locally so you can send them to the detail
screen.

To start, define a static data class to represent a Merchandise record.

1. In the Package Explorer, open src > com.samples.warehouse > MainActivity.java.
2. Add the following class definition at the end of the MainActivity definition:

/**
* Simple class to represent a Merchandise record
*/
static class Merchandise {
public final String name;
public final String id;
public final int quantity;
public final double price;

174

Step 4: Link the Two Activities, Part 1: Create a Data ClassNative Android Development

public Merchandise(String name, String id, int quantity, double price) {
this.name = name;
this.id = id;
this.quantity = quantity;
this.price = price;
}

public String toString() {
return name;
}
}

3. To put this class to work, modify the main activity’s list adapter to take a list of Merchandise objects instead of strings. In
the listAdapter variable declaration, change the template type from String to Merchandise:

private ArrayAdapter<Merchandise> listAdapter;

4. To match the new type, change the listAdapter instantiation in the onResume() method:

listAdapter = new ArrayAdapter<Merchandise>(this, android.R.layout.simple_list_item_1,

new ArrayList<Merchandise>());

Next, modify the code that populates the listAdapter object when the response for the SOQL call is received.

5. Add the following import to the existing list at the top of the file:

import org.json.JSONObject;

6. Change the onSuccess() method in fetchDataForList() to use the new Merchandise object:

public void onSuccess(RestRequest request, RestResponse result) {
try {
listAdapter.clear();
JSONArray records = result.asJSONObject().getJSONArray("records");
for (int i = 0; i < records.length(); i++) {
JSONObject record = records.getJSONObject(i);
Merchandise merchandise = new Merchandise(record.getString("Name"),
record.getString("Id"), record.getInt("Quantity__c"),
record.getDouble("Price__c"));
listAdapter.add(merchandise);
}
} catch (Exception e) {
onError(e);
}
}

Step 5: Link the Two Activities, Part 2: Implement a List Item Click Handler
Next, you need to catch click events and launch the detail screen when these events occur. Let's make MainActivity the
listener for clicks on list view items.

1. Open the MainActivity.java file in the editor.

175

Step 5: Link the Two Activities, Part 2: Implement a List Item
Click Handler

Native Android Development

2. Add the following import:

import android.widget.AdapterView.OnItemClickListener;

3. Change the class declaration to implement the OnItemClickListener interface:

public class MainActivity extends SalesforceActivity implements OnItemClickListener {

4. Add a private member for the list view:

private ListView listView;

5. Add the following code in bold to the onResume() method just before the super.onResume() call:

public void onResume() {
// Hide everything until we are logged in
findViewById(R.id.root).setVisibility(View.INVISIBLE);

// Create list adapter
listAdapter = new ArrayAdapter<Merchandise>(

this, android.R.layout.simple_list_item_1, new ArrayList<Merchandise>());
((ListView) findViewById(R.id.contacts_list)).setAdapter(listAdapter);

// Get a handle for the list view
listView = (ListView) findViewById(R.id.contacts_list);
listView.setOnItemClickListener(this);

super.onResume();
}

Now that you’ve designated a listener for list item clicks, you’re ready to add the list item click handler.

6. Add the following imports:

import android.widget.AdapterView;
import android.content.Intent;

7. Just before the Merchandise class definition, add an onItemClick() method.

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {

}

8. Get the selected item from the list adapter in the form of a Merchandise object.

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
Merchandise merchandise = listAdapter.getItem(position);

}

9. Create an Android intent to start the detail activity, passing the merchandise details into it.

public void onItemClick(AdapterView<?> parent, View view, int position, long id) {
Merchandise merchandise = listAdapter.getItem(position);
Intent intent = new Intent(this, DetailActivity.class);

176

Step 5: Link the Two Activities, Part 2: Implement a List Item
Click Handler

Native Android Development

intent.putExtra("id", merchandise.id);
intent.putExtra("name", merchandise.name);
intent.putExtra("quantity", merchandise.quantity);
intent.putExtra("price", merchandise.price);
startActivity(intent);

}

Let's finish by updating the DetailActivity class to extract the merchandise details from the intent.

10. In the Package Explorer, open src > com.samples.warehouse > DetailActivity.java.
11. In the onCreate() method, assign values from the list screen selection to their corresponding data members in the detail

activity:

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

// Setup view
setContentView(R.layout.detail);
nameField = (EditText) findViewById(R.id.name_field);
priceField = (EditText) findViewById(R.id.price_field);
quantityField = (EditText)

findViewById(R.id.quantity_field);
// Populate fields with data from intent
Bundle extras = getIntent().getExtras();
merchandiseId = extras.getString("id");
nameField.setText(extras.getString("name"));
priceField.setText(extras.getDouble("price") + "");
quantityField.setText(extras.getInt("quantity") + "");

}

Step 6: Implement the Update Button
You’re almost there! The only part of the UI that’s missing is a button that writes the user’s edits to the server. You need to:

• Add the button to the layout

• Define the button’s label

• Implement a click handler

• Implement functionality that saves the edits to the server

1. Reopen detail.xml and add the following <Button> node as the last node in the outermost layout.

<Button
android:id="@+id/update_button"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:onClick="onUpdateClick"
android:text="@string/update_button" />

2. Save the detail.xml file, then open strings.xml.
3. Add the following button label string to the end of the list of strings:

<string name="update_button">Update</string>

4. Save the strings.xml file, then open DetailActivity.java.

177

Step 6: Implement the Update ButtonNative Android Development

In the DetailActivity class, add a handler for the Update button’s onClick event. The handler’s name must match
the android:onClick value in the <Button> node that you just added to detail.xml. In this case, the name is
onUpdateClick. This method simply creates a map that matches Merchandise__c field names to corresponding values
in the detail screen. Once the values are set, it calls the saveData() method to write the changes to the server.

5. To support the handler, add the following imports to the existing list at the top of the file:

import java.util.HashMap;
import java.util.Map;
import android.view.View;

6. Add the following method to the DetailActivity class definition:

public void onUpdateClick(View v) {
Map<String, Object> fields = new HashMap<String, Object>();
fields.put("Name", nameField.getText().toString());
fields.put("Quantity__c", quantityField.getText().toString());
fields.put("Price__c", priceField.getText().toString());
saveData(merchandiseId, fields);
}

The compiler reminds you that saveData() isn’t defined. Let’s fix that. The saveData() method creates a REST API
update request to update the Merchandise__c object with the user’s values. It then sends the request asynchronously to
the server using the RestClient.sendAsync() method. The callback methods that receive the server response (or
server error) are defined inline in the sendAsync() call.

7. Add the following imports to the existing list at the top of the file:

import com.salesforce.androidsdk.rest.RestRequest;
import com.salesforce.androidsdk.rest.RestResponse;

8. Implement the saveData() method in the DetailActivity class definition:

private void saveData(String id, Map<String, Object> fields) {
RestRequest restRequest;
try {
restRequest = RestRequest.getRequestForUpdate(getString(R.string.api_version),

"Merchandise__c", id, fields);
} catch (Exception e) {

// You might want to log the error or show it to the user
return;
}

client.sendAsync(restRequest, new RestClient.AsyncRequestCallback() {
@Override
public void onSuccess(RestRequest request, RestResponse result) {
try {
DetailActivity.this.finish();
} catch (Exception e) {

// You might want to log the error or show it to the user
}
}

@Override
public void onError(Exception e) {

// You might want to log the error or show it to the user
}
});
}

178

Step 6: Implement the Update ButtonNative Android Development

That’s it! Your app is ready to run and test.

Step 7: Try Out the App
1. Build your app and run it in the Android emulator. If you did everything correctly, a detail page appears when you click a

Merchandise record in the Warehouse screen.

2. Update a record's quantity and price. Be sure to click the Update button in the detail view after you edit the values. When
you navigate back to the detail view, the updated values display.

3. Log into your DE org and view the record using the browser UI to see the updated values.

Android Native Sample Applications
Salesforce Mobile SDK includes the following native Android sample applications.

• RestExplorer demonstrates the OAuth and REST API functions of the SalesforceSDK. It’s also useful for investigating
REST API actions from a Honeycomb tablet.

1. To run the application from your Eclipse workspace, right-click the RestExplorer project and choose Run As > Android
Application.

2. To run the tests, right-click the RestExplorerTest project and choose Run As > Android JUnit Test.

• NativeSqlAggregator demonstrates SQL aggregation with SmartSQL. As such, it also demonstrates a native implementation
of SmartStore. To run the application from your Eclipse workspace, right-click the NativeSqlAggregator project and
choose Run As > Android Application.

• FileExplorer demonstrates the Files API as well as the underlying Google Volley networking enhancements. To run the
application from your Eclipse workspace, right-click the FileExplorer project and choose Run As > Android Application.

179

Step 7: Try Out the AppNative Android Development

Chapter 6

Files and Networking

Mobile SDK 2.1 introduces an API for files and networking. This API includes
two levels of technology. For file management, the SDK provides a set of

In this chapter ...

• Architecture convenience methods that wraps the file requests in the Chatter REST API.
• Downloading Files and Managing

Sharing
Under the REST API wrapper level, a networking layer exposes objects that
let the app control pending REST requests. Together, these two sides of the

• Uploading Files same coin give the SDK a more robust feature set as well as enhanced
networking performance.• Encryption and Caching

• Using Files in Android Apps
• Using Files in iOS Native Apps
• Using Files in Hybrid Apps

180

Architecture
Beginning with Mobile SDK 2.1, the Android REST request system uses Google Volley, an open-source external library, as
its underlying architecture. This architecture allows you to access the Volley QueueManager object to manage requests. At
runtime you can use the QueueManager to cancel pending requests on asynchronous threads. You can learn about Volley at
https://developers.google.com/events/io/sessions/325304728

In iOS, file management and networking rely on the SalesforceNetworkSDK library. All REST API call—for files as well
as any other REST requests—go through this library. The SalesforceNetworkSDK library itself implements MKNetworkKit,
a popular open source library.

Note: If you directly accessed the RestKit library in old versions of your Mobile SDK iOS app, you’ll need to update
that code to use the MKNetworkKit library.

Hybrid JavaScript functions use the architecture of the Mobile SDK for the device operating system (Android or iOS) to
implement file operations. These functions are defined in forcetk.mobilesdk.js.

Downloading Files and Managing Sharing
Salesforce Mobile SDK provides convenience methods that build specialized REST requests for file download and sharing
operations. You can use these requests to:

• Access the byte stream of a file.

• Download a page of a file.

• Preview a page of a file.

• Retrieve details of File records.

• Access file sharing information.

• Add and remove file shares.

Pages in Requests
The term “page” in REST requests can refer to either a specific item or a group of items in the result set, depending on the
context. When you preview a page of a specific file, for example, the request retrieves the specified page from the rendered
pages. For most other requests, a page refers to a section of the list of results. The maximum number of records or topics in a
page defaults to 25.

The response includes a NextPageUrl field. If this value is defined, there is another page of results. If you want your app to
scroll through pages of results, you can use this field to avoid sending unnecessary requests. You can also detect when you’re
at the end of the list by simply checking the response status. If nothing or an error is returned, there’s nothing more to display
and no need to issue another request.

Uploading Files
Native mobile platforms support a method for uploading a file. You provide a path to the local file to be uploaded, the name
or title of the file, and a description. If you know the MIME type, you can specify that as well. The upload method returns a
platform-specific request object that can upload the file to the server. When you send this request to the server, the server
creates a file with version set to 1.

Use the following methods for the given app type:

181

ArchitectureFiles and Networking

https://developers.google.com/events/io/sessions/325304728

SignatureUpload MethodApp Type

public static RestRequest
uploadFile(

FileRequests.uploadFile()Android native

File theFile,
String name,
String description,
String mimeType)
throws UnsupportedEncodingException

- (SFRestRequest *)
requestForUploadFile:(NSData *)data

- requestForUploadFile:
name:description:mimeType:

iOS native

name:(NSString *)name
description:(NSString *)description
mimeType:(NSString *)mimeType

N/AN/AHybrid (Android
and iOS)

Encryption and Caching
Mobile SDK 2.1 gives you access to the file’s unencrypted byte stream but doesn’t implement file caching or storage. You’re
free to devise your own solution if your app needs to store files on the device.

Using Files in Android Apps
The FileRequests class provides static methods for creating RestRequest objects that perform file operations. Each
method returns the new RestRequest object. Applications then call the ownedFilesList() method to retrieve a
RestRequest object. It passes this object as a parameter to a function that uses the RestRequest object to send requests
to the server:

performRequest(FileRequests.ownedFilesList(null, null));

This example passes null to the first parameter (userId). This value tells the ownedFilesList() method to use the ID of
the context, or logged-in, user. The second null, for the pageNum parameter, tells the method to fetch the first page of results.

For native Android apps, file management classes and methods live in the com.salesforce.androidsdk.rest.files
package.

Managing the Request Queue
The RestClient class internally uses an instance of the Volley RequestQueue class to manage REST API requests. You
can access the underlying RequestQueue object by calling restClient.getRequestQueue() on your RestClient
instance. With the RequestQueue object you can directly cancel and otherwise manipulate pending requests.

Example: Canceling All Pending Requests

The following code calls getRequestQueue() on an instance of RestClient (client). It then calls the
RequestQueue.cancelAll() method to cancel all pending requests in the queue. The cancelAll() method accepts

182

Encryption and CachingFiles and Networking

a RequestFilter parameter, so the code passes in an object of a custom class, CountingFilter, which implements
the Volley RequestFilter interface.

CountingFilter countingFilter = new CountingFilter();
client.getRequestQueue().cancelAll(countingFilter);
int count = countingFilter.getCancelCount();
...

/**
* Request filter that cancels all requests and also counts the number of requests canceled

*
*/
class CountingFilter implements RequestFilter {

private int count = 0;

public int getCancelCount() {
return count;
}

@Override
public boolean apply(Request<?> request) {
count++;
return true;
}
}

RequestQueue.cancelAll() lets the RequestFilter-based object inspect each item in the queue before allowing
the operation to continue. Internally, cancelAll() calls the filter’s apply() method on each iteration. If apply()
returns true, the cancel operation continues. If it returns false, cancelAll() does not cancel that request and continues
to the next request in the queue.

In this code example, the CountingFilter.apply() merely increments an internal counter on each call. After the
cancelAll() operation finishes, the sample code calls CountingFilter.getCancelCount() to report the number
of canceled objects.

Using Files in iOS Native Apps
To handle files in native iOS apps, use convenience methods defined in the SFRestAPI (Files) category. These methods
parallel the files API for Android native and hybrid apps. They send requests to the same list of REST APIs, but use different
underpinnings.

iOS Project Settings
If you’re updating Salesforce Mobile SDK apps built prior to Mobile SDK 2.1, you’ll need to adjust your project settings for
all targets to include the SalesforceNetworkSDK library.

1. Download the MKNetworking library bundled with Mobile SDK 2.1. Get the binary libraries and their headers from
compressed files at https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Distribution.

2. Link the following modules in your project:

• libMKNetworkKit-iOS.a

• libSalesforceNetworkSDK.a

• ImageIO.framework

The Files API also requires the following frameworks which are normally linked by default:

183

Using Files in iOS Native AppsFiles and Networking

https://github.com/forcedotcom/SalesforceMobileSDK-iOS-Distribution

• CFNetwork.framework

• SystemConfiguration.framework

• Security.framework

REST Responses and Multithreading
The networking library always dispatches REST responses to the thread where your SFRestDelegate currently runs. This
design accommodates your app no matter how your delegate intends to handle the server response. When you receive the
response, you can do whatever you like with the returned data. For example, you can cache it, store it in a database, or
immediately blast it to UI controls. If you send the response directly to the UI, however, remember that your delegate must
dispatch its messages to the main thread.

Managing Requests
MKNetworkKit, the underlying networking architecture for the iOS Mobile SDK, uses two key objects: MKNetworkEngine
and MKNetworkOperation. The Salesforce Network SDK for iOS in turn defines two primary objects, SFNetworkEngine
and SFNetworkOperation, that wrap the corresponding MKNetworkKit objects. SFRestRequest internally uses a
SFNetworkOperation object to make each server call.

If you’d like to access the SFNetworkOperation object for any request, you have two options.

• The following methods return SFNetworkOperation*:

◊ [SFRestRequest send:]

◊ [SFRestAPI send:delegate:]

• SFRestRequest objects include a networkOperation object of type SFNetworkOperation*.

To cancel pending REST requests, you also have two options.

• SFRestRequest provides a new method that cancels the request:

- (void) cancel;

• And SFRestAPI has a method that cancels all requests currently running:

- (void)cancelAllRequests;

Examples of Canceling Requests

To cancel all requests:

[[SFRestAPI sharedInstance] cancelAllRequests];

To cancel a single request:

SFRestRequest *request = [[SFRestAPI sharedInstance] requestForOwnedFilesList:nil page:0];
[[SFRestAPI sharedInstance] send:request delegate:self];
...
// User taps Cancel Request button while waiting for the response

184

Managing RequestsFiles and Networking

-(void) cancelRequest:(SFRestRequest *) request {
[request cancel];

}

Using Files in Hybrid Apps
Except for uploading, you can use the same file requests in hybrid apps as in native apps. Hybrid file request wrappers reside
in the forcetk.mobilesdk.js JavaScript library. When using the hybrid functions, you pass in a callback function that
receives and handles the server response. You also pass in a function to handle errors.

To simplify the code, you can leverage the SmartSync.js and forcetk.mobilesdk.js libraries to build your HTML
app. The HybridFileExplorer sample app demonstrates this.

Note: Mobile SDK does not support file uploads in hybrid apps.

185

Using Files in Hybrid AppsFiles and Networking

Chapter 7

Offline Management

Salesforce Mobile SDK provides two modules that help you store and
synchronize data for offline use:

In this chapter ...

• Securely Storing Data Offline
• SmartStore• Using SmartSync to Access Salesforce

Objects • SmartSync Data Framework

SmartStore lets you store app data in encrypted databases, or soups, on the
device. When the device goes back online, you can use SmartStore APIs to
synchronize data changes with the Salesforce server.

SmartSync provides a mechanism for easily fetching Salesforce data, modeling
it as JavaScript objects, and caching it for offline use. When it’s time to upload
offline changes to the Salesforce server, SmartSync gives you highly granular
control over the synchronization process. SmartSync is built on the popular
Backbone.js open source library and uses SmartStore as its default cache.

186

Securely Storing Data Offline
Mobile devices can lose connection at any time, and environments such as hospitals and airplanes often prohibit connectivity.
To handle these situations, it’s important that your mobile apps continue to function when they go offline.

Mobile SDK uses SmartStore, a multi-threaded, secure offline storage solution for mobile devices. SmartStore allows you to
continue working with data even when the device is not connected to the Internet.

About SmartStore
SmartStore stores data as JSON documents in a simple, single-table database. You can define indexes for this database, and
you can query the data either with SmartStore helper methods that implement standard queries, or with custom queries using
SmartStore’s Smart SQL language.

SmartStore uses StoreCache, a Mobile SDK caching mechanism, to provide offline synchronization and conflict resolution
services. We recommend that you use StoreCache to manage operations on Salesforce data.

Note: Pure HTML5 apps store offline information in a browser cache. Browser caching isn’t part of the Mobile
SDK, and we don’t document it here. SmartStore uses storage functionality on the device. This strategy requires a
native or hybrid development path.

Sample Objects
The code snippets in this chapter use two objects, Account and Opportunity, which come predefined with every Salesforce
organization. Account and Opportunity have a master-detail relationship; an account can have more than one opportunity.

SmartStore Soups
SmartStore stores offline data in one or more soups. A soup, conceptually speaking, is a logical collection of data
records—represented as JSON objects—that you want to store and query offline. In the Force.com world, a soup typically
maps to a standard or custom object that you wish to store offline. You can store as many soups as you want in an application,
but remember that soups are meant to be self-contained data sets; there is no direct correlation between soups. In addition to
storing the data, you can also specify indices that map to fields within the data, for greater ease in customizing data queries.

Warning:

SmartStore data is inherently volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states.
When the user logs out of the app, SmartStore deletes all soup data associated with that user. Similarly, when the
OAuth refresh token is revoked or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully
consider the volatility of SmartStore data when designing your app. This warning is especially important if your
organization sets a short lifetime for the refresh token.

SmartStore Data Types
SmartStore supports the following data types:

DescriptionType

Signed integer, stored in 4 bytes (SDK 2.1 and earlier) or 8
bytes (SDK 2.2 and later)

integer

187

Securely Storing Data OfflineOffline Management

DescriptionType

Floating point value, stored as an 8-byte IEEE floating point
number

floating

Text string, stored with database encoding (UTF-8)string

Date Representation

Date Representation

SmartStore does not specify a type for dates and times. We recommend that you represent these values with SmartStore data
types as shown in the following table:

DescriptionFormat AsType

"YYYY-MM-DD HH:MM:SS.SSS"An ISO 8601 stringstring

The number of days since noon in
Greenwich on November 24, 4714 BC

A Julian day numberfloating

according to the proleptic Gregorian
calendar. This value can include partial
days that are expressed as decimal
fractions.

The number of seconds since 1970-01-01
00:00:00 UTC

Unix timeinteger

Enabling SmartStore in Hybrid Apps
Hybrid apps access SmartStore from JavaScript. To enable offline access in a hybrid mobile application, your Visualforce or
HTML page must include the following JavaScript library files.

• cordova-x.x.x.js—The Cordova library (formerly PhoneGap).

• cordova.force.js—Contains the JavaScript portion of Salesforce OAuth and SmartStore plug-ins. Also includes
methods that perform utility tasks such as determining whether you’re offline.

In Android apps, SmartStore is an optional component. It is not optional in iOS apps. When you use the Mobile SDK npm
scripts to create SmartStore apps:

• If you create an iOS hybrid project by using forceios create, these libraries are automatically included.

• If you create an Android hybrid project by using forcedroid create with prompts, specify yes when you’re asked
if you want to use SmartStore.

• If you’re using forcedroid create with command-line parameters, specify the optional ––usesmartstore=true
parameter.

Adding SmartStore to Existing Android Apps
To add SmartStore to an existing Android project (hybrid or native):

1. Add the SmartStore library project to your project. In Eclipse, choose Properties from the Project menu. Select Android
from the left panel, then click Add on the right-hand side. Choose the hybrid/SmartStore project.

188

Enabling SmartStore in Hybrid AppsOffline Management

2. In your <projectname>App.java file, import the SalesforceSDKManagerWithSmartStore class instead of
SalesforceSDKManager. Replace this statement:

import com.salesforce.androidsdk.app.SalesforceSDKManager

with this one:

import com.salesforce.androidsdk.smartstore.app.SalesforceSDKManagerWithSmartStore

3. In your <projectname>App.java file, change your App class to extend the SalesforceSDKManagerWithSmartStore
class rather than SalesforceSDKManager.

Registering a Soup
In order to access a soup, you first need to register it. Provide a name, index specifications, and names of callback functions
for success and error conditions:

navigator.smartstore.registerSoup(soupName, indexSpecs, successCallback, errorCallback)

If the soup does not already exist, this function creates it. If the soup already exists, registering gives you access to the existing
soup. To find out if a soup already exists, use:

navigator.smartstore.soupExists(soupName, successCallback, errorCallback);

A soup is indexed on one or more fields found in its entries. Insert, update, and delete operations on soup entries are tracked
in the soup indices. Always specify at least one index field when registering a soup. For example, if you are using the soup as
a simple key/value store, use a single index specification with a string type.

indexSpecs
The indexSpecs array is used to create the soup with predefined indexing. Entries in the indexSpecs array specify how
the soup should be indexed. Each entry consists of a path:type pair. path is the name of an index field; type is either
“string”, “integer”, or “floating”. Index paths are case-sensitive and can include compound paths, such as Owner.Name.

Note: If index entries are missing any fields described in a particular indexSpec, they will not be tracked in that
index.

"indexSpecs":[
{

"path":"Name",
"type":"string"

}
{

"path":"Id",
"type":"string"

}
{

"path":"ParentId",
"type":"string"

}
{

"path":"lastModifiedDate",
"type":"integer"

189

Registering a SoupOffline Management

}
]

Note:

• The type of the index applies only to the index. When you query an indexed field (for example, “select
{soup:path} from {soup}”) the query returns the type that you specified in the index specification.

• It’s OK to have a null field in an index column.

successCallback
The success callback function for registerSoup takes one argument (the soup name).

function(soupName) { alert("Soup " + soupName + " was successfully created"); };

A successful creation of the soup returns a successCallback that indicates the soup is ready. Wait to complete the transaction
and receive the callback before you begin any activity. If you register a soup under the passed name, the success callback function
returns the soup.

errorCallback
The error callback function for registerSoup takes one argument (the error description string).

function(err) { alert ("registerSoup failed with error:" + err); }

During soup creation, errors can happen for a number of reasons, including:

• An invalid or bad soup name
• No index (at least one index must be specified)
• Other unexpected errors, such as a database error

Retrieving Data From a Soup
SmartStore provides a set of helper methods that build query strings for you. To query a specific set of records, call the build*
method that suits your query specification. You can optionally define the index field, sort order, and other metadata to be used
for filtering, as described in the following table:

DescriptionParameter

This is what you’re searching for; for example a name, account number, or date.indexPath

Optional. Used to define the start of a range query.beginKey

Optional. Used to define the end of a range query.endKey

Optional. Either “ascending” or “descending.”order

Optional. If not present, the native plugin can return whatever page size it sees fit in the
resulting Cursor.pageSize.

pageSize

Note:

All queries are single-predicate searches. Only Smart SQL queries support joins.

190

Retrieving Data From a SoupOffline Management

Query Everything
buildAllQuerySpec(indexPath, order, [pageSize]) returns all entries in the soup, with no particular order. Use
this query to traverse everything in the soup.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

• buildAllQuerySpec(indexPath)

• buildAllQuerySpec(indexPath, order)

• buildAllQuerySpec(indexPath, order, [pageSize])

However, you can’t specify buildAllQuerySpec(indexPath,[pageSize]).

See Working With Cursors for information on page sizes.

Note: As a base rule, set pageSize to the number of entries you want displayed on the screen. For a smooth scrolling
display, you might want to increase the value to two or three times the number of entries actually shown.

Query with a Smart SQL SELECT Statement
buildSmartQuerySpec(smartSql, [pageSize]) executes the query specified by smartSql. This function allows
greater flexibility than other query factory functions because you provide your own Smart SQL SELECT statement. See Smart
SQL Queries.

pageSize is optional and defaults to 10.

Sample code, in various development environments, for a Smart SQL query that calls the SQL COUNT function:

Javascript:

var querySpec = navigator.smartstore.buildSmartQuerySpec("select count(*) from {employees}",
1);
navigator.smartstore.runSmartQuery(querySpec, function(cursor) {
// result should be [[n]] if there are n employees
});

iOS native:

SFQuerySpec* querySpec = [SFQuerySpec newSmartQuerySpec:@"select count(*) from {employees}"
withPageSize:1];
NSArray* result = [_store queryWithQuerySpec:querySpec pageIndex:0];
// result should be [[n]] if there are n employees

Android native:

SmartStore store = SalesforceSDKManagerWithSmartStore.getInstance().getSmartStore();
JSONArray result = store.query(QuerySpec.buildSmartQuerySpec("select count(*) from
{employees}", 1), 0);
// result should be [[n]] if there are n employees

Query by Exact
buildExactQuerySpec(indexPath, matchKey, [pageSize]) finds entries that exactly match the given matchKey
for the indexPath value. Use this to find child entities of a given ID. For example, you can find Opportunities by Status.
However, you can’t specify order in the results.

Sample code for retrieving children by ID:

var querySpec = navigator.smartstore.buildExactQuerySpec(“sfdcId”, “some-sfdc-id”);
navigator.smartstore.querySoup(“Catalogs”, querySpec, function(cursor) {

191

Retrieving Data From a SoupOffline Management

// we expect the catalog to be in: cursor.currentPageOrderedEntries[0]
});

Sample code for retrieving children by parent ID:

var querySpec = navigator.smartstore.buildExactQuerySpec(“parentSfdcId”, “some-sfdc-id);
navigator.smartstore.querySoup(“Catalogs”, querySpec, function(cursor) {});

Query by Range
buildRangeQuerySpec(indexPath, beginKey, endKey, [order, pageSize]) finds entries whose indexPath
values fall into the range defined by beginKey and endKey. Use this function to search by numeric ranges, such as a range
of dates stored as integers.

order and pageSize are optional, and default to ascending and 10, respectively. You can specify:

• buildRangeQuerySpec(indexPath, beginKey, endKey)

• buildRangeQuerySpec(indexPath, beginKey, endKey, order)

• buildRangeQuerySpec(indexPath, beginKey, endKey, order, pageSize)

However, you can’t specify buildRangeQuerySpec(indexPath, beginKey, endKey, pageSize).

By passing null values to beginKey and endKey, you can perform open-ended searches:

• Passing null to endKey finds all records where the field at indexPath is >= beginKey.
• Passing null to beginKey finds all records where the field at indexPath is <= endKey.
• Passing null to both beginKey and endKey is the same as querying everything.

Query by Like
buildLikeQuerySpec(indexPath, likeKey, [order, pageSize]) finds entries whose indexPath values are
like the given likeKey. You can use “foo%” to search for terms that begin with your keyword, “%foo” to search for terms that
end with your keyword, and “%foo%” to search for your keyword anywhere in the indexPath value. Use this function for
general searching and partial name matches. order and pageSize are optional, and default to ascending and 10, respectively.

Note: Query by Like is the slowest of the query methods.

Executing the Query
Queries run asynchronously and return a cursor to your JavaScript callback. Your success callback should be of the form
function(cursor). Use the querySpec parameter to pass your query specification to the querySoup method.

navigator.smartstore.querySoup(soupName,querySpec,successCallback,errorCallback);

Retrieving Individual Soup Entries by Primary Key
All soup entries are automatically given a unique internal ID (the primary key in the internal table that holds all entries in the
soup). That ID field is made available as the _soupEntryId field in the soup entry. Soup entries can be looked up by
_soupEntryId by using the retrieveSoupEntries method. Note that the return order is not guaranteed, and if entries
have been deleted they will be missing from the resulting array. This method provides the fastest way to retrieve a soup entry,
but it’s usable only when you know the _soupEntryId:

navigator.smartStore.retrieveSoupEntries(soupName, indexSpecs, successCallback,
errorCallback)

192

Retrieving Data From a SoupOffline Management

Smart SQL Queries
Beginning with Salesforce Mobile SDK version 2.0, SmartStore supports a Smart SQL query language for free-form SELECT
statements. Smart SQL queries combine standard SQL SELECT grammar with additional descriptors for referencing soups
and soup fields. This approach gives you maximum control and flexibility, including the ability to use joins. Smart SQL
supports all standard SQL SELECT constructs.

Smart SQL Restrictions
Smart SQL supports only SELECT statements and only indexed paths.

Syntax
Syntax is identical to the standard SQL SELECT specification but with the following adaptations:

SyntaxUsage

{<soupName>:<path>}To specify a column

{<soupName>}To specify a table

{<soupName>:_soup}To refer to the entire soup entry JSON
string

{<soupName>:_soupEntryId}To refer to the internal soup entry ID

{<soupName>:_soupLastModifiedDate}To refer to the last modified date

Sample Queries
Consider two soups: one named Employees, and another named Departments. The Employees soup contains standard fields
such as:

• First name (firstName)
• Last name (lastName)
• Department code (deptCode)
• Employee ID (employeeId)
• Manager ID (managerId)

The Departments soup contains:

• Name (name)
• Department code (deptCode)

Here are some examples of basic Smart SQL queries using these soups:

select {employees:firstName}, {employees:lastName}
from {employees} order by {employees:lastName}

select {departments:name}
from {departments}
order by {departments:deptCode}

193

Smart SQL QueriesOffline Management

Joins
Smart SQL also allows you to use joins. For example:

select {departments:name}, {employees:firstName} || ' ' || {employees:lastName}
from {employees}, {departments}
where {departments:deptCode} = {employees:deptCode}
order by {departments:name}, {employees:lastName}

You can even do self joins:

select mgr.{employees:lastName}, e.{employees:lastName}
from {employees} as mgr, {employees} as e
where mgr.{employees:employeeId} = e.{employees:managerId}

Aggregate Functions
Smart SQL support the use of aggregate functions such as:

• COUNT
• SUM
• AVG

For example:

select {account:name},
count({opportunity:name}),
sum({opportunity:amount}),
avg({opportunity:amount}),
{account:id},
{opportunity:accountid}

from {account},
{opportunity}

where {account:id} = {opportunity:accountid}
group by {account:name}

The NativeSqlAggregator sample app delivers a fully implemented native implementation of SmartStore, including Smart
SQL support for aggregate functions and joins.

Working With Cursors
Queries can potentially have long result sets that are too large to load. Instead, only a small subset of the query results (a single
page) is copied from the native realm to the JavaScript realm at any given time. When you perform a query, a cursor object is
returned from the native realm that provides a way to page through a list of query results. The JavaScript code can then move
forward and back through the pages, causing pages to be copied to the JavaScript realm.

Note: For advanced users: Cursors are not snapshots of data; they are dynamic. If you make changes to the soup and
then start paging through the cursor, you will see those changes. The only data the cursor holds is the original query
and your current position in the result set. When you move your cursor, the query runs again. Thus, newly created
soup entries can be returned (assuming they satisfy the original query).

Use the following cursor functions to navigate the results of a query:

• navigator.smartstore.moveCursorToPageIndex(cursor, newPageIndex, successCallback,
errorCallback)—Move the cursor to the page index given, where 0 is the first page, and the last page is defined by
totalPages - 1.

194

Working With CursorsOffline Management

• navigator.smartstore.moveCursorToNextPage(cursor, successCallback, errorCallback)—Move
to the next entry page if such a page exists.

• navigator.smartstore.moveCursorToPreviousPage(cursor, successCallback, errorCallback)—Move
to the previous entry page if such a page exists.

• navigator.smartstore.closeCursor(cursor, successCallback, errorCallback)—Close the cursor
when you’re finished with it.

Note: successCallback for those functions should expect one argument (the updated cursor).

Manipulating Data
In order to track soup entries for insert, update, and delete, SmartStore adds a few fields to each entry:

• _soupEntryId—This field is the primary key for the soup entry in the table for a given soup.

• _soupLastModifiedDate—The number of milliseconds since 1/1/1970.

◊ To convert to a JavaScript date, use new Date(entry._soupLastModifiedDate).

◊ To convert a date to the corresponding number of milliseconds since 1/1/1970, use date.getTime().

When inserting or updating soup entries, SmartStore automatically sets these fields. When removing or retrieving specific
entries, you can reference them by _soupEntryId.

Inserting or Updating Soup Entries
If the provided soup entries already have the _soupEntryId slots set, then entries identified by that slot are updated in the
soup. If an entry does not have a _soupEntryId slot, or the value of the slot doesn’t match any existing entry in the soup,
then the entry is added (inserted) to the soup, and the _soupEntryId slot is overwritten.

Note: You must not manipulate the _soupEntryId or _soupLastModifiedDate value yourself.

Use the upsertSoupEntries method to insert or update entries:

navigator.smartStore.upsertSoupEntries(soupName, entries[], successCallback, errorCallback)

where soupName is the name of the target soup, and entries is an array of one or more entries that match the soup’s data
structure. The successCallback and errorCallback parameters function much like the ones for registerSoup.
However, the success callback for upsertSoupEntries indicates that either a new record has been inserted, or an existing
record has been updated.

Upserting with an External ID
If your soup entries mirror data from an external system, you might need to refer to those entities by their ID (primary key)
in the external system. For that purpose, we support upsert with an external ID. When you perform an upsert, you can designate
any index field as the external ID field. SmartStore will look for existing soup entries with the same value in the designated
field with the following results:

• If no field with the same value is found, a new soup entry will be created.
• If the external ID field is found, it will be updated.
• If more than one field matches the external ID, an error will be returned.

195

Manipulating DataOffline Management

When creating a new entry locally, use a regular upsert. Set the external ID field to a value that you can later query when
uploading the new entries to the server.

When updating entries with data coming from the server, use the upsert with external ID. Doing so guarantees that you don’t
end up with duplicate soup entries for the same remote record.

In the following sample code, we chose the value new for the id field because the record doesn’t yet exist on the server. Once
we are online, we can query for records that exist only locally (by looking for records where id == "new") and upload them
to the server. Once the server returns the actual ID for the records, we can update their id fields locally. If you create products
that belong to catalogs that have not yet been created on the server, you will be able to capture the relationship with the catalog
through the parentSoupEntryId field. Once the catalogs are created on the server, update the local records’
parentExternalId fields.

The following code contains sample scenarios. First, it calls upsertSoupEntries to create a new soup entry. In the success
callback, the code retrieves the new record with its newly assigned soup entry ID. It then changes the description and calls
forcetk.mobilesdk methods to create the new account on the server and then update it. The final call demonstrates the
upsert with external ID. To make the code more readable, no error callbacks are specified. Also, because all SmartStore calls
are asynchronous, real applications should do each step in the callback of the previous step.

// Specify data for the account to be created
var acc = {id: "new", Name: "Cloud Inc", Description: "Getting started"};

// Create account in SmartStore
// This upsert does a "create" because the acc has no _soupEntryId field
navigator.smartstore.upsertSoupEntries("accounts", [acc], function(accounts) {

acc = accounts[0];
// acc should now have a _soupEntryId field (and a _lastModifiedDate as well)

});

// Update account's description in memory
acc["Description"] = "Just shipped our first app ";

// Update account in SmartStore
// This does an "update" because acc has a _soupEntryId field
navigator.smartstore.upsertSoupEntries("accounts", [acc], function(accounts) {

acc = accounts[0];
});

// Create account on server (sync client -> server for entities created locally)
forcetkClient.create("account", {"Name": acc["Name"], "Description": acc["Description"]},
function(result) {
acc["id"] = result["id"];
// Update account in SmartStore
navigator.smartstore.upsertSoupEntries("accounts", [acc]);

});

// Update account's description in memory
acc["Description"] = "Now shipping for iOS and Android";

// Update account's description on server
// Sync client -> server for entities existing on server
forcetkClient.update("account", acc["id"], {"Description": acc["Description"]});

///// Later, there is an account (with id: someSfdcId) that you want to get locally

///// There might be an older version of that account in the SmartStore already

// Update account on client
// sync server -> client for entities that might or might not exist on client
forcetkClient.retrieve("account", someSfdcId, "id,Name,Description", function(result) {

// Create or update account in SmartStore (looking for an account with the same sfdcId)

navigator.smartstore.upsertSoupEntriesWithExternalId("accounts", [result], "id");
});

196

Manipulating DataOffline Management

Removing Soup Entries
Entries are removed from the soup asynchronously and your callback is called with success or failure. The soupEntryIds is
a list of the _soupEntryId values from the entries you wish to delete.

navigator.smartStore.removeFromSoup(soupName, soupEntryIds, successCallback, errorCallback)

Removing a Soup
To remove a soup, call removeSoup(). Note that once a user signs out, the soups get deleted automatically.

navigator.smartstore.removeSoup(soupName,successCallback,errorCallback);

Using the Mock SmartStore
To facilitate developing and testing code that makes use of the SmartStore while running outside the container, you can use
an emulated SmartStore.

MockSmartStore is a JavaScript implementation of SmartStore that stores the data in local storage (or optionally just in
memory).

In the external/shared/test directory, you’ll find the following files:

• MockCordova.js—A minimal implementation of Cordova functions meant only for testing plugins outside the container.
Intercepts Cordova plugin calls

• MockSmartStore.js—A JavaScript implementation of the SmartStore meant only for development and testing outside
the container. Also intercepts SmartStore Cordova plugin calls and handles them using a MockSmartStore.

When you’re developing an application using SmartStore, make the following changes to test your app outside the container:

• Include MockCordova.js instead of cordova-x.x.x.js.

• Include MockSmartStore.js after cordova.force.js.

To see a MockSmartStore example, check out external/shared/test/test.html.

Same-Origin Policies
Same-origin policy permits scripts running on pages originating from the same site to access each other’s methods and properties
with no specific restrictions; it also blocks access to most methods and properties across pages on different sites. Same-origin
policy restrictions are not an issue when your code runs inside the container, because the container disables same-origin policy
in the webview. However, if you call a remote API, you need to worry about same-origin policy restrictions.

Fortunately, browsers offer ways to turn off same-origin policy, and you can research how to do that with your particular
browser. If you want to make XHR calls against Force.com from JavaScript files loaded from the local file system, you should
start your browser with same-origin policy disabled. The following article describes how to disable same-origin policy on
several popular browsers: Getting Around Same-Origin Policy in Web Browsers.

Authentication
For authentication with MockSmartStore, you will need to capture access tokens and refresh tokens from a real session and
hand code them in your JavaScript app. You’ll also need these tokens to initialize the forcetk.mobilesdk JavaScript toolkit.

Note:

• MockSmartStore doesn’t encrypt data and is not meant to be used in production applications.

• MockSmartStore currently supports the following forms of Smart SQL queries:

197

Using the Mock SmartStoreOffline Management

http://romkey.com/2011/04/23/getting-around-same-origin-policy-in-web-browsers

◊ SELECT...WHERE.... For example:

SELECT {soupName:selectField} FROM {soupName} WHERE {soupName:whereField} IN
(values)

◊ SELECT...WHERE...ORDER BY.... For example:

SELECT {soupName:_soup} FROM {soupName} WHERE {soupName:whereField} LIKE 'value'
ORDER BY LOWER({soupName:orderByField})

◊ SELECT count(*) FROM {soupName}

MockSmartStore doesn’t directly support the simpler types of Smart SQL statements that are handled by the
build*QuerySpec() functions. Instead, use the query spec function that suits your purpose.

NativeSqlAggregator Sample App: Using SmartStore in Native Apps
The NativeSqlAggregator app demonstrates how to use SmartStore in a native app. It also demonstrates the ability to make
complex SQL-like queries, including aggregate functions, such as SUM and COUNT, and joins across different soups within
SmartStore.

Creating a Soup
The first step to storing a Salesforce object in SmartStore is to create a soup for the object. The function call to register a soup
takes two arguments—the name of the soup, and the index specs for the soup. Indexing supports three types of data: string,
integer, and floating decimal. The following example illustrates how to initialize a soup for the Account object with indexing
on Name, Id, and OwnerId fields.

Android:

SalesforceSDKManagerWithSmartStore sdkManager =
SalesforceSDKManagerWithSmartStore.getInstance();

SmartStore smartStore = sdkManager.getSmartStore();

IndexSpec[] ACCOUNTS_INDEX_SPEC = {
new IndexSpec("Name", Type.string),
new IndexSpec("Id", Type.string),
new IndexSpec("OwnerId", Type.string)
};

smartStore.registerSoup("Account", ACCOUNTS_INDEX_SPEC);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];

NSArray *keys = [NSArray arrayWithObjects:@"path", @"type", nil];
NSArray *nameValues = [NSArray arrayWithObjects:@"Name", kSoupIndexTypeString, nil];
NSDictionary *nameDictionary = [NSDictionary dictionaryWithObjects:nameValues
forKeys:keys];
NSArray *idValues = [NSArray arrayWithObjects:@"Id", kSoupIndexTypeString, nil];
NSDictionary *idDictionary = [NSDictionary dictionaryWithObjects:idValues forKeys:keys];
NSArray *ownerIdValues = [NSArray arrayWithObjects:@"OwnerId", kSoupIndexTypeString,

198

NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

Offline Management

nil];
NSDictionary *ownerIdDictionary = [NSDictionary dictionaryWithObjects:ownerIdValues
forKeys:keys];
NSArray *accountIndexSpecs = [[NSArray alloc] initWithObjects:nameDictionary,
idDictionary, ownerIdDictionary, nil];

[store registerSoup:@"Account" withIndexSpecs:accountIndexSpecs];

Storing Data in a Soup
Once the soup is created, the next step is to store data in the soup. In the following example, account represents a single
record of the object Account. On Android, account is of type JSONObject. On iOS, its type is NSDictionary.

Android:

SmartStore smartStore = sdkManager.getSmartStore();
smartStore.upsert("Account", account);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];
[store upsertEntries:[NSArray arrayWithObject:account] toSoup:@"Account"];

Running Queries Against SmartStore
Beginning with Mobile SDK 2.0, you can run advanced SQL-like queries against SmartStore that span multiple soups. The
syntax of a SmartStore query is similar to standard SQL syntax, with a couple of minor variations. A colon (“:”) serves as the
delimiter between a soup name and an index field. A set of curly braces encloses each <soup-name>:<field-name> pair.
See Smart SQL Queries.

Here’s an example of an aggregate query run against SmartStore:

SELECT {Account:Name},
COUNT({Opportunity:Name}),
SUM({Opportunity:Amount}),
AVG({Opportunity:Amount}), {Account:Id}, {Opportunity:AccountId}

FROM {Account}, {Opportunity}
WHERE {Account:Id} = {Opportunity:AccountId}
GROUP BY {Account:Name}

This query represents an implicit join between two soups, Account and Opportunity. It returns:

• Name of the Account
• Number of opportunities associated with an Account
• Sum of all the amounts associated with each Opportunity of that Account
• Average amount associated with an Opportunity of that Account
• Grouping by Account name

The code snippet below demonstrates how to run such queries from within a native app. In this example, smartSql is the
query and pageSize is the requested page size. The pageIndex argument specifies which page of results you want returned.

199

NativeSqlAggregator Sample App: Using SmartStore in Native
Apps

Offline Management

Android:

QuerySpec querySpec = QuerySpec.buildSmartQuerySpec(smartSql, pageSize);
JSONArray result = smartStore.query(querySpec, pageIndex);

iOS:

SFSmartStore *store = [SFSmartStore sharedStoreWithName:kDefaultSmartStoreName];
SFQuerySpec *querySpec = [SFQuerySpec newSmartQuerySpec:queryString
withPageSize:pageSize];
NSArray *result = [store queryWithQuerySpec:querySpec pageIndex:pageIndex];

Using SmartSync to Access Salesforce Objects
The SmartSync Data Framework is a Mobile SDK library that represents Salesforce objects as JavaScript objects. Using
SmartSync in a hybrid app, you can create models of Salesforce objects and manipulate the underlying records just by changing
the model data. If you perform a SOQL or SOSL query, you receive the resulting records in a model collection rather than
as a JSON string.

Underlying the SmartSync technology is the backbone.js open-source JavaScript library. Backbone.js defines an extensible
mechanism for modeling data. To understand the basic technology behind the SmartSync Data Framework, browse the
examples and documentation at backbonejs.org.

Three sample hybrid applications demonstrate SmartSync.

• Account Editor (AccountEditor.html)

• User Search (UserSearch.html)

• User and Group Search (UserAndGroupSearch.html)

You can find these sample apps in the ./hybrid/SampleApps/AccountEditor/assets/www folder.

About Backbone Technology
The SmartSync library, SmartSync.js, provides extensions to the open-source Backbone JavaScript library. The Backbone
library defines key building blocks for structuring your web application:

• Models with key-value binding and custom events, for modeling your information

• Collections with a rich API of enumerable functions, for containing your data sets

• Views with declarative event handling, for displaying information in your models

• A router for controlling navigation between views

Salesforce SmartSync Data Framework extends the Model and Collection core Backbone objects to connect them to the
Salesforce REST API. SmartSync also provides optional offline support through SmartStore, the secure storage component
of the Mobile SDK.

To learn more about Backbone, see http://backbonejs.org/ and http://backbonetutorials.com/. You can also search online for
“backbone javascript” to find a wealth of tutorials and videos.

200

Using SmartSync to Access Salesforce ObjectsOffline Management

http://www.backbonejs.org
http://backbonejs.org/
http://backbonetutorials.com/

Models and Model Collections
Two types of objects make up the SmartSync Data Framework:

• Models

• Model collections

Definitions for these objects extend classes defined in backbone.js, a popular third-party JavaScript framework. For
background information, see http://backbonetutorials.com.

Models
Models on the client represent server records. In SmartSync, model objects are instances of Force.SObject, a subclass of
the Backbone.Model class. SObject extends Model to work with Salesforce APIs and, optionally, with SmartStore.

You can perform the following CRUD operations on SObject model objects:

• Create

• Destroy

• Fetch

• Save

• Get/set attributes

In addition, model objects are observable: Views and controllers can receive notifications when the objects change.

Properties

Force.SObject adds the following properties to Backbone.Model:

sobjectType

Required. The name of the Salesforce object that this model represents. This value can refer to either a standard object
or a custom object.

fieldlist

Required. Names of fields to fetch, save, or destroy.

cacheMode

Offline behavior.

mergeMode

Conflict handling behavior.

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that is backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples

You can assign values for model properties in several ways:

• As properties on a Force.SObject instance.

201

Models and Model CollectionsOffline Management

http://backbonetutorials.com

• As methods on a Force.SObject sub-class. These methods take a parameter that specifies the desired CRUD action
(“create”, “read”, “update”, or “delete”).

• In the options parameter of the fetch(), save(), or destroy() function call.

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
acc = new Force.SObject({Id:"<some_id>"});
acc.sobjectType = "account";
acc.fieldlist = ["Id", "Name"];
acc.fetch();

// As methods on a Force.SObject sub-class
Account = Force.SObject.extend({
sobjectType: "account",
fieldlist: function(method) { return ["Id", "Name"];}

});
Acc = new Account({Id:"<some_id>"});
acc.fetch();

// In the options parameter of fetch()
acc = new Force.SObject({Id:"<some_id>"});
acc.sobjectType = "account";
acc.fetch({fieldlist:["Id", "Name"]);

Model Collections
Model collections in the SmartSync Data Framework are containers for query results. Query results stored in a model collection
can come from the server via SOQL, SOSL, or MRU queries. Optionally, they can also come from the cache via SmartSQL
(if the cache is SmartStore), or another query mechanism if you use an alternate cache.

Model collection objects are instances of Force.SObjectCollection, a subclass of the Backbone.Collection class.
SObjectCollection extends Collection to work with Salesforce APIs and, optionally, with SmartStore.

Properties

Force.SObjectCollection adds the following properties to Backbone.Collection:

config

Required. Defines the records the collection can hold (using SOQL, SOSL, MRU or SmartSQL).

cache

For updatable offline storage of records. The SmartSync Data Framework comes bundled with Force.StoreCache, a
cache implementation that’s backed by SmartStore.

cacheForOriginals

Contains original copies of records fetched from server to support conflict detection.

Examples

You can assign values for model collection properties in several ways:

• As properties on a Force.SObject instance
• As methods on a Force.SObject sub-class
• In the options parameter of the fetch(), save(), or destroy() function call

202

Model CollectionsOffline Management

For example, these code snippets are equivalent.

// As properties on a Force.SObject instance
list = new Force.SObjectCollection({config:<valid_config>});
list.fetch();

// As methods on a Force.SObject sub-class
MyCollection = Force.SObjectCollection.extend({
config: function() { return <valid_config>; }

});
list = new MyCollection();
list.fetch();

// In the options parameter of fetch()
list = new Force.SObjectCollection();
list.fetch({config:valid_config});

Using the SmartSync Data Framework in JavaScript
To use SmartSync in a hybrid app, include:

• jquery-x.x.x.min.js (use version of file in external/shared/jquery/)

• underscore-x.x.x.min.js (use version of file in external/shared/backbone/)

• backbone-x.x.x.min.js (use version of file in external/shared/backbone/)

• cordova.js

• cordova.force.js

• forcetk.mobilesdk.js

• SmartSync.js

Implementing a Model Object
To begin using SmartSync objects, define a model object to represent each SObject that you want to manipulate. The
SObjects can be standard Salesforce objects or custom objects. For example, this code creates a model of the Account object
that sets the two required properties—sobjectType and fieldlist—and defines a cacheMode() function.

app.models.Account = Force.SObject.extend({
sobjectType: "Account",
fieldlist: ["Id", "Name", "Industry", "Phone"],

cacheMode: function(method) {
if (app.offlineTracker.get("offlineStatus") == "offline") {

return "cache-only";
}
else {

return (method == "read" ? "cache-first" : "server-first");
}

}
});

Notice that the app.models.Account model object extends Force.SObject, which is defined in SmartSync.js. Also,
the cacheMode() function queries a local offlineTracker object for the device's offline status. You can use the Cordova
library to determine offline status at any particular moment.

SmartSync can perform a fetch or a save operation on the model. It uses the app’s cacheMode value to determine whether to
perform an operation on the server or in the cache. Your cacheMode member can either be a simple string property or a
function returning a string.

203

Using the SmartSync Data Framework in JavaScriptOffline Management

Implementing a Model Collection
The model collection for this sample app extends Force.SObjectCollection.

// The AccountCollection Model
app.models.AccountCollection = Force.SObjectCollection.extend({

model: app.models.Account,
fieldlist: ["Id", "Name", "Industry", "Phone"],

setCriteria: function(key) {
this.key = key;

},

config: function() {
// Offline: do a cache query
if (app.offlineTracker.get("offlineStatus") == "offline") {

return {type:"cache", cacheQuery:{queryType:"like",
indexPath:"Name", likeKey: this.key+"%",
order:"ascending"}};

}
// Online
else {

// First time: do a MRU query
if (this.key == null) {

return {type:"mru", sobjectType:"Account",
fieldlist: this.fieldlist};

}
// Other times: do a SOQL query
else {

var soql = "SELECT " + this.fieldlist.join(",")
+ " FROM Account"
+ " WHERE Name like '" + this.key + "%'";

return {type:"soql", query:soql};
}

}
}

});

This model collection uses an optional key that is the name of the account to be fetched from the collection. It also defines a
config() function that determines what information is fetched. If the device is offline, the config() function builds a
cache query statement. Otherwise, if no key is specified, it queries the most recently used record ("mru"). If the key is specified
and the device is online, it builds a standard SOQL query that pulls records for which the name matches the key. The fetch
operation on the Force.SObjectCollection prototype transparently uses the returned configuration to automatically fill
the model collection with query records.

See querySpec for information on formatting a cache query.

Note: These code examples are part of the Account Editor sample app. See Account Editor Sample for a sample
description.

Offline Caching
To provide offline support, your app must be able to cache its models and collections. SmartSync provides a configurable
mechanism that gives you full control over caching operations.

Default Cache and Custom Cache Implementations
For its default cache, the SmartSync library defines StoreCache, a cache implementation that uses SmartStore. Both StoreCache
and SmartStore are optional components for SmartSync apps. If your application runs in a browser instead of the Mobile SDK
container, or if you don't want to use SmartStore, you must provide an alternate cache implementation. SmartSync requires
cache objects to support these operations:

204

Offline CachingOffline Management

• retrieve
• save
• save all
• remove
• find

SmartSync Caching Workflow
The SmartSync model performs all interactions with the cache and the Salesforce server on behalf of your app. Your app gets
and sets attributes on model objects. During save operations, the model uses these attribute settings to determine whether to
write changes to the cache or server, and how to merge new data with existing data. If anything changes in the underlying
data or in the model itself, the model sends event notifications. Similarly, if you request a fetch, the model fetches the data
and presents it to your app in a model collection.

SmartSync updates data in the cache transparently during CRUD operations. You can control the transparency level through
optional flags. Cached objects maintain "dirty" attributes that indicate whether they've been created, updated, or deleted locally.

Cache Modes
When you use a cache, you can specify a mode for each CRUD operation. Supported modes are:

DescriptionConstantMode

Read from, or write to, the
cache. Do not perform the
operation on the server.

Force.CACHE_MODE.CACHE_ONLY“cache-only”

Read from, or write to, the
server. Do not perform the
operation on the cache.

Force.CACHE_MODE.SERVER_ONLY“server-only”

205

Offline CachingOffline Management

DescriptionConstantMode

For FETCH operations
only. Fetch the record from

Force.CACHE_MODE.CACHE_FIRST“cache-first”

the cache. If the cache
doesn't contain the record,
fetch it from the server and
then update the cache.

Perform the operation on the
server, then update the
cache.

Force.CACHE_MODE.SERVER_FIRST“server-first”
(default)

To query the cache directly, use a cache query. SmartStore provides query APIs as well as its own query language, Smart SQL.
See Retrieving Data From a Soup.

Implementing Offline Caching
To support offline caching, SmartSync requires you to supply your own implementations of a few tasks:

• Tracking offline status and specifying the appropriate cache control flag for CRUD operations, as shown in the
app.models.Account example.

• Collecting records that were edited locally and saving their changes to the server when the device is back online. The
following example uses a SmartStore cache query to retrieve locally changed records, then calls the SyncPage function to
render the results in HTML.

sync: function() {
var that = this;
var localAccounts = new app.models.AccountCollection();
localAccounts.fetch({
config: {type:"cache", cacheQuery: {queryType:"exact",

indexPath:"__local__", matchKey:true}},
success: function(data) {
that.slidePage(new app.views.SyncPage({model: data}).render());
}
});
}

app.views.SyncPage = Backbone.View.extend({

template: _.template($("#sync-page").html()),

render: function(eventName) {
$(this.el).html(this.template(_.extend(

{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView = new app.views.AccountListView({el: $("ul",
this.el), model: this.model});

this.listView.render();
return this;

},
...
});

206

Implementing Offline CachingOffline Management

Using StoreCache For Offline Caching
The SmartSync.js library implements a cache named StoreCache that stores its data in SmartStore. Although SmartSync
uses StoreCache as its default cache, StoreCache is a stand-alone component. Even if you don’t use SmartSync, you can still
leverage StoreCache for SmartStore operations.

Note: Although StoreCache is intended for use with SmartSync, you can use any cache mechanism with SmartSync
that meets the requirements described in Offline Caching.

Construction and Initialization

StoreCache objects work internally with SmartStore soups. To create a StoreCache object backed by the soup soupName, use
the following constructor:

new Force.StoreCache(soupName [, additionalIndexSpecs, keyField])

soupName
Required. The name of the underlying SmartStore soup.

additionalIndexSpecs
Fields to include in the cache index in addition to default index fields. See Registering a Soup for formatting instructions.

keyField
Name of field containing the record ID. If not specified, StoreCache expects to find the ID in a field named "Id."

Soup items in a StoreCache object include four additional boolean fields for tracking offline edits:

• __locally_created__

• __locally_updated__

• __locally_deleted__

• __local__ (set to true if any of the previous three are true)

These fields are for internal use but can also be used by apps. StoreCache indexes each soup on the __local__ field and its
ID field. You can use the additionalIndexSpecs parameter to specify additional fields to include in the index.

To register the underlying soup, call init() on the StoreCache object. This function returns a jQuery promise that resolves
once soup registration is complete.

StoreCache Methods

init()

Registers the underlying SmartStore soup. Returns a jQuery promise that resolves when soup registration is complete.

retrieve(key [, fieldlist])

Returns a jQuery promise that resolves to the record with key in the keyField returned by the SmartStore. The promise
resolves to null when no record is found or when the found record does not include all the fields in the fieldlist parameter.

key
The key value of the record to be retrieved.

207

Using StoreCache For Offline CachingOffline Management

fieldlist
(Optional) A JavaScript array of required fields. For example:

["field1","field2","field3"]

save(record [, noMerge])

Returns a jQuery promise that resolves to the saved record once the SmartStore upsert completes. If noMerge is not
specified or is false, the passed record is merged with the server record with the same key, if one exists.

record

The record to be saved, formatted as:

{<field_name1>:"<field_value1>"[,<field_name2>:"<field_value2>",...]}

For example:

{Id:"007", Name:"JamesBond", Mission:"TopSecret"}

noMerge
(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

saveAll(records [, noMerge])

Identical to save(), except that records is an array of records to be saved. Returns a jQuery promise that resolves to
the saved records.

records
An array of records. Each item in the array is formatted as demonstrated for the save() function.

noMerge
(Optional) Boolean value indicating whether the passed record is to be merged with the matching server record.
Defaults to false.

remove(key)

Returns a jQuery promise that resolves when the record with the given key has been removed from the SmartStore.

key
Key value of the record to be removed.

find(querySpec)

Returns a jQuery promise that resolves once the query has been run against the SmartStore. The resolved value is an
object with the following fields:

DescriptionField

All fetched recordsrecords

Function to check if more records can be retrievedhasMore

208

Using StoreCache For Offline CachingOffline Management

DescriptionField

Function to fetch more recordsgetMore

Function to close the open cursor and disable further fetchcloseCursor

querySpec

A specification based on SmartStore query function calls, formatted as:

{queryType: "like" | "exact" | "range" | "smart"[, query_type_params]}

where query_type_params match the format of the related SmartStore query function call. See Retrieving Data
From a Soup.

Here are some examples:

{queryType:"exact", indexPath:"<indexed_field_to_match_on>",
matchKey:<value_to_match>, order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"range", indexPath:"<indexed_field_to_match_on>",
beginKey:<start_of_Range>, endKey:<end_of_range>, order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"like", indexPath:"<indexed_field_to_match_on>",
likeKey:"<value_to_match>", order:"ascending"|"descending",
pageSize:<entries_per_page>}

{queryType:"smart", smartSql:"<smart_sql_query>", order:"ascending"|"descending",
pageSize:<entries_per_page>}

Examples

The following example shows how to create, initialize, and use a StoreCache object.

var cache = new Force.StoreCache("agents", [{path:"Mission", type:"string"}]);
// initialization of the cache / underlying soup
cache.init()
.then(function() {

// saving a record to the cache
return cache.save({Id:"007", Name:"JamesBond", Mission:"TopSecret"});

})
.then(function(savedRecord) {

// retrieving a record from the cache
return cache.retrieve("007");

})
.then(function(retrievedRecord) {

// searching for records in the cache
return cache.find({queryType:"like", indexPath:"Mission", likeKey:"Top%",

order:"ascending", pageSize:1});
})
.then(function(result) {

// removing a record from the cache
return cache.remove("007");

});

209

Using StoreCache For Offline CachingOffline Management

The next example shows how to use the saveAll() function and the results of the find() function.

// initialization
var cache = new Force.StoreCache("agents", [{path:"Name", type:"string"}, {path:"Mission",
type:"string"}]);
cache.init()
.then(function() {

// saving some records
return cache.saveAll([{Id:"007", Name:"JamesBond"},{Id:"008", Name:"Agent008"},

{Id:"009", Name:"JamesOther"}]);
})
.then(function() {

// doing an exact query
return cache.find({queryType:"exact", indexPath:"Name", matchKey:"Agent008",

order:"ascending", pageSize:1});
})
.then(function(result) {

alert("Agent mission is:" + result.records[0]["Mission"];
});

Conflict Detection
Model objects support optional conflict detection to prevent unwanted data loss when the object is saved to the server. You
can use conflict detection with any save operation, regardless of whether the device is returning from an offline state.

To support conflict detection, you specify a secondary cache to contain the original values fetched from the server. SmartSync
keeps this cache for later reference. When you save or delete, you specify a merge mode. The following table summarizes the
supported modes. To understand the mode descriptions, consider "theirs" to be the current server record, "yours" the current
local record, and "base” the record that was originally fetched from the server.

DescriptionConstantMode

Write "yours" to the server,
without comparing to

Force.MERGE_MODE.OVERWRITEoverwrite

"theirs" or "base”. (This is
the same as not using
conflict detection.)

Merge "theirs" and "yours".
If the same field is changed

Force.MERGE_MODE.MERGE_ACCEPT_YOURSmerge-accept-yours

both locally and remotely,
the local value is kept.

Merge "theirs" and "yours".
If the same field is changed

Force.MERGE_MODE.MERGE_FAIL_IF_CONFLICTmerge-fail-if-conflict

both locally and remotely,
the operation fails.

Merge "theirs" and "yours".
If any field is changed

Force.MERGE_MODE.MERGE_FAIL_IF_CHANGEDmerge-fail-if-changed

remotely, the operation
fails.

If a save or delete operation fails, you receive a report object with the following fields:

210

Conflict DetectionOffline Management

ContainsField Name

Originally fetched attributesbase

Latest server attributestheirs

Locally modified attributesyours

List of fields changed between base and theirsremoteChanges

List of fields changed between base and yourslocalChanges

List of fields changed both in theirs and yours, with different
values

conflictingChanges

Diagrams can help clarify how merge modes operate.

MERGE_MODE.OVERWRITE
In the MERGE_MODE.OVERWRITE diagram, the client changes A and B, and the server changes B and C. Changes to B conflict,
whereas changes to A and C do not. However, the save operation blindly writes all the client’s values to the server, overwriting
any changes on the server.

MERGE_ACCEPT_YOURS
In the MERGE_MODE.MERGE_ACCEPT_YOURS diagram, the client changes A and B, and the server changes B and C. Client
changes (A and B) overwrites corresponding fields on the server, regardless of whether conflicts exist. However, fields that
the client leaves unchanged (C) do not overwrite corresponding server values.

MERGE_FAIL_IF_CONFLICT (Fails)
In the first MERGE_MODE.MERGE_FAIL_IF_CONFLICT diagram, both the client and the server change B. These conflicting
changes cause the save operation to fail.

211

Conflict DetectionOffline Management

MERGE_FAIL_IF_CONFLICT (Succeeds)
In the second MERGE_MODE.MERGE_FAIL_IF_CONFLICT diagram, the client changed A, and the server changed B. These
changes don’t conflict, so the save operation succeeds.

Mini-Tutorial: Conflict Detection
The following mini-tutorial demonstrates how merge modes affect save operations under various circumstances. It takes the
form of an extended example within an HTML context.

1. Set up the necessary caches:

var cache = new Force.StoreCache(soupName);
var cacheForOriginals = new Force.StoreCache(soupNameForOriginals);
var Account = Force.SObject.extend({sobjectType:"Account", fieldlist:["Id", "Name",
"Industry"], cache:cache, cacheForOriginals:cacheForOriginals});

2. Get an existing account:

var account = new Account({Id:<some actual account id>});
account.fetch();

3. Let's assume that the account has Name:"Acme" and Industry:"Software". Change the name to “Acme2.”

Account.set("Name", "Acme2");

4. Save to the server without specifying a merge mode, so that the default "overwrite" merge mode is used:

account.save(null);

The account’s Name is now "Acme2" and its Industry is "Software" Let's assume that Industry changes on the server to
"Electronics."

212

Mini-Tutorial: Conflict DetectionOffline Management

5. Change the account Name again:

Account.set("Name", "Acme3");

You now have a change in the cache (Name) and a change on the server (Industry).
6. Save again, using "merge-fail-if-changed" merge mode.

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Industry"],

localChanges:["Name"], conflictingChanges:[]}
});

The error callback is called because the server record has changed.
7. Save again, using "merge-fail-if-conflict" merge mode. This merge succeeds because no conflict exists between the change

on the server and the change on the client.

account.save(null, {mergeMode: "merge-fail-if-conflict"});

The account’s Name is now "Acme3" (yours) and its Industry is "Electronics" (theirs). Let's assume that, meanwhile, Name
on the server changes to "NewAcme" and Industry changes to "Services."

8. Change the account Name again:

Account.set("Name", "Acme4");

9. Save again, using "merge-fail-if-changed" merge mode. The error callback is called because the server record has changed.

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Name",

"Industry"], localChanges:["Name"], conflictingChanges:["Name"]}
});

10. Save again, using "merge-fail-if-conflict" merge mode:

account.save(null, {mergeMode: "merge-fail-if-changed", error: function(err) {
// err will be a map of the form {base:…, theirs:…, yours:…, remoteChanges:["Name",

"Industry"], localChanges:["Name"], conflictingChanges:["Name"]}
});

The error callback is called because both the server and the cache change the Name field, resulting in a conflict:
11. Save again, using "merge-accept-yours" merge mode. This merge succeeds because your merge mode tells the save()

function which Name value to accept. Also, since you haven’t changed Industry, that field doesn’t conflict.

account.save(null, {mergeMode: "merge-accept-yours"});

Name is “Acme4” (yours) and Industry is “Services” (theirs), both in the cache and on the server.

213

Mini-Tutorial: Conflict DetectionOffline Management

Accessing Custom API Endpoints
In Mobile SDK 2.1, SmartSync expands its scope to let you work with any REST API. Previously, you could only perform
basic operations on sObjects with the Force.com API. Now you can use SmartSync with Apex REST objects, Chatter Files,
and any other Salesforce REST API. You can also call non-Salesforce REST APIs.

Force.RemoteObject Class
To support arbitrary REST calls, SmartSync introduces the Force.RemoteObject abstract class. Force.RemoteObject
serves as a layer of abstraction between Force.SObject and Backbone.Model. Instead of directly subclassing
Backbone.Model, Force.SObject now subclasses Force.RemoteObject, which in turn subclasses Backbone.Model.
Force.RemoteObject does everything Force.SObject formerly did except communicate with the server.

Calling Custom Endpoints with syncRemoteObjectWithServer()

The RemoteObject.syncRemoteObjectWithServer() prototype method handles server interactions. Force.SObject
implements syncRemoteObjectWithServer() to use the Force.com REST API. If you want to use other server end
points, create a subclass of Force.RemoteObject and implement syncRemoteObjectWithServer(). This method is
called when you call fetch() on an object of your subclass, if the object is currently configured to fetch from the server.

Example

The HybridFileExplorer sample application is a SmartSync app that shows how to use Force.RemoteObject.
HybridFileExplorer calls the Chatter REST API to manipulate files. It defines an app.models.File object that extends
Force.RemoteObject. In its implementation of syncRemoteObjectWithServer(), app.models.File calls
forcetk.fileDetails(), which wraps the /chatter/files/fileId REST API.

app.models.File = Force.RemoteObject.extend({
syncRemoteObjectWithServer: function(method, id) {

if (method != "read") throw "Method not supported " + method;
return Force.forcetkClient.fileDetails(id, null);

}
})

Force.RemoteObjectCollection Class
To support collections of fetched objects, SmartSync introduces the Force.RemoteObjectCollection abstract class. This
class serves as a layer of abstraction between Force.SObjectCollection and Backbone.Collection. Instead of directly
subclassing Backbone.Collection, Force.SObjectCollection now subclasses Force.RemoteObjectCollection, which in turn
subclasses Backbone.Collection. Force.RemoteObjectCollection does everything Force.SObjectCollection
formerly did except communicate with the server.

Implementing Custom Endpoints with fetchRemoteObjectFromServer()

The RemoteObject.fetchRemoteObjectFromServer() prototype method handles server interactions. This method
uses the Force.com REST API to run SOQL/SOSL and MRU queries. If you want to use arbitrary server end points, create
a subclass of Force.RemoteObjectCollection and implement fetchRemoteObjectFromServer(). This method is
called when you call fetch() on an object of your subclass, if the object is currently configured to fetch from the server.

214

Accessing Custom API EndpointsOffline Management

When the app.models.FileCollection.fetchRemoteObjectsFromServer() function returns, it promises an object
containing valuable information and useful functions that use metadata from the response. This object includes:

• totalSize: The number of files in the returned collection

• records: The collection of returned files

• hasMore: A function that returns a boolean value that indicates whether you can retrieve another page of results

• getMore: A function that retrieves the next page of results (if hasMore() returns true)

• closeCursor: A function that indicates that you’re finished iterating through the collection

These functions leverage information contained in the server response, including Files.length and nextPageUrl.

Example

The HybridFileExplorer sample application also demonstrates how to use Force.RemoteObjectCollection. This
example calls the Chatter REST API to iterate over a list of files. It supports three REST operations: ownedFilesList,
filesInUsersGroups, and filesSharedWithUser.

You can write functions such as hasMore() and getMore(), shown in this example, to navigate through pages of results.
However, since apps don’t call fetchRemoteObjectsFromServer() directly, you capture the returned promise object
when you call fetch() on your collection object.

app.models.FileCollection = Force.RemoteObjectCollection.extend({
model: app.models.File,

setCriteria: function(key) {
this.config = {type:key};

},

fetchRemoteObjectsFromServer: function(config) {
var fetchPromise;
switch(config.type) {

case "ownedFilesList": fetchPromise =
Force.forcetkClient.ownedFilesList("me", 0);
break;

case "filesInUsersGroups": fetchPromise =
Force.forcetkClient.filesInUsersGroups("me", 0);
break;

case "filesSharedWithUser": fetchPromise =
Force.forcetkClient.filesSharedWithUser("me", 0);
break;

};

return fetchPromise
.then(function(resp) {

var nextPageUrl = resp.nextPageUrl;
return {

totalSize: resp.files.length,
records: resp.files,
hasMore: function() {

return nextPageUrl != null; },
getMore: function() {

var that = this;
if (!nextPageUrl)

return null;
return

forcetkClient.queryMore(nextPageUrl)
.then(function(resp) {

nextPageUrl = resp.nextPageUrl;
that.records.pushObjects(resp.files);

215

Force.RemoteObjectCollection ClassOffline Management

return resp.files;
});

},
closeCursor: function() {

return $.when(function() { nextPageUrl = null; });
}

};
});

}
});

Using Apex REST Resources
To support Apex REST resources, Mobile SDK provides two classes: Force.ApexRestObject and
Force.ApexRestObjectCollection. These classes subclass Force.RemoteObject and
Force.RemoteObjectCollection, respectively, and can talk to a REST API that you have created using Apex REST.

Force.ApexRestObject

Force.ApexRestObject is similar to Force.SObject. Instead of an sobjectType, Force.ApexRestObject requires
the Apex REST resource path relative to services/apexrest. For example, if your full resource path is
services/apexrest/simpleAccount/*, you specify only /simpleAccount/*. Force.ApexRestObject also expects
you to specify the name of your ID field if it's different from "Id".

Example

Let's assume you’ve created an Apex REST resource called "simple account," which is just an account with two fields:
accountId and accountName.

@RestResource(urlMapping='/simpleAccount/*')
global with sharing class SimpleAccountResource {

static String getIdFromURI() {
RestRequest req = RestContext.request;
return req.requestURI.substring(req.requestURI.lastIndexOf('/')+1);

}

@HttpGet global static Map<String, String> doGet() {
String id = getIdFromURI();
Account acc = [select Id, Name from Account

where Id = :id];
return new Map<String, String>{

'accountId'=>acc.Id, 'accountName'=>acc.Name};
}

@HttpPost global static Map<String, String>
doPost(String accountName) {

Account acc = new Account(Name=accountName);
insert acc;
return new Map<String, String>{

'accountId'=>acc.Id, 'accountName'=>acc.Name};
}

@HttpPatch global static Map<String, String>
doPatch(String accountName) {

String id = getIdFromURI();
Account acc = [select Id from Account where Id = :id];
acc.Name = accountName;
update acc;

216

Using Apex REST ResourcesOffline Management

return new Map<String, String>{
'accountId'=>acc.Id, 'accountName'=>acc.Name};

}

@HttpDelete global static void doDelete() {
String id = getIdFromURI();
Account acc = [select Id from Account where Id = :id];
delete acc;
RestContext.response.statusCode = 204;

}
}

With SmartSync, you do the following to create a "simple account".

var SimpleAccount = Force.ApexRestObject.extend(
{apexRestPath:"/simpleAccount",
idAttribute:"accountId",
fieldlist:["accountId", "accountName"]});

var acc = new SimpleAccount({accountName:"MyFirstAccount"});
acc.save();

You can update that "simple account".

acc.set("accountName", "MyFirstAccountUpdated");
acc.save(null, {fieldlist:["accountName"]);
// our apex patch endpoint only expects accountName

You can fetch another "simple account".

var acc2 = new SimpleAccount({accountId:"<valid id>"})
acc.fetch();

You can delete a "simple account".

acc.destroy();

Note: In SmartSync calls such as fetch(), save(), and destroy(), you typically pass an options parameter
that defines success and error callback functions. For example:

acc.destroy({success:function(){alert("delete succeeded");}});

Force.ApexRestObjectCollection

Force.ApexRestObjectCollection is similar to Force.SObjectCollection. The config you specify for fetching
doesn't support SOQL, SOSL, or MRU. Instead, it expects the Apex REST resource path, relative to services/apexrest.
For example, if your full resource path is services/apexrest/simpleAccount/*, you specify only /simpleAccount/*.

You can also pass parameters for the query string if your endpoint supports them. The Apex REST endpoint is expected to
return a response in this format:

{ totalSize: <number of records returned>
records: <all fetched records>
nextRecordsUrl: <url to get next records or null>

}

217

Using Apex REST ResourcesOffline Management

Example

Let's assume you’ve created an Apex REST resource called "simple accounts". It returns "simple accounts" that match a
given name.

@RestResource(urlMapping='/simpleAccounts/*')
global with sharing class SimpleAccountsResource {

@HttpGet global static SimpleAccountsList doGet() {
String namePattern =

RestContext.request.params.get('namePattern');
List<SimpleAccount> records = new List<SimpleAccount>();
for (SObject sobj : Database.query(

'select Id, Name from Account
where Name like \'' + namePattern + '\'')) {

Account acc = (Account) sobj;
records.add(new SimpleAccount(acc.Id, acc.Name));

}
return new SimpleAccountsList(records.size(), records);

}

global class SimpleAccountsList {
global Integer totalSize;
global List<SimpleAccount> records;

global SimpleAccountsList(Integer totalSize,
List<SimpleAccount> records) {

this.totalSize = totalSize;
this.records = records;

}
}

global class SimpleAccount {
global String accountId;
global String accountName;

global SimpleAccount(String accountId, String accountName)
{

this.accountId = accountId;
this.accountName = accountName;

}
}

}

With SmartSync, you do the following to fetch a list of "simple account" records.

var SimpleAccountCollection =
Force.ApexRestObjectCollection.extend(

{model: SimpleAccount,
config:{

apexRestPath:"/simpleAccounts",
params:{namePattern:"My%"}

}
}

);
var accs = new SimpleAccountCollection();
accs.fetch();

Note: In SmartSync calls such as fetch(), you typically pass an options parameter that defines success and error
callback functions. For example:

acc.fetch({success:function(){alert("fetched " +
accs.models.length + " simple accounts");}});

218

Using Apex REST ResourcesOffline Management

Using External Objects (Beta)
Note: Any unreleased services or features referenced in this document, press releases, or public statements are not
currently available and may not be delivered on time or at all. Customers who purchase our services should make their
purchase decisions based upon features that are currently available.

About External Objects (Beta)

If you have data stored outside of Salesforce, you might need to use it with data inside your organization. For example, you
might need to access inventory information that resides in an external database to more easily reconcile your stock. Salesforce
lets you connect to an external data source from within your organization, access the data you want, create an external object
for the data, and make it accessible to specific users from a tab. You can learn more about defining external objects at
http://help.salesforce.com/apex/HTViewHelpDoc?id=external_object_manage.htm.

Note: The Salesforce API only lets you read external objects. CRUD operations are not supported.

Accessing External Objects (Beta) in Mobile SDK Apps

To access an external object with Mobile SDK, use SmartSync.js. Create an instance of either Force.SObject itself or
a subclass of Force.SObject. Configure this instance as follows:

• Set idAttribute to "ExternalId".
• If you use a cache, set idField to "ExternalId".

Example: Fetch an External Object Using SmartSync

The following JavaScript example accesses an external object named Categories__x with a field named CategoryName__c
by extending Force.SObject.

1. Set up a cache using StoreCache.

var cache = new Force.StoreCache("categories",
["CategoryName__c"], "ExternalId");

cache.init();

2. Create a Force.SObject subclass to represent Categories__x objects on the client. Set idAttribute to “ExternalId”,
and pass in cache to enable caching.

var Category = Force.SObject.extend({
sobjectType:"Categories__x",
idAttribute:"ExternalId",
fieldlist:["CategoryName__c"],
cache:cache});

3. Create an instance of Category that can fetch an external object whose external ID is “1”, then fetch that object.

var cat = new Category({"ExternalId": "1"});
cat.fetch();

4. Retrieve the fetched object from the cache:

var cat1 = cache.retrieve("1");

219

Using External Objects (Beta)Offline Management

http://help.salesforce.com/apex/HTViewHelpDoc?id=external_object_manage.htm

Example: Fetch a Collection of External Objects Using SmartSync

You can also use a Force.SObjectCollections object to represent a collection of Category objects on the client.

1. Create a subclass of Force.SObjectCollection.

var Categories = Force.SObjectCollection.extend({model:Category, cache:cache});

2. Fetch Categories__x objects by running a SOQL query.

var categories = new Categories();
categories.fetch({config:{

type:"soql",
query:"SELECT ExternalId, CategoryName__c

FROM Categories__x"}
});

3. Retrieve the fetched object whose external ID is “2” from the collection within the cache.

var cat2 = cache.retrieve("2");

Tutorial: Creating a SmartSync Application
This tutorial demonstrates how to create a local hybrid app that uses the SmartSync Data Framework. It recreates the User
Search sample application that ships with Mobile SDK 2.0. User Search lets you search for User records in a Salesforce
organization and see basic details about them.

This sample uses the following web technologies:

• Backbone.js

• Ratchet

• HTML5

• JavaScript

Set Up Your Project
First, make sure you’ve installed Salesforce Mobile SDK using the NPM installer. For iOS instructions, see iOS Installation.
For Android instructions, see Android Installation.

Also, download the ratchet.css file from http://maker.github.io/ratchet/.

1. Once you’ve installed Mobile SDK, create a local hybrid project for your platform.

a. For iOS: At the command terminal, enter the following command:

forceios create --apptype=hybrid_local
--appname=UserSearch --companyid=com.acme.UserSearch
--organization=Acme --outputdir=.

The forceios script creates your project at ./UserSearch/UserSearch.xcode.proj.

220

Tutorial: Creating a SmartSync ApplicationOffline Management

http://maker.github.io/ratchet/

b. For Android: At the command terminal or the Windows command prompt, enter the following command:

forcedroid create -—apptype="hybrid_local"
--appname="UserSearch" --targetdir=.
--packagename="com.acme.usersearch"

The forcedroid script creates the project at ./UserSearch.

2. Follow the onscreen instructions to open the new project in Eclipse (for Android) or Xcode (for iOS).
3. Open the www folder.
4. Remove the inline.js file from the project.
5. Create a new folder. Name it css.
6. Copy the ratchet.css file into your new css folder.
7. In the www folder, open index.html in your code editor and delete all of its contents.

Edit the Application HTML File
To create your app’s basic structure, define an empty HTML page that contains references, links, and code infrastructure.

1. In Xcode, edit index.html and add the following basic structure:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>

</html>

2. In the <head> element:

a. Turn off scaling to make the page look like an app rather than a web page.

<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0, user-scalable=no;" />

b. Set the content type.

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

c. Add a link to the ratchet.css file to provide the mobile look:

<link rel="stylesheet" href="css/ratchet.css"/>

d. Include the necessary JavaScript files.

<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

221

Edit the Application HTML FileOffline Management

3. Now let’s start adding content to the body. In the <body> block, add a div tag to contain the app UI.

<body>
<div id="content"></div>

It’s good practice to keep your objects and classes in a namespace. In this sample, we use the app namespace to contain
our models and views.

4. In a <script> tag, create an application namespace. Let’s call it app.

<script>
var app = {

models: {},
views: {}

}

For the remainder of this procedure, continue adding your code in the <script> block.

5. Add an event listener and handler to wait for jQuery, and then call Cordova to start the authentication flow. Also, specify
a callback function, appStart, to handle the user’s credentials.

jQuery(document).ready(function() {
document.addEventListener("deviceready", onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").

getAuthCredentials(appStart);
}

Once the application has initialized and authentication is complete, the Salesforce OAuth plugin calls appStart() and
passes it the user’s credentials. The appStart() function passes the credentials to SmartSync by calling Force.init(),
which initializes SmartSync. The appStart() function also creates a Backbone Router object for the application.

6. Add the appStart() function definition at the end of the <script> block.

function appStart(creds) {
Force.init(creds, null, null,

cordova.require("salesforce/plugin/oauth").forcetkRefresh);
app.router = new app.Router();
Backbone.history.start();

}

Here’s the complete application to this point.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0,
maximum-scale=1.0; user-scalable=no" />

<meta http-equiv="Content-type" content="text/html; charset=utf-8">
<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>

222

Edit the Application HTML FileOffline Management

<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>

</div>

<div class="content">
<ul class="list">

</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>

</div>
</script>

<script>
var app = {

models: {},
views: {}

};

jQuery(document).ready(function() {
document.addEventListener("deviceready", onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").

getAuthCredentials(appStart);
}

function appStart(creds) {
console.log(JSON.stringify(creds));
Force.init(creds, null, null,

cordova.require("salesforce/plugin/oauth").forcetkRefresh);
app.router = new app.Router();
Backbone.history.start();

} </script>
</body>

</html>

Create a SmartSync Model and a Collection
Now that we’ve configured the HTML infrastructure, let’s get started using SmartSync by extending two of its primary objects:

• Force.SObject

• Force.SObjectCollection

These objects extend Backbone.Model, so they support the Backbone.Model.extend() function. To extend an object
using this function, pass it a JavaScript object containing your custom properties and functions.

223

Create a SmartSync Model and a CollectionOffline Management

1. In the <body> tag, create a model object for the Salesforce User sObject. Extend Force.SObject to specify the sObject
type and the fields we are targeting.

app.models.User = Force.SObject.extend({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
})

2. Immediately after setting the User object, create a collection to hold user search results.
ExtendForce.SObjectCollection to indicate your new model (app.models.User) as the model for items in the
collection.

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

Here’s the complete model code.

// Models
app.models.User = Force.SObject.extend({

sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
});

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

Create a Template
Templates let you describe an HTML layout within another HTML page. You can define an inline template in your HTML
page by using a <script> tag of type “text/template”. Your JavaScript code can use the template as the page design when it
instantiates a new HTML page at runtime.

The search page template is simple. It includes a header, a search field, and a list to hold the search results.

1. Add a new script block. Place the block within the <body> block just after the “content” <div> tag.

<script id="search-page" type="text/template">
</script>

2. In the new <script> block, define the search page HTML template using Ratchet styles.

<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder="Search"/>

</div>

224

Create a TemplateOffline Management

<div class="content">
<ul class="list">

</div>
</script>

Add the Search View
To create the view for a screen, you extend Backbone.View. In the search view extension, you load the template, define
sub-views and event handlers, and implement the functionality for rendering the views and performing a SOQL search query.

1. In the <body> block, create a Backbone.View extension named SearchPage in the app.views array.

app.views.SearchPage = Backbone.View.extend({
});

For the remainder of this procedure, add all code to the extend({}) block.

2. Load the search-page template by calling the _.template() function. Pass it the raw HTML content of the search-page
script tag.

template: _.template($("#search-page").html()),

3. Instantiate a sub-view named UserListView to contain the list of search results. (You’ll define the
app.views.UserListView view later.)

initialize: function() {
this.listView = new app.views.UserListView({model: this.model});

},

4. Create a render() function for the search page view. Rendering the view consists simply of loading the template as the
app’s HTML content. Restore any criteria previously typed in the search field and render the sub-view inside the
element.

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

5. Add a keyup event handler that performs a search when the user types a character in the search field.

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE

Name like '" + this.model.criteria + "%' ORDER BY Name LIMIT 25 ";
this.model.fetch({config: {type:"soql", query:soql}});

}

225

Add the Search ViewOffline Management

This function defines a SOQL query. It then uses the backing model to send that query to the server and fetch the results.

Here’s the complete extension.

app.views.SearchPage = Backbone.View.extend({
template: _.template($("#search-page").html()),

initialize: function() {
this.listView = new app.views.UserListView({model: this.model});

},

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName, SmallPhotoUrl, Title FROM User WHERE

Name like '" + this.model.criteria + "%' ORDER BY Name LIMIT 25 ";
this.model.fetch({config: {type:"soql", query:soql}});

}
});

Add the Search Result List View
The view for the search result list doesn’t need a template. It is simply a container for list item views. It keeps track of these
views in the listItemViews member. If the underlying collection changes, it renders itself again.

1. In the <body> block, create the view for the search result list by extending Backbone.View. Let’s add an array for list
item views as well as an initialize() function.

app.views.UserListView = Backbone.View.extend({
listItemViews: [],
initialize: function() {

this.model.bind("reset", this.render, this);
},

For the remainder of this procedure, add all code to the extend({}) block.

2. Create the render() function to clean up any existing list item views by calling close() on each one.

render: function(eventName) {
_.each(this.listItemViews, function(itemView) { itemView.close(); });

226

Add the Search Result List ViewOffline Management

3. In the render() function, create a new set of list item views for the records in the underlying collection. Each of these
views is just an entry in the list. You’ll define the app.views.UserListItemView later.

this.listItemViews = _.map(this.model.models, function(model) { return new
app.views.UserListItemView({model: model}); });

4. Append the list item views to the root DOM element.

$(this.el).append(_.map(this.listItemViews, function(itemView) {
return itemView.render().el;}));
return this;

}

Here’s the complete extension:

app.views.UserListView = Backbone.View.extend({

listItemViews: [],

initialize: function() {
this.model.bind("reset", this.render, this);

},
render: function(eventName) {

_.each(this.listItemViews, function(itemView) { itemView.close(); });
this.listItemViews = _.map(this.model.models, function(model) {

return new app.views.UserListItemView({model: model}); });
$(this.el).append(_.map(this.listItemViews, function(itemView) {

return itemView.render().el;}));
return this;

}

});

Add the Search Result List Item View
To define the search result list item view, you design and implement the view of a single row in a list. Each list item displays
the following User fields:

• SmallPhotoUrl
• FirstName
• LastName
• Title

1. In the <body> block, create a template for a search result list item.

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>

</div>
</script>

227

Add the Search Result List Item ViewOffline Management

2. Immediately after the template, create the view for the search result list item. Once again, subclassBackbone.View and
indicate that the whole view should be rendered as a list by defining the tagName member. For the remainder of this
procedure, add all code in the extend({}) block.

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",

});

3. Load template by calling _.template() with the raw content of the user-list-item script.

template: _.template($("#user-list-item").html()),

4. In the render() function, simply render the template using data from the model.

render: function(eventName) {
$(this.el).html(this.template(this.model.toJSON()));
return this;

},

5. Add a close() method to be called from the list view to do necessary cleanup and avoid memory leaks.

close: function() {
this.remove();
this.off();

}

Here’s the complete extension.

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",
template: _.template($("#user-list-item").html()),
render: function(eventName) {

$(this.el).html(this.template(this.model.toJSON()));
return this;

},
close: function() {

this.remove();
this.off();

}

});

Router
A Backbone router defines navigation paths among views. To learn more about routers, see What is a router?

1. Just before the closing tag of the <body> block, define the application router by extending Backbone.Router.

app.Router = Backbone.Router.extend({

});

228

RouterOffline Management

http://backbonetutorials.com/what-is-a-router/

For the remainder of this procedure, add all code in the extend({}) block.

2. Because the app supports only one screen, you need only one “route”. Add a routes object.

routes: {
"": "list"

},

3. Define an initialize() function that creates the search result collections and search page view.

initialize: function() {
Backbone.Router.prototype.initialize.call(this);

// Collection behind search screen
app.searchResults = new app.models.UserCollection();
app.searchView = new app.views.SearchPage({model: app.searchResults});

},

4. Define the list() function to handle the only item in this route. When the list screen displays, fetch the search results
and render the search view.

list: function() {
app.searchResults.fetch();
$('#content').html(app.searchView.render().el);

}

5. Run the application by double-clicking index.html to open it in a browser.

You’ve finished! Here’s the entire application:

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width,
initial-scale=1.0, maximum-scale=1.0; user-scalable=no" />

<meta http-equiv="Content-type" content="text/html;
charset=utf-8">

<link rel="stylesheet" href="css/ratchet.css"/>
<script src="jquery/jquery-2.0.0.min.js"></script>
<script src="backbone/underscore-1.4.4.min.js"></script>
<script src="backbone/backbone-1.0.0.min.js"></script>
<script src="cordova-2.3.0.js"></script>
<script src="forcetk.mobilesdk.js"></script>
<script src="cordova.force.js"></script>
<script src="SmartSync.js"></script>

</head>
<body>
<div id="content"></div>
<script id="search-page" type="text/template">
<header class="bar-title">
<h1 class="title">Users</h1>

</header>

<div class="bar-standard bar-header-secondary">
<input type="search" class="search-key" placeholder=
"Search"/>

</div>

<div class="content">
<ul class="list">

229

RouterOffline Management

</div>
</script>

<script id="user-list-item" type="text/template">
<img src="<%= SmallPhotoUrl %>" class="small-img" />
<div class="details-short">
<%= FirstName %> <%= LastName %>

Title<%= Title %>

</div>
</script>

<script>
var app = {

models: {},
views: {}

};

jQuery(document).ready(function() {
document.addEventListener("deviceready",onDeviceReady,false);

});

function onDeviceReady() {
cordova.require("salesforce/plugin/oauth").
getAuthCredentials(appStart);

}

function appStart(creds) {
console.log(JSON.stringify(creds));
Force.init(creds, null, null,

cordova.require("salesforce/plugin/oauth").forcetkRefresh);
app.router = new app.Router();
Backbone.history.start();

}

// Models
app.models.User = Force.SObject.extend({

sobjectType: "User",
fieldlist: ["Id","FirstName","LastName",
"SmallPhotoUrl","Title","Email","MobilePhone",
"City"]

});

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User

});

// Views

app.views.SearchPage = Backbone.View.extend({
template: _.template($("#search-page").html()),

initialize: function() {
this.listView =

new app.views.UserListView({model: this.model});
},

render: function(eventName) {
$(this.el).html(this.template());
$(".search-key", this.el).val(this.model.criteria);
this.listView.setElement($("ul", this.el)).render();
return this;

},

events: {
"keyup .search-key": "search"

},

230

RouterOffline Management

search: function(event) {
this.model.criteria = $(".search-key", this.el).val();
var soql = "SELECT Id, FirstName, LastName,

SmallPhotoUrl, Title
FROM User WHERE Name like '" + this.model.criteria + "%'
ORDER BY Name LIMIT 25 ";

this.model.fetch({config: {type:"soql", query:soql}});
}

});

app.views.UserListView = Backbone.View.extend({

listItemViews: [],

initialize: function() {
this.model.bind("reset", this.render, this);

},
render: function(eventName) {

_.each(this.listItemViews, function(itemView) {
itemView.close(); });

this.listItemViews = _.map(this.model.models, function(model) {
return new app.views.UserListItemView({model: model}); });

$(this.el).append(_.map(this.listItemViews, function(itemView) {
return itemView.render().el;}));

return this;
}

});

app.views.UserListItemView = Backbone.View.extend({
tagName: "li",
template: _.template($("#user-list-item").html()),
render: function(eventName) {

$(this.el).html(this.template(this.model.toJSON()));
return this;

},
close: function() {

this.remove();
this.off();

}

});

// Router
app.Router = Backbone.Router.extend({

routes: {
"": "list"

},

initialize: function() {
Backbone.Router.prototype.initialize.call(this);

// Collection behind search screen
app.searchResults = new app.models.UserCollection();
app.searchView =

new app.views.SearchPage({model: app.searchResults});
console.log("here");

},

list: function() {
app.searchResults.fetch();
$('#content').html(app.searchView.render().el);

}
});

</script>
</body>

</html>

231

RouterOffline Management

SmartSync Sample Apps
Salesforce Mobile SDK provides sample apps that demonstrate how to use SmartSync in hybrid apps. Account Editor is the
most full-featured of these samples. You can switch to one of the simpler samples by changing the startPage property in
the bootconfig.json file.

Running the Samples in iOS
In your Salesforce Mobile SDK for iOS installation directory, double-click the SalesforceMobileSDK.xcworkspace to
open it in Xcode. In Xcode, open HybridShared/sampleApps/smartsync/AccountEditor.html.

Running the Samples in Android
In Android, you can run the sample from the command prompt. In your Salesforce Mobile SDK for Android installation
directory, change to the hybrid/SampleApps/AccountEditor directory and run:

ant debug
ant installd

Note: If you get any errors saying that the local.properties file does not exist, run the following command
from the directory shown in the error message:

%ANDROID_SDK%/tools/android update project -p .

232

SmartSync Sample AppsOffline Management

To run the sample in Eclipse, import the following projects into your workspace:

• forcedroid/native/SalesforceSDK

• forcedroid/hybrid/SmartStore

• forcedroid/hybrid/SampleApps/AccountEditor

After Eclipse finishes building, Control-click or right-click AccountEditor in the Package Explorer, then click Run As >
Android application.

233

SmartSync Sample AppsOffline Management

234

SmartSync Sample AppsOffline Management

User and Group Search Sample
User and group search is the simplest SmartSync sample app. Its single screen lets you search users and collaboration groups
and display matching records in a list.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserAndGroupSearch.html:

{
"remoteAccessConsumerKey":
"3MVG9Iu66FKeHhINkB1l7xt7kR8czFcCTUhgoA8Ol2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.
dBv_a1Dyu5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserAndGroupSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true
"remoteAccessConsumerKey":

"3MVG9Iu66FKeHhI2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.
dBv_a1Dyu5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserAndGroupSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true

"remoteAccessConsumerKey":
"3MVG9Iu66FKeHhINkB1l7xt7kR8czFcCTUhgoA8Ol2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.
dBv_a1Dyu5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserAndGroupSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true
}

To run the app from Xcode in iOS, click Run to launch the AccountEditor project. After you’ve logged in, type at least two
characters in the search box to see matching results.

Looking Under the Hood

Open UserAndGroupSearch.html in your favorite editor. Here are the key sections of the file:

• Script includes
• Templates
• Models
• Views
• Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.

• Underscore—Utility-belt library for JavaScript, required by backbone. See http://underscorejs.org/

235

User and Group Search SampleOffline Management

http://jquery.com/
http://underscorejs.org/

• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.

• cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates

Templates for this application include:

• search-page—template for the entire search page
• user-list-item—template for user list items
• group-list-item—template for collaboration group list items

Models

This application defines a SearchCollection model.

SearchCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class
from the Backbone library. Its only method configures the SOSL query used by the fetch() method to populate the collection.

app.models.SearchCollection = Force.SObjectCollection.extend({
setCriteria: function(key) {

this.config = {type:"sosl", query:"FIND {" + key + "*} IN ALL FIELDS RETURNING "
+ "CollaborationGroup (Id, Name, SmallPhotoUrl, MemberCount), "
+ "User (Id, FirstName, LastName, SmallPhotoUrl, Title ORDER BY Name) "
+ "LIMIT 25"

};
}

});

Views

User and Group Search defines three views:

SearchPage
The search page expects a SearchCollection as its model. It watches the search input field for changes and updates
the model accordingly.

events: {
"keyup .search-key": "search"

},

search: function(event) {
var key = $(".search-key", this.el).val();
if (key.length >= 2) {

this.model.setCriteria(key);
this.model.fetch();

}
}

ListView
The list portion of the search screen. ListView also expects a Collection as its model and creates ListItemView
objects for each record in the Collection.

236

User and Group Search SampleOffline Management

http://backbonejs.org/
https://github.com/ftlabs/fastclick

ListItemView
Shows details of a single list item, choosing the User or Group template based on the data.

Router

The router does very little because this application defines only one screen.

User Search Sample
User Search is a more elaborate sample than User and Group search. Instead of a single screen, it defines two screens. If your
search returns a list of matches, User Search lets you tap on each of them to see a basic detail screen. Because it defines more
than one screen, this sample also demonstrates the use of a router.

To run the sample, edit external/shared/sampleApps/smartsync/bootconfig.json. Change startPage to
UserSearch.html:

{
"remoteAccessConsumerKey": "3MVG9Iu66FKeHhI2Ltf1eYHOU4SqQRSEitYFDUpqRWcoQ2.dBv_a1Dyu5xa",

"oauthRedirectURI": "testsfdc:///mobilesdk/detect/oauth/done",
"oauthScopes": ["api","web"],
"isLocal": true,
"startPage": "UserSearch.html",
"errorPage": "error.html",
"shouldAuthenticate": true,
"attemptOfflineLoad": true

}

In Xcode or Eclipse, launch the AccountEditor. Log in if prompted to do so. Unlike the User and Group Search example,
you need to type only a single character in the search box to begin seeing search results. That’s because this application uses
SOQL, rather than SOSL, to query the server.

When you tap an entry in the search results list, you see a basic detail screen.

Looking Under the Hood

Open the UserSearch.html file in your favorite editor. Here are the key sections of the file:

• Script includes
• Templates
• Models
• Views
• Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.

• Underscore—Utility-belt library for JavaScript, required by backbone) See http://underscorejs.org/

• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.

• cordova-2.3.0.js—Required for all hybrid application used the SalesforceMobileSDK.

• forcetk.mobilesdk.js—Force.com JavaScript library for making Rest API calls. Required by SmartSync.

237

User Search SampleOffline Management

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/

• cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the
SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.

• SmartSync.js—The Mobile SDK SmartSync Data Framework.

• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See
https://github.com/ftlabs/fastclick.

• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates

Templates for this application include:

• search-page—template for the whole search page
• user-list-item—template for user list items
• user-page—template for user detail page

Models

This application defines two models: UserCollection and User.

UserCollection subclasses the Force.SObjectCollection class, which in turn subclasses the Collection class from
the Backbone library. Its only method configures the SOQL query used by the fetch() method to populate the collection.

app.models.UserCollection = Force.SObjectCollection.extend({
model: app.models.User,
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title"],

setCriteria: function(key) {
this.key = key;
this.config = {type:"soql", query:"SELECT " + this.fieldlist.join(",")

+ " FROM User"
+ " WHERE Name like '" + key + "%'"
+ " ORDER BY Name "
+ " LIMIT 25 "

};
}

});

User subclasses SmartSync’s Force.SObject class. The User model defines:

• An sobjectType field to indicate which type of sObject it represents (User, in this case).
• A fieldlist field that contains the list of fields to be fetched from the server

Here’s the code:

app.models.User = Force.SObject.extend({
sobjectType: "User",
fieldlist: ["Id", "FirstName", "LastName", "SmallPhotoUrl", "Title", "Email",

"MobilePhone","City"]
});

Views

This sample defines four views:

238

User Search SampleOffline Management

https://github.com/ftlabs/fastclick

SearchPage
View for the entire search page. It expects a UserCollection as its model. It watches the search input field for changes
and updates the model accordingly in the search() function.

events: {
"keyup .search-key": "search"

},

search: function(event) {
this.model.setCriteria($(".search-key", this.el).val());
this.model.fetch();

}

UserListView
View for the list portion of the search screen. It also expects a UserCollection as its model and creates
UserListItemView objects for each user in the UserCollection object.

UserListItemView
View for a single list item.

UserPage
View for displaying user details.

Router

The router class handles navigation between the app’s two screens. This class uses a routes field to map those view to
router class method.

routes: {
"": "list",
"list": "list",
"users/:id": "viewUser"

},

The list page calls fetch() to fill the search result collections, then brings the search page into view.

list: function() {
app.searchResults.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.searchPage);

},

The user detail page calls fetch() to fill the user model, then brings the user detail page into view.

viewUser: function(id) {
var that = this;
var user = new app.models.User({Id: id});
user.fetch({

success: function() {
app.userPage.model = user;
that.slidePage(app.userPage);

}
});

}

239

User Search SampleOffline Management

Account Editor Sample
Account Editor is the most complex SmartSync-based sample application in Mobile SDK 2.0. It allows you to
create/edit/update/delete accounts online and offline, and also demonstrates conflict detection.

To run the sample:

1. If you’ve made changes to external/shared/sampleApps/smartsync/bootconfig.json, revert it to its original
content.

2. Launch Account Editor.

This application contains three screens:

• Accounts search

• Accounts detail

• Sync

When the application first starts, you see the Accounts search screen listing the most recently used accounts. In this screen,
you can:

• Type a search string to find accounts whose names contain the given string.

• Tap an account to launch the account detail screen.

• Tap Create to launch an empty account detail screen.

• Tap Online to go offline. If you are already offline, you can tap the Offline button to go back online. (You can also go
offline by putting the device in airplane mode.)

To launch the Account Detail screen, tap an account record in the Accounts search screen. The detail screen shows you the
fields in the selected account. In this screen, you can:

• Tap a field to change its value.

• Tap Save to update or create the account. If validation errors occur, the fields with problems are highlighted.

If you’re online while saving and the server’s record changed since the last fetch, you receive warnings for the fields that
changed remotely.

Two additional buttons, Merge and Overwrite, let you control how the app saves your changes. If you tap Overwrite, the
app saves to the server all values currently displayed on your screen. If you tap Merge, the app saves to the server only the
fields you changed, while keeping changes on the server in fields you did not change.

• Tap Delete to delete the account.

• Tap Online to go offline, or tap Offline to go online.

To see the Sync screen, tap Online to go offline, then create, update, or delete an account. When you tap Offline again to
go back online, the Sync screen shows all accounts that you modified on the device.

Tap Process n records to try to save your local changes to the server. If any account fails to save, it remains in the list with a
notation that it failed to sync. You can tap any account in the list to edit it further or, in the case of a locally deleted record,
to undelete it.

Looking Under the Hood

To view the source code for this sample, open AccountEditor.html in an HTML or text editor.

Here are the key sections of the file:

• Script includes
• Templates

240

Account Editor SampleOffline Management

• Models
• Views
• Router

Script Includes

This sample includes the standard list of libraries for SmartSync applications.

• jQuery—See http://jquery.com/.
• Underscore—Utility-belt library for JavaScript, required by backbone. See http://underscorejs.org/.
• Backbone—Gives structure to web applications. Used by SmartSync Data Framework. See http://backbonejs.org/.
• cordova-2.3.0.js—Required for hybrid applications using the Salesforce Mobile SDK.
• forcetk.mobilesdk.js—Force.com JavaScript library for making REST API calls. Required by SmartSync.
• cordova.force.js—As of Mobile SDK 2.0, this file combines all Force.com Cordova plugins. Replaces the

SFHybridApp.js, SalesforceOAuthPlugin.js, and SmartStorePlugin.js files.
• SmartSync.js—The Mobile SDK SmartSync Data Framework.
• fastclick.js—Library used to eliminate the 300 ms delay between physical tap and firing of a click event. See

https://github.com/ftlabs/fastclick.
• stackrouter.js and auth.js—Helper JavaScript libraries used by all three sample applications.

Templates

Templates for this application include:

• search-page
• sync-page
• account-list-item
• edit-account-page (for the Account detail page)

Models

This sample defines three models: AccountCollection, Account and OfflineTracker.

AccountCollection is a subclass of SmartSync’s Force.SObjectCollection class, which is a subclass of the Backbone
framework’s Collection class.

The AccountCollection.config() method returns an appropriate query to the collection. The query mode can be:

• Most recently used (MRU) if you are online and haven’t provided query criteria
• SOQL if you are online and have provided query criteria
• SmartSQL when you are offline

When the app calls fetch() on the collection, the fetch() function executes the query returned by config(). It then
uses the results of this query to populate AccountCollection with Account objects from either the offline cache or the
server.

AccountCollection uses the two global caches set up by the AccountEditor application: app.cache for offline storage,
and app.cacheForOriginals for conflict detection. The code shows that the AccountCollection model:

• Contains objects of the app.models.Account model (model field)
• Specifies a list of fields to be queried (fieldlist field)
• Uses the sample app’s global offline cache (cache field)
• Uses the sample app’s global conflict detection cache (cacheForOriginals field)
• Defines a config() function to handle online as well as offline queries

241

Account Editor SampleOffline Management

http://jquery.com/
http://underscorejs.org/
http://backbonejs.org/
https://github.com/ftlabs/fastclick

Here’s the code (shortened for readability):

app.models.AccountCollection = Force.SObjectCollection.extend({
model: app.models.Account,
fieldlist: ["Id", "Name", "Industry", "Phone", "Owner.Name",

"LastModifiedBy.Name", "LastModifiedDate"],
cache: function() { return app.cache},
cacheForOriginals: function() {

return app.cacheForOriginals;},

config: function() {
// Offline: do a cache query
if (!app.offlineTracker.get("isOnline")) {

...
}
// Online
else {

...
}

}
});

Account is a subclass of SmartSync’s Force.SObject class, which is a subclass of the Backbone framework’s Model class.
Code for the Account model shows that it:

• Uses a sobjectType field to indicate which type of sObject it represents (Account, in this case).
• Defines fieldlist as a method rather than a field, because the fields that it retrieves from the server are not the same

as the ones it sends to the server.
• Uses the sample app’s global offline cache (cache field).
• Uses the sample app’s global conflict detection cache (cacheForOriginals field).
• Supports a cacheMode() method that returns a value indicating how to handle caching based on the current offline status.

Here’s the code:

app.models.Account = Force.SObject.extend({
sobjectType: "Account",
fieldlist: function(method) {

return method == "read"
? ["Id", "Name", "Industry", "Phone", "Owner.Name",

"LastModifiedBy.Name", "LastModifiedDate"]
: ["Id", "Name", "Industry", "Phone"];

},
cache: function() { return app.cache;},
cacheForOriginals: function() { return app.cacheForOriginals;},
cacheMode: function(method) {

if (!app.offlineTracker.get("isOnline")) {
return Force.CACHE_MODE.CACHE_ONLY;

}
// Online
else {

return (method == "read"
? Force.CACHE_MODE.CACHE_FIRST : Force.CACHE_MODE.SERVER_FIRST);

}
}

});

OfflineTracker is a subclass of Backbone’s Model class. This class tracks the offline status of the application by observing
the browser’s offline status. It automatically switches the app to offline when it detects that the browser is offline. However,
it goes online only when the user requests it.

242

Account Editor SampleOffline Management

Here’s the code:

app.models.OfflineTracker = Backbone.Model.extend({
initialize: function() {

var that = this;
this.set("isOnline", navigator.onLine);
document.addEventListener("offline", function() {

console.log("Received OFFLINE event");
that.set("isOnline", false);

}, false);
document.addEventListener("online", function() {

console.log("Received ONLINE event");
// User decides when to go back online

}, false);
}

});

Views

This sample defines five views:

• SearchPage
• AccountListView
• AccountListItemView
• EditAccountView
• SyncPage

A view typically provides a template field to specify its design template, an initialize() function, and a render() function.

Each view can also define an events field. This field contains an array whose key/value entries specify the event type and the
event handler function name. Entries use the following format:

"<event-type>[<control>]": "<event-handler-function-name>"

For example:

events: {
"click .button-prev": "goBack",
"change": "change",
"click .save": "save",
"click .merge": "saveMerge",
"click .overwrite": "saveOverwrite",
"click .toggleDelete": "toggleDelete"

},

SearchPage
View for the entire search screen. It expects an AccountCollection as its model. It watches the search input field for
changes (the keyup event) and updates the model accordingly in the search() function.

events: {
"keyup .search-key": "search"

},
search: function(event) {

this.model.setCriteria($(".search-key", this.el).val());
this.model.fetch();

}

243

Account Editor SampleOffline Management

AcountListView
View for the list portion of the search screen. It expects an AccountCollection as its model and creates
AccountListItemView object for each account in the AccountCollection object.

AccountListItemView
View for an item within the list.

EditAccountPage
View for account detail page. This view monitors several events:

Handler function nameTarget ControlEvent Type

goBackbutton-prevclick

changeNot set (can be any edit control)change

savesaveclick

saveMergemergeclick

saveOverwriteoverwriteclick

toggleDeletetoggleDeleteclick

A couple of event handler functions deserve special attention. The change() function shows how the view uses the
event target to send user edits back to the model:

change: function(evt) {
// apply change to model
var target = event.target;
this.model.set(target.name, target.value);
$("#account" + target.name + "Error", this.el).hide();

}

The toggleDelete() function handles a toggle that lets the user delete or undelete an account. If the user clicks to
undelete, the code sets an internal __locally_deleted__ flag to false to indicate that the record is no longer
deleted in the cache. Else, it attempts to delete the record on the server by destroying the local model.

toggleDelete: function() {
if (this.model.get("__locally_deleted__")) {

this.model.set("__locally_deleted__", false);
this.model.save(null, this.getSaveOptions(

null, Force.CACHE_MODE.CACHE_ONLY));
}
else {

this.model.destroy({
success: function(data) {

app.router.navigate("#", {trigger:true});
},
error: function(data, err, options) {

var error = new Force.Error(err);
alert("Failed to delete account:

" + (error.type === "RestError" ?
error.details[0].message :
"Remote change detected - delete aborted"));

}
});

}
}

244

Account Editor SampleOffline Management

SyncPage
View for the sync page. This view monitors several events:

Handler function nameControlEvent Type

goBackbutton-prevclick

syncsyncclick

To see how the screen is rendered, look at the render method:

render: function(eventName) {

$(this.el).html(this.template(_.extend(
{countLocallyModified: this.model.length},
this.model.toJSON())));

this.listView.setElement($("ul", this.el)).render();

return this;

},

Let’s take a look at what happens when the user taps Process (the sync control).

The sync() function looks at the first locally modified Account in the view’s collection and tries to save it to the server.
If the save succeeds and there are no more locally modified records, the app navigates back to the search screen. Otherwise,
the app marks the account as having failed locally and then calls sync() again.

sync: function(event) {
var that = this;
if (this.model.length == 0 || this.model.at(0).get("__sync_failed__")) {

// we push sync failures back to the end of the list -
// if we encounter one, it means we are done
return;

}
else {

var record = this.model.shift();

var options = {
mergeMode: Force.MERGE_MODE.MERGE_FAIL_IF_CHANGED,
success: function() {

if (that.model.length == 0) {
app.router.navigate("#", {trigger:true});

}
else {

that.sync();
}

},
error: function() {

record = record.set("__sync_failed__", true);
that.model.push(record);
that.sync();

}
};
return record.get("__locally_deleted__")

? record.destroy(options) :
record.save(null, options);

}
});

245

Account Editor SampleOffline Management

Router

When the router is initialized, it sets up the two global caches used throughout the sample.

setupCaches: function() {
// Cache for offline support
app.cache = new Force.StoreCache("accounts", [{path:"Name", type:"string"}]);

// Cache for conflict detection
app.cacheForOriginals = new Force.StoreCache("original-accounts");

return $.when(app.cache.init(), app.cacheForOriginals.init());
},

Once the global caches are set up, it also sets up two AccountCollection objects: One for the search screen, and one for
the sync screen.

// Collection behind search screen
app.searchResults = new app.models.AccountCollection();

// Collection behind sync screen
app.localAccounts = new app.models.AccountCollection();
app.localAccounts.config = {type:"cache", cacheQuery: {queryType:"exact",

indexPath:"__local__", matchKey:true, order:"ascending", pageSize:25}};

Finally, it creates the view objects for the Search, Sync, and EditAccount screens.

// We keep a single instance of SearchPage / SyncPage and EditAccountPage
app.searchPage = new app.views.SearchPage({model: app.searchResults});
app.syncPage = new app.views.SyncPage({model: app.localAccounts});
app.editPage = new app.views.EditAccountPage();

The router has a routes field that maps actions to methods on the router class.

routes: {
"": "list",
"list": "list",
"add": "addAccount",
"edit/accounts/:id": "editAccount",
"sync":"sync"

},

The list action fills the search result collections by calling fetch() and brings the search page into view.

list: function() {
app.searchResults.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.searchPage);

},

The addAccount action creates an empty account object and bring the edit page for that account into view.

addAccount: function() {
app.editPage.model = new app.models.Account({Id: null});
this.slidePage(app.editPage);

},

246

Account Editor SampleOffline Management

The editAccount action fetches the specified Account object and brings the account detail page into view.

editAccount: function(id) {
var that = this;
var account = new app.models.Account({Id: id});
account.fetch({

success: function(data) {
app.editPage.model = account;
that.slidePage(app.editPage);

},
error: function() {

alert("Failed to get record for edit");
}

});
}

The sync action computes the localAccounts collection by calling fetch and brings the sync page into view.

sync: function() {
app.localAccounts.fetch();
// Show page right away - list will redraw when data comes in
this.slidePage(app.syncPage);

}

247

Account Editor SampleOffline Management

Chapter 8

Push Notifications and Mobile SDK

Push notifications from Salesforce help your mobile users stay on top of
important developments in their organizations. The Salesforce Mobile Push

In this chapter ...

• About Push Notifications Notification Service, which becomes generally available in Summer ’14, lets
• Using Push Notifications in Android you configure and test mobile push notifications before you implement any
• Using Push Notifications in iOS code. To receive mobile notifications in a production environment, your Mobile

SDK app implements the mobile OS provider’s registration protocol and then
handles the incoming notifications. Mobile SDK minimizes your coding effort
by implementing most of the registration tasks internally.

248

About Push Notifications
With the Salesforce Mobile Push Notification Service, you can develop and test push notifications in native mobile apps.
Salesforce Mobile SDK for native iOS and Android apps provides APIs that you can implement to register devices with the
push notification service. However, receiving and handling the notifications remain the responsibility of the developer.

Push notification setup occurs on several levels:

• Configuring push services from the device technology provider (Apple for iOS, Google for Android)

• Configuring your Salesforce connected app definition to enable push notifications

• Implementing Apex triggers

OR

Calling the push notification resource of the Chatter REST API

• Modifying code in your Mobile SDK app

• Registering the mobile device at runtime

You’re responsible for Apple or Google service configuration, connected app configuration, Apex or Chatter REST API
coding, and minor changes to your Mobile SDK app. Salesforce Mobile SDK handles runtime registration transparently.

For a full description of how to set up mobile push notifications for your organization, see the Salesforce Mobile Push
Notifications Implementation Guide. After Summer ’14 becomes generally available, you can find this document at
https://help.salesforce.com/help/doc/en/salesforce_mobile_push_notifications_implementation_guide.pdf.

Using Push Notifications in Android
Salesforce sends push notifications to Android apps through the Google Cloud Messaging for Android (GCM) framework.
See http://developer.android.com/google/gcm/index.html for an overview of this framework.

When developing an Android app that supports push notifications, remember these key points:

• You must be a member of the Android Developer Program.

• You can test GCM push services only on an Android device with either the Android Market app or Google Play Services
installed. Push notifications don’t work on an Android emulator.

To begin, create a Google API project for your app. Your project must have the GCM for Android feature enabled. See
http://developer.android.com/google/gcm/gs.html for instructions on setting up your project.

The setup process for your Google API project creates a key for your app. Once you’ve finished the project configuration,
you’ll need to add the GCM key to your connected app settings.

Note: Push notification registration occurs at the end of the OAuth login flow. Therefore, an app does not receive
push notifications unless and until the user logs into a Salesforce organization.

Configure a Connected App For GCM (Android)
To configure your Salesforce connected app to support push notifications:

1. In your Salesforce organization, go to Setup > Create > Apps.
2. In Connected Apps, click Edit next to an existing connected app, or New to create a new connected app.

If you’re creating a new connected app, see Create a Connected App.

249

About Push NotificationsPush Notifications and Mobile SDK

http://res.cloudinary.com/hy4kyit2a/image/upload/salesforce_mobile_push_notifications_implementation-2.pdf
http://res.cloudinary.com/hy4kyit2a/image/upload/salesforce_mobile_push_notifications_implementation-2.pdf
https://help.salesforce.com/help/doc/en/salesforce_mobile_push_notifications_implementation_guide.pdf
http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/gs.html

3. Under Mobile App Settings, select Push Messaging Enabled.
4. For Supported Push Platform, select Android GCM.
5. For Key for Server Applications (API Key), enter the key you obtained during the developer registration with Google.

6. Click Save.

Note: After saving a new connected app, you’ll get a consumer key. Mobile apps use this key as their connection
token.

Code Modifications (Android)
To configure your Mobile SDK app to support push notifications:

1. Add an entry for androidPushNotificationClientId.

• In res/values/bootconfig.xml (for native apps):

<string name="androidPushNotificationClientId">35123627573</string>

• In assets/www/bootconfig.json (for hybrid apps):

"androidPushNotificationClientId": "35123627573"

This value represents the project number of the Google project that is authorized to send push notifications to an Android
device.

Behind the scenes, Mobile SDK automatically reads this value and uses it to register the device against the Salesforce
connected app. This validation allows Salesforce to send notifications to the connected app. At logout, Mobile SDK also
automatically unregisters the device for push notifications.

2. Create a class in your app that implements PushNotificationInterface. PushNotificationInterface is a
Mobile SDK Android interface for handling push notifications. PushNotificationInterface has a single method,
onPushMessageReceived(Bundle message):

public interface PushNotificationInterface {
public void onPushMessageReceived(Bundle message);

}

In this method you implement your custom functionality for displaying, or otherwise disposing of, push notifications.

3. In the onCreate() method of your Application subclass, call the
SalesforceSDKManager.setPushNotificationReceiver() method, passing in your implementation of
PushNotificationInterface. Call this method immediately after the SalesforceSDKManager.initNative()
call. For example:

@Override
public void onCreate() {

super.onCreate();

250

Code Modifications (Android)Push Notifications and Mobile SDK

SalesforceSDKManager.initNative(getApplicationContext(),
new KeyImpl(), MainActivity.class);

SalesforceSDKManager.getInstance().setPushNotificationReceiver(myPushNotificationInterface);

}

Using Push Notifications in iOS
When developing an iOS app that supports push notifications, remember these key points:

• You must be a member of the iOS Developer Program.

• You can test Apple push services only on an iOS physical device. Push notifications don’t work in the iOS simulator.

• There are no guarantees that all push notifications will reach the target device, even if the notification is accepted by Apple.

• Apple Push Notification Services setup requires the use of the OpenSSL command line utility provided in Mac OS X.

Before you can complete registration on the Salesforce side, you need to register with Apple Push Notification Services. The
following instructions provide a general outline for what’s required. See http://www.raywenderlich.com/32960/ for complete
instructions.

Configuration for Apple Push Notification Services
Registering with Apple Push Notification Services (APNS) requires the following items.

Certificate Signing Request (CSR) File
Generate this request using the Keychain Access feature in Mac OS X. You’ll also use OpenSSL to export the CSR
private key to a file for later use.

App ID from iOS Developer Program
In the iOS Developer Member Center, create an ID for your app, then use the CSR file to generate a certificate. Next,
use OpenSSL to combine this certificate with the private key file to create a .p12 file. You’ll need this file later to
configure your connected app.

iOS Provisioning Profile
From the iOS Developer Member Center, create a new provisioning profile using your iOS app ID and developer
certificate. You then select the devices to include in the profile and download to create the provisioning profile. You can
then add the profile to Xcode. Install the profile on your test device using Xcode's Organizer.

When you’ve completed the configuration, sign and build your app in Xcode. Check the build logs to verify that the app is
using the correct provisioning profile. To view the content of your provisioning profile, run the following command at the
Terminal window: security cms -D -i <your profile>.mobileprovision

Configure a Connected App for APNS (iOS)
To configure your Salesforce connected app to support push notifications with Apple Push Notification Services (APNS):

1. In your Salesforce org, go to Setup > Create > Apps.
2. In Connected Apps, either click Edit next to an existing connected app, or New to create a new connected app. If you’re

creating a new connected app, see Create a Connected App.
3. Under Mobile App Settings, select Push Messaging Enabled.
4. For Supported Push Platform, select Apple.

The page expands to show additional settings.

251

Using Push Notifications in iOSPush Notifications and Mobile SDK

http://www.raywenderlich.com/32960/

5. Select the Apple Environment that corresponds to your APNS certificate.
6. Add your .p12 file and its password under Mobile App Settings > Certificate and Mobile App Settings > Certificate

Password.

Note: You obtain the values for Apple Environment, Certificate, and Certificate Password when you configure
your app with APNS.

7. Click Save.

Code Modifications (iOS)
Salesforce Mobile SDK for iOS provides the SFPushNotificationManager class to handle push registration. To use it,
import <SalesforceSDKCore/SFPushNotificationManager>. The SFPushNotificationManager class is
available as a runtime singleton:

[SFPushNotificationManager sharedInstance]

This class implements four registration methods:

- (void)registerForRemoteNotifications;
- (void)didRegisterForRemoteNotificationsWithDeviceToken:(NSData*)deviceTokenData;
- (BOOL)registerForSalesforceNotifications; // for internal use
- (BOOL)unregisterSalesforceNotifications; // for internal use

Mobile SDK calls registerForSalesforceNotifications after login and unregisterSalesforceNotifications
at logout. You call the other two methods from your AppDelegate class.

252

Code Modifications (iOS)Push Notifications and Mobile SDK

SFPushNotificationManager Example

To configure your AppDelegate class to support push notifications:

1. Register with Apple for push notifications by calling registerForRemoteNotifications. Place the call in the
application:didFinishLaunchingWithOptions: method.

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{
self.window =

[[UIWindow alloc] initWithFrame:[UIScreen mainScreen].bounds];
[self initializeAppViewState];

//
// Register with APNS for push notifications. Note that,
// to receive push notifications from Salesforce,
// you also need to register for Salesforce notifications in the
// application:didRegisterForRemoteNotificationsWithDeviceToken:
// method (as demonstrated below.)
//
[[SFPushNotificationManager sharedInstance] registerForRemoteNotifications];

[[SFAuthenticationManager sharedManager]
loginWithCompletion:self.initialLoginSuccessBlock

failure:self.initialLoginFailureBlock];

return YES;
}

If registration succeeds, Apple passes a device token to the
application:didRegisterForRemoteNotificationsWithDeviceToken: method of your AppDelegate
class.

2. Forward the device token from Apple to SFPushNotificationManager by calling
didRegisterForRemoteNotificationsWithDeviceToken on the SFPushNotificationManager shared
instance.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData*)deviceToken

{
//
// Register your device token with the push notification manager
//
[[SFPushNotificationManager sharedInstance]

didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];

}}

3. Register to receive Salesforce notifications through the connected app by calling
registerForSalesforceNotifications. Make this call only if the access token for the current session is valid.

- (void)application:(UIApplication*)application
didRegisterForRemoteNotificationsWithDeviceToken:(NSData*)deviceToken

{
//
// Register your device token with the push notification manager
//
[[SFPushNotificationManager sharedInstance]

didRegisterForRemoteNotificationsWithDeviceToken:deviceToken];

253

Code Modifications (iOS)Push Notifications and Mobile SDK

if ([SFAccountManager sharedInstance].credentials.accessToken != nil) {
[[SFPushNotificationManager sharedInstance]

registerForSalesforceNotifications];
}}

4. Add the following method to log an error if registration with Apple fails.

- (void)application:(UIApplication*)application
didFailToRegisterForRemoteNotificationsWithError:(NSError*)error

{
NSLog(@"Failed to get token, error: %@", error);

}

254

Code Modifications (iOS)Push Notifications and Mobile SDK

Chapter 9

Using Communities With Mobile SDK Apps

Salesforce Communities is a social aggregation feature that supersedes the
Portal feature of earlier releases. Communities can include up to five million

In this chapter ...

• Communities and Mobile SDK Apps users, with logical zones for sharing knowledge with Ideas, Answers, and Chatter
• Set Up an API-Enabled Profile Answers. With proper configuration, your community users can use their
• Set Up a Permission Set community login credentials to access your Mobile SDK app. Communities
• Grant API Access to Users also leverage Site.com to enable you to brand your community site and login

screen.• Configure the Login Endpoint
• Branding Your Community
• Customizing Communities Login
• Using External Authentication With

Communities
• Example: Configure a Community

For Mobile SDK App Access
• Example: Configure a Community

For Facebook Authentication

255

Communities and Mobile SDK Apps
To enable community members to log into your Mobile SDK app, set the appropriate permissions in Salesforce, and change
your app’s login server configuration to recognize your community URL.

With Communities, members that you designate can use your Mobile SDK app to access Salesforce. You define your own
community login endpoint, and the Communities feature builds a branded community login page according to your specifications.
It also lets you choose authentication providers and SAML identity providers from a list of popular choices.

Community membership is determined by profiles and permission sets. To enable community members to use your Mobile
SDK app, configure the following:

• Make sure that each community member has the API Enabled permission. You can set this permission through profiles
or permission sets.

• Configure your community to include your API-enabled profiles and permission sets.

• Configure your Mobile SDK app to use your community’s login endpoint.

In addition to these high-level steps, you must take the necessary steps to configure your users properly. Example: Configure
a Community For Mobile SDK App Access walks you through the community configuration process for Mobile SDK apps.
For the full documentation of the Communities feature, see Getting Started With Communities.

Note: Community login is supported for native and hybrid local Mobile SDK apps on Android and iOS. It is not
currently supported for hybrid remote apps using Visualforce.

Set Up an API-Enabled Profile
If you’re new to communities, start by enabling the community feature in your org. See Enabling Salesforce Communities in
Salesforce Help. When you’re asked to create a domain name, be sure that it doesn’t use SSL (https://).

To set up your community, see Creating Communities in Salesforce Help. Note that you’ll define a community URL based
on the domain name you created when you enabled the community feature.

Next, configure one or more profiles with the API Enabled permissions. You can use these profiles to enable your Mobile
SDK app for community members. For detailed instructions, follow the tutorial at Example: Configure a Community For
Mobile SDK App Access.

1. Create a new profile or edit an existing one.
2. Edit the profile’s details to select API Enabled under Administrative Permissions.
3. Save your changes, then edit your community at Settings > Customize > Communities > Manage Communities.
4. In <your community>: Community Settings, click Members.

256

Communities and Mobile SDK AppsUsing Communities With Mobile SDK Apps

https://help.salesforce.com/help/pdfs/en/salesforce_communities_implementation.pdf
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_enable.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_enable.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_creating.htm

5. Add your API-enabled profile to Selected Profiles.

Users to whom these profiles are assigned now have API access. For an overview of profiles, see User Profiles Overview in
Salesforce Help.

Set Up a Permission Set
Another way to enable mobile apps for your community is through a permission set.

1. To add the API Enabled permission to an existing permission set, in Setup, click Manage Users > Permissions Sets, select
the permission set, and skip to Step 6.

2. To create a permission set, in Setup, click Administer > Manage Users > Permission Sets.
3. Click New.
4. Give the Permission Set a label and press Return to automatically create the API Name.
5. Click Next.
6. Under the Apps section, click App Permissions.

7. Click App Permissions and select System > System Permissions.

257

Set Up a Permission SetUsing Communities With Mobile SDK Apps

https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_userprofiles.htm

8. On the System Permissions page, click Edit and select API Enabled.
9. Click Save.
10. Go to Settings > Customize > Communities > Manage Communities and click Edit next to your community name.
11. In My Community: Community Settings, click Members.

12. Under Select Permission Sets, add your API-enabled permission set to Selected Permission Sets.

Users in this permission set now have API access.

Grant API Access to Users
To extend API access to your community users, add them to a profile or a permission set that sets the API Enabled permission.
If you haven’t yet configured any profiles or permission sets to include this permission, see Set Up an API-Enabled Profile
and Set Up a Permission Set.

Configure the Login Endpoint
Finally, configure the app to use your community login endpoint. The app’s mobile platform determines how you configure
this setting.

Android
In Android, login hosts are known as server connections. Prior to Mobile SDK v. 1.4, server connections for Android apps
were hard-coded in the SalesforceSDK project. In v. 1.4 and later, the host list is defined in the res/xml/servers.xml
file. The SalesforceSDK library project uses this file to define production and sandbox servers.You can add your servers to the

258

Grant API Access to UsersUsing Communities With Mobile SDK Apps

runtime list by creating your own res/xml/servers.xml file in your application project. The root XML element for this
file is <servers>. This root can contain any number of <server> entries. Each <server> entry requires two attributes:
name (an arbitrary human-friendly label) and url (the web address of the login server.)

For example:

<?xml version="1.0" encoding="utf-8"?>
<servers>
<server name="XYZ.com Login" url="https://<username>.cloudforce.com"/>

</servers>

iOS
For iOS apps, you set the Custom Host in your app’s iOS settings bundle. If you’ve configured this setting, it will be used as
the default connection. Add the following key-value pair to your <appname>-Info.plist file:

<key>SFDCOAuthLoginHost</key>
<string>your_community_login_url_minus_the_https://_prefix</string>

It’s important to remove the HTTP prefix from your URL. For example, if your community login URL is
https://mycommunity-developer-edition.na15.force.com/fineapps, your key-value pair would be:

<key>SFDCOAuthLoginHost</key>
<string>mycommunity-developer-edition.na15.force.com/fineapps</string>

Optionally, you can remove Settings.bundle from your class if you don't want users to change the value.

Branding Your Community
Customize the look and feel of your community by adding your company logo, colors, and copyright. This ensures that your
community matches your company’s branding and is instantly recognizable to your community members.

Available in: Enterprise, Performance, Unlimited, and Developer Editions

User Permissions Needed

“Create and Customize Communities”To create, customize, or publish a community:

1. From Setup, click Customize > Communities > Manage Communities, then click Edit next to the community name.
2. Click Branding.
3. Use the lookups to choose a header and footer for the community.

The files you’re choosing for header and footer must have been previously uploaded to the Documents tab and must be
publicly available. The header can be .html, .gif, .jpg, or .png. The footer must be an .html file. The maximum file size for
.html files is 100 KB combined. The maximum file size for .gif, .jpg, or .png files is 20 KB. So, if you have a header .html
file that is 70 KB and you want to use an .html file for the footer as well, it can only be 30 KB.

The header you choose replaces the Salesforce logo below the global header. The footer you choose replaces the standard
Salesforce copyright and privacy footer.

4. Click Select Color Scheme to select from predefined color schemes or click the text box next to the page section fields to
select a color from the color picker.

Note that some of the selected colors impact your community login page and how your community looks in Salesforce1
as well.

259

Branding Your CommunityUsing Communities With Mobile SDK Apps

Where it AppearsColor Choice

Top of the page, under the black global header. If an HTML file is selected in the Header field,
it overrides this color choice.

Top of the login page.

Header Background

Background color for all pages in your community, including the login page.Page Background

Tab that is selected.Primary

Top borders of lists and tables.

Button on the login page.

Secondary

Background color for section headers on edit and detail pages.Tertiary

5. Click Save.

Customizing Communities Login
Customize the look and feel of your community login page, from the logo and footer to login options for external users.

Available in: Enterprise, Performance, Unlimited, and Developer Editions

User Permissions Needed

“Create and Customize Communities”To create, customize, or publish a community:

The colors used on the login page are inherited from the community branding color scheme. You can customize these other
elements of the page.

1. From Setup, click Customize > Communities > Manage Communities, then click Edit next to the community name.
2. Click Login Page.
3. Upload a logo for the community login page header.

The file can be .gif, .jpg, or .png. The maximum file size is 100 KB. Images larger than 250 pixels wide or 125 pixels high
aren’t accepted. Uploading a logo automatically creates a Communities Shared Document Folder on the Documents tab
and saves the logo there. Once created, you can’t delete the folder.

The header logo displays at the top left of the login page. It is also used when you access the community in Salesforce1.
4. Enter custom text for the community login page footer, up to a maximum of 120 characters.

The footer displays at the bottom of the login page.

5. Choose the login options to make available to external users on the community login page.

External users are users with Community, Customer Portal, or partner portal licenses.

What Displays on the Login PageLogin Options for External Users

The option to log in using the
username and password that the user

Username and password to log in to Organization Name

was assigned for the community.
This is the default login option.

260

Customizing Communities LoginUsing Communities With Mobile SDK Apps

What Displays on the Login PageLogin Options for External Users

The option to Log In with Single
Sign-On using the user’s SAML
single sign-on identity.

If you have enabled multiple SAML
single sign-on options, each login

SAML for single sign-on

This option is available only if your organization has successfully set up both of the
following.

• SAML settings for single sign-on, which enables login to Salesforce using your
corporate identity provider. Note that you must enter an Identity Provider Login
URL.

button displays labeled with the
SAML configuration’s Name field.

• A custom Salesforce domain name, which changes the application URLs for all
of your pages, including login pages. Contact Support if you need to enable My
Domain.

You can offer users multiple SAML single sign-on options if you Enable Multiple
Configs from Setup, in Security Controls > Single Sign-On Settings. If you already
had SAML enabled and you then enable multiple SAML configurations, your
existing SAML configuration is automatically converted to work with multiple
additional configurations.

The option to log in using
credentials from an external service

External authentication providers

These options are available if you enable them from Setup, in Security Controls >
Auth. Providers. provider such as Facebook©,

Janrain©, or Salesforce.

A Not a member? link that directs
external users to the self-registration
page.

Self-registration

Rather than relying solely on community administrators to add members, you can
Allow external users to self-register and select a default profile. This
profile is assigned to users who self-register.

Note: You can only select portal profiles that are associated with the
community.

If a profile is selected as the default for users who self-register, and you
remove it from the community, the Default profile for users
that self register is automatically reset to None.

When you create your first community, a default set of self-registration Visualforce
pages and associated Apex controllers are created.You must specify in the default
controller which account the self-registration process should assign users to. You
can also specify a profile, but it will override the default selected when enabling
self-registration. The self-registration feature won’t work until you specify these
details.

Note: Keep in mind that each time a user self registers, they consume one
of your Communities licenses. When setting up your self registration page,
be sure to add some criteria to ensure the right people are signing up.
Additionally, to prevent unauthorized form submissions, we recommend
using a security mechanism, such as CAPTCHA or a hidden field, on your
self registration page.

6. Click Save.

261

Customizing Communities LoginUsing Communities With Mobile SDK Apps

Your selected login options will be visible to all users on the login page. However, they’re valid only for external users. Internal
users who try to use these options will get a login error. They must use the link that directs employees to Log in here and log
in with their Salesforce username and password.

Using External Authentication With Communities
You can use an external authentication provider, such as Facebook©, to log community users into your Mobile SDK app.

Note: Although Salesforce supports Janrain as an authentication provider, it’s primarily intended for internal use by
Salesforce. We’ve included it here for the sake of completeness.

About External Authentication Providers

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

You can enable users to log into your Salesforce organization using their login credentials from an external service provider
such as Facebook© or Janrain©. You must do the following to successfully set up an authentication provider for single sign-on.

• Correctly configure the service provider website.

• Create a registration handler using Apex.

• Define the authentication provider in your organization.

Note: Users with profiles containing login IP range restrictions or organizations using session locking can’t use
authentication providers.

After your authentication provider is set up, the basic flow is the following.

1. The user tries to login to Salesforce using a third party identity.
2. The login request is redirected to the third party authentication provider.
3. The user performs the third party login and approves access.
4. The authentication provider redirects the user to Salesforce with credentials.
5. The user is signed into Salesforce.

Note: If a user has an existing Salesforce session, after authentication with the third party they are automatically
redirected to the page where they can approve the link to their Salesforce account.

Defining Your Authentication Provider
We support the following providers:

• Facebook
• Janrain
• Salesforce

262

Using External Authentication With CommunitiesUsing Communities With Mobile SDK Apps

• Any service provider who implements the OpenID Connect protocol
• Microsoft Access Control Service

Adding Functionality to Your Authentication Provider
You can add functionality to your authentication provider by using additional request parameters.

• Scope – Customizes the permissions requested from the third party
• Site – Enables the provider to be used with a site
• StartURL – Sends the user to a specified location after authentication
• Community – Sends the user to a specific community after authentication
• “Authorization Endpoint” in the Salesforce Help – Sends the user to a specific endpoint for authentication (Salesforce

authentication providers, only)

Creating an Apex Registration Handler
A registration handler class is required to use Authentication Providers for the single sign-on flow. The Apex registration
handler class must implement the Auth.RegistrationHandler interface, which defines two methods. Salesforce invokes
the appropriate method on callback, depending on whether the user has used this provider before or not. When you create
the authentication provider, you can automatically create an Apex template class for testing purposes. For more information,
see RegistrationHandler in the Force.com Apex Code Developer's Guide.

Using the Community URL Parameter
Send your user to a specific Community after authenticating.

Available in: Professional, Enterprise, Performance, Unlimited, and Developer Editions

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

To direct your users to a specific community after authenticating, you need to specify a URL with the community request
parameter. If you don’t add the parameter, the user is sent to either /home/home.jsp (for a portal or standard application)
or to the default sites page (for a site) after authentication completes.

For example, with a Single Sign-On Initialization URL, the user is sent to this location after being logged in.
For an Existing User Linking URL, the “Continue to Salesforce” link on the confirmation page leads to this page.

The following is an example of a community parameter added to the Single Sign-On Initialization URL, where:

• orgID is your Auth. Provider ID
• URLsuffix is the value you specified when you defined the authentication provider

https://login.salesforce.com/services/auth/sso/orgID/URLsuffix?community=https://acme.force.com/support

263

Using the Community URL ParameterUsing Communities With Mobile SDK Apps

http://www.salesforce.com/us/developer/docs/apexcode/index_Left.htm#StartTopic=Content/apex_auth_plugin.htm
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

Using the Scope Parameter
Customizes the permissions requested from the third party like Facebook or Janrain so that the returned access token has
additional permissions.

Available in: Professional, Enterprise, Performance, Unlimited, and Developer Editions

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

You can customize requests to a third party to receive access tokens with additional permissions. Then you use Auth.AuthToken
methods to retrieve the access token that was granted so you can use those permissions with the third party.

The default scopes vary depending on the third party, but usually do not allow access to much more than basic user information.
Every provider type (Open ID Connect, Facebook, Salesforce, and others), has a set of default scopes it sends along with the
request to the authorization endpoint. For example, Salesforce’s default scope is id.

You can send scopes in a space-delimited string. The space-delimited string of requested scopes is sent as-is to the third party,
and overrides the default permissions requested by authentication providers.

Janrain does not use this parameter; additional permissions must be configured within Janrain.

The following is an example of a scope parameter requesting the Salesforce scopes api and web, added to the Single
Sign-On Initialization URL, where:

• orgID is your Auth. Provider ID
• URLsuffix is the value you specified when you defined the authentication provider

https://login.salesforce.com/services/auth/sso/orgID/URLsuffix?scope=id%20api%20web

Valid scopes vary depending on the third party; refer to your individual third-party documentation. For example, Salesforce
scopes are:

DescriptionValue

Allows access to the current, logged-in user’s account using APIs, such as REST API and
Bulk API. This value also includes chatter_api, which allows access to Chatter REST
API resources.

api

Allows access to Chatter REST API resources only.chatter_api

Allows access to the custom permissions in an organization associated with the connected
app, and shows whether the current user has each permission enabled.

custom_permissions

Note: Custom permissions are currently available as a Developer Preview.

264

Using the Scope ParameterUsing Communities With Mobile SDK Apps

DescriptionValue

Allows access to all data accessible by the logged-in user, and encompasses all other scopes.
full does not return a refresh token. You must explicitly request the refresh_token scope
to get a refresh token.

full

Allows access to the identity URL service. You can request profile, email, address, or
phone, individually to get the same result as using id; they are all synonymous.

id

Allows access to the current, logged in user’s unique identifier for OpenID Connect apps.

The openid scope can be used in the OAuth 2.0 user-agent flow and the OAuth 2.0 Web
server authentication flow to get back a signed ID token conforming to the OpenID Connect
specifications in addition to the access token.

openid

Allows a refresh token to be returned if you are eligible to receive one. This lets the app
interact with the user’s data while the user is offline, and is synonymous with requesting
offline_access.

refresh_token

Allows access to Visualforce pages.visualforce

Allows the ability to use the access_token on the Web. This also includes visualforce,
allowing access to Visualforce pages.

web

Configuring a Facebook Authentication Provider

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

To use Facebook as an authentication provider:

1. Set up a Facebook application, making Salesforce the application domain.
2. Define a Facebook authentication provider in your Salesforce organization.
3. Update your Facebook application to use the Callback URL generated by Salesforce as the Facebook Website Site

URL.
4. Test the connection.

Setting up a Facebook Application
Before you can configure Facebook for your Salesforce organization, you must set up an application in Facebook:

1. Go to the Facebook website and create a new application.
2. Modify the application settings and set the Application Domain to Salesforce.
3. Note the Application ID and the Application Secret.

Defining a Facebook Provider in your Salesforce Organization
You need the Facebook Application ID and Application Secret to set up a Facebook provider in your Salesforce organization.

1. From Setup, click Security Controls > Auth. Providers.

265

Configuring a Facebook Authentication ProviderUsing Communities With Mobile SDK Apps

http://openid.net/connect/
http://openid.net/connect/
https://developers.facebook.com/

2. Click New.
3. Select Facebook for the Provider Type.
4. Enter a Name for the provider.
5. Enter the URL Suffix. This is used in the client configuration URLs. For example, if the URL suffix of your provider

is “MyFacebookProvider”, your single sign-on URL is similar to:
https://login.salesforce.com/auth/sso/00Dx00000000001/MyFacebookProvider.

6. Use the Application ID from Facebook for the Consumer Key field.
7. Use the Application Secret from Facebook for the Consumer Secret field.
8. Optionally, set the following fields.

a. Default Scopes to send along with the request to the authorization endpoint. Otherwise, the hardcoded defaults
for the provider type are used (see Facebook’s developer documentation for these defaults).

For more information, see Using the Scope Parameter

b. Custom Error URL for the provider to use to report any errors.
c. Select an already existing Apex class as the Registration Handler class or click Automatically create a

registration handler template to create an Apex class template for the registration handler. You must edit
this class and modify the default content before using it.

Note: You must specify a registration handler class for Salesforce to generate the Single Sign-On
Initialization URL.

d. Select the user that runs the Apex handler class for Execute Registration As. The user must have “Manage Users”
permission. A user is required if you selected a registration handler class or are automatically creating one.

e. To use a portal with your provider, select the portal from the Portal drop-down list.

9. Click Save.

Be sure to note the generated Auth. Provider Id value. You must use it with the Auth.AuthToken Apex class.

Several client configuration URLs are generated after defining the authentication provider:

• Test-Only Initialization URL: Administrators use this URL to ensure the third-party provider is set up correctly.
The administrator opens this URL in a browser, signs in to the third party, and is redirected back to Salesforce with a map
of attributes.

• Single Sign-On Initialization URL: Use this URL to perform single sign-on into Salesforce from a third party
(using third-party credentials). The end user opens this URL in a browser, and signs in to the third party. This then either
creates a new user for them, or updates an existing user, and then signs them into Salesforce as that user.

• Existing User Linking URL: Use this URL to link existing Salesforce users to a third-party account. The end user
opens this URL in a browser, signs in to the third party, signs in to Salesforce, and approves the link.

• Oauth-Only Initialization URL: Use this URL to obtain OAuth access tokens for a third party. Users must
authenticate with Salesforce for the third-party service to get a token; this flow does not provide for future single sign-on
functionality.

• Callback URL: Use the callback URL for the endpoint that the authentication provider calls back to for configuration.
The authentication provider has to redirect to the Callback URL with information for each of the above client configuration
URLs.

The client configuration URLs support additional request parameters that enable you to direct users to log into specific sites,
obtain customized permissions from the third party, or go to a specific location after authenticating.

Updating Your Facebook Application
After defining the Facebook authentication provider in your Salesforce organization, go back to Facebook and update your
application to use the Callback URL as the Facebook Website Site URL.

266

Configuring a Facebook Authentication ProviderUsing Communities With Mobile SDK Apps

https://developers.facebook.com/

Testing the Single Sign-On Connection
In a browser, open the Test-Only Initialization URL on the Auth. Provider detail page. It should redirect you to
Facebook and ask you to sign in. Upon doing so, you are asked to authorize your application. After you authorize, you are
redirected back to Salesforce.

Configuring a Salesforce Authentication Provider

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

You can use a connected app as an authentication provider. You must complete these steps:

1. Define a Connected App.
2. Define the Salesforce authentication provider in your organization.
3. Test the connection.

Defining a Connected App
Before you can configure a Salesforce provider for your Salesforce organization, you must define a connected app that uses
single sign-on. Define connected apps under Setup, in Create > Apps.

After you finish defining aconnected app, save the values from the Consumer Key and Consumer Secret fields.

Defining the Salesforce Authentication Provider in your Organization
You need the values from the Consumer Key and Consumer Secret fields of the connected app definition to set up the
authentication provider in your organization.

1. From Setup, click Security Controls > Auth. Providers.
2. Click New.
3. Select Salesforce for the Provider Type.
4. Enter a Name for the provider.
5. Enter the URL Suffix. This is used in the client configuration URLs. For example, if the URL suffix of your provider

is “MySFDCProvider”, your single sign-on URL is similar to
https://login.salesforce.com/auth/sso/00Dx00000000001/MySFDCProvider.

6. Paste the value of Consumer Key from the connected app definition into the Consumer Key field.
7. Paste the value of Consumer Secret from the connected app definition into the Consumer Secret field.
8. Optionally, set the following fields.

a. Authorize Endpoint URL to specify an OAuth authorization URL.

For the Authorize Endpoint URL, the host name can include a sandbox or custom domain name (created using
My Domain), but the URL must end in .salesforce.com, and the path must end in
/services/oauth2/authorize. For example
https://test.salesforce.com/services/oauth2/authorize.

b. Token Endpoint URL to specify an OAuth token URL.

267

Configuring a Salesforce Authentication ProviderUsing Communities With Mobile SDK Apps

For the Token Endpoint URL, the host name can include a sandbox or custom domain name (created using My
Domain), but the URL must end in .salesforce.com, and the path must end in /services/oauth2/token.
For example https://test.salesforce.com/services/oauth2/token.

c. Default Scopes to send along with the request to the authorization endpoint. Otherwise, the hardcoded default is
used.

For more information, see Using the Scope Parameter.

d. Custom Error URL for the provider to use to report any errors.

9. Select an already existing Apex class as the Registration Handler class or click Automatically create a
registration handler template to create the Apex class template for the registration handler. You must edit this
template class to modify the default content before using it.

Note: You must specify a registration handler class for Salesforce to generate the Single Sign-On
Initialization URL.

10. Select the user that runs the Apex handler class for Execute Registration As. The user must have “Manage Users”
permission. A user is required if you selected a registration handler class or are automatically creating one.

11. To use a portal with your provider, select the portal from the Portal drop-down list.
12. Click Save.

Note the value of the Client Configuration URLs. You need the Callback URL to complete the last step, and you use
the Test-Only Initialization URL to check your configuration. Also be sure to note the Auth. Provider Id
value because you must use it with the Auth.AuthToken Apex class.

13. Return to the connected app definition you created above (under Setup, in Create > Apps, click on the connected app
name)and paste the value of Callback URL from the authentication provider into the Callback URL field.

Several client configuration URLs are generated after defining the authentication provider:

• Test-Only Initialization URL: Administrators use this URL to ensure the third-party provider is set up correctly.
The administrator opens this URL in a browser, signs in to the third party, and is redirected back to Salesforce with a map
of attributes.

• Single Sign-On Initialization URL: Use this URL to perform single sign-on into Salesforce from a third party
(using third-party credentials). The end user opens this URL in a browser, and signs in to the third party. This then either
creates a new user for them, or updates an existing user, and then signs them into Salesforce as that user.

• Existing User Linking URL: Use this URL to link existing Salesforce users to a third-party account. The end user
opens this URL in a browser, signs in to the third party, signs in to Salesforce, and approves the link.

• Oauth-Only Initialization URL: Use this URL to obtain OAuth access tokens for a third party. Users must
authenticate with Salesforce for the third-party service to get a token; this flow does not provide for future single sign-on
functionality.

• Callback URL: Use the callback URL for the endpoint that the authentication provider calls back to for configuration.
The authentication provider has to redirect to the Callback URL with information for each of the above client configuration
URLs.

The client configuration URLs support additional request parameters that enable you to direct users to log into specific sites,
obtain customized permissions from the third party, or go to a specific location after authenticating.

Testing the Single Sign-On Connection
In a browser, open the Test-Only Initialization URL on the Auth. Provider detail page. Both the authorizing
organization and target organization must be in the same environment, such as production or a sandbox.

268

Configuring a Salesforce Authentication ProviderUsing Communities With Mobile SDK Apps

Configuring an OpenID Connect Authentication Provider
You can use any third-party Web application that implements the server side of the OpenID Connect protocol, such as
Amazon, Google, and PayPal, as an authentication provider.

User Permissions Needed

“View Setup and Configuration”To view the settings:

“Customize Application”

AND

“Manage Auth. Providers”

To edit the settings:

You must complete these steps to configure an OpenID authentication provider:

1. Register your application, making Salesforce the application domain.
2. Define an OpenID Connect authentication provider in your Salesforce organization.
3. Update your application to use the Callback URL generated by Salesforce as the callback URL.
4. Test the connection.

Registering an OpenID Connect Application
Before you can configure a Web application for your Salesforce organization, you must register it with your service provider.
The process varies depending on the service provider. For example, to register a Google app, Create an OAuth 2.0 Client ID.

1. Register your application on your service provider’s website.
2. Modify the application settings and set the application domain (or Home Page URL) to Salesforce.
3. Note the Client ID and Client Secret, as well as the Authorize Endpoint URL, Token Endpoint URL, and User Info

Endpoint URL, which should be available in the provider’s documentation. Here are some common OpenID Connect
service providers:

• Amazon
• Google
• PayPal

Defining an OpenID Connect Provider in Your Salesforce Organization
You need some information from your provider (the Client ID and Client Secret, as well as the Authorize Endpoint URL,
Token Endpoint URL, and User Info Endpoint URL) to configure your application in your Salesforce organization.

1. From Setup, click Security Controls > Auth. Providers.
2. Click New.
3. Select OpenID Connect for the Provider Type.
4. Enter a Name for the provider.
5. Enter the URL Suffix. This is used in the client configuration URLs. For example, if the URL suffix of your provider

is “MyOpenIDConnectProvider,” your single sign-on URL is similar to:
https://login.salesforce.com/auth/sso/00Dx00000000001/MyOpenIDConnectProvider.

6. Use the Client ID from your provider for the Consumer Key field.
7. Use the Client Secret from your provider for the Consumer Secret field.
8. Enter the base URL from your provider for the Authorize Endpoint URL.

269

Configuring an OpenID Connect Authentication ProviderUsing Communities With Mobile SDK Apps

https://code.google.com/apis/console/#project:85766057405:access
https://images-na.ssl-images-amazon.com/images/G/01/lwa/dev/docs/website-developer-guide._TTH_.pdf
https://developers.google.com/accounts/docs/OAuth2Login#sendauthrequest
https://developer.paypal.com/webapps/developer/docs/api/#api-endpoints

Tip: You can add query string parameters to the base URL, if necessary. For example, to get a refresh token from
Google for offline access, use
https://accounts.google.com/o/oauth2/auth?access_type=offline&approval_prompt=force.
In this specific case, the additional approval_prompt parameter is necessary to ask the user to accept the refresh
action, so Google will continue to provide refresh tokens after the first one.

9. Enter the Token Endpoint URL from your provider.
10. Optionally, set the following fields.

a. User Info Endpoint URL from your provider.
b. Token Issuer. This value identifies the source of the authentication token in the form https: URL.
c. Default Scopes to send along with the request to the authorization endpoint. Otherwise, the hardcoded defaults

for the provider type are used (see the OpenID Connect developer documentation for these defaults).

For more information, see Using the Scope Parameter

11. You can select Send access token in header to have the token sent in a header instead of a query string.
12. Optionally, set the following fields.

a. Custom Error URL for the provider to use to report any errors.
b. Select an existing Apex class as the Registration Handler class or click Automatically create a

registration handler template to create an Apex class template for the registration handler. You must edit
this class and modify the default content before using it.

Note: You must specify a registration handler class for Salesforce to generate the Single Sign-On
Initialization URL.

c. Select the user that runs the Apex handler class for Execute Registration As. The user must have the “Manage Users”
permission. A user is required if you selected a registration handler class or are automatically creating one.

d. To use a portal with your provider, select the portal from the Portal drop-down list.

13. Click Save.

Be sure to note the generated Auth. Provider Id value. You must use it with the Auth.AuthToken Apex class.

Several client configuration URLs are generated after defining the authentication provider:

• Test-Only Initialization URL: Administrators use this URL to ensure the third-party provider is set up correctly.
The administrator opens this URL in a browser, signs in to the third party, and is redirected back to Salesforce with a map
of attributes.

• Single Sign-On Initialization URL: Use this URL to perform single sign-on into Salesforce from a third party
(using third-party credentials). The end user opens this URL in a browser, and signs in to the third party. This then either
creates a new user for them, or updates an existing user, and then signs them into Salesforce as that user.

• Existing User Linking URL: Use this URL to link existing Salesforce users to a third-party account. The end user
opens this URL in a browser, signs in to the third party, signs in to Salesforce, and approves the link.

• Oauth-Only Initialization URL: Use this URL to obtain OAuth access tokens for a third party. Users must
authenticate with Salesforce for the third-party service to get a token; this flow does not provide for future single sign-on
functionality.

• Callback URL: Use the callback URL for the endpoint that the authentication provider calls back to for configuration.
The authentication provider has to redirect to the Callback URL with information for each of the above client configuration
URLs.

The client configuration URLs support additional request parameters that enable you to direct users to log into specific sites,
obtain customized permissions from the third party, or go to a specific location after authenticating.

270

Configuring an OpenID Connect Authentication ProviderUsing Communities With Mobile SDK Apps

http://openid.net/connect/

Updating Your OpenID Connect Application
After defining the authentication provider in your Salesforce organization, go back to your provider and update your application’s
Callback URL (also called the Authorized Redirect URI for Google applications and Return URL for PayPal).

Testing the Single Sign-On Connection
In a browser, open the Test-Only Initialization URL on the Auth. Provider detail page. It should redirect you to
your provider’s service and ask you to sign in. Upon doing so, you’re asked to authorize your application. After you authorize,
you’re redirected back to Salesforce.

Example: Configure a Community For Mobile SDK App Access
Configuring your community to support logins from Mobile SDK apps can be tricky. This tutorial helps you see the details
and correct sequence first-hand.

When you configure community users for mobile access, sequence and protocol affect your success. For example, if you create
a user that’s not associated with a contact, that user won’t be able to log in on a mobile device. Here are some important
guidelines to keep in mind:

• Create users only from contacts that belong to accounts. You can’t create the user first and then associate it with a contact
later.

• Be sure you’ve assigned a role to the owner of any account you use. Otherwise, the user gets an error when trying to log
in.

• On iOS devices, when you create a Custom Host for your app in Settings, remove the http[s]:// prefix. The iOS core
appends the prefix at runtime, which could result in an invalid address if you explicitly include it.

1. Add Permissions to a Profile
2. Create a Community
3. Add the API User Profile To Your Community
4. Create a New Contact and User
5. Test Your New Community Login

Add Permissions to a Profile
Create a profile that has API Enabled and Enable Chatter permissions.

1. Go to Setup > Manage Users > Profiles.
2. Click New Profile.
3. For Existing Profile select Customer Community User.
4. For Profile Name type FineApps API User.
5. Click Save.
6. On the FineApps API User page, click Edit.
7. For Administrative Permissions select API Enabled and Enable Chatter.

Note: A user who doesn’t have the Enable Chatter permission gets an insufficient privileges error immediately
after successfully logging into your community in Salesforce.

8. Click Save.

Note: In this tutorial we use a profile, but you can also use a permission set that includes the required permissions.

271

Example: Configure a Community For Mobile SDK App
Access

Using Communities With Mobile SDK Apps

Create a Community
Create a community and a community login URL.

The following steps are fully documented at Enabling Salesforce Communities and Creating Communities in Salesforce Help.

1. In Setup, go to Customize > Communities.
2. If you don’t see a Manage Communities options:

a. Click Settings.
b. Under Enable communities, select Enable communities.
c. Under Select a domain name, enter a unique name, such as fineapps.<your_name>.force.com for Domain

name.
d. Click Check Availability to make sure the domain name isn’t already being used.
e. Click Save.

3. Go to Setup > Customize > Communities > Manage Communities.
4. Click New Community.
5. Name the new community FineApps Users and enter a description.
6. For URL, type customers in the suffix edit box.

The full URL shown, including your suffix, becomes the new URL for your community.

7. Click Create, then click Edit.

Add the API User Profile To Your Community
Add the API User profile to your community setup on the Members page.

1. Click Members.
2. For Search, select All.
3. Select FineApps API User in the Available Profiles list, then click Add.
4. Click Save.
5. Click Publish.
6. Dismiss the confirmation dialog box and click Close.

Create a New Contact and User
Instead of creating users directly, create a contact on an account, then create the user from that contact.

If you don’t currently have any accounts,

1. Click the Accounts tab.
2. If your org doesn’t yet contain any accounts:

a. In Quick Create, enter My Test Account for Account Name.
b. Click Save

3. In Recent Accounts click My Test Account or any other account name. Note the Account Owner’s name.
4. Go to Manage Users > Users and click Edit next to your Account Owner’s name.
5. Make sure that Role is set to a management role, such as CEO.
6. Click Save.
7. Click the Accounts tab and again click the account’s name.

272

Create a CommunityUsing Communities With Mobile SDK Apps

https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_enable.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_creating.htm

8. In Contacts, click New Contact.
9. Fill in the following information: First Name: Jim, Last Name: Parker. Click Save.
10. On the Contact page for Jim Parker, click Manage External User, then select Enable Customer User.
11. For User License select Customer Community.
12. For Profile select the FineApps API User.
13. Use the following values for the other required fields:

ValueField

Enter your active valid email address.Email

jimparker@fineapps.comUsername

jimmypNickname

You can remove any non-required information if it’s automatically filled in by the browser.

14. Click Save.
15. Wait for an email to arrive in your inbox welcoming Jim Parker, then click the link in the email to create a password. Set

the password to “mobile333”.

Test Your New Community Login
Test your community setup by logging into your Mobile SDK native or hybrid local app as your new contact.

To log into your mobile app through your community, configure the settings in your Mobile SDK app to recognize your
community login URL that ends with /fineapps.

1. For Android:

a. Open your Android project in Eclipse.
b. In the Project Explorer, go to the res folder and create a new (or select the existing) xml folder.
c. In the xml folder, create a new text file. You can do this using either the File menu or the CTRL-Click (or

Right-Click) menu.
d. In the new text file, add the following XML. Replace the server URL with your community login URL:

<?xml version="1.0" encoding="utf-8"?>
<servers>
<server name="Community Login"
url="https://fineapps-developer-edition.<instance>.force.com/fineapps">
</servers>

e. Save the file as servers.xml.

2. For iOS:

a. Open your iOS project in Xcode.
b. Using the Project Navigator, open Supporting Files > <appname>-Info.plist.
c. Change the SFDCOAuthLoginHost value to your community login URL minus the https:// prefix. For example:

fineapps-developer-edition.<instance>.force.com/fineapps

d. On your iOS simulator or device, go to Settings > <your_app_name>.
e. Click Login Host and select Custom Host.

273

Test Your New Community LoginUsing Communities With Mobile SDK Apps

f. Click Back.
g. Edit Custom Host, setting it to the SFDCOAuthLoginHost value you specified in the <appname>-Info.plist

file.

3. Start your app on your device, simulator, or emulator, and log in with username jimparker@fineapps.com and
password mobiletest1234.

Note: If you leave your mobile app at the login screen for an extended time without logging in, you might get an
“insufficient privileges” error when you try to log in. If this happens, close and reopen the app, then log in immediately.

Example: Configure a Community For Facebook Authentication
You can extend the reach of your community by configuring an external authentication provider to handle community logins.

This example extends the previous example to use Facebook as an authentication front end. In this simple scenario, we configure
the external authentication provider to accept any authenticated Facebook user into the community.

If your community is already configured for mobile app logins, you don’t need to change your mobile app or your connected
app to use external authentication. Instead, you define a Facebook app, a Salesforce Auth. Provider, and an Auth. Provider
Apex class. You also make a minor change to your community setup.

Create a Facebook App
To enable community logins through Facebook, start by creating a Facebook app.

A Facebook app is comparable to a Salesforce connected app. It is a container for settings that govern the connectivity and
authentication of your app on mobile devices.

1. Go to developers.facebook.com.
2. Log in with your Facebook developer account, or register if you’re not a registered Facebook developer.
3. Go to Apps > Create a New App.
4. Set display name to “FineApps Community Test”.
5. Add a Namespace, if you want. Per Facebook’s requirements, a namespace label must be twenty characters or less, using

only lowercase letters, dashes, and underscores. For example, “my_fb_goodapps”.
6. For Category, choose Utilities.
7. Copy and store your App ID and App Secret for later use.

You can log in to the app using the following URL:

https://developers.facebook.com/apps/<App ID>/dashboard/

Define a Salesforce Auth. Provider
To enable external authentication in Salesforce, create an Auth. Provider.

External authentication through Facebook requires the App ID and App Secret from the Facebook app that you created in
the previous step.

1. In Setup, go to Security Controls > Auth. Providers.
2. Click New.
3. Configure the Auth. Provider fields as shown in the following table.

274

Example: Configure a Community For Facebook
Authentication

Using Communities With Mobile SDK Apps

https://developers.facebook.com

ValueField

Select Facebook.Provider Type

Enter FB Community Login.Name

Accept the default.URL Suffix

Note: You may also provide any other string that
conforms to URL syntax, but for this example the
default works best.

Enter the App ID from your Facebook app.Consumer Key

Enter the App Secret from your Facebook app.Consumer Secret

Leave blank.Custom Error URL

4. For Registration Handler, click Automatically create a registration handler template.

5. For Execute Registration As:, click Search and choose a community member who has administrative privileges.
6. Leave Portal blank.
7. Click Save.

Salesforce creates a new Apex class that extends RegistrationHandler. The class name takes the form
AutocreatedRegHandlerxxxxxx….

8. Copy the Auth. Provider ID for later use.
9. In the detail page for your new Auth. Provider, under Client Configuration, copy the Callback URL for later use.

The callback URL takes the form
https://login.salesforce.com/services/authcallback/<id>/<Auth.Provider_URL_Suffix>.

Configure Your Facebook App
Next, you need to configure the community to use your Salesforce Auth. Provider for logins.

Now that you’ve defined a Salesforce Auth. Provider, complete the authentication protocol by linking your Facebook app to
your Auth. Provider. You provide the Salesforce login URL and the callback URL, which contains your Auth. Provider ID
and the Auth. Provider’s URL suffix.

1. In your Facebook app, go to Settings.
2. In App Domains, enter login.salesforce.com.
3. Click +Add Platform.
4. Select Website.
5. For Site URL, enter your Auth. Provider’s callback URL.
6. For Contact Email, enter your valid email address.
7. In the left panel, set Status & Review to Yes. With this setting, all Facebook users can use their Facebook logins to create

user accounts in your community.
8. Click Save.
9. Click Confirm.

275

Configure Your Facebook AppUsing Communities With Mobile SDK Apps

Customize the Auth. Provider Apex Class
Use the Apex class for your Auth. Provider to define filtering logic that controls who may enter your community.

1. In Setup, go to Develop > Apex Classes.
2. Click Edit next to your Auth. Provider class. The default class name starts with “AutocreatedRegHandlerxxxxxx…”
3. To implement the canCreateUser() method, simply return true.

global boolean canCreateUser(Auth.UserData data) {
return true;
}

This implementation allows anyone who logs in through Facebook to join your community.

Note: If you want your community to be accessible only to existing community members, implement a filter to
recognize every valid user in your community. Base your filter on any unique data in the Facebook packet, such
as username or email address, and then validate that data against similar fields in your community members’
records.

4. Change the createUser() code:

a. Replace “Acme” with FineApps in the account name query.
b. Replace the username suffix (“@acmecorp.com”) with @fineapps.com.
c. Change the profile name in the profile query (“Customer Portal User”) to API Enabled.

5. In the updateUser() code, replace the suffix to the username (“myorg.com”) with @fineapps.com.
6. Click Save.

Configure Your Salesforce Community
For the final step, configure the community to use your Salesforce Auth. Provider for logins.

1. In Setup, go to Customize > Communities > Manage Communities.
2. Click Edit next to your community name.
3. Click Login Page.
4. Under Options for External Users, select your new Auth. Provider.
5. Click Save.

You’re done! Now, when you log into your mobile app using your community login URL, look for an additional button inviting
you to log in using Facebook. Click the button and follow the on-screen instructions to see how the login works.

To test the external authentication setup in a browser, customize the Single Sign-On Initialization URL (from your Auth.
Provider) as follows:

https://login.salesforce.com/services/auth/sso/orgID/
URLsuffix?community=<community_login_url>

For example:

https://login.salesforce.com/services/auth/sso/00Da0000000TPNEAA4/
FB_Community_Login?community=
https://mobilesdk-developer-edition.server_instance.force.com/fineapps

276

Customize the Auth. Provider Apex ClassUsing Communities With Mobile SDK Apps

To form the Existing User Linking URL, replace sso with link:

https://login.salesforce.com/services/auth/link/00Da0000000TPNEAA4/
FB_Community_Login?community=
https://mobilesdk-developer-edition.server_instance.force.com/fineapps

277

Configure Your Salesforce CommunityUsing Communities With Mobile SDK Apps

Chapter 10

Authentication, Security, and Identity in Mobile Apps

Secure authentication is essential for enterprise applications running on mobile
devices. OAuth2 is the industry-standard protocol that allows secure

In this chapter ...

• OAuth Terminology authentication for access to a user's data, without handing out the username
• OAuth2 Authentication Flow and password. It is often described as the valet key of software access: a valet
• Connected Apps key only allows access to certain features of your car: you cannot open the trunk

or glove compartment using a valet key.• Portal Authentication Using OAuth
2.0 and Force.com Sites

Mobile app developers can quickly and easily embed the Salesforce OAuth2
implementation. The implementation uses an HTML view to collect the
username and password, which are then sent to the server. A session token is
returned and securely stored on the device for future interactions.

A Salesforce connected app is the primary means by which a mobile device
connects to Salesforce. A connected app gives both the developer and the
administrator control over how the app connects and who has access. For
example, a connected app can be restricted to certain users, can set or relax an
IP range, and so forth.

278

OAuth Terminology
Access Token

A value used by the consumer to gain access to protected resources on behalf of the user, instead of using the user’s
Salesforce credentials. The access token is a session ID, and can be used directly.

Authorization Code

A short-lived token that represents the access granted by the end user. The authorization code is used to obtain an access
token and a refresh token.

Connected App

An application external to Salesforce that uses the OAuth protocol to verify both the Salesforce user and the external
application. Replaces remote access application.

Consumer Key

A value used by the consumer to identify itself to Salesforce. Referred to as client_id.

Refresh Token

A token used by the consumer to obtain a new access token, without having the end user approve the access again.

Remote Access Application (DEPRECATED)

A remote access application is an application external to Salesforce that uses the OAuth protocol to verify both the Salesforce
user and the external application. A remote access application is implemented as a “connected app” in the Salesforce
Help. Remote access applications have been deprecated in favor of connected apps.

OAuth2 Authentication Flow
The authentication flow depends on the state of authentication on the device.

First Time Authentication Flow
1. User opens a mobile application.
2. An authentication dialog/window/overlay appears.
3. User enters username and password.
4. App receives session ID.
5. User grants access to the app.
6. App starts.

Ongoing Authentication
1. User opens a mobile application.
2. If the session ID is active, the app starts immediately. If the session ID is stale, the app uses the refresh token from its

initial authorization to get an updated session ID.
3. App starts.

PIN Authentication (Optional)
1. User opens a mobile application after not using it for some time.
2. If the elapsed time exceeds the configured PIN timeout value, a passcode entry screen appears. User enters the PIN.

279

OAuth TerminologyAuthentication, Security, and Identity in Mobile Apps

Note: PIN protection is a function of the mobile policy and is used only when it’s enabled in the Salesforce
connected app definition. It can be shown whether you are online or offline, if enough time has elapsed since you
last used the application. See About PIN Security.

3. App re-uses existing session ID.
4. App starts.

OAuth 2.0 User-Agent Flow
The user-agent authentication flow is used by client applications residing on the user’s mobile device. The authentication is
based on the user-agent’s same-origin policy.

In the user-agent flow, the client application receives the access token in the form of an HTTP redirection. The client
application requests the authorization server to redirect the user-agent to another web server or local resource accessible to the
user-agent, which is capable of extracting the access token from the response and passing it to the client application. Note
that the token response is provided as a hash (#) fragment on the URL. This is for security, and prevents the token from being
passed to the server, as well as to other servers in referral headers.

This user-agent authentication flow doesn't utilize the client secret since the client executables reside on the end-user's computer
or device, which makes the client secret accessible and exploitable.

Warning: Because the access token is encoded into the redirection URI, it might be exposed to the end-user and
other applications residing on the computer or device.

If you are authenticating using JavaScript, call window.location.replace(); to remove the callback from the
browser’s history.

1. The client application directs the user to Salesforce to authenticate and authorize the application.
2. The user must always approve access for this authentication flow. After approving access, the application receives the

callback from Salesforce.

280

OAuth 2.0 User-Agent FlowAuthentication, Security, and Identity in Mobile Apps

After obtaining an access token, the consumer can use the access token to access data on the end-user’s behalf and receive a
refresh token. Refresh tokens let the consumer get a new access token if the access token becomes invalid for any reason.

OAuth 2.0 Refresh Token Flow
After the consumer has been authorized for access, they can use a refresh token to get a new access token (session ID). This
is only done after the consumer already has received a refresh token using either the Web server or user-agent flow. It is up
to the consumer to determine when an access token is no longer valid, and when to apply for a new one. Bearer flows can only
be used after the consumer has received a refresh token.

The following are the steps for the refresh token authentication flow. More detail about each step follows:

1. The consumer uses the existing refresh token to request a new access token.
2. After the request is verified, Salesforce sends a response to the client.

Note:

Mobile SDK apps can use the SmartStore feature to store data locally for offline use. SmartStore data is inherently
volatile. Its lifespan is tied to the authenticated user as well as to OAuth token states. When the user logs out of the
app, SmartStore deletes all soup data associated with that user. Similarly, when the OAuth refresh token is revoked
or expires, the user’s app state is reset, and all data in SmartStore is purged. Carefully consider the volatility of
SmartStore data when designing your app. This warning is especially important if your org sets a short lifetime for
the refresh token.

Scope Parameter Values
OAuth requires scope configuration both on server and on client. The agreement between the two sides defines the scope
contract.

• Server side—Define scope permissions in a connected app on the Salesforce server. These settings determine which scopes
client apps, such as Mobile SDK apps, can request. For most native Mobile SDK apps, refresh_token and api are
sufficient.

• Client side—Define scope requests in your Mobile SDK app. Client scope requests must be a subset of the connected
app’s scope permissions.

Server Side Configuration
The scope parameter enables you to fine-tune what the client application can access in a Salesforce organization. The valid
values for scope are:

DescriptionValue

Allows access to the current, logged-in user’s account using APIs, such as REST API and
Bulk API. This value also includes chatter_api, which allows access to Chatter REST
API resources.

api

Allows access to Chatter REST API resources only.chatter_api

Allows access to the custom permissions in an organization associated with the connected
app, and shows whether the current user has each permission enabled.

custom_permissions

Note: Custom permissions are currently available as a Developer Preview.

281

OAuth 2.0 Refresh Token FlowAuthentication, Security, and Identity in Mobile Apps

DescriptionValue

Allows access to all data accessible by the logged-in user, and encompasses all other scopes.
full does not return a refresh token. You must explicitly request the refresh_token scope
to get a refresh token.

full

Allows access to the identity URL service. You can request profile, email, address, or
phone, individually to get the same result as using id; they are all synonymous.

id

Allows access to the current, logged in user’s unique identifier for OpenID Connect apps.

The openid scope can be used in the OAuth 2.0 user-agent flow and the OAuth 2.0 Web
server authentication flow to get back a signed ID token conforming to the OpenID Connect
specifications in addition to the access token.

openid

Allows a refresh token to be returned if you are eligible to receive one. This lets the app
interact with the user’s data while the user is offline, and is synonymous with requesting
offline_access.

refresh_token

Allows access to Visualforce pages.visualforce

Allows the ability to use the access_token on the Web. This also includes visualforce,
allowing access to Visualforce pages.

web

Note: For Mobile SDK apps, you’re always required to select refresh_token in server-side Connected App
settings. Even if you select the full scope, you still must explicitly select refresh_token.

Client Side Configuration
The following rules govern scope configuration for Mobile SDK apps.

Mobile SDK App ConfigurationScope

Implicitly requested by Mobile SDK for your app; no need to
include in your request.

refresh_token

Include in your request if you’re making any Salesforce REST
API calls (applies to most apps).

api

Include in your request if your app accesses pages defined in
a Salesforce org (for hybrid apps, as well as native apps that
load Salesforce-based Web pages.)

web

Include if you wish to request all permissions. (Mobile SDK
implicitly requests refresh_token for you.)

full

Include in your request if your app calls Chatter REST APIs.chatter_api

(Not needed)id

Use Web instead.visualforce

Using Identity URLs
In addition to the access token, an identity URL is also returned as part of a token response, in the id scope parameter.

282

Using Identity URLsAuthentication, Security, and Identity in Mobile Apps

http://openid.net/connect/
http://openid.net/connect/

The identity URL is both a string that uniquely identifies a user, as well as a RESTful API that can be used to query (with a
valid access token) for additional information about the user. Salesforce returns basic personalization information about the
user, as well as important endpoints that the client can talk to, such as photos for the user, and API endpoints it can access.

The format of the URL is: https://login.salesforce.com/id/orgID/userID, where orgId is the ID of the
Salesforce organization that the user belongs to, and userID is the Salesforce user ID.

Note: For a sandbox, login.salesforce.com is replaced with test.salesforce.com.

The URL must always be HTTPS.

Identity URL Parameters
The following parameters can be used with the access token and identity URL. The access token can be used in an authorization
request header or in a request with the oauth_token parameter.

DescriptionParameter

See “Using the Access Token” in the Salesforce Help.Access token

This parameter is optional. Specify the format of the returned output. Valid values are:Format
• urlencoded

• json

• xml

Instead of using the format parameter, the client can also specify the returned format
in an accept-request header using one of the following:

• Accept: application/json

• Accept: application/xml

• Accept: application/x-www-form-urlencoded

Note the following:

• Wildcard accept headers are allowed. */* is accepted and returns JSON.
• A list of values is also accepted and is checked left-to-right. For example:

application/xml,application/json,application/html,*/* returns
XML.

• The format parameter takes precedence over the accept request header.

This parameter is optional. Specify a SOAP API version number, or the literal string,
latest. If this value isn’t specified, the returned API URLs contains the literal value

Version

{version}, in place of the version number, for the client to do string replacement. If
the value is specified as latest, the most recent API version is used.

This parameter is optional, and is only accepted in a header, not as a URL parameter.
Specify the output to be better formatted. For example, use the following in a header:

PrettyPrint

X-PrettyPrint:1. If this value isn’t specified, the returned XML or JSON is
optimized for size rather than readability.

This parameter is optional. Specify a valid JavaScript function name. This parameter
is only used when the format is specified as JSON. The output is wrapped in this

Callback

function name (JSONP.) For example, if a request to
https://server/id/orgid/userid/ returns {"foo":"bar"}, a request to
https://server/id/orgid/userid/?callback=baz returns
baz({"foo":"bar"});.

283

Using Identity URLsAuthentication, Security, and Identity in Mobile Apps

Identity URL Response
After making a valid request, a 302 redirect to an instance URL is returned. That subsequent request returns the following
information in JSON format:

• id—The identity URL (the same URL that was queried)
• asserted_user—A boolean value, indicating whether the specified access token used was issued for this identity
• user_id—The Salesforce user ID
• username—The Salesforce username
• organization_id—The Salesforce organization ID
• nick_name—The community nickname of the queried user
• display_name—The display name (full name) of the queried user
• email—The email address of the queried user
• email_verified—Indicates whether the organization has email verification enabled (true), or not (false).
• first_name—The first name of the user
• last_name—The last name of the user
• timezone—The time zone in the user’s settings
• photos—A map of URLs to the user’s profile pictures

Note: Accessing these URLs requires passing an access token. See “Using the Access Token” in the Salesforce
Help.

◊ picture

◊ thumbnail

• addr_street—The street specified in the address of the user’s settings
• addr_city—The city specified in the address of the user’s settings
• addr_state—The state specified in the address of the user’s settings
• addr_country—The country specified in the address of the user’s settings
• addr_zip—The zip or postal code specified in the address of the user’s settings
• mobile_phone—The mobile phone number in the user’s settings
• mobile_phone_verified—The user confirmed this is a valid mobile phone number. See the Mobile User field

description.
• status—The user’s current Chatter status

◊ created_date:xsd datetime value of the creation date of the last post by the user, for example,
2010-05-08T05:17:51.000Z

◊ body: the body of the post

• urls—A map containing various API endpoints that can be used with the specified user

Note: Accessing the REST endpoints requires passing an access token. See “Using the Access Token” in the
Salesforce Help.

◊ enterprise (SOAP)
◊ metadata (SOAP)
◊ partner (SOAP)
◊ rest (REST)
◊ sobjects (REST)
◊ search (REST)
◊ query (REST)
◊ recent (REST)

284

Using Identity URLsAuthentication, Security, and Identity in Mobile Apps

◊ profile

◊ feeds (Chatter)
◊ feed-items (Chatter)
◊ groups (Chatter)
◊ users (Chatter)
◊ custom_domain—This value is omitted if the organization doesn’t have a custom domain configured and propagated

• active—A boolean specifying whether the queried user is active
• user_type—The type of the queried user
• language—The queried user’s language
• locale—The queried user’s locale
• utcOffset—The offset from UTC of the timezone of the queried user, in milliseconds
• last_modified_date—xsd datetime format of last modification of the user, for example, 2010-06-28T20:54:09.000Z
• is_app_installed—The value is true when the connected app is installed in the org of the current user and the access

token for the user was created using an OAuth flow. If the connected app is not installed, the property does not exist
(instead of being false). When parsing the response, check both for the existence and value of this property.

• mobile_policy—Specific values for managing mobile connected apps. These values are only available when the connected
app is installed in the organization of the current user and the app has a defined session timeout value and a PIN (Personal
Identification Number) length value.

◊ screen_lock—The length of time to wait to lock the screen after inactivity
◊ pin_length—The length of the identification number required to gain access to the mobile app

• push_service_type—This response value is set to apple if the connected app is registered with Apple Push Notification
Service (APNS) for iOS push notifications or androidGcm if it’s registered with Google Cloud Messaging (GCM) for
Android push notifications. The response value type is an array.

• custom_permissions—When a request includes the custom_permissions scope parameter, the response includes
a map containing custom permissions in an organization associated with the connected app. If the connected app is not
installed in the organization, or has no associated custom permissions, the response does not contain a
custom_permissions map. The following shows an example request.

http://login.salesforce.com/services/oauth2/authorize?response_type=token&client_
id=3MVG9lKcPoNINVBKV6EgVJiF.snSDwh6_2wSS7BrOhHGEJkC_&redirect_uri=http://www.example.org/qa/security/oauth
/useragent_flow_callback.jsp&scope=api%20id%20custom_permissions

The following shows the JSON block in the identity URL response.

"custom_permissions":
{
"Email.View":true,
"Email.Create":false,
"Email.Delete":false

}

Note: Custom permissions are currently available as a Developer Preview.

The following is a response in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<user xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<id>http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9</id>
<asserted_user>true</asserted_user>
<user_id>005x0000001S2b9</user_id>

285

Using Identity URLsAuthentication, Security, and Identity in Mobile Apps

<organization_id>00Dx0000001T0zk</organization_id>
<nick_name>admin1.2777578168398293E12foofoofoofoo</nick_name>
<display_name>Alan Van</display_name>
<email>admin@2060747062579699.com</email>
<status>

<created_date xsi:nil="true"/>
<body xsi:nil="true"/>

</status>
<photos>

<picture>http://na1.salesforce.com/profilephoto/005/F</picture>
<thumbnail>http://na1.salesforce.com/profilephoto/005/T</thumbnail>

</photos>
<urls>

<enterprise>http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk
</enterprise>
<metadata>http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk
</metadata>
<partner>http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk
</partner>
<rest>http://na1.salesforce.com/services/data/v{version}/
</rest>
<sobjects>http://na1.salesforce.com/services/data/v{version}/sobjects/
</sobjects>
<search>http://na1.salesforce.com/services/data/v{version}/search/
</search>
<query>http://na1.salesforce.com/services/data/v{version}/query/
</query>
<profile>http://na1.salesforce.com/005x0000001S2b9
</profile>

</urls>
<active>true</active>
<user_type>STANDARD</user_type>
<language>en_US</language>
<locale>en_US</locale>
<utcOffset>-28800000</utcOffset>
<last_modified_date>2010-06-28T20:54:09.000Z</last_modified_date>
</user>

The following is a response in JSON format:

{"id":"http://na1.salesforce.com/id/00Dx0000001T0zk/005x0000001S2b9",
"asserted_user":true,
"user_id":"005x0000001S2b9",
"organization_id":"00Dx0000001T0zk",
"nick_name":"admin1.2777578168398293E12foofoofoofoo",
"display_name":"Alan Van",
"email":"admin@2060747062579699.com",
"status":{"created_date":null,"body":null},
"photos":{"picture":"http://na1.salesforce.com/profilephoto/005/F",

"thumbnail":"http://na1.salesforce.com/profilephoto/005/T"},
"urls":

{"enterprise":"http://na1.salesforce.com/services/Soap/c/{version}/00Dx0000001T0zk",
"metadata":"http://na1.salesforce.com/services/Soap/m/{version}/00Dx0000001T0zk",
"partner":"http://na1.salesforce.com/services/Soap/u/{version}/00Dx0000001T0zk",
"rest":"http://na1.salesforce.com/services/data/v{version}/",
"sobjects":"http://na1.salesforce.com/services/data/v{version}/sobjects/",
"search":"http://na1.salesforce.com/services/data/v{version}/search/",
"query":"http://na1.salesforce.com/services/data/v{version}/query/",
"profile":"http://na1.salesforce.com/005x0000001S2b9"},

"active":true,
"user_type":"STANDARD",
"language":"en_US",
"locale":"en_US",
"utcOffset":-28800000,
"last_modified_date":"2010-06-28T20:54:09.000+0000"}

After making an invalid request, the following are possible responses from Salesforce:

286

Using Identity URLsAuthentication, Security, and Identity in Mobile Apps

Request ProblemError Code

HTTP403 (forbidden) — HTTPS_Required

Missing access token403 (forbidden) — Missing_OAuth_Token

Invalid access token403 (forbidden) — Bad_OAuth_Token

Users in a different organization403 (forbidden) — Wrong_Org

Invalid or bad user or organization ID404 (not found) — Bad_Id

Deactivated user or inactive organization404 (not found) — Inactive

User lacks proper access to organization or information404 (not found) — No_Access

Request to the endpoint of a site404 (not found) — No_Site_Endpoint

Invalid version406 (not acceptable) — Invalid_Version

Invalid callback406 (not acceptable) — Invalid_Callback

Setting a Custom Login Server
For special cases--for example, if you’re a Salesforce partner using Trialforce--you might need to redirect your customer login
requests to a non-standard login URI. For iOS apps, you set the Custom Host in your app’s iOS settings bundle. If you’ve
configured this setting, it will be used as the default connection.

Android Configuration
In Android, login hosts are known as server connections. Prior to Mobile SDK v. 1.4, server connections for Android apps
were hard-coded in the SalesforceSDK project. In v. 1.4 and later, the host list is defined in the res/xml/servers.xml
file. The SalesforceSDK library project uses this file to define production and sandbox servers.

You can add your servers to the runtime list by creating your own res/xml/servers.xml file in your application project.
The root XML element for this file is <servers>. This root can contain any number of <server> entries. Each <server>
entry requires two attributes: name (an arbitrary human-friendly label) and url (the web address of the login server.)

Here’s an example of a servers.xml file.

<?xml version="1.0" encoding="utf-8"?>
<servers>
<server name="XYZ.com Login" url="https://<username>.cloudforce.com"/>

</servers>

Server Whitelisting Errors
If you get a whitelist rejection error, you’ll need to add your custom login domain to the ExternalHosts list for your project.
This list is defined in the <project_name>/<platform_path>/config.xml file. Add those domains (e.g. cloudforce.com)
to the app’s whitelist in the following files:

For Mobile SDK 2.0:

• iOS: /Supporting Files/config.xml

• Android: /res/xml/config.xml

287

Setting a Custom Login ServerAuthentication, Security, and Identity in Mobile Apps

Revoking OAuth Tokens
When a user logs out of an app, or the app times out or in other ways becomes invalid, the logged-in users’ credentials are
cleared from the mobile app. This effectively ends the connection to the server. Also, Mobile SDK revokes the refresh token
from the server as part of logout.

Revoking Tokens
To revoke OAuth 2.0 tokens, use the revocation endpoint:

https://login.salesforce.com/services/oauth2/revoke

Construct a POST request that includes the following parameters using the application/x-www-form-urlencoded
format in the HTTP request entity-body. For example:

POST /revoke HTTP/1.1
Host: https://login.salesforce.com/services/oauth2/revoke
Content-Type: application/x-www-form-urlencoded

token=currenttoken

If an access token is included, we invalidate it and revoke the token. If a refresh token is included, we revoke it as well as any
associated access tokens.

The authorization server indicates successful processing of the request by returning an HTTP status code 200. For all error
conditions, a status code 400 is used along with one of the following error responses.

• unsupported_token_type—token type not supported
• invalid_token—the token was invalid

For a sandbox, use test.salesforce.com instead of login.salesforce.com.

Handling Refresh Token Revocation in Android Native Apps
Beginning with Salesforce Mobile SDK version 1.5, native Android apps can control what happens when a refresh token is
revoked by an administrator. The default behavior in this case is to automatically log out the current user. As a result of this
behavior:

• Any subsequent REST API calls your app makes will fail.

• The system discards your user’s account information and cached offline data.

• The system forces the user to navigate away from your page.

• The user must log into Salesforce again to continue using your app.

These side effects provide a secure response to the administrator’s action, but they might or might not be suitable for your
application. In your code you can choose whether to accept the default behavior or implement your own response. In either
case, continue reading to determine whether you need to adapt your code.

Token Revocation Events
When a token revocation event occurs, the ClientManager object sends an Android-style notification. The intent action
for this notification is declared in the ClientManager.ACCESS_TOKEN_REVOKE_INTENT constant.

288

Revoking OAuth TokensAuthentication, Security, and Identity in Mobile Apps

TokenRevocationReceiver, a utility class, is designed to respond to this intent action. To provide your own handler,
you’ll extend this class and override the onReceive() method. See Token Revocation: Active Handling.

SalesforceActivity.java, SalesforceListActivity.java, SalesforceExpandableListActivity.java,
and SalesforceDroidGapActivity.java implement ACCESS_TOKEN_REVOKE_INTENT event listeners. These listeners
automatically take logged out users to the login page when the refresh token is revoked. A toast message notifies the user of
this occurrence.

Token Revocation: Passive Handling
You can let the SDK handle all token revocation events with no active involvement on your part. However, even if you take
this passive approach, you might still need to change your code. You do not need to change your code if:

• Your app contains any services, or
• All of your activities extend SalesforceActivity, SalesforceListActivity, or

SalesforceExpandableListActivity.

If your app fails to satisfy at least one of these conditions, implement the following code changes.

1. (For legacy apps written before the Mobile SDK 1.5 release) In the ClientManager constructor, set the
revokedTokenShouldLogout parameter to true.

Note: This step is not necessary for apps that are new in Mobile SDK 1.5 or later.

2. In any activity that does not extend SalesforceActivity, SalesforceListActivity, or
SalesforceExpandableListActivity, amend the code as follows.

a. Declare a new variable:

private TokenRevocationReceiver tokenRevocationReceiver;

b. In the onCreate() method add the following code:

tokenRevocationReceiver = new TokenRevocationReceiver(this);

c. In the onResume() method add the following code:

registerReceiver(tokenRevocationReceiver, new
IntentFilter(ClientManager.ACCESS_TOKEN_REVOKE_INTENT));

d. In the onPause() method add the following code:

unregisterReceiver(tokenRevocationReceiver);

Token Revocation: Active Handling
If you choose to implement your own token revocation event handler, be sure to fully analyze the security implications of your
customized flow, and then test it thoroughly. Be especially careful with how you dispose of cached user data. Because the user’s
access has been revoked, that user should no longer have access to sensitive data.

To provide custom handling of token revocation events:

289

Token Revocation: Passive HandlingAuthentication, Security, and Identity in Mobile Apps

1. The starting point for implementing your own response is the
SalesforceSDKManager.shouldLogoutWhenTokenRevoked() method. By default, this method returns true.
Override this method to return false in your SalesforceSDKManager subclass.

@Override
public boolean shouldLogoutWhenTokenRevoked() {
return false;
}

2. The ClientManager constructor provides a boolean parameter, revokedTokenShouldLogout. Set this parameter to
false. You can do this by calling shouldLogoutWhenTokenRevoked() on your SalesforceSDKManager subclass.

3. Implement your handler by extending TokenRevocationReceiver and overriding the onReceive() method.
4. Regardless of whether your activity subclasses SalesforceActivity, perform step 2 in Token Revocation: Passive

Handling.

Connected Apps
A connected app integrates an application with Salesforce using APIs. Connected apps use standard SAML and OAuth
protocols to authenticate, provide Single Sign-On, and provide tokens for use with Salesforce APIs. In addition to standard
OAuth capabilities, connected apps allow administrators to set various security policies and have explicit control over who
may use the corresponding applications.

A developer or administrator defines a connected app for Salesforce by providing the following information.

• Name, description, logo, and contact information

• A URL where Salesforce can locate the app for authorization or identification

• The authorization protocol: OAuth, SAML, or both

• Optional IP ranges where the connected app might be running

• Optional information about mobile policies the connected app can enforce

Salesforce Mobile SDK apps use connected apps to access Salesforce OAuth services and to call Salesforce REST APIs.

About PIN Security
Salesforce Connected Apps have an additional layer of security via PIN protection on the app. This PIN protection is for the
mobile app itself, and isn’t the same as the PIN protection on the device or the login security provided by the Salesforce
organization.

In order to use PIN protection, the developer must select the Implements Screen Locking & Pin Protection checkbox when
creating the Connected App. Mobile app administrators then have the options of enforcing PIN protection, customizing
timeout duration, and setting PIN length.

Note: Because PIN security is implemented in the mobile device’s operating system, only native and hybrid mobile
apps can use PIN protection; HTML5 Web apps can’t use PIN protection.

In practice, PIN protection can be used so that the mobile app locks up if it’s isn’t used for a specified number of minutes.
When a mobile app is sent to the background, the clock continues to tick.

To illustrate how PIN protection works:

1. User turns on phone and enters PIN for the device.
2. User starts mobile app (Connected App).

290

Connected AppsAuthentication, Security, and Identity in Mobile Apps

3. User enters login information for Salesforce organization.
4. User enters PIN code for mobile app.
5. User works in the app, then sends it to the background by opening another app (or receiving a call, and so on).
6. The mobile app times out.
7. User re-opens the app, and the app PIN screen displays (for the mobile app, not the device).
8. User enters app PIN and can resume working.

Portal Authentication Using OAuth 2.0 and Force.com Sites
The Salesforce Spring '13 Release adds enhanced flexibility for portal authentication. If your app runs in a Salesforce portal,
you can use OAuth 2.0 with a Force.com site to obtain API access tokens on behalf of portal users. In this configuration you
can:

• Authenticate portal users via Auth providers and SAML, rather than a SOAP API login() call.
• Avoid handling user credentials in your app.
• Customize the login screen provided by the Force.com site.

Here's how to get started.

1. Associate a Force.com site with your portal. The site generates a unique URL for your portal. See Associating a Portal
with Force.com Sites.

2. Create a custom login page on the Force.com site. See Managing Force.com Site Login and Registration Settings.
3. Use the unique URL that the site generates as the redirect domain for your users' login requests.

The OAuth 2.0 service recognizes your custom host name and redirects the user to your site login page if the user is not yet
authenticated.

For example, rather than redirecting to https://login.salesforce.com:

https://login.salesforce.com/services/oauth2/authorize?response_type=
code&client_id=<your_client_id>&redirect_uri=<your_redirect_uri>

redirect to your unique Force.com site URL, such as https://mysite.secure.force.com:

https://mysite.secure.force.com/services/oauth2/authorize?response_type=
code&client_id=<your_client_id>&redirect_uri=<your_redirect_uri>

For more information and a demonstration video, see OAuth for Portal Users on the Force.com Developer Relations Blogs
page.

291

Portal Authentication Using OAuth 2.0 and Force.com SitesAuthentication, Security, and Identity in Mobile Apps

http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_customer_portal_setup.htm
http://help.salesforce.com/help/doc/en/sites_login_and_registration_settings.htm
http://blogs.developerforce.com/developer-relations/2013/02/oauth-for-portal-users.html

Chapter 11

Distributing Mobile AppExchange Apps

Apps have completely redefined the mobile experience. When selecting a new
smartphone or a tablet, consumers consistently rate app availability as the most

In this chapter ...

• AppExchange for Mobile: Enterprise
Mobile Apps

important factor in their decision. So naturally, after you’ve developed your
mobile app, you’ll want to make it available so customers or staff can easily find,

• Joining the AppExchange Partner
Program

buy, and install it. Android and iOS have proprietary stores that list and
distribute mobile apps, which won’t be covered in this guide. Salesforce also

• Get a Publishing Org has a marketplace called the AppExchange, where partners can list mobile apps
and consulting services for Salesforce.• Create a Provider Profile

• The AppExchange Security Review

292

AppExchange for Mobile: Enterprise Mobile Apps
With almost half a million mobile app listings in consumer app stores, discovering the perfect enterprise app that is secure,
trusted, and works within the Salesforce ecosystem can be a frustrating process. To help our customers find the perfect mobile
app and to help developers reach millions of active Salesforce users, go to http://www.appexchange.com—the first cross-platform
marketplace dedicated to enterprise mobile apps.

The AppExchange for Mobile connects developers with Salesforce users.

• Salesforce users can discover brand new mobile apps that are trusted, work with an existing account, and leverage data
that’s already in the cloud.

• ISVs can list their native, hybrid, and HTML5 applications that work on Android, iOS, and other platforms in a central
repository. It doesn’t matter whether the app is free, has a fixed price, or is sold with a subscription model.

Whether you’re a developer that is working on a special purpose app that brings a unique mobile perspective for solving a
specific problem, or a complete solution for a specific role, the space is completely open.

In order to distribute your commercial mobile app on AppExchange, you’ll need to become a Salesforce partner.

1. Join the AppExchange Partner Program.
2. Log a case in the Partner Portal for a publishing org.
3. Create your Provider Profile on AppExchange.
4. Request a security review.
5. Log a case in the Partner Portal to request your app is listed on AppExchange for Mobile.

Note: If you’re a Salesforce admin creating mobile apps for distribution within your organization, you don’t need a
public listing on the AppExchange.

Joining the AppExchange Partner Program
The first thing you need to do is join the AppExchange Partner Program. This program is designed to help independent
software vendors (ISVs) be successful on the Salesforce platform.

1. In your browser go to www.salesforce.com/partners and click Join Now.
2. Select the first option: I want to build and market apps built on the Force.com platform (AppExchange Partner Program)

293

AppExchange for Mobile: Enterprise Mobile AppsDistributing Mobile AppExchange Apps

http://www.appexchange.com
http://www.salesforce.com/partners

3. Answer questions about your application and your target market.
4. Fill in the fields about you and your company.
5. In the Additional Questions area, click the drop-down boxes and select the appropriate answer.
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you will receive an email with your username and temporary password. Click the link to the Partner Portal

(https://sites.secure.force.com/partners/PP2PartnerLoginPage) and log in.
8. Accept the terms of use and then dismiss the pop-up that appears.
9. Bookmark this page, you'll be using it a lot.

In the Partner Portal you’ll see quick links to some of the most used resources, and docs and video to get you started quickly.
Most of this information is targeted at ISVs who create add-ons or services for Salesforce users. As a mobile ISV, you’ll want
to work closely with an AppExchange Partner Program representative.

Get a Publishing Org
In order to manage the distribution and support of your mobile app, you’ll want to get a Salesforce organization that has full
sales, marketing, and support functionality. This org is called the AppExchange Publishing Org, or APO for short. Qualified
partners can get one for free through the Partner Portal.

1. In the Partner Community, under the Support tab, click New Case.
2. For the first category, choose Orders and Contracts.
3. For the second category, choose Request ISV Business Org.
4. In the Subject field, enter Need ISV CRM.
5. In the Description field, tell us if you have an existing org or if you need a new one. If you have an existing Salesforce org,

you can provide the Org ID in the Description field and two additional CRM licenses will be added to your org. If you
don't have an existing org, we'll provide a new one for you. In either case, make sure to enter your business address and
then click Submit Case.

6. Shortly, you'll receive another email prompting you to log in and change your password. Do that, and then bookmark the
page as before.

Create a Provider Profile
A provider profile represents your company on the AppExchange. You’ll need to log into the Salesforce organization where
you’ll manage your business. If you’re a qualified partner, you might already have an APO org. If not, you can use the Developer
Edition on page 14 org.

1. On the login page, use your username and password for your AppExchange Publishing Organization (APO).
2. Fill out the information in the Provider Profile and then click Save.

The AppExchange Security Review
Before you can list an app on AppExchange, you’ll need to submit your app for a security review. The fastest way through the
security review is to fully understand the security guidelines and process, which is online at
http://wiki.developerforce.com/page/Security_Review.

The following procedure is for submitting packaged applications, but the steps are the same for mobile apps. After you submit
the form, a representative will contact you for next steps.

1. Click Start Review on the Offering tab when editing the listing.

294

Get a Publishing OrgDistributing Mobile AppExchange Apps

https://sites.secure.force.com/partners/PP2PartnerLoginPage
http://wiki.developerforce.com/page/Security_Review

2. Select whether you charge for your application or if your application is free. Free applications must complete the review,
but the review fee is waived.

3. If you charge for your application, Partner Operations will email you information within two business days on how to pay
for the review. This is an annual payment.

4. Indicate if your application integrates with any web services outside of Force.com, including your own servers.
5. If your application integrates with other web services, list all of them in the Webservices Used box. You can enter up

to 1000 characters.
6. If your application integrates with other web services, select how your application authenticates with those services. Enter

any helpful comments in the box provided. You can enter up to 1000 characters.
7. Indicate if your application stores salesforce.com user credentials outside of Force.com.
8. Indicate if your application stores salesforce.com customer data outside of Force.com.
9. If your application stores salesforce.com customer data outside of Force.com, list all salesforce.com objects accessed in the

Objects Accessed box. You can enter up to 255 characters.
10. Indicate if your application requires that customers install any client components, such as software or plug-ins.
11. If your application requires client components, enter the details in the Requirements box. You can enter up to 1000

characters.
12. Click Start Security Review to start the AppExchange Security Review. To discard your changes and return to the previous

page, click Cancel.

Note: After collecting payment, the security team will send the partner a survey to collect detailed information
on how to test their app. This will include information like install links, test credentials etc. that are mentioned
in the next section.

13. You are contractually required to keep this information current. For example, if you upgrade your app to use a new web
service, you must edit the information in your security review submission. To edit your submission information, click Edit
Review on the Offering tab when editing the listing. Apps are reviewed again periodically.

Mobile apps have additional security steps, and you’ll need to provide the following, depending on the phone type:

• iOS Mobile app — Provide the install link if the application is free and already published to the Appstore. If the application
is not yet approved or is not free, please either provide an ad-hoc installation (contact us for device UDIDs), or a Testflight
link for the app. (no UDID required). More information about Testflight is available at: https://testflightapp.com/. If
credentials other than the Salesforce account login, or related external application credentials are required or optional for
the mobile application, please provide them as well. If sample data is required for the application to function, please include
a logical set of sample data.

• Android app — Provide the .APK for the android application and the target device. If credentials other than the Salesforce
account login, or related external application credentials are required or optional for the mobile application, please provide
them as well. If sample data is required for the application to function, please include a logical set of sample data.

295

The AppExchange Security ReviewDistributing Mobile AppExchange Apps

https://testflightapp.com/

Index

A

About 4
Account Editor sample 240
AccountWatcher class 149
Android

FileRequests methods 153
installing sample apps 24
native classes 148
push notifications 249
push notifications, code modifications 250
request queue 182
RestClient class 152
RestRequest class 152
sample apps 25
tutorial 164, 174–175
WrappedRestRequest class 155

Android development 140, 144
Android hybrid development 83
Android project 141
Android requirements 141
Android sample app 179
Android template app 162
Android template app, deep dive 162
Android, native development 145
Apex controller 97
Apex REST resources, using 216
API access, granting to community users 258
API endpoints

custom 214
AppDelegate class 106
AppExchange 292–294
Application flow, iOS 105
application structure, Android 145
Audience 4
authentication

Force.com Sites
291

and portal authentication 291
portal 291
portal authentication 291

Authentication 278
Authentication flow 279
authentication providers 262
Authentication providers

Facebook 263–265
Google 269
Janrain 263–264
OpenID Connect 269
PayPal 269
Salesforce 263–264, 267

Authorization 290

B

Backbone framework 200
Base64 encoding 151
BLOBs 197
Book version 5
Browsers

limited support 14
recommendations 14
requirements 14
settings 14
supported versions 14

C

caching data 186
caching, offline 204
Callback URL 18
Client-side detection 9
ClientManager class 151, 159
com.salesforce.androidsdk.rest package 159
Comments and suggestions 5
communities

add profiles 272
API Enabled permission 271
configuration 271
configure for external authentication 275–276
create a community 272
create a login URL 272
create new contact and user 272
creating a Facebook app for external authentication 274
Enable Chatter permission 271
external authentication 262
external authentication example 274–276
external authentication provider 274

Facebook app
274

example of creating for external authentication 274
login endpoint 258
Salesforce Auth. Provider 274–276
testing 273
tutorial 271–273

Communities
branding 259
login 260

communities, configuring for Mobile SDK apps 256, 258
Communities, configuring for Mobile SDK apps 255–257
communities, granting API access to users 258
community request parameter 263
Comparison of mobile and PC 1
connected app

configuring for Android GCM push notifications 249
configuring for Apple push notifications 251

connected app, creating 18

296

Index

Connected apps 278, 290
Consumer key 18
Container 82
create_native script 145
Cross-device strategy 9
custom endpoints, using 214

D

data types
date representation 188
SmartStore 187–188

Delete soups 189–190, 194–195
designated initializer 131
Detail page 93
Developer Edition

vs. sandbox 12
Developer.force.com 14
Developing HTML apps 30
Developing HTML5 apps 31, 80
Development 13
Development requirements, Android 141
Development, Android 140, 144
Development, hybrid 82, 95
Distributing apps 292
downloading files 181

E

encoding, Base64 151
Encryptor class 151
endpoint, custom 214
Enterprise identity 2–3
Events

Refresh token revocation 288–289
external authentication

using with communities 262
external objects, using 219

F

Feedback 5
file requests, downloading 181
file requests, managing 180–183, 185
FileRequests methods 153
Files

JavaScript 83
files, uploading 181
Flow 279–281
Force.com 2
Force.com for Touch 3
Force.com, mobile services in 2
Force.RemoteObject class 214
Force.RemoteObjectCollection class 214
ForcePlugin class 156

G

Geolocation 2–3
Getting Started 17
GitHub 23
Glossary 279

H

HTML5
Getting Started 31
Mobile UI Elements 72
Mobile UI Elements sample app 75
using with JavaScript 31

HTML5 development 7, 9, 16
HTML5 development tools 31
Hybrid Android development 83
Hybrid applications

JavaScript files 83
Javascript library compatibility 95
Versioning 95

Hybrid development 7, 9, 16, 82, 84, 90, 93, 95
Hybrid guidelines 95
Hybrid iOS sample 83
Hybrid quick start 84
Hybrid sample app 85

I

Identity 3
Identity services 2–3
Identity URLs 282
installation, Mobile SDK 20
installing sample apps

Android 24
iOS 25–26

Installing the SDK 21
interface

KeyInterface 149
Inventory 90, 93
iOS

file requests 183
installing sample apps 25–26
push notifications 251
push notifications, code modifications 252
request queue 184
SFRestDelegate protocol 111
using SFRestRequest methods 114
view controllers 107

iOS application, creating 102
iOS apps

memory management 105
SFRestAPI 111

iOS architecture 102, 141
iOS development 101
iOS Hybrid sample app 83

297

Index

iOS native app, developing 104
iOS native apps

AppDelegate class 106
iOS sample app 104, 139
iOS Xcode template 104
IP ranges 290
ISV 293–294

J

JavaScript
using with HTML5 31

Javascript library compatiblity 95
Javascript library version 97
JavaScript, files 83

K

KeyInterface interface 149

L

List page 90
localStorage 197
Location services 2–3
login and passcodes, iOS 105
LoginActivity class 155

M

MainActivity class 163
managing file download requests 181
managing file requests

iOS 183
Manifest, TemplateApp 164
memory management, iOS apps 105
Mobile Conatiner 2–3
Mobile container 82
Mobile Container 102
Mobile development 6
Mobile Development 102
Mobile inventory app 90, 93
Mobile policies 290
Mobile policy 2–3
Mobile SDK 2–3
Mobile SDK installation

node.js 20
Mobile SDK packages 20
Mobile SDK Repository 23
Mobile UI Elements

sample app 75

N

native Android classes 148
Native Android development 145

Native Android UI classes 155
Native Android utility classes 155
native API packages, Android 147
Native apps

Android 288
Native development 7, 9, 16
Native iOS application 102
Native iOS architecture 102, 141
Native iOS development 101
Native iOS project template 104
node.js

installing 20
npm 20

O

OAuth
custom login host 287

OAuth2 278–279
offline caching 204, 207
offline management 186
Offline storage 187–188
Online documentation 4

P

Parameters, scope 281
Partner Program 293–294
PasscodeManager class 150
passcodes, using 156
PIN protection 290
Preface 1
Prerequisites 13
Printed date 5
project template, Android 162
Project, Android 141
push notifications

Android 249
Android, code modifications 250
iOS 251
iOS, code modifications 252
using 249

Q

Queries, Smart SQL 193
Querying a soup 189–190, 194–195
querySpec 189–190, 194–195
Quick start, hybrid 84

R

refresh token 98
Refresh token

Revocation 288–289
Refresh token flow 281

298

Index

Refresh token revocation 288
Refresh token revocation events 288–289
registerSoup 189–190, 194–195
RegistrationHandler class

extending for Auth. Provider 276
Releases 23
Remote access 279
Remote access application 18
RemoteObject class 214
RemoteObjectCollection class 214
Request parameters

community 263
scope 264

request queue, managing 182
request queue, managing, iOS 184
resource handling, Android native apps 157
Responsive design 9
REST API

supported operations 109
REST APIs 109
REST APIs, using 159
REST request 113
REST requests

files 180–183, 185
REST requests, iOS 113
RestAPIExplorer 139
RestClient class 151–152, 159
RestRequest class 152, 159
RestResponse class 159
Restricting user access 290
Revoking tokens 288
RootViewController class 108

S

Salesforce Auth. Provider
Apex class 276

Salesforce Mobile SDK 3
Salesforce Platform Mobile Services 2
Salesforce1 development

Salesforce1 vs. custom apps 4
Salesforce1 Platform 3
SalesforceActivity class 151
SalesforceSDKManager class 148
SalesforceSDKManager.shouldLogoutWhenTokenRevoked() method

288
SAML

authentication providers 263–265, 267, 269
Sample app, Android 179
Sample app, iOS 139
sample apps

Android 24–25
iOS 25–26
SmartSync 232

Sample hybrid app 85
Sample iOS app 104

sandbox org 12
Scope parameters 281
scope request parameter 264
SDK prerequisites 13
SDK version 97
SDKLibController 97
Security 278
Security review 294
Send feedback 5
Server-side detection 9
session management 98
SFRestAPI (Blocks) category, iOS 115
SFRestAPI (Files) category, iOS 118
SFRestAPI (QueryBuilder) category 116
SFRestAPI interface, iOS 111
SFRestDelegate protocol, iOS 111
SFRestRequest class, iOS

iOS
114

SFRestRequest class 114
SFRestRequest methods, using 114
shouldLogoutWhenTokenRevoked() method 288
Sign up 14
Single sign-on

authentication providers 262
Smart SQL 187, 193
SmartStore

about 187
adding to existing Android apps 188
data types 187
date representation 188
enabling in hybrid apps 188
soups 187

SmartStore extensions 197
SmartStore functions 189–190, 194–195
SmartSync

conflict detection 210, 212
JavaScript 203
model collections 201–202
model objects 201
models 201
offline caching 204
offline caching, implementing 206
tutorial 198, 200, 220–221, 223–228
User and Group Search sample 235
User Search sample 237
using in JavaScript 203

SmartSync Data Framework 186
SmartSync sample apps 232
SmartSync samples

Account Editor 240
soups 187
Soups 189–190, 194–195
Source code 23
Store 292–293
StoreCache 187, 207

299

Index

storing files 197
supported operations, REST API 109

T

Template app, Android 162
template project, Android 162
TemplateApp sample project 162
TemplateApp, manifest 164
Terminology 279
Tokens, revoking 288
tutorial

Android 174–175
conflict detection 212
SmartSync 198, 200, 220–221, 223–228
SmartSync, setup 220

tutorials
Android 164, 173, 177
iOS 131, 133

Tutorials 31, 37, 45, 49, 56, 58, 61, 64, 66–68, 70–71, 119–123,
125–127, 129, 139, 164, 166–169, 171, 173, 179

U

UI classes (Android native) 151
UI classes, native Android 155

Uninstalling Mobile SDK npm packages 22
UpgradeManager class 155
uploading files 181
upsertSoupEntries 189–190, 194–195
URLs, indentity 282
User-agent flow 280
Utility classes, native Android 155

V

Versioning 95
Versions 5
view controllers, iOS 107

W

Warehouse schema 90, 93
What’s New 26–28
When to use Mobile SDK 4
When to use Salesforce1 4
WrappedRestRequest class 155

X

Xcode project template 104

300

Index

	Preface
	Salesforce Platform Mobile Services
	Mobile Services in Force.com
	Salesforce Mobile SDK
	Identity

	Salesforce1 Platform
	When to Use Salesforce1 Platform vs. Creating a Custom App
	About This Book
	Version
	Sending Feedback

	Introduction to Mobile Development
	About Native, HTML5, and Hybrid Development
	Multi-Device Strategy
	Developer Edition or Sandbox Environment?
	Development Prerequisites
	Sign Up for Force.com

	Supported Browsers
	Enough Talk; I’m Ready

	Getting Started
	Creating a Connected App
	Create a Connected App

	Installing Mobile SDK
	Mobile SDK npm Packages
	Do This First: Install Node.js and npm
	iOS Installation
	Android Installation
	Uninstalling Mobile SDK npm Packages

	Mobile SDK GitHub Repository

	Mobile SDK Sample Apps
	Installing the Sample Apps
	Installing Sample Apps for Android
	Android Sample Apps

	Installing Sample Apps for iOS
	iOS Sample Apps

	What's New
	What's New in Mobile SDK 2.0
	What's New in Mobile SDK 2.1
	HTML5 Improvements in Visualforce (Winter ’14 Release)

	HTML5 and Hybrid Development
	Getting Started
	Using HTML5 and JavaScript
	HTML5 Development Requirements

	HTML5 Development Tools
	Mobile Design Templates
	HTML5 Mobile Templates Sample App
	Using Mobile Design Templates in Visualforce
	Data Binding with Mobile Templates
	Using JavaScript Remoting to Query Contact Records
	Using Underscore to Generate the Template Markup
	Customizing Look and Feel
	List View Templates
	Picture
	Collapsible
	Standard
	Tabbed
	Carousel
	Timeline

	Detail View Templates
	Detail View 1
	Detail View 2
	Detail View 3

	Data Input Templates
	Standard Data Template
	Survey Data Template

	Map View Templates
	Map View 1
	Map View 2

	Calendar View Templates
	Day Calendar
	To-do Tasks

	Report and Dashboard Templates
	Gauge
	Donut
	Bar Chart
	Line Chart

	Miscellaneous Templates
	Settings Screen
	Splash Screen
	About Screen

	Mobile Packs
	jQuery Quick Start
	Install the jQuery Mobile Pack
	What’s In the Mobile Pack?
	Test the App
	Next Steps

	Angular.js Quick Start
	Install the Mobile Pack
	What’s In the Mobile Pack?
	Test the App
	Next Steps

	Backbone.js Quick Start
	Install the Mobile Pack
	What’s In the Mobile Pack?
	Test the App
	Next Steps

	Knockout Quick Start
	Install the Mobile Pack
	What’s In the Mobile Pack?
	Test the App
	Next Steps

	Mobile UI Elements
	Using the Camera in HTML5: Mobile UI Elements Sample App

	Delivering HTML5 Content With Visualforce
	Accessing Salesforce Data: Controllers vs. APIs
	Introduction to Hybrid Development
	iOS Hybrid Development
	Android Hybrid Development
	JavaScript Files for Hybrid Applications

	Hybrid Apps Quick Start
	Running the Sample Hybrid App
	How the Sample App Works

	Create a Mobile Page to List Information
	Create a Mobile Page for Detailed Information

	Guidelines and Tips for Hybrid Apps
	Versioning and Javascript Library Compatibility
	Example: Serving the Appropriate Javascript Libraries
	Managing Sessions in Hybrid Applications

	Native iOS Development
	iOS Native Quick Start
	Native iOS Requirements
	Creating an iOS Project
	Running the Xcode Project Template App

	Developing a Native iOS App
	About Login and Passcodes
	About Memory Management
	Overview of Application Flow
	AppDelegate Class
	About View Controllers
	RootViewController Class
	About Salesforce REST APIs
	Supported Operations
	SFRestAPI Interface
	SFRestDelegate Protocol
	Creating REST Requests
	Sending a REST Request
	SFRestRequest Class
	Using SFRestRequest Methods
	SFRestAPI (Blocks) Category
	SFRestAPI (QueryBuilder) Category
	SFRestAPI (Files) Category

	Tutorial: Creating a Native iOS Warehouse App
	Create a Native iOS App
	Step 1: Create a Connected App
	Step 2: Create a Native iOS Project
	Step 3: Run the New iOS App
	Step 4: Explore How the iOS App Works

	Customize the List Screen
	Step 1: Modify the Root View Controller
	Step 2: Create the App's Root View
	Step 3:Try Out the App

	Create the Detail Screen
	Step 1: Create the App's Detail View Controller
	Step 2: Set Up DetailViewController
	Step 3: Create the Designated Initializer
	Step 4: Establish Communication Between the View Controllers
	Step 5: Try Out the App

	iOS Native Sample Applications

	Native Android Development
	Android Native Quick Start
	Native Android Requirements
	Creating an Android Project
	Setting Up Sample Projects in Eclipse
	Android Project Files

	Developing a Native Android App
	The create_native Script
	Android Application Structure
	Native API Packages
	Overview of Native Classes
	SalesforceSDKManager Class
	KeyInterface Interface
	AccountWatcher Class
	PasscodeManager Class
	Encryptor class
	SalesforceActivity, SalesforceListActivity, and SalesforceExpandableListActivity Classes
	UI Classes
	ClientManager Class
	RestClient Class
	RestRequest Class
	FileRequests Class
	WrappedRestRequest Class
	LoginActivity Class
	Other UI Classes
	UpgradeManager Class
	Utility Classes
	ForcePlugin Class

	Using Passcodes
	Resource Handling
	Using REST APIs
	Android Template App: Deep Dive
	TemplateApp Class
	MainActivity Class
	TemplateApp Manifest

	Tutorial: Creating a Native Android Warehouse Application
	Prerequisites
	Create a Native Android App
	Step 1: Create a Connected App
	Step 2: Create a Native Android Project
	Step 3: Run the New Android App
	Step 4: Explore How the Android App Works

	Customize the List Screen
	Step 1: Remove Existing Controls
	Step 2: Update the SOQL Query
	Step 3:Try Out the App

	Create the Detail Screen
	Step 1: Create the Detail Screen
	Step 2: Create the DetailActivity Class
	Step 3: Customize the DetailActivity Class
	Step 4: Link the Two Activities, Part 1: Create a Data Class
	Step 5: Link the Two Activities, Part 2: Implement a List Item Click Handler
	Step 6: Implement the Update Button
	Step 7: Try Out the App

	Android Native Sample Applications

	Files and Networking
	Architecture
	Downloading Files and Managing Sharing
	Uploading Files
	Encryption and Caching
	Using Files in Android Apps
	Managing the Request Queue

	Using Files in iOS Native Apps
	Managing Requests

	Using Files in Hybrid Apps

	Offline Management
	Securely Storing Data Offline
	About SmartStore
	SmartStore Soups
	SmartStore Data Types
	Date Representation

	Enabling SmartStore in Hybrid Apps
	Adding SmartStore to Existing Android Apps
	Registering a Soup
	Retrieving Data From a Soup
	Smart SQL Queries
	Working With Cursors
	Manipulating Data
	Using the Mock SmartStore
	NativeSqlAggregator Sample App: Using SmartStore in Native Apps

	Using SmartSync to Access Salesforce Objects
	About Backbone Technology
	Models and Model Collections
	Models
	Model Collections

	Using the SmartSync Data Framework in JavaScript
	Offline Caching
	Implementing Offline Caching
	Using StoreCache For Offline Caching

	Conflict Detection
	Mini-Tutorial: Conflict Detection

	Accessing Custom API Endpoints
	Force.RemoteObject Class
	Force.RemoteObjectCollection Class
	Using Apex REST Resources
	Using External Objects (Beta)

	Tutorial: Creating a SmartSync Application
	Set Up Your Project
	Edit the Application HTML File
	Create a SmartSync Model and a Collection
	Create a Template
	Add the Search View
	Add the Search Result List View
	Add the Search Result List Item View
	Router

	SmartSync Sample Apps
	User and Group Search Sample
	User Search Sample
	Account Editor Sample

	Push Notifications and Mobile SDK
	About Push Notifications
	Using Push Notifications in Android
	Configure a Connected App For GCM (Android)
	Code Modifications (Android)

	Using Push Notifications in iOS
	Configure a Connected App for APNS (iOS)
	Code Modifications (iOS)

	Using Communities With Mobile SDK Apps
	Communities and Mobile SDK Apps
	Set Up an API-Enabled Profile
	Set Up a Permission Set
	Grant API Access to Users
	Configure the Login Endpoint
	Branding Your Community
	Customizing Communities Login
	Using External Authentication With Communities
	About External Authentication Providers
	Using the Community URL Parameter
	Using the Scope Parameter
	Configuring a Facebook Authentication Provider
	Configuring a Salesforce Authentication Provider
	Configuring an OpenID Connect Authentication Provider

	Example: Configure a Community For Mobile SDK App Access
	Add Permissions to a Profile
	Create a Community
	Add the API User Profile To Your Community
	Create a New Contact and User
	Test Your New Community Login

	Example: Configure a Community For Facebook Authentication
	Create a Facebook App
	Define a Salesforce Auth. Provider
	Configure Your Facebook App
	Customize the Auth. Provider Apex Class
	Configure Your Salesforce Community

	Authentication, Security, and Identity in Mobile Apps
	OAuth Terminology
	OAuth2 Authentication Flow
	OAuth 2.0 User-Agent Flow
	OAuth 2.0 Refresh Token Flow
	Scope Parameter Values
	Using Identity URLs
	Setting a Custom Login Server
	Revoking OAuth Tokens
	Handling Refresh Token Revocation in Android Native Apps
	Token Revocation Events
	Token Revocation: Passive Handling
	Token Revocation: Active Handling

	Connected Apps
	About PIN Security

	Portal Authentication Using OAuth 2.0 and Force.com Sites

	Distributing Mobile AppExchange Apps
	AppExchange for Mobile: Enterprise Mobile Apps
	Joining the AppExchange Partner Program
	Get a Publishing Org
	Create a Provider Profile
	The AppExchange Security Review

	Index

