
Version 28.0: Summer ’13

Database.com Metadata API Developer's Guide

Last updated: August 30, 2013

© Copyright 2000–2013 salesforce.com, inc. All rights reserved. Salesforce.com is a registered trademark of salesforce.com, inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

Table of Contents

Getting Started..1

Chapter 1: Understanding Metadata API...1
Development Platforms...2
Standards Compliance...2
Metadata API Support Policy...2
Related Resources..3

Chapter 2: Quick Start..4
Prerequisites..4
Step 1: Generate or Obtain the Web Service WSDLs for Your Organization...4
Step 2: Import the WSDL Files Into Your Development Platform..5
Step 3: Walk Through the Java Sample Code...6

Using Metadata API...12

Chapter 3: Deploying and Retrieving Metadata..12
Working with the Zip File..12
Metadata Types...14
Sample package.xml Manifest Files...16
Running Tests in a Deployment..18
Maintaining User References..19

Chapter 4: CRUD-Based Metadata Development...20

Chapter 5: Error Handling...23
Error Handling for Session Expiration ...23

Reference...24

Chapter 6: File-Based Calls...24
deploy()..24

checkDeployStatus()..32
retrieve()..32

RetrieveRequest...38
checkRetrieveStatus()..39

Chapter 7: CRUD-Based Calls..41
create()...41
delete()...42
update()...44

Chapter 8: Utility Calls..47
checkStatus()...47

i

Table of Contents

describeMetadata()..48
listMetadata()..48

ListMetadataQuery..50

Chapter 9: Result Objects..51
AsyncResult...51
DeployResult...53
DescribeMetadataResult..57
RetrieveResult..58

Chapter 10: Metadata Types..61
Metadata Components and Types...62
Unsupported Metadata Types...63
ApexClass..63
ApexTrigger..65
CallCenter...67
CustomObject...68

CustomField..72
NamedFilter...78
Picklist (Including Dependent Picklist)...81
SharingReason...86
SharingRecalculation...87
ValidationRule...88
Weblink...89
Metadata Field Types..93

Group..94
InstalledPackage..95
Metadata..96
MetadataWithContent..97
Package..98
PermissionSet..99
Profile..102
Queue..109
QuickAction..110
RemoteSiteSetting...114
Role...115
SamlSsoConfig..115
Settings..118

ActivitiesSettings...119
LiveAgentSettings...122
MobileSettings...123
SecuritySettings...125

SharedTo...130
SharingRules..131

BaseSharingRule..132
CriteriaBasedSharingRule...132

ii

Table of Contents

OwnerSharingRule..134
Workflow...135

Glossary...144

Index...154

iii

Table of Contents

iv

Table of Contents

GETTING STARTED

Chapter 1

Understanding Metadata API

Use Metadata API to retrieve, deploy, create, update or delete customization
information, such as custom object definitions and page layouts, for your

In this chapter ...

• Development Platforms organization. This API is intended for managing customizations and for building
• Standards Compliance tools that can manage the metadata model, not the data itself. To create, retrieve,

update or delete records, such as accounts or leads, use data SOAP API or REST
API.

• Metadata API Support Policy
• Related Resources

The easiest way to access the functionality in Metadata API is to use the
Force.com IDE or Force.com Migration Tool. These tools are built on top of
Metadata API and use the standard Eclipse and Ant tools respectively to simplify
the task of working with Metadata API. Built on the Eclipse platform, the
Force.com IDE provides a comfortable environment for programmers familiar
with integrated development environments, allowing you to code, compile, test,
and deploy all from within the IDE itself. The Force.com Migration Tool is
ideal if you want to use a script or a command-line utility for moving metadata
between a local directory and a Database.com organization. For more information
about the Force.com IDE or Force.com Migration Tool, see developer.force.com.

The underlying calls of Metadata API have been exposed for you to use directly,
if you prefer to build your own client applications. This guide gives you more
information about working directly with Metadata API.

You can use the asynchronous Metadata API to manage setup and customization
information (metadata) for your organizations. For example:

• Export the customizations in your organization as XML metadata files. See
Working with the Zip File and retrieve().

• Migrate configuration changes between organizations. See deploy() and
retrieve().

• Modify existing customizations in your organization using XML metadata
files. See deploy() and retrieve().

• Manage customizations in your organization programmatically. See
CRUD-Based Metadata Development, create(), update(), and
delete().

You can modify metadata in your test database. You can also create scripts to
populate a new organization with your custom objects, custom fields, and other
components.

1

http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api_rest/index.htm
http://www.salesforce.com/us/developer/docs/api_rest/index.htm
http://developer.force.com

Development Platforms
Metadata API supports both file-based and CRUD-based development.

File-Based Development
The declarative or file-based asynchronous Metadata API deploy() and retrieve() calls deploy or retrieve a .zip file
that holds components in a set of folders, and a manifest file named package.xml. For more information, see Deploying
and Retrieving Metadata on page 12. The easiest way to access the file-based functionality is to use the Force.com IDE or
Force.com Migration Tool.

CRUD-Based Development
The CRUD-based asynchronous Metadata API calls create(), update(), and delete() act upon the metadata components
in a manner similar to the way synchronous API calls in the enterprise WSDL act upon objects. For more information about
the enterprise WSDL, see the SOAP API Developer's Guide.

Note: CRUD (create, read, update, delete) implies that there is a read call, but there is no equivalent read call for
CRUD-based development. If you want to read your metadata, use the file-based retrieve() call.

Use the create(), update(), and delete() calls with the utility call checkStatus(). For more information, see
CRUD-Based Metadata Development.

Standards Compliance
Metadata API is implemented to comply with the following specifications:

WebsiteStandard Name

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/Simple Object Access Protocol (SOAP)
1.1

http://www.w3.org/TR/2001/NOTE-wsdl-20010315Web Service Description Language
(WSDL) 1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.htmlWS-I Basic Profile 1.1

Metadata API Support Policy
Salesforce.com supports previous versions of Metadata API. However, your new client applications should use the most recent
version of the Force.com Metadata API WSDL file to fully exploit the benefits of richer features and greater efficiency.

Backward Compatibility
Salesforce.com strives to make backward compatibility easy when using the Force.com platform.

2

Development PlatformsUnderstanding Metadata API

http://www.salesforce.com/apidoc
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

Each new Database.com release consists of two components:

• A new release of platform software that resides on salesforce.com systems
• A new version of the API

For example, the Spring '07 release included API version 9.0 and the Summer '07 release included API version 10.0.

We maintain support for each API version across releases of the platform software. The API is backward compatible in that
an application created to work with a given API version will continue to work with that same API version in future platform
software releases.

Salesforce.com does not guarantee that an application written against one API version will work with future API versions:
Changes in method signatures and data representations are often required as we continue to enhance the API. However, we
strive to keep the API consistent from version to version with minimal, if any, changes required to port applications to newer
API versions.

For example, an application written using API version 9.0, which shipped with the Spring ’07 release, will continue to work
with API version 9.0 on the Summer ’07 release, and on future releases beyond that. However, that same application might
not work with API version 10.0 without modifications to the application.

API End-of-Life
Salesforce.com is committed to supporting each API version for a minimum of three years from the date of first release. In
order to mature and improve the quality and performance of the API, versions that are more than three years old might cease
to be supported.

When an API version is to be deprecated, advance notice is given at least one year before support ends. Salesforce.com will
directly notify customers using API versions planned for deprecation.

Related Resources
The salesforce.com developer website provides a full suite of developer toolkits, sample code, sample SOAP messages,
community-based support, and other resources to help you with your development projects. Be sure to visit
https://wiki.developerforce.com/index.php/Getting_Started for more information, or visit
http://developer.force.com/join to sign up for a free Developer Edition account.

You can visit these websites to find out more about Database.com applications:

• Developer Force provides a wealth of information for developers.

• Salesforce.com for information about the Database.com application.

• Salesforce.com Community for services to ensure Database.com customer success.

3

Related ResourcesUnderstanding Metadata API

https://wiki.developerforce.com/index.php/Getting_Started
http://developer.force.com/join
https://wiki.developerforce.com/index.php/Tools
http://www.salesforce.com
http://www.salesforce.com/community

Chapter 2

Quick Start

The easiest way to access the functionality in Metadata API is to use the Force.com IDE or Force.com Migration Tool. These
tools are built on top of Metadata API and use the standard Eclipse and Ant tools respectively to simplify the task of working
with Metadata API. Built on the Eclipse platform, the Force.com IDE provides a comfortable environment for programmers
familiar with integrated development environments, allowing you to code, compile, test, and deploy all from within the IDE
itself. The Force.com Migration Tool is ideal if you want to use a script or a command-line utility for moving metadata between
a local directory and a Database.com organization. For more information about the Force.com IDE or Force.com Migration
Tool, see developer.force.com.

However, the underlying calls of Metadata API have been exposed for you to use directly, if you prefer to build your own client
applications. This quick start gives you all the information you need to start writing applications that directly use Metadata API
to manage customizations for your organization. It shows you how to get started with File-Based Development. For an example
of CRUD-Based Development, see Java Sample Code for CRUD-Based Development.

Prerequisites
Make sure you complete these prerequisites before you start using Metadata API.

• Create a development environment.

It is strongly recommended that you use a test database for development.

• Identify a user that has the “API Enabled” and “Modify All Data” permissions. These permissions are required to access
Metadata API calls.

• Install a SOAP client. Metadata API works with current SOAP development environments, including, but not limited
to, Visual Studio® .NET and the Force.com Web Service Connector (WSC).

In this document, we provide Java examples based on WSC and JDK 6 (Java Platform Standard Edition Development
Kit 6). To run the samples, first download the latest force-wsc JAR file and its dependencies (dependencies are listed on
the page when you select a version) from mvnrepository.com/artifact/com.force.api/force-wsc/.

Note: Development platforms vary in their SOAP implementations. Implementation differences in certain
development platforms might prevent access to some or all of the features in Metadata API.

Step 1: Generate or Obtain the Web Service WSDLs for Your Organization
To access Metadata API calls, you need a Web Service Description Language (WSDL) file. The WSDL file defines the Web
service that is available to you. Your development platform uses this WSDL to generate stub code to access the Web service

4

http://developer.force.com
http://mvnrepository.com/artifact/com.force.api/force-wsc/

it defines. You can either obtain the WSDL file from your organization’s Database.com administrator, or you can generate it
yourself if you have access to the WSDL download page in the Database.com user interface. For more information about
WSDL, see http://www.w3.org/TR/wsdl.

Before you can access Metadata API calls, you must authenticate to use the Web service using the login() call, which is
defined in the enterprise WSDL and the partner WSDL. Therefore, you must also obtain one of these WSDLs.

Any user with the “Modify All Data” permission can download the WSDL file to integrate and extend the Database.com
platform. (The System Administrator profile has this permission.)

The sample code in Step 3: Walk Through the Java Sample Code on page 6 uses the enterprise WSDL, though the partner
WSDL works equally well.

To generate the metadata and enterprise WSDL files for your organization:

1. Log in to your Database.com account. You must log in as an administrator or as a user who has the “Modify All Data”
permission.

2. From Setup, click Develop > API.
3. Click Generate Metadata WSDL and save the XML WSDL file to your file system.
4. Click Generate Enterprise WSDL and save the XML WSDL file to your file system.

Step 2: Import the WSDL Files Into Your Development Platform
Once you have the WSDL files, import them into your development platform so that your development environment can
generate the necessary objects for use in building client Web service applications. This section provides sample instructions
for WSC. For instructions about other development platforms, see your platform’s product documentation.

Note: The process for importing WSDL files is identical for the metadata and enterprise WSDL files.

Instructions for Java Environments (WSC)
Java environments access the API through Java objects that serve as proxies for their server-side counterparts. Before using
the API, you must first generate these objects from your organization’s WSDL file.

Each SOAP client has its own tool for this process. For WSC, use the wsdlc utility.

Note: Before you run wsdlc, you must have the WSC JAR file installed on your system and referenced in your
classpath. You can download the latest force-wsc JAR file and its dependencies (dependencies are listed on the page
when you select a version) from mvnrepository.com/artifact/com.force.api/force-wsc/.

The basic syntax for wsdlc is:

java -classpath pathToWsc;pathToWscDependencies com.sforce.ws.tools.wsdlc
pathToWsdl/WsdlFilename pathToOutputJar/OutputJarFilename

For example, on Windows:

java –classpath force-wsc-24.0.0.jar;js-1.7R2.jar com.sforce.ws.tools.wsdlc metadata.wsdl
metadata.jar

5

Step 2: Import the WSDL Files Into Your Development
Platform

Quick Start

http://www.w3.org/TR/wsdl
http://mvnrepository.com/artifact/com.force.api/force-wsc/

On Mac OS X and Unix, use a colon instead of a semicolon in between items in the classpath:

java –classpath force-wsc-24.0.0.jar:js-1.7R2.jar com.sforce.ws.tools.wsdlc metadata.wsdl
metadata.jar

wsdlc generates a JAR file and Java source code and bytecode files for use in creating client applications. Repeat this process
for the enterprise WSDL to create an enterprise.JAR file.

Step 3: Walk Through the Java Sample Code
Once you have imported the WSDL files, you can begin building client applications that use Metadata API. The sample is
a good starting point for writing your own code.

Before you run the sample, modify your project and the code to:

1. Include the WSC JAR, its dependencies, and the JAR files you generated from the WSDLs.

Note: Although WSC has other dependencies, the following sample only requires Rhino (js-1.7R2.jar).

2. Update USERNAME and PASSWORD variables in the MetadataLoginUtil.login() method with your user name
and password. If your current IP address isn’t in your organization's trusted IP range, you'll need to append a security token
to the password.

3. If you are using a test database, be sure to change the login URL.

Login Utility
Java users can use ConnectorConfig to connect to Enterprise, Partner, and Metadata SOAP API. MetadataLoginUtil
creates a ConnectorConfig object and logs in using the Enterprise WSDL login method. Then it retrieves sessionId
and metadataServerUrl to create a ConnectorConfig and connects to Metadata API endpoint. ConnectorConfig
is defined in WSC.

The MetadataLoginUtil class abstracts the login code from the other parts of the sample, allowing portions of this code
to be reused without change across different Database.com APIs.

import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.soap.enterprise.LoginResult;
import com.sforce.soap.metadata.MetadataConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

/**
* Login utility.
*/
public class MetadataLoginUtil {

public static MetadataConnection login() throws ConnectionException {
final String USERNAME = "user@company.com";
// This is only a sample. Hard coding passwords in source files is a bad practice.
final String PASSWORD = "password";
final String URL = "https://login.salesforce.com/services/Soap/c/28.0";
final LoginResult loginResult = loginToSalesforce(USERNAME, PASSWORD, URL);
return createMetadataConnection(loginResult);

}

6

Step 3: Walk Through the Java Sample CodeQuick Start

private static MetadataConnection createMetadataConnection(
final LoginResult loginResult) throws ConnectionException {

final ConnectorConfig config = new ConnectorConfig();
config.setServiceEndpoint(loginResult.getMetadataServerUrl());
config.setSessionId(loginResult.getSessionId());
return new MetadataConnection(config);

}

private static LoginResult loginToSalesforce(
final String username,
final String password,
final String loginUrl) throws ConnectionException {

final ConnectorConfig config = new ConnectorConfig();
config.setAuthEndpoint(loginUrl);
config.setServiceEndpoint(loginUrl);
config.setManualLogin(true);
return (new EnterpriseConnection(config)).login(username, password);

}
}

Java Sample Code for File-Based Development
The sample code logs in using the login utility. Then it displays a menu with retrieve, deploy, and exit.

The retrieve() and deploy() calls both operate on a .zip file named components.zip. The retrieve() call retrieves
components from your organization into components.zip, and the deploy() call deploys the components in
components.zip to your organization. If you save the sample to your computer and execute it, run the retrieve option first
so that you have a components.zip file that you can subsequently deploy. After retrieve or deploy calls, it checks
checkStatus() in a loop until the status value in AsyncResult indicates that the operation has completed.

The retrieve() call uses a manifest file to determine the components to retrieve from your organization. A sample
package.xml manifest file follows. For more details on the manifest file structure, see Working with the Zip File. For this
sample, the manifest file retrieves all custom objects, custom tabs, and page layouts.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

</types>
<types>

<members>*</members>
<name>CustomTab</name>

</types>
<types>

<members>*</members>
<name>Layout</name>

</types>
<version>28.0</version>

</Package>

Note the error handling code that follows each API call.

import java.io.*;
import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.SAXException;
import com.sforce.soap.metadata.*;

/**
* Sample that logs in and shows a menu of retrieve and deploy metadata options.
*/

7

Step 3: Walk Through the Java Sample CodeQuick Start

public class FileBasedDeployAndRetrieve {

private MetadataConnection metadataConnection;

private static final String ZIP_FILE = "components.zip";

// manifest file that controls which components get retrieved
private static final String MANIFEST_FILE = "package.xml";

private static final double API_VERSION = 28.0;

// one second in milliseconds
private static final long ONE_SECOND = 1000;

// maximum number of attempts to deploy the zip file
private static final int MAX_NUM_POLL_REQUESTS = 50;

private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

public static void main(String[] args) throws Exception {
FileBasedDeployAndRetrieve sample = new FileBasedDeployAndRetrieve();
sample.run();

}

public FileBasedDeployAndRetrieve() {
}

private void run() throws Exception {
this.metadataConnection = MetadataLoginUtil.login();

// Show the options to retrieve or deploy until user exits
String choice = getUsersChoice();
while (choice != null && !choice.equals("99")) {

if (choice.equals("1")) {
retrieveZip();

} else if (choice.equals("2")) {
deployZip();

} else {
break;

}
// show the options again
choice = getUsersChoice();

}
}

/*
* Utility method to present options to retrieve or deploy.
*/
private String getUsersChoice() throws IOException {

System.out.println(" 1: Retrieve");
System.out.println(" 2: Deploy");
System.out.println("99: Exit");
System.out.println();
System.out.print("Enter 1 to retrieve, 2 to deploy, or 99 to exit: ");
// wait for the user input.
String choice = reader.readLine();
return choice != null ? choice.trim() : "";

}

private void deployZip() throws Exception {
byte zipBytes[] = readZipFile();
DeployOptions deployOptions = new DeployOptions();
deployOptions.setPerformRetrieve(false);
deployOptions.setRollbackOnError(true);
AsyncResult asyncResult = metadataConnection.deploy(zipBytes, deployOptions);
asyncResult = waitForCompletion(asyncResult);
DeployResult result = metadataConnection.checkDeployStatus(asyncResult.getId());

8

Step 3: Walk Through the Java Sample CodeQuick Start

if (!result.isSuccess()) {
printErrors(result);
throw new Exception("The files were not successfully deployed");

}
System.out.println("The file " + ZIP_FILE + " was successfully deployed\n");

}

/*
* Read in the zip file contents into a byte array.
*/
private byte[] readZipFile() throws Exception {

byte[] result = null;
// We assume here that you have a deploy.zip file.
// See the retrieve sample for how to retrieve a zip file.
File zipFile = new File(ZIP_FILE);
if (!zipFile.exists() || !zipFile.isFile()) {

throw new Exception("Cannot find the zip file for deploy() on path:"
+ zipFile.getAbsolutePath());

}

FileInputStream fileInputStream = new FileInputStream(zipFile);
try {

ByteArrayOutputStream bos = new ByteArrayOutputStream();
byte[] buffer = new byte[4096];
int bytesRead = 0;
while (-1 != (bytesRead = fileInputStream.read(buffer))) {

bos.write(buffer, 0, bytesRead);
}

result = bos.toByteArray();
} finally {

fileInputStream.close();
}
return result;

}

/*
* Print out any errors, if any, related to the deploy.
* @param result - DeployResult
*/
private void printErrors(DeployResult result) {

DeployMessage messages[] = result.getMessages();
StringBuilder stringBuilder = new StringBuilder("Failures:\n");
for (DeployMessage message : messages) {

if (!message.isSuccess()) {
String loc = "(" + message.getLineNumber() + ", " + message.getColumnNumber();

if (loc.length() == 0 && !message.getFileName().equals(message.getFullName()))

{
loc = "(" + message.getFullName() + ")";

}
stringBuilder.append(message.getFileName() + loc + ":"

+ message.getProblem()).append('\n');
}

}
RunTestsResult rtr = result.getRunTestResult();
if (rtr.getFailures() != null) {

for (RunTestFailure failure : rtr.getFailures()) {
String n = (failure.getNamespace() == null ? "" :

(failure.getNamespace() + ".")) + failure.getName();
stringBuilder.append("Test failure, method: " + n + "." +

failure.getMethodName() + " -- " + failure.getMessage() +
" stack " + failure.getStackTrace() + "\n\n");

}
}
if (rtr.getCodeCoverageWarnings() != null) {

9

Step 3: Walk Through the Java Sample CodeQuick Start

for (CodeCoverageWarning ccw : rtr.getCodeCoverageWarnings()) {
stringBuilder.append("Code coverage issue");
if (ccw.getName() != null) {

String n = (ccw.getNamespace() == null ? "" :
(ccw.getNamespace() + ".")) + ccw.getName();
stringBuilder.append(", class: " + n);

}
stringBuilder.append(" -- " + ccw.getMessage() + "\n");

}
}
System.out.println(stringBuilder.toString());

}

private void retrieveZip() throws Exception {
RetrieveRequest retrieveRequest = new RetrieveRequest();
retrieveRequest.setApiVersion(API_VERSION);
setUnpackaged(retrieveRequest);

AsyncResult asyncResult = metadataConnection.retrieve(retrieveRequest);
asyncResult = waitForCompletion(asyncResult);
RetrieveResult result =

metadataConnection.checkRetrieveStatus(asyncResult.getId());

// Print out any warning messages
StringBuilder stringBuilder = new StringBuilder();
if (result.getMessages() != null) {

for (RetrieveMessage rm : result.getMessages()) {
stringBuilder.append(rm.getFileName() + " - " + rm.getProblem() + "\n");

}
}
if (stringBuilder.length() > 0) {

System.out.println("Retrieve warnings:\n" + stringBuilder);
}

System.out.println("Writing results to zip file");
File resultsFile = new File(ZIP_FILE);
FileOutputStream os = new FileOutputStream(resultsFile);

try {
os.write(result.getZipFile());

} finally {
os.close();

}
}

private AsyncResult waitForCompletion(AsyncResult asyncResult) throws Exception {
int poll = 0;
long waitTimeMilliSecs = ONE_SECOND;
while (!asyncResult.isDone()) {

Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration

waitTimeMilliSecs *= 2;
if (poll++ > MAX_NUM_POLL_REQUESTS) {

throw new Exception(
"Request timed out. If this is a large set of metadata components, " +
"ensure that MAX_NUM_POLL_REQUESTS is sufficient.");

}

asyncResult = metadataConnection.checkStatus(
new String[]{asyncResult.getId()})[0];

System.out.println("Status is: " + asyncResult.getState());
}

if (asyncResult.getState() != AsyncRequestState.Completed) {
throw new Exception(asyncResult.getStatusCode() + " msg: " +

asyncResult.getMessage());

10

Step 3: Walk Through the Java Sample CodeQuick Start

}
return asyncResult;

}

private void setUnpackaged(RetrieveRequest request) throws Exception {
// Edit the path, if necessary, if your package.xml file is located elsewhere
File unpackedManifest = new File(MANIFEST_FILE);
System.out.println("Manifest file: " + unpackedManifest.getAbsolutePath());

if (!unpackedManifest.exists() || !unpackedManifest.isFile()) {
throw new Exception("Should provide a valid retrieve manifest " +

"for unpackaged content. Looking for " +
unpackedManifest.getAbsolutePath());

}

// Note that we use the fully quualified class name because
// of a collision with the java.lang.Package class
com.sforce.soap.metadata.Package p = parsePackageManifest(unpackedManifest);
request.setUnpackaged(p);

}

private com.sforce.soap.metadata.Package parsePackageManifest(File file)
throws ParserConfigurationException, IOException, SAXException {

com.sforce.soap.metadata.Package packageManifest = null;
List<PackageTypeMembers> listPackageTypes = new ArrayList<PackageTypeMembers>();
DocumentBuilder db =

DocumentBuilderFactory.newInstance().newDocumentBuilder();
InputStream inputStream = new FileInputStream(file);
Element d = db.parse(inputStream).getDocumentElement();
for (Node c = d.getFirstChild(); c != null; c = c.getNextSibling()) {

if (c instanceof Element) {
Element ce = (Element) c;
NodeList nodeList = ce.getElementsByTagName("name");
if (nodeList.getLength() == 0) {

continue;
}
String name = nodeList.item(0).getTextContent();
NodeList m = ce.getElementsByTagName("members");
List<String> members = new ArrayList<String>();
for (int i = 0; i < m.getLength(); i++) {

Node mm = m.item(i);
members.add(mm.getTextContent());

}
PackageTypeMembers packageTypes = new PackageTypeMembers();
packageTypes.setName(name);
packageTypes.setMembers(members.toArray(new String[members.size()]));
listPackageTypes.add(packageTypes);

}
}
packageManifest = new com.sforce.soap.metadata.Package();
PackageTypeMembers[] packageTypesArray =

new PackageTypeMembers[listPackageTypes.size()];
packageManifest.setTypes(listPackageTypes.toArray(packageTypesArray));
packageManifest.setVersion(API_VERSION + "");
return packageManifest;

}
}

11

Step 3: Walk Through the Java Sample CodeQuick Start

USING METADATA API

Chapter 3

Deploying and Retrieving Metadata

Use the deploy() and retrieve() calls to move metadata (XML files) between a Database.com organization and a local
file system. Once you retrieve your XML files into a file system, you can manage changes in a source-code control system, copy
and paste code or setup configurations, diff changes to components, and perform many other file-based development operations.
At any time you can deploy those changes to another Database.com organization.

Note: The Force.com IDE and the Force.com Migration Tool use the deploy() and retrieve() calls to move
metadata. If you use these tools, interaction with Metadata API is seamless and invisible. Therefore, most developers
will find it much easier to use these tools than write code that calls deploy() and retrieve() directly.

Data in XML files is formatted using the English (United States) locale. This ensures that fields that depend on locale, such
as date fields, are interpreted consistently during data migrations between organizations using different languages. Organizations
can support multiple languages for presentation to their users.

The deploy() and retrieve() calls are used primarily for the following development scenarios:

• Development of a custom application (or customization) in a test database organization. After development and testing is
completed, the application or customization is then deployed into a production organization using Metadata API.

Working with the Zip File
The deploy() and retrieve() calls are used to deploy and retrieve a .zip file. Within the .zip file is a project manifest
(package.xml) that lists what to retrieve or deploy, and one or more XML components organized into folders.

Note: A component is an instance of a metadata type. For example, CustomObject is a metadata type for custom
objects, and the MyCustomObject__c component is an instance of a custom object.

The files retrieved or deployed in a .zip file may be unpackaged components that reside in your organization (such as standard
objects), or packaged components that reside within named packages.

Note: Metadata API can deploy and retrieve up to 5,000 files at one time. While a specific file size limit is not
enforced, you might encounter out-of-memory errors for very large files.

Every .zip file contains a project manifest, a file named package.xml, and a set of directories that contain the components.
The manifest file defines the components you are trying to retrieve or deploy in the .zip file.

12

The following is a sample package.xml file. Note that you can retrieve an individual component for a metadata type by
specifying its fullName field value in a members element, or you can also retrieve all components of a metadata type, by
using <members>*</members>.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c</members>
<name>CustomObject</name>

</types>
<types>

<members>*</members>
<name>CustomTab</name>

</types>
<types>

<members>Standard</members>
<name>Profile</name>

</types>
<version>28.0</version>

</Package>

The following elements may be defined in package.xml:

• <fullName> contains the name of the server-side package. If no <fullName> exists, this is a client-side unpackaged
package.

• <types> contains the name of the metadata type (for example, CustomObject) and the named members (for example,
myCustomObject__c), to be retrieved or deployed. There can be multiple <types> elements in a manifest file and there
is one entry for each named component, and one entry for each individual member.

• <members> contains the fullName of the component, for example MyCustomObject__c. The listMetadata() call
is useful to find out the fullName for components of a particular metadata type, if you want to retrieve an individual
component. For many metadata types, you can replace the value in members with the wildcard character * (asterisk)
instead of listing each member separately. Any metadata type that has a value of yes in the * column in the Metadata Types
table supports use of this wildcard.

Note: You specify Security in the <members> element and Settings in the name element when retrieving the
SecuritySettings component type.

• <name> contains the metadata type, for example CustomObject or Profile. There is one name defined for each
metadata type in the directory. Any metadata type that extends Metadata is a valid value. The name entered must match
a metadata type defined in the Metadata API WSDL. See Metadata Components and Types for a list.

• <version> is the API version number used when deploying or retrieving the .zip file. Currently the valid value is 28.0.

For more sample package.xml manifest files that show you how to work with different subsets of metadata, see Sample
package.xml Manifest Files.

To delete items, use the same procedure, but also include a delete manifest file named destructiveChanges.xml. To
bypass the Recycle Bin, see purgeOnDelete.

13

Working with the Zip FileDeploying and Retrieving Metadata

Metadata Types
The following table lists all of the metadata types that can be retrieved or deployed with Metadata API, the XML name used
in the package.xml file for the metadata type, the folder the component is retrieved into, whether or not the component
can be retrieved with the wildcard (*) symbol in package.xml, and notes about this component, where applicable.

NotesUses
*

FolderXML <name> Metadata
Type

Component

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsActionOverrideAction Override

the object name before the component
name. You can only access
ActionOverride by accessing its
encompassing CustomObject.

yesclassesApexClassApex Class

yestriggersApexTriggerApex Trigger

CustomObjectCriteriaBasedSharingRule
is represented as

nocustomObjectSharingRulescriteriaBasedRulesCustom Object
Criteria Based
Sharing Rule criteriaBasedRules, contained in

the CustomObjectSharingRules
component.

CustomObjectOwnerSharingRule is
represented as ownerRules, contained

nocustomObjectSharingRulesownerRulesCustom Object
Owner Sharing
Rule in the CustomObjectSharingRules

component.

Custom fields are retrieved or deployed
as part of a custom object file. You must

noobjectsCustomFieldCustom Field

dot-qualify the object name before the
component name. Individual custom
fields cannot be retrieved with the
wildcard (*) symbol, but must be
explicitly named in package.xml,
unless their object is named in the
CustomObject section.

Standard objects cannot be retrieved
with the wildcard (*) symbol, but must

yesobjectsCustomObjectCustom Object

be explicitly named in package.xml,
and only custom fields and standard
picklist fields are included.

yesgroupsGroupGroup

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsNamedFilterLookup Filter

14

Metadata TypesDeploying and Retrieving Metadata

NotesUses
*

FolderXML <name> Metadata
Type

Component

the object name before the component
name.

yespermissionsetsPermissionSetPermission Set

yesprofilesProfileProfile

yesqueuesQueueQueue

Represents a specified create or update
action for an object that then becomes

yesquickActionQuickActionQuickAction

available in the Chatter publisher. For
example, you can create an action that,
on the detail page of an account, allows
a user to create a contact related to that
account from the Chatter feed on that
page. QuickAction can be created on
objects that allow custom fields.

nosettingsQuoteSettingsQuote Settings

yesremoteSiteSettingsRemoteSiteSettingRemote Site
Setting

yesrolesRoleRole

yessamlssoconfigsSamlSsoConfigSAML Single
Sign-On

yessettingsSettingsSecurity Settings

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsSharingReasonSharing Reason

the object name before the component
name.

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsSharingRecalculationSharing
Recalculation

the object name before the component
name.

yesstaticResourcesStaticResourceStatic Resource

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsValidationRuleValidation Rule

the object name before the component
name.

This type is retrieved or deployed as part
of an object file. You must dot-qualify

noobjectsWeblinkWeb Link

the object name before the component
name.

15

Metadata TypesDeploying and Retrieving Metadata

NotesUses
*

FolderXML <name> Metadata
Type

Component

A .workflow file is a container for the
individual workflow components
associated with an object.

yesworkflowsWorkflowWorkflow

Sample package.xml Manifest Files
This section includes sample package.xml manifest files that show you how to work with different subsets of metadata. A
manifest file can include multiple <types> elements so you could combine the individual samples into one package.xml
manifest file if you want to work with all the metadata in one batch. For more information about the structure of a manifest
file, see Working with the Zip File. The following samples are listed:

• All Custom Objects

• Custom Fields

• Packages

• Security Settings

• Assignment Rules, Auto-response Rules, Escalation Rules

All Custom Objects
This sample package.xml manifest file illustrates how to work with all custom objects.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

</types>
<version>28.0</version>

</Package>

This manifest file can be used to retrieve or deploy all custom objects. This does not include all standard objects.

Custom Fields
This sample package.xml manifest file illustrates how to work with custom fields in custom and standard objects.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c.MyCustomField__c</members>
<name>CustomField</name>

</types>
<types>

<members>Account.SLA__c</members>
<name>CustomField</name>

</types>
<version>28.0</version>

</Package>

16

Sample package.xml Manifest FilesDeploying and Retrieving Metadata

Note the objectName.customField syntax in the <members> field where objectName is the name of the object, such as
Account, and customField is the name of the custom field, such as an SLA picklist field representing a service-level agreement
option. The MyCustomField custom field in the MyCustomObject custom object is uniquely identified by its full name,
MyCustomObject__c.MyCustomField__c.

Packages
To retrieve a package, set the name of the package in the packageNames field in RetrieveRequest when you call retrieve().
The package.xml manifest file is automatically populated in the retrieved .zip file. The <fullName> element in
package.xml contains the name of the retrieved package.

If you use an asterisk wildcard in a <members> element to retrieve all the components of a particular metadata type, the
retrieved contents do not include components in managed packages. For more information about managed packages, see the
ISVforce Guide.

The easiest way to retrieve a component in a managed package is to retrieve the complete package by setting the name of the
package in the packageNames field in RetrieveRequest, as described above. The following sample package.xml manifest
file illustrates an alternative to retrieve an individual component in a package.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>myns__MyCustomObject__c</members>
<name>CustomObject</name>

</types>
<version>28.0</version>

</Package>

Note the namespacePrefix__objectName syntax in the <members> field where namespacePrefix is the namespace
prefix of the package and objectName is the name of the object. A namespace prefix is a one to 15-character alphanumeric
identifier that distinguishes your package and its contents from packages of other publishers. For more information about
namespace prefixes, see “Registering a Namespace Prefix” in the Database.com online help.

Security Settings
This sample package.xml manifest file illustrates how to work with an organization’s security settings. You specify Security
in the <members> element and Settings in the name element when retrieving the SecuritySettings component type.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Security</members>
<name>Settings</name>

</types>
<version>28.0</version>

</Package>

Assignment Rules, Auto-response Rules, Escalation Rules
Assignment rules, auto-response rules and escalation rules use different package.xml type names to access sets of rules or
individual rules for object types. For example, the following sample package.xml manifest file illustrates how to access an
organization’s assignment rules for just Cases and Leads.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Case</members>
<members>Lead</members>

17

Sample package.xml Manifest FilesDeploying and Retrieving Metadata

https://na1.salesforce.com/help/doc/en/salesforce_packaging_guide.pdf

<name>AssignmentRules</name>
</types>
<version>28.0</version>

</Package>

The following sample package.xml manifest file illustrates how to access just the “samplerule” Case assignment rule and
the “newrule” Lead assignment rule. Notice that the type name is AssignmentRule and not AssignmentRules.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Case.samplerule</members>
<members>Lead.newrule</members>
<name>AssignmentRule</name>

</types>
<version>28.0</version>

</Package>

Similarly, for accessing individual auto-response rules and escalation rules, use AutoResponseRule and EscalationRule
instead of AutoResponseRules and EscalationRules.

Running Tests in a Deployment
For deployment to a production organization, all the tests in your organization, except for those that originate from installed
managed packages, are automatically run. If any of the tests fail, the entire deployment will roll back.

There is an exception to this rule if you are deploying components for one or more of the following metadata types:

• ApexComponent

• ApexPage

• Dashboard

• EmailTemplate

• Report

• Scontrol

• StaticResource

If your deployment consists entirely of components for one or more of these metadata types, no tests are run. However, if the
deployment includes components for any other metadata type, all the tests are automatically run.

For example, no tests are run for the following deployments:

• One ApexComponent component

• 100 Report components and 40 Dashboard components

All tests are automatically run for the following deployments:

• One CustomField component

• One ApexComponent component and one ApexClass component

• Five CustomField components and one ApexPage component

18

Running Tests in a DeploymentDeploying and Retrieving Metadata

• 100 Report components, 40 Dashboard components, and one CustomField component

See Also:
deploy()

Maintaining User References
User fields are preserved during a metadata deployment.

When a component in your deployment refers to a specific user, such as a recipient of a workflow email notification or a
dashboard running user, then Database.com attempts to locate a matching user in the destination organization by comparing
usernames during the deployment.

For example, when you copy data to a test database, the fields containing usernames from the production organization are
altered to include the test database name. In a test database named test, the username user@acme.com.test becomes
user@acme.com.test. When you deploy the metadata in the test database to another organization, the test in the username
is ignored.

For user references in deployments, Database.com performs the following sequence:

1. Database.com compares usernames in the source environment to the destination environment and adapts the organization
domain name.

2. If two or more usernames match, Database.com lists the matching names and requests one of the users in the source
environment be renamed.

3. If a username in the source environment doesn’t exist in the destination environment, Database.com displays an error, and
the deployment stops until the usernames are removed or resolved to users in the destination environment.

19

Maintaining User ReferencesDeploying and Retrieving Metadata

Chapter 4

CRUD-Based Metadata Development

Use the CRUD-based metadata calls to create, update, or delete setup and configuration components for your organization or
application. These configuration components include custom objects, custom fields, and other configuration metadata. The
metadata calls mimic the behavior in the Database.com user interface for creating, updating, or deleting components. Whatever
rules apply there also apply to these calls.

Note: CRUD (create, read, update, delete) implies that there is a read call, but there is no equivalent read call for
CRUD-based development. If you want to read your metadata, use the file-based retrieve() call.

Metadata calls are different from the core, synchronous API calls in the following ways:

• Metadata API calls are available in a separate WSDL. To download the WSDL, log into Database.com, from Setup, click
Develop > API and click the Download Metadata WSDL link.

• After logging in, you must send Metadata API calls to the Metadata API endpoint, which has a different URL than the
SOAP API. Retrieve the metadataServerUrl from the LoginResult returned by your SOAP API login() call. For
more information about the SOAP API, see the SOAP API Developer's Guide.

• There are three metadata calls with the same name as the corresponding core synchronous calls, but with different signatures:
create(), update(), and delete(). There is also a special utility call, checkStatus(), which you use to poll for the
completion of the asynchronous call.

• Metadata calls are asynchronous, which means that the results are not returned in a single call. The API core calls are
synchronous; the results are returned in one call.

• The responses returned are all of type AsyncResult, unlike core API calls, which return different result types.

The following development workflow is common for CRUD-based metadata calls:

1. The logged-in user issues a metadata call, specifying all required fields to be created or updated.
2. Database.com returns an AsyncResult object, which is updated with status information for each component as the operation

moves from a queue to completed or error state.
3. The logged-in user checks the status values in AsyncResult to determine when all the create or update operations are

completed.

Note: Metadata API also supports retrieve() and deploy() calls for retrieving and deploying metadata components.
For more information, see Deploying and Retrieving Metadata.

Java Sample Code for CRUD-Based Development
This section walks through a sample Java client application that uses CRUD—based calls. This sample application performs
the following main tasks:

1. Uses the MetadataLoginUtil.java class to create a Metadata connection. For more information, see Step 3: Walk
Through the Java Sample Code.

2. Calls create() to create a new custom object.

20

http://www.salesforce.com/apidoc

Database.com returns an AsyncResult object for each component you tried to create. The AsyncResult object is updated
with status information as the operation moves from a queue to completed or error state.

3. Calls checkStatus() in a loop until the status value in AsyncResult indicates that the create operation is completed.

Note the error handling code that follows each API call.

import com.sforce.soap.metadata.*;

/**
* Sample that logs in and creates a custom object through the metadata api
*/
public class CRUDSample {

private MetadataConnection metadataConnection;

// one second in milliseconds
private static final long ONE_SECOND = 1000;

public CRUDSample() {
}

public static void main(String[] args) throws Exception {
CRUDSample crudSample = new CRUDSample();
crudSample.runCreate();

}

/**
* Create a custom object. This method demonstrates usage of the
* create() and checkStatus() calls.
*
* @param uniqueName Custom object name should be unique.
*/
private void createCustomObject(final String uniqueName) throws Exception {

final String label = "My Custom Object";
CustomObject customObject = new CustomObject();
customObject.setFullName(uniqueName);
customObject.setDeploymentStatus(DeploymentStatus.Deployed);
customObject.setDescription("Created by the Metadata API Sample");
customObject.setLabel(label);
customObject.setPluralLabel(label + "s");
customObject.setSharingModel(SharingModel.ReadWrite);

// The name field appears in page layouts, related lists, and elsewhere.
CustomField nf = new CustomField();
nf.setType(FieldType.Text);
nf.setDescription("The custom object identifier on page layouts, related lists etc");

nf.setLabel(label);
nf.setFullName(uniqueName);
customObject.setNameField(nf);

AsyncResult[] asyncResults = metadataConnection.create(
new CustomObject[]{customObject});

if (asyncResults == null) {
System.out.println("The object was not created successfully");
return;

}

long waitTimeMilliSecs = ONE_SECOND;

// After the create() call completes, we must poll the results of the checkStatus()
// call until it indicates that the create operation has completed.
do {

printAsyncResultStatus(asyncResults);
waitTimeMilliSecs *= 2;
Thread.sleep(waitTimeMilliSecs);
asyncResults = metadataConnection.checkStatus(new

21

CRUD-Based Metadata Development

String[]{asyncResults[0].getId()});
} while (!asyncResults[0].isDone());

printAsyncResultStatus(asyncResults);
}

private void printAsyncResultStatus(AsyncResult[] asyncResults) throws Exception {
if (asyncResults == null || asyncResults.length == 0 || asyncResults[0] == null) {

throw new Exception("The object status cannot be retrieved");
}

AsyncResult asyncResult = asyncResults[0]; //we are creating only 1 metadata object

if (asyncResult.getStatusCode() != null) {
System.out.println("Error status code: " +

asyncResult.getStatusCode());
System.out.println("Error message: " + asyncResult.getMessage());

}

System.out.println("Object with id:" + asyncResult.getId() + " is " +
asyncResult.getState());

}

private void runCreate() throws Exception {
metadataConnection = MetadataLoginUtil.login();
// Custom objects and fields must have __c suffix in the full name.
final String uniqueObjectName = "MyCustomObject__c";
createCustomObject(uniqueObjectName);

}
}

22

CRUD-Based Metadata Development

Chapter 5

Error Handling

Metadata API calls return error information that your client application can use to identify and resolve runtime errors. The
Metadata API provides the following types of error handling:

• Since the Metadata API uses the enterprise or partner WSDLs to authenticate, it uses SOAP fault messages defined in
those WSDLs for errors resulting from badly formed messages, failed authentication, or similar problems. Each SOAP fault
has an associated ExceptionCode. For more details, see “Error Handling” in the SOAP API Developer's Guide.

• For errors with create(), update(), and delete(), see the error status code in the statusCode field in the AsyncResult
object for the associated component.

• For errors with deploy(), see the problem and success fields in the DeployMessage object for the associated component.
• For errors with retrieve(), see the problem field in the RetrieveMessage object for the associated component.

For sample code, see Step 3: Walk Through the Java Sample Code on page 6.

Error Handling for Session Expiration
When you sign on via the login() call, a new client session begins and a corresponding unique session ID is generated.
Sessions automatically expire after the amount of time specified in the Security Controls setup area of the Database.com
application (default two hours). When your session expires, the exception code INVALID_SESSION_ID is returned. If this
happens, you must invoke the login() call again. For more information about login(), see the SOAP API Developer's Guide.

23

http://www.salesforce.com/apidoc
http://www.salesforce.com/apidoc

REFERENCE

Chapter 6

File-Based Calls

Use the following file-based calls to deploy or retrieve XML components.

• deploy()

• retrieve()

deploy()
Uses file representations of components to create, update, or delete those components in an organization.

Syntax

AsyncResult = metadatabinding.deploy(base64 zipFile, DeployOptions deployOptions)

Usage
Use this call to take file representations of components and deploy them into an organization by creating, updating, or deleting
the components they represent.

Note: Metadata API can deploy and retrieve up to 5,000 files at one time. While a specific file size limit is not
enforced, you might encounter out-of-memory errors for very large files.

To deploy (create or update) packaged or unpackaged components:

1. Issue a deploy() call to start the asynchronous deployment. An AsyncResult object is returned. If the call is completed,
the done field contains true. Most often, the call is not completed quickly enough to be noted in the first result. If it is
completed, note the value in the id field returned and skip the next step.

2. If the call is not complete, issue a checkStatus() call in a loop using the value in the id field of the AsyncResult object
returned by the deploy() call in the previous step. Check the AsyncResult object which is returned until the done field
contains true. The time taken to complete a deploy() call depends on the size of the zip file being deployed, so a longer
wait time between iterations should be used as the size of the zip file increases.

3. Issue a checkDeployStatus() call to obtain the results of the deploy() call, using the id value returned in the first
step.

To delete items, use the same procedure, but also include a delete manifest file named destructiveChanges.xml. To
bypass the Recycle Bin, see purgeOnDelete.

24

The format of destructiveChanges.xml is the same as package.xml, except that wildcards are not supported.

Note: If you try to delete some components that do not exist in the organization, the rest of the deletions are still
attempted.

The following is a sample destructiveChanges.xml file that names a single custom object to be deleted:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>MyCustomObject__c</members>
<name>CustomObject</name>

</types>
</Package>

In order to deploy the destructive changes, you must also have a package.xml file that lists no components to deploy, includes
the API version, and is in the same directory as destructiveChanges.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<version>28.0</version>
</Package>

To track the status of deployments that are in progress or completed in the last 7 days, from Setup, click Monitor >
Deployments.

On the Monitoring Deployments page, you can cancel a deployment while it’s in progress. To cancel a deployment, click
Abort. The deployment then has the status “Abort Requested” until the deployment is completely canceled.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Arguments

DescriptionTypeName

Base 64-encoded binary data. Client applications must encode the binary data as base64.base64zipFile

Encapsulates options for determining which packages or files are deployed.DeployOptionsdeployOptions

DeployOptions
The following deployment options can be selected for this call:

DescriptionTypeName

Specifies whether a deploy succeeds even if files that are
specified in package.xml but are not in the .zip file
(true or not false).

Do not set this argument for deployment to production
organizations.

booleanallowMissingFiles

If a file is in the .zip file but not specified in the
package.xml, specifies whether the file should be

booleanautoUpdatePackage

25

deploy()File-Based Calls

DescriptionTypeName

automatically added to the package (true or not false).
A retrieve() is automatically issued with the updated
package.xml that includes the .zip file.

Do not set this argument for deployment to production
organizations.

Indicates whether Apex classes and triggers are saved to
the organization as part of the deployment (false) or not

booleancheckOnly

(true). Defaults to false. Any errors or messages that
would have been issued are still generated. This parameter
is similar to the Database.com Ant tool’s checkOnly
parameter.

Indicates whether a warning should allow a deployment
to complete successfully (true) or not (false). Defaults
to false.

The DeployMessage object for a warning contains the
following values:

booleanignoreWarnings

• problemType—Warning

• problem—The text of the warning.

If a warning occurs and ignoreWarnings is set to true,
the success field in DeployMessage is true. If
ignoreWarnings is set to false, success is set to
false and the warning is treated like an error.

This field is available in API version 18.0 and later. Prior
to version 18.0, there was no distinction between warnings
and errors. All problems were treated as errors and
prevented a successful deployment.

Indicates whether a retrieve() call is performed
immediately after the deployment (true) or not (false).
Set to true in order to retrieve whatever was just deployed.

booleanperformRetrieve

If true, the deleted components in the
destructiveChanges.xml manifest file aren't stored

booleanpurgeOnDelete

in the Recycle Bin. Instead, they become immediately
eligible for deletion.

This field is available in API version 22.0 and later.

This option only works in test database organizations; it
doesn't work in production organizations.

Indicates whether any failure causes a complete rollback
(true) or not (false). If false, whatever set of actions

booleanrollbackOnError

can be performed without errors are performed, and errors
are returned for the remaining actions. This parameter
must be set to true if you are deploying to a production
organization.

26

deploy()File-Based Calls

DescriptionTypeName

If true, all Apex tests defined in the organization are run.

For deployment to a production organization, all tests,
except for those that originate from installed managed

booleanrunAllTests

packages, are automatically run regardless of this argument.
If any of the tests fail when the rollbackOnError
parameter is set to true, the entire deployment will roll
back.

A list of Apex tests to be run during deployment. Specify
the class name, one name per instance. The class name

string[]runTests

may also specify a namespace with a dot. For example, to
run three tests:

<runTests>positive_test</runTests>
<runTests>negative_test</runTests>
<runTests>namespace.third_test</runTests>

If any of these tests fail when the rollbackOnError
parameter is set to true, the deployment is rolled back
and no changes will be made to your organization.

Indicates whether the specified .zip file points to a
directory structure with a single package (true) or a set
of packages (false).

booleansinglePackage

Response
AsyncResult

Sample Code—Java
This sample shows how to deploy components in a zip file. See the retrieve() sample code for details on how to retrieve
a zip file.

package com.doc.samples;

import java.io.*;

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import com.sforce.soap._2006._04.metadata.AsyncRequestState;
import com.sforce.soap._2006._04.metadata.AsyncResult;
import com.sforce.soap._2006._04.metadata.MetadataBindingStub;
import com.sforce.soap._2006._04.metadata.MetadataServiceLocator;
import com.sforce.soap._2006._04.metadata.DeployOptions;
import com.sforce.soap._2006._04.metadata.DeployResult;
import com.sforce.soap._2006._04.metadata.DeployMessage;
import com.sforce.soap._2006._04.metadata.RunTestsResult;
import com.sforce.soap._2006._04.metadata.RunTestFailure;
import com.sforce.soap._2006._04.metadata.CodeCoverageWarning;
import com.sforce.soap.enterprise.LoginResult;
import com.sforce.soap.enterprise.SessionHeader;
import com.sforce.soap.enterprise.SforceServiceLocator;
import com.sforce.soap.enterprise.SoapBindingStub;

27

deploy()File-Based Calls

import com.sforce.soap.enterprise.fault.ExceptionCode;
import com.sforce.soap.enterprise.fault.LoginFault;

/**
* Deploy a zip file of metadata components.
* Prerequisite: Have a deploy.zip file that includes a package.xml manifest file that
* details the contents of the zip file.
*/
public class DeploySample {

// binding for the Enterprise WSDL used for login() call
private SoapBindingStub binding;
// binding for the metadata WSDL used for create() and checkStatus() calls
private MetadataBindingStub metadatabinding;

static BufferedReader rdr = new BufferedReader(new InputStreamReader(System.in));

private static final String ZIP_FILE = "deploy.zip";

// one second in milliseconds
private static final long ONE_SECOND = 1000;
// maximum number of attempts to deploy the zip file
private static final int MAX_NUM_POLL_REQUESTS = 50;

public static void main(String[] args) throws ServiceException, Exception {
DeploySample sample = new DeploySample();
sample.run();

}

private void run() throws ServiceException, Exception {
if (login()) {

getUserInput("SUCCESSFUL LOGIN! Hit the enter key to continue.");
deployZip();

}
}

private void deployZip()
throws RemoteException, Exception

{
byte zipBytes[] = readZipFile();
DeployOptions deployOptions = new DeployOptions();
deployOptions.setPerformRetrieve(false);
deployOptions.setRollbackOnError(true);
AsyncResult asyncResult = metadatabinding.deploy(zipBytes, deployOptions);

// Wait for the deploy to complete
int poll = 0;
long waitTimeMilliSecs = ONE_SECOND;
while (!asyncResult.isDone()) {

Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration
waitTimeMilliSecs *= 2;
if (poll++ > MAX_NUM_POLL_REQUESTS) {

throw new Exception("Request timed out. If this is a large set " +
"of metadata components, check that the time allowed by " +
"MAX_NUM_POLL_REQUESTS is sufficient.");

}
asyncResult = metadatabinding.checkStatus(

new String[] {asyncResult.getId()})[0];
System.out.println("Status is: " + asyncResult.getState());

}

if (asyncResult.getState() != AsyncRequestState.Completed) {
throw new Exception(asyncResult.getStatusCode() + " msg: " +

asyncResult.getMessage());
}

DeployResult result = metadatabinding.checkDeployStatus(asyncResult.getId());

28

deploy()File-Based Calls

if (!result.isSuccess()) {
printErrors(result);
throw new Exception("The files were not successfully deployed");

}

System.out.println("The file " + ZIP_FILE + " was successfully deployed");
}

/**
* Read in the zip file contents into a byte array.
* @return byte[]
* @throws Exception - if cannot find the zip file to deploy
*/
private byte[] readZipFile()

throws Exception
{

// We assume here that you have a deploy.zip file.
// See the retrieve sample for how to retrieve a zip file.
File deployZip = new File(ZIP_FILE);
if (!deployZip.exists() || !deployZip.isFile())

throw new Exception("Cannot find the zip file to deploy. Looking for " +
deployZip.getAbsolutePath());

FileInputStream fos = new FileInputStream(deployZip);
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int readbyte = -1;
while ((readbyte = fos.read()) != -1) {

bos.write(readbyte);
}
fos.close();
bos.close();
return bos.toByteArray();

}

/**
* Print out any errors, if any, related to the deploy.
* @param result - DeployResult
*/
private void printErrors(DeployResult result)
{

DeployMessage messages[] = result.getMessages();
StringBuilder buf = new StringBuilder("Failures:\n");
for (DeployMessage message : messages) {

if (!message.isSuccess()) {
String loc = (message.getLineNumber() == null ? "" :

("(" + message.getLineNumber() + "," +
message.getColumnNumber() + ")"));

if (loc.length() == 0
&& !message.getFileName().equals(message.getFullName())) {

loc = "(" + message.getFullName() + ")";
}
buf.append(message.getFileName() + loc + ":" +

message.getProblem()).append('\n');
}

}
RunTestsResult rtr = result.getRunTestResult();
if (rtr.getFailures() != null) {

for (RunTestFailure failure : rtr.getFailures()) {
String n = (failure.getNamespace() == null ? "" :

(failure.getNamespace() + ".")) + failure.getName();
buf.append("Test failure, method: " + n + "." +

failure.getMethodName() + " -- " +
failure.getMessage() + " stack " +
failure.getStackTrace() + "\n\n");

}
}

29

deploy()File-Based Calls

if (rtr.getCodeCoverageWarnings() != null) {
for (CodeCoverageWarning ccw : rtr.getCodeCoverageWarnings()) {

buf.append("Code coverage issue");
if (ccw.getName() != null) {

String n = (ccw.getNamespace() == null ? "" :
(ccw.getNamespace() + ".")) + ccw.getName();

buf.append(", class: " + n);
}
buf.append(" -- " + ccw.getMessage() + "\n");

}
}

System.out.println(buf.toString());
}

/**
* The login call is used to obtain a token from Salesforce.
* This token must be passed to all other calls to provide
* authentication.
*/
private boolean login() throws ServiceException {

String userName = getUserInput("Enter username: ");
String password = getUserInput("Enter password: ");
/** Next, the sample client application initializes the binding stub.
*
* This is our main interface to the API for the Enterprise WSDL.
* The getSoap method takes an optional parameter,
* (a java.net.URL) which is the endpoint.
* For the login call, the parameter always starts with
* http(s)://login.salesforce.com. After logging in, the sample
* client application changes the endpoint to the one specified
* in the returned loginResult object.
*/
binding = (SoapBindingStub) new SforceServiceLocator().getSoap();

// Time out after a minute
binding.setTimeout(60000);
// Log in using the Enterprise WSDL binding
LoginResult loginResult;
try {

System.out.println("LOGGING IN NOW....");
loginResult = binding.login(userName, password);

}
catch (LoginFault ex) {

// The LoginFault derives from AxisFault
ExceptionCode exCode = ex.getExceptionCode();
if (exCode == ExceptionCode.FUNCTIONALITY_NOT_ENABLED ||

exCode == ExceptionCode.INVALID_CLIENT ||
exCode == ExceptionCode.INVALID_LOGIN ||
exCode == ExceptionCode.LOGIN_DURING_RESTRICTED_DOMAIN ||
exCode == ExceptionCode.LOGIN_DURING_RESTRICTED_TIME ||
exCode == ExceptionCode.ORG_LOCKED ||
exCode == ExceptionCode.PASSWORD_LOCKOUT ||
exCode == ExceptionCode.SERVER_UNAVAILABLE ||
exCode == ExceptionCode.TRIAL_EXPIRED ||
exCode == ExceptionCode.UNSUPPORTED_CLIENT) {
System.out.println("Please be sure that you have a valid username " +

"and password.");
} else {

// Write the fault code to the console
System.out.println(ex.getExceptionCode());
// Write the fault message to the console
System.out.println("An unexpected error has occurred." + ex.getMessage());

}
return false;

} catch (Exception ex) {

30

deploy()File-Based Calls

System.out.println("An unexpected error has occurred: " + ex.getMessage());
ex.printStackTrace();
return false;

}
// Check if the password has expired
if (loginResult.isPasswordExpired()) {

System.out.println("An error has occurred. Your password has expired.");
return false;

}

/** Once the client application has logged in successfully, we use
* the results of the login call to reset the endpoint of the service
* to the virtual server instance that is servicing your organization.
* To do this, the client application sets the ENDPOINT_ADDRESS_PROPERTY
* of the binding object using the URL returned from the LoginResult. We
* use the metadata binding from this point forward as we are invoking
* calls in the metadata WSDL.
*/
metadatabinding = (MetadataBindingStub)

new MetadataServiceLocator().getMetadata();
metadatabinding._setProperty(MetadataBindingStub.ENDPOINT_ADDRESS_PROPERTY,

loginResult.getMetadataServerUrl());

/** The sample client application now has an instance of the MetadataBindingStub
* that is pointing to the correct endpoint. Next, the sample client application
* sets a persistent SOAP header (to be included on all subsequent calls that
* are made with the SoapBindingStub) that contains the valid sessionId
* for our login credentials. To do this, the sample client application
* creates a new SessionHeader object and set its sessionId property to the
* sessionId property from the LoginResult object.
*/
// Create a new session header object and add the session id
// from the login return object
SessionHeader sh = new SessionHeader();
sh.setSessionId(loginResult.getSessionId());
/** Next, the sample client application calls the setHeader method of the
* SoapBindingStub to add the header to all subsequent method calls. This
* header will persist until the binding is destroyed or until the header
* is explicitly removed. The "SessionHeader" parameter is the name of the
* header to be added.
*/
// set the session header for subsequent call authentication
metadatabinding.setHeader(

new MetadataServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// return true to indicate that we are logged in, pointed
// at the right url and have our security token in place.
return true;

}

//The sample client application retrieves the user's login credentials.
// Helper function for retrieving user input from the console
String getUserInput(String prompt) {

System.out.print(prompt);
try {

return rdr.readLine();
}
catch (IOException ex) {

return null;
}

}

31

deploy()File-Based Calls

}

See Also:
Running Tests in a Deployment

checkDeployStatus()

Checks the status of declarative metadata call deploy().

Syntax

DeployResult = metadatabinding.checkDeployStatus(ID id);

Usage

checkDeployStatus is used as part of the process for deploying packaged or unpackaged components to an organization:

1. Issue a deploy() call to start the asynchronous deployment. An AsyncResult object is returned. If the call is completed,
the done field contains true. Most often, the call is not completed quickly enough to be noted in the first result. If it is
completed, note the value in the id field returned and skip the next step.

2. If the call is not complete, issue a checkStatus() call in a loop using the value in the id field of the AsyncResult object
returned by the deploy() call in the previous step. Check the AsyncResult object which is returned until the done field
contains true. The time taken to complete a deploy() call depends on the size of the zip file being deployed, so a longer
wait time between iterations should be used as the size of the zip file increases.

3. Issue a checkDeployStatus() call to obtain the results of the deploy() call, using the id value returned in the first
step.

Sample Code—Java

See the deploy() sample code for sample usage of this call.

Arguments

DescriptionTypeName

ID obtained from an AsyncResult object returned by deploy() or a subsequent
checkDeployStatus() call.

IDid

Response

DeployResult

retrieve()
This call retrieves XML file representations of components in an organization.

32

checkDeployStatus()File-Based Calls

Syntax

AsyncResult = metadatabinding.retrieve(RetrieveRequest retrieveRequest)

Usage
Use this call to retrieve file representations of components in an organization.

Note: Metadata API can deploy and retrieve up to 5,000 files at one time. While a specific file size limit is not
enforced, you might encounter out-of-memory errors for very large files.

To retrieve packaged or unpackaged components:

1. Issue a retrieve() call to start the asynchronous retrieval. An AsyncResult object is returned. If the call is completed,
the done field contains true. Most often, the call is not completed quickly enough to be noted in the result. If it is
completed, note the value in the id field returned and skip the next step.

2. If the call is not complete, issue a checkStatus() call in a loop using the value in the id field of the AsyncResult object,
returned by the retrieve() call in the previous step. Check the AsyncResult object returned until the done field contains
true. The time taken to complete a retrieve() call depends on the size of the zip file being deployed, so use a longer
wait time between iterations as the size of the zip file increases.

3. Issue a checkRetrieveStatus() call to obtain the results of the retrieve() call, using the id value returned in the
first step.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Arguments

DescriptionTypeName

Encapsulates options for determining which packages or files are retrieved.RetrieveRequestretrieveRequest

Response
AsyncResult

Sample Code—Java
This sample shows how to retrieve components into a zip file. See the deploy() sample code for details on how to deploy a
zip file.

Note: This sample was created using Apache Axis. The WSDL2Java utility generates a _package class, even though
the metadata type is defined as Package in the Metadata WSDL. Other SOAP clients might generate a different
name for the _package class.

package com.doc.samples;

import java.io.*;
import java.util.*;
import java.nio.ByteBuffer;
import java.nio.channels.Channels;
import java.nio.channels.FileChannel;
import java.nio.channels.ReadableByteChannel;
import java.nio.channels.WritableByteChannel;

33

retrieve()File-Based Calls

import java.rmi.RemoteException;
import javax.xml.rpc.ServiceException;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.SAXException;

import com.sforce.soap.enterprise.LoginResult;
import com.sforce.soap.enterprise.SessionHeader;
import com.sforce.soap.enterprise.SforceServiceLocator;
import com.sforce.soap.enterprise.SoapBindingStub;
import com.sforce.soap.enterprise.fault.ExceptionCode;
import com.sforce.soap.enterprise.fault.LoginFault;

import com.sforce.soap._2006._04.metadata.MetadataBindingStub;
import com.sforce.soap._2006._04.metadata.MetadataServiceLocator;
import com.sforce.soap._2006._04.metadata.AsyncResult;
import com.sforce.soap._2006._04.metadata.RetrieveRequest;
import com.sforce.soap._2006._04.metadata.AsyncRequestState;
import com.sforce.soap._2006._04.metadata.RetrieveResult;
import com.sforce.soap._2006._04.metadata.RetrieveMessage;
// Note that Axis generates a _package class, even though it is defined as Package
// in the WSDL. Other SOAP clients may generate a different name for the _package class.
import com.sforce.soap._2006._04.metadata._package;
import com.sforce.soap._2006._04.metadata.PackageTypeMembers;

public class RetrieveSample {
// binding for the Enterprise WSDL used for login() call

private SoapBindingStub binding;
// binding for the metadata WSDL used for create() and checkStatus() calls

private MetadataBindingStub metadatabinding;

static BufferedReader rdr = new BufferedReader(new InputStreamReader(System.in));

// one second in milliseconds
private static final long ONE_SECOND = 1000;
// maximum number of attempts to retrieve the results
private static final int MAX_NUM_POLL_REQUESTS = 50;

// manifest file that controls which components get retrieved
private static final String MANIFEST_FILE = "package.xml";

private static final double API_VERSION = 15.0;

public static void main(String[] args) throws ServiceException, Exception {
RetrieveSample sample = new RetrieveSample();
sample.run();

}

private void run() throws ServiceException, Exception {
if (login()) {

getUserInput("SUCCESSFUL LOGIN! Hit the enter key to continue.");
retrieveZip();

}
}

private void retrieveZip() throws RemoteException, Exception
{

RetrieveRequest retrieveRequest = new RetrieveRequest();

34

retrieve()File-Based Calls

retrieveRequest.setApiVersion(API_VERSION);
setUnpackaged(retrieveRequest);

AsyncResult asyncResult = metadatabinding.retrieve(retrieveRequest);
// Wait for the retrieve to complete
int poll = 0;
long waitTimeMilliSecs = ONE_SECOND;
while (!asyncResult.isDone()) {

Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration
waitTimeMilliSecs *= 2;
if (poll++ > MAX_NUM_POLL_REQUESTS) {

throw new Exception("Request timed out. If this is a large set " +
"of metadata components, check that the time allowed " +
"by MAX_NUM_POLL_REQUESTS is sufficient.");

}
asyncResult = metadatabinding.checkStatus(
new String[] {asyncResult.getId()})[0];

System.out.println("Status is: " + asyncResult.getState());
}

if (asyncResult.getState() != AsyncRequestState.Completed) {
throw new Exception(asyncResult.getStatusCode() + " msg: " +

asyncResult.getMessage());
}

RetrieveResult result = metadatabinding.checkRetrieveStatus(asyncResult.getId());

// Print out any warning messages
StringBuilder buf = new StringBuilder();
if (result.getMessages() != null) {

for (RetrieveMessage rm : result.getMessages()) {
buf.append(rm.getFileName() + " - " + rm.getProblem());

}
}
if (buf.length() > 0) {

System.out.println("Retrieve warnings:\n" + buf);
}

// Write the zip to the file system
System.out.println("Writing results to zip file");
ByteArrayInputStream bais = new ByteArrayInputStream(result.getZipFile());
File resultsFile = new File("retrieveResults.zip");
FileOutputStream os = new FileOutputStream(resultsFile);
try {

ReadableByteChannel src = Channels.newChannel(bais);
FileChannel dest = os.getChannel();
copy(src, dest);

System.out.println("Results written to " + resultsFile.getAbsolutePath());
}
finally {

os.close();
}

}

/**
* Helper method to copy from a readable channel to a writable channel,
* using an in-memory buffer.
*/
private void copy(ReadableByteChannel src, WritableByteChannel dest)

throws IOException
{

// use an in-memory byte buffer
ByteBuffer buffer = ByteBuffer.allocate(8092);
while (src.read(buffer) != -1) {

35

retrieve()File-Based Calls

buffer.flip();
while(buffer.hasRemaining()) {

dest.write(buffer);
}
buffer.clear();

}
}

private void setUnpackaged(RetrieveRequest request) throws Exception
{

// Edit the path, if necessary, if your package.xml file is located elsewhere
File unpackedManifest = new File(MANIFEST_FILE);
System.out.println("Manifest file: " + unpackedManifest.getAbsolutePath());

if (!unpackedManifest.exists() || !unpackedManifest.isFile())
throw new Exception("Should provide a valid retrieve manifest " +

"for unpackaged content. " +
"Looking for " + unpackedManifest.getAbsolutePath());

// Note that we populate the _package object by parsing a manifest file here.
// You could populate the _package based on any source for your
// particular application.
_package p = parsePackage(unpackedManifest);
request.setUnpackaged(p);

}

private _package parsePackage(File file) throws Exception {
try {

InputStream is = new FileInputStream(file);
List<PackageTypeMembers> pd = new ArrayList<PackageTypeMembers>();
DocumentBuilder db =

DocumentBuilderFactory.newInstance().newDocumentBuilder();
Element d = db.parse(is).getDocumentElement();
for (Node c = d.getFirstChild(); c != null; c = c.getNextSibling()) {

if (c instanceof Element) {
Element ce = (Element)c;
//
NodeList namee = ce.getElementsByTagName("name");
if (namee.getLength() == 0) {

// not
continue;

}
String name = namee.item(0).getTextContent();
NodeList m = ce.getElementsByTagName("members");
List<String> members = new ArrayList<String>();
for (int i = 0; i < m.getLength(); i++) {

Node mm = m.item(i);
members.add(mm.getTextContent());

}
PackageTypeMembers pdi = new PackageTypeMembers();
pdi.setName(name);
pdi.setMembers(members.toArray(new String[members.size()]));
pd.add(pdi);

}
}
_package r = new _package();
r.setTypes(pd.toArray(new PackageTypeMembers[pd.size()]));
r.setVersion(API_VERSION + "");
return r;

} catch (ParserConfigurationException pce) {
throw new Exception("Cannot create XML parser", pce);

} catch (IOException ioe) {
throw new Exception(ioe);

} catch (SAXException se) {
throw new Exception(se);

}
}

36

retrieve()File-Based Calls

/**
* The login call is used to obtain a token from Salesforce.
* This token must be passed to all other calls to provide
* authentication.
*/
private boolean login() throws ServiceException {

String userName = getUserInput("Enter username: ");
String password = getUserInput("Enter password: ");
/** Next, the sample client application initializes the binding stub.
*
* This is our main interface to the API for the Enterprise WSDL.
* The getSoap method takes an optional parameter,
* (a java.net.URL) which is the endpoint.
* For the login call, the parameter always starts with
* http(s)://login.salesforce.com. After logging in, the sample
* client application changes the endpoint to the one specified
* in the returned loginResult object.
*/
binding = (SoapBindingStub) new SforceServiceLocator().getSoap();

// Time out after a minute
binding.setTimeout(60000);
// Log in using the Enterprise WSDL binding
LoginResult loginResult;
try {

System.out.println("LOGGING IN NOW....");
loginResult = binding.login(userName, password);

}
catch (LoginFault ex) {

// The LoginFault derives from AxisFault
ExceptionCode exCode = ex.getExceptionCode();
if (exCode == ExceptionCode.FUNCTIONALITY_NOT_ENABLED ||

exCode == ExceptionCode.INVALID_CLIENT ||
exCode == ExceptionCode.INVALID_LOGIN ||
exCode == ExceptionCode.LOGIN_DURING_RESTRICTED_DOMAIN ||
exCode == ExceptionCode.LOGIN_DURING_RESTRICTED_TIME ||
exCode == ExceptionCode.ORG_LOCKED ||
exCode == ExceptionCode.PASSWORD_LOCKOUT ||
exCode == ExceptionCode.SERVER_UNAVAILABLE ||
exCode == ExceptionCode.TRIAL_EXPIRED ||
exCode == ExceptionCode.UNSUPPORTED_CLIENT) {
System.out.println("Please be sure that you have a valid username " +

"and password.");
} else {

// Write the fault code to the console
System.out.println(ex.getExceptionCode());
// Write the fault message to the console
System.out.println("An unexpected error has occurred." + ex.getMessage());

}
return false;

} catch (Exception ex) {
System.out.println("An unexpected error has occurred: " + ex.getMessage());
ex.printStackTrace();
return false;

}
// Check if the password has expired
if (loginResult.isPasswordExpired()) {

System.out.println("An error has occurred. Your password has expired.");
return false;

}

/** Once the client application has logged in successfully, we use
* the results of the login call to reset the endpoint of the service
* to the virtual server instance that is servicing your organization.
* To do this, the client application sets the ENDPOINT_ADDRESS_PROPERTY

37

retrieve()File-Based Calls

* of the binding object using the URL returned from the LoginResult. We
* use the metadata binding from this point forward as we are invoking
* calls in the metadata WSDL.
*/
metadatabinding = (MetadataBindingStub)

new MetadataServiceLocator().getMetadata();
metadatabinding._setProperty(MetadataBindingStub.ENDPOINT_ADDRESS_PROPERTY,

loginResult.getMetadataServerUrl());

/** The sample client application now has an instance of the MetadataBindingStub
* that is pointing to the correct endpoint. Next, the sample client application
* sets a persistent SOAP header (to be included on all subsequent calls that
* are made with the SoapBindingStub) that contains the valid sessionId
* for our login credentials. To do this, the sample client application
* creates a new SessionHeader object and set its sessionId property to the
* sessionId property from the LoginResult object.
*/
// Create a new session header object and add the session id
// from the login return object
SessionHeader sh = new SessionHeader();
sh.setSessionId(loginResult.getSessionId());
/** Next, the sample client application calls the setHeader method of the
* SoapBindingStub to add the header to all subsequent method calls. This
* header will persist until the binding is destroyed or until the header
* is explicitly removed. The "SessionHeader" parameter is the name of the
* header to be added.
*/
// set the session header for subsequent call authentication
metadatabinding.setHeader(

new MetadataServiceLocator().getServiceName().getNamespaceURI(),
"SessionHeader", sh);

// return true to indicate that we are logged in, pointed
// at the right url and have our security token in place.
return true;

}

//The sample client application retrieves the user's login credentials.
// Helper function for retrieving user input from the console
String getUserInput(String prompt) {

System.out.print(prompt);
try {

return rdr.readLine();
}
catch (IOException ex) {

return null;
}

}

}

RetrieveRequest
The RetrieveRequest object specified in a retrieve() call consists of the following properties:

DescriptionTypeName

Required. The API version for the retrieve request. The
API version determines the fields retrieved for each

doubleapiVersion

metadata type. For example, an icon field was added to
the CustomTab for API version 14.0. If you retrieve

38

RetrieveRequestFile-Based Calls

DescriptionTypeName

components for version 13.0 or earlier, the components
will not include the icon field.

A list of package names to be retrieved. If you are retrieving
only unpackaged components, do not specify a name here.

string[]packageNames

You can retrieve packaged and unpackaged components
in the same retrieve.

Specifies whether only a single package is being retrieved
(true) or not (false). If false, then more than one
package is being retrieved.

booleansinglePackage

A list of file names to be retrieved. If a value is specified
for this property, packageNames must be set to null
and singlePackage must be set to true.

string[]specificFiles

A list of components to retrieve that are not in a package.Packageunpackaged

checkRetrieveStatus()

Checks the status of declarative metadata call retrieve() and returns the zip file contents.

Syntax

RetrieveResult = metadatabinding.checkRetrieveStatus(ID id);

Usage

checkRetrieveStatus is part of the procedure for retrieving metadata components from an organization. It is used together
with the checkStatus call which indicates when the asynchronous retrieve call has completed. Once checkStatus
indicates that the call is completed, call checkRetrieveStatus to get the zip file contents:

1. Issue a retrieve() call to start the asynchronous retrieval. An AsyncResult object is returned. If the call is completed,
the done field contains true. Most often, the call is not completed quickly enough to be noted in the result. If it is
completed, note the value in the id field returned and skip the next step.

2. If the call is not complete, issue a checkStatus() call in a loop using the value in the id field of the AsyncResult object,
returned by the retrieve() call in the previous step. Check the AsyncResult object returned until the done field contains
true. The time taken to complete a retrieve() call depends on the size of the zip file being deployed, so use a longer
wait time between iterations as the size of the zip file increases.

3. Issue a checkRetrieveStatus() call to obtain the results of the retrieve() call, using the id value returned in the
first step.

Sample Code—Java

See the retrieve() sample code for sample usage of this call.

39

checkRetrieveStatus()File-Based Calls

Arguments

DescriptionTypeName

ID obtained from a RetrieveResult object returned by a retrieve() call or a subsequent
AsyncResult object returned by a checkStatus() call.

IDid

Response

RetrieveResult

40

retrieve()File-Based Calls

Chapter 7

CRUD-Based Calls

Use the following CRUD-based calls to work with metadata components in a manner similar to the way synchronous API calls
in the enterprise WSDL act upon objects.

• create()

• update()

• delete()

create()
Adds one or more new metadata components to your organization’s data. This call can be used to create any of the objects
that extend Metadata. For more details, see Metadata Components and Types on page 62.

Syntax

AsyncResult[] = metadatabinding.create(Metadata[] metadata);

Usage
Use this call to add one or more metadata components to your organization’s information.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Required Fields
Required fields are determined by the metadata components being created. For more information about specific component
types, see Metadata Components and Types on page 62.

Valid Data Values
You must supply values that are valid for the field’s data type, such as integers (not alphabetic characters) for integer fields. In
your client application, follow the data formatting rules specified for your programming language and development tool (your
development tool will handle the appropriate mapping of data types in SOAP messages).

String Values
When storing values in string fields, the API trims any leading and trailing whitespace. For example, if the value of a label
field is entered as "MyObject ", the value is stored in the database as "MyObject".

41

Basic Steps for Creating Metadata Components
Use the following process to create metadata components:

1. Design an array and populate it with the components that you want to create.
2. Call create() with the component array passed in as an argument.
3. An AsyncResult object is returned for each component you tried to create. It is updated with status information as the

operation moves from a queue to completed or error state. Call checkStatus() in a loop until the status values in
AsyncResult indicate that all the create operations are completed. Start with a wait time of one second between iterations
of checkStatus() calls, and double the wait time each time you make a subsequent call.

Sample Code—Java
See Step 3: Walk Through the Java Sample Code on page 6 for sample Java code using the create() call.

Arguments

DescriptionTypeName

Array of one or more metadata components.Metadata[]metadata

Limit: 10.

You must submit arrays of only one type of component. For example, you could submit
an array of 10 custom objects or 10 profiles, but not a mix of both types.

Response
AsyncResult[]

delete()
Deletes one or more components from your organization’s data. This call can be used to delete any of the objects that extend
Metadata. For more details, see Metadata Components and Types on page 62.

Syntax

AsyncResult[] = metadataConnection.delete(Metadata[] metadata);

Usage
Use this call to delete one or more components from your organization’s data.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Rules and Guidelines
When deleting components, consider the following rules and guidelines:

42

delete()CRUD-Based Calls

• Your client application must be logged in with sufficient access rights to delete individual components within the specified
component. For more information, see “Factors that Affect Data Access” in the SOAP API Developer's Guide.

• In addition, you might also need permission to access this component’s parent component.
• To ensure referential integrity, this call supports cascading deletions. If you delete a parent component, you delete its

children automatically, as long as each child component can be deleted.
• Unlike some standard objects, all metadata components can be deleted.

Basic Steps for Deleting Metadata Components
Use the following process to delete metadata components:

1. Determine the fullName of each component that you want to delete. See Metadata for more details on the fullName
field. You must delete only components of the same type in a single call.

2. Invoke this call, passing in the array of metadata components with fullName specified.
3. An AsyncResult object is returned for each component you tried to delete. It is updated with status information as the

operation moves from a queue to completed or error state. Call checkStatus() in a loop until the status values in
AsyncResult indicate that all the delete operations are completed. Start with a wait time of one second between iterations
of checkStatus() calls, and double the wait time each time you make a subsequent call.

Sample Code—Java

public void deleteCustomObject() {
try {
CustomObject co = new CustomObject();
co.setFullName("MyCustomObject__c");
AsyncResult[] ars = metadataConnection.create(new Metadata[]

{co});
AsyncResult asyncResult = ars[0];
long waitTimeMilliSecs = 1000;
while (!asyncResult.isDone()) {
Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration
waitTimeMilliSecs *= 2;
asyncResult = mdConnection.checkStatus(
new String[] {asyncResult.getId()})[0];

System.out.println("Status is: " + asyncResult.getState());
}

} catch (ConnectionException ce) {
ce.printStackTrace();

} catch (InterruptedException ie) {
ie.printStackTrace();

}
}

Arguments

DescriptionTypeName

Array of one or more metadata components. You only need to set the fullName field
in the Metadata object.

Metadata[]metadata

Limit: 10.

You must submit arrays of only one type of component. For example, you could submit
an array of 10 custom objects or 10 profiles, but not a mix of both types.

43

delete()CRUD-Based Calls

http://www.salesforce.com/apidoc

Response
AsyncResult[]

update()
Updates one or more components in your organization’s data. This call can be used to update any of the objects that extend
Metadata. For more details, see Metadata Components and Types on page 62.

Syntax

AsyncResult[] = metadataConnection.update(UpdateMetadata[] metadata);

Usage
Use this call to update one or more components. This call is analogous to the ALTER TABLE statement in SQL.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Updateable Objects
Unlike standard objects, all metadata components can be updated.

Required Fields
You must supply values for all the required fields in the component.

Valid Field Values
You must supply values that are valid for the field’s data type, such as integers (not alphabetic characters) for integer fields. In
your client application, follow the data formatting rules specified for your programming language and development tool (your
development tool will handle the appropriate mapping of data types in SOAP messages).

String Values
When storing values in string fields, the API trims any leading and trailing white space. For example, if the value of a label
field is entered as “ MyObject ”, the value is stored in the database as “MyObject”.

Basic Steps for Updating Metadata Components
Use this process to update metadata components:

1. Invoke this call, passing in an array of metadata components that represent the components you wish to update.
2. An AsyncResult object is returned for each component or field you tried to update. It is updated with status information

as the operation moves from a queue to completed or error state. Use checkStatus() to check on the status values in
AsyncResult.

3. An AsyncResult object is returned for each component you tried to update. It is updated with status information as the
operation moves from a queue to completed or error state. In a loop, call checkStatus() until the status values in
AsyncResult indicate that all the update operations are completed. Start with a wait time of one second between iterations
of checkStatus() calls, and double the wait time each time you make a subsequent call.

44

update()CRUD-Based Calls

Sample Code—Java

public void updateCustomObject() {
try {
CustomObject co = new CustomObject();
String name = "MyCustomObject";
co.setFullName(name + "__c");
co.setDeploymentStatus(DeploymentStatus.Deployed);
co.setDescription("Created by the Metadata API");
co.setEnableActivities(true);
co.setLabel(name + " Object");
co.setPluralLabel(co.getLabel() + "s");
co.setSharingModel(SharingModel.ReadWrite);

CustomField nf = new CustomField();
nf.setType(FieldType.Text);
nf.setLabel(co.getFullName() + " Name");

co.setNameField(nf);

UpdateMetadata updateMetadata = new UpdateMetadata();
updateMetadata.setMetadata(co);
updateMetadata.setCurrentName("TheCurrentName");

AsyncResult[] ars = metadataConnection.update(new UpdateMetadata[]
{ updateMetadata });

AsyncResult asyncResult = ars[0];
// set initial wait time to one second in milliseconds
long waitTimeMilliSecs = 1000;
while (!asyncResult.isDone()) {
Thread.sleep(waitTimeMilliSecs);
// double the wait time for the next iteration
waitTimeMilliSecs *= 2;
asyncResult = metadataConnection.checkStatus(
new String[] {asyncResult.getId()})[0];

System.out.println("Status is: " + asyncResult.getState());
}

if (asyncResult.getState() != AsyncRequestState.Completed) {
System.out.println(asyncResult.getStatusCode() + " msg: " +

asyncResult.getMessage());
}

} catch (InterruptedException ie) {
ie.printStackTrace();

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments

DescriptionTypeName

Array of one or more UpdateMetadata data structures that represent
the components you wish to update.

Limit: 10.

UpdateMetadata[]metadata

You must submit arrays of only one type of component. For example,
you could submit an array of 10 custom objects or 10 profiles, but
not a mix of both types.

45

update()CRUD-Based Calls

UpdateMetadata
One or more UpdateMetadata objects are defined in the metadata argument. This object can be used to update any of the
objects that extend Metadata. For more details, see Metadata Components and Types on page 62. Each UpdateMetadata
object has the following fields:

DescriptionField TypeField

The API name of the component or field before the update. For
example, if you wanted to update a CustomObject named Foo, the

stringcurrentName

value of this field would be Foo__c. This value is supplied because
this call may change the name, and the value here provides mapping.

Full specification of the component or field you wish to update.Metadatametadata

Response
AsyncResult[]

46

update()CRUD-Based Calls

Chapter 8

Utility Calls

Use the following utility calls to gather information that is useful for working with the file-based or CRUD-based calls.

• checkStatus()

• describeMetadata()

• listMetadata()

checkStatus()
Checks the status of asynchronous metadata calls create(), update(), or delete(), or the declarative metadata calls
deploy() or retrieve().

Syntax

AsyncResult[] = metadatabinding.checkStatus(ID[] ids);

Usage
Use this call to check whether or not an asynchronous metadata call or declarative metadata call has completed.

Sample Code—Java
See Step 3: Walk Through the Java Sample Code on page 6 for sample Java code using this call.

Arguments

DescriptionTypeName

Array of one or more IDs. Each ID is returned in an AsyncResult and corresponds to a
component being created, updated, deleted, deployed, or retrieved.

ID[]ids

Response
AsyncResult[]

47

describeMetadata()
This call retrieves the metadata which describes your organization. This information includes Apex classes and triggers, custom
objects, custom fields on standard objects, tab sets that define an app, and many other components.

Syntax

DescribeMetadataResult[] = metadataConnection.describeMetadata(double apiVersion);

Arguments

DescriptionTypeName

The API version for which you want metadata; for example, 28.0.doubleapiVersion

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Sample Code—Java

public void describeMetadata() {
try {
double apiVersion = 21.0;
// Assuming that the SOAP binding has already been established.
DescribeMetadataResult res =

metadataConnection.describeMetadata(apiVersion);
StringBuffer sb = new StringBuffer();
if (res != null && res.getMetadataObjects().length > 0) {
for (DescribeMetadataObject obj : res.getMetadataObjects()) {
sb.append("***\n");
sb.append("XMLName: " + obj.getXmlName() + "\n");
sb.append("DirName: " + obj.getDirectoryName() + "\n");
sb.append("Suffix: " + obj.getSuffix() + "\n");
sb.append("***\n");

}
} else {
sb.append("Failed to obtain metadata types.");

}
System.out.println(sb.toString());

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Response
DescribeMetadataResult

listMetadata()
This call retrieves property information about metadata components in your organization. Data is returned for the components
that match the criteria specified in the queries parameter. The queries array can contain up to three ListMetadataQuery

48

describeMetadata()Utility Calls

queries for each call. This call supports every metadata type: both top-level, such as CustomObject and ApexClass, and child
types, such as CustomField.

Syntax

FileProperties[] = metadataConnection.listMetadata(ListMetadataQuery[] queries, double
asOfVersion);

Usage
This call is useful when you want to identify individual components in package.xml for a retrieve() call or if you want
a high-level view of particular metadata types in your organization. For example, you could use this call to return a list of names
of all the CustomObject components in your organization, and use this information to make a subsequent retrieve() call
to return a subset of these components. For more information about working with package.xml, see Deploying and Retrieving
Metadata on page 12.

Note: This is a synchronous call so the results are returned in one call. This differs from asynchronous calls, such as
retrieve(), where at least one subsequent call is needed to get the results.

Permissions
Your client application must be logged in with the “Modify All Data” permission.

Sample Code—Java
The sample code below lists information about your custom objects. The code assumes that the SOAP binding has already
been established.

public void listMetadata() {
try {
ListMetadataQuery query = new ListMetadataQuery();
query.setType("CustomObject");
//query.setFolder(null);
double asOfVersion = 28.0;
// Assuming that the SOAP binding has already been established.
FileProperties[] lmr = metadataConnection.listMetadata(

new ListMetadataQuery[] {query}, asOfVersion);
if (lmr != null) {
for (FileProperties n : lmr) {
System.out.println("Component fullName: " + n.getFullName());
System.out.println("Component type: " + n.getType());

}
}

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Arguments

DescriptionTypeName

A list of objects that specify which components you are interested in.ListMetadataQuery[]queries

The API version for the metadata listing request. If you don't specify a value in this
field, it defaults to the API version specified when you logged in. This field allows

doubleasOfVersion

you to override the default and set another API version so that, for example, you

49

listMetadata()Utility Calls

DescriptionTypeName

could list the metadata for a metadata type that was added in a later version than the
API version specified when you logged in. This field is available in API version 18.0
and later.

Response
FileProperties

ListMetadataQuery
The ListMetadataQuery parameter specified in a listMetadata() call consists of the following properties:

DescriptionTypeName

The folder associated with the component. This field is
required for components that use folders.

stringfolder

Required. The metadata type, such as CustomObject,
CustomField, or ApexClass.

stringtype

50

ListMetadataQueryUtility Calls

Chapter 9

Result Objects

Use the following objects to get the results of your file-based or CRUD-based calls.

• AsyncResult
• DeployResult
• DescribeMetadataResult
• RetrieveResult

AsyncResult
Poll the values in this object to determine when an asynchronous metadata call has completed, and whether it was successful
or not. The asynchronous metadata calls create(), update(), and delete() return an array of AsyncResult objects. Each
element in the array corresponds to an element in the array of metadata components passed in the call.

Use the checkStatus() call against each object to discover when the call is completed for that object. Database.com updates
each AsyncResult object as the call completes, or when any errors occur.

The deploy() and retrieve() calls use AsyncResult similarly, though you must subsequently use checkDeployStatus()
or checkRetrieveStatus() respectively to get more status information for the deployment or retrieval.

Each AsyncResult object has the following properties:

DescriptionTypeName

Indicates whether this deployment is being used to check the validity of
the deployed files without making any changes in the organization (true)

booleancheckOnly

or not (false). A check-only deployment does not deploy any
components or change the organization in any way. This field is available
in API version 16.0 and later and is only relevant for the deploy() call.

Required. Indicates whether the call has completed (true) or not
(false).

booleandone

Required. ID of the component being created, updated, deleted, deployed,
or retrieved.

IDid

Message corresponding to the statusCode field returned, if any.stringmessage

The number of components that generated errors during this deployment.
This field is available in API version 16.0 and later and is only relevant
for the deploy() call.

intnumberComponentErrors

51

DescriptionTypeName

The number of components that have been deployed so far for this
deployment. This field in conjunction with the

intnumberComponentsDeployed

numberComponentsTotal field gives you an indication of the progress
of the deployment. This field is available in API version 16.0 and later
and is only relevant for the deploy() call.

The total number of components in the deployment. This field in
conjunction with the numberComponentsDeployed field gives you an

intnumberComponentsTotal

indication of the progress of the deployment. This field is available in
API version 16.0 and later and is only relevant for the deploy() call.

The number of Apex tests that have generated errors during this
deployment. This field is available in API version 16.0 and later and is
only relevant for the deploy() call.

intnumberTestErrors

The number of Apex tests that have completed so far for this deployment.
This field in conjunction with the numberTestsTotal field gives you

intnumberTestsCompleted

an indication of the progress of tests for the deployment. This field is
available in API version 16.0 and later and is only relevant for the
deploy() call.

The total number of Apex tests in the deployment. This field in
conjunction with the numberTestsCompleted field gives you an

intnumberTestsTotal

indication of the progress of tests for the deployment. The value in this
field is not accurate until the deployment has started running tests for the
components being deployed. This field is available in API version 16.0
and later and is only relevant for the deploy() call.

This field is no longer supported for API version 13.0 and later and is
only provided for backward compatibility. The field was removed in API
version 17.0.

Indicates the number of seconds before the call is likely to complete. This
is an estimate only. A reasonable approach is to wait one second before

intsecondsToWait

calling checkStatus() to see if the operation is complete. Double your
wait time for each successive iteration of checkStatus() calls until the
operation is complete.

Required. The AsyncRequestState object has one of four possible
values:

AsyncRequestState
(enumeration of
type string)

state

• Queued: This call has not started. It is waiting in a queue.

• InProgress: This call has started, but has not completed yet.

• Completed: This call has completed.

• Error: An error occurred, see the statusCode for more information.

Indicates which component is currently being deployed or which Apex
test class is running. This field is available in API version 16.0 and later
and is only relevant for the deploy() call.

stringstateDetail

52

AsyncResultResult Objects

DescriptionTypeName

The data and time when the stateDetail field was last modified. This
field is available in API version 16.0 and later and is only relevant for the
deploy() call.

dateTimestateDetailLastModifiedDate

If an error occurred during the create(), update(), or delete()
call, a status code is returned, and the message corresponding to the status
code is returned in the message field.

For a description of each StatusCode value, see “StatusCode” in the SOAP
API Developer's Guide.

StatusCode
(enumeration of
type string)

statusCode

DeployResult
The asynchronous metadata call checkDeployStatus() returns a DeployResult object, which contains information about
the success or failure of the associated deploy() call.

DescriptionTypeName

ID of the component being deployed.IDid

Contains information about the success or failure of a deploy() call.DeployMessage[]messages

If the performRetrieve parameter was specified for the deploy(), a
retrieve() is performed immediately after the deploy() is completed. This
field contains the results of that retrieval.

RetrieveResultretrieveResult

If the runAllTests or runTests parameters are set to run tests, this field contains
the results of those tests.

RunTestsResultrunTestResult

Indicates whether the deployment was successful (true) or not (false).booleansuccess

Usage
Contains information about the success or failure of a deploy() call.

DeployMessage
Each DeployResult object contains one or more DeployMessage objects. Each DeployMessage object contains information
about the deployment success or failure of a component in the deployment .zip file:

DescriptionTypeName

If true, the component was changed as a result of this deployment. If false,
the deployed component was the same as the corresponding component already
in the organization.

booleanchanged

53

DeployResultResult Objects

http://www.salesforce.com/apidoc
http://www.salesforce.com/apidoc

DescriptionTypeName

Each component is represented by a text file. If an error occurred during
deployment, this field represents the column of the text file where the error
occurred.

intcolumnNumber

If true, the component was created as a result of this deployment. If false,
the component was either deleted or modified as a result of the deployment.

booleancreated

If true, the component was deleted as a result of this deployment. If false,
the component was either new or modified as result of the deployment.

booleandeleted

The name of the file in the .zip file used to deploy this component.stringfileName

Required. The full name of the component.

Inherited from Metadata, this field is not defined in the WSDL for this metadata
type. It must be specified when creating, updating, or deleting. See create()
to see an example of this field specified for a call.

stringfullName

ID of the component being deployed.IDid

Each component is represented by a text file. If an error occurred during
deployment, this field represents the line number of the text file where the error
occurred.

intlineNumber

If an error or warning occurred, this field contains a description of the problem
that caused the compile to fail.

stringproblem

Indicates the problem type. The problem details are tracked in the problem
field. The valid values are:

DeployProblemType
(enumeration of
type string)

problemType

• Warning

• Error

This field is available in API version 18.0 and later. Prior to version 18.0, there
was no distinction between warnings and errors. All problems were treated as
errors and prevented a successful deployment.

Indicates whether the component was successfully deployed (true) or not
(false).

booleansuccess

RunTestsResult
The call returns information about whether or not the compilation of the specified Apex was successful and if the unit tests
completed successfully.

A RunTestsResult object has the following properties:

DescriptionTypeName

An array of one or more CodeCoverageResult objects that contains the
details of the code coverage for the specified unit tests.

CodeCoverageResult[]codeCoverage

An array of one or more code coverage warnings for the test run. The
results include both the total number of lines that could have been

CodeCoverageWarning[]codeCoverageWarnings

54

DeployResultResult Objects

DescriptionTypeName

executed, as well as the number, line, and column positions of code that
was not executed.

An array of one or more RunTestFailure objects that contain information
about the unit test failures, if there are any.

RunTestFailure[]failures

The number of failures for the unit tests.intnumFailures

The number of unit tests that were run.intnumTestsRun

An array of one or more RunTestSuccesses objects that contain
information about successes, if there are any.

RunTestSuccess[]successes

The total cumulative time spent running tests. This can be helpful for
performance monitoring.

doubletotalTime

CodeCoverageResult
The RunTestsResult object contains this object. It contains information about whether or not the compile of the specified
Apex and run of the unit tests was successful.

DescriptionTypeName

For each class or trigger tested, for each portion of code tested, this property
contains the DML statement locations, the number of times the code was

CodeLocation[]dmlInfo

executed, and the total cumulative time spent in these calls. This can be helpful
for performance monitoring.

The ID of the CodeLocation. The ID is unique within an organization.IDid

For each class or trigger tested, if any code is not covered, the line and column
of the code not tested, and the number of times the code was executed.

CodeLocation[]locationsNotCovered

For each class or trigger tested, the method invocation locations, the number
of times the code was executed, and the total cumulative time spent in these
calls. This can be helpful for performance monitoring.

CodeLocation[]methodInfo

The name of the class or trigger covered.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The total number of code locations.intnumLocations

For each class or trigger tested, the location of SOQL statements in the code,
the number of times this code was executed, and the total cumulative time
spent in these calls. This can be helpful for performance monitoring.

CodeLocation[]soqlInfo

55

DeployResultResult Objects

DescriptionTypeName

Do not use. In early, unsupported releases, used to specify class.stringtype

CodeCoverageWarning
The RunTestsResult object contains this object. It contains information about the Apex class which generated warnings.

This object has the following properties:

DescriptionTypeName

The ID of the CodeLocation. The ID is unique within an organization.IDid

The message of the warning generated.stringmessage

The namespace that contained the unit tests, if one is specified.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

RunTestFailure
The RunTestsResult object returns information about failures during the unit test run.

This object has the following properties:

DescriptionTypeName

The ID of the class which generated failures.IDid

The failure message.stringmessage

The name of the method that failed.stringmethodName

The name of the class that failed.stringname

The namespace that contained the class, if one was specified.stringnamespace

The stack trace for the failure.stringstackTrace

The time spent running tests for this failed operation. This can be helpful for
performance monitoring.

doubletime

Do not use. In early, unsupported releases, used to specify class.stringtype

RunTestSuccess
The RunTestsResult object returns information about successes during the unit test run.

56

DeployResultResult Objects

This object has the following properties:

DescriptionTypeName

The ID of the class which generated the success.IDid

The name of the method that succeeded.stringmethodName

The name of the class that succeeded.stringname

The namespace that contained the unit tests, if one is specified.stringnamespace

The time spent running tests for this operation. This can be helpful for
performance monitoring.

doubletime

CodeLocation
The RunTestsResult object contains this object in a number of fields.

This object has the following properties:

DescriptionTypeName

The column location of the Apex tested.intcolumn

The line location of the Apex tested.intline

The number of times the Apex was executed in the test run.intnumExecutions

The total cumulative time spent at this location. This can be helpful for
performance monitoring.

doubletime

DescribeMetadataResult
The call describeMetadata() returns information about the organization that is useful for developers working with
declarative metadata.

Each DescribeMetadataResult object has the following properties:

DescriptionTypeName

One or more metadata components and their attributes.DescribeMetadataObject[]metadataObjects

The namespace of the organization. Specify only for Developer Edition
organizations that can contain a managed package. The managed package
has a namespace specified when it is created.

stringorganizationNamespace

57

DescribeMetadataResultResult Objects

DescriptionTypeName

Indicates whether rollbackOnError is allowed (true) or not (false).

This value is always :

booleanpartialSaveAllowed

• false in production organizations.

• the opposite of testRequired.

Indicates whether tests are required (true) or not (false).

This value is always the opposite of partialSaveAllowed.

booleantestRequired

DescribeMetadataObject
This object is returned as part of the DescribeMetadataResult. Each DescribeMetadataObject has the following properties:

DescriptionTypeName

List of child sub-components for this component.string[]childXmlNames

The name of the directory in the .zip file that contains this component.stringdirectoryName

Indicates whether the component is in a folder (true) or not (false). For example,
documents, email templates and reports are stored in folders.

booleaninFolder

Indicates whether the component requires an accompanying metadata file. For
example, documents, classes, and s-controls are components that require an
additional metadata file.

booleanmetaFile

The file suffix for this component.stringsuffix

The name of the root element in the metadata file for this component. This name
also appears in the Packages > types > name field in the manifest file
package.xml.

stringxmlName

RetrieveResult
The metadata call retrieve() returns a RetrieveResult object, which contains information about the success or failure of
the associated retrieve() call.

Each RetrieveResult object has the following fields:

DescriptionTypeName

Contains information about the properties of each component in the .zip file,
and the manifest file package.xml. One object per component is returned.

FileProperties[]fileProperties

ID of the component being retrieved.IDid

Contains information about the success or failure of the retrieve() call.RetrieveMessage[]messages

58

RetrieveResultResult Objects

DescriptionTypeName

The zip file returned by the retrieve request. Base 64-encoded binary data. Prior
to making an API call, client applications must encode the binary attachment data

base64BinaryzipFile

as base64. Upon receiving a response, client applications must decode the base64
data to binary. This conversion is usually handled for you by a SOAP client.

FileProperties
This component contains information about the properties of each component in the .zip file, and the manifest file
package.xml. One object per component is returned. Note that this component does not contain information about any
associated metadata files in the .zip file, only the component files and manifest file. FileProperties contains the following
properties:

DescriptionTypeName

Required. ID of the user who created the file.stringcreatedById

Required. Name of the user who created the file.stringcreatedByName

Required. Date and time when the file was created.dateTimecreatedDate

Required. Name of the file.stringfileName

Required. The file developer name used as a unique identifier for API
access. The value is based on the fileName but the characters allowed

stringfullName

are more restrictive. The fullName can contain only underscores and
alphanumeric characters. It must be unique, begin with a letter, not include
spaces, not end with an underscore, and not contain two consecutive
underscores.

Required. ID of the file.stringid

Required. ID of the user who last modified the file.stringlastModifiedById

Required. Name of the user who last modified the file.stringlastModifiedByName

Required. Date and time that the file was last modified.dateTimelastModifiedDate

Indicates the manageable state of the specified component if it is contained
in a package:

ManageableState
(enumeration of type
string)

manageableState

• beta

• deleted

• deprecated

• installed

• released

• unmanaged

For more information about states of manageability for components in
Force.com AppExchange packages, see “Planning the Release of Managed
Packages” in the Database.com online help.

If any, the namespace prefix of the component.stringnamespacePrefix

Required. The metadata type, such as CustomObject, CustomField,
or ApexClass.

stringtype

59

RetrieveResultResult Objects

RetrieveMessage
RetrieveResult returns this object, which contains information about the success or failure of the retrieve() call. One object
per problem is returned:

DescriptionTypeName

The name of the file in the retrieved .zip file where a problem occurred.stringfileName

A description of the problem that occurred.stringproblem

60

RetrieveResultResult Objects

Chapter 10

Metadata Types

Metadata API doesn’t allow you to access everything that you can customize in the user interface. Check the lists of metadata
types that are and aren’t supported to be sure that all the components necessary for your development project can be retrieved
and deployed with Metadata API, and plan accordingly. Metadata types don’t always correspond directly to their related data
types, so in some cases the information is accessible, but not organized as you might expect. For example, dependent picklists
are exposed as a type of picklist, not a separate metadata type.

DescriptionMetadata Type

Represents an Apex class. An Apex class is a template or blueprint from which
Apex objects are created. Classes consist of other classes, user-defined methods,
variables, exception types, and static initialization code.

ApexClass

Represents an Apex trigger. A trigger is Apex code that executes before or after
specific data manipulation language (DML) events occur, such as before object
records are inserted into the database, or after records have been deleted.

ApexTrigger

Represents the base container for criteria-based and owner-based sharing rules.BaseSharingRule

Represents a criteria-based sharing rule. CriteriaBasedSharingRule enables you to
share records based on specific criteria.

CriteriaBasedSharingRule

Represents a custom object that stores data unique to your organization.CustomObject

Represents a set of public groups, which can have users, roles, and other groups.Group

This is the base class for all metadata types. You cannot edit this object. A component
is an instance of a metadata type.

Metadata

This is the base type for all metadata types that contain content, such as documents
or email templates.

MetadataWithContent

Represents an organization’s mobile settings, such as mobile Chatter settings, whether
Mobile Lite is enabled for an organization, and so on.

MobileSettings

Represents an ownership-based sharing rule. OwnerSharingRule enables you to
share records owned by a set of users with another set, using rules that specify the
access level of the target user group.

OwnerSharingRule

Used to specify metadata components to be retrieved as part of a retrieve() call,
or to define a package of components.

Package

Represents a set of permissions that's used to grant additional access to one or more
users without changing their profile or reassigning profiles. You can use permission
sets to grant access, but not to deny access.

PermissionSet

Represents a user profile. A profile defines a user's permission to perform different
functions within Database.com.

Profile

61

DescriptionMetadata Type

Represents a holding area for items before they are processed.Queue

Represents a remote site setting.RemoteSiteSetting

Represents a role in your organization.Role

Represents an organization’s security settings. Security settings define trusted IP
ranges for network access, password and login requirements, and session expiration
and security settings.

SecuritySettings

Represents a set of sharing rules. SharingRules enables you to share records with a
set of users, using rules that specify the access level of the target user group.

SharingRules

Represents a Weblink defined in a custom object.Weblink

Represents the metadata associated with a workflow rule. A workflow rule sets
workflow actions into motion when its designated conditions are met. You can

Workflow

configure workflow actions to execute immediately when a record meets the
conditions in your workflow rule, or set time triggers that execute the workflow
actions on a specific day.

Metadata Components and Types
Metadata components are not based on sObjects, like objects in the API. Instead, they are based on metadata types, such as
ApexClass and CustomObject, which extend Metadata. A component is an instance of a metadata type. For example,
CustomObject is a metadata type for custom objects, and the MyCustomObject__c component is an instance of a custom
object.

A metadata type can be identified in the metadata WSDL as any complexType that extends the Metadata complexType. A
complexType that is a metadata type includes the following element in its WSDL definition:

<xsd:extension base="tns:Metadata">

CustomObject and BusinessProcess extend Metadata so they are metadata types; ActionOverride doesn't extend Metadata
so it's not a metadata type.

You can individually deploy or retrieve a component for a metadata type. For example, you can retrieve an individual
BusinessProcess component, but you can't retrieve an individual ActionOverride component. You can only retrieve an
ActionOverride component by retrieving its encompassing CustomObject component.

Metadata components can be manipulated by asynchronous Metadata API calls or declarative (or file-based) Metadata API
calls.

Most of the components can be accessed using Force.com IDE. Exceptions are noted in the description of the object.

Field Data Types
Each component field has a specific field type. These field types can correspond to other components defined in the WSDL,
or primitive data types, like string, that are commonly used in strongly typed programming languages.

These field data types are used in the SOAP messages that are exchanged between your client application and the API. When
writing your client application, follow the data typing rules defined for your programming language and development

62

Metadata Components and TypesMetadata Types

environment. Your development tool handles the mapping of typed data in your programming language with these SOAP
data types.

For more information about primitive data types, see the SOAP API Developer's Guide.

Enumeration Fields
Some component fields have a data type that is an enumeration. An enumeration is the API equivalent of a picklist. The valid
values of the field are restricted to a strict set of possible values, all having the same data type. These values are listed in the
field description column for each enumeration field. The XML below shows a sample definition of an enumeration of type
string in the WSDL.

<xsd:simpleType name="DashboardComponentFilter">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="RowLabelAscending"/>
<xsd:enumeration value="RowLabelDescending"/>
<xsd:enumeration value="RowValueAscending"/>
<xsd:enumeration value="RowValueDescending"/>

</xsd:restriction>
</xsd:simpleType>

Supported Calls
All of the metadata types are supported by the main calls, unless it is stated otherwise in the individual component sections.
The main Metadata API calls are create(), delete(), update(), deploy(), retrieve(), listMetadata(), and
describeMetadata(). All other calls, such as checkStatus(), are considered utility calls as they are used in conjunction
with one of the main calls.

Unsupported Metadata Types
Some things you can customize in a Database.com organization aren’t available in Metadata API.

The following components can’t be retrieved or deployed with Metadata API, and changes to them must be made manually
in each of your organizations:

• Currency Exchange Rates
• Delegated Administration
• Field History Tracking – Currency and Owner Fields
• Label Renames
• Sharing Organization Wide Defaults
• User Interface Settings (except calendar features, which are supported in ActivitiesSettings on page 119)

ApexClass
Represents an Apex class. An Apex class is a template or blueprint from which Apex objects are created. Classes consist of
other classes, user-defined methods, variables, exception types, and static initialization code. For more information, see the
Force.com Apex Code Developer's Guide. This metadata type extends the MetadataWithContent component and shares its fields.

63

Unsupported Metadata TypesMetadata Types

http://www.salesforce.com/apidoc
http://www.salesforce.com/us/developer/docs/apexcode/index.htm

Note: You can’t deploy updates to an Apex class if there are one or more active scheduled jobs for that class.

Supported Calls
deploy(), retrieve(), describeMetadata(), listMetadata()

Note: This metadata type is not supported by the create(), delete(), and update() calls.

Declarative Metadata File Suffix and Directory Location
The file suffix is .cls for the class file. The accompanying metadata file is named ClassName-meta.xml.

Apex classes are stored in the classes folder in the corresponding package directory.

Version
Apex classes are available in API version 10.0 and later.

Fields
This metadata type contains the following fields:

DescriptionField TypeField Name

The API version for this class. Every class has an API version specified at
creation.

doubleapiVersion

The Apex class definition. Base 64-encoded binary data. Prior to making
an API call, client applications must encode the binary attachment data as

base64content

base64. Upon receiving a response, client applications must decode the
base64 data to binary. This conversion is usually handled for you by a
SOAP client. This field is inherited from the MetadataWithContent
component.

The Apex class name. The name can only contain characters, letters, and
the underscore (_) character, must start with a letter, and cannot end with

stringfullName

an underscore or contain two consecutive underscore characters. This field
is inherited from the Metadata component.

The current status of the Apex class. The following string values are valid:ApexCodeUnitStatus
(enumeration of type string)

status

• Active - The class is active.
• Deleted - The class is marked for deletion. This is useful for managed

packages, because it allows a class to be deleted when a managed
package is updated.

Note: ApexCodeUnitStatus includes an Inactive option, but
it is only supported for ApexTrigger; it is not supported for
ApexClass.

64

ApexClassMetadata Types

Declarative Metadata Sample Definition
The following sample creates the MyhelloWorld.cls class, and the corresponding MyHelloWorld.cls-meta.xml
metadata file.

MyHelloWorld.cls file:

public class MyHelloWorld {
// This method updates the Hello field on a list
// of accounts.
public static void addHelloWorld(Account[] accs){
for (Account a:accs){
if (a.Hello__c != 'World')
a.Hello__c = 'World';
}
}
}

MyHelloWorld.cls-meta.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ApexClass xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>28.0</apiVersion>
</ApexClass>

See Also:
ApexTrigger

ApexTrigger
Represents an Apex trigger. A trigger is Apex code that executes before or after specific data manipulation language (DML)
events occur, such as before object records are inserted into the database, or after records have been deleted. For more
information, see “Managing Apex Triggers” in the Database.com online help. This metadata type extends the
MetadataWithContent component and shares its fields.

Supported Calls
deploy(), retrieve(), describeMetadata(), listMetadata()

Note: This metadata type is not supported by the create(), delete(), and update() calls.

Declarative Metadata File Suffix and Directory Location
The file suffix is .trigger for the trigger file. The accompanying metadata file is named TriggerName-meta.xml.

Apex triggers are stored in the triggers folder in the corresponding package directory.

Version
Triggers are available in API version 10.0 and later.

65

ApexTriggerMetadata Types

Fields
This metadata type contains the following fields:

DescriptionField TypeField Name

Required. The API version for this trigger. Every trigger has an API version
specified at creation.

doubleapiVersion

The Apex trigger definition. This field is inherited from the
MetadataWithContent component.

base64content

The Apex trigger name. The name can only contain characters, letters,
and the underscore (_) character, must start with a letter, and cannot end

stringfullName

with an underscore or contain two consecutive underscore characters. This
field is inherited from the Metadata component.

Required. The current status of the Apex trigger. The following string
values are valid:

ApexCodeUnitStatus
(enumeration of type string)

status

• Active - The trigger is active.
• Inactive - The trigger is inactive, but not deleted.
• Deleted - The trigger is marked for deletion. This is useful for

managed packages, because it allows a trigger to be deleted when a
managed package is updated.

Declarative Metadata Sample Definition
The following sample creates the MyhelloWorld.trigger trigger, and the corresponding
MyHelloWorld.trigger-meta.xml metadata file.

MyHelloWorld.trigger file:

trigger helloWorldAccountTrigger on Account (before insert) {

Account[] accs = Trigger.new;

MyHelloWorld.addHelloWorld(accs);
}

MyHelloWorld.trigger-meta.xml:

<?xml version="1.0" encoding="UTF-8"?>
<ApexTrigger xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>28.0</apiVersion>
</ApexTrigger>

See Also:
ApexClass

66

ApexTriggerMetadata Types

CallCenter
Represents the Call Center definition used to integrate Database.com with a third-party computer-telephony integration
(CTI) system.

File Suffix and Directory Location
CallCenter components have the suffix callCenter and are stored in the callCenters folder.

Version
CallCenter components are available in API version 27.0 and later.

Fields

DescriptionField TypeField Name

Optional field. A URL that points to a CTI 4 adapter.stringadapterUrl

The display name of this call center.stringdisplayName

The label of the displayName field in Call Center setup page.stringdisplayNameLabel

The label of the internalName field in Call Center setup page.stringinternalNameLabel

The version of this call center.stringversion

Custom setup items defined for this call center.CallCenterSection[]sections

CallCenterSection

DescriptionField TypeField Name

Contains the label, name, and value that
describe the sections.

CallCenterItem[] on page 67items

The label of the section.stringlabel

The name of the section.stringname

CallCenterItem

DescriptionField TypeField Name

The label of the custom setup item.stringlabel

The name of the custom setup item.stringname

The value of the custom setup item.int or URLvalue

67

CallCenterMetadata Types

Declarative Metadata Sample Definition
The following is an example of a CallCenter component:

<?xml version="1.0" encoding="UTF-8"?>
<CallCenter xmlns="http://soap.sforce.com/2006/04/metadata">

<adapterUrl>http://localhost:11000</adapterUrl>
<displayName>Demo Call Center Adapter</displayName>
<displayNameLabel>Display Name</displayNameLabel>
<internalNameLabel>Internal Name</internalNameLabel>
<sections>

<items>
<label>Description</label>
<name>reqDescription</name>
<value>Demo Call Center Adapter</value>

</items>
<items>

<label>CTI Connector ProgId</label>
<name>reqProgId</name>
<value>DemoAdapter.DemoAdapter.1</value>

</items>
<items>

<label>Version</label>
<name>reqVersion</name>
<value>3.0</value>

</items>
<items>

<label>CTI Adapter URL</label>
<name>reqAdapterUrl</name>
<value>http://localhost:11000</value>

</items>
<label>General Information</label>
<name>reqGeneralInfo</name>

</sections>
<sections>

<items>
<label>Outside Prefix</label>
<name>reqOutsidePrefix</name>
<value>1</value>

</items>
<items>

<label>Long Distance Prefix</label>
<name>reqLongDistPrefix</name>
<value>1</value>

</items>
<items>

<label>International Prefix</label>
<name>reqInternationalPrefix</name>
<value>01</value>

</items>
<label>Dialing Options</label>
<name>reqDialingOptions</name>

</sections>
<version>4</version>

</CallCenter>

CustomObject
Represents a custom object that stores data unique to your organization. It extends the Metadata metadata type and inherits
its fullName field. You must specify all relevant fields when you create or update a custom object. You cannot update a single

68

CustomObjectMetadata Types

field on the object. For more information about custom objects, see “Custom Object Record Overview” in the Database.com
online help.

All metadata components have a fullName field, which must be fully specified for any custom object.

For example, the following are fully specified names:

Account
MyCustomObject__c

For sample Java code that creates a custom object, see Step 3: Walk Through the Java Sample Code on page 6.

Declarative Metadata File Suffix and Directory Location
Custom object names are automatically appended with __c. The file suffix is .object for the custom object (or standard
object) file.

Custom and standard objects are stored in the objects folder in the corresponding package directory.

Note: Retrieving a component of this metadata type in a project makes the component appear in the Profile component
as well.

Version
Custom objects are available in API version 10.0 and later.

Fields
Unless otherwise noted, all fields are createable, filterable, and nillable.

DescriptionField TypeField Name

When this field is present, this component is not a custom
object, but a custom setting. This field returns the type
of custom setting. The following string values are valid:

CustomSettingsType
(enumeration of type string)

customSettingsType

• List—static data stored in cache and accessed as part
of your application and available organization-wide.

• Hierarchy—static data stored in cache and accessed
as part of your application and available based on a
hierarchy of user, profile or organization. This is the
default value.

This field is available in API version 17.0 and later.

When this field is present, this component is not a custom
object, but a custom setting. This field returns the

CustomSettingsVisibility
(enumeration of type string)

customSettingsVisibility

visibility of the custom setting. The following string values
are valid:
• Public—if the custom setting is packaged, it is

accessible to all subscribing organizations.
• Protected—if the custom setting is in a managed

package, it is only accessible to the developer
organization. Subscribing organizations cannot access
it. This is the default value.

69

CustomObjectMetadata Types

DescriptionField TypeField Name

This field is available in API version 17.0 and later.

Indicates the deployment status of the custom object.DeploymentStatus
(enumeration of type string)

deploymentStatus

Reserved for future use.booleandeprecated

A description of the object. Maximum of 1000 characters.stringdescription

Indicates whether the custom object is enabled for
activities (true) or not (false).

booleanenableActivities

Indicates whether the custom object is enabled for
divisions (true) or not (false). For more information

booleanenableDivisions

about the Division object, see the SOAP API Developer's
Guide.

Indicates whether the custom object is enabled for
enhanced lookups (true) or not (false). Enhanced

booleanenableEnhancedLookup

lookups provide an updated lookup dialog interface that
gives users the ability to filter, sort, and page through
search results as well as customize search result columns.
For more information about enhanced lookups, see
“Enabling Enhanced Lookups” in the Database.com
online help.

Indicates whether the custom object is enabled for feed
tracking (true) or not (false). For more information,

booleanenableFeeds

see “Customizing Chatter Feed Tracking” in the
Database.com online help.

This field is available in API version 18.0 and later.

Indicates whether the custom object is enabled for audit
history (true) or not (false).

booleanenableHistory

Represents one or more fields in the object.CustomField[]fields

Inherited from Metadata, this field is not defined in the
WSDL for this metadata type. It must be specified when

stringfullName

creating, updating, or deleting. See create() to see an
example of this field specified for a call.

This value cannot be null.

Gender of the name to support translation for languages
that indicate gender in nouns. Valid values are:

Gendergender

• Neuter

• Masculine

• Feminine

Label that represents the object throughout the
Database.com user interface.

stringlabel

70

CustomObjectMetadata Types

http://www.salesforce.com/apidoc
http://www.salesforce.com/apidoc

DescriptionField TypeField Name

Represents the metadata associated with a lookup filter.
Use this metadata type to create, update, or delete lookup
filter definitions.

This field is available in API version 17.0 and later.

NamedFilter[]namedFilter

Required. The field that this object's name is stored in.
Every custom object must have a name, usually a string
or autonumber.

Identifier for the custom object record. This name appears
in related lists and lookup dialogs. Every custom object
must have a name, usually a string or autonumber.

CustomFieldnameField

Plural version of the label value.stringpluralLabel

Indicates the sharing model for this custom object. Valid
values are:

SharingModelsharingModel

• Private

• Read

• ReadWrite

Note: You can't change the value of this field
through Metadata API; you must use the Web
interface.

The reasons why the custom object is being shared.SharingReason[]sharingReasons

A list of custom sharing recalculations associated with
the custom object.

SharingRecalculation[]sharingRecalculations

Indicates whether the name starts with a vowel,
consonant, or is a special character. This is used for

StartsWith (enumeration of
type string)

startsWith

languages where words need different treatment
depending on the first character. Valid values are listed
in StartsWith.

An array of one or more validation rules on this object.ValidationRule[]validationRules

An array of one or more weblinks defined for the object.Weblink[]webLinks

Declarative Metadata Additional Components
CustomObject definitions may include additional components which are defined in the custom object for declarative metadata.
The following components are defined in the CustomObject:

• CustomField
• NamedFilter
• SharingReason
• SharingRecalculation
• ValidationRule
• Weblink

71

CustomObjectMetadata Types

Declarative Metadata Sample Definition

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>
<description>just a test object with one field for eclipse ide testing</description>
<fields>

<fullName>Comments__c</fullName>
<description>add your comments about this object here</description>

<inlineHelpText>This field contains comments made about this object</inlineHelpText>

<label>Comments</label>
<length>32000</length>
<type>LongTextArea</type>
<visibleLines>30</visibleLines>

</fields>
<label>MyFirstObject</label>
<nameField>

<label>MyFirstObject Name</label>
<type>Text</type>

</nameField>
<pluralLabel>MyFirstObjects</pluralLabel>
<sharingModel>ReadWrite</sharingModel>

</CustomObject>

See Also:
CustomField
Metadata
Picklist (Including Dependent Picklist)
Weblink

CustomField
Represents the metadata associated with a custom field. Use this metadata type to create, update, or delete custom field
definitions. It extends the Metadata metadata type and inherits its fullName field. You can also use this metadata type to
work with customizations of standard picklist fields, such as the Industry field for accounts.

You must specify the full name whenever you create or update a custom field. For example, a custom field on a custom object:

MyCustomObject__c.MyCustomField__c

Another example, a custom field on a standard object:

Account.MyAcctCustomField__c

Declarative Metadata File Suffix and Directory Location

Custom fields are defined as part of the custom object or standard object definition. See CustomObject for more information.

Note: Retrieving a component of this metadata type in a project makes the component appear in the Profile component
as well.

72

CustomFieldMetadata Types

Retrieving Custom Fields on Custom or Standard Objects

When you retrieve a custom or standard object, you return everything associated with the object. However, you can also retrieve
only the custom fields for an object by explicitly naming the object and fields in package.xml. The following definition in
package.xml will create the files objects/MyCustomObject__c.object and objects/Account.object__c.object,
each containing one custom field definition.

<types>
<members>MyCustomObject__c.MyCustomField__c</members>
<members>Account.MyCustomAccountField__c</members>
<name>CustomField</name>

</types>

Version

Custom fields are available in API version 10.0 and later.

Fields

Unless otherwise noted, all fields are createable, filterable, and nillable.

DescriptionField TypeField Name

Indicates whether the field is case sensitive (true) or not
(false).

booleancaseSensitive

If specified, represents the default value of the field.stringdefaultValue

Provides deletion options for lookup relationships. Valid
values are:

SetNull

This is the default. If the lookup record is deleted,
the lookup field is cleared.

DeleteConstraint
(enumeration of type
string)

deleteConstraint

Restrict

Prevents the record from being deleted if it’s in a
lookup relationship.

Cascade

Deletes the lookup record as well as associated lookup
fields.

For more information on lookup relationships, see
“Overview of Object Relationships” in the Database.com
online help.

Reserved for future use.booleandeprecated

Description of the field.stringdescription

The display format.stringdisplayFormat

Indicates how the value of a Geolocation custom field
appears in the user interface. If true, the geolocation

booleandisplayLocationInDecimal

appears in decimal notation. If false, the geolocation
appears as degrees, minutes, and seconds.

73

CustomObjectMetadata Types

DescriptionField TypeField Name

Indicates whether the field is an external ID field (true)
or not (false).

booleanexternalId

If specified, represents a formula on the field.stringformula

Indicates how to treat blanks in a formula. Valid values are
BlankAsBlank and BlankAsZero.

TreatBlanksAs
(enumeration of type
string)

formulaTreatBlankAs

Inherited from Metadata, this field is not defined in the
WSDL for this metadata type. It must be specified when

stringfullName

creating, updating, or deleting. See create() to see an
example of this field specified for a call.

This value cannot be null.

Indicates if the field is indexed. If this field is unique or
the externalId is set true, the isIndexed value is set

booleanindexed

to true. This field has been deprecated as of version 14.0
and is only provided for backward compatibility.

Represents the content of field-level help. For more
information, see “Defining Field-Level Help” in the
Database.com online help.

stringinlineHelpText

Indicates whether the child records in a master-detail
relationship on a custom object can be reparented to
different parent records. The default value is false.

This field is available in API version 25.0 and later.

booleanreparentableMasterDetail

Label for the field. You cannot update the label for
standard picklist fields, such as the Industry field for
accounts.

stringlabel

Length of the field.intlength

For encrypted fields, specifies the character to be used as
a mask. Valid values are enumerated in
EncryptedFieldMaskChar.

For more information on encrypted fields, see “About
Encrypted Custom Fields” in the Database.com online
help.

EncryptedFieldMaskChar
(enumeration of type
string)

maskChar

For encrypted text fields, specifies the format of the masked
and unmasked characters in the field. Valid values are

EncryptedFieldMaskType
(enumeration of type
string)

maskType

enumerated in EncryptedFieldMaskType For more
information on encrypted fields, see “About Encrypted
Custom Fields” in the Database.com online help.

If specified, the field is a picklist, and this field enumerates
the picklist values and labels.

Picklistpicklist

Indicates whether existing rows will be populated (true)
or not (false).

booleanpopulateExistingRows

74

CustomObjectMetadata Types

DescriptionField TypeField Name

The precision for number values. Precision is the number
of digits in a number. For example, the number 256.99
has a precision of 5.

intprecision

If specified, indicates a reference this field has to another
object.

stringreferenceTo

Label for the relationship.stringrelationshipLabel

If specified, indicates the value for one-to-many
relationships. For example, in the object MyObject that

stringrelationshipName

had a relationship to YourObject, the relationship name
might be YourObjects.

This field is valid for all master-detail relationships, but
the value is only non-zero for junction objects. A junction

intrelationshipOrder

object has two master-detail relationships, and is analogous
to an association table in a many-to-many relationship.
Junction objects must define one parent object as primary
(0), the other as secondary (1). The definition of primary
or secondary affects delete behavior and inheritance of look
and feel, and record ownership for junction objects. For
more information, see the Database.com online help.

0 or 1 are the only valid values, and 0 is always the value
for objects that are not junction objects.

Indicates whether the field requires a value on creation
(true) or not (false).

booleanrequired

The scale for the field. Scale is the number of digits to the
right of the decimal point in a number. For example, the
number 256.99 has a scale of 2.

intscale

If specified, indicates the starting number for the field.intstartingNumber

Set to true to remove markup, or false to preserve
markup. Used when converting a rich text area to a long
text area.

booleanstripMarkup

Represents the field on the detail row that is being
summarized. This field cannot be null unless the
summaryOperation value is count.

stringsummarizedField

Represents the set of filter conditions for this field if it is
a summary field. This field will be summed on the child
if the filter conditions are met.

FilterItem[]summaryFilterItems

Represents the master-detail field on the child that defines
the relationship between the parent and the child.

stringsummaryForeignKey

Represents the sum operation to be performed. Valid values
are enumerated in SummaryOperations.

SummaryOperations
(enumeration of type
string)

summaryOperation

Indicates whether the field is enabled for feed tracking
(true) or not (false). To set this field to true, the

booleantrackFeedHistory

75

CustomObjectMetadata Types

DescriptionField TypeField Name

enableFeeds field on the associated CustomObject must
also be true. For more information, see “Customizing
Chatter Feed Tracking” in the Database.com online help.

This field is available in API version 18.0 and later.

Indicates whether history tracking is enabled for the field
(true) or not (false). For more information, see
“Tracking Field History” in the Database.com online help.

booleantrackHistory

This is only relevant for a checkbox field. If set, true values
are built into the index. This field has been deprecated as

booleantrueValueIndexed

of version 14.0 and is only provided for backward
compatibility.

Required. Indicates the field type for the field. Valid values
are enumerated in FieldType.

FieldTypetype

Indicates whether the field is unique (true) or not
(false).

booleanunique

Indicates the number of lines displayed for the field.intvisibleLines

Sets the minimum sharing access level required on the
master record to create, edit, or delete child records. This

booleanwriteRequiresMasterRead

field applies only to master-detail or junction object custom
field types.
• true - Allows users with “Read” access to the master

record permission to create, edit, or delete child records.
This setting makes sharing less restrictive.

• false - Allows users with “Read/Write” access to the
master record permission to create, edit, or delete child
records. This setting is more restrictive than true, and
is the default value.

For junction objects, the most restrictive access from the
two parents is enforced. For example, if you set to true
on both master-detail fields, but users have “Read” access
to one master record and “Read/Write” access to the other
master record, users won't be able to create, edit, or delete
child records.

Custom fields use additional data types. For more information, see Metadata Field Types on page 93.

EncryptedFieldMaskChar

This field type is used in maskChar. It is a string with two valid values: asterisk or X. For more information on encrypted
fields, see About Encrypted Custom Fields in the Database.com online help.

EncryptedFieldMaskType

This field type is used in maskType. Valid values are:

76

CustomObjectMetadata Types

all

All characters in the field are hidden. This option is equivalent to the Mask All Characters option in Database.com.

creditCard

The first 12 characters are hidden and the last four display. This option is equivalent to the Credit Card Number
option in Database.com.

ssn

The first five characters are hidden and the last four display. This option is equivalent to the Social Security
Number option in Database.com.

lastFour

All characters are hidden but the last four display. This option is equivalent to the Last Four Characters Clear
option in Database.com.

sin

All characters are hidden but the last four display. This option is equivalent to the Social Insurance Number option
in Database.com.

nino

All characters are hidden. Database.com automatically inserts spaces after each pair of characters if the field contains
nine characters. This option is equivalent to the National Insurance Number option in Database.com.

For more information on encrypted fields, see About Encrypted Custom Fields in the Database.com online help.

FilterItem

Represents one entry in a set of filter criteria.

DescriptionField TypeField

Represents the field specified in the filter.stringfield

Represents the filter operation for this filter item. Valid values
are enumerated in FilterOperation.

FilterOperation
(enumeration of
type string)

operation

Represents the value of the filter item being operated upon, for
example, if the filter is my_number_field__c > 1, the value
of value is 1.

stringvalue

Specifies if the final column in the filter contains a field or a field
value.

stringvalueField

FilterOperation

This is an enumeration of type string that lists different filter operations. Valid values are:

• equals

• notEqual

• lessThan

• greaterThan

• lessOrEqual

• greaterOrEqual

77

CustomObjectMetadata Types

• contains

• notContain

• startsWith

• includes

• excludes

SummaryOperations

Represents the type of a summaryOperation. Valid values are:

• Count

• Min

• Max

• Sum

Declarative Metadata Sample Definition

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
....
<fields>

<fullName>Comments__c</fullName>
<description>add your comments about this object here</description>

<inlineHelpText>This field contains comments made about this object</inlineHelpText>

<label>Comments</label>
<length>32000</length>
<type>LongTextArea</type>
<visibleLines>30</visibleLines>

</fields>
....
</CustomObject>

See Also:
CustomObject
Picklist (Including Dependent Picklist)
Metadata
NamedFilter

NamedFilter
Represents the metadata associated with a lookup filter. Use this metadata type to create, update, or delete lookup filter
definitions. It extends the Metadata metadata type and inherits its fullName field. You can also use this metadata type to
work with customizations of lookup filters on standard fields.

Note: The namedFilter appears as a child of the target object of the associated lookup field.

Declarative Metadata File Suffix and Directory Location

Lookup filters are defined as part of the custom object or standard object definition. See CustomObject for more information.

78

NamedFilterMetadata Types

Note: Retrieving a component of this metadata type in a project makes the component appear in the Profile component
as well.

Version

Lookup filters are available in API version 17.0 and later.

Fields

Unless otherwise noted, all fields are createable, filterable, and nillable.

DescriptionField TypeField Name

Required. Indicates whether or not the lookup filter is
active.

booleanactive

Specifies advanced filter conditions. For more information
on advanced filter conditions, see “Getting the Most Out
of Filter Logic” in the Database.com online help.

stringbooleanFilter

A description of what this filter does.stringdescription

The error message that appears if the lookup filter fails.stringerrorMessage

Required. The fullName of the custom or standard field
associated with the lookup filter. You can associate one
relationship field with each lookup filter, and vice-versa.

stringfield

Note: You cannot update a field associated with
a lookup filter.

Required. The set of filter conditions.FilterItems[]filterItems

The information message displayed on the page. Use to
describe things the user might not understand, such as why
certain items are excluded in the lookup filter.

stringinfoMessage

Inherited from Metadata, this field is not defined in the
WSDL for this metadata type. It must be specified when

stringfullName

creating, updating, or deleting. See create() to see an
example of this field specified for a call.

This value cannot be null.

Required. Indicates whether or not the lookup filter is
optional.

booleanisOptional

Required. The name of the lookup filter. If you create this
field in the user interface, a name is automatically assigned.

stringname

If you create this field through Metadata API, you must
include the name field.

The object that contains the lookup field that uses this
lookup filter. Set this field if the lookup filter references
fields on the source object.

stringsourceObject

79

CustomObjectMetadata Types

Lookup filters use additional data types. For more information, see Metadata Field Types.

FilterItems

FilterItems contains the following properties:

DescriptionField TypeField

Represents the field specified in the filter.stringfield

Represents the filter operation for this filter item. Valid values
are enumerated in FilterOperation.

FilterOperation
(enumeration of
type string)

operation

Represents the value of the filter item being operated upon, for
example, if the filter is my_number_field__c > 1, the value
of value is 1.

stringvalue

FilterOperation

This is an enumeration of type string that lists different filter operations. Valid values are:

• equals

• notEqual

• lessThan

• greaterThan

• lessOrEqual

• greaterOrEqual

• contains

• notContain

• startsWith

• includes

• excludes

Declarative Metadata Sample Definition

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
....

<namedfilters>
<fullName>nf_Acc</fullName>
<active>true</active>
<booleanFilter>1 OR 2</booleanFilter>
<field>Account.lk__c</field>
<filterItems>

<field>Account.Phone</field>
<operation>notEqual</operation>
<value>x</value>

</filterItems>
<filterItems>

<field>Account.Fax</field>
<operation>notEqual</operation>
<value>y</value>

</filterItems>
<name>Acc</name>
<sourceObject>Account</sourceObject>

</namedfilters>

80

CustomObjectMetadata Types

....
</CustomObject>

See Also:
CustomObject
Picklist (Including Dependent Picklist)
Metadata
CustomField

Picklist (Including Dependent Picklist)
Represents a picklist (or dependent picklist) definition for a custom field in a custom object or a custom or standard field in
a standard object, such as an account.

Version

Picklists for custom fields in custom objects are available in API version 12.0 and later. Picklists for custom or standard fields
in standard objects, such as accounts, are available in API version 16.0 and later. Picklist values are deleted if necessary on a
deploy of a custom field in API version 27.0 and later.

Declarative Metadata File Suffix and Directory Location

Picklist definitions are included in the custom object and field with which they are associated.

Fields

Picklist contains the following fields:

DescriptionField TypeField Name

The fullName of the controlling field if this is a dependent picklist.
A dependent picklist works in conjunction with a controlling picklist

stringcontrollingField

or checkbox to filter the available options. The value chosen in the
controlling field affects the values available in the dependent field.
This field is available in API version 14.0 and later.

Required. Represents a set of values for a picklist.PicklistValue[]picklistValues

Required. Indicates whether values should be sorted (true), or not
(false).

booleansorted

PicklistValue

This metadata type defines a value in the picklist and specifies whether this value is the default value. It extends the Metadata
metadata type and inherits its fullName field. Note the following when working with picklist values:

• When you retrieve a standard object, you all picklist values are retrieved, not just the customized picklist values.
• When you deploy changes to standard picklist fields, picklist values are added, updated or deleted as needed.

81

Picklist (Including Dependent Picklist)Metadata Types

• You can’t set a picklist value as inactive, but if the picklist value is missing and you invoke an update() call, the missing
value becomes inactive.

DescriptionField TypeField Name

Indicates whether this value lets users email a quote PDF (true),
or not (false). This field is only relevant for the Status field in
quotes. This field is available in API version 18.0 and later.

booleanallowEmail

Indicates whether this value is associated with a closed status
(true), or not (false). This field is only relevant for the standard

booleanclosed

Status field in cases and tasks. This field is available in API version
16.0 and later.

Indicates the color assigned to the picklist value when used in charts
on reports and dashboards. The color is in hexadecimal format; for

stringcolor

example #FF6600. If a color is not specified, it will be assigned
dynamically on chart generation. This field is available in API
version 17.0 and later.

A list of values in the controlling field that are linked to this picklist
value. The controlling field can be a checkbox or a picklist. This

string[]controllingFieldValues

field is available in API version 14.0 and later. The values in the
list depend on the field type:
• Checkbox: checked or unchecked.
• Picklist: The fullName of the picklist value in the

controlling field.

Indicates whether this value is associated with a converted status
(true), or not (false). This field is only relevant for the standard

booleanconverted

Lead Status field in leads. Your organization can set its own
guidelines for determining when a lead is qualified, but typically,
you want to convert a lead as soon as it becomes a real opportunity
that you want to forecast. For more information, see “Converting
Leads” in the Database.com online help. This field is available in
API version 16.0 and later.

Indicates whether this value is available in your Self-Service Portal
(true), or not (false). This field is only relevant for the standard
Case Reason field in cases.

Self-Service provides an online support channel for your customers
- allowing them to resolve their inquiries without contacting a

booleancssExposed

customer service representative. For more information about
Self-Service, see “Setting Up Self-Service” in the Database.com
online help.

Note: Starting with Spring ’12, the Self-Service portal
isn’t available for new organizations. Existing organizations
continue to have access to the Self-Service portal.

This field is available in API version 16.0 and later.

Required. Indicates whether this value is the default picklist value
in the specified picklist (true), or not (false).

booleandefault

82

CustomObjectMetadata Types

DescriptionField TypeField Name

Description of a custom picklist value. This field is only relevant
for the standard Stage field in opportunities. It is useful to include

stringdescription

a description for a customized picklist value so that the historical
reason for creating it can be tracked. This field is available in API
version 16.0 and later.

Indicates whether this value is associated with a forecast category
(true), or not (false). This field is only relevant for the standard

ForecastCategories
(enumeration of
type string)

forecastCategory

Stage field in opportunities. For more information about forecast
categories, including the valid string values listed below, see “
Working with Forecast Categories ” in the Database.com online
help.
• Omitted
• Pipeline
• BestCase
• Forecast
• Closed

This field is available in API version 16.0 and later.

The name used as a unique identifier for API access. The
fullName can contain only underscores and alphanumeric

stringfullName

characters. It must be unique, begin with a letter, not include spaces,
not end with an underscore, and not contain two consecutive
underscores. This field is inherited from the Metadata component.

Indicates whether this value is a high priority item (true), or not
(false). This field is only relevant for the standard Priority

booleanhighPriority

field in tasks. For more information about tasks, see “Creating
Tasks” in the Database.com online help. This field is available in
API version 16.0 and later.

Indicates whether this value is a probability percentage (true), or
not (false). This field is only relevant for the standard Stage

intprobability

field in opportunities. For more information about opportunities,
see “Opportunities Overview” in the Database.com online help.
This field is available in API version 16.0 and later.

A picklist value corresponding to a reverse role name for a partner.
If the role is “subcontractor”, then the reverse role might be “general

stringreverseRole

contractor”. Assigning a partner role to an account in Database.com
creates a reverse partner relationship so that both accounts list the
other as a partner. This field is only relevant for partner roles.

For more information, see “Partner Fields” in the Database.com
online help.
This field is available in API version 18.0 and later.

Indicates whether this value is associated with a reviewed status
(true), or not (false). This field is only relevant for the standard

booleanreviewed

Status field in solutions. For more information about
opportunities, see “Creating Solutions” in the Database.com online
help. This field is available in API version 16.0 and later.

83

CustomObjectMetadata Types

DescriptionField TypeField Name

Indicates whether this value is associated with a closed or won status
(true), or not (false). This field is only relevant for the standard

booleanwon

Stage field in opportunities. This field is available in API version
16.0 and later.

Java Sample

The following sample uses a picklist. For a complete sample of using a picklist with record types and profiles, see Profile on
page 102.

public void setPicklistValues() {
// Create a picklist
Picklist expenseStatus = new Picklist();
PicklistValue unsubmitted = new PicklistValue();
unsubmitted.setFullName("Unsubmitted");
PicklistValue submitted = new PicklistValue();
submitted.setFullName("Submitted");
PicklistValue approved = new PicklistValue();
approved.setFullName("Approved");
PicklistValue rejected = new PicklistValue();
rejected.setFullName("Rejected");
expenseStatus.setPicklistValues(new PicklistValue[]

{unsubmitted, submitted, approved, rejected});

CustomField expenseStatusField = new CustomField();
expenseStatusField.setFullName(

"ExpenseReport__c.ExpenseStatus__c");
expenseStatusField.setLabel("Expense Report Status");
expenseStatusField.setType(FieldType.Picklist);
expenseStatusField.setPicklist(expenseStatus);
try {
AsyncResult[] ars =
metadataConnection.create(new Metadata[] {expenseStatusField});

} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Declarative Metadata Sample Definition

The following sample shows usage for picklists, including dependent picklists, in a custom object. The isAmerican__c
checkbox controls the list of manufacturers shown in the manufacturer__c picklist. The manufacturer__c checkbox in
turn controls the list of models shown in the model__c picklist.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>
<enableActivities>true</enableActivities>
<fields>

<fullName>isAmerican__c</fullName>
<defaultValue>false</defaultValue>
<label>American Only</label>
<type>Checkbox</type>

</fields>
<fields>

<fullName>manufacturer__c</fullName>
<label>Manufacturer</label>
<picklist>

<controllingField>isAmerican__c</controllingField>

84

CustomObjectMetadata Types

<picklistValues>
<fullName>Chrysler</fullName>
<controllingFieldValues>checked</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Ford</fullName>
<controllingFieldValues>checked</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Honda</fullName>
<controllingFieldValues>unchecked</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Toyota</fullName>
<controllingFieldValues>unchecked</controllingFieldValues>
<default>false</default>

</picklistValues>
<sorted>false</sorted>

</picklist>
<type>Picklist</type>

</fields>
<fields>

<fullName>model__c</fullName>
<label>Model</label>
<picklist>

<controllingField>manufacturer__c</controllingField>
<picklistValues>

<fullName>Mustang</fullName>
<controllingFieldValues>Ford</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Taurus</fullName>
<controllingFieldValues>Ford</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>PT Cruiser</fullName>
<controllingFieldValues>Chrysler</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Pacifica</fullName>
<controllingFieldValues>Chrysler</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Accord</fullName>
<controllingFieldValues>Honda</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Civic</fullName>
<controllingFieldValues>Honda</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Prius</fullName>
<controllingFieldValues>Toyota</controllingFieldValues>
<default>false</default>

</picklistValues>
<picklistValues>

<fullName>Camry</fullName>
<controllingFieldValues>Toyota</controllingFieldValues>

85

CustomObjectMetadata Types

<default>false</default>
</picklistValues>
<sorted>false</sorted>

</picklist>
<type>Picklist</type>

</fields>
....
</CustomObject>

The following sample shows usage for the standard Stage field in opportunities.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<fields>
<fullName>StageName</fullName>
<picklist>

<picklistValues>
<fullName>Prospecting</fullName>
<default>false</default>
<forecastCategory>Pipeline</forecastCategory>
<probability>10</probability>

</picklistValues>
<picklistValues>

<fullName>Qualification</fullName>
<default>false</default>
<forecastCategory>Pipeline</forecastCategory>
<probability>10</probability>

</picklistValues>
<picklistValues>

<fullName>Needs Analysis</fullName>
<default>false</default>
<forecastCategory>Pipeline</forecastCategory>
<probability>20</probability>

</picklistValues>
...

</picklist>
</fields>

<CustomObject>

SharingReason
Represents an Apex sharing reason, which is used to indicate why sharing was implemented for a custom object. Apex managed
sharing allows developers to use Apex to programmatically share custom objects. When you use Apex managed sharing to
share a custom object, only users with the “Modify All Data” permission can add or change the sharing on the custom object's
record, and the sharing access is maintained across record owner changes. For more information, see “Overview of Sharing
Settings” in the Database.com online help.

Use SharingReason to create, update, or delete sharing reason definitions for a custom object. It extends the Metadata metadata
type and inherits its fullName field.

Version

Sharing reasons are available in API version 14.0 and later.

86

SharingReasonMetadata Types

Fields

DescriptionField TypeField

Required. Sharing reason name. The __c suffix is appended to
custom sharing reasons.

Inherited from Metadata, this field is not defined in the WSDL for
this metadata type. It must be specified when creating, updating,

stringfullName

or deleting. See create() to see an example of this field specified
for a call.

Required. Descriptive label for the sharing reason. Maximum of 40
characters.

stringlabel

Declarative Metadata Sample Definition

The definition of a sharing reason in a custom object:

<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
. . .

<sharingReasons>
<fullName>recruiter__c</fullName>
<label>Recruiter</label>

</sharingReasons>
. . .
</CustomObject>

SharingRecalculation
Represents Apex classes that recalculate the Apex managed sharing for a specific custom object. For more information, see
“Recalculating Apex Managed Sharing” in the Database.com online help.

Version

Sharing recalculations are available in API version 14.0 and later.

Fields

DescriptionField TypeField

Required. The Apex class that recalculates the Apex sharing for a
custom object. This class must implement the
Database.Batchable interface.

stringclassName

Declarative Metadata Sample Definition

The definition of a sharing recalculation in a custom object:

<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
. . .

<sharingRecalculations>

87

SharingRecalculationMetadata Types

<className>RecruiterRecalculation</className>
</sharingRecalculations>

. . .
</CustomObject>

ValidationRule
Represents a validation rule, which is used to verify that the data a user enters in a record is valid and can be saved. A validation
rule contains a formula or expression that evaluates the data in one or more fields and returns a value of true or false.
Validation rules also include an error message that your client application can display to the user when the rule returns a value
of true due to invalid data. It extends the Metadata metadata type and inherits its fullName field.

As of API version 20.0, validation rules can't have compound fields. Examples of compound fields include addresses, first and
last names, dependent picklists, and dependent lookups.

Version

Validation rules are available in API version 12.0 and later.

Fields

DescriptionField TypeField Name

Required. Indicates whether this validation rule is active, (true),
or not active (false).

booleanactive

A description of the validation rule.stringdescription

Required. The validation formula, as documented in the validation
formula page. See “Defining Validation Rules” in the Database.com
online help.

stringerrorConditionFormula

The fully specified name of a field in the application. If a value is
supplied in this field, the value in errorMessage appears next to

stringerrorDisplayField

the specified field. If you do not specify a value, the error message
appears at the top of the page.

Required. The message that appears if the validation rule fails. The
message must be 255 characters or less.

stringerrorMessage

The internal name of the validation rule, with white spaces and
special characters escaped for validity. The name can only contain

stringfullName

characters, letters, and the underscore (_) character, must start with
a letter, and cannot end with an underscore or contain two
consecutive underscore characters.

Inherited from the Metadata component, this field is not defined
in the WSDL for this component. It must be specified when
creating, updating, or deleting. See create() to see an example
of this field specified for a call.

88

ValidationRuleMetadata Types

Declarative Metadata Sample Definition

A sample XML definition of a validation rule in a custom object is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>
<fields>

<fullName>Mommy_Cat__c</fullName>
<label>Mommy Cat</label>
<referenceTo>Cat__c</referenceTo>
<relationshipName>Cats</relationshipName>
<type>Lookup</type>

</fields>
<label>Cat</label>
<nameField>

<label>Cat Name</label>
<type>Text</type>

</nameField>
<pluralLabel>Cats</pluralLabel>
<sharingModel>ReadWrite</sharingModel>
<validationRules>

<fullName>CatsRule</fullName>
<active>true</active>
<errorConditionFormula>OR(Name = 'Milo',Name =

'Moop')</errorConditionFormula>
<validationMessage>Name must be that of one of my cats</validationMessage>

</validationRules>
</CustomObject>

Weblink
Represents a Weblink defined in a custom object. It extends the Metadata metadata type and inherits its fullName field.

Version

Weblinks are available in API version 12.0 and later.

Fields

The Weblink definition contains the following fields.

DescriptionField TypeField Name

Required. Indicates whether the Weblink is only available online
(online, or if it is also available offline (offline).

WebLinkAvailability
(enumeration of type string)

availability

A description of the Weblink.stringdescription

Represents how this Weblink is rendered.

Valid values:

WebLinkDisplayType
(enumeration of type string)

displayType

• link for a hyperlink
• button for a button
• massAction for a button attached to a related list

89

WeblinkMetadata Types

DescriptionField TypeField Name

Required. The default encoding setting is Unicode: UTF-8. Change
the default encoding setting if the target of a link requires data in a
different format. This is available if your Content Source is URL.

Valid values include:

Encoding (enumeration of
type string)

encodingKey

• UTF-8: “Unicode (UTF-8)” in the UI
• ISO-8859-1: “General US & Western Europe (ISO-8859–1,

ISO-LATIN-1)” in the UI
• Shift_JIS: “Japanese (Shift-JIS)” in the UI
• ISO-2022-JP: “Japanese (JIS)” in the UI
• EUC-JP: “Japanese (EUC)” in the UI
• ks_c_5601-1987: “Korean (ks_c_5601–1987)” in the UI
• Big5: “Traditional Chinese (Big5)” in the UI
• GB2312: “Simplified Chinese (GB2312)” in the UI
• BIG5-HKSCS: “Traditional Chinese Hong Kong

(Big5–HKSCS)” in the UI
• x-SJIS_0213: “Japanese (Shift-JIS_2004)” in the UI

The name of the weblink with white spaces and special characters
escaped for validity. The name can only contain characters, letters,

stringfullName

and the underscore (_) character, must start with a letter, and cannot
end with an underscore or contain two consecutive underscore
characters.

Inherited from the Metadata component, this field is not defined
in the WSDL for this component. It must be specified when creating,
updating, or deleting. See create() to see an example of this field
specified for a call.

If the openType is newWindow, whether to show the browser menu
bar for the window (true or not (false). Otherwise this field
should not be specified.

booleanhasMenubar

If the openType is newWindow, whether to show the scroll bars
for the window (true) or not (false). Otherwise this field should
not be specified.

booleanhasScrollbars

If the openType is newWindow, whether to show the browser
toolbar for the window (true) or not (false). Otherwise this field
should not be specified.

booleanhasToolbar

Height in pixels of the window opened by this Weblink. Required
if the openType is newWindow, otherwise should not be specified

intheight

If the openType is newWindow, whether to allow resizing of the
window (true) or not (false). Otherwise this field should not be
specified.

booleanisResizable

90

CustomObjectMetadata Types

DescriptionField TypeField Name

Required. Represents whether the content of this Weblink is
specified by a URL or a JavaScript code block.

Valid values:

WebLinkType (enumeration
of type string)

linkType

• url

• javascript

The master label for the Weblink.stringmasterLabel

Required. When this button is clicked, specifies the window style
that will be used to display the content.

Valid values:

WebLinkWindowType
(enumeration of type string)

openType

• newWindow

• sidebar

• noSidebar

• replace

• onClickJavaScript

If the openType is newWindow, how the new window should be
displayed. Otherwise this field should not be specified.

Valid values:

WebLinkPosition
(enumeration of type string)

position

• fullScreen

• none

• topLeft

Required. Indicates whether this sub-component is protected (true)
or not (false). Protected sub-components cannot be linked to or

booleanprotected

referenced by components or sub-components created in the
installing organization.

If the openType is massAction, whether to require individual row
selection to execute the action for this button (true) or not (false).
Otherwise this field should not be specified.

booleanrequireRowSelection

If the openType is newWindow, whether or not to show the browser
location bar for the window; otherwise this field should not be
specified.

booleanshowsLocation

If the openType is newWindow, whether or not to show the browser
status bar for the window. Otherwise, this field should not be
specified.

booleanshowsStatus

If the value of linkType is url, this is the URL value. If the value
of linkType is javascript, this is the JavaScript content. If the
value neither of these, the this field should not be specified.

stringurl

Content must be escaped in a manner consistent with XML parsing
rules.

91

CustomObjectMetadata Types

DescriptionField TypeField Name

Width in pixels of the window opened by this Weblink.

Required if the openType is newWindow, otherwise should not be
specified.

intwidth

Java Sample

The following Java sample shows sample values for Weblink fields:

public void webLinkSample(String name) throws Exception {
WebLink weblink = new WebLink();
// name variable represents the full name of the object
// on which to create the weblink, for example, customObject__c
weblink.setFullName(name + ".googleButton");
weblink.setUrl("http://www.google.com");
weblink.setAvailability(WebLinkAvailability.online);
weblink.setLinkType(WebLinkType.url);
weblink.setEncodingKey(Encoding.fromString("UTF-8"));
weblink.setOpenType(WebLinkWindowType.newWindow);
weblink.setHeight(600);
weblink.setWidth(600);
weblink.setShowsLocation(false);
weblink.setHasScrollbars(true);
weblink.setHasToolbar(false);
weblink.setHasMenubar(false);
weblink.setShowsStatus(false);
weblink.setIsResizable(true);
weblink.setPosition(WebLinkPosition.none);
weblink.setMasterLabel("google");
weblink.setDisplayType(WebLinkDisplayType.link);

AsyncResult[] asyncResults = metadataConnection.create(new WebLink[]{weblink});
// After the create() call completes, we must poll the results of checkStatus()
//

}

Declarative Metadata Sample Definition

The following is the definition of a Weblink in a custom object.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">
....

<webLinks>
<fullName>googleButton</fullName>
<availability>online</availability>
<displayType>link</displayType>
<encodingKey>UTF-8</encodingKey>
<hasMenubar>false</hasMenubar>
<hasScrollbars>true</hasScrollbars>
<hasToolbar>false</hasToolbar>
<height>600</height>
<isResizable>true</isResizable>
<linkType>url</linkType>
<masterLabel>google</masterLabel>
<openType>newWindow</openType>
<position>none</position>
<protected>false</protected>
<showsLocation>false</showsLocation>
<showsStatus>false</showsStatus>

92

CustomObjectMetadata Types

<url>http://www.google.com</url>
<width>600</width>

</webLinks>
....
</CustomObject>

Metadata Field Types
These field types extend the field types described in the SOAP API Developer's Guide.

What the Field ContainsObjectsField Type

Represents a custom field.Custom object

Custom field

CustomField

A string that represents deletion options for lookup relationships. Valid values are:Custom fieldDeleteConstraint
• SetNull

• Restrict

• Cascade

A string which represents the deployment status of a custom object or field. Valid values
are:

Custom object

Custom field

DeploymentStatus

• InDevelopment

• Deployed

Indicates the type of a custom field. Valid values are:Custom fieldFieldType
• AutoNumber

• Lookup

• MasterDetail

• Checkbox

• Currency

• Date

• DateTime

• Email

• EncryptedText

• Number1

• Percent

• Phone

• Picklist

• MultiselectPicklist

• Summary

• Text

• TextArea

• LongTextArea

• Summary

93

Metadata Field TypesMetadata Types

http://www.salesforce.com/apidoc

What the Field ContainsObjectsField Type

• Url

• Hierarchy

• File

• CustomDataType

• Html

• Geolocation

1 A Number custom field is internally represented as a field of type double. Setting the
scale of the Number field to 0 gives you a double that behaves like an int.

Gender of the name to support translation for languages that indicate gender in nouns.
Valid values are:

Custom objectGender

• Neuter

• Masculine

• Feminine

Represents a picklist, a set of labels and values that can be selected from a picklist.Custom fieldPicklist
(Including
Dependent
Picklist)

Represents the sharing model for the custom object or custom field. Valid values are:Custom object

Custom field

SharingModel
• Private

• Read

• ReadWrite

Indicates whether the name starts with a vowel, consonant, or is a special character.
This is used for languages where words need different treatment depending on the first
character. Valid values are:

Custom object

Custom field

StartsWith

• Consonant

• Vowel

• Special

Indicates how blanks should be treated. Valid values are:Custom fieldTreatBlanksAs
• BlankAsBlank

• BlankAsZero

Group
Represents a set of public groups, which can have users, roles, and other groups.

94

GroupMetadata Types

Declarative Metadata File Suffix and Directory Location
The file suffix for group components is .group and components are stored in the groups directory of the corresponding
package directory.

Version
Group components are available in API version 24.0 and later.

Fields
This metadata type represents the valid values that define a group:

DescriptionField TypeField Name

Indicates whether the managers have access (true) or do not have
access (false) to records shared with members of the group. This
field is only available for public groups.

booleandoesIncludeBosses

The unique identifier for API access. The fullName can contain
only underscores and alphanumeric characters. It must be unique,

stringfullName

begin with a letter, not include spaces, not end with an underscore,
and not contain two consecutive underscores. This field is inherited
from the Metadata component. Corresponds to Group Name in
the user interface.

Required. The name of the group. Corresponds to Label in the user
interface.

stringname

Declarative Metadata Sample Definition
The following is the definition of a group.

<?xml version="1.0" encoding="UTF-8"?>
<Group xmlns="http://soap.sforce.com/2006/04/metadata">

<doesIncludeBosses>true</doesIncludeBosses>
<fullName>admin</fullName>
<name>test</name>

</Group>

InstalledPackage
Represents a package to be installed or uninstalled. Deploying a newer version of a currently installed package upgrades the
package.

Note: You can’t deploy a package along with other metadata types. Hence, InstalledPackage must be the only
metadata type specified in the manifest file.

File Suffix and Directory Location
The package is specified in the installedPackages directory, in a file named after the package’s namespace prefix. The
file extension is .installedPackage.

95

InstalledPackageMetadata Types

Version
InstalledPackage is available in API version 28.0 and later.

Fields

DescriptionField TypeField Name

The version number of the package. This has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3).

stringversionNumber

An optional field specifying the package password.stringpassword

Declarative Metadata Sample Definition
This specifies a sample package to be installed or uninstalled.

<?xml version="1.0" encoding="UTF-8"?>
<InstalledPackage xmlns="http://soap.sforce.com/2006/04/metadata">
<versionNumber>1.0</versionNumber>
<password>optional_password</password>

</InstalledPackage>

Metadata
This is the base class for all metadata types. You cannot edit this object. A component is an instance of a metadata type.

Metadata is analogous to sObject, which represents all standard objects. Metadata represents all components and fields in
Metadata API. Instead of identifying each component with an ID, each custom object or custom field has a unique fullName,
which must be distinct from standard object names, as it must be when you create custom objects or custom fields in the
Database.com user interface.

Version
Metadata components are available in API version 10.0 and later.

Fields

DescriptionField TypeField Name

Required. The name of the component. If a field, the name must
specify the parent object, for example Account.FirstName. The

stringfullName

__c suffix must be appended to custom object names and custom
field names when you are setting the fullName. For example, a

96

MetadataMetadata Types

DescriptionField TypeField Name

custom field in a custom object could have a fullName of
MyCustomObject__c.MyCustomField__c.

See Also:
CustomObject
CustomField
MetadataWithContent

MetadataWithContent
This is the base type for all metadata types that contain content, such as documents or email templates. It extends Metadata.
You cannot edit this object.

Version
MetadataWithContent components are available in API version 14.0 and later.

Fields

DescriptionField TypeField Name

Base 64-encoded binary data. Prior to making an API call, client
applications must encode the binary attachment data as base64.

base64Binarycontent

Upon receiving a response, client applications must decode the
base64 data to binary. This conversion is usually handled for you
by a SOAP client.

Required. The name of the component. The fullName can contain
only underscores and alphanumeric characters. It must be unique,

stringfullName

begin with a letter, not include spaces, not end with an underscore,
and not contain two consecutive underscores.

Inherited from the Metadata component, this field is not defined
in the WSDL for this component. It must be specified when
creating, updating, or deleting. See create() to see an example
of this field specified for a call.

See Also:
Metadata

97

MetadataWithContentMetadata Types

Package
Used to specify metadata components to be retrieved as part of a retrieve() call, or to define a package of components.

DescriptionTypeName

Package components have access via dynamic Apex and
the API to standard and custom objects in the organization

APIAccessLevel (enumeration
of type string)

apiAccessLevel

where they are installed. Administrators who install
packages may wish to restrict this access after installation
for improved security. The valid values are:
• Unrestricted—Package components have the same API

access to standard objects as the user who is logged in
when the component sends a request to the API.

• Restricted—The administrator can select which
standard objects the components can access. Further,
the components in restricted packages can only access
custom objects in the current package if the user's
permissions allow access to them.

For more information, see “About API and Dynamic Apex
Access in Packages” in the Database.com online help.

A short description of the package.stringdescription

The package name used as a unique identifier for API
access. The fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique, begin with a
letter, not include spaces, not end with an underscore, and
not contain two consecutive underscores. This field is
inherited from the Metadata component.

The namespace of the developer organization where the
package was created.

stringnamespacePrefix

Indicates which objects are accessible to the package, and
the kind of access available (create, read, update, delete).

ProfileObjectPermissions[]objectPermissions

The weblink used to describe package installation.stringsetupWeblink

The type of component being retrieved.PackageTypeMembers[]types

Required. The version of the component type.stringversion

PackageTypeMembers
Use to specify the name and type of components to be retrieved in a package.

98

PackageMetadata Types

DescriptionTypeName

One or more named components, or the wildcard character
(*) to retrieve all custom metadata components of the type

stringmembers

specified in the <name> element. To retrieve a standard
object, specify it by name. For example
<members>Account</members> will retrieve the
standard Account object.

The type of metadata component to be retrieved. For
example <name>CustomObject</name> will retrieve

stringname

one or more custom objects as specified in the <members>
element.

PermissionSet
Represents a set of permissions that's used to grant additional access to one or more users without changing their profile or
reassigning profiles. You can use permission sets to grant access, but not to deny access. See “Permission Sets Overview” in
the Database.com online help.

Declarative Metadata File Suffix and Directory Location
Permission sets are stored in the permissionsets directory. The file name matches the permission set API name and the
extension is .permissionset. For example, a permission set with the name User_Management_Perms is stored in
permissionsets/User_Management_Perms.permissionset.

Version
Permission sets are available in API version 22.0 and later.

Fields

DescriptionField TypeField

Indicates which top-level Apex classes have methods that users
assigned to this permission set can execute. Available in API
version 23.0 and later.

PermissionSetApexClassAccess[]classAccesses

The permission set description. Limit: 255 characters.stringdescription

Indicates which fields are accessible to a user assigned to this
permission set, and the kind of access available (readable or
editable). Available in API version 23.0 and later.

PermissionSetFieldPermissions[]fieldPermissions

The permission set label. Limit: 80 characters.stringlabel

Indicates the objects that are accessible to a user assigned to
this permission set, and the kind of access available (create,
read, edit, delete). Available in API version 23.0 and later.

PermissionSetObjectPermissions[]objectPermissions

99

PermissionSetMetadata Types

DescriptionField TypeField

The User License for the permission set. A user license
entitles a user to different functionality within Database.com

stringuserLicense

and determines which profiles and permission sets are available
to the user.

Specifies an app or system permission (such as “API Enabled”)
and whether it's enabled for this permission set.

PermissionSetUserPermission[]userPermissions

PermissionSetApexClassAccess
PermissionSetApexClassAccess represents the Apex class access for users assigned to a permission set.

DescriptionField TypeField

Required. The Apex class name.stringapexClass

Required. Indicates whether users assigned to this permission
set can execute methods in the top-level class (true) or not
(false).

booleanenabled

PermissionSetFieldPermissions
PermissionSetFieldPermissions represents the field permissions for users assigned to a permission set.

DescriptionField TypeField

Required. Indicates whether the field can be edited by the
users assigned to this permission set (true) or not (false).

booleaneditable

Required. The API name of the field (such as
Warehouse__c.Description__c).

stringfield

Indicates whether the field can be read by the users assigned
to this permission set (true) or not (false).

booleanreadable

PermissionSetObjectPermissions
PermissionSetObjectPermissions represents the object permissions for a permission set. Use one of these elements for each
permission.

DescriptionField TypeField

Required. Indicates whether the object referenced by the
object field can be created by the users assigned to this
permission set (true) or not (false).

booleanallowCreate

Required. Indicates whether the object referenced by the
object field can be deleted by the users assigned to this
permission set (true) or not (false).

booleanallowDelete

Required. Indicates whether the object referenced by the
object field can be edited by the users assigned to this
permission set (true) or not (false).

booleanallowEdit

100

PermissionSetMetadata Types

DescriptionField TypeField

Required. Indicates whether the object referenced by the
object field can be viewed by the users assigned to this
permission set (true) or not (false).

booleanallowRead

Required. Indicates whether the object referenced by the
object field can be viewed, edited, or deleted by the users

booleanmodifyAllRecords

assigned to this permission set (true) or not (false),
regardless of the sharing settings for the object. This includes
private records (records with no parent object). This is similar
to the “Modify All Data” user permission, but limited to the
individual object level.

Required. The API name of the object (such as
Warehouse__c).

stringobject

Required. Indicates whether the object referenced by the
object field can be viewed by the users assigned to this

booleanviewAllRecords

permission set (true) or not (false), regardless of the sharing
settings for the object. This includes private records (records
with no parent object). This is similar to the “View All Data”
user permission, but limited to the individual object level.

PermissionSetUserPermission
PermissionSetUserPermission represents an app or system permission for a permission set. Use one of these elements for each
permission.

DescriptionField TypeField

Required. Indicates whether the permission is enabled (true)
or disabled (false).

booleanenabled

Required. The name of the permission.stringname

Declarative Metadata Sample Definition
When adding or changing a permission set, you don't need to include all permissions—you only need to include the permissions
you're adding or changing.

<?xml version="1.0" encoding="UTF-8"?>
<PermissionSet xmlns="http://soap.sforce.com/2006/04/metadata">

<description>Grants all rights needed for an HR administrator to manage
employees.</description>

<label>HR Administration</label>
<userLicense>Salesforce</userLicense>
<userPermissions>

<enabled>true</enabled>
<name>APIEnabled</name>

</userPermissions>
<objectPermissions>

<allowCreate>true</allowCreate>
<allowDelete>true</allowDelete>
<allowEdit>true</allowEdit>
<allowRead>true</allowRead>
<viewAllRecords>true</viewAllRecords>
<modifyAllRecords>true</modifyAllRecords>

101

PermissionSetMetadata Types

<object>Job_Request__c</object>
</objectPermissions>
<fieldPermissions>

<editable>true</editable>
<field>Job_Request__c.Salary__c</field>
<readable>true</readable>

</fieldPermissions>
<pageAccesses>

<apexPage>Job_Request_Web_Form</apexPage>
<enabled>true</enabled>

</pageAccesses>
<classAccesses>
<apexClass>Send_Email_Confirmation</apexClass>
<enabled>true</enabled>

</classAccesses>
<tabVisibilities>

<tab>Job_Request__c</tab>
<visibility>Available</visibility>

</tabVisibilities>
</PermissionSet>

Profile
Represents a user profile. A profile defines a user's permission to perform different functions within Database.com. It extends
the Metadata metadata type and inherits its fullName field.

Declarative Metadata File Suffix and Directory Location
The file suffix is .profile. There is one file for each profile, stored in the profiles folder in the corresponding package
directory.

Version
Profiles are available in API version 10.0 and later.

Fields
The content of a profile returned by Metadata API depends on the content requested in the RetrieveRequest message. For
example, profiles only include field-level security for fields included in custom objects returned in the same RetrieveRequest
as the profiles. The profile definition contains the following fields:

DescriptionField TypeField Name

Indicates which top-level Apex classes have methods that users
assigned to this profile can execute.

ProfileApexClassAccess[]classAccesses

Indicates which fields are visible to a user assigned to this profile,
and the kind of access available (editable or hidden). This field is
available in API version 22.0 and earlier.

ProfileFieldLevelSecurity[]fieldLevelSecurities

Indicates which fields are visible to a user assigned to this profile,
and the kind of access available (editable or readable). This field is
available in API version 23.0 and later.

ProfileFieldLevelSecurity[]fieldPermissions

102

ProfileMetadata Types

DescriptionField TypeField Name

The name can only contain characters, letters, and the underscore
(_) character, must start with a letter, and cannot end with an
underscore or contain two consecutive underscore characters.

Inherited from the Metadata component, this field is not defined
in the WSDL for this component. It must be specified when creating,

stringfullName

updating, or deleting. See create() to see an example of this field
specified for a call.

Indicates the hours within which a user with this profile may log in.
If not specified, the profile doesn’t restrict a user’s login hours.

This field is available in API version 25.0 and later.

ProfileLoginHours[]loginHours

The list of IP address ranges from which users with a particular
profile can log in.

This field is available in API version 17.0 and later.

ProfileLoginIpRange[]loginIpRanges

Indicates which objects are accessible to a user assigned to this profile,
and the kind of access available (create, read, edit, delete).

ProfileObjectPermissions[]objectPermissions

The User License for the profile. A user license entitles a user
to different functionality within Database.com and determines which
profiles and permission sets are available to the user.

This field is available in API version 17.0 and later.

stringuserLicense

ProfileApexClassAccess
ProfileApexClassAccess determines which top-level Apex classes have methods that users assigned to this profile can execute.

DescriptionField TypeField Name

Required. The Apex class name.stringapexClass

Required. Indicates whether users assigned to this profile can execute
methods in the top-level class (true) or not (false).

booleanenabled

ProfileFieldLevelSecurity
ProfileFieldLevelSecurity represents the field level security for users assigned to a profile.

DescriptionField TypeField Name

Required. Indicates whether this field is editable (true) or not
(false).

booleaneditable

Required. Indicates the name of the field.stringfield

Indicates whether this field is hidden (true) or not (false). This
field is available in API version 22.0 and earlier.

For portal profiles, this is set to true by default in API version 19.0
and later.

booleanhidden

103

ProfileMetadata Types

DescriptionField TypeField Name

Indicates whether this field is readable (true) or not (false). This
field is available in API version 23.0 and later. It replaces the
hidden field.

For portal profiles, this is set to false by default.

booleanreadable

ProfileLoginHours
ProfileLoginHours restricts the days and times within which users with a particular profile can log in.

DescriptionField TypeField Name

Specifies the earliest time on that day that a user with this profile
may log in. If a start time for a particular day is specified, an end

stringweekdayStart

time for that day must be specified as well. Start can’t be greater
than end for a particular day.
• Valid values for weekday: monday, tuesday, wednesday,

thursday, friday, saturday, or sunday. For example,
mondayStart indicates the beginning of the login period for
Monday.

• Valid values for Start: the number of minutes since midnight.
Must be evenly divisible by 60 (full hours). For example, 300 is
5:00 a.m.

Specifies the time on that day by which a user with this profile must
log out.

stringweekdayEnd

• Valid values for weekday: monday, tuesday, wednesday,
thursday, friday, saturday, or sunday. For example,
mondayEnd indicates the close of the login period for Monday.

• Valid values for End: the number of minutes since midnight.
Must be evenly divisible by 60 (full hours). For example, 1020
is 5:00 p.m.

To delete login hour restrictions from a profile that previously had them, you must explicitly include an empty loginHours
tag without any start or end times.

ProfileLoginIpRange
ProfileLoginIpRange IP defines an IP address ranges from which users with a particular profile can log in.

DescriptionField TypeField Name

Required. The end IP address for the range.stringendAddress

Required. The start IP address for the range.stringstartAddress

ProfileObjectPermissions
ProfileObjectPermissions represents a user's access to objects.

104

ProfileMetadata Types

Note: In API version 18.0 and later, these permissions are disabled in new custom objects for any profiles in which
“View All Data” or “Modify All Data” is disabled.

DescriptionField TypeField Name

Indicates whether the object referenced by the object field can be
created by the users assigned to this profile (true) or not (false).

This field is named revokeCreate before version 14.0 and the
logic is reversed. The field name change and the update from true

booleanallowCreate

to false and vice versa is automatically handled between versions
and does not require any manual editing of existing XML
component files. The field name change and the update from true
to false and vice versa is automatically handled between versions
and does not require any manual editing of existing XML
component files.

Indicates whether the object referenced by the object field can be
deleted by the users assigned to this profile (true) or not (false).

This field is named revokeDelete before version 14.0 and the
logic is reversed. The field name change and the update from true

booleanallowDelete

to false and vice versa is automatically handled between versions
and does not require any manual editing of existing XML
component files.

Indicates whether the object referenced by the object field can be
edited by the users assigned to this profile (true) or not (false).

This field is named revokeEdit before version 14.0 and the logic
is reversed. The field name change and the update from true to

booleanallowEdit

false and vice versa is automatically handled between versions and
does not require any manual editing of existing XML component
files.

Indicates whether the object referenced by the object field can be
seen by the users assigned to this profile (true) or not (false).

This field is named revokeRead before version 14.0 and the logic
is reversed. The field name change and the update from true to

booleanallowRead

false and vice versa is automatically handled between versions and
does not require any manual editing of existing XML component
files.

Indicates whether the object referenced by the object field can be
read, edited, or deleted by the users assigned to this profile (true)

booleanmodifyAllRecords

or not (false), regardless of the sharing settings for the object.
This is equivalent to the “Modify All Data” user permission limited
to the individual object level. This is a new field in API version
15.0.

Note: This field is not available for all objects. Refer to
the profile in the user interface to determine which objects
currently support these permissions. Profiles with "Modify
All Data" ignore modifyAllRecords entries in Metadata

105

ProfileMetadata Types

DescriptionField TypeField Name

API and don't return an error if "Modify All Data" is
enabled on the profile.

Required. The name of the object whose permissions are altered by
this profile, for example, MyCustomObject__c.

stringobject

Indicates whether the object referenced by the object field can be
read by the users assigned to this profile (true) or not (false),

booleanviewAllRecords

regardless of the sharing settings for the object. This includes private
records (records with no parent object). This is equivalent to the
“View All Data” user permission limited to the individual object
level. This is a new field in API version 15.0.

Note: This field is not available for all objects. Refer to
the profile in the user interface to determine which objects
currently support these permissions. Profiles with "View
All Data" ignore viewAllRecords entries in the
Metadata API and don't return an error if "View All Data"
is enabled on the profile.

Java Sample
The following sample uses picklists, profiles, and record types:

public void profileSample() {
try {
// Create an expense report record, tab and app...
CustomObject expenseRecord = new CustomObject();
expenseRecord.setFullName("ExpenseReport__c");
expenseRecord.setLabel("Expense Report");
expenseRecord.setPluralLabel("Expense Reports");

expenseRecord.setDeploymentStatus(DeploymentStatus.Deployed);
expenseRecord.setSharingModel(SharingModel.ReadWrite);

CustomField nameField = new CustomField();
nameField.setType(FieldType.AutoNumber);
nameField.setLabel("Expense Report Number");
nameField.setDisplayFormat("ER-{0000}");
expenseRecord.setNameField(nameField);

AsyncResult[] arsExpenseRecord =
metadataConnection.create(new Metadata[] {expenseRecord});

Picklist expenseStatus = new Picklist();
PicklistValue unsubmitted = new PicklistValue();
unsubmitted.setFullName("Unsubmitted");
PicklistValue submitted = new PicklistValue();
submitted.setFullName("Submitted");
PicklistValue approved = new PicklistValue();
approved.setFullName("Approved");
PicklistValue rejected = new PicklistValue();
rejected.setFullName("Rejected");
expenseStatus.setPicklistValues(new PicklistValue[] {

unsubmitted, submitted, approved, rejected}
);

106

ProfileMetadata Types

CustomField expenseStatusField = new CustomField();
expenseStatusField.setFullName(

"ExpenseReport__c.ExpenseStatus__c"
);
expenseStatusField.setLabel("Expense Report Status");
expenseStatusField.setType(FieldType.Picklist);
expenseStatusField.setPicklist(expenseStatus);
AsyncResult[] arsStatusField =

metadataConnection.create(new Metadata[]
{expenseStatusField});

CustomTab expenseTab = new CustomTab();
expenseTab.setFullName("ExpenseReport__c");
expenseTab.setMotif("Custom70: Handsaw");
expenseTab.setCustomObject(true);
AsyncResult[] arsTab =

metadataConnection.create(new Metadata[] {expenseTab});

CustomApplication application = new CustomApplication();
application.setFullName("ExpenseForce");
application.setTab(new String[] {expenseTab.getFullName()});
AsyncResult[] arsApp =

metadataConnection.create(new Metadata[] {application});

// Employees and managers have the same app visibility...
ProfileApplicationVisibility appVisibility =

new ProfileApplicationVisibility();
appVisibility.setApplication("ExpenseForce");
appVisibility.setVisible(true);

Profile employee = new Profile();
employee.setFullName("Employee");
employee.setApplicationVisibilities(

new ProfileApplicationVisibility[] {appVisibility}
);
AsyncResult[] arsProfileEmp =
metadataConnection.create(new Metadata[] {employee});

Profile manager = new Profile();
manager.setFullName("Manager");
manager.setApplicationVisibilities(

new ProfileApplicationVisibility[] {appVisibility}
);
AsyncResult[] arsProfileMgr =

metadataConnection.create(new Metadata[] {manager});

// But employees and managers have different access
// to the state of the expense sheet
RecordType edit = new RecordType();
edit.setFullName("ExpenseReport__c.Edit");
RecordTypePicklistValue editStatuses =

new RecordTypePicklistValue();
editStatuses.setPicklist("ExpenseStatus__c");
editStatuses.setValues(new PicklistValue[]

{unsubmitted, submitted});
edit.setPicklistValues(new RecordTypePicklistValue[]

{editStatuses});
AsyncResult[] arsRecTypeEdit =

metadataConnection.create(new Metadata[] {edit});

RecordType approve = new RecordType();
approve.setFullName("ExpenseReport__c.Approve");
RecordTypePicklistValue approveStatuses =

new RecordTypePicklistValue();
approveStatuses.setPicklist("ExpenseStatus__c");
approveStatuses.setValues(new PicklistValue[]

107

ProfileMetadata Types

{approved, rejected});
approve.setPicklistValues(new RecordTypePicklistValue[]

{approveStatuses});
AsyncResult[] arsRecTypeApp =

metadataConnection.create(new Metadata[] {approve});
} catch (ConnectionException ce) {
ce.printStackTrace();

}
}

Usage
When you use the retrieve() call to get information about profiles in your organization, the returned .profile files only
include security settings for the other metadata types referenced in the retrieve request. For example, the package.xml file
below contains a types element that matches all custom objects, so the returned profiles contain object and field permissions
for all custom objects in your organization, but do not include permissions for standard objects, such as Account, and standard
fields.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomObject</name>

</types>
<types>

<members>*</members>
<name>Profile</name>

</types>
<version>28.0</version>

</Package>

The wildcard “*” on CustomObject does not match standard objects and this helps to avoid making unintended, high-impact
profile changes. If you create a few custom objects in a Developer Edition organization, retrieve() the information, and
subsequently deploy() the custom objects to your production organization, the profile and field-level security for all your
standard objects, such as Account, and standard fields are not overwritten unless you explicitly create separate types elements
for the standard objects or fields.

Metadata API intentionally makes it somewhat difficult to include standard fields in retrieve() calls in order to prevent
unexpected profile changes. However, you can still retrieve and deploy profile permissions for custom and standard fields in
standard objects, such as Account.

The next package.xml file allows you to return profile permissions for Account standard and custom fields. Note how the
standard Account object is defined in a types element by specifying it as a member of a CustomObject type.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Account</members>
<name>CustomObject</name>

</types>
<types>

<members>*</members>
<name>Profile</name>

</types>
<version>28.0</version>

</Package>

108

ProfileMetadata Types

The final package.xml file allows you to return profile permissions for the MyCustomField__c custom field in the Account
object.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Account.MyCustomField__c</members>
<name>CustomField</name>

</types>
<types>

<members>*</members>
<name>Profile</name>

</types>
<version>28.0</version>

</Package>

Queue
Represents a holding area for items before they are processed.

Declarative Metadata File Suffix and Directory Location
The file suffix for queue components is .queue and components are stored in the queues directory of the corresponding
package directory. This component supports cases, leads, service contracts (if Entitlements are enabled), and custom objects.

Version
Queue components are available in API version 24.0 and later.

Fields
This metadata type represents the valid values that define a queue:

DescriptionField TypeField Name

Indicates whether emails are sent to queue members (true) or not
(false) when a new record is added to the queue.

booleandoesSendEmailToMembers

The email address of the queue owner.stringemail

The unique identifier for API access. The fullName can contain
only underscores and alphanumeric characters. It must be unique,

stringfullName

begin with a letter, not include spaces, not end with an underscore,
and not contain two consecutive underscores. This field is inherited
from the Metadata component. Corresponds to Queue Name in
the user interface.

Required. The name of the queue. Corresponds to Label in the user
interface.

stringname

Indicates the supported entity types.QueueSobject[]queueSobject

109

QueueMetadata Types

QueueSobject
QueueSobject represents an entity type that the queue supports.

DescriptionField TypeField Name

Valid values are:stringsobjectType

• Case

• Lead

• ServiceContract

• Custom objects (e.g. ObjA_c)

Declarative Metadata Sample Definition
The following is the definition of a queue, which supports Case, Lead, and a custom object named ObjA.

<?xml version="1.0" encoding="UTF-8"?>
<Queue xmlns="http://soap.sforce.com/2006/04/metadata">

<doesSendEmailToMembers>true</doesSendEmailToMembers>
<email>member@company.com</email>
<fullName>Your Name</fullName>
<name>memberQueue</name>
<queueSobject>

<sobjectType>Case</sobjectType>
</queueSobject>
<queueSobject>

<sobjectType>Lead</sobjectType>
</queueSobject>
<queueSobject>

<sobjectType>ObjA_c</sobjectType>
</queueSobject>

</Queue>

QuickAction
Represents a specified create or update action for an object that then becomes available in the Chatter publisher. For example,
you can create an action that, on the detail page of an account, allows a user to create a contact related to that account from
the Chatter feed on that page. QuickAction can be created on objects that allow custom fields. The parent objects supported
include:

• Account
• Campaign
• Case
• Contact
• Custom objects
• Lead
• Opportunity

Note: In the application, QuickActions are referred to as actions.

110

QuickActionMetadata Types

File Suffix and Directory Location
QuickAction components have the suffix quickAction and are stored in the quickActions folder.

Version
QuickAction components are available in API version 28.0 and later.

Fields

DescriptionField TypeField Name

The description of the action.stringdescription

The specific field that may be overridden within a QuickAction.FieldOverridefieldOverrides

If a custom action is created, this is the height in pixels of the action
pane.

intheight

The icon used to identify the action.stringicon

Indicates whether this component is protected (true) or not
(false). Protected components cannot be linked to or referenced
by components created in the installing organization.

booleanisProtected

Identifies the action and displays to users. This is also the default
identifier used for the API and managed packages.

stringlabel

If a custom action is created using a Visualforce page, this identifies
the page.

stringpage

The layout of fields on the action.QuickActionLayoutquickActionLayout

The object for which the action is created and performed.

For example, you can create an action that, on the detail page of
an account, allows a user to create a contact related to that account

stringtargetObject

from the Chatter feed on that page. In this case, Contact is the
targetObject.

The specified field on an object for which the action is created.stringtargetParentField

Specifies which record type to create. Valid values are:stringtargetRecordType

• Business Account
• Person Account
• Master

Indicates whether to create a record or custom action. The valid
values are:

QuickActionType
(enumeration of
type string)

type

• Create

• VisualforcePage

• Post

If a custom action is created, this is the width in pixels of the action
pane.

intwidth

111

QuickActionMetadata Types

FieldOverride
Represents the field names and their respective formulas and literal values that comprise overrides in a QuickAction.

DescriptionField TypeField Name

The name of the specific field to allow overrides on.stringfield

Specifies the formula to use when overriding a field.stringformula

The value of the field without overrides.stringliteralValue

QuickActionLayout
The layout of fields on the action. There is no hard limit to the number of fields you can add to an action layout. However,
for optimum usability, we recommend a maximum of eight fields. Adding more than 20 fields can severely impact user
efficiency.

DescriptionField TypeField Name

The type of layout structure used. The valid values are:LayoutSectionStyle
(enumeration of type
string)

layoutSectionStyle

• TwoColumnsTopToBottom

• TwoColumnsLeftToRight

• OneColumn

• CustomLinks

Specifies columns in a QuickActionLayout.QuickActionLayoutColumn[]quickActionLayoutColumns

QuickActionLayoutColumn
A column defined for a QuickActionLayout.

DescriptionField TypeField Name

Specifies row items in a QuickActionLayoutColumn.QuickActionLayoutItem[]quickActionLayoutItems

QuickActionLayoutItem
A row item comprised of fields and defined for a QuickActionLayoutColumn.

DescriptionField TypeField Name

Controls if this layout item is a blank space (true) or not (false).booleanemptySpace

Represents a specific field in QuickActionLayoutItem. There is no
hard limit to the number of fields you can add to an action layout.

stringfield

However, for optimum usability, we recommend a maximum of
eight fields. Adding more than 20 fields can severely impact user
efficiency.

Specifies user input behavior for specific fields in
QuickActionLayoutItem. The valid values are:

UiBehavior
(enumeration of type
string)

uiBehavior

• Edit

• Required

112

QuickActionMetadata Types

DescriptionField TypeField Name

• Readonly

Declarative Metadata Sample Definition
The following is an example of a QuickAction component:

<?xml version="1.0" encoding="UTF-8"?>
<QuickAction xmlns="http://soap.sforce.com/2006/04/metadata">

<description>testActionDefinitionTypesCreate</description>
<fieldOverrides>

<field>DoNotCall</field>
<formula>TRUE</formula>

</fieldOverrides>
<fieldOverrides>

<field>LeadSource</field>
<literalValue>Partner</literalValue>

</fieldOverrides>
<label>testActionDefinitionTypesCreate</label>
<quickActionLayout>

<layoutSectionStyle>TwoColumnsLeftToRight</layoutSectionStyle>
<quickActionLayoutColumns>

<quickActionLayoutItems>
<emptySpace>false</emptySpace>
<field>HomePhone</field>
<uiBehavior>Required</uiBehavior>

</quickActionLayoutItems>
<quickActionLayoutItems>

<emptySpace>true</emptySpace>
<uiBehavior>Edit</uiBehavior>

</quickActionLayoutItems>
<quickActionLayoutItems>

<emptySpace>false</emptySpace>
<field>Name</field>
<uiBehavior>Required</uiBehavior>

</quickActionLayoutItems>
<quickActionLayoutItems>

<emptySpace>false</emptySpace>
<field>AccountId</field>
<uiBehavior>Edit</uiBehavior>

</quickActionLayoutItems>
</quickActionLayoutColumns>
<quickActionLayoutColumns>

<quickActionLayoutItems>
<emptySpace>false</emptySpace>
<field>Description</field>
<uiBehavior>Edit</uiBehavior>

</quickActionLayoutItems>
</quickActionLayoutColumns>

</quickActionLayout>
<targetObject>Contact</targetObject>
<targetParentField>Account</targetParentField>
<type>Create</type>

</QuickAction>

113

QuickActionMetadata Types

RemoteSiteSetting
Represents a remote site setting. RemoteSiteSetting extends the Metadata metadata type and inherits its fullName field.

Declarative Metadata File Suffix and Directory Location
RemoteSiteSetting components are stored in the remoteSiteSettings directory of the corresponding package directory.
The file name matches the unique name of the remote site setting, and the extension is .remoteSite.

Version
RemoteSiteSetting components are available in API version 19.0 and later.

Fields

DescriptionField TypeField

The description explaining what this remote site setting is
used for.

stringdescription

Required. Indicates whether code within Database.com can
access the remote site regardless of whether the user's

booleandisableProtocolSecurity

connection is over HTTP or HTTPS (true) or not
(false). When true, code within Database.com can pass
data from an HTTPS session to an HTTP session, and vice
versa.

Warning: Only set to true if you understand the
security implications.

The name can only contain characters, letters, and the
underscore (_) character, must start with a letter, and cannot

stringfullName

end with an underscore or contain two consecutive
underscore characters.

Inherited from the Metadata component, this field is not
defined in the WSDL for this component. It must be
specified when creating, updating, or deleting. See
create() to see an example of this field specified for a
call.

Required. Indicates if the remote site setting is active (true)
or not (false).

booleanisActive

Required. The URL for the remote site.stringurl

Declarative Metadata Sample Definition
A sample XML definition of a remote site setting is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<RemoteSiteSetting xmlns="http://soap.sforce.com/2006/04/metadata">

<description>Used for Apex callout to mapping web service</description>

114

RemoteSiteSettingMetadata Types

<disableProtocolSecurity>false</disableProtocolSecurity>
<isActive>true</isActive>
<url>https://www.maptestsite.net/mapping1</url>

</RemoteSiteSetting>

Role
Represents a role in your organization.

Declarative Metadata File Suffix and Directory Location
The file suffix for role components is .role and components are stored in the roles directory of the corresponding package
directory.

Version
Role components are available in API version 24.0 and later.

Fields

DescriptionField TypeField Name

The unique identifier for API access. The fullName can contain
only underscores and alphanumeric characters. It must be unique,

stringfullName

begin with a letter, not include spaces, not end with an underscore,
and not contain two consecutive underscores. This field is inherited
from the Metadata component. Corresponds to Role Name in the
user interface.

The role above this role in the hierarchy.stringparentRole

Declarative Metadata Sample Definition
The following is the definition of a role.

<?xml version="1.0" encoding="UTF-8"?>
<Role xmlns="http://soap.sforce.com/2006/04/metadata">

<caseAccessLevel>Edit</caseAccessLevel>
<contactAccessLevel>Edit</contactAccessLevel>
<description>Sample Role</description>
<mayForecastManagerShare>false</mayForecastManagerShare>
<name>R22</name>
<opportunityAccessLevel>Read</opportunityAccessLevel>

</Role>

SamlSsoConfig
Represents a SAML Single Sign-On configuration. It extends the Metadata metadata type and inherits its fullName field.
Single sign-on is a process that allows network users to access all authorized network resources without having to log in

115

RoleMetadata Types

separately to each resource. Single sign-on allows you to validate usernames and passwords against your corporate user database
or other client application rather than having separate user passwords managed by Database.com.

File Suffix and Directory Location
SamlSsoConfig components have the suffix .samlssoconfig and are stored in the samlssoconfigs folder.

Version
SamlSsoConfig components are available in API version 28.0 and later.

Fields

DescriptionField TypeField Name

The name of the identity provider’s application. Get this from your
identity provider.

stringattributeName

For SAML 2.0 only and when identityLocation is set to
Attribute. Possible values include unspecified,

stringattributeNameIdFormat

emailAddress or persistent. All legal values can be found in
the “Name Identifier Format Identifiers” section of the Assertions
and Protocols SAML 2.0 specification.

The URL of the page users should be directed to if there’s an error
during SAML login. It must be a publicly accessible page. The URL
can be absolute or relative.

stringerrorUrl

The location in the assertion where a user should be identified. Valid
values are:

SamlIdentityLocationType
(enumeration of type
string)

identityLocation

• SubjectNameId — The identity is in the <Subject>
statement of the assertion.

• Attribute — The identity is specified in an
<AttributeValue>, located in the <Attribute> of the
assertion.

The identifier the service provider uses for the user during
Just-in-Time user provisioning. Valid values are:

SamlIdentityType
(enumeration of type
string)

identityMapping

• Username — The user’s salesforce.com username.
• FederationId — The federation ID from the user object; the

identifier used by the service provider for the user.
• UserId — The user ID from the user’s Database.com

organization.

The identification string for the Identity Provider.stringissuer

For SAML 2.0 only: The URL where Database.com sends a SAML
request to start the login sequence.

stringloginUrl

For SAML 2.0 only: The URL to direct the user to when they click
the Logout link. The default is http://www.salesforce.com.

stringlogoutUrl

The unique name used by the API and managed packages. The
name must begin with a letter and use only alphanumeric characters

stringname

116

SamlSsoConfigMetadata Types

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

DescriptionField TypeField Name

and underscores. The name cannot end with an underscore or have
two consecutive underscores.

For SAML 2.0 only: The ACS URL used with enabling
Database.com as an identity provider in the Web single sign-on
OAuth assertion flow.

stringoauthTokenEndpoint

If you’re using My Domain, chose the binding mechanism your
identity provider requests for your SAML messages. Values are:

booleanredirectBinding

• HTTP POST — HTTP POST binding sends SAML messages
using base64-encoded HTML forms.

• HTTP Redirect — HTTP Redirect binding sends
base64-encoded and URL-encoded SAML messages within
URL parameters.

The URL associated with login for the Web single sign-on flow.stringsalesforceLoginUrl

The issuer in SAML requests generated by Database.com, and is
also the expected audience of any inbound SAML Responses. If you

stringsamlEntityId

don’t have domains deployed, this value can be
https://saml.salesforce.com or
https://saml.database.com. If you have domains deployed,
Database.com recommends that you use your custom domain name.

The SAML version in use. Valid values are:SamlType (enumeration
of type string)

samlVersion

• SAML1_1 — SAML 1.1
• SAML2_0 — SAML 2.0

If true, Just-in-Time user provisioning is enabled, which creates
users on the fly the first time they try to log in. Specify Federation
ID for the identityMapping value to use this feature.

booleanuserProvisioning

The certificate used to validate the request. Get this from your
identity provider.

stringvalidationCert

Declarative Metadata Sample Definition
The following is an example of a SamlSsoConfig component. The validation certificate string has been truncated for readability.

<?xml version="1.0" encoding="UTF-8"?>
<SamlSsoConfig xmlns="http://soap.sforce.com/2006/04/metadata">
<identityLocation>SubjectNameId</identityLocation>
<identityMapping>FederationId</identityMapping>
<issuer>https://my-idp.my.salesforce.com</issuer>
<loginUrl>
https://my-idp.my.salesforce.com/idp/endpoint/HttpRedirect

</loginUrl>
<logoutUrl>https://www.salesforce.com</logoutUrl>
<name>SomeCompany</name>
<oauthTokenEndpoint>
https://login.salesforce.com/services/oauth2/token?so=00DD0000000JxeI

</oauthTokenEndpoint>
<redirectBinding>true</redirectBinding>
<salesforceLoginUrl>
https://login.salesforce.com?so=00DD0000000JxeI

117

SamlSsoConfigMetadata Types

</salesforceLoginUrl>
<samlEntityId>
https://saml.salesforce.com/customPath

</samlEntityId>
<samlVersion>SAML2_0</samlVersion>
<userProvisioning>false</userProvisioning>
<validationCert>
MIIEojCCA4qgAwIBAgIOATtxsoBFAAAAAD4...

</validationCert>
</SamlSsoConfig>

Settings
Represents the organization settings related to a feature. For example, your password policies, session settings and network
access controls are all available in the SecuritySettings component type. Not all feature settings are available in the Metadata
API. See Unsupported Metadata Types on page 63 for information on which feature settings are not available.

Settings can be accessed using the specific component member or via wildcard. For example, in the package manifest file you
would use the following section to access SecuritySettings:

<types>
<members>Security</members>
<name>Settings</name>

</types>

The member format when used in the package manifest is the component metadata type name without the “Settings” suffix,
so in the preceding example “Security” is used instead of “SecuritySettings”.

File Suffix and Directory Location
Each settings component gets stored in a single file in the settings directory of the corresponding package directory. The
filename uses the format Setting feature.settings. For example, the SecuritySettings file would be
Security.settings. See “File Suffix and Directory Location” information for the individual settings components to
determine the exact filename.

Version
Settings is available in API version 27.0 and later. See the version information for the individual setting component to determine
which API version the settings component became available.

Declarative Metadata Sample Definition
The following is an example package manifest used to deploy or retrieve only the MobileSettings for an organization:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Mobile</members>
<name>Settings</name>

</types>
<version>27.0</version>

</Package>

118

SettingsMetadata Types

The following is an example package manifest used to deploy or retrieve all the available settings metadata for an organization,
using a wildcard:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>Settings</name>

</types>
<version>27.0</version>

</Package>

See Also:
ActivitiesSettings
MobileSettings
SecuritySettings

ActivitiesSettings
Represents an organization’s activity settings, and its user interface settings for the calendar. Use the ActivitiesSettings
component type to control the following activity settings:

• Configure group and recurring tasks, recurring and multiday events, and email tracking
• Relate multiple contacts to tasks and events (shared activities)
• Display custom logos in meeting requests

Also use the ActivitiesSettings component type to control user interface settings for the calendar, including hover links and
drag-and-drop editing.

In the package manifest, all organization settings metadata types are accessed using the “Settings” name. See Settings for more
details.

File Suffix and Directory Location

ActivitiesSettings values are stored in the Activities.settings file in the settings directory. The .settings files
are different from other named components, as there is only one settings file for each settings component.

Version

ActivitiesSettings is available in API versions 28.0 and later.

Fields

Settings for all types listed below are controlled on the Activity settings page or the User Interface settings page as noted.

DescriptionField TypeField Name

Enables popup activity reminders for an organization.

Administrators control this field on the Activity settings page.

booleanenableActivityReminders

Lets users create events in day and weekly calendar views by
double-clicking a specific time slot and entering the details of the

booleanenableClickCreateEvents

119

ActivitiesSettingsMetadata Types

DescriptionField TypeField Name

event in an overlay. Hovering over an event displays an overlay
where users can view the event details or delete the event without
leaving the page. Administrators use a mini page layout to configure
the fields shown in the overlays. Does not support recurring events
or multi-person events.

Administrators control this field on the User Interface settings page.

Lets users create events associated with records by dragging a record
from a list view onto a calendar view and entering the details of the

booleanenableDragAndDropScheduling

event in an overlay. Hovering over an event displays an overlay
where users can view the event details or delete the event without
leaving the page. Administrators use a mini page layout to configure
the fields shown in the overlays.

Administrators control this field on the User Interface settings page.

Enables tracking of outbound HTML emails if an organization
uses HTML email templates.

Administrators control this field on the Activity settings page.

booleanenableEmailTracking

Lets users assign independent copies of a new task to multiple users.

Administrators control this field on the Activity settings page.

booleanenableGroupTasks

Extends the functionality of enableDragAndDropScheduling
and enableClickCreateEvents to list view calendars.

Administrators control this field on the User Interface settings page.

booleanenableListViewScheduling

Enables creation of events that end more than 24 hours after they
start.

Administrators control this field on the Activity settings page.

booleanenableMultidayEvents

Enables creation of events that repeat at specified intervals.

Administrators control this field on the Activity settings page.

booleanenableRecurringEvents

Enables creation of tasks that repeat at specified intervals.

Administrators control this field on the Activity settings page.

booleanenableRecurringTasks

In the sidebar, displays a shortcut link to a user’s last-used calendar
view.

Administrators control this field on the Activity settings page.

booleanenableSidebarCalendarShortcut

Available when showCustomLogoMeetingRequests is enabled.
Uploads a custom logo. An administrator can select only a logo
that has been uploaded to certain folders in the Documents tab.

Administrators control this field on the Activity settings page.

stringmeetingRequestsLogo

120

SettingsMetadata Types

DescriptionField TypeField Name

Displays a custom logo in meeting request emails and on a meeting’s
Web page. Invitees see the logo when a user either invites them to
an event or requests a meeting.

Administrators control this field on the Activity settings page.

booleanshowCustomLogoMeetingRequests

Displays event details on-screen rather than in hover text.

Administrators control this field on the Activity settings page.

booleanshowEventDetailsMultiUserCalendar

In the calendar section of the Home tab:booleanshowHomePageHoverLinksForEvents

• When a user hovers over the subject of an event, a hover link
displays an overlay with selected event details. (Hover links are
always available in other calendar views.)

• When a user clicks the subject of an event, displays the event
detail page.

Administrators use a mini page layout to configure the fields shown
in the overlay.

Administrators control this field on the User Interface settings page.

In the My Tasks section of the Home tab and on the calendar day
view:

booleanshowMyTasksHoverLinks

• When a user hovers over the subject of a task, a hover link
displays an overlay with selected task details.

• When a user clicks the subject of a task, displays the task detail
page.

Administrators use a mini page layout to configure the fields shown
in the overlay.

Administrators control this field on the User Interface settings page.

In the Calendar on the Home tab, displays the Requested Meetings
subtab, listing the meetings a user has requested but not confirmed.

booleanshowRequestedMeetingsOnHomePage

Disabling this feature removes the New Meeting Request button
from the calendar on the Home tab.

Administrators control this field on the Activity settings page.

Example Package Manifest

The following is an example package manifest used to deploy or retrieve the Activity settings metadata for an organization:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>Activities</members>
<name>Settings</name>

</types>
<version>28.0</version>

</Package>

121

SettingsMetadata Types

Declarative Metadata Sample Definition

The following is an example of an activity settings file:

<?xml version="1.0" encoding="UTF-8"?>
<ActivitiesSettings xmlns="http://soap.sforce.com/2006/04/metadata">

<allowUsersToRelateMultipleContactsToTasksAndEvents>true</allowUsersToRelateMultipleContactsToTasksAndEvents>

<enableActivityReminders>true</enableActivityReminders>
<enableClickCreateEvents>true</enableClickCreateEvents>
<enableDragAndDropScheduling>true</enableDragAndDropScheduling>
<enableEmailTracking>true</enableEmailTracking>
<enableGroupTasks>true</enableGroupTasks>
<enableListViewScheduling>true</enableListViewScheduling>
<enableMultidayEvents>true</enableMultidayEvents>
<enableRecurringEvents>true</enableRecurringEvents>
<enableRecurringTasks>true</enableRecurringTasks>
<enableSidebarCalendarShortcut>true</enableSidebarCalendarShortcut>
<meetingRequestsLogo>Folder02/logo03.png</meetingRequestsLogo>
<showCustomLogoMeetingRequests>true</showCustomLogoMeetingRequests>
<showEventDetailsMultiUserCalendar>true</showEventDetailsMultiUserCalendar>
<showHomePageHoverLinksForEvents>true</showHomePageHoverLinksForEvents>
<showMyTasksHoverLinks>true</showMyTasksHoverLinks>
<showRequestedMeetingsOnHomePage>true</showRequestedMeetingsOnHomePage>

</ActivitiesSettings>

LiveAgentSettings
Represents an organization’s Live Agent settings, such as whether or not Live Agent is enabled. It extends the Metadata
metadata type and inherits its fullName field.

File Suffix and Directory Location

LiveAgentSettings values are stored in the LiveAgent.settings file in the settings directory. The .settings files
are different from other named components, as there is only one settings file for each settings component.

In the package manifest, all organization settings metadata types are accessed using the “Settings” name. See Settings for more
details.

Version

LiveAgentSettings is available in API version 28.0 and later.

Fields

DescriptionField TypeField Name

Indicates whether Live Agent is enabled (true) or not
(false).

booleanenableLiveAgent

Declarative Metadata Sample Definition

This is a sample Live Agent settings file.

<?xml version="1.0" encoding="UTF-8"?>
<LiveAgentSettings xmlns="http://soap.sforce.com/2006/04/metadata">

122

LiveAgentSettingsMetadata Types

<enableLiveAgent>true</enableLiveAgent>
</LiveAgentSettings>

MobileSettings
Represents an organization’s mobile settings, such as mobile Chatter settings, whether Mobile Lite is enabled for an organization,
and so on. For more information, see “Managing Salesforce Classic Devices” and “Chatter Mobile App Overview” in the
Database.com online help.

In the package manifest, all organization settings metadata types are accessed using the “Settings” name. See Settings for more
details.

Declarative Metadata File Suffix and Directory Location

MobileSettings values are stored in a single file named Mobile.settings in the settings directory. The .settings
files are different from other named components, as there is only one settings file for each settings component.

Note: MobileSettings is no longer available in API versions 25.0 and 26.0.

Version

Mobile settings are available in API version 27.0 and later.

Fields

DescriptionField TypeField

The settings for Chatter mobile devices.ChatterMobileSettingschatterMobile

The settings for general users on mobile
devices.

SFDCMobileSettingssalesforceMobile

The settings for touch on mobile devices.TouchMobileSettingstouchMobile

ChatterMobileSettings

Represents your organization’s Chatter Mobile settings.

DescriptionField TypeField

Indicates whether iPad devices are
enabled for Chatter Mobile (true) or
not (false).

booleanIPadAuthorized

Indicates whether iPhone devices are
enabled for Chatter Mobile (true) or
not (false).

booleanIPhoneAuthorized

Indicates whether Android devices are
enabled for Chatter Mobile (true) or
not (false).

booleanandroidAuthorized

123

MobileSettingsMetadata Types

DescriptionField TypeField

Indicates whether Blackberry devices are
enabled for Chatter Mobile (true) or
not (false).

booleanblackBerryAuthorized

Indicates whether Chatter Mobile has
been enabled for your organization
(true) or not (false).

booleanenableChatterMobile

Note: Setting this to true
enables you to set all of the
other settings. If you change
this setting from true to
false, and also try to change
any of the other ChatterMobile
settings, your deploy will fail
with an error.

Indicates whether Chatter push
notifications have been enabled for your
organization (true) or not (false)

booleanenablePushNotifications

The length of time after which users
without activity are prompted to log out
or continue working. Valid values are:

MobileSessionTimeout (enumeration of
type string)

sessionTimeout

• Never

• OneMinute

• FiveMinutes

• TenMinutes

• ThirtyMinutes

SFDCMobileSettings

Represents your organization’s general mobile settings.

DescriptionField TypeField

Permanently link users to their mobile
devices. Set this option to true only if

booleanenableUserToDeviceLinking

you want to prevent your users from
switching devices without administrative
intervention..

Indicates whether your organization has
Mobile Lite enabled (true) or not
(false).

booleanenableMobileLite

TouchMobileSettings

Represents your organization’s Salesforce Touch settings.

124

SettingsMetadata Types

DescriptionField TypeField

Indicates whether your organization has
the Salesforce Touch mobile browser app
enabled (true) or not (false).

booleanenableTouchBrowserIPad

Indicates whether your organization has
the Salesforce Touch downloadable app
enabled (true) or not (false)

booleanenableTouchAppIPad

Declarative Metadata Sample Definition

This is a sample mobile.settings metadata file.

<?xml version="1.0" encoding="UTF-8"?>
<MobileSettings xmlns="http://soap.sforce.com/2006/04/metadata">

<chatterMobile>
<IPadAuthorized>true</IPadAuthorized>
<IPhoneAuthorized>true</IPhoneAuthorized>
<androidAuthorized>true</androidAuthorized>
<blackBerryAuthorized>true</blackBerryAuthorized>
<enableChatterMobile>true</enableChatterMobile>
<enablePushNotifications>true</enablePushNotifications>
<sessionTimeout>Never</sessionTimeout>

</chatterMobile>
<dashboardMobile>

<enableDashboardIPadApp>true</enableDashboardIPadApp>
</dashboardMobile>
<salesforceMobile>

<enableUserToDeviceLinking>false</enableUserToDeviceLinking>
<enableMobileLite>false</enableMobileLite>

</salesforceMobile>
<touchMobile>

<enableTouchBrowserIPad>false</enableTouchBrowserIPad>
<enableTouchAppIPad>true</enableTouchAppIPad>

</touchMobile>
</MobileSettings>

See Also:
Settings

SecuritySettings
Represents an organization’s security settings. Security settings define trusted IP ranges for network access, password and login
requirements, and session expiration and security settings.

In the package manifest, all organization settings metadata types are accessed using the “Settings” name. See Settings for more
details.

Declarative Metadata File Suffix and Directory Location

SecuritySettings values are stored in a single file named Security.settings in the settings directory. The .settings
files are different from other named components, as there is only one settings file for each settings component.

125

SecuritySettingsMetadata Types

Note: SecuritySettings is no longer available in API versions 25.0 and 26.0.

Version

Security settings are available in API version 27.0 and later.

Fields

DescriptionField TypeField Name

The trusted IP address ranges from which users can always
log in without requiring computer activation.

NetworkAccessnetworkAccess

The requirements for passwords and logins, and assistance
with retrieving forgotten passwords.

PasswordPoliciespasswordPolicies

The settings for session expiration and security.SessionSettingssessionSettings

NetworkAccess

Represents your organization’s trusted IP address ranges for network access.

DescriptionField TypeField

The trusted IP address ranges from which users can always
log in without requiring computer activation.

IpRange[]ipRanges

Note: In order to add an IP range, you need to
deploy all existing IP ranges, as well as the one you
want to add. Otherwise, the existing IP ranges are
replaced with the ones you deploy. To remove all
the IP ranges in an organization, leave the
networkAccess field blank
(<networkAccess></networkAccess>).

IpRange

Defines a range of trusted IP addresses for network access.

DescriptionField TypeField

The IP address that defines the high end of a range of
trusted addresses.

stringend

The IP address that defines the low end of a range of trusted
addresses.

stringstart

PasswordPolicies

Represents your organization’s password and login policies.

126

SettingsMetadata Types

DescriptionField TypeField

The URL to which users with the “API Only User”
permission are redirected instead of the login page.

stringapiOnlyUserHomePageURL

Required. The requirement for which types of characters
must be used in a user’s password. Valid values are:

Complexity (enumeration of
type string)

complexity

• NoRestriction—allows any password value and is
the least secure option.

• AlphaNumeric—requires at least one alphabetic
character and one number. This is the default value.

• SpecialCharacters—requires at least one alphabetic
character, one number, and one of the following
characters: ! # $ % - _ = + < >.

Required. The length of time until all user passwords expire
and must be changed. Valid values are:

Expiration (enumeration of
type string)

expiration

• Never

• ThirtyDays

• SixtyDays

• NinetyDays. This is the default value.
• SixMonths

• OneYear

The URL that users can click to retrieve forgotten
passwords.

stringpasswordAssistanceURL

The text that appears in the Account Lockout email and at
the bottom of the Confirm Identity screen for users resetting
their passwords.

stringpasswordAssistanceMessage

Required. The number of previous passwords saved for users
so that they must always reset a new, unique password. Valid

stringhistoryRestriction

values are 0 through 15 passwords remembered. The default
value is 3.

Required. The duration of the login lockout. Valid values
are:

LockoutInterval (enumeration
of type string)

lockoutInterval

• FifteenMinutes. This is the default value.
• ThirtyMinutes

• SixtyMinutes

• Forever (must be reset by admin)

Required. The number of login failures allowed for a user
before they become locked out. Valid values are:

MaxLoginAttempts
(enumeration of type string)

maxLoginAttempts

• NoLimit

• ThreeAttempts

• FiveAttempts

127

SettingsMetadata Types

DescriptionField TypeField

• TenAttempts. This is the default value.

Required. The minimum number of characters required for
a password. Valid values are:

MinPasswordLength
(enumeration of type string)

minPasswordLength

• FiveCharacters

• EightCharacters. This is the default value.
• TenCharacters

Required. The restriction on whether the answer to the
password hint question can contain the password itself.
Valid values are:

QuestionRestriction
(enumeration of type string)

questionRestriction

• None

• DoesNotContainPassword. This is the default value.

SessionSettings

Represents your organization’s session expiration and security settings.

DescriptionField TypeField

Indicates whether the session timeout warning popup is
disabled (true) or enabled (false).

booleandisableTimeoutWarning

Indicates whether Cross-Site Request Forgery (CSRF)
protection on GET requests on non-setup pages is enabled
(true) or disabled (false).

booleanenableCSRFOnGet

Indicates whether Cross-Site Request Forgery (CSRF)
protection on POST requests on non-setup pages is enabled
(true) or disabled (false).

booleanenableCSRFOnPost

Indicates whether the user’s browser is allowed to store user
names and auto-fill the User Name field on the login page
(true) or not (false).

booleanenableCacheAndAutocomplete

Indicates whether clickjack protection for non-setup
Database.com pages is enabled (true) or disabled (false).

booleanenableClickjackNonsetupSFDC

Indicates whether clickjack protection for non-setup
customer pages is enabled (true) or disabled (false).

booleanenableClickjackNonsetupUser

Indicates whether clickjack protection for setup pages is
enabled (true) or disabled (false).

booleanenableClickjackSetup

Indicates whether users can receive a one-time PIN
delivered via SMS (true) or not (false).

booleanenableSMSIdentity

Indicates whether an administrator that is logged in as
another user is required to log in again to their original

booleanforceRelogin

session, after logging out as the secondary user (true) or
not (false).

128

SettingsMetadata Types

DescriptionField TypeField

Indicates whether user sessions are locked to the IP address
from which the user logged in (true) or not (false).

booleanlockSessionsToIp

The length of time after which users without activity are
prompted to log out or continue working. Valid values are:

SessionTimeout (enumeration
of type string)

sessionTimeout

• FifteenMinutes

• ThirtyMinutes

• SixtyMinutes

• TwoHours

• FourHours

• EightHours

• TwelveHours

Declarative Metadata Sample Definition

This is a sample security.settings metadata file.

<?xml version="1.0" encoding="UTF-8"?>
<SecuritySettings xmlns="http://soap.sforce.com/2006/04/metadata">

<networkAccess>
<ipRanges>

<end>127.0.0.1</end>
<start>127.0.0.1</start>

</ipRanges>
</networkAccess>
<passwordPolicies>

<apiOnlyUserHomePageURL>http://www.altPage.com</apiOnlyUserHomePageURL>
<complexity>SpecialCharacters</complexity>
<expiration>OneYear</expiration>
<passwordAssistanceURL>http://www.acme.com/forgotpassword</passwordAssistanceURL>
<passwordAssistanceMessage>Forgot your password? Reset it

here.</passwordAssistanceMessage>
<historyRestriction>3</historyRestriction>
<lockoutInterval>ThirtyMinutes</lockoutInterval>
<maxLoginAttempts>ThreeAttempts</maxLoginAttempts>
<minPasswordLength>TenCharacters</minPasswordLength>
<questionRestriction>None</questionRestriction>

</passwordPolicies>
<sessionSettings>

<disableTimeoutWarning>true</disableTimeoutWarning>
<enableCSRFOnGet>false</enableCSRFOnGet>
<enableCSRFOnPost>false</enableCSRFOnPost>
<enableCacheAndAutocomplete>false</enableCacheAndAutocomplete>
<enableClickjackNonsetupSFDC>true</enableClickjackNonsetupSFDC>
<enableClickjackNonsetupUser>true</enableClickjackNonsetupUser>
<enableClickjackSetup>true</enableClickjackSetup>
<enableSMSIdentity>true</enableSMSIdentity>
<forceRelogin>true</forceRelogin>
<lockSessionsToIp>true</lockSessionsToIp>
<sessionTimeout>TwelveHours</sessionTimeout>

129

SettingsMetadata Types

</sessionSettings>
</SecuritySettings>

See Also:
Settings

SharedTo
Use SharedTo to specify the target and source for owner-based sharing rules. See “Sharing Considerations” and “About
Groups” in the Database.com online help.

Declarative Metadata File Suffix and Directory Location
SharedTo is used with OwnerSharingRule.

Version
SharedTo is available in API version 17.0 and later.

Fields

DescriptionField TypeField

A group containing all internal users.

This field is available in API version 24.0 and later.

stringallInternalUsers

A list of groups with sharing access. Use this field instead
of the groups field.

This field is available in API version 22.0 and later.

string[]group

A list of groups with sharing access.

Use the group field instead for API version 22.0 and later.

string[]groups

A list of roles with sharing access. Use this field instead of
the roles field.

This field is available in API version 22.0 and later.

string[]role

A list of roles with sharing access. All roles below each of
these roles in the role hierarchy also have sharing access.

string[]roleAndSubordinates

Use this field instead of the rolesAndSubordinates
field .

This field is available in API version 22.0 and later.

A list of roles with sharing access. All roles below each of
these roles in the role hierarchy also have sharing access.

This field is available in API version 22.0 and later.

string[]roleAndSubordinatesInternal

130

SharedToMetadata Types

DescriptionField TypeField

A list of roles with sharing access.

Use the role field instead for API version 22.0 and later.

string[]roles

A list of roles with sharing access. All roles below each of
these roles in the role hierarchy also have sharing access.

Use the roleAndSubordinates field instead for API
version 22.0 and later.

string[]rolesAndSubordinates

A list of queues with sharing access. Applies only to
CustomObject sharing rules.

This field is available in API version 24.0 and later.

string[]queue

SharingRules
Represents a set of sharing rules. SharingRules enables you to share records with a set of users, using rules that specify the
access level of the target user group. It extends the Metadata metadata type and inherits its fullName field. For more
information, see “Sharing Rules Overview” in the Database.com online help.

Note: You can’t create a SharingRules component directly. Use the types that extend it, such as
CustomObjectSharingRules instead. This object does not include support for packaging.

Declarative Metadata File Suffix and Directory Location
SharingRules are stored in their corresponding entity directory and the file name matches the entity name. SharingRules for
custom objects are stored in the customObjectSharingRules directory, which contains files with the .sharingRules
extension such as ObjA__c.sharingRules, where ObjA refers to the developer name of a custom object type.

Version
SharingRules components are available in API version 24.0 and later.

Fields
The following information assumes that you are familiar with implementing sharing rules for custom objects. For more
information on these fields, see “Overview of Sharing Settings” in the Database.com online help.

DescriptionField TypeField

The unique identifier for API access. The
fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique,
begin with a letter, not include spaces, not
end with an underscore, and not contain two
consecutive underscores. This field is
inherited from the Metadata component.

131

SharingRulesMetadata Types

CustomObjectSharingRules
Represents the sharing rules for custom objects. It extends the SharingRules metadata type and inherits its fullName field.

DescriptionField TypeField

List that defines criteria-based rules.CustomObjectCriteriaBasedSharingRule[]criteriaBasedRules

List that defines owner-based rules.CustomObjectOwnerSharingRule[]ownerRules

BaseSharingRule
Represents the base container for criteria-based and owner-based sharing rules. It extends the Metadata metadata type and
inherits its fullName field.

Note: You can’t create a BaseSharingRule component directly. Use the components under the
CriteriaBasedSharingRule or OwnerSharingRule metadata types instead.

Version

BaseSharingRule components are available in API version 24.0 and later.

Fields

For more information on these fields, see “Overview of Sharing Settings” in the Database.com online help.

DescriptionField TypeField

Required. Specifies who the record should
be shared with.

SharedTosharedTo

The unique identifier for API access. The
fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique,
begin with a letter, not include spaces, not
end with an underscore, and not contain two
consecutive underscores. This field is
inherited from the Metadata component.

CriteriaBasedSharingRule
Represents a criteria-based sharing rule. CriteriaBasedSharingRule enables you to share records based on specific criteria. It
extends the BaseSharingRule metadata type and inherits its sharedTo field. For more information, see “Criteria-Based
Sharing Rules Overview” in the Database.com online help.

Note: You can’t create a CrteriaBasedSharingRule component directly. Use the child components instead.

132

BaseSharingRuleMetadata Types

Declarative Metadata File Suffix and Directory Location

CriteriaBasedSharingRule components are stored within the SharingRules component in the criteriaBasedRules
field.

Version

CriteriaBasedSharingRule components are available in API version 24.0 and later.

Fields

The following information assumes that you are familiar with implementing sharing rules for standard objects and custom
objects. For more information on these fields, see “Overview of Sharing Settings” in the Database.com online help.

DescriptionField TypeField

List that represents the criteria for the
sharing rule. The possible values are:

FilterItem[]criteriaItems

• field

• operation

• value

CustomObjectCriteriaBasedSharingRule

Represents a criteria-based sharing rule for custom objects. It extends the CriteriaBasedSharingRule metadata type and inherits
its criteriaItems field.

CustomObjectCriteriaBasedSharingRule is used by the criteriaBasedRules field in CustomObjectSharingRules.

DescriptionField TypeField

Required. A value that represents the type of sharing being
allowed. The possible values are:

stringaccessLevel

• Read

• Edit

• All

Represents the filter logic of the sharing rule.stringbooleanFilter

Required. Name for the sharing rule. Corresponds to Label
in the user interface.

stringname

Declarative Metadata Sample Definition

The following is the definition of two owner-based sharing rules and one criteria-based sharing rule containing two criteria
items. The file name corresponds to the Account.sharingRules file under the accountSharingRules directory.

<?xml version="1.0" encoding="UTF-8"?>
<AccountSharingRules xmlns="http://soap.sforce.com/2006/04/metadata">
<ownerRules>
<fullName>G1Dev_G2New</fullName>
<sharedTo>
<group>G2New</group>

</sharedTo>

133

SharingRulesMetadata Types

<sharedFrom>
<group>G1Dev</group>

</sharedFrom>
<accountAccessLevel>Read</accountAccessLevel>
<caseAccessLevel>None</caseAccessLevel>
<contactAccessLevel>Read</contactAccessLevel>

</owmerRules>
<fullName>G2New_R1New</fullName>
<sharedTo>
<roleAndSubordinates>R1New</roleAndSubordinates>

</sharedTo>
<sharedFrom>
<group>G2New</group>

</sharedFrom>
<accountAccessLevel>Edit</accountAccessLevel>
<caseAccessLevel>Read</caseAccessLevel>
<contactAccessLevel>Edit</contactAccessLevel>
<name>G2New_R1New</name>
<opportunityAccessLevel>None</opportunityAccessLevel>

</ownerRules>
<criteriaBasedRules>
<fullName>AccountCriteria</fullName>
<sharedTo>
<group>G1</group>

</sharedTo>
<criteriaItems>
<field>BillingCity</field>
<operation>equals</operation>
<value>San Francisco</value>

</criteriaItems>
<criteriaItems>
<field>MyChkBox__c</field>
<operation>notEqual</operation>
<value>False</value>

</criteriaItems>
<accountAccessLevel>Read</accountAccessLevel>
<booleanFilter>1 OR 2</booleanFilter>
<caseAccessLevel>None</caseAccessLevel>
<contactAccessLevel>Read</contactAccessLevel>
<name>AccountCriteria</name>
<opportunityAccessLevel>None</opportunityAccessLevel>

</criteriaBasedRules>
</AccountSharingRules>

OwnerSharingRule
Represents an ownership-based sharing rule. OwnerSharingRule enables you to share records owned by a set of users with
another set, using rules that specify the access level of the target user group. It extends the BaseSharingRule metadata type
and inherits its SharedTo field. For more information, see “Sharing Rules Overview” in the Database.com online help.

Note: You can’t create a OwnerSharingRule component directly. Use the child components instead.

Declarative Metadata File Suffix and Directory Location

OwnerSharingRules components are stored within the SharingRules component in the ownerRules field.

Version

OwnerSharingRules components are available in API version 24.0 and later.

134

OwnerSharingRuleMetadata Types

Fields

The following information assumes that you are familiar with implementing sharing rules for standard objects and custom
objects. For more information on these fields, see “Overview of Sharing Settings” in the Database.com online help.

DescriptionField TypeField

Required. Specifies the record owners.SharedTosharedFrom

Required. Specifies who the record should
be shared with.

SharedTosharedTo

The unique identifier for API access. The
fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique,
begin with a letter, not include spaces, not
end with an underscore, and not contain two
consecutive underscores. This field is
inherited from the Metadata component.

CustomObjectOwnerSharingRule

Represents a sharing rule for custom objects. It extends the OwnerSharingRule metadata type and inherits its fullName,
sharedFrom, and sharedTo fields.

CustomObjectOwnerSharingRule is used by the ownerRules field in CustomObjectSharingRules. All the following fields
are required.

DescriptionField TypeField

A value that represents the level of access that a group or
role is granted to a custom object. The possible values are:

stringaccessLevel

• Read

• Edit

• All

Name for the sharing rule. Corresponds to Label in the
user interface.

stringname

Workflow
Represents the metadata associated with a workflow rule. A workflow rule sets workflow actions into motion when its designated
conditions are met. You can configure workflow actions to execute immediately when a record meets the conditions in your
workflow rule, or set time triggers that execute the workflow actions on a specific day. For more information, see “Workflow
Overview” in the Database.com online help. It extends the Metadata metadata type and inherits its fullName field. Use this
metadata type to create, update, or delete workflow rule definitions.

135

WorkflowMetadata Types

When using a manifest file, retrieve all workflow components using the following code:

<types>
<members>*</members>
<name>Workflow</name>

</types>

Declarative Metadata File Suffix and Directory Location
The file suffix is .workflow for the workflow file. There is one file per custom object that has workflow, which are stored
in the workflows directory of the corresponding package.

Version
Workflow rules are available in API version 13.0 and later.

Workflow
This metadata type represents the valid types of workflow rules and actions associated with a custom object.

DescriptionField TypeField Name

An array of all field updates for the object associated with
the workflow.

WorkflowFieldUpdate[]fieldUpdates

The developer name used as a unique identifier for API
access. The fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique, begin with a
letter, not include spaces, not end with an underscore, and
not contain two consecutive underscores. This field is
inherited from the Metadata component.

An array of Salesforce Knowledge Workflow Publishes
associated with the workflow. Available in API version 27.0
and later.

WorkflowKnowledgePublish[]knowledgePublishes

An array of all of the outbound messages for the object
associated with the workflow.

WorkflowOutboundMessage[]outboundMessages

An array of all the objects associated with the workflow.WorkflowRule[]rules

WorkflowActionReference
WorkflowActionReference represents one of the four workflow actions.

DescriptionField TypeField Name

Required. The name of the workflow action.stringname

Required. There are two types of workflow actions:WorkflowActionType
(enumeration of type
string)

type

• FieldUpdate

• OutboundMessage

136

WorkflowMetadata Types

WorkflowFieldUpdate
WorkflowFieldUpdate represents a workflow field update. Field updates allow you to automatically update a field value to
one that you specify when a workflow rule is triggered. For more information, see “Defining Field Updates” in the Database.com
online help.

DescriptionField TypeField Name

The description of the field update. This information is useful
to track the reasoning for initially configuring the field update.

stringdescription

Required. The field (on the object for the workflow) to be
updated.

stringfield

If the operation field value is Formula, this is set to a
formula used to compute the new field value.

stringformula

Required. The developer name used as a unique identifier for
API access. The fullName can contain only underscores

stringfullName

and alphanumeric characters. It must be unique, begin with
a letter, not include spaces, not end with an underscore, and
not contain two consecutive underscores. This field is
inherited from the Metadata component.

If the operation field value is Literal, this is the literal
value for the field.

stringliteralValue

If the operation field value is lookupValue, this is the
lookup value that is referenced.

stringlookupValue

The type of object that the lookupValue field value is
referencing. The valid values are:

LookupValueType
(enumeration of type string)

lookupValueType

• Queue

• RecordType

• User

Required. A name for the component. Available in version
API 16.0 and later.

stringname

Required. Notify the assignee when the field is updated.booleannotifyAssignee

Required. The operation that computes the value with which
to update the field. Valid values are:

FieldUpdateOperation
(enumeration of type string)

operation

• Formula - Indicates the field will be set to a formula. If
set, the formula must be a valid formula.

• Literal - Indicates the field will be set to a literal value.
If set, the literalValue must be a valid literal value for this
field.

• LookupValue - Similar to Literal, but for an object
reference, such as a contact, user, account, etc. If set, the
lookupValue element must be set. Only User is
supported in the current API.

• NextValue - Indicates that the field will be set to its
next value; this is only allowed when the field update
references a picklist.

• Null - Indicates the field will be set to null.

137

WorkflowMetadata Types

DescriptionField TypeField Name

• PreviousValue - Indicates that the field will be set to
its previous value; this is only allowed when the field
update references a picklist.

Required. Indicates whether this component is protected
(true) or not (false). Protected components cannot be

booleanprotected

linked to or referenced by components created in the installing
organization.

When set to true, if the field update changes the field’s value,
all workflow rules on the associated object are re-evaluated.

booleanreevaluateOnChange

Any workflow rules whose criteria are met as a result of the
field value change will be triggered.

If any of the triggered workflow rules result in another field
update that’s also enabled for workflow rule re-evaluation, a
domino effect occurs, and more workflow rules can be
re-evaluated as a result of the newly-triggered field update.
This cascade of workflow rule re-evaluation and triggering
can happen up to five times after the initial field update that
started it.

This is set if the change is detected on a child record. If this
is set, it points to the foreign key reference on the child object

stringtargetObject

(for example, EmailMessage.ParentId) pointing to the
parent (for example, Case). When set, the formula is based
on the child object (for example, EmailMessage).

WorkflowKnowledgePublish
WorkflowKnowledgePublish represents Salesforce Knowledge article publishing actions and information. Available in API
version 27.0 and later.

DescriptionField TypeField Name

The article publishing actions available when this rule
fires. Valid values are:

KnowledgeWorkflowAction
(enumeration of type string)

action

• PublishAsNew: Publishes the article as a new
article.

• Publish: Publishes the article as a version of a
previously published article.

A brief article description.stringdescription

Label that represents the article throughout the
Salesforce user interface.

stringlabel

The language of the article.stringlanguage

Required. Indicates whether this component is
protected (true) or not (false). Protected

booleanprotected

138

WorkflowMetadata Types

DescriptionField TypeField Name

components cannot be linked to or referenced by
components created in the installing organization.

WorkflowOutboundMessage
WorkflowOutboundMessage represents an outbound message associated with a workflow rule. Outbound messages are
workflow actions that send the information you specify to an endpoint you designate, such as an external service. An outbound
message sends the data in the specified fields in the form of a SOAP message to the endpoint. For more information, see
“Defining Outbound Messages” in the Database.com online help.

DescriptionField TypeField Name

Required. The API version of the outbound message. This is
automatically set to the current API version when the outbound

doubleapiVersion

message is created. Valid API versions for outbound messages are
8.0 and 18.0 or later.

This API version is used in API calls back to Database.com using
the enterprise or partner WSDLs. The API Version can only be
modified by using the Metadata API. It can't be modified using the
Database.com user interface. This field is available in API version
18.0 and later.

Warning: If you change the apiVersion to a version
that doesn't support one of the fields configured for the
outbound message, messages will fail until you update your
outbound message listener to consume the updated WSDL.
You can monitor the status of outbound messages from
Setup by clicking Monitoring > Outbound Messages in
Database.com.

Describes the outbound message.stringdescription

Required. The endpoint URL to which the outbound message is
sent.

stringendpointUrl

The named references to the fields that are to be sent.string[]fields

Required. The developer name used as a unique identifier for API
access. The fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique, begin with a letter, not
include spaces, not end with an underscore, and not contain two
consecutive underscores. This field is inherited from the Metadata
component.

Required. Set if you want the Database.com session ID included in
the outbound message. Useful if you intend to make API calls and
you do not want to include a username and password.

booleanincludeSessionId

Required. The named reference to the user under which this message
is sent.

stringintegrationUser

Required. A name for the component. Available in version API
16.0 and later.

stringname

139

WorkflowMetadata Types

DescriptionField TypeField Name

Required. Indicates whether this component is protected (true)
or not (false). Protected components cannot be linked to or
referenced by components created in the installing organization.

booleanprotected

WorkflowRule
This metadata type represents a workflow rule. It extends the Metadata metadata type and inherits its fullName field.

DescriptionField TypeField Name

An array of references for the actions that should happen
when this rule fires.

WorkflowActionReference[]actions

Required. Determines if this rule is active.booleanactive

For advanced criteria filter, the boolean formula, for
example, (1 AND 2) OR 3.

stringbooleanFilter

An array of the boolean criteria (conditions) under which
this rule fires. Note that either this or formula must be
set.

FilterItem[]criteriaItems

The description of the workflow rulestringdescription

The formula condition under which this rule first (either
this or criteriaItems) must be set

stringformula

The developer name used as a unique identifier for API
access. The fullName can contain only underscores and

stringfullName

alphanumeric characters. It must be unique, begin with a
letter, not include spaces, not end with an underscore, and
not contain two consecutive underscores. This field is
inherited from the Metadata component.

Under what conditions the trigger fires. Valid values are:WorkflowTriggerTypes
(enumeration of type string)

triggerType

• onAllChanges - The workflow rule is considered on
all changes.

• onCreateOnly - The workflow rule is considered only
on create.

• onCreateOrTriggeringUpdate - The workflow
rule is considered on create and triggering updates.

Represents a set of Workflow actions (Field Updates and
Outbound Messages) that should execute before or after a
specified interval of time.

WorkflowTimeTriggerworkflowTimeTriggers

WorkflowTimeTrigger
Represents a set of Workflow actions (Field Updates and Outbound Messages) that should execute before or after a specified
interval of time.

140

WorkflowMetadata Types

DescriptionField TypeField Name

An array of references for the actions that should happen when
this trigger fires.

WorkflowActionReference[]actions

The date type field name that the time-based workflow triggers
off of, i.e. Created Date, Last Modified Date, Rule

stringoffsetFromField

Trigger Date or a custom date field on the object for which
the workflow rule is defined.

The numeric value of the time after/before the workflow
triggers. A negative value represents the time length before the
trigger will fire.

stringtimeLength

The unit of time before or after which the time-based workflow
will trigger. Valid string values are:

WorkflowTimeUnits
(enumeration of type
string)

workflowTimeTriggerUnit

• Hours

• Days

Declarative Metadata Sample Definition
The following is the definition of a workflow rule:

<?xml version="1.0" encoding="UTF-8"?>
<Workflow xmlns="http://soap.sforce.com/2006/04/metadata">

<alerts>
<fullName>Another_alert</fullName>
<description>Another alert</description>
<protected>false</protected>
<recipients>

<type>accountOwner</type>
</recipients>
<recipients>

<field>Contact__c</field>
<type>contactLookup</type>

</recipients>
<recipients>

<field>Email__c</field>
<type>email</type>

</recipients>
<template>TestEmail/Email Test</template>

</alerts>
<fieldUpdates>

<fullName>Enum_Field_Update</fullName>
<description>Blah</description>
<field>EnumField__c</field>
<name>Enum Field Update</name>
<notifyAssignee>true</notifyAssignee>
<operation>NextValue</operation>
<protected>false</protected>

</fieldUpdates>
<fieldUpdates>

<fullName>Enum_Field_Update2</fullName>
<description>Blah</description>
<field>EnumField__c</field>
<literalValue>PLX2</literalValue>
<name>Enum Field Update2</name>
<notifyAssignee>true</notifyAssignee>
<operation>Literal</operation>
<protected>false</protected>

</fieldUpdates>

141

WorkflowMetadata Types

<fieldUpdates>
<fullName>Field_Update</fullName>
<description>TestField update desc</description>
<field>Name</field>
<formula>Name & "Updated"</formula>
<name>Field Update</name>
<notifyAssignee>false</notifyAssignee>
<operation>Formula</operation>
<protected>false</protected>

</fieldUpdates>
<fieldUpdates>

<fullName>Lookup_On_Contact</fullName>
<field>RealOwner__c</field>
<lookupValue>admin@acme.com</lookupValue>
<name>Lookup On Contact</name>
<notifyAssignee>false</notifyAssignee>
<operation>LookupValue</operation>
<protected>false</protected>

</fieldUpdates>
<outboundMessages>

<fullName>Another_Outbound_message</fullName>
<description>Another Random outbound.</description>
<endpointUrl>http://www.test.com</endpointUrl>
<fields>Email__c</fields>
<fields>Id</fields>
<fields>Name</fields>
<includeSessionId>true</includeSessionId>
<integrationUser>admin@acme.com</integrationUser>
<name>Another Outbound message</name>
<protected>false</protected>

</outboundMessages>
<rules>

<fullName>BooleanFilter</fullName>
<active>false</active>
<booleanFilter>1 AND 2 OR 3</booleanFilter>
<criteriaItems>

<field>CustomObjectForWorkflow__c.CreatedById</field>
<operation>notEqual</operation>

</criteriaItems>
<criteriaItems>

<field>CustomObjectForWorkflow__c.CreatedById</field>
<operation>notEqual</operation>
<value>abc</value>

</criteriaItems>
<criteriaItems>

<field>CustomObjectForWorkflow__c.CreatedById</field>
<operation>equals</operation>
<value>xyz</value>

</criteriaItems>
<triggerType>onCreateOrTriggeringUpdate</triggerType>

</rules>
<rules>

<fullName>Custom Rule1</fullName>
<actions>

<name>Another_alert</name>
<type>Alert</type>

</actions>
<actions>

<name>Enum_Field_Update2</name>
<type>FieldUpdate</type>

</actions>
<actions>

<fullName>Field_Update</name>
<type>FieldUpdate</type>

</actions>
<actions>

<name>Another_Outbound_message</name>

142

WorkflowMetadata Types

<type>OutboundMessage</type>
</actions>
<actions>

<name>Role_task_was_completed</name>
<type>Task</type>

</actions>
<active>true</active>
<criteriaItems>

<field>CustomObjectForWorkflow__c.Name</field>
<operation>startsWith</operation>
<value>ABC</value>

</criteriaItems>
<description>Custom Rule1 desc</description>
<triggerType>onCreateOrTriggeringUpdate</triggerType>

</rules>
<rules>

<fullName>IsChangedFunctionRule</fullName>
<active>true</active>
<description>IsChangedDesc</description>
<formula>ISCHANGED(Name)</formula>
<triggerType>onAllChanges</triggerType>

</rules>
<tasks>

<fullName>Another_task_was_completed</fullName>
<assignedToType>owner</assignedToType>
<description>Random Comment</description>
<dueDateOffset>20</dueDateOffset>
<notifyAssignee>true</notifyAssignee>
<priority>High</priority>
<protected>false</protected>
<status>Completed</status>
<subject>Another task was completed</subject>

</tasks>
<tasks>

<fullName>Role_task_was_completed</fullName>
<assignedTo>R11</assignedTo>
<assignedToType>role</assignedToType>
<dueDateOffset>-2</dueDateOffset>
<notifyAssignee>true</notifyAssignee>
<offsetFromField>CustomObjectForWorkflow__c.CreatedDate</offsetFromField>
<priority>High</priority>
<protected>false</protected>
<status>Completed</status>
<subject>Role task was completed</subject>

</tasks>
<tasks>

<fullName>User_task_was_completed</fullName>
<assignedTo>admin@acme.com</assignedTo>
<assignedToType>user</assignedToType>
<dueDateOffset>-2</dueDateOffset>
<notifyAssignee>true</notifyAssignee>
<offsetFromField>User.CreatedDate</offsetFromField>
<priority>High</priority>
<protected>false</protected>
<status>Completed</status>
<subject>User task was completed</subject>

</tasks>
</Workflow>

143

WorkflowMetadata Types

Glossary

A |B |C |D |E |F |G |H |I |J |K |L |M |N |O |P |Q |R |S |T |U |V |W |X |Y |Z

A
Apex

Apex is a strongly typed, object-oriented programming language that allows developers to execute flow and transaction
control statements on Database.com in conjunction with calls to the Force.com API. Using syntax that looks like Java
and acts like database stored procedures, Apex enables developers to add business logic to most system events. Apex code
can be initiated by Web service requests and from triggers on objects.

Apex-Managed Sharing
Enables developers to programmatically manipulate sharing to support their application’s behavior. Apex-managed sharing
is only available for custom objects.

Application Programming Interface (API)
The interface that a computer system, library, or application provides to allow other computer programs to request services
from it and exchange data.

Asynchronous Calls
A call that does not return results immediately because the operation may take a long time. Calls in the Metadata API
and Bulk API are asynchronous.

B
Boolean Operators

You can use Boolean operators in report filters to specify the logical relationship between two values. For example, the
AND operator between two values yields search results that include both values. Likewise, the OR operator between two
values yields search results that include either value.

Bulk API
The REST-based Bulk API is optimized for processing large sets of data. It allows you to query, insert, update, upsert,
or delete a large number of records asynchronously by submitting a number of batches which are processed in the background
by Database.com. See also SOAP API.

C
Class, Apex

A template or blueprint from which Apex objects are created. Classes consist of other classes, user-defined methods,
variables, exception types, and static initialization code. In most cases, Apex classes are modeled on their counterparts in
Java.

144

Client App
An app that runs outside the Database.com user interface and uses only the Force.com API or Bulk API. It typically runs
on a desktop or mobile device. These apps treat the platform as a data source, using the development model of whatever
tool and platform for which they are designed. See also Composite App and Native App.

Component, Metadata
A component is an instance of a metadata type in the Metadata API. For example, CustomObject is a metadata type for
custom objects, and the MyCustomObject__c component is an instance of a custom object. A component is described
in an XML file and it can be deployed or retrieved using the Metadata API, or tools built on top of it, such as the Force.com
IDE or the Force.com Migration Tool.

Controlling Field
Any standard or custom picklist or checkbox field whose values control the available values in one or more corresponding
dependent fields.

Custom Field
A field that can be added in addition to the standard fields to customize Database.com for your organization’s needs.

Custom Links
Custom links are URLs defined by administrators to integrate your Database.com data with external websites and
back-office systems. Formerly known as Web links.

Custom Object
Custom records that allow you to store information unique to your organization.

D
Database

An organized collection of information. The underlying architecture of Database.com includes a database where your data
is stored.

Database Table
A list of information, presented with rows and columns, about the person, thing, or concept you want to track. See also
Object.

Data Manipulation Language (DML)
An Apex method or operation that inserts, updates, or deletes records from Database.com.

Decimal Places
Parameter for number, currency, and percent custom fields that indicates the total number of digits you can enter to the
right of a decimal point, for example, 4.98 for an entry of 2. Note that the system rounds the decimal numbers you enter,
if necessary. For example, if you enter 4.986 in a field with Decimal Places of 2, the number rounds to 4.99.
Database.com uses the round half-up rounding algorithm. Half-way values are always rounded up. For example, 1.45 is
rounded to 1.5. –1.45 is rounded to –1.5.

Dependent Field
Any custom picklist or multi-select picklist field that displays available values based on the value selected in its corresponding
controlling field.

Developer Force
The Developer Force website at developer.force.com provides a full range of resources for platform developers, including
sample code, toolkits, an online developer community, and the ability to obtain limited Force.com platform environments.

145

Glossary

http://developer.force.com

E
Enterprise WSDL

A strongly-typed WSDL for customers who want to build an integration with their Database.com organization only, or
for partners who are using tools like Tibco or webMethods to build integrations that require strong typecasting. The
downside of the Enterprise WSDL is that it only works with the schema of a single Database.com organization because
it is bound to all of the unique objects and fields that exist in that organization's data model.

Entity Relationship Diagram (ERD)
A data modeling tool that helps you organize your data into entities (or objects, as they are called in the Force.com platform)
and define the relationships between them. ERD diagrams for key Database.com objects are published in the SOAP API
Developer's Guide.

Enumeration Field
An enumeration is the WSDL equivalent of a picklist field. The valid values of the field are restricted to a strict set of
possible values, all having the same data type.

F
Field

A part of an object that holds a specific piece of information, such as a text or currency value.

Field-Level Security
Settings that determine whether fields are hidden, visible, read only, or editable for users.

Filter Condition/Criteria
Condition on particular fields that qualifies items to be included in a list view or report, such as “State equals California.”

Foreign Key
A field whose value is the same as the primary key of another table. You can think of a foreign key as a copy of a primary
key from another table. A relationship is made between two tables by matching the values of the foreign key in one table
with the values of the primary key in another.

Formula Field
A type of custom field. Formula fields automatically calculate their values based on the values of merge fields, expressions,
or other values.

Function
Built-in formulas that you can customize with input parameters. For example, the DATE function creates a date field
type from a given year, month, and day.

G
Gregorian Year

A calendar based on a 12-month structure used throughout much of the world.

H
HTTP Debugger

An application that can be used to identify and inspect SOAP requests that are sent from the AJAX Toolkit. They behave
as proxy servers running on your local machine and allow you to inspect and author individual requests.

146

Glossary

http://www.salesforce.com/us/developer/docs/api/index.htm
http://www.salesforce.com/us/developer/docs/api/index.htm

I
ID

See Record ID.

Instance
The cluster of software and hardware represented as a single logical server that hosts an organization's data and runs their
applications. Database.com runs on multiple instances, but data for any single organization is always consolidated on a
single instance.

Integration User
A Database.com user defined solely for client apps or integrations. Also referred to as the logged-in user in a SOAP API
context.

ISO Code
The International Organization for Standardization country code, which represents each country by two letters.

J
Junction Object

A custom object with two master-detail relationships. Using a custom junction object, you can model a “many-to-many”
relationship between two objects. For example, you may have a custom object called “Bug” that relates to the standard
case object such that a bug could be related to multiple cases and a case could also be related to multiple bugs.

K
No Glossary items for this entry.

L
Local Project

A .zip file containing a project manifest (package.xml file) and one or more metadata components.

Logged-in User
In a SOAP API context, the username used to log into Database.com. Client applications run with the permissions and
sharing of the logged-in user. Also referred to as an integration user.

Lookup Field
A type of field that contains a linkable value to another record. You can display lookup fields on page layouts where the
object has a lookup or master-detail relationship with another object. For example, cases have a lookup relationship with
assets that allows users to select an asset using a lookup dialog from the case edit page and click the name of the asset from
the case detail page.

M
Manifest File

The project manifest file (package.xml) lists the XML components to retrieve or deploy when working with the Metadata
API, or clients built on top of the Metadata API, such as the Force.com IDE or the Force.com Migration Tool.

Manual Sharing
Record-level access rules that allow record owners to give read and edit permissions to other users who might not have
access to the record any other way.

147

Glossary

Many-to-Many Relationship
A relationship where each side of the relationship can have many children on the other side. Many-to-many relationships
are implemented through the use of junction objects.

Master-Detail Relationship
A relationship between two different types of records that associates the records with each other. For example, invoice
statements have a master-detail relationship with line items. This type of relationship affects record deletion and security.

Metadata
Information about the structure, appearance, and functionality of an organization and any of its parts. Force.com uses
XML to describe metadata.

Metadata WSDL
A WSDL for users who want to use the Force.com Metadata API calls.

Multitenancy
An application model where all users and apps share a single, common infrastructure and code base.

N
Namespace

In a packaging context, a one- to 15-character alphanumeric identifier that distinguishes your package and its contents
from packages of other developers onAppExchange, similar to a domain name. Database.com automatically prepends
your namespace prefix, followed by two underscores (“__”), to all unique component names in your Database.com
organization.

O
Object

An object allows you to store information in your Database.com organization. The object is the overall definition of the
type of information you are storing. For example, the case object allow you to store information regarding customer
inquiries. For each object, your organization will have multiple records that store the information about specific instances
of that type of data. For example, you might have a case record to store the information about Joe Smith's training inquiry
and another case record to store the information about Mary Johnson's configuration issue.

Object-Level Security
Settings that allow an administrator to hide whole objects from users so that they don't know that type of data exists.
Object-level security is specified with object permissions.

onClick JavaScript
JavaScript code that executes when a button or link is clicked.

One-to-Many Relationship
A relationship in which a single object is related to many other objects. For example, an invoice statement may have one
or more line items.

Organization-Wide Defaults
Settings that allow you to specify the baseline level of data access that a user has in your organization. For example, you
can set organization-wide defaults so that any user can see any record of a particular object that is enabled via their object
permissions, but they need extra permissions to edit one.

148

Glossary

Outbound Message
An outbound message is a workflow action that sends the information you specify to an endpoint you designate, such as
an external service. An outbound message sends the data in the specified fields in the form of a SOAP message to the
endpoint. Outbound messaging is configured in the Database.com setup menu. Then you must configure the external
endpoint. You can create a listener for the messages using the SOAP API.

Owner
Individual user to which a record is assigned.

P
Picklist

Selection list of options available for specific fields in a Database.com object, for example, the Industry field for accounts.
Users can choose a single value from a list of options rather than make an entry directly in the field. See also Master
Picklist.

Picklist (Multi-Select)
Selection list of options available for specific fields in a Database.com object. Multi-select picklists allow users to choose
one or more values. Users can choose a value by double clicking on it, or choose additional values from a scrolling list by
holding down the CTRL key while clicking a value and using the arrow icon to move them to the selected box.

Picklist Values
Selections displayed in drop-down lists for particular fields. Some values come predefined, and other values can be changed
or defined by an administrator.

Primary Key
A relational database concept. Each table in a relational database has a field in which the data value uniquely identifies
the record. This field is called the primary key. The relationship is made between two tables by matching the values of
the foreign key in one table with the values of the primary key in another.

Production Organization
A Database.com organization that has live users accessing data.

Q
Queue

A holding area for items before they are processed. Database.com uses queues in a number of different features and
technologies.

Query String Parameter
A name-value pair that's included in a URL, typically after a '?' character.

R
Record

A single instance of a Database.com object.

Record Name
A standard field on all Database.com objects. A record name can be either free-form text or an autonumber field. Record
Name does not have to be a unique value.

149

Glossary

Record-Level Security
A method of controlling data in which you can allow a particular user to view and edit an object, but then restrict the
records that the user is allowed to see.

Recycle Bin
A page that lets you view and restore deleted information. Access the Recycle Bin by using the link in the sidebar.

Relationship Query
In a SOQL context, a query that traverses the relationships between objects to identify and return results. Parent-to-child
and child-to-parent syntax differs in SOQL queries.

Role Hierarchy
A record-level security setting that defines different levels of users such that users at higher levels can view and edit
information owned by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing
model settings.

Roll-Up Summary Field
A field type that automatically provides aggregate values from child records in a master-detail relationship.

S
SaaS

See Software as a Service (SaaS).

Salesforce SOA (Service-Oriented Architecture)
A powerful capability of Force.com that allows you to make calls to external Web services from within Apex.

Session ID
An authentication token that is returned when a user successfully logs in to Database.com. The Session ID prevents a
user from having to log in again every time he or she wants to perform another action in Database.com. Different from
a record ID or Database.com ID, which are terms for the unique ID of a Database.com record.

Session Timeout
The period of time after login before a user is automatically logged out. Sessions expire automatically after a predetermined
length of inactivity, which can be configured in Database.com from Setup by clicking Security Controls. The default is
120 minutes (two hours). The inactivity timer is reset to zero if a user takes an action in the Web interface or makes an
API call.

Sharing
Allowing other users to view or edit information you own. There are different ways to share data:
• Sharing Model—defines the default organization-wide access levels that users have to each other’s information and

whether to use the hierarchies when determining access to data.
• Role Hierarchy—defines different levels of users such that users at higher levels can view and edit information owned

by or shared with users beneath them in the role hierarchy, regardless of the organization-wide sharing model settings.
• Sharing Rules—allow an administrator to specify that all information created by users within a given group or role is

automatically shared to the members of another group or role.
• Manual Sharing—allows individual users to share records with other users or groups.
• Apex-Managed Sharing—enables developers to programmatically manipulate sharing to support their application’s

behavior. See Apex-Managed Sharing.

Sharing Model
Behavior defined by your administrator that determines default access by users to different types of records.

150

Glossary

Sharing Rule
Type of default sharing created by administrators. Allows users in a specified group or role to have access to all information
created by users within a given group or role.

Sites
Force.com Sites enables you to create public websites and applications that are directly integrated with your Database.com
organization—without requiring users to log in with a username and password.

SOAP (Simple Object Access Protocol)
A protocol that defines a uniform way of passing XML-encoded data.

Software as a Service (SaaS)
A delivery model where a software application is hosted as a service and provided to customers via the Internet. The SaaS
vendor takes responsibility for the daily maintenance, operation, and support of the application and each customer's data.
The service alleviates the need for customers to install, configure, and maintain applications with their own hardware,
software, and related IT resources. Services can be delivered using the SaaS model to any market segment.

SOQL (Salesforce Object Query Language)
A query language that allows you to construct simple but powerful query strings and to specify the criteria that should be
used to select data from the Force.com database.

SOSL (Salesforce Object Search Language)
A query language that allows you to perform text-based searches using the Force.com API.

System Log
Part of the Developer Console, a separate window console that can be used for debugging code snippets. Enter the code
you want to test at the bottom of the window and click Execute. The body of the System Log displays system resource
information, such as how long a line took to execute or how many database calls were made. If the code did not run to
completion, the console also displays debugging information.

T
Test Database

A nearly identical copy of a Database.com production organization. You can create a test database for a variety of purposes,
such as testing and training, without compromising the data and applications in your production environment.

Test Method
An Apex class method that verifies whether a particular piece of code is working properly. Test methods take no arguments,
commit no data to the database, and can be executed by the runTests() system method either through the command
line or in an Apex IDE, such as the Force.com IDE.

Trigger
A piece of Apex that executes before or after records of a particular type are inserted, updated, or deleted from the database.
Every trigger runs with a set of context variables that provide access to the records that caused the trigger to fire, and all
triggers run in bulk mode—that is, they process several records at once, rather than just one record at a time.

Trigger Context Variable
Default variables that provide access to information about the trigger and the records that caused it to fire.

151

Glossary

U
Unit Test

A unit is the smallest testable part of an application, usually a method. A unit test operates on that piece of code to make
sure it works correctly. See also Test Method.

URL (Uniform Resource Locator)
The global address of a website, document, or other resource on the Internet. For example, http://www.salesforce.com.

V
Validation Rule

A rule that prevents a record from being saved if it does not meet the standards that are specified.

W
Web Links

See Custom Links.

Web Service
A mechanism by which two applications can easily exchange data over the Internet, even if they run on different platforms,
are written in different languages, or are geographically remote from each other.

WebService Method
An Apex class method or variable that can be used by external systems, like a mash-up with a third-party application.
Web service methods must be defined in a global class.

Web Services API
A Web services application programming interface that provides access to your Database.com organization's information.
See also SOAP API and Bulk API.

Workflow Action
A workflow action is a field update or outbound message that fires when the conditions of a workflow rule are met.

Workflow Field Update
A workflow action that changes the value of a particular field on a record when a workflow rule is triggered.

Workflow Outbound Message
A workflow action that sends data to an external Web service, such as another cloud computing application. Outbound
messages are used primarily with composite apps.

Workflow Queue
A list of workflow actions that are scheduled to fire based on workflow rules that have one or more time-dependent
workflow actions.

Workflow Rule
A workflow rule sets workflow actions into motion when its designated conditions are met. You can configure workflow
actions to execute immediately when a record meets the conditions in your workflow rule, or set time triggers that execute
the workflow actions on a specific day.

152

Glossary

WSDL (Web Services Description Language) File
An XML file that describes the format of messages you send and receive from a Web service. Your development
environment's SOAP client uses the Database.com Enterprise WSDL or Partner WSDL to communicate with
Database.com using the SOAP API.

X
XML (Extensible Markup Language)

A markup language that enables the sharing and transportation of structured data. All Force.com components that are
retrieved or deployed through the Metadata API are represented by XML definitions.

Y
No Glossary items for this entry.

Z
Zip File

A data compression and archive format.

A collection of files retrieved or deployed by the Metadata API. See also Local Project.

153

Glossary

Index

A

ActivitiesSettings component 119
ApexClass component 63
ApexTrigger component 65
API support policy 2
Asterisk wildcard 14

B

Backward compatibilty 2
BaseSharingRule component 132

C

call deprecation 2
CallCenter component 67
Calls

checkDeployStatus 32
checkRetrieveStatus 39
checkStatus 47
create (asynchronous) 41
delete (asynchronous) 42
deploy 24
describeMetadata 48
listMetadata 48, 50
retrieve 32
update (asynchronous) 44

checkDeployStatus metadata call 32
checkRetrieveStatus metadata call 39
checkStatus metadata call 47
Components

ActivitiesSettings 119
Activity Settings 119
ApexClass 63
ApexTrigger 65
BaseSharingRule 132
CallCenter 67
CriteriaBasedSharingRule 132
CustomField 72
CustomObject 68
Dependent Picklist (see Picklist) 81
Group 94
InstalledPackage 95
list of types 61
LiveAgentSettings 122
Metadata 96
MetadataWithContent 97
MobileSettings 123
NamedFilter 78
OwnerSharingRule 134
PermissionSet 99
Picklist 81
Profile 102
Queue 109
QuickAction 110

Components (continued)
RemoteSiteSetting 114
Role 115
SamlSsoConfig 115
SecuritySettings 125
Settings 118
SharedTo 130
SharingReason 86
SharingRecalculation 87
SharingRules 131
unsupported 63
ValidationRule 88
Weblink 89
Workflow 135

create call (asynchronous) 41
CriteriaBasedSharingRule component 132
CustomField component 72
CustomObject

Weblink component 89
CustomObject component 68

D

delete call (asynchronous) 42
Dependent Picklist 81
Deploy 12
deploy call

running tests 18
Deprecated calls 2
describeMetadata call 48
Developer resources 3
Development platforms 2

E

Error handling 23
Expiration of session ID 23

F

Field types 93
File-based metadata 12

G

Group component 94

I

InstalledPackage component 95

L

listMetadata call 48
ListMetadataQuery 50
LiveAgentSettings components 122

154

Index

M

Manifest file 12, 16
Metadata calls 1
Metadata component 96
Metadata components 62
Metadata types 14, 61–63
MetadataWithContent component 97
MobileSettings component 123

N

NamedFilter component 78

O

OwnerSharingRule component 134

P

Package 98
Package versions 63
package.xml

samples 16
PackageVersion 63
PermissionSet component 99
Picklist component 81
Prerequisites 4
Profile component 102

Q

Queue component 109
Quick start

Generate WSDLs 4
Import WSDLs 5
Java sample 6
Prerequisites 4

QuickAction component 110

R

RemoteSiteSetting component 114
Retrieve 12

retrieve call 32
RetrieveRequest 38
Role component 115

S

SamlSsoConfig component 115
Sample code 6
SecuritySettings component 125
Session ID expiration 23
Settings 118
SharedTo component 130
SharingReason component 86
SharingRecalculation component 87
SharingRules 131
Standards compliance 2
Support policy 2
Supported calls 62

T

Types of fields 93

U

Understanding metadata calls and components 1
update call (asynchronous) 44
Usernames 19

V

ValidationRule component 88
Versions 63

W

Weblink component 89
Workflow component 135
WSC 5
WSDL integration 4–5

Z

Zip file 12

155

Index

	Getting Started
	Understanding Metadata API
	Development Platforms
	Standards Compliance
	Metadata API Support Policy
	Related Resources

	Quick Start
	Prerequisites
	Step 1: Generate or Obtain the Web Service WSDLs for Your Organization
	Step 2: Import the WSDL Files Into Your Development Platform
	Step 3: Walk Through the Java Sample Code

	Using Metadata API
	Deploying and Retrieving Metadata
	Working with the Zip File
	Metadata Types
	Sample package.xml Manifest Files
	Running Tests in a Deployment
	Maintaining User References

	CRUD-Based Metadata Development
	Error Handling
	Error Handling for Session Expiration

	Reference
	File-Based Calls
	deploy()
	checkDeployStatus()

	retrieve()
	RetrieveRequest
	checkRetrieveStatus()

	CRUD-Based Calls
	create()
	delete()
	update()

	Utility Calls
	checkStatus()
	describeMetadata()
	listMetadata()
	ListMetadataQuery

	Result Objects
	AsyncResult
	DeployResult
	DescribeMetadataResult
	RetrieveResult

	Metadata Types
	Metadata Components and Types
	Unsupported Metadata Types
	ApexClass
	ApexTrigger
	CallCenter
	CustomObject
	CustomField
	NamedFilter
	Picklist (Including Dependent Picklist)
	SharingReason
	SharingRecalculation
	ValidationRule
	Weblink
	Metadata Field Types

	Group
	InstalledPackage
	Metadata
	MetadataWithContent
	Package
	PermissionSet
	Profile
	Queue
	QuickAction
	RemoteSiteSetting
	Role
	SamlSsoConfig
	Settings
	ActivitiesSettings
	LiveAgentSettings
	MobileSettings
	SecuritySettings

	SharedTo
	SharingRules
	BaseSharingRule
	CriteriaBasedSharingRule
	OwnerSharingRule

	Workflow

	Glossary
	Index

