
Force.com Workbook: Summer '13

Force.com Workbook

Last updated: August 30, 2013

© Copyright 2000–2013 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

About the Force.com Workbook...1

Tutorial #1: Creating a Warehouse App..4
Step 1: Create a Warehouse Custom App...4
Step 2: Add Description, Price, and Total Inventory Fields...7
Step 3: Create a Merchandise Record...9
Summary...10

Tutorial #2: Adding Relationships..11
Step 1: Create an Invoice Statement Custom Object..11
Step 2: Create a Line Item Object...14
Step 3: Relate the Objects...15
Step 4: Add Invoice Statements to the App..16
Step 5: Create an Invoice Record..17
Summary...18

Tutorial #3: Using Formulas and Validation Rules...19
Step 1: Calculate a Value for Each Line Item...19
Step 2: Calculate a Value for the Invoice Statement With a Roll-Up Summary Field..20
Step 3: Check Inventory With a Validation Rule..21
Step 4: Test the Validation Rule...23
Step 5: Improve the Validation Rule...23
Summary...24

Tutorial #4: Automating Processes Using Workflow..25
Step 1: Populate the Line Item Price Using a Workflow Rule..25
Step 2: Update Total Inventory When an Order is Placed..27
Step 3: Test the Workflow Rules..29
Summary...30

Tutorial #5: Creating an Approval Process...31
Step 1: Create an Email Template..31
Step 2: Create an Approval Process...32
Step 3: Create a Custom Profile..34
Step 4: Create a User...35
Step 5: Test the Approval Process...36
Summary...38

Tutorial #6: Creating Reports and Dashboards..39
Step 1: Create a Tabular Report..39
Step 2: Create a Summary Report...41
Step 3: Create a Matrix Report...44

i

Table of Contents

Step 4: Create a Dashboard...46
Summary...48

Tutorial #7: Adding Programmatic Logic with Apex..49
Step 1: Create an Apex Trigger Definition...49
Step 2: Define a List Variable...51
Step 3: Iterate Through the List and Modify Price...51
Step 4: Test the Trigger..53
Summary...53

Tutorial #8: Adding Tests to Your App..54
Step 1: Create an Apex Test Class..54
Step 2: Add Test Methods to the Class..55
Step 3: Write Code to Execute the Trigger..56
Step 4: Execute the Test..57
Step 5: View Code Coverage and Improve Tests..58
Summary...60

Tutorial #9: Building a Custom User Interface Using Visualforce..61
Step 1: Enable Visualforce Development Mode..61
Step 2: Create a Visualforce Page..62
Step 3: Add a Stylesheet Static Resource..63
Step 4: Add a Controller to the Page..65
Step 5: Display the Inventory Count Sheet as a Visualforce Page...66
Step 6: Add Inline Editing Support..67
Summary...69

ii

Table of Contents

About the Force.com Workbook
The Force.com Workbook shows you how to create an application (or “app”) in a series of tutorials. While you can use the
Force.com platform to build virtually any kind of app, most apps share certain characteristics such as:

• A database to model the information in the app

• Business logic and workflow to carry out particular tasks under certain conditions

• A user interface to expose data and functionality to those logged in to your app

• A public website to show data and functionality on the Web

The tutorials are centered around building a very simple warehouse management system. You'll start developing the app from
the bottom up; that is, you'll first build a database model for keeping track of merchandise. You'll continue by adding business
logic: validation rules to ensure that there is enough stock, workflow to update inventory when something is sold, approvals
to send email notifications for large invoice values, and trigger logic to update the prices in open invoices. Once the database
and business logic are complete, you'll create a user interface to display a product inventory to staff, a public website to display
a product catalog, and then the start of a simple store front.

Each of the tutorials builds on the previous tutorial to advance the app's development and simultaneously showcase a particular
feature of the platform. It may sound like a lot, but it's all quite easy—as you'll soon see.

Intended Audience
This workbook is intended for developers new to the Force.com platform, and Salesforce admins who want to delve more
deeply into app development using coding. If you're an admin just getting started with Force.com, see the Force.com Platform
Fundamentals for point-and-click app development.

Supported Browsers

CommentsBrowser

If you use Internet Explorer, we recommend using the latest version. Apply
all Microsoft software updates. Note these restrictions.

Microsoft® Internet Explorer® versions 7, 8,
9, and 10

• The Compatibility View feature in Internet Explorer isn’t supported.
• The Metro version of Internet Explorer 10 isn’t supported.
• Internet Explorer 7 and 8 aren’t supported for the Developer Console.
• Internet Explorer 10 isn’t supported for the Service Cloud console.
• Internet Explorer 7 isn’t supported for Open CTI.
• Internet Explorer 7 isn’t supported for Salesforce CRM Call Center built

with CTI Toolkit version 4.0 or higher.
• Internet Explorer 7 isn’t supported for Force.com Canvas.

1

About the Force.com Workbook

http://www.salesforce.com/us/developer/docs/fundamentals/index.htm
http://www.salesforce.com/us/developer/docs/fundamentals/index.htm

CommentsBrowser

For configuration recommendations, see “Configuring Internet Explorer” in
the Salesforce Help.

Salesforce.com makes every effort to test and support the most recent version
of Firefox. For configuration recommendations, see “Configuring Firefox” in
the Salesforce Help.

Mozilla® Firefox®, most recent stable version

Google Chrome applies updates automatically; salesforce.com makes every
effort to test and support the most recent version. There are no configuration

Google Chrome™, most recent stable version

recommendations for Chrome. Chrome isn’t supported for the Console tab
or the Add Google Doc to Salesforce browser button.

Supported plug-in for Internet Explorer 6 and 7 only. Google Chrome Frame
applies updates automatically; Salesforce supports only the most recent version.

Google Chrome Frame™ plug-in for
Microsoft® Internet Explorer® 6 and 7

For configuration recommendations, see “Installing the Google Chrome
Frame™ Plug-In for Microsoft® Internet Explorer®” in the Salesforce Help.
Chrome Frame plug-in isn’t supported for the Service Cloud console or
Forecasts.

There are no configuration recommendations for Safari. Apple Safari on iOS
isn’t supported.

Apple® Safari® versions 5.x and 6.x on Mac
OS X

• Safari isn’t supported for the Service Cloud console.
• Safari isn’t supported for Salesforce CRM Call Center built with CTI

Toolkit versions below 4.0.

Before You Begin
This workbook is designed to be used with a Developer Edition organization, or DE org for short. DE orgs are multipurpose
environments with all of the features and permissions that allow you to develop, package, test, and install apps.

1. In your browser go to developer.force.com/join.
2. Fill in the fields about you and your company.
3. In the Email Address field, make sure to use a public address you can easily check from a Web browser.
4. Enter a unique Username. Note that this field is also in the form of an email address, but it does not have to be the same

as your email address, and in fact, it's usually better if they aren't the same. Your username is your login and your identity
on developer.force.com, and so you're often better served by choosing a username that describes the work you're
doing, such as develop@workbook.org, or that describes you, such as firstname@lastname.com.

5. Read and then select the checkbox for the Master Subscription Agreement.
6. Enter the Captcha words shown and click Submit Registration.
7. In a moment you'll receive an email with a login link. Click the link and change your password.

Note: One tutorial in this workbook requires one Salesforce user license for creating a new user. If you’ve signed up
for a new DE org, you should be all set. However, if you are using an existing organization where you’ve already
created some users, make sure that you have one Salesforce user license available.

To find out what user licences are available for your organization, from Setup, click Company Profile > Company
Information and check the User Licenses section. If no Salesforce user license is available, you can create a new
DE org. Alternatively, you can use the Salesforce Platform or the Force.com — Free user licenses when creating the
new user and custom profile.

2

About the Force.com Workbook

http://developer.force.com/join

Tell Me More....
At the end of each step there is an optional Tell Me More section. If you like to do things quickly, move on to the next step.
However, if you're a smell-the-roses type, there's a lot of useful information here and some additional steps to flesh out your
app.

• To learn more about Force.com and to access a rich set of resources, visit Developer Force at developer.force.com.
• You can find the latest version of this Workbook and additional tutorials that extend the app at

developer.force.com/workbook.

3

About the Force.com Workbook

http://developer.force.com
http://developer.force.com/workbook

Tutorial #1: Creating a Warehouse App
Level: Beginner; Duration: 20-30 minutes

At the heart of this app is what you want to sell: merchandise. So you'll begin by creating a data object that keeps track of all
the elements of a particular merchandise item, such as its name, description, price, and so on. On the Force.com platform,
these data objects are called custom objects. If you are familiar with databases, you can think of them as a table.

An object comes with standard fields, and screens that allow you to list, view and edit information about the object. But you
can also add your own fields to track or list just about anything you can think of. When you complete this tutorial, you will
have a working app with its own menu, a tab, and a custom object that tracks the name, description, and price of all your
merchandise, as well as screens that allow you to view and edit all of this information.

Step 1: Create a Warehouse Custom App
An app is a set of tabs. In this step you'll create a Warehouse app, including a Merchandise object and tab. Later, you'll add
fields to the Merchandise object, as well as additional objects and tabs to the Warehouse app.

1. Launch your browser and go to https://login.salesforce.com.
2. Enter your username (in the form of an email address) and password.
3. Depending on your organization settings, you’ll access the Setup area in one of two ways. Look at the header at the top of

the page.

• If you see Setup in the header, click it.

• If you don’t see Setup in the header, click your name, then select Setup.

4

Tutorial #1: Creating a Warehouse App

https://login.salesforce.com

4. Once you’re in the Setup area, you’ll see a menu on the left side of the page. Click Create > Apps.
5. Click Quick Start.

6. In the Force.com Quick Start overlay, enter the app and object details.

• For the App Label, type Warehouse
• For the Plural Label, type Merchandise.
• For the Singular Label, type Merchandise.

5

Tutorial #1: Creating a Warehouse App

The preview pane shows what your app and tab will look like.

7. Click Create to finish creating your new object.
8. Click Go To My App to see your new app.

When you click Go To My App, the list view page for the Merchandise custom object opens. You can take a short tour, which
shows the features of the app as well as how to continue building it. Take a look at the following image to familiarize yourself
with the Warehouse custom app.

1. Force.com app menu—Shows the apps that are available to you. The app you just created is selected.
2. Tabs—Provide an easy way to find and organize objects and records. In the Merchandise tab, which is open, you can

create, view, and edit records. The other tabs are the standard feature tabs that are included with every app.

6

Tutorial #1: Creating a Warehouse App

3. Create records—You can click New to add records to your custom object. If you click this button now, you'll see only one
data entry field in the object, but you'll create more in the next step.

4. Force.com Quick Access menu—Lets you quickly jump to relevant app customization features. It's available from any

object list view page and record detail page, but only for users with the “Customize Application” permission. Click to
show or hide this menu.

Tell Me More....
The tabs in an app don't have to be related to each other. In fact, you can modify custom apps to group all of your most
frequently used tabs together in one place. For example, if you refer to the Accounts tab a lot, you can add that to the Warehouse
app. You can switch between apps you have created, bought, or installed by selecting them from the menu.

Step 2: Add Description, Price, and Total Inventory Fields
A merchandise object should have fields that are used for tracking various information, such as a description, how much
individual units cost, and how many units are in stock. You can add custom fields to list or track just about anything you can
think of.

Follow these steps to create custom fields for the description, price, and inventory.

1. Create the Description field.

a. From the Merchandise list view page, click to open the quick access menu (if it isn't already open).
b. Hover over View Fields and click New to launch the New Custom Field wizard.
c. For Data Type, select Text Area and click Next.

d. Fill in the custom field details.

• For the Field Label, type Description and press the Tab key.
• The Field Name field should already be populated with the field name: Description.
• Select the Required checkbox. One of your business rules says that you can't create new merchandise without

providing a description. Making Description a required field fulfills that business rule.
• Optionally, fill in the Description and Help Text fields. It's a good idea to fill these in, but for the sake of

brevity we leave these out in the remainder of the workbook.
• Don't fill in the Default Value field.

7

Tutorial #1: Creating a Warehouse App

e. Click Next, accept the defaults, and click Next again.
f. Click Save & New to save the Description field and return to the first step of the wizard.

2. Create the Price field.

a. For Data Type, select Currency, and click Next.
b. Fill in the custom field details:

• For the Field Label, enter Price.
• For the Length enter 16 and for Decimal Places enter 2.
• Check the Required checkbox.

c. Leave the defaults for the remaining fields, and click Next.
d. In the next step, accept the defaults, and click Next.
e. In the next step, click Save & New to save the Price field and to return to the first step of the wizard.

Note: This app has only one Price field, and we'll use that for both the stock price and retail price. However, you
can make another Stock Price field now if you want to, just follow the same steps above and use the Stock Price
name.

3. Create the Total Inventory field.

a. For Data Type, select Number and click Next.
b. Fill in the custom field details:

• For the Field Label, enter Total Inventory.
• Select the Required checkbox.

c. Accept the defaults for the remaining fields, and click Next.
d. In the next step, accept the defaults, and click Next.
e. Click Save to create the Inventory field and to go to the Merchandise Custom Object page.

8

Tutorial #1: Creating a Warehouse App

Take a look at the following image to familiarize yourself with the Merchandise custom object.

1. Merchandise detail page—This page shows you everything you need to know about your Merchandise custom object.
Soon you'll add relationships, validation rules, and other neat features to this object.

2. API name—When you created the Merchandise object, you didn't specify an API name, but one was generated for you.
This name is how the object is referenced programmatically. All custom objects end in __c, which differentiates them
from standard objects.

3. Standard fields—Some fields are generated automatically; these are standard fields. For example, the Merchandise object
has a standard field for Owner, which means it automatically tracks who created each record.

4. Custom fields—Includes the fields you just created in this step. Like custom objects, custom fields have API names that
end in __c.

At this point we have a nice representation of our warehouse items: they each have a name, a description, and a price. We also
recorded the total number of items (Total Inventory) that we have for each piece of merchandise.

Tell Me More....
Why do you need an API name as well as the object and field label? A label is what the user sees, so it should be easy to read
and may contain spaces. The API name is used internally in code, and can't contain spaces or illegal characters. For example,
a field labeled “Customer ph# :” would be named Customer_ph in the code (the system replaces spaces with underscores and
removes the # and : characters).

Step 3: Create a Merchandise Record
At this point you've created a functioning app. When you define an object on Force.com, the platform automatically generates
a user interface that lets you create, read, update, and delete records. Now check to see how your new app works.

1. Select the Warehouse app from the Force.com app menu.
2. Click the Merchandise tab and then click New to create a new product.
3. Fill in all the fields.

• In the Merchandise Name field enter Wee Jet.

9

Tutorial #1: Creating a Warehouse App

• For Description field enter A small plane.
• In the Price field enter 9.99.
• In the Total Inventory field enter 2000.

4. Click Save.

Tell Me More....
Your warehouse will work just fine with only one product, but it would be more realistic if you had more merchandise. Go
ahead and create some more. Tip: click Clone on this record to create another similar one, and then use Save and New to
create more new records rapidly.

Summary
Congratulations! You have just built a Warehouse app that keeps track of products you have in stock. As you can see, it's easy
to use the Force.com quick start overlay to create a basic app and the Force.com quick access menu and wizards to extend your
app. Although the app is far from complete, it already has a lot of built-in functionality, such as the ability to view and create
merchandise. The next step is to use an invoice to track how your merchandise moves in and out of your warehouse.

10

Tutorial #1: Creating a Warehouse App

Tutorial #2: Adding Relationships
Level: Beginner; Duration: 20-30 minutes

In this tutorial, you create two new objects, an invoice statement and a line item, and associate them to each other in a
master-detail relationship. This relationship lets you compose multiple line items and associate them with a single invoice
statement. Each line item is an indication of how many units of a particular merchandise item was sold, so you'll also add a
relationship between the merchandise and line item objects.

If you're familiar with relational databases, you can think of relationships as foreign keys, the difference being that Force.com
takes care of the underlying implementation for you, and all you need to do here is establish how the objects are related.

Prerequisites
Warehouse App

You first need to create the basic Warehouse app as described in Tutorial #1: Creating a Warehouse App on page 4.

Step 1: Create an Invoice Statement Custom Object
An invoice statement is required to move inventory into or out of the warehouse. In this step, you create an invoice statement
with a unique number, a status, and a description.

1. From Setup, click Create > Objects.
2. Click New Custom Object.

Tip: If you're in the Merchandise tab, click to open the quick access menu. Then hover over View Object
and click New.

3. Fill in the custom object definition.

• In the Label field , type Invoice Statement.
• In the Plural Label field, type Invoice Statements.
• Select Starts with vowel sound.
• In the Record Name field , type Invoice Number.
• In the Data Type field , select Auto Number.
• In the Display Format field, type INV-{0000}.
• In the Starting Number field, type 1.

11

Tutorial #2: Adding Relationships

4. In the Optional Features section, select Allow Reports (you'll create reports in a later tutorial).
5. Click Save.
6. Add a Status field.

a. Scroll down to the Custom Fields & Relationships related list and click New.
b. For Data Type, select Picklist and click Next.
c. Fill in the custom field details.

• In the Field Label field , type Status.
• Type the following picklist values in the box provided, with each entry on its own line.

Open
Closed
Negotiating
Pending

• Select the checkbox for Use first value as default value.

12

Tutorial #2: Adding Relationships

d. Click Next.
e. For field-level security, make sure Read Only is selected and then click Next.
f. Click Save & New.

7. Now create an optional Description field.

a. In the Data Type field, select Text Area and click Next.
b. In the Field Label and Field Name fields, enter Description.
c. Click Next, accept the defaults, and click Next again.
d. Click Save to go the detail page for the Invoice Statement object.

Your Invoice Statement object should now have two custom fields, as shown here.

Tell Me More....
Note how we set the invoice name data type to Auto Number, and also supplied a Display Format. The platform will now
automatically assign a number to each new unique record that is created, beginning with the starting number you specify.
When displayed, the format will look as follows: INV-0002.

13

Tutorial #2: Adding Relationships

Step 2: Create a Line Item Object
Each invoice is going to be made up of a number of invoice line items, which represent the number of Merchandise items
being sold at a particular price. You are first going to create the Line Item object, and then later relate it to the Invoice Statement
and Merchandise objects.

1. From Setup, click Create > Objects.
2. Click New Custom Object and fill in the custom object definition.

• In the Label field , enter Line Item.
• In the Plural Label field , enter Line Items.
• Change the Record Name to Line Item Number.
• Leave the Data Type field set to Text.

3. In the Optional Features section, select Allow Reports and click Save.
4. Add a read-only Unit Price field. The field is read-only because the value will be retrieved from the Merchandise object

in a later tutorial. We'll call it Unit Price so that we don't get confused with the Merchandise object Price field.

a. Scroll down to the Custom Fields & Relationships related list and click New.
b. In the Data Type field, select Currency and click Next.
c. Fill in the custom field details.

• In the Field Label field, enter Unit Price.
• In the Length field, enter 16, and for Decimal Places enter 2.

d. Click Next.
e. Select the top-level Read-Only checkbox to mark this selection for all profiles, click Next, and then click Save & New.

14

Tutorial #2: Adding Relationships

Note: If Read-Only is not available, you probably selected Required by mistake. Click Previous and deselect
Required.

5. Follow similar steps to add a Units Sold field.

a. In the Data Type field, select Number and click Next.
b. In the Field Label field, enter Units Sold and click Next.
c. Click Next, accepting the defaults.
d. Click Save to return to the detail page of the Line Item custom object.

Tell Me More....
At this point you've created three custom objects: Merchandise, Inventory Statement, and Line Item. On each of those objects
you created custom fields to represent text, numbers, and currency. All of those fields have something in common: the values
are provided by the user. You also created two custom fields that have system-generated values: the Status picklist, which
defaults to Open; and the Invoice_Number field, which is automatically assigned by the Auto-number data type. In the next
step you will create two more fields. Unlike the previous fields, these get their values from other objects.

Step 3: Relate the Objects
Now that you have all the objects representing the data model, you want to relate them to each other. The Line Item is related
to both an Invoice Statement (a statement is composed of a number of line items) and Merchandise (a line item takes its price
from the merchandise).

1. On the detail page of the Line Item object, scroll down to the Custom Fields & Relationships related list and click New.
2. In the Data Type field, select Master-Detail Relationship and click Next.
3. In the Related To field, select your Merchandise custom object and click Next.
4. Accept the defaults on the next three screens by clicking Next.
5. Deselect the checkbox next to Merchandise Layout so that Line Items don't appear on the Merchandise related list.
6. Click Save & New.
7. In the Data Type field, select Master-Detail Relationship and click Next.
8. In the Related To field, select your Invoice Statement custom object and click Next.
9. Accept the defaults on the following screens by clicking Next, and then click Save to return to the Inventory Item detail

screen.

Tell Me More....
You have just created two master-detail relationships ensuring that your Invoice Statement records are related to Invoice Line
Item records, and that the Invoice Line Items are related to Merchandise. Master-detail relationships also support roll-up
summary fields, allowing you to aggregate information about the child records. You'll use that feature in a later tutorial.

15

Tutorial #2: Adding Relationships

Step 4: Add Invoice Statements to the App
Tabs provide an easy way to find and organize objects and records. In this step you'll create a tab for the Invoice Statement
object and add it to your Warehouse app. This will expose the user interface that Force.com automatically generates for this
object.

1. Within the Setup area, click Create > Tabs.

You may notice that a tab for the Merchandise custom object already exists. This was automatically created when you
created the Warehouse app. If you don't like the default tab style that was assigned to the Merchandise tab, you can edit
it as well.

2. In the Custom Object Tabs related list, click New to launch the New Custom Tab wizard.
3. From the Object drop-down list, select Invoice Statement.
4. For the Tab Style, click the lookup button and select the Form icon.

5. Accept the remaining defaults, and click Next and then Next again.
6. On the Add to Custom Apps page, deselect all the checkboxes except Warehouse. This will add the Invoice Statements

tab to your Warehouse app.
7. Click Save to finish creating the tab.

As soon as you create the tab, you can see it at the top of the screen.

Tell Me More...
When you create a tab, you're not stuck with a standard set of icons and colors; you can choose your own color and custom
image by clicking Create your own style.

16

Tutorial #2: Adding Relationships

Step 5: Create an Invoice Record
As you saw in the previous tutorial, the platform automatically generates a user interface for the objects you create, so that you
can view, edit, delete, and update records. Because you also related the objects, the user interface provides a way of navigating
between related records as well.

1. Click the Invoice Statements tab.
2. Click New.
3. In the Description field, enter First Invoice and then click Save.

The detail page of your invoice statement should look like this.

Notice how the invoice was automatically assigned a number, and how the user interface displays an empty Line Items related
list below it. The Invoice Statement is linked to the Line Item via a master-detail field—that's how you created this relationship
and why there's a related list on the Invoice Statement detail page. Next you'll add a line item to the invoice.

1. Click New Line Item.
2. Fill in the fields.

• In the Line Item Number field enter 1.
• In the Unit Price field enter 10.
• In the Units Sold field, enter 4.
• For the Merchandise field, click the lookup button and select a product.

3. Click Save.

17

Tutorial #2: Adding Relationships

Tell Me More....
• In the Reports tutorial you'll find it's useful to have multiple invoices that contain different merchandise. You can create

more invoices now or later.
• You might be wondering why Line Item Number is a text field, when what you enter is a number. If line items are numbered,

why not make it an auto-number field, like Invoice Statements? The short answer is that it's easier to work with text when
we work with records, and this tutorial is supposed to be easy.

Summary
In this tutorial, you created relationships between the objects in your data model. The relationships work like foreign keys in
relational databases, yet they operate at a more abstract level, letting you concentrate on what matters (the relationships) instead
of the underlying implementation. The master-detail relationship allows you to aggregate information, and in the next tutorial
you'll see how to sum the price of each invoice line item into the invoice statement. The relationships also provide additional
benefits: you can navigate to the related records in a user interface and a query language. You'll learn about that later as well.

Now that you have built the basic app, you can add business logic with formulas and validation rules in Tutorial #3: Using
Formulas and Validation Rules on page 19.

18

Tutorial #2: Adding Relationships

Tutorial #3: Using Formulas and Validation Rules
Level: Beginner; Duration: 20-30 minutes

The Force.com platform lets you create formulas and field validation rules to help maintain and enhance the quality of the
data entered in your app. Both formula fields and field validation rules use built-in functions that allow you to automatically
manipulate your data, validate your data, and calculate other values based on your data. The functions you use in formula fields
and field validation rules are a lot like the functions you would use in a spreadsheet program, where you can reference values
in other cells of the spreadsheet, perform calculations, and return a result. However, with formula fields and validation rules,
you reference fields in your app's records.

In this tutorial, you will enhance the Warehouse app by adding a formula field to automatically calculate the total value for
each line item. You will also use this new line item value and a property of the master-detail relationships to automatically
total an invoice value. Finally, you will add a formula to perform an inventory check, ensuring that you can't create a line item
for more merchandise than you have in stock.

Prerequisites
Warehouse App

You first need to create the basic Warehouse app and add relationships, as described in Tutorial #2: Adding Relationships
on page 11.

Step 1: Calculate a Value for Each Line Item
In the first step of this tutorial, you will add a new calculated field called Value to the line item. This field will multiply the
number of items with the price and act as a total for each line item.

1. Navigate to the Line Item custom object page: from Setup, click Create > Objects > Line Item.
2. Scroll down to the Custom Fields & Relationships related list, and click New.
3. Choose Formula as the field type, and click Next.
4. In the Field Label and Field Name fields, enter Value.
5. In the Formula Return Type field, choose Currency.
6. Click Next.
7. In the Insert Merge Field drop-down list, select Unit_Price. You should now see Unit_Price__c in the text box.
8. Click the Insert Operator drop-down list and choose Multiply.
9. In the Insert Merge Field drop-down list, select Units Sold. You should now see Unit_Price__c * Units_Sold__c

in the text box.

19

Tutorial #3: Using Formulas and Validation Rules

10. Click Next, click Next again, and then click Save.

When you return to the detail page for the custom object, you can see there's a new field called Value.

Tell Me More....
The Formula field type is great for automatically deriving field values from other values, as you have done here. The formula
you entered was quite straightforward: a simple multiplication of two field values on the same record. There's also an Advanced
Formula tab, which allows you to do much more with these formulas.

Step 2: Calculate a Value for the Invoice Statement With a Roll-Up
Summary Field

Now that you have the total for each line item, it makes sense to add them all to get the invoice total. Because the line items
have a master-detail relationship with the invoice statement, we can use a roll-up summary field to calculate this value. Roll-up
summary is a special type of field that lets you aggregate information about related detail (child) objects. In this case, you want
to sum the value of each line item.

1. Navigate back to the Invoice Statement custom object page: from Setup, click Create > Objects > Invoice Statement.
2. Scroll down to the Custom Fields & Relationships related list, and click New.
3. Choose Roll-Up Summary as the data type, and click Next.
4. In the Field Label field, enter Invoice Value and click Next.
5. In the Summarized Object list choose Line Items.
6. For Roll Up Type field, choose Sum.
7. In the Field to Aggregate list choose Value.
8. Verify that your screen looks like the following and then click Next.

20

Tutorial #3: Using Formulas and Validation Rules

9. Click Next again and then click Save.

Tell Me More....
If you navigate back to an invoice statement record, you'll see your new roll-up summary field in action, displaying the total
value of all the invoice line items. If the field shows an hourglass, wait a few seconds and then refresh. You can test this new
functionality by adding a new line item.

Step 3: Check Inventory With a Validation Rule
The fields that you define in objects can have validation rules, written in the same formula language that you used to create
the formula field. The validation rules can be used to determine what range of input is valid, and to display a message to the
user if a field value is not valid. The error condition formulas should evaluate to true when you want to display a message to
the user.

1. Navigate back to the Line Item custom object page: from Setup, click Create > Objects > Line Item.
2. Scroll down to the Validation Rules related list, and click New.
3. In the Rule Name field, enter Order in stock.
4. In the Error Condition Formula area, click Insert Field to open the Insert Field popup window.

a. Select Line Item > in the first column.
b. Select Merchandise > in the second column.
c. Select Total Inventory in the third column.
d. Click Insert.
e. Type the less-than symbol < so that the formula looks like this:

Merchandise__r.Total_Inventory__c <

21

Tutorial #3: Using Formulas and Validation Rules

f. Click Insert Field again.
g. Select Line Item > in the first column.
h. Select Units Sold in the second column.
i. Click Insert and verify the code looks like the following.

Merchandise__r.Total_Inventory__c < Units_Sold__c

5. Click Check Syntax to make sure there are no errors. If you do find errors, fix them before proceeding.
6. In the Error Message field, enter You have ordered more items than we have in stock.
7. For the Error Location, select Field, then choose Units Sold from the drop-down list.

8. Click Save.

Tell Me More....
You can enter a formula directly into the Error Condition Formula area, but as you saw here, you can easily traverse the
available objects and find the components you need for the formula. Let's analyze the formula you created.

• Mechandise__r—Because the Merchandise object is related to the Line Item object, the platform automatically provides
a relationship field that lets you navigate from a Line Item record to a Merchandise record; that's what the Mechandise__r
is doing.

• Total_Inventory__c—This is the field you created to track the total amount of stock on a Merchandise record.
• Merchandise__r.Total_Inventory__c—This tells the system to retrieve the value of Total Inventory field on the

related Merchandise record.
• Units_Sold__c—This refers to the Units Sold field on the current (Line Item) record.

Putting it all together, the formula checks that the total inventory on the related merchandise record is less than the number
of units being sold. As indicated on the Error Condition Formula page, you need to provide a formula that is true if an error
should be displayed, and this is just what you want: it will only be true when the total inventory is less than the units sold.

22

Tutorial #3: Using Formulas and Validation Rules

Step 4: Test the Validation Rule
Now test the validation rule you created in Step 3.

1. Click on the Invoice Statements tab and select an existing invoice.
2. Scroll down to Line Items and click Edit next to one of the line items.
3. Modify the Units Sold value to a number larger than the amount in stock.
4. Click Save. You should see an error indicating that there are not enough items in stock. Click Cancel.

Step 5: Improve the Validation Rule
The logic in the validation formula is a little bit flawed! Imagine that you edit a record and decrease the number of units sold.
In this case, you shouldn't need to check inventory. Or if you increased the number of units sold, you should only need to
verify that the number of additional items is in stock. You can improve the validation rule to include these scenarios by using
the ISNEW() function in your formula, which determines whether you are creating a new record. If it's not a new record,
you'll need to use the PRIORVALUE() function to tell you the prior value of the field before it was modified.

1. Navigate back to the Line Item custom object page: from Setup, click Create > Objects > Line Item.
2. Scroll down to the Validation Rules related list, and next to Order in stock click Edit.
3. Replace the existing formula with the following.

IF(
ISNEW(),

Merchandise__r.Total_Inventory__c < Units_Sold__c ,
IF (
Units_Sold__c < PRIORVALUE(Units_Sold__c),
FALSE,
Merchandise__r.Total_Inventory__c < (Units_Sold__c - PRIORVALUE(Units_Sold__c))

)
)

4. Click Check Syntax to make sure there are no errors.
5. Click Save.

23

Tutorial #3: Using Formulas and Validation Rules

Tell Me More....
Let's look at this formula in a little more detail.

• IF is a conditional, ensuring that at run time one of the two branches will be taken depending on the condition.
• ISNEW is the condition. This function returns true if you're creating a new record, false otherwise.
• If ISNEW is true, then you simply check inventory as you did previously. For new records, you need to check that you have

not sold more than you have in stock.
• If ISNEW is false, you know that you're performing an update to an existing record, not creating a new record, so you

perform another conditional check, this time to determine if the number of units has gone up or down, by comparing it
to its prior value using the PRIORVALUE function.

• If the prior value was greater, then you've updated the record and decreased its units. Since you have enough stock, you
return FALSE to indicate that there's no validation failure.

• If the prior value was smaller, then you've increased the number of units, so you have to check whether there's enough
inventory to hold the difference between the new number of units and the old.

Summary
In this tutorial you created formula fields and validation rules that enhance and validate your app's data. For the first formula
you created a subtotal for each line item by multiplying the price of a product by the number of units that were ordered. An
invoice could be made up of multiple line items, so you created a roll-up summary field to automatically add up the line item
subtotals.

You also learned how to define a validation rule to make sure you have enough items in stock. The first version of the rule was
simple, but you enhanced it to work with both new records, and existing records with updates. These kinds of modifications
can be applied to any field in your app when you want to make sure the data entered meets certain criteria.

24

Tutorial #3: Using Formulas and Validation Rules

Tutorial #4: Automating Processes Using Workflow
Level: Intermediate; Duration: 20–25 minutes

Your company can operate more efficiently with standardized internal procedures and automated business processes. In your
Force.com app, you can use workflow rules to automate your procedures and processes. Workflow rules can trigger actions
(such as email alerts, tasks, field updates, and outbound messages) based on time triggers, criteria, and formulas.

In this tutorial, you create and test two workflow rules. The first carries the current price of a merchandise item into the newly
created line item record, and the second updates the inventory whenever you update a product line item.

Prerequisites
Formulas and Validation

You first need to create the roll-up summary field and validation rules as described in Tutorial #3: Using Formulas and
Validation Rules on page 19.

Step 1: Populate the Line Item Price Using a Workflow Rule
At this point, you've created the Line Item and the Merchandise objects with Price fields. You've also marked the Line Item
Price field as read-only, though you probably didn't notice that in the user interface because your default user is an administrative
user, who has access to all data. Now you'll create a workflow rule to populate the unit price on the line with the unit price on
the merchandise at the time the line item is created. You can create this complex logic quite easily with a declarative workflow
rule.

1. From Setup, click Create > Workflow & Approvals > Workflow Rules. If you see the Understanding Workflow page,
click Continue.

2. On the All Workflow Rules page, click New Rule.
3. In Step 1 of the Workflow Rule wizard, select Line Item as the object and click Next.
4. In the Rule Name field, enter Line Item Created.
5. For Evaluate the rule when a record is:, select created.
6. In the Rule Criteria field, select formula evaluates to true.
7. In the text box, enter true.
8. Make sure your page looks like the following and then click Save & Next.

25

Tutorial #4: Automating Processes Using Workflow

9. In Step 3 of the Workflow Rule wizard, in the Immediate Workflow Actions section, click Add Workflow Action and
choose New Field Update. The New Field Update wizard opens.

10. In the Name field, enter Insert Merchandise Price.
11. In the Field to Update drop-down list, select Line Item in the first box and Unit Price in the second.
12. Select Use a formula to set the new value.
13. Click Show Formula Editor.
14. Click Insert Field.
15. Select Line Item > in the first column, Merchandise > in the second column, and Price in the third column.
16. Click Insert.

17. Click Save to close the New Field Update wizard and return to Step 3 of the Workflow wizard.
18. On the Specify Workflow Actions page, click Done.

26

Tutorial #4: Automating Processes Using Workflow

19. On the Workflow Rule page, click Activate.

Important: Forgetting to activate a new workflow rule is a common mistake. If your rule is not active, its criteria
are not evaluated when records are created or saved.

Tell Me More....
If you now create a new line item, save it, and then view it, you will see that line item's unit price will automatically be set to
the price of the related merchandise record. Remember that because you are an administrator, you see an input field for price.
But your users won't see that field because it was set to read-only.

The reason this workflow rule runs only when a record is created (and never afterward) is that we don't want to increase the
invoice price of an item after the item has been added to the invoice. It would confuse a customer to suddenly find out the
item's price is higher than what was advertised. However, if the item's price goes down, the customer would appreciate being
updated with the new price. You'll make that happen later.

You might be wondering why we've created a rule whose formula always evaluates to true. The reason is that we want the field
update to happen every time a record is created, and that's always true. You can also use a formula to evaluate an expression;
it just wasn't necessary this time.

Step 2: Update Total Inventory When an Order is Placed
The inventory of Merchandise should be automatically maintained as orders are placed. When you create a new invoice ("Open"
status), every new line item needs to decrease the total inventory by the number of units sold. Similarly, updates to an existing
line item need to update the Total Inventory by the difference in units sold. You’ll do this with another workflow rule.

1. From Setup, click Create > Workflow & Approvals > Workflow Rules.
2. If you see the Understanding Workflow screen, click Continue; otherwise proceed to the next step.
3. On the All Workflow Rules page, click New Rule.
4. In Step 1 of the Workflow Rule wizard, select Line Item as the object and click Next.
5. In the Rule Name field, enter Line Item Updated.
6. For Evaluate the rule when a record is: select created, and every time it’s edited.
7. In the Rule Criteria field, select criteria are met.
8. In the Field drop-down list, select Invoice Statement: Status. Then for Operator, select equals. Under

Value click the lookup icon and choose Open. Click Insert Selected.
9. Make sure your screen looks like the following and then click Save & Next.

27

Tutorial #4: Automating Processes Using Workflow

10. Click Add Workflow Action and choose New Field Update. The New Field Update wizard opens.
11. In the Name field, enter Update Stock Inventory.
12. In the first Field to Update drop-down list, select Merchandise. In the second, select Total Inventory.
13. Select Use a formula to set the new value.
14. Click Show Formula Editor and enter the following code.

IF (
ISNEW(),
Merchandise__r.Total_Inventory__c - Units_Sold__c ,
Merchandise__r.Total_Inventory__c - (Units_Sold__c - PRIORVALUE(Units_Sold__c))

)

28

Tutorial #4: Automating Processes Using Workflow

15. Click Check Syntax and make corrections if necessary.
16. Click Save to close the New Field Update wizard and return to Step 3 of the Workflow wizard.
17. On the Specify Workflow Actions page, click Done.
18. On the Workflow Rule page, click Activate.

Step 3: Test the Workflow Rules
You can check to make sure your workflows are functioning as expected by creating a new line item. Then verify that its unit
price is automatically set and that the total inventory on the stock has decreased.

1. Click the Invoice Statements tab and then click the invoice record you created earlier.
2. Select New Line Item and enter the following values.

• In the Line Item Number field enter 2.
• Leave the Unit Price field blank.
• Set Units Sold to 1000.
• Next to the Merchandise field, click the lookup icon and select the Wee Jet merchandise record.

3. Click Save.
4. Click line item 2. Note that the unit price has been set to the same value as on the Wee Jet record.
5. Click the Wee Jet link. Notice that the Total Inventory is down to 1000 from 2000.

29

Tutorial #4: Automating Processes Using Workflow

Summary
Workflow rules help you automate business processes and enforce standards. The workflow rule you created automatically
updates price and inventory across different objects.

30

Tutorial #4: Automating Processes Using Workflow

Tutorial #5: Creating an Approval Process
Level: Intermediate; Duration: 20–25 minutes

Your company can operate more efficiently with standardized internal procedures. In your Force.com app, you can use approval
processes to enforce consistency and compliance within your company's business practices. Approval processes can automate
all of your organization's approvals—from simple to complex. In this tutorial, you create an approval process that requires
explicit approval from the manager if an invoice is over $2000.

Prerequisites
Formulas and Validation

You first need to create the roll-up summary field and validation rules as described in Tutorial #3: Using Formulas and
Validation Rules on page 19.

Step 1: Create an Email Template
One of the business rules that you want to enforce in your workflow is that all invoices totaling over $2000 must be approved
by a manager. To implement this rule you need to create two additional elements: an email to be sent to the manager when
an invoice exceeds $2000, and an approval process for the manager to follow.

Note: If your default currency is not set to US dollars, just assume we're talking about whatever currency you're using.

In this step you create the email template that will be used by the workflow rule to generate and send the email. You create
the approval process in the next steps.

1. From Setup, click Communication Templates > Email Templates.
2. Click New Template.
3. In Step 1 of the Email Template wizard, select Text and click Next.
4. Select Available For Use.
5. In the Email Template Name field, enter Large Invoice Template.
6. In the Subject field, enter A large invoice has been submitted.
7. In the Email Body field, enter the following code and text.

{!Invoice_Statement__c.OwnerFullName} submitted for approval an Invoice Statement that
totalled {!Invoice_Statement__c.Invoice_Value__c} on
{!Invoice_Statement__c.LastModifiedDate}

31

Tutorial #5: Creating an Approval Process

8. Verify that your screen looks like the following, and then click Save.

Tell Me More....
The email body text that you just entered supports merge fields, for example
{!Invoice_Statement__c.Invoice_Value__c}. At the time the email is generated, this value will be dynamically
substituted with the actual invoice value that generated the approval process.

Step 2: Create an Approval Process
In this step you create an approval process that requires explicit approval from the manager if an invoice is over 2000. Creating
and using an approval process is just as easy as creating a workflow rule.

1. From Setup, click Create > Workflow & Approvals > Approval Processes.
2. In the Manage Approval Processes For drop-down list, choose Invoice Statement.
3. Click Create New Approval Process and choose Use Jump Start Wizard from the drop-down list.
4. In the Name field, enter Large Invoice Value.
5. Next to the Approval Assignment Email Template field, click the lookup icon and select the Large Invoice

Template you just created.
6. Enter the following values in the Specify Entry Criteria area.

a. In the Field drop-down list, choose Invoice Value.
b. In the Operator drop-down list, choose greater than.
c. In the Value field enter 2000.

7. Select Automatically assign an approver using a standard or custom hierarchy field and choose
Manager for the hierarchy field. This ensures that if a particular user starts the approval process, the user's manager is
assigned as the approver. You'll create a user named Bob Smith in the next step.

32

Tutorial #5: Creating an Approval Process

8. Click Save.
9. You'll see a warning that you must activate the approval process. Click OK.

You've finished creating the approval process, but before it can run, you have to define what happens to records when
they're first submitted, when they're approved, and when they're rejected.

10. Click View Approval Process Detail Page.
11. Add a field update to the Initial Submission Actions related list:

a. Click Add New > Field Update.
b. For Name, enter Set Initial Approval Status.
c. For Field to update, select Status.
d. Under Picklist Options, select A specific value and choose Pending.
e. Click Save.

12. Add a field update to the Final Approval Actions related list:

a. Click Add New > Field Update.
b. For Name, enter Set Final Approval Status.
c. For Field to update, select Status.
d. Under Picklist Options, select A specific value and choose Closed.
e. Click Save.

13. Add a field update to the Final Rejection Actions related list:

a. Click Add New > Field Update.
b. For Name, enter Set Final Rejection Status.
c. For Field to update, select Status.
d. Under Picklist Options, select A specific value and choose Open.
e. Click Save.

33

Tutorial #5: Creating an Approval Process

14. Click Activate to activate the approval process.

Tell Me More....
Default actions are associated with a few of the approval steps. The Initial Submission actions and Final Approval actions
both lock the record, while the Final Rejection action unlocks it. This makes sense: if someone submits a record for approval,
it shouldn't be changed in the meantime. Likewise, if the record is rejected, it should be unlocked so changes can be made.

Step 3: Create a Custom Profile
A profile is a collection of permissions and other settings associated with a user or a group of users. Your organization has a
number of standard profiles already defined. If you create an app, the permissions and settings to access the app and associated
objects are disabled for most profiles. This security setting ensures that access to the app and its data is only explicitly granted
to users. You can change object permissions in custom profiles, but not standard profiles.

In this step, you'll create a custom profile that you can assign to users who need to access the Warehouse app and its custom
objects. Then in your new custom profile, you'll enable access settings and object permissions so your users can access the app.
You'll create the new user in the next step.

1. From Setup, click Manage Users > Profiles.
2. Select Clone next to Standard User.

Note: Each user profile is available for a specific user license. Similarly, the custom profile that you obtain by
cloning an existing user profile is also available for the same user license as the user profile it is cloned from. The
Standard User profile is available for the Salesforce user license. If you’ve used up all Salesforce user licenses for
your organization already, you can clone the Salesforce Platform User profile or the Force.com — Free User profile
instead. To find out what user licences are available for your organization, from Setup, click Company Profile >
Company Information and check the User Licenses section.

3. In the Profile Name field, type Basic User.
4. Click Save.
5. On the detail page for your new profile, click Edit.
6. Under Custom App Settings, select Visible for the Warehouse app.

Note: If you cloned the Force.com — Free User profile for your custom profile, select Default for the Warehouse
app instead since only one custom app can be selected.

7. Under Custom Tab Settings, select Default On for Merchandise. (Invoice Statements should already be set to Default
On.)

34

Tutorial #5: Creating an Approval Process

8. Scroll to the bottom of the profile edit page, and under Custom Object Permissions, select the Read, Create, Edit, and
Delete boxes for the Invoice Statements, Line Items, and Merchandise objects.

9. Click Save.

Tell Me More....
You've just seen how easy it is to create and edit a custom profile. If you need to edit many profiles, you can use enhanced
profile list views to create a custom list view of your profiles and then edit the profiles from the list. For more information,
see “Editing Multiple Profiles with Profile List Views” in the Salesforce online help.

Step 4: Create a User
When you create a Force.com app, it's automatically enabled to allow multiple users to log in. Now you can customize the
app by configuring it to function differently depending on the profile of the user logging in. For example, you can grant
read-only access to fields to a certain group of users, or make them completely invisible. You can also strictly enforce data
sharing, so that a user sees only his or her records or those of his or her manager.

In this step, you create a new user and link that user to your current user's account via the Manager field. You use this
configuration to make sure that if the new user creates an invoice that meets certain conditions, the invoice is routed to his or
her manager.

1. From Setup, click Manage Users > Users.
2. On the All Users page, click New User.
3. Enter the following information:

• In the First Name field, enter Bob.
• In the Last Name field, enter Smith.
• In the Alias field, enter bsmith.
• In the Email field, enter your own email address, so that you will receive the approval requests routed to Bob Smith.
• The Username field defaults to your email address, but you'll need to create a unique username for Bob, in the form

of an imaginary email address.

Note: Write down Bob's username (his imaginary email address), because you'll be logging in as him shortly.

• In the Manager field, select the user you created when you signed up for your organization.
• In the User License field, select Salesforce.

Note: You won’t see Salesforce listed in the User License field if you’ve already used up all the Salesforce
licenses allocated for your organization. For this step, you should select the same user license as the one used
by the cloned profile, Basic User, that you created in the previous step.

35

Tutorial #5: Creating an Approval Process

• In the Profile field, select Basic User.

4. Click Save.

You should now receive an email confirming the creation of the new user. There's one more setup step to complete the approval
process, so don't log in as Bob Smith yet or you'll have to immediately log back in as the administrator.

Step 5: Test the Approval Process
We can now see the approval process in action. If Bob creates an invoice, and the total value of the invoice is greater than
$2000, he;; be able to click Submit for Approval on the invoice statement. This will send an email to his manager and lock
the record, preventing Bob from making any more changes.

When the manager logs in, he or she can approve (or reject) the invoice. If the manager approves the invoice, its status is
updated to Closed. And if not, you want it remains in the original Open status. In a real-world scenario, your business process
might require you to email the invoice owner and ask for confirmation, and so on.

Before testing the approval process, make sure that your Home page can display items that require approval.

1. From Setup, click Customize > Home > Home Page Layouts.
2. Click Edit next to your home page layout.
3. Select the Items to Approve option, if it is not already selected.
4. Click Next, and then click Save.

While developing the app, you've been logged in as an administrator. To create a new record and test the approval process,
you need to log out of your administrator account and log back in as a standard user.

1. Click Your Name > Logout
2. Now log in as Bob Smith. If this is your first time logging in as Bob, you may have to change your password.
3. Select the Warehouse app. The Warehouse app will be the default app after logging in if Bob Smith’s account is based on

a Force.com — Free user license.
4. Click the Invoice Statements tab.

36

Tutorial #5: Creating an Approval Process

Note: If you don't see any tabs, then you need to change Bob's user type to Basic User. You'll need to log out
and then log back in as an admin, as described in the previous step.

5. Click New and create an invoice statement.
6. Add a New Line Item and enough items to make the invoice value greater than $2000.
7. Click Save.
8. Click Submit for Approval.
9. Log out of the app.

An email is sent to Bob Smith's designated manager who, for purposes of this tutorial, is you the administrator. Since you're
the manager, you can check your email to verify this result.

1. Log in again as the administrator (not Bob).
2. Click the Home tab.
3. The pending approval request is at the bottom, you may have to scroll down to see it. The record is locked until you approve

the invoice. Go ahead and Approve the invoice.

Tell Me More....
From your Approval Process detail page, you can see a nice diagram of the approval process and the actions that will fire at
each step.

1. In the familiar Setup area, click Create > Workflow & Approvals > Approval Processes and select the process you created.
2. Click View Diagram. The approval process diagram appears in a separate browser window.

37

Tutorial #5: Creating an Approval Process

Summary
Approval processes help you enforce your business standards. This email alert was a fairly simple example, but you can change
the conditions for when an approval process runs, and the actions that need to be taken.

38

Tutorial #5: Creating an Approval Process

Tutorial #6: Creating Reports and Dashboards
Level: Beginner; Duration: 50–60 minutes

You’ve built an app that captures and manipulates warehouse data, but you want to report on that data as well. Force.com
provides a drag-and-drop report builder that lets you quickly organize and present your data. It's easy to group and summarize
your data, and add formulas and charts. You can then share these reports to help business users make more informed decisions.

You may have noticed the Reports and Dashboards tabs that were automatically added when you created your app. The Reports
tab provides access to a set of predefined reports, all of the reports that you create, and the reports in folders that you can
access. The Dashboards tab shows data from charts, gauges, tables, metrics, or Visualforce pages. Dashboards provide a
snapshot of key metrics and performance indicators for your organization.

In this tutorial, you will display your data in reports using three different formats. The first format, tabular, lists your data in
a simple table. The next two let you group your data and add a chart. You will also create a dashboard using one of your reports.

Prerequisites
Warehouse App

First create the basic Warehouse app in Tutorial #1 on page 4, then add relationships as described in Tutorial #2:
Adding Relationships on page 11 and add workflow as described in Tutorial #4: Automating Processes Using Workflow
on page 25.

Data
The reports you create in this tutorial will look better if you have more data. Go ahead and create one or two more
merchandise items, and at least one more invoice.

Step 1: Create a Tabular Report
In this step you will create a tabular report. Tabular reports present data in simple rows and columns, much like a spreadsheet.
They don't contain groupings, but can be used to show column summaries, like sum, average, maximum, and minimum.

1. Click the Reports tab.
2. Click and from the drop-down, select New Report Folder.
3. In Report Folder Label, enter Merchandise Reports.
4. Click Save.
5. Click New Report.
6. In the Select Category panel, select Other Reports.
7. In the Select Report Type panel, select Merchandise and click Create. Report types set the rules for which records to

show in reports, based on object relationships. They also determine which fields you can use.

The report builder appears, with its dynamic preview built from a limited number of records. The Merchandise Name
field is in the report by default. The default report format is tabular.

39

Tutorial #6: Creating Reports and Dashboards

8. Drag each of the following fields from the Fields pane to the Preview pane, placing them beside the Merchandise Name
column. To select multiple fields or columns, press CTRL (Windows) or Command (Mac).

• Description

• Price

• Total Inventory

You now have a basic report, but let’s add a few bells and whistles like sums and averages.

1. Click next to Price header and select Summarize this Field.

2. Select Average.
3. Click Apply.

4. Click next to Total Inventory and select Summarize this Field.
5. Select Sum.
6. Click Apply.

Now, set the scope for the report’s data and run it.

1. In the Filters pane, select All Merchandise from the View drop-down list to assign the set of records that the report
will use.

2. Click Run Report.
3. Review the data and click Save As.
4. In the Report Name field, enter All Merchandise with Price and Inventory.
5. Select Merchandise Reports from the Report Folder drop-down list.
6. Click Save and Return to Report. You will now see your All Merchandise with Price and Inventory report displayed.

40

Tutorial #6: Creating Reports and Dashboards

The procedures you followed in creating this report will be similar to those you follow in the later steps. You selected the
objects that you want to report on, selected the report format, determined which fields to display, optionally added summary
data, and set the scope of data for the report. The other reports in this tutorial follow similar instructions, with the addition
of grouping and charts.

Tell Me More....
• You can order the report data by clicking the column headers to toggle between ascending and descending order. The

Grand Totals area of the report indicates the record count as well as the summaries you chose. You can make additional
changes to this report by clicking Customize.

• You can click through to the data records that are being reported on, a characteristic found in all reports on Force.com.
For example, click the name of any merchandise record listed in the report to view its detail page.

• A report folder's sharing settings determine who can access reports in that folder. Modify these settings by clicking Edit
on the folder in the Reports tab. While you can't give individual users access, you can share the folder with Public Groups,
Roles, or Roles and Subordinates. For more information, search “Managing Folders” in the online help.

• You can return to your reports at any time by selecting the Reports tab, selecting the Merchandise Reports folder, and
clicking Go.

Step 2: Create a Summary Report
You can group report data by up to three levels and add a chart. In this step you'll create a summary report, group data by two
levels, and add a combination chart.

First, we’ll create a summary report with one grouping.

1. Click the Reports tab.
2. Click New Report.
3. Select Other Reports, then Invoice Statements with Line Items and Merchandise.
4. Click Create.
5. The default format is tabular, but we want a summary report. Click Tabular Format and choose Summary instead.
6. From the Fields pane on the left, within the Line Item folder, select the Unit Price field, drag it to the Preview pane,

and drop it on the right of Merchandise Name. A green line will appear when you can drop the field to create a new
column.

Warning: If you drop Unit Price or Units Sold into a grouping by mistake, click the down arrow next to
the field name and choose Remove Group. You need to drop the field into a column, which is located just above
the grouping zone.

41

Tutorial #6: Creating Reports and Dashboards

7. Click the down arrow next to Unit Price, select Summarize this Field, choose Average, and then click
Apply

8. Again in the Fields pane on the left, within the Line Item folder, select the Units Sold field, drag it to the Preview
pane, and drop it on the right of Unit Price.

9. Click the down arrow next to Units Sold, select Summarize this Field, chooseSum, and then click Apply
10. Select the Merchandise Name field (either from Fields or Preview panel) and drag it to the area labeled Drop a field

here to create a grouping. This aggregates data by the unique merchandise item.

The report now includes all the invoices and their associated line items grouped by merchandise item, as well as average price
and total units sold.

Next, we’ll add another grouping. Say you also want to group data by invoice size. Invoice size is not an available field in the
report. Instead of creating a formula or custom field, you can bucket an existing field to get invoice size. We’ll create a Bucket
Field based on Invoice Value with ranges for small, medium, and large. We’ll use the bucket field to create the grouping.

1. From the Fields pane, drag Invoice Value to the left of Unit Price in the Preview pane.

2. Click on Invoice Value and select Bucket this Field.
3. Enter a bucket field name, Invoice Size.
4. Define ranges for invoice size as Small (500), Medium (between 500–1000), and Large (greater than 1000).

5. Click OK. Locate the bucket field in the Fields pane.

6. Drag the bucket field and drop it above Merchandise Name in the Preview pane for a second grouping.

The report shows data grouped in two levels—first, by invoice size with average price and total units sold. Second, within each
first level group, you see invoices and line items by merchandise name showing average price and total units sold.

42

Tutorial #6: Creating Reports and Dashboards

Now let's add a fancy combination chart to the report:

1. In the Preview pane, click Add Chart to create a chart to represent your data. The Chart Editor dialog box appears.
2. Click the vertical bar chart.
3. In the Y-Axis drop-down list, select Sum of Units Sold.
4. In the X-Axis drop-down list, select Merchandise: Merchandise Name. Notice the bucket field, Invoice Size, is

also available as there are two groupings.
5. Select Plot additional values.
6. In the Display drop-down list, select Line.
7. In the Value drop-down list, select Average of Unit Price.
8. Select Use second axis.
9. Click OK.
10. Click Save.
11. In the Report Name field, enter Merchandise Sold by Invoice No & Price.
12. In the Report Description field, enter What merchandise has been selling and what’s the average

unit price?

13. In the Report Folder drop-down list, select Merchandise Reports.
14. Click Save and Run Report.

The combination chart shows the data, plotting each merchandise item against units sold (across all invoices) as well as
superimposing a second graph mapping the average unit price for the item.

43

Tutorial #6: Creating Reports and Dashboards

Tell Me More....
You can check rows of interest on your report and click Drill Down to filter the report to only those rows.

In the report builder, you can filter a bucket field just like other fields in the report. In this step, for example, drag Invoice
Size onto the Filters pane. By setting Invoice Size not equal to Small, you only see data for line items whose invoice
value is either medium or large.

Try adding a Cross Filter from the Add drop-down in the Filters pane . A cross filter lets you filter on the report's child objects
using a simple with or without condition. In this tutorial, you can add a cross filter to report on line items without invoice
statements, for example.

Step 3: Create a Matrix Report
In this step, you will create a matrix report that groups and summarizes both columns and rows. This report will show summary
data of merchandise items per day and across different invoice statement status values.

1. Click the Reports tab.
2. Click New Report.
3. Select Other Reports, then Merchandise with Line Items and Invoice Statements.
4. Click Create.
5. In the Preview panel, click Tabular Format and choose Matrix from the drop-down list.
6. Clear the slate by selecting Remove all Columns and then click OK in the popup.
7. Double-click Invoice Statement: Invoice Value to add it to the report. In the popup, select the Sum checkbox.
8. Double-click Line Item: # Units Sold to add it to the report. In the popup, select the Sum checkbox.
9. Create a column grouping for the status of invoice statements by dragging the Invoice Statement: Status field to

the column grouping drop zone.
10. Create a row grouping by dragging the Invoice Statement: Created Date field to the row grouping drop zone.
11. Create a secondary row grouping by dragging the Merchandise: Merchandise Name field to the second row grouping

drop zone.
12. In the Filters pane, ensure that All merchandise is selected from the Show drop-down list.
13. Click Run Report.

You’ll get an astounding amount of information generated in the report. Values are tallied both horizontally and vertically,
and within the report, depending on the column (Invoice Status) and row groupings (Created Date and Merchandise Name).

44

Tutorial #6: Creating Reports and Dashboards

Now let's add a combination chart to this report:

1. Click Customize.
2. Click Add Chart. The Chart Editor dialog box appears.
3. Select the Vertical Bar Chart.
4. In the Y-Axis drop-down list, select Sum of Units Sold.
5. In the X-Axis drop-down list, select Invoice Statement: Created Date.
6. In the Group-By drop-down list, select Invoice Statement: Status.
7. Select the Stacked graph type.
8. Select Plot additional values.
9. For Value, select Record Count

10. Select Use second axis.
11. Click the Formatting tab to further customize the chart.
12. For Chart Title, enter Units Sold per Day by Invoice Status.
13. For Legend Position, select Bottom.
14. Select Show Axis Label.
15. Click OK
16. Click Save.
17. For Report Name, enter Daily Units Sold by Invoice Status.
18. For Report Description, enter How many units are we selling each day, by Invoice Status?

19. For Report Folder, select Merchandise Reports.
20. Click Save and Run Report.

The resulting graph summarizes the units sold, and automatically takes into account the status of each invoice, grouping the
invoices over daily periods. Note that you'll need invoices from more than one date to see anything fancy.

45

Tutorial #6: Creating Reports and Dashboards

Tell Me More....
• The Sum of Units Sold has a scale on the left side of the chart that correlates to the columns of your chart. Record Count

has its own scale on the right side of the chart that correlates to the blue line on your chart.
• The chart and report currently display all records, regardless of when they were created. If you want to narrow the time

frame that is represented, you can define it in the upper right corner of the page. Choose either a predefined duration or
enter your own custom dates and click Run Report to update the page.

• You can quickly change how your chart is displayed by clicking Edit.
• Because you defined multiple grouping levels in the report, you’ll see multiple summary rows, as you see in Invoice Statement:

Status.
• You can deselect Show > Details to only show summary information, making your report easier to see.
• Take reporting to the next level with the Joined Report format. It’s available in report builder’s Format drop-down on the

Preview pane. In a joined report, you can combine multiple report types in a single report, group data, summarize fields,
and add a chart.

Step 4: Create a Dashboard
You can show all the reports you've built in the same place by including them in a dashboard, which provides a graphical
summary of the data in your app. Your data can be represented by charts, tables, metrics, gauges, and even Visualforce
components. Similar to reports, dashboards are organized into folders.

1. Click the Reports tab.
2. Click and from the drop-down, select New Dashboard Folder.
3. For Dashboard Folder Label, enter Merchandise Dashboards.
4. Click Save.
5. Click New Dashboard.
6. Click Dashboard Properties.
7. For Title, enter Merchandise and Invoice Summary.
8. Save the dashboard to the Merchandise Dashboards folder.
9. Click OK.
10. From the Components tab, drag the vertical bar chart to the first column.
11. From the Data Sources tab, click Reports, click + next to Merchandise Reports, and drag Daily Units Sold by Invoice

Status on top of the vertical chart in the first column.

46

Tutorial #6: Creating Reports and Dashboards

12. On the Vertical Bar Chart, click .
13. Select Use chart as defined in source report.
14. Click OK.
15. Add a header to the component by clicking Edit Header and entering Items Sold per Day.

Let’s add another component to the dashboard.

1. From the Components tab, drag the pie chart to the middle column.
2. On the Data Sources tab, type, merchandise sold, in the search box.
3. Drag Merchandise Sold by Invoice No and Price on to the Pie Chart.

4. On the Pie Chart, click . In the Component Data tab, notice auto-selected choices for Values and Wedges. Values,
here, inherit data from the summary field (sum of units sold) used in the source report chart.

5. On the Formatting tab, choose these settings.

• Sort Rows By: Value Ascending

• Legend Position: Bottom
• Data Labels: Show Values

6. Click OK.
7. Edit the header and type, Total Merchandise Sold.
8. Click Save and in the pop up, click Save and Run Dashboard.

Your dashboard now has two components. You can add up to 20 components to create a more complex dashboard.

Let’s add the dashboard to your Home tab

1. From Setup, click Customize > Home > Home Page Layouts.
2. Click Edit and select the Dashboard Snapshot checkbox.
3. Click Next, then Save. Select your Home tab to see it in action.

Tell Me More....
• When you set a running user for a dashboard, it runs using the security settings of that single, specific user. All users with

access to the dashboard see the same data, regardless of their own personal security settings. To set the running user, click

 next to the View dashboard as field.
• Dashboards can be updated either manually or on a schedule, and can be delivered through email.

47

Tutorial #6: Creating Reports and Dashboards

• A dashboard won't automatically refresh unless it is set to do so. Each time you view a dashboard, it indicates in the upper
right corner when it was last refreshed. To refresh the data in the dashboard, click Refresh.

• Try adding a filter when editing the dashboard by clicking Add Filter. A filter lets you see different views of dashboard
data based on filter conditions. You can add up to three filters per dashboard with up to 10 conditions on a filter. For
example, you can filter the entire dashboard by the Invoice Statement: Status field. This will show you total and
daily merchandise sold for each invoice status. Instead of filtering at the report level, you directly manipulate dashboard
data.

• Get dashboards and their report data on the go by downloading Salesforce Mobile Dashboards for your iPad from the
Apple App Store or AppExchange.

Summary
In this tutorial you created three reports: a quick tabular report that listed your records with simple column summaries, a
summary report that grouped and graphed your data, and a matrix report that provided a multi-dimensional analysis of your
data. You also created a dashboard, which you can place on your Home tab for quick reference.

Now that you’ve built the basic reports, experiment with them by modifying the filters, groupings, and charts. Creating
meaningful reports is a skill well worth learning!

48

Tutorial #6: Creating Reports and Dashboards

http://itunes.apple.com/us/app/salesforce-mobile-dashboards/id457642972
http://appexchange.salesforce.com/listingDetail?listingId=a0N300000058QnJEAU

Tutorial #7: Adding Programmatic Logic with Apex
Level: Advanced; Duration: 20-30 minutes

Apex is a strongly-typed, object-oriented, Java™-like programming language that runs on Force.com. Apex is used to add
programmatic business logic to apps. For example you can use it to write triggers, Web services, and program controllers in
your app's user interface layer.

You've already added business logic using the declarative workflow environment. In this tutorial you'll create programmatic
logic using Apex, which is ideal for juggling multiple records and complex logic.

The business case you'll be working on requires that when a price for a piece of merchandise goes down, you will pass the
savings along to your customers. To do this, you'll create an Apex trigger that updates all open invoices whenever the merchandise
price decreases. A trigger is a set of code that fires at a particular time in the lifecycle of a record. In this case, you will create
a trigger that fires after a merchandise record is updated.

There are two ways to develop apps on Force.com: you can either use the online environment, as you've been doing up to this
point, or use the Force.com IDE. If you don't have the IDE installed, it will take a moment to set up. However, if you are
already familiar with the IDE, you know that it has syntax highlighting, code insight, and many other features that make
development—especially team development—highly productive.

Prerequisites
Basic Knowledge

For this tutorial, it helps to have basic knowledge of an object-oriented programming language like Java or C#, but it is
not required. This tutorial can also be completed in the Force.com IDE, so familiarity with Eclipse is useful but not
necessary.

Software Requirements
You can use the Force.com IDE for this tutorial if you want to. In that case you'll need the Force.com IDE plugin:
wiki.developerforce.com/index.php/Force.com_IDE. If you need help creating a project, see Creating a Project in the
Force.com IDE.

“Developer Mode,” “Modify All Data,” and “Author Apex” permissions
Since this tutorial involves working with Apex, make sure that you have the proper permissions to create Apex classes.

Step 1: Create an Apex Trigger Definition
The first thing you need to do is create the trigger definition, which contains the trigger name, the affected object, and an
action that fires the trigger. You can create triggers in the Web interface or in the Force.com IDE. Instructions are provided
for both tools.

49

Tutorial #7: Adding Programmatic Logic with Apex

http://wiki.developerforce.com/index.php/Force.com_IDE

To create a trigger in the Web interface:

1. From Setup, click Create > Objects in the sidebar menu.
2. Click your Merchandise custom object.
3. On the Merchandise detail page, scroll down to Triggers and click New.
4. Replace <name> and <events> so that the code matches the following:

trigger HandleProductPriceChange on Merchandise__c (after update) {

}

5. If you're using the Web interface, click Quick Save, which will save your work and let you continue editing. Saving your
work at this point also verifies that you've entered the code correctly, because if you've made syntax errors, the system won't
let you save.

To create the trigger in the Force.com IDE:

1. In the Package Explorer, right-click your project and click New > Apex Trigger.
2. In the dialog box, enter HandleProductPriceChange for the name.
3. In the Object drop-down list, choose Merchandise__c.

Note: If this object doesn't appear in the list of object, click Refresh Objects. (Ignore the warning that pops up
about how you must select an operation.)

4. Select after update.

5. Click Finish and the file opens in the Editor.

Tell Me More....
Your trigger doesn't do anything yet, but it's now ready to accept any logic that you want to execute when a Merchandise
record is updated. Before we get to the trigger logic, let's break up the trigger definition and examine each part.

• HandleProductPriceChange—The name of the trigger.
• on Merchandise__c—The object the trigger acts on— in this case, your Merchandise__c custom object.
• (after update)—The action that fires the trigger. Apex triggers are fired in response to data actions, such as inserts,

updates and deletes—either before or after one of these events. The trigger you defined fires after a record is updated.
• { }—The code that goes between the curly brackets is called the body and determines what the trigger does. You'll code

the trigger body next.

50

Tutorial #7: Adding Programmatic Logic with Apex

Step 2: Define a List Variable
The first thing you need to do is define a list variable that will hold a list of line items. You don't need all the line items, so
you'll select only those that are in the set of records that triggered this code to run and have their status set to Negotiating.

1. Between the curly braces of your trigger definition, enter the following comment and then declare a list variable.

// update invoice line items associated with open invoices
List<Line_Item__c> openLineItems =
[];

Note: For the sake of brevity, we won't comment everything here, but it’s good practice to comment your code.

2. Between the square brackets, enter a query that pulls information from your Line Item custom object.

List<Line_Item__c> openLineItems =
[SELECT j.Unit_Price__c, j.Merchandise__r.Price__c
FROM Line_Item__c j
WHERE j.Invoice_Statement__r.Status__c = 'Negotiating'
AND j.Merchandise__r.id IN :Trigger.new
FOR UPDATE];

Note: We try to make our code samples fit on the page, so there are often line breaks where they aren't strictly
needed. Apex ignores white spaces, so if the format of your code doesn't look exactly the same, that's OK. Also,
Apex isn't case sensitive, so if you like to use lowercase, you can enter select instead of SELECT, for example.

Tell Me More....
The openLineItems list holds a list of records from your Line_Item__c custom object. What's contained in that list is
determined by the query inside the square brackets, which is written in the Salesforce Object Query Language (SOQL). Let's
take a look at that query in detail.

• SELECT—Determines which fields are retrieved on the object.
• FROM—Determines which object or objects you want to access. The “j” in Line_Item__c j is an alias: it is a convenient

shorthand that allows you to refer to Line_Item__c as “j”.
• WHERE—This is the start of the condition statement. In this case you want to return only those records where the status

is Negotiating.
• AND—This is the second condition of your statement. It pulls only the unique IDs of the records that are new. The code

uses a special variable, Trigger.new, which is automatically initialized with the identifiers of the records being updated.
• FOR UPDATE—This tells the platform to lock the records, preventing other program or users from making updates to

them. The lock remains until the trigger is complete.

Step 3: Iterate Through the List and Modify Price
In the previous step, you created a list of line items and stored it in a variable called openLineItems. Now you can iterate
through the list using a for loop and modify an item's original price if its new price is lower.

51

Tutorial #7: Adding Programmatic Logic with Apex

1. Declare a for loop.

for (Line_Item__c li: openLineItems) {
}

2. Between the curly brackets, enter a conditional if statement.

for (Line_Item__c li: openLineItems) {
if (li.Merchandise__r.Price__c < li.Unit_Price__c){

}
}

3. Between the for loop's curly braces, enter code that updates the price.

for (Line_Item__c li: openLineItems) {
if (li.Merchandise__r.Price__c < li.Unit_Price__c){

li.Unit_Price__c = li.Merchandise__r.Price__c;
}

}

4. The for loop is complete. Now you want to update the line items. Before the trigger's final curly brace, add the following.

update openLineItems;

5. During development you typically leave a trigger inactive. To try out the trigger, you'll need to activate it.

• If you're using the Web interface, select the Is Active checkbox, which becomes available after saving the trigger.
• If you're using the IDE, click the Metadata tab and change the status value to Active.

6. Verify that your code looks like the following and then Save.

trigger HandleProductPriceChange on Merchandise__c (after update) {

List<Line_Item__c> openLineItems =
[SELECT j.Unit_Price__c, j.Merchandise__r.Price__c
FROM Line_Item__c j
WHERE j.Invoice_Statement__r.Status__c = 'Negotiating'
AND j.Merchandise__r.id IN :Trigger.new
FOR UPDATE];

for (Line_Item__c li: openLineItems) {
if (li.Merchandise__r.Price__c < li.Unit_Price__c){
li.Unit_Price__c = li.Merchandise__r.Price__c;
}

}
update openLineItems;

}

52

Tutorial #7: Adding Programmatic Logic with Apex

Tell Me More....
The final statement, update openLineItems, updates the records in the database. That's simple enough, but what about
that for loop?

• for (Line_Item__c li: openLineItems) { }—Iterates over the list of open line item. As you iterate, the current
line item is assigned to the variable li.

• if (li.Merchandise__r.Price__c < li.Unit_Price__c) { }—Check to see if the price on the merchandise
record is lower than the current price. You only want to take an action if this is true.

• li.Unit_Price__c = li.Merchandise__r.Price__c;—Finally, update the unit price on the current line item
(assigned to variable li) with the new merchandise price.

Step 4: Test the Trigger
Now let's test the trigger in the app. First you need to create a new invoice statement and order at least one product, or modify
an existing one. The only requirement is that you change the status field of the invoice statement to Negotiating. Then you'll
lower the unit price of a merchandise item used in one of the line items of that invoice, and verify that your line item and
invoice values are updated.

1. Click the Invoice Statements tab.
2. Click the name of an existing invoice statement.
3. Change its Status to Negotiating and click Save.
4. Take note of the Total Value of the invoice. Now click on a Line Item, and note its Unit Price.
5. Click the Merchandise tab, and select the Wee Jet record (or any other item used in the line items).
6. Edit the record, lowering the unit price. If you want an extreme reduction, change it to .01.
7. Navigate back to the Invoice and the Line Item.
8. Note how the values of the line item and the invoice have automatically changed.

Tell Me More....
You may have noticed that this trigger is a little wasteful: it initializes and operates on a list of all line item records that belong
to invoice statements under negotiation. However, just because a merchandise record was updated, that doesn't mean your
trigger should update the record. For example, you may have updated the merchandise record's description, or increased its
price, and neither of these cases requires the trigger to fire. Ideally this trigger should iterate over the Trigger.new set (the
list of Merchandise records that have been updated), creating a new set of these records that pass the price criterion, and only
then retrieve the related line item records.

Summary
In this tutorial, you built on the app by adding business logic that updates all open invoices when the unit price of a merchandise
item goes down. To do this, you defined a trigger that executes whenever a merchandise record is saved with a lower unit
price. Triggers are very useful in scenarios such as these—when you need to update multiple records on a particular condition.
You can have more than one trigger associated with an object that can be triggered under different events and conditions.

An important part of creating Apex triggers is making sure you have automated tests that verify that your trigger works as it
should. You'll learn about testing in Tutorial #8: Adding Tests to Your App on page 54.

53

Tutorial #7: Adding Programmatic Logic with Apex

Tutorial #8: Adding Tests to Your App
Level: Advanced; Duration: 20-30 minutes

Testing is one of the most important steps in developing any app. Testing ensures that your code behaves as it should and
doesn't consume resources unnecessarily. Not only does testing benefit you (you will have more confidence in the apps you
write), but it also benefits the platform. To that end, the platform requires that you test any Apex you write before that code
can be deployed to a production environment. Tests are also run before a new release of the platform is made available, to
ensure that no backward compatibility problems are introduced.

To facilitate testing, Apex supports unit tests, which programmatically validate the code behavior and expected results. All
Apex code has a set of limits that determine how many resources may be consumed. For example, there is a set limit on the
number of queries that can be performed in a trigger. Good tests ensure that your code not only behaves as it should, but also
that it doesn't exceed these limits. In this tutorial you'll write and execute a unit test, which exercises the Apex trigger you just
created.

Prerequisites
Apex Tutorial

You first need to create an Apex trigger as described in Tutorial #7: Adding Programmatic Logic with Apex on page
49.

Software Requirements
You can use the Force.com IDE for this tutorial if you want to. In that case you'll need the Force.com IDE plugin:
wiki.developerforce.com/index.php/Force.com_IDE. If you need help creating a project, see Creating a Project in the
Force.com IDE.

Step 1: Create an Apex Test Class
All unit tests are contained in Apex classes. In this step you create the class to contain the unit tests.

To create a new Apex class in the Web interface:

1. From Setup, click Develop > Apex Classes.
2. Click New.
3. In the editor pane, enter the following code.

@isTest
private class TestHandleProductPriceChange {
}

54

Tutorial #8: Adding Tests to Your App

http://wiki.developerforce.com/index.php/Force.com_IDE

4. Click Quick Save to save your work and continue editing.

To create a new Apex class in the Force.com IDE:

1. In the IDE, right-click your project folder. Then click New > Apex Class.
2. On the Create Apex Class page, enter TestHandleProductPriceChange for the name.
3. In the Template field, choose Test Class.
4. Click Finish to create the class.

Tell Me More....
The @isTest annotation tells Force.com that all code within the Apex class is code that tests the rest of your code. You will
now create test methods within this class that perform the actual tests.

Step 2: Add Test Methods to the Class
Now you can add a method to the class that will do the actual testing. The trigger that you created, which you want to test,
only works when records are updated. So the first thing you need to do is create test records in the database. You want the
method to create an Invoice Statement as well as Merchandise and Line Item records, and add these to the database.

1. Start by creating the test method that will contain your three test procedures. Between the curly braces, enter the following
code.

static testMethod void testPriceChange() {

}

Note: If you're using the IDE, replace the generated comment and code.

2. Between the curly braces, add the following code, which creates an invoice statement and inserts it into the database.

Invoice_Statement__c invoice = new Invoice_Statement__c(Status__c = 'Negotiating');
insert invoice;

3. Directly below insert invoice, add the code to create new merchandise records.

Merchandise__c[] products = new Merchandise__c[]{
new Merchandise__c(Name = 'item 1', Description__c = 'test product 1', Price__c = 10,
Total_Inventory__c = 10),
new Merchandise__c(Name = 'item 2', Description__c = 'test product 2', Price__c = 11,
Total_Inventory__c = 10)
};
insert products;

4. Then, directly below insert products, enter the code to add line items.

Line_Item__c[] lineItems = new Line_Item__c[] {
new Line_Item__c(Invoice_Statement__c = invoice.id, Merchandise__c = products[0].id,
Unit_Price__c = 10, Units_Sold__c = 3),
new Line_Item__c(Invoice_Statement__c = invoice.id, Merchandise__c = products[1].id,
Unit_Price__c = 11, Units_Sold__c = 6)

55

Tutorial #8: Adding Tests to Your App

};
insert lineItems;

Tell Me More....
You have now set up the data. By default, Apex test methods don’t have access to pre-existing data in the organization, such
as the records you created in previous tutorials. In this test method, you created your own test data. You don’t have to delete
this test data because it isn’t committed to the database and is rolled back when the test execution completes. When the test
execution finishes, the test data won’t be persisted in the organization and won’t be available.

Note how the invoice statement that you created has a status set to Negotiating, which is the condition you need for the trigger
to fire. You now need to write the code that will fulfill the other conditions for the trigger to fire: you need to lower the price
of a piece of merchandise. You'll do that in the next step.

Step 3: Write Code to Execute the Trigger
The code in your test method doesn't really do much yet: it won't cause your trigger to execute, as that only happens when
you update the price of a Merchandise record.

1. After insert lineItems;, add the following lines.

products[0].price__c = 20;
Test.startTest();
update products;
Test.stopTest();

Note: This code modifies the price of one of the Merchandise records, raising its price. It then calls startTest(),
which is part of the testing framework that marks the point in your test code when your test actually begins. The
system will not consider the setup code and database operations that precede it to be part of the test. Testing also
ensures that your code doesn't exceed certain governor limits—which limits the resources your Apex code may
use. By marking where your actual test begins and ends, the system won't count your setup code towards the
governor limits, ensuring that your test is a more accurate reflection of how it would behave in a production
environment.

2. Now that you have updated the products, you need to check whether the price in the line items has changed. Ideally, it
shouldn't have, because the price was raised in the setup code. Add the following code after Test.stopTest();

lineItems = [SELECT id, unit_price__c FROM Line_Item__c WHERE id IN :lineItems];
system.assert(lineItems[0].unit_price__c == 10);

3. Verify that your code looks like the following and then Save.

@isTest
private class TestHandleProductPriceChange {

static testMethod void testPriceChange() {
Invoice_Statement__c invoice = new Invoice_Statement__c

(Status__c = 'Negotiating');
insert invoice;

Merchandise__c[] products = new Merchandise__c[]{
new Merchandise__c(Name = 'item 1', Description__c =

56

Tutorial #8: Adding Tests to Your App

'test product 1', Price__c = 10, Total_Inventory__c = 10),
new Merchandise__c(Name = 'item 2', Description__c =

'test product 2', Price__c = 11, Total_Inventory__c = 10)
};
insert products;
Line_Item__c[] lineItems = new Line_Item__c[] {

new Line_Item__c(Invoice_Statement__c = invoice.id,
Merchandise__c = products[0].id, Unit_Price__c = 10, Units_Sold__c = 3),

new Line_Item__c(Invoice_Statement__c = invoice.id,
Merchandise__c = products[1].id, Unit_Price__c = 11, Units_Sold__c = 6)

};
insert lineItems;

products[0].price__c = 20;
Test.startTest();
update products;
Test.stopTest();

lineItems = [SELECT id, unit_price__c FROM Line_Item__c WHERE id IN :lineItems];

system.assert(lineItems[0].unit_price__c == 10);
}

}

Step 4: Execute the Test
Force.com has a testing framework that lets you execute tests, and also check code coverage. You are now going to execute
the tests, and look at the resulting code coverage.

Note: These steps show how to execute steps in the Web interface, but you can also execute tests in the Force.com
IDE by right-clicking the class name in the Package Explorer and choosing Force.com > Run Tests. The remainder
of this tutorial uses the Web interface, but you should be able to follow along easily in the IDE.

1. Navigate to your test class—from Setup, click Develop > Apex Classes—and then click your test class,
TestHandleProductsPriceChange.

2. Click Run Test and you'll see output similar to the following.

57

Tutorial #8: Adding Tests to Your App

This result tells you a number of important things.

• It indicates whether your tests were successful or not. If the boolean condition in the system.assert statement that you
added to the test had failed, that result would be flagged here. Adding lots of asserts is a great way for you to test the
expected behavior of your code.

• It provides detail about the execution of the test. By looking through the Debug Log, for example, you can see that your
Order_in_Stock validation rule has fired. And you can see which records you created, how many queries you executed,
and more.

• It indicates code coverage: how many lines of code you executed in some other class or trigger.

Note also how the result page shows that you provided 80% coverage of the HandleProductPriceChange trigger. That's
enough code coverage to deploy, but we strive for perfection. In the next step, you'll view the code coverage to see where you
need to add more test cases to bring it up to 100%.

Step 5: View Code Coverage and Improve Tests
You have written two sets of code. You have your trigger, which we'll call production code, and you have your code in the test
class, which we'll call test code. The term code coverage refers to how much of your production code is covered by testing code.
In other words: when someone runs your testing code, does it execute all, or only some portion of, the production code? If it
only executes a portion of the code, that could mean your production code contain bugs in the untested code. You can make
these concepts a little more concrete by looking at a graphical code coverage chart.

Note: If you have been using the Force.com IDE for this tutorial, keep using it. Developing in both the IDE and
the Web interface at the same time requires that you synchronize with the server every time you switch back and
forth. Synchronizing is easy (right-click your class and choose Force.com > Synchronize with Server), but it's even
easier to avoid!

1. In the Code Coverage section, click 80.

58

Tutorial #8: Adding Tests to Your App

2. The Code Coverage page opens. The blue highlight marks lines of code that have been covered (executed) as a result of
our test method. The red highlight marks lines that have not been executed. In this case, line 13 wasn't executed because
we don't lower the price of a merchandise item, we only raise it.

3. That red line is a good indicator that your test isn't complete. So let's modify your test method to improve your code
coverage. Close the Code Coverage window and then from Setup, click Develop > Apex Classes and select your test class
TestHandleProductPriceChange.

4. Click Edit.
5. Starting with products[0], replace the code up to the next curly brace with the following.

products[0].price__c = 20; // raise price
products[1].price__c = 5; // lower price
Test.startTest();
update products;
Test.stopTest();

lineItems =
[SELECT id, unit_price__c FROM Line_Item__c WHERE id IN :lineItems];
System.assert(lineItems[0].unit_price__c == 10); // unchanged
System.assert(lineItems[1].unit_price__c == 5); // changed!!

6. Click Save.
7. Now click Run Test again, and you'll see that you have 100% code coverage.

59

Tutorial #8: Adding Tests to Your App

Summary
In this tutorial you created tests for the Apex trigger and saw how the integrated testing tools can help you attain 100% code
coverage. Creating unit tests as you develop is necessary for deployment and it's also the key to successful long-term development.

But it's important to note that code coverage isn't the only goal for testing; ideally you should also check all possible scenarios,
and the test case you have just written misses one. Right now it only checks invoice statements that have a status of Negotiating.
It should also check other status values. For example, if an invoice statement does not have a status of Negotiating, then raising
or lowering the price shouldn't have any effect.

60

Tutorial #8: Adding Tests to Your App

Tutorial #9: Building a Custom User Interface Using
Visualforce

Level: Intermediate; Duration: 30–45 minutes

Visualforce is a component-based user interface framework for the Force.com platform. In previous tutorials you built and
extended your app by using a user interface that is automatically generated. Visualforce gives you a lot more control over the
user interface by providing a view framework that includes a tag-based markup language similar to HTML, a library of reusable
components that can be extended, and an Apex-based controller model. Visualforce supports the Model-View-Controller
(MVC) style of user interface design, and is highly flexible.

In this tutorial, you will use Visualforce to create a new interface for the Warehouse app that displays an inventory count sheet
that lets you list all Merchandise inventory, as well as update the counts on each. The purpose of the count sheet is to update
the computer system with a physical count of the merchandise, in case they are different.

Prerequisites
Basic Knowledge

For this tutorial, it helps to have basic knowledge of markup languages like HTML and XML, but it is not required.

Step 1: Enable Visualforce Development Mode
Development Mode embeds a Visualforce page editor in your browser. It allows you to see code and preview the page at the
same time. Development Mode also adds an Apex editor for editing controllers and extensions.

1. From Setup, click My Personal Information > Personal Information.
2. Click Edit.
3. Select the Development Mode checkbox and click Save.

61

Tutorial #9: Building a Custom User Interface Using
Visualforce

Step 2: Create a Visualforce Page
In this step you create a Visualforce page that will serve as an inventory count sheet.

1. In your browser, add the text /apex/CountSheet to the URL for your Salesforce instance. For example, if your Salesforce
instance is https://na1.salesforce.com, the new URL would be
https://na1.salesforce.com/apex/CountSheet. You will get an error message: Page CountSheet does not exist.

2. Click the Create Page CountSheet link to create the new page.
3. Click the Page Editor link in the bottom left corner of the page. The Page Editor tab displays the code and a preview of

the new page (which has some default text). It should look like this.

62

Tutorial #9: Building a Custom User Interface Using
Visualforce

4. You don't really want the heading of the page to say “Congratulations”, so change the contents of the <h1> tag to
Inventory Count Sheet, and go ahead and remove the comments. The code for the page should now look like this.

<apex:page>

<h1>Inventory Count Sheet</h1>

</apex:page>

5. Click the Save icon at the top of the Page Editor. The page reloads to reflect your changes.

Tell Me More....
Notice that the code for the page looks a lot like standard HTML. That's because a Visualforce page combines HTML tags,
such as <h1>, with Visualforce-specific tags, which start with <apex:>

Step 3: Add a Stylesheet Static Resource
You want your Warehouse app to look slick, so you're going to use a custom stylesheet (CSS file) to specify the color, font,
and arrangement of text on your page. Most Web pages and Web designers use CSS, a standard Web technology, for this
purpose, so we've created one for you. In order for your pages to reference a stylesheet, you have to upload it as a static resource.
A static resource is a file or collection of files that is stored on Force.com. Once your stylesheet is added as a static resource,
it can be referenced by any of your Visualforce pages.

To add a style sheet as a static resource:

1. In your browser, go to developer.force.com/workbook/styles. Download the file and save it to your desktop.
2. Back in the app, from Setup, click Develop > Static Resources and click New.
3. In the Name field, enter styles.
4. Click Choose File and find the styles.zip file you downloaded.
5. In the Cache Control picklist choose Public.

63

Tutorial #9: Building a Custom User Interface Using
Visualforce

http://developer.force.com/workbook/styles

6. Click Save.

Note: If your Visualforce pages are exposed on a public website, then Force.com uses a global content delivery network
of cache servers to hold copies of your static files.

Now you need to modify your Visualforce page to reference the stylesheet.

1. Just as you did when you created the page, add the text /apex/CountSheet to the URL for your Salesforce instance.
2. Modify the attributes of the <apex:page> tag and enter the following code to remove the standard stylesheet, the header,

and the sidebar.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false">

3. Now you need to tell the page where to find the stylesheet, so add a new line below the first <apex:page> tag and type
<apex:

4. The editor has code insight, which gives you a drop-down list of the elements that are available in this context. Start typing
stylesheet and when you see apex:stylesheet, select it.

5. Now specify the location of the stylesheet as shown.

<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}" />

6. Verify that your code looks like the following:

<apex:page standardStylesheets="false" showHeader="false" sidebar="false">

<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}" />

<h1>Inventory Count Sheet</h1>

</apex:page>

7. Click the Save icon at the top of the Page Editor.

64

Tutorial #9: Building a Custom User Interface Using
Visualforce

Note how the page now looks very different, the title is in a different font and location, and the standard header and sidebar
are no longer present.

Tell Me More....
Let's take a look at that stylesheet code in a little more detail.

• $Resources is a global variable which Visualforce has access to. With $Resource.styles, you refer to the resource
called "styles" which you created earlier.

• The URLFOR() function locates the static resource, and a file within that resource, and calculates the URL that should be
generated in your final page. If the syntax looks familiar, it's because you've already encountered it to dynamically evaluate
values when the Visualforce page is rendered.

Step 4: Add a Controller to the Page
Visualforce's Model-View-Controller design pattern makes it easy to separate the view and its styling from the underlying
database and logic. In MVC, the view (the Visualforce page) interacts with a controller. In our case, the controller is usually
an Apex class, which exposes some functionality to the page. For example, the controller may contain the logic that should be
executed when a button is clicked. A controller also typically interacts with the model (the database)—exposing data that the
view might want to display.

All Force.com objects have default standard controllers that can be used to interact with the data associated with the object,
so in many cases you don't need to write the code for the controller yourself. You can extend the standard controllers to add
new functionality, or create custom controllers from scratch. In this tutorial you'll use the default controller.

1. If the Page Editor isn't open on your Visualforce page, click Page Editor to edit the page.
2. Modify your code to enable the Merchandise__c standard controller by editing the first <apex:page> tag. The editor

ignores whitespace, so you can enter the text on a new line.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false"
standardController="Merchandise__c">

3. Next, add the standard list controller definition.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false"
standardController="Merchandise__c" recordSetVar="products">

4. Click the Save icon at the top of the Page Editor. You won't notice any change on the page. However, because you've
indicated that the page should use a controller, and defined the variable products, the variable will be available to you
in the body of the page and it will represent a list of Merchandise records.

Tell Me More....
The recordSetVar attribute enables a standard list controller, which provides additional controller support for listing a
number of records with pagination. Its value, which you've set to products, will ensure that a new variable, products, will
contain the set of records to be displayed on the Visualforce page.

65

Tutorial #9: Building a Custom User Interface Using
Visualforce

Step 5: Display the Inventory Count Sheet as a Visualforce Page
You now have all the functionality in place to flesh out the Visualforce page. It will display a table of all the merchandise
records, together with an input field on each so that you can update the inventory count.

1. In the line below the </h1> tag, start typing <apex:f on a new line, and highlight <apex:form> when it appears in
the drop-down list. The form will allow you to make updates to the page.

2. Press Enter and notice that the system generates the opening and closing tags for you.
3. Place your cursor between the tags and create a data table. Start by typing <apex:d and press Enter to select dataTable

from the drop-down list.
4. Now you need to add some attributes to the dataTable tag. The value attribute indicates which list of items the dataTable

component should iterate over. The var attribute assigns each item of that list, for one single iteration, to the pitem
variable. The rowClasses attribute assigns CSS styling names to alternate rows. On one or more lines within the tag,
enter the following.

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">

5. Now you are going to define each column, and determine where it gets its data by looking up the appropriate field in the
pitem variable. Add the following code between the opening and closing dataTable tags.

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">
<apex:column headerValue="Product">

<apex:outputText value="{!pitem.name}"/>
</apex:column>

</apex:dataTable>

6. Click Save, and you will see your table appear.

The headerValue attribute has simply provided a header title for the column, and below it you'll see a list of rows: one
for each merchandise record. The expression {!pitem.name} indicates that we want to display the name field of the
current row.

7. Now, after the closing tag for the first column, add two more columns.

<apex:column headerValue="Inventory">
<apex:outputField value="{!pitem.Total_Inventory__c}"/>

</apex:column>
<apex:column headerValue="Physical Count">

<apex:inputField value="{!pitem.Total_Inventory__c}"/>
</apex:column>

Note: The second column is an inputField, not an outputField. The inputField will display a value,
but it will also allow you to change it.

8. Click Save and you have an inventory count sheet! It lists all the merchandise records, displays the current inventory, and
provides an input field for the physical count.

66

Tutorial #9: Building a Custom User Interface Using
Visualforce

9. As a final embellishment, add a button that will modify the physical count on any row and refresh the values on the page.
To do this, enter the following code directly above the </apex:form> line.

<apex:commandButton action="{!quicksave}" value="Update Counts" />

Tell Me More....
• The dataTable component produces a table with rows, and each row is found by iterating over a list. The standard

controller you used for this page was set to Merchandise__c, and the recordSetVar to products. As a result, the
controller automatically populated the products list variable with merchandise records retrieved from the database. It's this
list that the dataTable component uses.

• You need a way to reference the current row as you iterate over the list. That statement var="pitem" assigns a variable
called pitem that holds the current row.

• The rowClasses and styleClass attributes simply use some of the styles from the CSS style sheet that you loaded in
the static resource. You can safely remove this–it will just make things look less pretty!

• Every standard controller has various methods that exist for all Force.com objects. The commandButton component
displays the button, and invokes a method called quicksave on the standard controller, which updates the values on the
records. Here, you're updating the physical count of the product and performing a quick save, which updates the product
with the new count.

• Although pagination isn't shown in this example, the functionality is there. If you have enough records to page through
them, add the following code below the commandButton for page-flipping action.

<apex:commandLink action="{!next}" value="Next" rendered="{!hasNext}" />

Step 6: Add Inline Editing Support
You now have a Visualforce page that contains a table that displays all the merchandise records and allows you to edit the
inventory count through the physical count input field. In this step, you modify this table to add inline editing support for the
inventory output field. Also, since inline editing makes the physical count input field unnecessary, you remove the last column,
which contains this field. After carrying out this step, you will be able to edit the inventory count by double-clicking a field
in the Inventory column.

Instead of using an inputField to edit the physical count in the last column in the previous step, you can make the inventory
column editable by adding an inlineEditSupport component as a child component of the outputField component.
The following procedure shows how to do this.

67

Tutorial #9: Building a Custom User Interface Using
Visualforce

1. Delete the following markup for the physical count column.

<apex:column headerValue="Physical Count">
<apex:inputField value="{!pitem.Total_Inventory__c}"/>

</apex:column>

2. Within the inventory column, break up the outputField component so that it has an end tag, as follows.

<apex:outputField value="{!pitem.Total_Inventory__c}">

</apex:outputField>

3. Between the outputField's start and end tag, insert the inlineEditSupport component.

<apex:inlineEditSupport event="ondblclick" showOnEdit="update"/>

4. Now that you've added the inlineEditSupport component, modify the update button to give it an ID and a style class
name. The ID is referenced by the inlineEditSupport component to show the button during editing. The style class
name is used in styles.css to hide the update button the first time the page renders. Replace the commandButton
with the following.

<apex:commandButton id="update" action="{!quicksave}" value="Update Counts"
styleclass="updateButton"/>

5. Your Visualforce markup should look like the following.

<apex:page standardStylesheets="false" showHeader="false" sidebar="false"
standardController="Merchandise__c" recordsetVar="products">
<apex:stylesheet value="{!URLFOR($Resource.styles, 'styles.css')}"/>
<h1>Inventory Count Sheet</h1>
<apex:form>

<apex:dataTable value="{!products}" var="pitem" rowClasses="odd,even">
<apex:column headerValue="Product">

<apex:outputText value="{!pitem.name}"/>
</apex:column>
<apex:column headerValue="Inventory">

<apex:outputField value="{!pitem.Total_Inventory__c}">
<apex:inlineEditSupport event="ondblclick" showOnEdit="update"/>

</apex:outputField>
</apex:column>

</apex:dataTable>

<apex:commandButton id="update" action="{!quicksave}" value="Update Counts"
styleclass="updateButton"/>

</apex:form>
</apex:page>

6. Click Save. The page now displays the inventory count table with two columns. Notice that the Update Counts button
is hidden initially.

7. Double-click any cell in the inventory column. Notice how the field dynamically becomes an input field and the Update
Counts button appears. Also, an undo button dynamically appears to the right of the field which allows you to cancel out
of this edit operation.

68

Tutorial #9: Building a Custom User Interface Using
Visualforce

8. Modify the count value and click Update Counts to commit this update.

Tell Me More....
• The event attribute of the inlineEditSupport component is set to "ondblclick", which is a DOM event and means

that the output field will be made editable when you double-click it. Also, the showOnEdit attribute causes the Update
Counts button to appear on the page during an inline edit. This attribute is set to the ID of the Update Counts button.

• The Update Counts button is hidden through its style specification in the static resource file styles.css. The
styleclass attribute on commandButton links this button to an entry in styles.css.

Summary
Congratulations! You have created a new interface for your Warehouse app by creating a Visualforce page that uses a standard
controller. Your page is highly configurable. For example, you can easily modify which data is displayed in each row by
modifying the column components. The page also makes use of a lot of functionality provided by the standard controller
behind the scenes. For example, the controller automatically queries the database and finds all merchandise records and assigns
them to the products variable. It also provides a way of saving records, through its quicksave method.

Now that you have created some Visualforce components, you can expose this functionality on a public website.

69

Tutorial #9: Building a Custom User Interface Using
Visualforce

	About the Force.com Workbook
	Tutorial #1: Creating a Warehouse App
	Step 1: Create a Warehouse Custom App
	Step 2: Add Description, Price, and Total Inventory Fields
	Step 3: Create a Merchandise Record
	Summary

	Tutorial #2: Adding Relationships
	Step 1: Create an Invoice Statement Custom Object
	Step 2: Create a Line Item Object
	Step 3: Relate the Objects
	Step 4: Add Invoice Statements to the App
	Step 5: Create an Invoice Record
	Summary

	Tutorial #3: Using Formulas and Validation Rules
	Step 1: Calculate a Value for Each Line Item
	Step 2: Calculate a Value for the Invoice Statement With a Roll-Up Summary Field
	Step 3: Check Inventory With a Validation Rule
	Step 4: Test the Validation Rule
	Step 5: Improve the Validation Rule
	Summary

	Tutorial #4: Automating Processes Using Workflow
	Step 1: Populate the Line Item Price Using a Workflow Rule
	Step 2: Update Total Inventory When an Order is Placed
	Step 3: Test the Workflow Rules
	Summary

	Tutorial #5: Creating an Approval Process
	Step 1: Create an Email Template
	Step 2: Create an Approval Process
	Step 3: Create a Custom Profile
	Step 4: Create a User
	Step 5: Test the Approval Process
	Summary

	Tutorial #6: Creating Reports and Dashboards
	Step 1: Create a Tabular Report
	Step 2: Create a Summary Report
	Step 3: Create a Matrix Report
	Step 4: Create a Dashboard
	Summary

	Tutorial #7: Adding Programmatic Logic with Apex
	Step 1: Create an Apex Trigger Definition
	Step 2: Define a List Variable
	Step 3: Iterate Through the List and Modify Price
	Step 4: Test the Trigger
	Summary

	Tutorial #8: Adding Tests to Your App
	Step 1: Create an Apex Test Class
	Step 2: Add Test Methods to the Class
	Step 3: Write Code to Execute the Trigger
	Step 4: Execute the Test
	Step 5: View Code Coverage and Improve Tests
	Summary

	Tutorial #9: Building a Custom User Interface Using Visualforce
	Step 1: Enable Visualforce Development Mode
	Step 2: Create a Visualforce Page
	Step 3: Add a Stylesheet Static Resource
	Step 4: Add a Controller to the Page
	Step 5: Display the Inventory Count Sheet as a Visualforce Page
	Step 6: Add Inline Editing Support
	Summary

